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ABSTRACT

Numerical Computations in Electromagnetics: A Direct Problem in

Magnetic Recording and An Inverse Problem in Medical Imaging

By

John L. Fleming

The thesis will discuss two problems from the world of electromagnetics. The first

problem is a direct problem with applications in magnetic recording. It focuses on a

computation of magnetic field in an infinite cavity. The basic solution method is a

Fourier approach. Numerical analysis of the method involves the study of an infinite

matrix and issues surrounding the truncation of the matrix. The second problem is

an inverse problem in electromagnetics. The inverse method computes the position

and orientation of a dipole current source in a conducting medium using boundary

measurements of the electromagnetic fields. The method is an asymptotic approach

based on a low frequency assumption. The inverse method has applications in medical

imaging.
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Introduction

The field of electromagnetics was one of the most important scientific fields of the

20th century. It changed the landscape of modern society. The understanding of

electromagnetic fields has permeated almost every aspect of culture in the modern

world. Scientists facilitated the development of the modern electromagnetic world

through physical reasoning and experimentation. Mathematicians have also been

very important to the development of the field as well. As a mathematician, one

can help with the physical reasoning and development of models, but the unique

contribution which can be made is to offer an understanding of physical models from

a mathematical point of view as well as to provide insight into mathematical issues

surrounding the models such as convergence, stability, existence and uniqueness.

In this thesis, two particular models of electromagnetic phenomenon will be stud-

ied. One is a direct problem, which has applications in the world of computers. The

problem studies a model used to simulate certain interactions occurring in magnetic

recording devices. Here the problem will have certain parameters which will be used

to compute the magnetic field produced. The second problem is an inverse problem

with applications in the world of biomedical imaging. Here values of the electro-

magnetic fields will be provided and the solution will be the computation of certain

parameters which are of interest.

In the direct problem, the thesis will recount a Fourier series approach to a problem

in magnetic recording. The method was provided by engineers in the paper [24]. As



with many engineering approaches, much is left to be desired from a mathematical

point of view. The method has no rigorous derivation or convergence theory, both of

which are always very important when the method will be used and trusted by those

in industry. In particular, it will be shown that the method involves a somewhat

unusual infinite dimensional matrix. In actual computations one must truncate the

infinite matrix. Unfortunately, this raises many questions as to the validity and

accuracy of the truncation. The contribution here will be to reveal insight into the

mysterious infinite matrix by using a more familiar variational approach and then

finding a parallel between the two. Finding this connection allows for a thorough

analysis that would otherwise not be forthcoming from direct analysis of the Fourier

method. Also, we will see that the variational form of the problem allows for a more

general finite element solution approach. The finite element technique would allow

for computations that could not be done with the Fourier method. Hence the thesis

clearly provides new insight mathematically into the Fourier computational technique.

Also, it provides a more flexible approach in the form of a finite element formulation.

In the inverse problem, the thesis will present a novel frequency based approach

to a dipole source problem [2]. The goal is to reconstruct the location and orien-

tation of a dipole current source in a conducting volume using only measurements

of the tangential components of the magnetic and electric fields on the boundary of

the volume. It is known that neurological disease epilepsy is often caused by a small

current discharge in the brain. Such small current discharges can be reasonably mod-

eled as a dipole current source. While treatable with medication, the disease is only

permanently curable by surgical removal. Hence, precise knowledge of the dipole lo-

cation is of vital importance. Medical professionals can measure electric and magnetic

fields from the human brain using magnetoencephalography and electroencephalogra-

phy. Medical imaging uses these measurements to diagnose various conditions of the

brain. The goal here is to use these type of measurements to locate a dipole source



in the brain which is an inhomogeneous conducting material. The only bit of a priori

knowledge about the dipole is the fact that the frequency will be very low. Since the

frequency is known to be very low, this motivates an asymptotic approach. That is

to say we‘ want an approach for which the accuracy improves as the frequency ap—

proaches zero. The contribution in the thesis will be numerical experiments of several

varieties. Also, it will be demonstrated how the method can be used to compute the

parameters of multiple dipoles in a conducting volume.

Most techniques to solve this type of inverse point source problem are iterative

techniques [21][12]. The problem with these methods is that the iterations can be

time consuming and computationally unattractive. Also, they suffer from a lack of

stability in the presence of noisy data. Even noniterative techniques in this area

lack rigorous mathematical analysis. [14] The asymptotic method presented here is

noniterative and also has a strong mathematical foundation.

The two problems studied here are just a small glimpse into two areas of the large

field of electromagnetics. However, as the understanding of electromagnetic problems

becomes more prominent in the world, every small contribution will be important

for completing the understanding of all aspects of the field. The mathematician’s

input should be to use their unique insight to prove that computational models and

methods are valid and dependable.



CHAPTER 1

Fundamentals

1.1 Maxwell’s equations

The foundation of the modern theory of electromagnetics is the Maxwell’s equations.

The following equations and parameters are the basis for the wave theory of electro-

magnetics.

VXE=~€%:E+M (1.1)

VXH=/.L%§+f (1.2)

V~E=pe (1.3)

V-fiz—V-szm (1.4)

—o

E - Electric Field

H - Magnetic Field



a

J - Electric Current

M - Magnetization

pe - Electric Charge

pm - Magnetic Charge

6 - Electric Permitivity

,u - Magnetic Permeability

The solution of the direct problem regarding Maxwell’s equations is to find E and

H given M, j, p, pm, 6 and u. The computational approach is solving the differential

equations in a given region with knowledge of appropriate boundary conditions for E

and II. The inverse problem would be to compute something about the j,1l_/I,p,pm,

e or ii given particular values of E or H. In this thesis, the interest will be focused

on computing information about a certain type of current f within a volume given

measurements of n x E and n x II on the boundary of the volume.

Often, the time harmonic formulation is used. The time harmonic formulation

means that the fields are assumed to have an exponential time dependance. That

is E(:1:, y,z,t) = E(a:,y,z)e““" and II($,y,z,t) = H(:r,y,z)e"i“". Thus the time

derivatives will produce a factor of —z'w. Therefore. the time-harmonic form of the

Maxwell’s equations are as follows.

Vsz—iwefil+A—/I (1.5)

VXII = —z'w,uE + f (1.6)

V'Ezpe (1.7)

5



Vofiz—Vrflzpm (1.8)

In chapter 3 these time harmonic equations will be used in the analysis of an inverse

point source problem. In particular, the case where w is very low will be considered.

