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ABSTRACT

THE INFLUENCE OF DETAILED AQUIFER CHARACTERIZATION ON

GROUNDWATER FLOW AND TRANSPORT MODELS AT SCHOOLCRAFT,

MICHIGAN

By

Christopher John Hoard

Aquifer characterization is a key aspect ofany groundwater study, however it is

difficult to determine when an aquifer has been adequately characterized. This study

explored several methods ofdescribing aquifer properties and the value ofknowing those

properties for developing accurate groundwater flow and transport simulations. Data

collected from an aquifer bioremediation study in Schoolcrafl Michigan was used for this

research. The value of incorporating various levels ofaquifer characterization was

assessed using groundwater flow and transport simulations. The relationship between

several aquifer properties including grain-size, ground penetrating radar velocity, and

hydraulic conductivity were explored using rock physics approaches. Regional aquifer

porosity estimates were estimated using ground penetrating radar tomography, and the

impact ofthese porosity values were evaluated in solute transport models. The

approaches developed through this research can be applied to future studies to help

design cost-effective sampling strategies for detailed aquifer characterization.
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CHAPTER I

EVALUATION OF GROUNDWATER FLOW AND TRANSPORT MODELS

INTRODUCTION

Aquifer characterization is an essential component of groundwater modeling and

remediation studies. Poor aquifer characterization can lead to inadequate models and

poor remediation design decisions. The remediation design may be either over-

engineered, which wastes money on excessive treatment costs, or the design may not

effectively remediate the aquifer due to inadequate characterization. A key question

becomes: how do we know if a site has been adequately characterized? The answer is not

simple because it can be argued that large amounts of data are needed to adequately

represent the heterogeneity of an aquifer. The purpose ofthis paper is to examine

different methods of evaluating the value of hydraulic conductivity data on groundwater

flow and transport simulations. Including more hydraulic conductivity data in

simulations should improve the predictive power ofthe simulations, but at some point the

improvement in model performance should plateau with the addition of further data.

Recent tracer studies have shown the value of identifying heterogeneity in aquifer

systems. Vereecken and others (2000) performed a large-scale tracer test on

heterogeneous fluvial deposits at the Krauthausen site, in Germany. Investigations

revealed that estimated dispersivities ofthe bromide tracer test, based on the theory by

Gelhar and Axness (1983), did not match the observed dispersivities. This was most

likely from heterogeneities on the site that caused loss of tracer mass and uncertainty in

hydraulic conductivity estimates. The few studies that have had detailed aquifer

characterization have shown that aquifer heterogeneity plays a major role in solute

transport. For example, studies carried out at Base Borden, Ontario (Mackay et a1. 1986;



Freyberg, 1986; Sudicky, 1986), Cape Cod (LeBlanc et al. 1991; Garabedian et al.1991;

Hess et al. 1992) and the MacroDispersion Experiment Site, near Columbus, Mississippi,

(Boggs et a1. 1992; Rehfeldt at al.1992) all illustrate the effect of heterogeneity on flow

and transport. Most remediation design studies do not have the luxury of working with

highly characterized aquifers. Yet few, if any, studies have explored the value of

hydraulic conductivity data for transport simulations using field data.

Several papers have addressed the issue of data worth and sampling design.

Many researchers have used Bayesian statistics to evaluate the worth ofhydrogeologic

data. Most ofthese studies are cost-risk evaluations that tie economic decision making

with hydrogeologic uncertainty, thus, addressing the value ofdata in a monetary sense.

The basic premise in most Bayesian schemes is that if the cost ofa sample does not

significantly lower the cost oftreatment or remediation design, then the sample is not

worth taking. This methodology has been used to examine hydrogeologic data worth in

design of waste management facilities and pump-and-treat remediation plans (Freeze et

a1. 1992; James and Freeze 1993; James and Gorelick 1994).

Others have examined the data worth issue in designing optimal data sampling

strategies to improve model predictions. Loaiciga (1989) used a mixed integer

programming method to determine an optimal sampling network for a landfill in Ohio.

In that case, model predictions were improved using parameter estimation as well as the

increasing sample density following the analysis. Wagner (1995) performed a similar

study using two types of optimization algorithms to evaluate the cost ofa sample versus

the information obtained from a sample. In addition, he examined the cost of different

hydrogeologic data types and the effect of each those data types had at reducing model



prediction uncertainty. Wagner (1999) built on his previous work by developing a four-

part methodology that identifies the most cost effective sampling strategy for

groundwater management studies.

The majority ofthe previous data worth analysis have been performed on

synthetic data sets. This paper presents a case in which we evaluate the impact of

varying amounts ofhydrogeologic data on groundwater flow and transport model

performance. The influence ofadding hydrogeologic data is demonstrated through

groundwater flow and transport simulations. A tracer test is simulated using a subset of

the available hydraulic conductivity data. The same simulation is performed again, only

using a larger subset ofdata. Data from well pairs are added incrementally until all the

available data are incorporated in the estimated hydraulic conductivity field. The results

ofthe solute transport models are then compared against each other, as well as the

measured data from the tracer test.

Several different methods were used to evaluate solute transport performance.

Simulated transport concentrations were evaluated against the measured values using

median quantile arrivals, sum of 10-90% quantiles, and the difference between total mass

oftracer simulated and measured (concentration deviation). These analyses can be used

to evaluate the value of detailed aquifer characterization as well as explore the best

method to compare simulation results.

SITE BACKGROUND

The study area is in the East side ofthe village of Schoolcrafi, in Kalamazoo

County, Michigan (Figure 1). Schoolcraft Plume A is a carbon tetrachloride (CT) plume

affecting a region ofthe unconfined aquifer in Schoolcraft. The source ofCT
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contamination is speculated to be an abandoned grain elevator near the center ofthe

village where the contaminant was used as a pest filmigant (Mayotte, 1996). Carbon

tetrachloride is a suspected human carcinogen and has been shown to cause acute liver

toxicity in laboratory animals (Sittig, 1985). The extent ofthe plume is approximately

1.2 km long, 90 m wide and lies between 8 and 26 meters below ground surface (bgs)

(Hyndman et al., 2000).

The aquifer below the village of Schoolcraft is composed ofglaciofluvial

sediments left behind by the retreating Laurentide ice sheet. The Lake Michigan lobe of

the Laurentide ice sheet retreated across Schoolcrafi to the location ofthe Kalamazoo

moraine (Monaghan et al., 1986). At this point, it is theorized that melt water ponded

against the combination of ice and moraine until it breached the moraine and spilled out

across the area (Steinman, 1994). The material deposited by this massive flood was

termed the Prairie Ronde fan by Steinman (1994). The contaminated aquifer in the study

area is composed ofthe outwash material from this flood. Directly underlying the coarse

aquifer material is a layer ofdense clay. This clay layer kept the contaminant from

migrating into deeper parts ofthe aquifer. The origin and extent ofthe clay layer is

uncertain, but at this remediation site all wells drilled encountered clay at approximately

90 ft bgs.

