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ABSTRACT

NEW RIEMANNIAN AND KAHLERIAN CURVATURE INVARIANTS AND
STRONGLY MINIMAL SUBMANIFOLDS

By

Dragos-Bogdan Suceava

During the last decade, B.-Y.Chen's fundamental inequalities have been
investigated by many authors from various viewpoints. In Section 2 we provide
an altermate proof for Chen's fundamental inequality associated with classical
invariants. In Subsection 2.5, we obtain an inequality for warped product
manifolds as a consequence of the previous study. Section 3 is devoted to the
study of applications of Chen's fundamental inequality. It is well-known that the
classical obstruction to minimal isometric immersions into Euclidean space
isRic 20. In this section, we present a method to construct examples of
Riemannian manifolds with Ric < 0 which don't admit any minimal isometric
immersion into Euclidean spaces for any codimension. The study of the relations
between curvature invariants and the topology of the manifold yields in section 4
a Myers type theorem for almost Hermitian manifolds. Chen's fundamental
inequality for Kihler submanifolds in complex space forms is discussed in
Section 5. We provide an extension of the inequality and provide
characterizations of strongly minimal complex surfaces in the complex three
dimensional space. The last section is dedicated to the study of strong minimality

through examples.
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1 Introduction to Chen’s Fundamental Inequali-
ties

In the geometry of submanifolds, the following problem is fundamental:

Establish simple relationships between the main intrinsic invartants and the main
extrinsic invariants of the submanifolds.

The first result in this respect was Gauss’ Theorema Egregium, which in 1827
asserted that the Gaussian curvature is an intrinsic invariant. Also concerning this
fundamental problem, Chen’s fundamental inequalities obtained in [14, 20] are the
starting point for many recent papers done by various geometers during the last ten
years or so, as for example one may see in [18], [29], [30], [31], [32], (44], [58], [59],
[60].

We will discuss in this first section the context and the problems we have worked
on in the present dissertation.

Let h denote the second fundamental form of an isometric immersion of a Rie-
mannian n-manifold M™ into an ambient Riemannian space M™t™. Then the mean
curvature vector field is H = (1/n)trace h. The immersion is called minimal if its
mean curvature vector field H vanishes identically.

The following is a classical basic problem in Riemannian geometry.

Problem: When does a given Riemannian manifold M admit (or does not admit)

a minimal immersion into a Fuclidean space of arbitrary dimension ?

For a minimal submanifold M in a Euclidean space the Gauss equation implies



that the Ricci tensor of the minimal submanifold satisfies
Ric(X, X) Z[h X,e)2 <o, (1)

where e, ..., e, is an orthonormal local frame field on M. This gives rise to the first
solution to the Problem above; namely, the Ricci tensor of a minimal submanifold M
of a Euclidean space is negative semi-definite, and a Ricci-flat minimal submanifold
of a Euclidean space is totally geodesic.

The second solution to the Problem mentioned above was obtained by B.Y. Chen
as an immediate application of his fundamental inequality and his invariants [14, 20].
Based on these facts, it is interesting to construct precise examples of Riemannian
manifolds with Ric < 0, but which do not admit any minimal isometric immersion
into a Euclidean space for any codimension.

Let M™ be a Riemannian n-manifold. For any orthonormal basis ey, ..., e, of the
tangent space T, M, the scalar curvature is defined to be scal(p) = 3, _; sec(e; A ;).
For any r-dimensional subspace of T,M denoted L with orthonormal basis ey, ..., e,

one may define

scal(L) = Z sec(e; A e;). (2)

1<i<j<r
In [20], Chen considered the finite set S(n) of k-tuples (ny,...,nx) with £ > 0 which
satisfy the conditions: n; < n, n; > 2, and n, + ... + nx < n. For each (n,,...,nx) €

S(n) he introduced the following Riemannian invariants:

d(ni, ..., nk)(p) = scal(p) — inf {scal ) + ... + scal(Lg) }(p (3)



where the infimum is taken for all possible choices of orthogonal subspaces L, ..., L,
satisfying n; =dim Lj, (j = 1,...,k). Note that the Chen invariant with £k = 0 is
nothing but the scalar curvature.