1.2 Potential formulation

If the frequency w is zero, this is know as the quasi-static form of Maxwell’s equations.

The equation (1.1) becomes

VXE = 0 (1.9)

Hence, we know that E : gradqfi for some scalar function (b. Using this along with

(1.3) we have

Aafi = pe (1-10)

Also, If the region of interest is free of current (i = 0) then (1.2) is

VxH = 0. (1.11)

Therefore, a magnetic scalar potential equation 45m can be constructed in a similar

manner.

In chapter 2, the scalar magnetic potential equation will be used to compute

magnetic fields. A solution method will be studied for the Laplace equation with

appropriate boundary conditions. Of particular interest will be what happens to the

solution at the transition from an infinite half space to a space with support on a

finite interval.



CHAPTER 2

Fourier Series Method

2. 1 Introduction

Magnetic recording is one of the fundamental technologies behind the modern com-

puter. Massive amounts of information are stored on magnetic media called disk

drives. In this chapter, the basics principles of magnetic recording will be introduced.

In particular, the process of the head media interaction will be modeled mathemati-

cally using the Fourier series method [24] [15]. The thrust of the chapter is to analyze

this method mathematically.

2.2 Magnetic Recording

Inside every modern computer is a magnetic storage device known as the computer’s

hard drive. Figure 2.2 shows a picture of a typical hard drive and also a hard drive

with the inside exposed. Within the casing of the drive are a series of disks. The disks

are made up of magnetic media on which binary information is stored. The magnetic

media is divided into sectors. Each sector has its own magnetization. Suspended

over the magnetic media is a slider mechanism which houses the recording head. The

recording head is a device which reads and writes the information on the disk. The



read device employs a thin film know as a magnetoresistive (MR) head. The MR

head is sandwiched between two magnetic shields to focus it on the area directly

below. As the MR head moves over the magnetic media, it can detect the presence of

magnetic fields produced by the magnetization of the media. If the magnetization on

the media changes across a transition from one sector to another, this represents the

binary digit 1. If there is no change across the transition, this represents the binary

digit 0 [30]. The process is illustrated in figure 2.4.

In the magnetic recording industry, manufacturers are always interested in testing

new ideas and new technology. However, to save on production costs and development

time, it is important to model the systems whenever possible. In this chapter the head

media interaction is modeled and solved using a Fourier approach. The contribution

of the thesis is an analysis of the problem mathematically. We shall see that the

computation method involves truncating an infinite matrix. There is no established

result regarding this type of estimation. It is both important from a computational

point of view to understand the consequences of truncating the matrix, but it is also

interesting from a purely mathematical perspective to understand just what is lost

by approximating the infinite matrix with a finite truncation.

2.3 The Model of Head Media Interaction

When constructing the mathematical model, there will be a number of simplifying

assumptions. The assumptions allow the problem to be modeled more easily, without

making the model too unrealistic.

Assumptions:

1. Field is Static (Time derivatives are zero). Even though the interaction is a

dynamic process, it is the assumption that the drive moves slow enough to be ap-

proximately static.



 

Figure 2.1. A picture of a typical computer hard drive with the inside exposed [30].

 

Figure 2.2. Diagram of the disk media and the slider mechanism [30].



 

 

 

   

 

Figure 2.3. A closer view of the slider and the head read-write head [30].

 

 

 
== lfi—l—Pl‘—I—FI+—I—;p

 

Figure 2.4. Head media interaction [30].
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Shields

<— Gap and MR Sensor

 

Figure 2.5. A very close up view of an actual read—write head [30].

11



2. There is no electric charge or current (Pa = 0) and (f= 0). Thus, from (1.2) for

the magnetic field, we have VXH = 0.

As was seen in chapter 1, this implies H = chm. where the scalar function aim

is known as the magnetic scalar potential. Recall also that given (1.4) we see gt",

satisfies Poisson’s equation

A¢m : pm- (21)

Note that given a magnetic charge pm in free space, the solution can be found using

an apprOpriate Green’s function by the following [27]:

and) = [[30 pm($o)G(:v, wads.) (2.2)

When modeling the head media interaction, the desired result is to compute the

magnetic fields in the shield gap (region I in figure 2.6) due to magnetic charge

outside (below) the gap (region II in fig 2.6). For the model, we will make some more

assumptions which simplify the solution process.

More assumptions:

1. The problem is invariant in the z-direction. (2-D). The analysis of the problem

will be given for the two dimensional case. However, we will be able to solve the three

dimensional problem with the Fourier method as well.

2. The shields are infinite in both the a: and y directions. In reality the shields are

much larger than the gap spacing, so this is a reasonable assumption to simplify the

mathematics. In figure 2.2 it can be seen how much larger the shields are compared

to the gap spacing. Also, the shields are assumed to have an infinite permeability.

That is to say the magnetic field, H, is zero in the shields.

12



3. Assume there is no MR—film. It is assumed that the gap spacing is empty. This

assumption allows the use of the Fourier method. However, the analysis will show that

a convienient finite element method can be devised which would allow for modelling

the problem with inhomogeneous materials in the gap.

Region 1

Shield H=O Shield H=0

  _ .5395».

| hm:

If— x Region II

1 .'

 

Magnetic Media]

Figure 2.6. Illustration of the problem.

Note, that away from the charge distribution, the potential will satisfy Laplace’s

equation (Adim = 0). Since there is no charge inside the gap, this is the situation we

have. The rectangular geometry makes the use of Fourier theory a natural approach

to find the solution.

13



2.4 Fourier Component Formulation

The Fourier based solution method was offered in [24]. The method presented, or very

similar methods, have been used within several models [15] [24]. These engineering

papers offer a pragmatic method for finding the solution with Fourier theory, but

offer no justification of some important details of the method. The most interesting

aspect of the method is what happens at the transition from the infinite lower half

space below the shields to the gap between the shields.

In region I the solution will have the following form

 a, = :Ansin (7’3”) ((53% (2.3)

n=1 ‘9

Since the support of the potential in the x—direction, is only in the interval from 0 to

Gs, a Fourier series can be used. On the other hand in region II the solution has the

form

+00

(1511 = / (B(kx)e""y + C(kx)e"y) e2"ik‘xdkx (2.4)

(Where K. : [27rkx|) Since the support in the x direction is now infinite, a Fourier

transform must be used instead of a Fourier series to express the solution. The

interesting part of the problem comes from coupling the two forms of the solution

together at the gap interface.