REMEDIATION STUDY

This study is part ofa larger study aimed at developing new, widely applicable

strategies to bioremediate contaminated groundwater. The Schoolcrafi site provided an

ideal place to test the new bioremediation design because a microbe was identified that

could degrade CT into nonharmful products, there were adequate levels ofnitrate



available as an electron acceptor, and the aquifer material was relatively homogenous

with only two orders of magnitude range in hydraulic conductivity. The design approach

involved creating an active bioremediation zone in the aquifer by injecting microbes,

substrate and other necessary constituents to enhance microbial activity. This zone of

active degradation was termed a biocurtain (Hyndman et al., 2000).

The biocurtain was established by injecting microbes, substrates and other

constituents across a transect ofwells that are perpendicular to natural groundwater flow

gradient (Figure 2). Natural groundwater gradient then carries contaminated water

through the bioreactive zone where contaminants are degraded. Successful degradation

ofthe contaminant relied on efficient delivery ofmicrobes, substrates and other

constituents across the transect. Failure to completely deliver material across the transect

would result in gaps in the biocurtain, and contaminated water could pass through gaps.

Therefore, it was important to identify heterogeneity that might effect delivery across the

transect.

SYSTEM OPTIMIZATION

Groundwater flow and transport models linked to an optimization function were

used to design a well layout and pumping scheme for the remediation system (Hyndman

et al., 2000). The goal ofthe optimization was to determine flow and well field

properties (e.g. number ofwells, well spacing, duration and rates ofpumping, and

duration of flow reversal) that achieved complete delivery ofmicrobes and necessary

nutrients while minimizing design cost. On the basis ofthese results, a one meter well

spacing for the delivery wells (Dl-DlS Figure 2) and a weekly 6 hr pumping strategy

was chosen for the projected 25 yrs ofsystem operation.
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Figure 2: Well layout for study area.
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The pumping strategy developed included a recirculation loop in which the even

numbered delivery wells would inject the solutes, while the odd numbered wells would

extract formation water, in effect, pulling the injected material across the delivery well

gallery. The initial pumping period was for 5 hrs at a flow rate of9.1 m3/hr. This was

followed by 1 hr ofreversal flow in which the odd numbered wells would begin injecting

and the even numbered wells would extract water. The following week this schedule

would be reversed, so the odd number wells would inject for the first 5 hrs and the even

would inject for the 1 hr reversal. This alternating scheme was designed to evenly

distribute injected material across the delivery wells.

FIELD TRACER TEST

Following installation ofthe field system, a tracer test was performed to evaluate

the designed pumping strategy and natural gradient flow through the observation gallery.

For this study two tracers, fluoroscein and bromide, were chosen because they are easily

detected, do not affect microbial growth, do not affect contaminant degradation and are

relatively conservative (Hyndman et al., 2000). The proposed strategy was to inject

tracer into the even-numbered delivery wells at a combined pumping rate of 9. l m3/hr (40

gpm). Bromide was injected at an average concentration of 16 ppm while fluoroscein

was injected at approximately 130 ppb. At the same time, water was extracted through

the odd-numbered wells at a total rate of 9. lm3/hr. After 5 hrs, the flow was reversed for

1 hr and then natural gradient was allowed to carry the tracer through the sampling grid

for the remainder ofthe week.

During the flow reversal stage, extracted water contained tracer fiom the previous

5 hr injection. Additional bromide and fluoroscein was added in the recirculation loop,



bringing the average concentration ofthe bromide to 22 ppm and fluoroscein to 215 ppb

for the recirculated water for the final hour of injection. A period of21 days ofnatural

gradient flow followed the tracer injection to allow the tracer slug to move through the

monitoring wells without added disturbance due to pumping. Additional bromide was

injected into the aquifer for all remaining pumping events to tag all injected water used

for pH adjustment. Results ofthe tracer test revealed the pumping strategy was eflective

for distributing material across the aquifer and the average ofthe measurements was quite

similar to the predicted concentrations (Hyndman et al., 2000). A complete description

ofthe tracer test is found in Hyndman et a1. (2000).

The initial attempts at modeling the tracer test accurately predicted averaged

observed tracer concentrations, but had significant difficulties in matching individual

measured concentration histories (Hyndman et aL, 2000). At the time ofthe tracer test,

only a small subset ofthe hydraulic conductivity data were available. The discrepancy

between individual simulated and observed concentration histories was most likely

caused by uncertainties in well location or significant heterogeneity along the transect

that were not identified with the available data. As more data became available, transport

simulations improved providing a better match between the simulated and observed

concentration histories. The effect of incorporating additional hydraulic conductivity

data in transport models had not been quantified, which is the motivation for this research

project.

METHODS

Seven sediment cores were collected in the region ofthe delivery well gallery

(Figure 2) using the Waterloo cohesionless continuous sand sampler (Dybas et al. 1998).



These borings were taken in the locations ofthe even numbered delivery wells between

the depths of 9.1 and 24.4 m. The sampler operates by advancing 1.5 m long, 5 cm

diameter plastic core tube ahead ofthe auger bit. A plunger-type device was inserted in

each tube to maintain vacuum as the sampler advanced into the aquifer, thus improving

core sample recovery. Incomplete core recovery often resulted in sediment shifting in the

sample tube, resulting in uncertainty with the exact depth ofthe sediment sample.

The cores collected from the aquifer were used to estimate the hydraulic

conductivity ofthe aquifer. Core samples were cut into 20 to 25 cm sections and 220 of

these sections were tested using constant-head permeameters. Sediment was removed

from selected core sections and placed into sample bags. Following oven drying at 60° C

for 24 hours, the samples were allowed to air dry at room temperature for 48 hours.

Approximately 300 grams of sediment were weighed and placed into a permeameter

experiment cell on top ofa porous conductivity stone. The sample was compacted by

placing a plug on top ofthe sample and lmmmering that with a drop weight. The drop

hammer was 1.74 kg and dropped fiom a height of 7.54 cm 10 times. A second porous

conductivity stone was placed on top ofthe packed sediment to seal the experimental

cell. To prevent water leaks fi'om the permeameter, PTPE pipe thread and seal tape was

wrapped around the edges ofthe stone. This created a tight seal between the experiment

cell and the stone. The sample was then placed into the saturation apparatus.

Approximately five pore volumes ofcarbon dioxide were flushed through the sample to

remove air. Then the sample was saturated from the bottom with deaired water from the

Schoolcraft site. The hydraulic conductivity was measured by passing the deaired

Schoolcraft water through the sample at a constant head gradient. Results ofthe

10



permeameter analysis yielded hydraulic conductivity values ranging fi'om 0.0011 cm/s to

0.1056 cm/s with a mean value of0.0028 crn/s.

Given the close well spacing (1 m separation) in the delivery well gallery, even

slight deviation ofthe well bores from vertical could significantly affect delivery and

transport. For example, two wells deviated away from each other would not act the same

as two perfectly straight wells. The deviated wells require an increased volume of

pumping to achieve the same level ofbreakthrough as the straight wells, because the

distance between the wells is larger than ifthey were perfectly straight. Deviation ofthe

delivery well bores from vertical was measured using a borehole colloidoscope, which

used a compass to determine the orientation ofthe well and a visual dipmeter to measure

the angle from vertical. The tool was lowered in 1.5 m increments, at each location the

measured direction and angle were recorded. Between colloidoscope measurements, the

amount ofwell bore deviation was interpolated using a linear interpolation. Some ofthe

wells were estimated to deviate as much as 32 cm fiom a vertical line. However, due to

the inexact nature ofthese measurements, there is still uncertainty in the accuracy ofthe

deviation measurement. There was an additional issue with the flame ofreference used

when applying the deviation measurements to model coordinates. The possibility ofthe

deviation measurements being 180° offwas tested by comparing transport simulations for

the two different cases. The deviations that best matched the measured data were used

for the fixture modeling.

The performance ofsolute transport simulations were evaluated using a variety of

methods including concentration quantile arrival times. The quantile arrival times were

calculated using a Matlab script that estimated the mass under the tracer concentration

11



curve. Based on the integrated mss under the concentration curve, the time required for

a certain percentage (e.g. 50%) oftracer mass to reach an observation point was

calculated. For example, the 50% quantile is the time it takes for 50% ofthe tracer mass

to be observed at a location. Figure 3 shows the calculated 50% quantile arrival times

(red and blue X) for well 9-75.

MODELING

In order to understand the effects ofheterogeneity on the groundwater flow

system, a series ofgroundwater flow and transport models were developed. Three-

dirnensional flow and transport models were constructed using the Groundwater

Modeling System (GMS), a pre and post processing interface for MODFLOW

(McDonald and Harbaugh, 1996) and RT3D (Clement, 1997). A control volume with the

dimensions 102 m by 57 m by 27.44 m was used as the model domain (Figure 4).

Specified head boundaries were used at two ends ofthe model to simulate the natural

head gradient (0.0011) measured at the site (Hyndman et al., 2000). The bottom and

other two sides ofthe model domain were considered no-flow boundaries. The model

domain was discretized into a network of 132 columns 86 rows and 23 layers. Fine cell

spacing, about 20 cm by 20 cm, was used in the 8 m by 20 m region around the delivery

well gallery to accurately model the flow dynamics in that zone. The cell spacing

increases away fi'om the delivery well gallery at just less than 1.5 times the previous

cell’s length in order to maintain stability ofthe model solution.

The model was vertically discretized into 22 equally spaced 1 m layers with a

5.44 m thick top layer, which was mostly composed ofthe unsaturated zone. The 1 m

12
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spacing was chosen to provide a reasonable description ofthe hydraulic conductivity

distribution for the flow and transport simulations.

The goal ofthe flow and transport modeling was to examine the effect ofdifferent

levels ofaquifer characterization on the accuracy offlow and transport simulations. To

explore this, a series ofsimulations were developed that incrementally add more

hydraulic conductivity data to the simulations. Adding more data to the model should

improve the model predictions as well as reduce uncertainty ofestimated hydraulic

conductivity values.

Six separate simulations were formulated to represent varying stages ofaquifer

characterization. The first modeled scenario is based on the hydraulic conductivity data

obtained from one well core in the center ofthe delivery well gallery (Figure 2). The

second scenario uses the hydraulic conductivity data oftwo well cores, at the ends ofthe

delivery well gallery. Scenario 3 utilizes the hydraulic conductivity data from three

different well borings, the two end wells and the center. In the fourth scenario, hydraulic

conductivity from 5 well cores is used in the flow model, using the 2 end wells and 3

wells in the center. The fifth scenario modeled incorporates the hydraulic conductivity

Table 1: Description of data used for each flow and transport simulation.
 

 

    

Scenario Well Data Used Interpolation Scheme

1 D8 Layered Average

2 D2, D14 Layered Average

3 D2, D8, D14 Zonal Kriging

4 D2, D4, D8, D12, D14 Zonal Kriging

5 D2, D4, D6, D8, D10, D12, D14 Zonal Kriging

6 D2, D4, D6, D8, D10, D12, D14 and deviation Zonal Kriging
 

data ofall 7 well cores. The sixth scenario uses hydraulic conductivity data fi'om the 7

well cores, but it also includes the influence ofborehole deviation on the pumping wells.

15



Hydraulic conductivity values were assigned to model grids through a layered

averaging of values or by interpolation values across the grid by kriging depending on the

amount ofassumed data available. The layered average technique was used for the first

and second model scenarios, because inadequate data were available to fit a variogram to

those sparse data sets. Hydraulic conductivity estimates within each layer were averaged

and assigned to the appropriate layer.

The hydraulic conductivity values for scenarios 3 through 6 were interpolated

across the grid using a zonal kriging approach. Prior to the variogram analysis,

histograms ofthe data sets were generated to examine the distribution ofthe data set. For

all cases, the histograms were significantly skewed (Figure 5) so the analysis was done

on log-transformed hydraulic conductivity data, which resulted in a more normal

distribution. Since kriging, assumes a normal distribution for the data the log

transformation was chosen for all kriging cases. A normal scores transform (Deutsch and

Journel, 1998) was also performed on the data for one case, to convert the skewed

distribution to a normal distribution. Kriging the normal scores transform data did not

produce significantly different results from the log transformed data. The log

transformation was not as computationally intensive, therefore it was used instead ofthe

normal scores transform for all remaining results.

Prior to kriging, experimental variograms were produced for the data set of

interest. An omnidirectional experimental variogram, as well as variograms for the

horizontal and vertical directions were generated. An exponential model was used to fit

the experimental variograms for all cases. Anisotropy was applied to the model

variogram to fit the vertical component ofthe data. Figure 6 provides an example

16
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variogram fi'om the 7 well case. A summary ofthe model variogram parameters used for

each scenario is found in Table 2. It should be noted that the same hydraulic conductivity

field is used for both the 7 well case that incorporates borehole deviation and the 7 well

case that does not.