We can compute the potential without the presence of shields (this will be denoted

by (150) using (2.2). Note that in terms of the Fourier components

+00

(:50 = / Bane-"yak... (2.5)

—oo

This is true because this portion of the potential must decay as y increases to be

14



physically reasonable.

Also, note that the potential reflected from the shield in region 11 ((15,) is

+00

45,. = / C(k.)e"ydk. (2.6)

because this portion of the solution must decay as y decreases in order to be physically

reasonable. The total solution in region II is simply the superposition of the potentials

450 and $1"

Recall that the main problem is to compute the potential in region I given a charge

distribution p in region 11. In terms of the Fourier approach, we must compute the

Fourier coefficients A, in 2.3.

2.5 Solution Method

A method to compute the Fourier coefficients was presented in the paper [24].

Examine what happens at the interface between the gap in region I and the lower

half-plane of region II. The two forms of the solution will satisfy some standard

continuity conditions.

First, the potential is continuous at the gap interface. This fact gives the following

equation

¢1|y=o = ¢I1|y:o- (2-7)

Second, the normal derivative (%) is continuous across the gap interface. Hence, we

have the equation

94
0y

= 00511

0y  
y=0 11:0

15



Using the forms of the solution in the respective regions (2.3) and (2.4) and the

previous two equations from the continuity conditions an expression that determines

the A, can be found.

The first continuity equation gives the following:

 

 

m +m

ZAnsin (mgr) = f (B + C) e2"’kfldk2 (29)

11.21 5 -00

or

:Ansin ("g”) = f;’(B + C) (2.10)

n=l ‘9

Taking the Fourier Transform in the x—direction of both sides gives

 :Anfz (sin (2:3)) 2 (B + C) (2.11)

01‘

3(2) = B + C (2.12)

Note that both the An’s and C are unknown. Hence, it is necessary to eliminate C

which allows for the determination of the An’s in terms of the known quantity B.

This is accomplished from the second continuity condition.

The second continuity condition gives the following:

  

n=1

00 +00

2 (2:?) Ansin (72:23) = / (“KB + KC)€2Wik1xdkr (2-13)

16



Ol'

  

0° —n7r , n7rrr _ _1 __

Z< Gs )A,,sm( Gs ) ——.7-'x ( KB-l—KC) (2.14)

n=l

Multiplying both sides of the previous equation by sin(1"Gif-) and integrating from 0

to G, gives the following:

as

2 m7r _ _1 . m7r:r
_ (a) (33) Am __ ff’ (—K.B + mC)sm( Gs )dr (2.15)

0

Solve for C in (2.12) and substitute into (2.15) to arrive at the following:

 

  

Gs

—2m7r —1 °° , mm: . mm:

_G3Am : [fr [— 2K8 + 214an (sm( Gs )) ]s1n ( Gs )dr (2.16)

0
n=1

By Parseval’s formula, we have

 

 

—2m7r 00

G, Am 2 —B,,, + 2 Km, A, (2.17)

3 n=1

where

+00

Bm I / 2355,:1 (sin (’21)) die, (2.18)

and

  

+00

Km, 2 / my... (sin (7:33)) 23-1 (sin (’33)) die, (2.19)

Thus, we have a formulation of the Fourier coefficients in terms of the Fourier

transform B. However, we see that the Fourier coefficients of <15; satisfy an infinite

l7



system of linear equation given by (2.17).

fr {Z} = {a} (2.20)

Where Ham 2 Km, + ngIcinm. For purposes of computation such an infinite matrix

does no good. It is not reasonable to deal with such a mathematical structure. An

obvious response to deal with the situation is to solve a truncated version of the

infinite matrix.

if; {m = {73?} (221)

Even though this seems to be the logical approach to the infinite matrix issue from

a computational perspective, the truncation leads to some important mathematical

questions

1. Is the truncated matrix invertable?

2. If the truncated matrix is invertable, does the finite version converge to the actual

solution?

3. If the finite version of the matrix converges to the actual solution, what is the

convergence rate?

These very important questions must be answered to have some reasonable level of

trust in the solution method. The problem is how to answer such questions about the

truncation of the infinite matrix. Infinite linear systems are an uncommon occurrence

in computational and applied mathematics. Direct analysis of the system proved

difficult and essentially hopeless. The only recourse was to reexamine the problem

from a more rigorous and well understood approach and try to draw some parallels.

Such an approach is the variational formulation.

18

 



2.6 Variational Formulation

The variational or weak form of differential equations is the cornerstone of the modern

theory of elliptic differential equations. The variational approach not only provides a

basis for mathematical proofs of existence and uniqueness, but also provides a basis

for robust numerical methods including the finite element method. We will look

for a unique weak solution of the Laplace equation with boundary conditions in an

appropriate space of functions. It will be shown that the variational method provides

the necessary avenue to analyze the Fourier solution method.

For the variational formulation first define the solution domain. Place an artificial

boundary in the gap at y=0 and y=b. The domain S is shown in the figure 2.7.

._ a- - A ._.-_... ____.- ___.-. .1 y = b

Shield Solution Region - 8 Shield

    ~—-a-——-—-Q—~ -—-. ---u-—-I————-

y=0

 

r manicMe I

Figure 2.7. Diagram of solution S domain for the variational problem

We will now look for a solution in the rectangular region S from a: = 0 to a: = G,

19



and y = 0 to y = b. Note that I‘ will denote the boundary of 3.

To enforce that u (0, y) = u (0,, y) = 0, we will look for the solution in the space

of functions

~

mum=wweHHermew=umse=o} an»

The weak form of the problem is constructed as follows:

1.Multiply both sides of the equation by a function 11) in H6 (S)

[SAuw = 0 (2.23)

2. Apply integration by parts

—/Vu°Vw+/£9—wa20 (2.24)

3 Fan

Before moving on to the variational solution, we must examine the boundary term

of the weak form of the equation. The boundary conditions must be carefully con-

structed for the interface between region I and region II as well as to truncate the

region I domain to be finite.