Table 2: Summary ofVariogram Analysis for Various Well Scenarios

 

 

3 well 5 well 7 well

Nugget 0.0065 0.0063 0.01 1

Horizontal Correlation Length (m) 7.03 10.12 13.8

Vertical Correlation Length (m) 1.69 4.76 5.77

Variance 0.044 0.057 0.1 1     
 

Three distinct hydraulic conductivity zones are apparent in Figures 7 and 8; the

top zone (0-15.5 m bgs) has relatively low hydraulic conductivity, the middle zone (15.5

— 22.3 m bgs) has slightly higher hydraulic conductivity, and the deep zone (22.3 — 27.4

m bgs) has high hydraulic conductivity. Because ofthis, the zones were separately

kriged in an effort to maintain stationarity. The data collected between 22.3 and 27.4 m

bgs were kriged to the model grid using the variogram model obtained from the

aforementioned procedure. The same was done with the middle and upper hydraulic

conductivity zones as well. The three, kriged hydraulic conductivity zones were

transformed back to the correct values by taking the inverse log ofthe estimates. Next,

the three zones were combined to fit the entire model grid using a Matlab script and

imported into the groundwater flow model.
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The pumping stress periods ofthe flow model mimic those ofthe tracer test

mentioned previously. A flow of 9. 1 m3/min was extracted fi'om odd numbered wells and

distributed across the even numbered injection wells. To correctly model the flow to

wells, a conductivity-weighted average was used to calculate the flux from each layer

entering or exiting the well. The conductivity-weighted average was performed

independently for each model scenario. The flux from the aquifer is naturally distributed

according to hydraulic conductivity so the flux-weighted average accounts for this

behavior. The flux-weighted average was needed because ofthe large difference in

hydraulic conductivity between the region at the top ofthe well screen (2 9.1 m) and the

region near the bottom ofthe well screen ("~" 24.4 m).

Concentrations ofthe injected bromide tracer were measured throughout the

duration ofthe 6-hour pump event. Since the concentration was not constant throughout

the tracer test, the transport model stress periods needed to be adjusted to match the

measured concentration history for the injection wells. The 21 day period ofno tracer

injection was followed by injection ofbromide at concentrations ofapproximately 130

ppm for each weekly feeding event. This mass needed to be accounted for in the

simulations since it mixed with the original tracer injection in the lower conductivity

shallow observation points. As a result 52 stress periods were modeled starting with the

tracer test and including the initial inoculation ofmicrobes and the subsequent weekly

feeding events. This concentration data was used as the inputs for the RT3D simulations.

RESULTS

Examining the concentration history (Figure 9) provides a qualitative way to

interpret the results oftransport simulations. All concentrations presented in this figure
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are normalized as C/Co. The difference in hydraulic conductivity with depth is reflected

in the arrival times ofthe concentration peaks, with tracer arriving much faster at the

deep observation points (75 ft) than at the shallow observation points (35 and 45 it). This

is fiirther evidenced by the fact that one distinct peak is exhibited in the deeper zones

while the shallower observed depths show an initial peak merged with a second larger

peak oftracer. The second rise seen, mame in depths 35 and 45, is attributed to the

injection of additional bromide used to tag microbial feeding events that followed

inoculation. Since, the shallow zones had a higher residence time, associated with low

hydraulic conductivity, the initial peak did not have enough time to firlly pass the

observation point before the additional tracer was added to the system. This blending of

tracer peaks is not seen in the deeper observation points ofthe aquifer because the

residence times in that zone was much lower so the initial tracer peak traveled past the

observation point before the second injection oftracer reached that observation point.

Based on the concentration histories, it is clear that there is a significant

difference between the cases using one and two well cores ofhydraulic conductivity data

and the other cases shown. The 3, 5 and 7 well scenarios do a significantly better job at

representing the measured concentration histories than the one well case. For all cases

except depth 35 ft, the tracer simulated by the one well case arrives later and is spread

across a wider time range than all the other cases. Well 10 matched the measured values

closer than the other wells for the one well case, because the hydraulic conductivity for

this case came from D8, which lies directly up gradient ofwell 10 (Figure 2).

The 3 and 7 well case transport simulations are nearly the same for all observation

locations, although incorporating the effect ofborehole deviation does significantly affect

24



the majority ofthe observation locations. The exception to this is well 12, which

indicates almost no influence ofborehole deviation on the transport simulations. This is

because the delivery wells directly upgradient of monitoring well 12 are not significantly

deviated. For the shallow aquifer zone, well 11 shows the most significant difference

between deviated and non-deviated simulations. The deviated simulation matches the

measured tracer much better because the upgradient wells are deviated towards well 11.

Simulated tracer history including deviation for well 9 does a much better job of

matching the measured history. In that case the delivery wells upgradient ofwell 9 are

deviated away fiom well 9 which slows the tracer peak and better matches the measured

concentration history. Although it is apparent fiom this series ofplots that adding more

information to simulations improves model predictions, a quantitative approach was

needed to compare the results, which is why quantile and concentration deviations were

used to evaluate the model simulations.

Three different methods were used to assess the value ofadding information to

groundwater flow and transport models: 50% concentration quantile arrival times, sum of

10 - 90% concentration quantile arrival times, and total concentration deviations. Each

method produced similar results as evidenced by Figure 10, which illustrates the change

in residual as a function ofthe number ofwell cores used in the model.

The results ofthe quantitative methods chosen to explore the effects of

heterogeneity are found in Figure 10. The most obvious feature in Figure 10 is the sharp

drop in residual where the model uses 3 well cores as opposed to two well cores of

hydraulic conductivity data. This is probably the effect ofbeing able to interpolate the

hydraulic conductivity field using kriging instead ofusing a layered averaging approach
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to assigning hydraulic conductivity. In this case, 3 wells were within one correlation

length which may adequately represent the aquifer due to the significant lateral

correlation lengths at the site.

The performance ofthe one and two well scenarios could vary significantly

depending on which well locations were chosen to represent the hydraulic conductivity of

the aquifer. However, it is unlikely that any averaged result, from a small subset of

available data would adequately describe the aquifer. For a layered average case to be

appropriate, each ofthe concentration histories for sample wells 9 10 and 11 (Figure 2) 1

m down gradient fi'om delivery well should be identical. This is not reflected in the

measured data at this site (Figure 9). Differences in the concentration histories for those

wells are likely due to borehole deviation and lateral variability in aquifer properties.

Aquifer heterogeneity is likely the most significant factor causing the differences in

measured data for the three down gradient monitoring wells.

For this site, 3 well cores ofhydraulic conductivity data were enough to capture

the larger scale heterogeneities and spatial distribution ofhydraulic conductivity. Even

with the addition of further hydraulic conductivity data (5 and 7 well cases), there was

not much influence on the transport simulations. This is evidenced by the plateau of

residuals fi'om the 3 to the 7 well cases (Figure 10). However, variogram analysis ofthe

5 and 7 well cases produced significantly larger correlation length estimates in both the

horizontal and vertical directions (Table 2). In the horizontal direction the estimated

correlation length is doubled from the 3 well to the 7 well case.