We know that w(0, y) = w(Gs, y) = 0, but we must also specify boundary condi-

tions on I‘1(y : b) and I‘g(y : 0). First, on F1 we know the solution will be of the

form

 u = iAnsin ("7”") 6%)?! (2.25)

  

Gs
n=l

Therefore, on F1 we have

Bu Bu 0° —n7r mm: M
_:_Z m' +w 2%an 8y 22(Ch) sm(cg)e . < )



Hence, a Dirichlet to Neuamn map T1(u) can be defined on F1 by,

  3% = T102) 2 i (‘67:) Ansin (72:53) 94%)” (2.27)

11221

On the boundary F2, we must refer back to the second matching condition:

Bu 1
— = _ — B .0y 7-} ( K + KC) (2 28)

Again solve (2.11) for C and substitute into the previous equation to get

6u_

3; _ f;1(—2KB + n.7x(u)) (2.29)

01‘

— = F;1(n.7-}(u))+ g (2.30)

where g = ~2f;1(KB).

Hence, a Dirichlet to Neuman map T2(a) can be defined on F2 as the following:

(82—: = ecu) + g = Jimmu» - g (231)

Now, put the maps T1(u) and T2(u) into the weak form of the equation (2.24)

_/;Vu.Vw+£lT1(u)w+£2T2(u)w=[Flgw (2.32)

The weak form of the equation defines a bilinear form

a(u,w) : — [Va - Vw + /I:1T1(u)w + A: T2(u)w (2.33)

21



and a bounded linear functional

(9, w) = [P am (2.34)

The solution of the variational form of the problem is a function u 6 H6 (S) such that

a(u, v) = (g, u) (2.35)

for all u 6 H6 (S).

2.7 Existence and Uniqueness of Variational Solu-

tion

The weak or variational formulation is very useful for proving existence and unique-

ness of the problem at hand. The established theory for elliptic differential equations

can be used here as in the following theorem.

Theorem 2.1 The variational problem 2.35 has a unique solution in H6.

PROOF. First, it must be shown a(u, u) is continuous bilinear form on H6 (S) that is

to say

a(u, U) S Cllullfiysfllvllfrgw) (2-36)

Next, we must establish coercivity of the bilinear form which means

a(1W) Z CHall (2-37)
2

116(3)

Using the previous two facts we apply the Lax-Milgram Lemma to establish that

there exists a unique solution to the differential equation in H6 (S).
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Now, we will establish the continuity of a(u,v). Using the Cauchy-Schwartz in-

equality we have

[w - w s Cllullllvll (2.32)

By orthogonality, the Cauchy-Schwartz Inequality and the Trace Theorem we have

Q

00 n

/ T1(u)u = 2 "4,3,, g C||u||||u||. (2.39)

F1 n=1 .9

Now, by Parsveval’s Theorem, Cauchy-Schwartz inequality and the Trace Theorem.

+00

f now = / movie) 3 Cllullllvll (240)
P2

Thus, we have continuity

a(uw) s Cllullllvll (2.41)

Now, prove the coercivity of the bilinear form a(u, v):

00 +00

n7r

— i : V2+ —An2+‘/Kfzu2 242we f3“ :0. _. <) < >

Poincaré’s inequality tells us that

[Va2 2 C||u||2 (2.43)

5

Since the other two terms are clearly positive, we have the result:

a(u,u) _>_ Gnu“2 (2.44)
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Therefore, the conditions of Lax-Milgram Lemma are satisfied, and we are guaranteed

the existence of a unique solution u 6 F16 (S)

2.8 Fourier Method Versus the Variational Formu-

lation

2.8.1 Existence of the Fourier Method Solution

The connection between the Fourier series method and the variational formulation

can be found by considering subspaces of H6 (S) If a space VN is a subspace of H6 (S)

then there is a unique solution to the variational problem over the subspace as well

because continuity and coercivity apply on the subspace the same as on the entire

space. Using this idea, and theorem 2.1 we want to try find some parallel between

the Fourier solution method and the variational form. The first conclusion that can

be drawn is that the truncated matrix from the Fourier method is invertible. We will

see that this fact is just a simple corollary of the uniqueness result for the variational

problem.

Note that there is a unique solution to

a(UN, ’UN) = (9, UN) (2-45)

with an E VN. The question is how can we use this notion to relate the variational

formulation to that of the Fourier method?

In order to make the connection from the variational formulation to the Fourier

method first define

 

N

VN = {UN 6 fig (5') I UN = :Ansin (n32) daily} (2.46)

n=l
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which is a finite dimensional subspace, hence there is a unique solution to the varia-

tional problem in this space.

If we examine the variational form of the problem when the functions come from

the subspace VN, the connection can be made. Let us solve the variational form of

the problem in VN using the Galerkin method. Let um = sin (g1) er???” and carry

out some calculations.

 
 

 

b

_ . _ l m (my
[VuN va — [Gs (Gs ) Ame G

 

 

AW 2 iii-(292W)-
 

 

 
 

 

[1‘2 T2(UN)Um = “/f;1(K—7:x(u1v))sm ("2:23)

0

jaw; (2116237))
~00
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Continuing with the last integral

7w<sm<29>=

:Z(M)W»

Notice that this last expression is exactly

 

  

— Z KnmAn (2.48)

Putting all the integrations together we get:

N

a(uN,vm) = — ('27:) (53—) A... — :KnmAn (2.49)

7121

 

Also, note that

 (.,.m)-_]°282;1(...(n;f)) (2.0)
—00

Which is exactly —B,,, from the Fourier method. Therefore, we see now that solving

the variational problem with the galerkin method

a(uN,vN) = (g,uN) (2.51)

produces the exact same matrix as the truncated matrix from the Fourier method.

K”: {34;} = {2;} (2.52)

Now we can answer the first question about the Fourier method. The truncated
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matrix is invertible since the variational form has a unique solution in VN.

2.8.2 Convergence of Fourier Method Solution

We can use analysis of the variational formulation on the subspace VN to determine

the convergence properties of the Fourier Series method.

Theorem 2.2 The Fourier series method converges to the true solution of the prob-

lem in H6 with convergence rate N“1.

PROOF. Cea’s Lemma [20] states that the solution to the variational problem in VN

is the best possible approximation of the true solution u in H6.

nu — u.“ s C (.29 llu — an) (2.53)
‘uEVN

This lemma is enough to answer the second question about the Fourier method. By

letting N ——> 00 we see that the finite Fourier method will converge to the actual

solution.