The estimation variance ofthe kriged conductivity field clearly illustrates the i

value of incorporating additional data as well as the efl‘ect of spatial location ofthe data
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points. Figure 11 shows the kriged result and the estimation variance for two different 3

well scenarios. Figure 11a demonstrates the effect of incorporating data fi'om wells DZ,

D8 and D14 (Figure 2), which is the same 3 well scenario used for the analysis of

transport simulations in the rest ofthe paper. Figure 11b uses data from wells D4, D8,

D12. Based on the estimation error ofthe two cases, Figure 11b has a lower estimation

error between the wells because well spacing is closer (4 m) for 11b as opposed to 6 m

for 11a. The uncertainty in the kriging estimates is reduced by having closely spaced

samples.

Similarly, increasing the amount ofdata used in the hydraulic conductivity

interpolation significantly reduces the uncertainty ofthe interpolation outcome.

Comparing Figure 11a to Figure 12 reveals that even though the hydraulic conductivity

outcomes are similar, the estimation variance is much different for the two cases. The 7

well case (Figure 12) lms a much lower estimation error associated with the hydraulic

conductivity estimates than the 3 well case (Figure 11a). This is expected because the

data points are only 2 m apart for the 7 well case instead of6 m apart in the 3 well case

(Figure 11a). Despite the reduction in estimation error using 7 wells, the transport

simulation results for the 7 well case did not considerably improve over the 3 well case

(Figure 10). This is due to the fact that for the 3 well case, the horizontal correlation

length was long (7 m) and because wells selected for the 3 well case provided a

reasonable representation ofthe aquifer heterogeneity. Therefore, incorporating

additioml data did not significantly affect the results ofkriging, as evidenced by similar

hydraulic conductivity fields produced by the 3 and 7 well case in Figure 11b and 12.
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Figure 12: Estimation variance and kriged log hydraulic conductivity

outcome for the 7 well case.
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The addition ofwell borehole deviation also causes a reduction in both quantile

and concentration deviation residuals (Figure 10). The composite residual plots make it

appear that the incorporation of borehole deviation greatly improves the simulation

results. However, by adding efl‘ects ofborehole deviation, residuals at some sampling

points increase, indicating poor model prediction. At the same time, some residuals at

other sampling points decrease, indicating improved model prediction. For example, the

50% quantile arrivals for sampling points 9-35, 9-55 and 9-65 (Figure 13) all get worse

with the addition ofborehole deviation; however, for well 13 all sampling points

improved (Figure 11). In general the, the sampling points in the shallower depths

performed worse or stayed the same, while the deeper sampling points improved by

including borehole deviation data. The effect of borehole deviation was expected to be

greater at depth, which is consistent with the model results.

The most likely reason for the poor performance ofthe shallow sampling points is

the lack ofmeasured hydraulic conductivity data available to compare to the simulated

values. The shallow depths (35 and 45 ft) were sparsely sampled (Figure 9). For

calculation ofquantiles and concentration mass, the measured concentration history is

interpolated using a trapezoidal area calculation. As a result, accuracy ofthe mass under

the curve heavily relies on a high tracer sampling frequency for accurate results. The

sample frequency was very low for the shallow depths, which introduces significant

uncertainties in both the quantile analysis and the concentration deviation analysis.

In addition, uncertainty associated with the method ofrepacked testing of

hydraulic conductivity estimates may also be causing the poor behavior ofthe slmllow

observation points. The repacked method results in a homogenized sample that does not
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necessarily reflect the in situ properties ofthat sample. For poorly sorted grain-size

distributions, the smaller grains will fill void space between larger grains. In effect,

reducing the connectedness ofthe pores pace and reducing the effective hydraulic

conductivity.

The discrepancy between the deep and shallow model behavior may also indicate

a problem with the accuracy ofthe deviation measurement. There is significant

uncertainty associated with the borehole deviation data collected with the borehole

colloidoscope. Until a more accurate method ofmeasuring well deviation can be

performed this issue will remain uncertain. Regardless, the dramatic effect deviation has

on some simulation results warrants consideration ofwell deviation especially in highly

detailed, small-scale modeling exercises like this one.

Borehole deviation might also be a factor influencing the observation points in the

aquifer. Borehole deviation information is not available for observation wells because

the diameter ofthe wells was too small (2.54 cm) for the colloidoscope to measure.

Because there is no way to measure the deviation ofthe observation points we have to

assume they are straight. Since this is unlikely, observation deviation becomes another

factor contributing uncertainty to simulation results.

It appears that the concentration deviation method ofcalculating model residuals

does the best job ofcomparing model results to measured values. The quantile

calculation tends to be less accurate because it searches for the time when 50% ofthe

mass has been sampled. For example, in well 11-45 (Figure 9) the 7 well case with

deviation clearly does a better job at representing the concentration history than the other

simulated scenarios. However, the 50% quantiles are nearly the same (Figure 14)
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because 50% ofthe simulated mass for the other scenarios passes at the same time as the

7 well case with deviation. In contrast, the concentration deviation method examines the

total mass under the curve, for which the 7 well case with deviation reduces the residual

much more than the other scenarios, illustrated in Figure 14.

Likewise, the total concentration deviation, when compared to the sum ofthe

quantiles method, does a better job ofrepresenting simulation performance. For well 11-

45 (Figure 9) the all ofthe quantiles calculated for this case (10 through 90%) for the 3, 5

and 7 well cases will be similar to the quantiles for 7 well case with deviation. Even

though the 3, 5 and 7 well case simulation results are much worse than the 7 well case

with deviation, the quantiles do not reflect this as well as the total mass method. The

only potential problem with using the total concentration deviation method is the same

problem associated with all ofthe methods used, low sampling fi'equency ofthe

measured tracer arrival. The concentration deviation method does a better job of

comparing model behavior to measured results than the other two methods evaluated for

this study.
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CHAPTER II

PHYSICAL CHARACTERIZATION

INTRODUCTION

Several physical property relationships were explored during the characterization

ofthe aquifer. Measured property values of porosity, permeability, grain size and

ground-penetrating-radar (GPR) velocity were compared and used to firrther characterize

the aquifer. Empirical relationships, like Kozeny—Carrnan, were explored to obtain

hydraulic conductivity estimates from grain-size information. Since grain-size

distributions are typically easier to measure than permeability estimates, any grain size

relation that yields reliable permeability estimates would be valuable. In addition, several

planes ofcrosswell radar tomography were collected and it was hoped that a relationship

could be found between hydrogeologic properties and GPR velocity. Such a relationship,

would allow the GPR to be used to improve estimates ofhydrogeologic properties where

no direct measurements were available.

GRAIN-SIZE ANALYSIS

During the aquifer characterization process, grain-size analysis was performed on

subsections ofthe core samples collected from the delivery well gallery. Grain-size

sample locations are shown in Figure 15. Grain-size samples were sieved using a series

of 11 mesh sizes (2000, 840, 600, 500, 425, 300, 250, 212, 180, 150, 75 microns). This

produced a total oftwelve different grain-size categories, because everything less than 75

microns was collected in a pan below the series of sieves. It was hoped that a method to

estimate hydraulic conductivity fiom grain-size information would provide useful results,

since it was easier and faster to perform the grain-size measurements than the

permeameter measurements.
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Exploratory data analysis ofthe physical properties ofthe aquifer examined the

relationships between depth, porosity, effective grain size and hydraulic conductivity.