Also, Cea’s lemma allows us to answer the third question about the Fourier method

regarding the convergence rate. We just need to determine the best approximation

of u possible in the space VN under the norm H1(S).

It can be shown that the approximations uN will converge to the actual series

solution of u

 u = Z 4.41. ("5:”) eat—">1 (2.54)
n=1

with error of order N‘1 in H1(S). The key to proving this is to show that the trace

of the first derivatives of u are actually integrable on the boundary P2. The trace

theorem alone does not give this fact. Some examination of the solution near the
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corners of the shields is necessary[28][l8]. Therefore, we can conclude that

C

llu — unnm) s 7,- (2.55)

Thus the last question is answered since we have a convergence rate. Hence we

know u and H = Vu will converge with order N‘1.

2.9 Finite Element Formulation

An alternative method for solving this problem would be a finite element method

(FEM). Although [24] claims that the FEM would not be practical here, we can

actually see that the above analysis of the variational form shows that the FEM may

actually be quite feasible. Beyond that, it may be more useful since we can deal with

the inhomogeneous problem as well. In addition, using the finite element method, it

is much easier to do computations for related problems such as the finding the field

in the gap with a charge in the gap as well. In micromagnetics, this is known as the

demagnetizing field. Also, if necessary, a non-uniform mesh can be used to deal with

innaccuracies due to singularities at the corners of the gap interface.

2.10 Numerical Examples

Here we will give some demonstrations of the Fourier series method at work. Examples

will be given in two and three dimensional situations. Also, an example will be shown

where the field in the gap region due to a charge in the gap region is computed using

the finite element method.

The charge distribution will be a model of the transition from one sector to a
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second sector. The magnetization is

M(2~ — 20) = M22 ' . (2.56)

+1 2 $ > $0

Mr is the magnitude of the magnetization and 2'? is the unit vector in the x-direction.

Since the magnetization is a step function, the the magnetic charge is given by

pm 1' V ' M($ — $0) = 2Mr6($ — $0). (2.57)

Using this charge and the appropriate Green’s function, the media field can be com-

puted.

2.10.1 Two-dimensional Fourier Method

The first examples will illustrate the Fourier series method in two dimensions. The

potential and both field components of the magnetic fields will be given.

2.10.2 Three-dimensional Fourier method

The Fourier series method can also be applied in three dimensions as well. The

only additional computation is taking the Fourier transform in the z—direction. The

magnetization in this situation is the same as the two—dimensional case except that it

has a finite support in the z-direction. Although the rigorous analysis is not given for

the three—dimensional case, it is a very efficient way to compute a three-dimensional

magnetic field.
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2.10.3 Finite element computation

The MR film has its own magnetization distribution. Hence, it is often of interest to

compute the so—called demagnetizing field of the MR film. In terms of the problem,

this is computing the magnetic field in the gap (region I) due to a charge in the gap

as well. The Fourier method is not as forthcoming in this case. Also, if one wants to

account for the inhomgenous material which the MR-film is made of, a more general

method is necessary. The solution is the use of the finite element method. Here quasi-

linear elements were used to compute the potential inside the gap due to a charge

which is inside the gap. The charge distribution in the experiment is just a constant

charge distribution with a thin support in the middle of the gap spacing. The charge

distribution simulates a MR film which has its own magnetic charge.

2.10.4 Field Below the Gap (Region II)

The same theory allows the computation of the field outside the gap below the shields.

The field outside the gap is known as the image field. Once the Fourier method has

been used to compute the Fourier coefficients An, the only unknown in the equation

2.10 is the Fourier transform C. This can be determined and inserted into equation

2.4 to compute the field below the gap in region II.
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Figure 2.8. The magnetic potential inside the gap.
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Figure 2.9. The x component of the magnetic field inside the gap.
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Figure 2.11. The x component of the magnetic field .01 micrometers within the gap
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Figure 2.12. The y component of the magnetic field .01 micrometers into gap
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Figure 2.13. The z component of the magnetic field .01 micrometers into gap.
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CHAPTER 3

Inverse Point Source Problem

3. 1 Introduction

Understanding the human brain is one of the greatest challenges still faced by sci-

entists in modern times. Since brain activity is based on electrical interactions of

neurons, it is no surprise that the study of electromagnetics can play a role in the

understanding of neural behavior. In this chapter, we will show an example of how

the Maxwell’s equations can help in the treatment of the brain disease epilepsy.

Much research has been done in the field of dipole location in a conducting media.

Unfortunatley, almost without exception, the methods are iterative least-squares fit-

ting algorithms which tend to be unstable. Also, the methods rely on a quasi-static

model of the dipole current, which while not an unreasonable approximation, provides

an unknown amount of error into the process [21][12]. Since the most reasonable a

priori assumption is that the fields are low frequency, it is desirable from a mathemat-

ical perspective to find a method for which the accuracy depends asymptotically on

the frequency [4]. That is to say, we want the error to be controlled by the magnitude

of the frequency.

39



3.2 Problem Description

Here the problem will be described. Also, preliminary issues such as existence and

uniqueness of the direct problem will be summarized. Let (at), 2:2, 223) be the Carte-

sian coordinate system equipped with an orthonormal basis (61, e2, e3). Let {2’ be a

bounded smooth domain in IR3 with boundary I‘. Let fie be the complement of IT‘- in

1R3. We assume that F is of class C23 for 0 < a < 1 and denote by n its unit outward

normal.

We consider the propagation of time-harmonic electromagnetic waves in an inho-

mogeneous dielectric medium 9‘ with electric permittivity e, magnetic permeability

u, and electric conductivity 0. Assume that e, u and o are real valued bounded func-

tions which satisfy Res 2 e,- > 0, Step 2 u,- > O and o 2 o,- > 0 in 52‘, where Ema,-

and o,- are real positive constants. The functions 6 and o are also assumed to be of

class C 1’“ in W and u is assumed to be of class 62'“. Assume further that the exterior

domain 98 is homogeneous with electric permittivity so, magnetic permeability #0,

and zero conductivity.

With the dielectric material {2‘ containing an electric dipole, the wave propagation

is governed by Maxwell equations:

VXE : —iwuH ian3, (3.1)

VXH -—- iweE—oE+6(:r—a:0)p0 inIR", (3.2)

together with the Silver-Muller radiation condition

lim [JAG/EH x Fl -\/EBE) = 0. (3.3)
[I]-—>+OO I

Here 5(55 —— $0) is the Dirac function at the point 2:0 (the source point) and p0 (the

direction of the electric dipole) is a constant vector.
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Given the source point 930 and the direction of the electric dipole p0, the direct

problem is to determine the field distributions E, H for a fixed frequency w, and fixed

material functions 6, u, and o.

Concerning the direct problem, the following existence, uniqueness and regularity

results hold [4] .

Lemma 3.1 The system of Maxwell’s equations (3.1-3.3) attains a unique solution.

Moreover, the solution (E, H) is in C2""(Qi \ {x0} U 96).

Our goal is to study the inverse source problem, i.e., to determine the point

source 900 and the direction vector p0 from boundary measurements of the tangential

components of the electric field E and the magnetic field H on the boundary I‘ of

(If. We assume that 2:0 belongs to the interior domain (2‘, i.e., 230 doesn’t lie on

the boundary I’ of Q‘. In the following, we will establish uniqueness and stability of

the inverse problem, and present a reconstruction method based on a low frequency

asymptotic analysis of the model problem.

3.3 Uniqueness of the Inverse Problem

Here we review the issue of uniqueness of the inverse problem. The question is whether

or not measurements of the tangential components of the electric and magnetic fields

on the boundary of the conducting volume will uniquely determine the location and

orientation of the dipole current. The answer to the question is in the following

theorem [4].

Theorem 3.1 Let 170 and 931 be two source points in 9‘ and p0 and 191 be two constants

vectors. Assume that (Ej, Hj) forj = 0, 1 are the corresponding solutions of Maxwell’s
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equations:

Vx E, : —iw,qu in 1R3,

VX Hj : ’le Ej —0'Ej+6($—$j)pj III m3,

2?

lim (2|(mH, x ——\/5—0E,-) = 0.
l2|~++00 [CE]

Ion x nlp 2 E1 x nlp or Ho X nlp 2 H1 x nlp then 20 =r1andpo =p1.

Clearly the theorem states that the same tangential components of the fields can

only be produced by the same dipole current.

3.4 Inverse Problem Method

By eliminating the magnetic field H in the Maxwell equations (3.1), (3.2), we have

Vx iVx E — (c925 + iwo)E : (5(90 — 1:0)po in 1R3. (3.4)

Introduce an operator

Mw(e) = Vx iVx e — w2€e — iwoe.

Define the kernel of A4,, to be

N(Mw, oi) ={u e (c2'0(§‘27))3,M.,(u) = o in oi}.

Multiplying (3.4) by e E N(Ma), Q“) and integrating by parts lead to the following

identity

' 1 ' 1

p0.e(9:0)=—£/F;VXExn.e+£-/I:;Vxe.Exn. (3.5)
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The identity (3.5) plays a crucial role in our analysis of the inverse problem.

In this section, we introduce a reconstruction method for solving the inverse prob-

lem. From now on, we make some general assumptions:

0 the frequency w is small;

0 the conductivity function a is a fixed constant in (2".

The first assumption is essential for our asymptotic analysis of the inverse problem.

The second assumption is a technical one. We will show that similar results may be

established for a variable conductivity 0.

We next describe a method for solving the inverse problem. Our main idea is to

construct asymptotic solutions to Mw(u) = 0 in 9‘ when the frequency w goes to

zero. The identity (3.5) plays an important role in the identification of the source

point 11:0 and the direction vector 190. A crucial step of our method is to construct

special approximate solutions of the kernel N'(Mw, 52').

Let (pm) be a scalar harmonic function in Q‘ of class 62'“ and u“) be a solution of

VX iVx um : ichpm) in (2‘.

It is easily seen that

Mw [V (pm) + wum] = 0(w2) in 9',

which implies by using (3.5) that

p0.V<p(0)(ro) = frH >< n.Vgo(0) +i [FiVXum .E X n+0(w).

We now make the following special choices of harmonic functions in (2": $1,132,133, and

e’E'x, where 6 E C 3 is such that .5 .5 = 0. The first three harmonic functions allow us
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to determine approximately the vector p0 up to an error of order w; while the fourth

function with three different values of 5 determines the point 51:0 up an error of order

w.

More precisely, let p0“) and 230(1) be defined by

1

p0(1).ej:/HXn.€j+i/—VXU§1)-Exn)
(3.6)

I‘ r#

. . 1
p0(1)_€j etc-x0“) 2/H x mg]. e’fi" +i/—va§1’.E x n, (3.7)

p PM

where 5,- E C 3 for j = 1, 2, 3 are three different complex constants that satisfy {,- .§j :

(
0. The functions ujl’ and v61) are solutions of the following problems

Vx iVx ugl) = i0 e, (3.8)

and

1 (1) - i£~.a: - i
Vx—vaj :iofije J 1nf2. (3.9)

u

The above analysis gives rise to a simple numerical method for determining the

source point 2:0 and the direction vector p0. From the knowledge of the values of

H x n and E x n in a finite number of points on I‘, where the wavelength A : 27r/w

is large compared to the characteristic size of (2‘. We first compute ugl’ and v6” by

solving the equations (3.8) and (3.9), respectively. We then interpolate the integrals

involving in formula (3.6) to a precision of order w (~ 10”).

We next present convergence properties of the method.

Theorem 3.2 Assume that E and H are solutions of the Maxwell equations (3.1-
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3.3). Let p0“) and 11:0“) satisfy

(1) (1) _ i 1p0 .e(a:() )— Hxn.e+ Vxe.Exn+0(w),

r w r Ii

for any e in N(Mw, (2’). Then

[pom —— p0] = 0(w) and [930(1) — 9:0] 2 0(w).

Finally, from the stability result the following holds.

Corollary 3.1‘. The following estimates hold [4]

(p00) _ p0] = 0(a)) and (20(1) — 20) = 0(a),

where pom and 230(1) are determined from (3.6) and (3.7).

Corollary 3.2 If E satisfies the Maxwell equations (3.1-3.3) together with the iden-

tity

—i/-VXE x n.e+-Z-/-V><€-E >< ”ZR-€031),

w 1"“ w P”

for anye€N(Mw,9i), then

1731:1130 and Fir-PO-

The method can also be applied to variable conductivities with some slight vari-

ation. The variable conductivity case is very important since different regions in the

human head have significant differences in conductivity. For example the conductiv-

ity of the skull is two orders of magnitude less than that of the gray matter. In the
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case that the conductivity 0 is a variable function in (2', the situation becomes more

complicated. We study this general case by modifying our approach.