The effective-grain size (Defl) is defined as:

_ Zinn,

Defl— 2112.24 (1.1)

where D,- is the discrete grain size and n,- is the fraction ofgrains from a sample for a

particular discrete grain size (Mavko et al., 1998). The discrete grain size categories used

were based on the sieve sizes used in the sieve analysis. The effective particle size

approach is used primarily for systems with poorly sorted grain size distributions (Mavko

et al., 1998), which is the case at Schoolcraft where particle sizes range from gravel to silt

size. Figure 16, 17 and 18 illustrate the relationships for the physical properties ofthe

aquifer. For this site, high hydraulic conductivity sediments found deep in the aquifer,

correspond to low porosity, and large effective grain sizes.

A Kozeny-Carman type equation was used in an attempt to estimate permeability

from grain-size information

I: = B¢3defl2 (1.2)

where x is the permeability, B is the geometric fitting factor, 05 is the porosity and def is

the effective grain size (Mavko et al., 1998). This form ofthe Kozeny-Carman equation

was used because it was robust and had few assumptions associated with the geometric

configuration ofthe sample (e.g. tortuosity, packing, and sorting). Any problems

associated with the geometric configuration ofgrains or pores were taken care ofthrough

the B term ofthe equation 1.2. The geometric fitting factor B was determined through a

least squares regression between the measured permeability data from the permeameter
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Comparison of Depth to Porosity of samples Deff (m) x 103
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Comparison of Porosity to Hyd'aulic Conductivity of samples
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analysis and the estimated permeability fi'om the Kozeny-Carrrran equation. The B term

takes into account the effect ofgrain packing and other effects associated with geometric

configuration ofgrains and pores ofthe sample.

The porosity values were estimated using the relation

¢=1—PA (1.3)

ps

where 41 is the porosity, pg, is the bulk density ofthe sample and p, is the sediment particle

density ofthe sample (Freeze and Cherry 1979). This was done because no direct

measure ofthe porosity was ever taken and because bulk density and particle density

values were available for each sample. The bulk density values used for this analysis

were measured during the repacked permeameter tests. The mass ofthe saturated sample

and the volume the bulk sample occupied in the test chamber were known, so the bulk

density was calculated as the mass ofthe saturated sample divided by the bulk volume.

The particle density was measured using water displacement ofa sediment sample. A

known volume ofwater was placed into a graduated cylinder. Then a known mass of

oven-dried sediment was poured into the graduated cylinder and the volume change was

recorded. The particle density was then calculated as the mass ofthe sediment divided by

the volume ofwater the sediment displaced. Given that the bulk density was calculated

fiom a repacked sample, it is unlikely that the porosity measured in the lab is the same as

the in situ porosity.

Initially, the Kozeny-Carman equation did not match the measured permeabilities

well (Figure 19). Comparison ofKozeny-Carman permeability estimates to permeameter

derived estimates yielded a correlation coefficient of0.5794. However, closer

examination of Figure 19 revealed that the effective grain size (note color scheme on
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Figure 19) was the dominating variable in the Kozeny-Carman equation. Three distinct

color bands can be seen linking the large effective grain sizes to high permeability values

and small effective grain sizes to low permeability values. This demonstrated the need

for a different method ofdescribing the effect ofthe grain-size distribution on

permeability.

Instead ofperforming the effective grain size calculation on the whole grain-size

distribution, this calculation was performed on the grains that were 10% ofthe

distribution and finer (d10). Figure 20 shows the result ofusing the effective d10

approach. Using the d10 effective grain size the correlation coefficient increased to 0.84.

This was done with the d20 and d30 effective grain size as well, and similar results were

achieved (Figures 21 and 22 respectively). The d20 effective analysis yielded a

correlation coefficient of 0.81 and the d30 effective yielded a correlation coefficient of

0.83. Therefore, when applying the Kozeny-Carman permeability equation to this data, a

d30 or smaller effective grain size should be used for reasonably close results to the

values estimated using the permeameter measurements.

There is also uncertainty associated with the permeability values estimated

through the repacked permeameter process. During the repacked permeameter

measurement, the grains in the sample are essentially mixed and homogenized.

Therefore, any sorting as a result ofdeposition ofthe aquifer material is no longer

represented with this method. Homogenizing the sample causes smaller grain sizes to fill

in the pore space between larger grains. So the smaller grains become the dominant

factor controlling the estimate ofhydraulic conductivity. This behavior is reflected in the

fact that by using an effective grain size that takes into account both large and small grain
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Estimated vs. Measured Permeability using Effective d10
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Figure 20: Kozeny-Carman estimated permeability vs. measured permeability

using the d10 effective grain size.
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sizes, the Kozeny-Carman permeability estimates did not match the permeameter

estimated permeabilities well. Meanwhile, using a snmll effective grain size (< D30), the

Kozeny-Carman permeability estimates matched repacked permeameter estimates

relatively well. Because repacked permeameter measurements might not accurately

reflect the in situ value ofpermeability for some samples, the Kozeny-Carman equation

that incorporates the total effective grain size ofa sample may better represent the in situ

values ofaquifer permeability. This could be tested in future work through comparison

oftransport model results between two simulations that used the hydraulic conductivity

estimates derived fiom both methods.

RADAR TOMOGRAPHY

Several studies have explored using geophysics to estimate hydraulic properties of

aquifers. Despite this, there are few examples that have been able to successfully infer

hydrogeologic properties fiom geophysical measurements. This is mainly because

relationships between geophysical and hydrogeologic properties are usually non-unique

and uncertain. Significant progress has been made using geophysical measurements to

estimate hydraulic properties and identify aquifer structure (Bourbie and Zinszner, 1985;

Rubin et al., 1992; Hyndman et al., 1994; Hyndman and Gorelick, 1996; Rea and Knight,

1998; Hubbard et a1. 1999; Ezzedine et al., 1999; Hyndman et al., 2000; Hubbard et al.,

2001). Electromagnetic waves have also been applied to obtain values of soil water

saturation (Topp et al. 1980; Alharthi and Lange, 1987; Hubbard et al., 1997; Chan and

Knight, 1999), which is equal to the porosity for saturated aquifers.

The goal ofgeophysical research performed in Schoolcraft was to relate GPR

velocity to porosity and use those porosity estimates to improve solute transport models.
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Although research using GPR has provided encouraging results, no research has

incorporated porosity estimates obtained from GPR into solute transport models.