Construct a solution u“) satisfying

1 <1) . - i
VXEVXU :ingomQ.

However, since a is no longer a constant, the function (,0 can not be a harmonic

function. In fact, from our previous discussion, it is not difficult to see that the

function <p should be chosen to solve

V- (chp)-—-0.

3.5 Computation of Sample Data Through the Di-

rect Problem

As we can see from the description of the inverse method, the input into the inverse

problem is tangential electric and magnetic fields measured on the boundary of a

conducting region. Verification and testing of the method requires producing some

data which can be used as sample input. Unfortunately, computation of low frequency

dipole fields in an open region is not a simple task. One is confronted with many

numerical issues. For instance, due to the nature of the dipole source, the solution

will be singular. Since we are interested in boundary measurements relatively close

to the singularity, the error introduced computationally is a significant factor. Also,

to solve the problem in an open domain requires the use of some sort of artificial

or transparent boundary conditions. While there are many ways to deal with this

issue, most will have error based on the distance of the boundary from the source

in terms of wavelength. Due to the very long wavelengths one encounters in the low
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frequency problem, this is another issue which creates difficulty. However, while the

possibilities for computation are limited, there are some methods which can be used

to create some direct problem data

3.5.1 Green’s Function

The Green’s function method is the ideal method to compute the electric and magnetic

field when all of the material parameters are constant in an infinite medium. Consider

a dipole current source of the form

J(.r) : 6(93 — $0)p0 (3.10)

where 2:0 is the position of the dipole, and p0 is the orientation vector. The experiment

will determine the location and orientation of the dipole current within a fictitious

sphere using the tangential electric and magnetic field components measured on the

sphere’s surface.

The computation of the electric an magnetic fields due to a dipole current source in

the geometry described above is done with the use of an appropriate Green’s function.

The vector Green’s function must satisfy the following differential equation

VxVxG—k26’216(:r—:ro). (3.11)

along with the radiation boundary condition at infinity. The solution of (3.11) can

be written as

ea, 2') = [I + 6v v] 9(2, 2') (3.12)
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where g is the scalar Green’s function

eiklr—I’I

def) (3m)
2402—2r

Therefore, given the current distribution J(:13), the electric field external to any volume

V containing the current distribution is given by an integration over V with respect

to the primed variable

E(.r) = iwu [I + Eli-VV] /g(:r,a:')J(:r'). (3.14)

v'

In particular, since the current source considered here is a dipole as shown in (3.10)

the electric field is

, 1

E($) : iwu [I + E5 VV-] g(:1:,:r())po. (3.15)

Further the magnetic field is given by

H($) = iul—uVXE($)° (3.16)

For more details on the vector Green’s function see [27].

3.5.2 Born Approximation

A slightly more realistic geometry can be modeled if one incorporates the Born ap-

proximation [17]. Suppose the conductivity is a function 0(2) 2 a + 01(2).

vxivxs—(fie+wa+tnm»E=M2—anminn? (3H)
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OI‘

Vx i—Vx E — ((2125 + iwo)E = 6(r — 3:0);00 + Q(a:)E in 1R3. (3.18)

where Q(:r) = —iwol(a:) and V1 is the support of Q(:z:).

Using the Green’s function, the solution is of the form

E = E0 + /G-Q(:1:)E. (3.19)

V1

The E0 is the field in the homogeneous region and the second term is the scattered

field due to the change in conductivity. The second term on the right hand side of

3.19 will be denoted as E1 which is the scattered field due to the obstacle. The Born

approximation is a first order approximation of the scattered field [17]

E1 = / G - Q(a:)E° (3.20)

3.5.3 Quasi-static approximation

Even though the inverse problem discussed assumes the field values are a low fre-

quency, it is not assumed that the fields are static. However, it should be reasonable

to use data from static field computations. Even though it does not exactly reflect

the reality of the actual situation, it is a reasonable approximation. If we assume that

w = O the Maxwell’s equations are

VxE = 0 (3.21)
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foi = OH + f (3.22)

The first of these two equations gives E : V0 for some scalar function 45 as discussed

in chapter 1. If the divergence of the second of these equations is taken on both sides,

we have

—V - 0V0 = V - J (3.23)

This equation can be solved using an integral equation approach. With this type of

solution method, computing the direct data with a piecewise constant conductivity 0

is not difficult. The solution can be found using a boundary integral method [21][12].

The electric potential is found from the equation

0' + o" — , , a: — a"

2 (3) = anvoe) —  

where a; and a; are the conductivities on the inner and outer sides of the surface 8;,

respectively. Also, V2) is the electric potential of a quasi-static dipole in an infinite

homogeneous space which is given by the following

1 a; — 112’

Of course to find the electric field we just find VV. Next the integral equation for

the magnetic field is

n

H(3:) = H0(a:) — :11;- 2(0;c — 0;)/V(a:’)n(a:') x 3;:de (3.26)

i=1 3,-
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Here, the H0 is the magnetic field of a quasi-static dipole in an infinite homogeneous

space. The equation for H0 is the following

1 a: — at’

H0013) = — —— .27

47rp>< |:r—a:’|3 (3 )

The integral equation in this section can be used to model a situation where the

conductivity is piecewise constant in a finite number of regions. In the thesis, only a

oneinterface problem will be demonstrated. The reason being that performing a more

complicated multi—interface problem would require too much computational resources.

3.6 Multiple Dipoles

It is also of interest in the field of biomedical imaging to identify the position and

orientation of more than one dipole. The reason for this is that the epilepsy may also

be caused by multiple small current discharges in the brain. Thus, if it is assumed that

the epilepsy is always caused by one dipole current, this could lead to innaccuracies.

The inverse method presented here can also identifiy multiple dipoles. The key is to

find enough functions which satisfy the equation

Vxqu = iouV¢ (3.28)

3.7 Numerical Examples

The numerical examples given are simple, yet illustrate the eflicacy of the inverse

method. The first experiment is a situation with no physical boundaries. Data

is measured on an artificial boundary. We continue by adding some noise to the

measured data to illustrate the inherent stability of the inverse problem method. The

second experiment uses data from a Born approximation. The third experiment is a
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single interface geometry, where the data is measured on the surface of a conducting

sphere in a vacuum. Finally, the last experiment shows that more than one dipole

can be reconstructed as well. It should be noted, that the simplicity of the examples

problems is no indictment of the inverse problem method presented in the paper.