Porosity is a key parameter in solving the advective flow equation shown in equation 1.4:

V, = Iii (1.4)

n, d]

where VJr is the average linear velocity, K is the hydraulic conductivity, n, is the effective

porosity and dh/dl is the hydraulic gradient (Fetter 1994). Modeling advective solute

transport requires accurate porosity values, although it is rarely measured at field sites, so

homogeneous values between 25 % and 40 % are often chosen for transport simulations.

The heterogeneous porosity estimates obtained from GPR should provide a more accurate

representation ofthe aquifer porosity than an approximate value between 25% and 40%.

Several planes ofcross-well radar tomography were shot across the well grid

using 100 MHz antennas. Data was collected fi'om 6 m bgs to the bottom ofthe well

casing which varied from 22.5 m bgs to 27.5 m bgs depending on the well used. This

was done because the water table was at approximately 5 m bgs at this site and we were

only interested in the saturated zone ofthe aquifer. Shots were collected at increments of

0.5 m to avoid spatial aliasing ofthe data. The first arrival ofeach shot was picked using

the pulseEKKO software (Sensors and Software, 1997). The first arrival picks were used

as input for the straight ray inversion code provided in the pulseEKKO software package

(Sensors and Software, 1997). When the inversion convergence criterion was met, the

tomogram was displayed for visual inspection.

Ofthe several planes ofradar that were processed only five planes were used. It

is speculated that problems with possible well deviation and picks of first arrivals may

have caused the other planes ofradar data to fail to converge in the inversion code. The
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five planes ofGPR data that provided reasonable results were from wells Dl-Dl 5, P9-

P10, P10-P6, P11-P6 and P12-P6 shown in Figure 23.

Comparing radar velocity to hydraulic conductivity revealed an unexpected

relationship. High radar velocities correlated to high hydraulic conductivities as well as

low porosities (Figure 24). However, for well-sorted sandy aquifers, like the aquifer in

Schoolcraft, it is expected that high hydraulic conductivities correlate to high porosity

(Freeze and Cherry, 1979). At this site, the aquifer is composed ofvery coarse sediment

(gravel and coarse sand) at the bottom ofthe aquifer. Because ofthe range ofsediment

sizes the smaller sand grains may be filling in the pore space between the larger gravel.

Although the porosity decreases, the size ofthe connecting pore throats are large and can

communicate water extremely well resulting in high hydraulic conductivities in this deep

zone. Therefore, the relationship at Schoolcraft is not the expected direct relationship

between hydraulic conductivity and porosity.

GPR velocity is inversely proportional to the square root ofthe dielectric constant

given in the equation

2 0.5

V0”: -2—[ 1(1) +1] (1.5)

us 80)

where VGPR is the GPR velocity, p is the magnetic permeability, a is the dielectric

permittivity, ais the conductivity, and (0 is the angular fi'equency ofthe wave (Reynolds

1997). This is often simplified to the following in low loss mediums

VGPR = yJ; (1'6)

where VGPR is the GPR velocity, 0 is the wave velocity in air, and a is the dielectric

constant ofthe medium (Reynolds, 1997).
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Figure 23: Map ofGPR tomography planes using a normalized velocity. Labels

indicate well locations.
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Figure 24 Relationship between GPR velocity porosity and hydraulic conductivity.
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The dielectric constant of sands depends primarily on the volumetric content of

water, and for saturated systems the volumetric content ofwater is equal to the porosity.

Because ofthe large contrast between the dielectric constant ofwater and sand, 80 and

3.5 respectively (Reynolds, 1997), and if a binary system ofquartz and water is assumed,

then some form ofmixing theory may be used to estimate the volumetric percent of sand

grains and water.

To estimate porosity from the GPR tomograms, the GPR velocities need to be

converted to dielectric constants using equation 1.6. The dielectric constants obtained

fi'om this equation are effective dielectric constants influenced by the respective amounts

ofsand and water in the system. In order to estimate the porosity, the individual effect

that each constituent had on the effective dielectric constant was determined using three

methods: Topp’s relation, differential effective medium theory (DEM) and the complex

refractive index method (CRIM).

Topp’s relation is based on a regression fiom a variety of soil samples and shown

as a two part equation:

19, = -5.3x10‘2 +2.92x10‘2x, -5.3x10'4x‘02 +5.3x10'6xa3 (1.7)

x, =3.03+9.3a, +146.00,2 —76.719,3 (1.8)

where 6,, is the volumetric water content and It}, is the apparent dielectric constant (Topp

et al., 1980). This equation does not work well with soils that have hrge amounts ofclay

due to bound water in clay minerals.

Differential effective medium theory is a mixing theory that assumes a binary

system ofa host material containing spherical inclusions ofanother material. In this case,
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it can be approached in two ways, using either water or quartz as the host material. These

two approaches provide an upper and lower estimate for the porosity using the equation

1_y=[£2_8DEM(y)]|: 81 ]3 (19)

£2 - 81 8.05M 0’)

 

where y is the volumetric content of spherical inclusions, 6.051402) is the apparent

dielectric constant, 61 is the dielectric constant ofthe material 1 and 82 is the dielectric

constant ofmaterial 2 (Berryman, 1995). For this exercise a value of3.5 was used for the

dielectric constant of sand and a value of80 was used for the dielectric constant ofwater

(Reynolds, 1997).

The complex refiactive index method is another mixing theory that determines the

percent fiaction ofmaterials based on a composite value ofa physical property, in this

case the dielectric constant. The equation is given as:

JF=f,,/Z+f,,/Z (1.10)

where x. is the apparent dielectric constant, x1 is the dielectric constant ofmaterial 1, x2 is

the dielectric constant ofmaterial 2, fl is percent fraction ofmaterial 1 and f2 is percent

fi‘action ofmaterial 2 (Mavko et al., 1998). Again 3.5 was used as the dielectric constant

ofsand and 80 was used for the dielectric constant ofwater.

None ofthese methods assume any prior knowledge ofthe geometry ofwater and

sand system. Because ofthis, a set ofbounds called the Hashin-Shtrikman bounds, are

used to define the narrowest possible range ofvalues without any previous knowledge of

the geometry ofthe constituents (Mavko et al., 1998). For a two-component system this

is defined as:
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£i=sl+ f2 (1°11)

(£2 —6‘1)-l+§%

 

where a, is the dielectric constant ofthe material 1, 82 is the dielectric constant ofmaterial

2, f1 is percent fraction ofmaterial 1, and f2 is percent fiaction ofmaterial 2 (Mavko et

al., 1998). Figure 25 shows the Hashin-Shtrikman bounds plotted along with the results

ofthe three different methods used to calculate porosity. All cases fall within the bounds

so the results are reasonable by this measure. Based on this figure, the DEM upper model

and the CRIM model seem to do a better job ofpredicting the porosity than either the

Topp relation or the DEM lower model. The Topp relation begins to fail as it approaches

a volumetric water content ofapproximately 50% because it begins to go outside the

Hashin-Shtrikman bounds near this point. The DEM lower bound does not provide

reasonable values ofporosity for this site.