In order to perform more realistic experiments, all one needs is data from a more

sophisticated direct solver. If the values from the fields are accurate the inverse

method will give an accurate reconstruction.

In the experiments shown here, the dipole position and orientation are given in

each respective subsection. The data used in the reconstruction, is the tangential

components of the electric and magnetic fields produced by the dipole current as

measured on the surface of a sphere with radius .3 (all distances are given in meters)

centered at the origin. Next, random noise was added to the computed data to test

the stability of the inverse problem method. The following tables give the results of

the numerical experiment.

3.7.1 Experiment with Green’s Function Data

The data used in the first experiment is from fields which satisfy Maxwell’s equations

in a homogeneous medium of infinite extent. The material parameters are e = 8.854 x

10”12 farads/meter, ,u : 47r x 10'7 henrys/meter and o = .33 mhos/meter. First,

true data from the Green’s function computation was used in 3.6 and 3.7 .

 

Table l: Inverse computation of $0 and 190 using true data.

 

 

w=1000 Hz 9:6 $6 $3 10(1) 19(2) Pf)

actual 0.03 0.01 -0.05 0.1 0.2 0.3

 

estimated 0.030012 0.00995 —0.05002 0.100008 0.200018 0.300023

 

relative error 0.0004 0.005 0.0004 0.00008 0.00009 0.000076          
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3.7.2 Stability in the Presence of Noise

Here we use the same data as that in the previous subsection, but we add some

random noise. First, 5 percent random noise is added to all of the field values. Next,

10 percent random noise is added to the data. We can see that the results are very

stable in the presence of this noise.

 

Table 2: Inverse computation of 2:0 and pa with 5% random noise.

 

w=1000 Hz 2:6 $6 56(3) 19(1) 12(2) P5
 

actual 0.03 0.01 -0.05 0.1 0.2 0.3

 

estimated 0.029857 0.009602 -0.04992 0.099997 0.200044 0.299998

 

        relative error 0.013767 0.0398 0.0016 0.00003 0.00022 0.000006

 

 

Table 3: Inverse computation of 2:0 and p0 with 10% random noise.

 

w=1000 Hz r6 176 $8 19(1) Pf) P3
 

actual 0.03 0.01 -0.05 0.1 0.2 0.3

 

estimated 0.029691 0.009241 -.049813 0.099874 0.200072 0.299974

 

relative error 0.0103 0.0759 0.00374 0.00126 0.00036 0.000087         
 

3.7.3 Experiment with Born approximation Data

Here, we add the effect of a sperical shell of 1cm thickness which has conductivity

0 = .03. We treat this as a perturbation and proceed to compute a first order

approximation as desrcibed in section 3.5.2. Of course the approximation provides

less accurate data than the prior Green’s function data, but we see that the results

are still very acceptable.
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Table : Dipole field with Born approximation

 

1.121000 Hz 23, 2:3 2:3 pl. pt 19%
 

actual 0.05 0.05 0.05 0.1 0.2 0.3

 

estimated 0.050884 0.050036 0.050742 0.100747 0.201439 0.301881

 

        relative error 0.01768 0.00072 0.01484 0.00747 0.007195 0.00627

 

3.7.4 Experiment with Quasi-Static Data

Here we will actually have a boundary surface. We use the boundary integral tech-

nique reviewed in section 3.5.3 to model a conducting sphere. Outside the sphere the

conductivity is zero. The computation is performed by dividing the sperical surface

into trianglar elements and assuming the potential V is constant over each element.

Once V is computed we use this data to compute the field values E and H. Using

this model represents a more realistic situation, but unfortunately the approximations

make for the least accurate data yet. However, the results show that the reconstruc-

tion is still acceptable.

 

Table : Quasi-static dipole in conducting volume.

 

 

(.220 Mhz r6 $6 1133 19(1) 19(2) p0

actual 0.05 0.05 0.05 0.1 0.2 0.3

 

estimated 0.051715 0.051552 0.0514608 0.101401 0.201824 0.302289

 

relative error 0.0343 0.03104 0.029216 0.01401 0.00912 0.010763        
 

3.7.5 Experiment with Multiple Dipoles

Here we just use data produced by two distinct dipoles in an infinite region. With one

dipole there are 6 parameters to compute which is why we use six harmonic functions.

For two dipoles, there are 12 separate parameters which means that the challenge here
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is to produce 12 harmonic functions to use in the inverse problem method. Again we

can see that the results are good.

 

Table : First of two dipoles in conducting volume.

 

0:0 Mhz 23, 2:3 2:3 19(1) p?) 298
 

actual 0.05 0.05 0.05 0.1 0.2 0.3

 

estimated 0.050012 0.050367 0.050012 0.100036 0.200572 0.300029

 

relative error 0.00024 0.00734 0.00024 0.00036 0.00286 0.00097         
 

Table : Second of two dipoles in conducting volume.

 

9220 Mhz m6 936 $3 13(1) 19(2) 195
 

actual 0.05 —0.05 0.05 -0.1 0.2 -0.3

 

estimated 0.050218 -0.050124 0.05029 ~0.099975 0.200571 -0.299988

 

relative error 0.00436 0.00248 0.0058 0.00025 0.002855 0.00004         

3.8 Conclusion

The results in the previous tables show that the method works when considering the

important effects of a boundary surface. Also, it shows that the method works with

quasi-static field values. This may be viewed as a limiting case of the asymptotic

method.

Future experiments will test the method when the dipole current is situated in

a more realistic geometry, such as a heterogeneous material which models a human

head. The difficulty lies in the generation of accurate data from the solution of the

forward problem. The inverse method is only as accurate as the electromagnetic field

values input as data. The inverse method itself produces error from the asymptotic

approximation which is small. Beyond that, the only error from the inverse problem
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method is the accuracy with which the numerical integrations are performed and with

which the system of equations 3.6 and 3.7 is solved.

Finally, it should be stressed that the numerical reconstruction here is done with—

out any least squares fitting or iteration. Also, the reconstruction is done without a

priori knowledge of the frequency w. Only the low frequency assumption is necessary.
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