Values ofporosity derived from the upper DEM model were calculated fi'om each

ofthe five planes ofradar data. The mean ofthe porosity for each tomography plane was

adjusted to the mean measured porosity using the repacked samples (37.5%), which

involved adjustments of2.4 to 7.1 %. These mean-adjusted porosity estimates were then

interpolated across the transport model grid using ordinary kriging. Figure 26 provides

an example ofthe GPR derived porosity for the plane ofradar between wells D1 and

D15. Following the kriging, the interpolated porosity was input into the BTN package of

RT3D and the tracer test discussed previously in the report was simulated. This result

was compared against a transport simulation that used the mean ofthe measured porosity

value as a constant throughout the model grid as well as a kriged estimate ofthe

measured porosity values. The results ofthe three simulations are seen in Figure 27.
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Haslin-Shtrilrman Bounds compared to Porosity Estimates
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Based on Figure 27, using the DEM derived porosity as opposed to a constant

mean porosity or the kriged estimate ofthe measured porosity does not significantly

affect the simulation results. The concentration histories ofthe three different transport

simulations do not show a significant difference. In addition, there is poor correlation

between the measured and GPR derived porosity values (Figure 26). This suggests that

either one or both ofthe porosity estimates are not accurate representations ofthe aquifer.

The problems with GPR derived porosity could be due to several factors, including the

effect ofborehole deviations, poor processing ofthe radar tomography or problems with

the assumption that the aquifer is a binary system. Ifthe system has large amount ofclay

material or material that has significantly different dielectric constant than sand then the

porosity values derived fiom binary mixing theories are no longer valid. Uncertainty

with the measured porosity based on the repacked bulk density measurement, discussed

in the previous section, may also be a factor.

In addition to the porosity analysis using GPR, correlation lengths ofGPR

velocity were generated and compared to the correlation lengths ofthe hydraulic

conductivity ofthe aquifer. The correlation lengths generated using GPR (25.6 m

horizontal and 3.97 m vertical) were similar to those ofthe hydraulic conductivity (13.8

m horizontal and 5.77 m vertical). GPR provided reasonable estimates ofthe aquifer

correlation structure at this site, which indicates that such geophysical approaches add

value to aquifer characterization studies. Knowledge ofthe correlation lengths may help

with the design ofaquifer sampling strategies that will adequately sample the

heterogeneity ofan aquifer.
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Despite the problems encountered with using GPR to improve transport

simulations at this site, there is potential for this technique to aid in aquifer

characterization. GPR tomography can provide estimates ofaquifer characteristics for

portions ofthe aquifer that are not directly sampled by coring. Indirect measurements

like GPR are often faster and less expensive to collect, but in order to provide meaningful

information about the aquifer uncertainty in data acquisition and data processing must be

minimized. Using GPR to obtain accurate porosity measurements will help improve

aquifer characterization, which should lead to improved groundwater flow and transport

models.
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CHAPTER III

CONCLUSIONS

It is widely known that aquifer characterization is an integral part ofany

groundwater modeling study. However, costs are often prohibitive for performing the

dense spatial sampling ofhydraulic characteristics that is needed to adequately identify

heterogeneity in aquifer systems. Once the spatial correlation structure is adequately

represented, then interpolation ofhydraulic conductivity estimates through kriging

provides a good representation ofaquifer heterogeneity. Based on the information

obtained at the Schoolcraft Study area, three well cores ofhydraulic conductivity data

appear to provide enough information to adequately model the system. Even though the

uncertainty ofestimated hydraulic conductivity values was reduced by adding more

hydraulic conductivity data, little change was seen in the performance offlow and

transport values from the 3 well to the 7 well cases. This result is specific to this site and

likely due to the long correlation lengths ofhydraulic conductivity data found at this site.

For highly detailed, small-scale modeling investigations, the effects ofborehole

deviation are not trivial. Borehole deviations have the potential to significantly affect

local flow around wells. An accurate method ofmeasuring borehole deviation should be

used to provide more accurate modeling results, as well as to account for flow behavior in

sensitive remediation systems like the one at Schoolcraft, Michigan.

Methods like quantile analysis and concentration deviations can be used to

quantify the ability ofsimulations to match measured results. It is important to note that

to perform these armlyses, a relatively high sampling-fiequency is needed for the

measured data This ensures accurate calculation ofquantiles, as well as total mass of
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solute under the curve. Ofthe three methods examined the total concentration deviation

seemed to provide the best method ofcomparing simulations to measured results. The

total concentration deviation better represents the actual concentration history. Certain

cases occur when simulated concentration quantiles match the measured quantiles

relatively well, while the simulated tracer mass is much different than the measured tracer

mass. Therefore, care should be taken when applying these techniques to evaluate

transport simulations.

Thorough examination ofthe physical properties ofthe aquifer at Schoolcraft

revealed many important relationships. Permeability calculated from grain-size

information provided accurate results when the effective grain-size used was limited to

d30 or lower. This is likely because the small grain-sizes are controlling the connecting

pore throats and thus controlling the permeability. Another important relationship

discovered at this site was that high hydraulic conductivity correlated to high radar

velocity (low porosity), which contrary to the expected behavior for well-sorted sandy

aquifers. This type ofdata analysis should be applied to any aquifer characterization

study. Simply comparing the available data proved to be valuable in recognizing the

important relationships between the aquifer properties at this site.

Additionally, GPR has potential to improve flow and transport models by

estimating an aquifer property that is not directly measured throughout the aquifer. The

dense spatial sampling that geophysical methods provide could greatly increase the

information about the aquifer being studied. Provided that the uncertainty associated

with acquisition ofthe geophysics and the processing ofthe data are minimal. For this

site, the porosity estimation should have made a significant difference in the transport
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modeling. However, uncertainties associated with the radar data likely mask the effect of

using the radar derived porosity.

This research project provides an example ofhow flow and transport models

based on poor aquifer characterization (layered average case) compare to models

developed from a well characterized aquifer (7 well case with deviation). A point exists

at which model results do not significantly improve from incorporating additional data

Once this point is reached, research efforts should change fi‘om characterization to

design. Future aquifer characterization efforts should focus on collecting enough data to

adequately determine the correlation lengths ofhydraulic conductivity in the aquifer.

Based on the correlation structure ofthe data and the scale ofthe study, the data

collection strategy can be adjusted to minimize uncertainty of hydraulic conductivity

estimates, while at the same time reducing the amount ofhydraulic conductivity data

needed to characterize the aquifer. Sites that are much more heterogeneous than the

Schoolcraft site likely require more than 3 wells ofhydraulic conductivity data to

adequately simulate flow and transport in the aquifer. Correlation structure could also be

estimated using additional information like GPR, or grain-size measurements.

Incorporating different aquifer properties and using the resulting correlation structure of

those properties, a sampling strategy could be developed that leads to adequate aquifer

characterization.
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