As in [20], we put

_ n2(n+k—1—2nj)
c(ny,...,ng) = dn+k-Sn,)

k
1
b(ny, ..., nx) = 5{(n(n 1) - j;n.j(nj - 1)}.
Chen’s fundamental inequalities obtained in [20] can be stated as follows:
Theorem 1.1 For any n-dimensional submanifold M of a Riemannian space form

R™™(¢) of constant sectional curvature € and for any k-tuple (n,, ...,ni) € S(n), we

have
8(ny, ...y i) < c(ny, ..., ni)|H|? + b(ny, ..., nk)e. (4)

The equality case of the inequality above holds at a point p € M if and only if there
exists an orthonormal basis ey, ...,enym at p such that the shape operators of M in
R™™(e) at p take the following forms: S, = diag (A], ..., AL, ttr, ..., ptr) forr =mn +

1,...,m, where each A} is a symmetric n; x n; submatriz such that
trace(A]) = ... = trace(A}) = pr.

The invariants §(ni, ... ,n,) became known as the Chen invariants in literature

and inequality (1.4) as Chen’s fundamental inequality. Chen’s fundamental inequality



has many nice applications; for example, one has the following important result as

an immediate consequence.

Theorem 1.2 Let M be a Riemannian n-manifold. If there ezists a k-tuple (ny, ..., nx)

in S(n) and a point p € M such that

d(ny, ...,nk)(p) > {n n—1) an i — Dle, (5)

then M admits no minimal isometric immersion into any Riemannian space form
R™(e) with arbitrary codimension.

In particular, if §(ny, ...,nk)(p) > 0 at a point for some k-tuple (n,, ...,nk) € S(n),
then M admits no minimal isometric immersion into any Fuclidean space for any

codimension.

We will use the second part of this theorem in our applications. Namely, in the
context of Theorem 1.2, we are interested in the following problem.

Are there ezamples of manifolds with Ric < 0, but which have some positive Chen
invariant ?

This is similar to a classical problem 4 mentioned in Peter Petersen’s list of prob-
lems in [2]:

Scalar versus Ricci curvature problem. Are there ezamples of simply con-
nected manifolds which admit Riemannian metrics of positive scalar curvature, but
do not admit Riemannian metrics of positive Ricci curvature ?

We will solve the Ricci vs. Chen invariant problem in the subsections 3.1 and 3.2.

As far as we know, the scalar vs. Ricci curvature problem is still open.
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In the section 2 we study Chen’s fundamental inequality associated with classical
invariants, and also consider a few of its algebraic implications. Specifically, we will

provide an alternate proof of the following (see [17]).

Theorem 1.3 Let f : M™ — R™™(¢) be an isometric immersion of a Riemannian
n-manifold M™ with normalized scalar curvature p into an (n + m)-dimensional Rie-

mannian space form R" ™ (¢€) of sectional curvature €. Then
p<|H +e (6)
The equality holds at a point p € M if and only if p is totally umbilical point.

The last two sections of the present work are dedicated to the study of Chen’s
fundamental inequalities for complex submanifolds. The context of our study is the
following.

Let M™ be a Kahler manifold of complex dimension n. Let us denote by J its
complex structure. We denote by sec(X AY') and scal(p) the sectional curvature of
the plane determined by the vectors X and Y and respectively the scalar curvature
at the point p. Consider U a coordinate chart on M and e;,..., e,,e] = Jey,...,e5, =
Je, a local orthonormal frame on U. Then we have at p € U:

scal(p) = Zsec(e,- Nej), i,7=1,..,n,1% ..., ,n" (7)
i<j

Let m C T,M be a plane section. Then 7 is called totally real if Jm is perpen-
dicular to 7. For each real number k, B.-Y.Chen’s Kahlerian invariant of order 2 and

coefficient k at p € M is defined by



0r.(p) = scal(p) — kinf sec(n"), (8)

where inf sec(n") is taken over all totally real plane sections in T, M.

In [22] the following theorem is proved:

Theorem 1.4 For any Kahler submanifold M™ of compler dimension n > 2 in a
complez space form M"™P(4c), the following statements hold:

(1) For each k € (—o0,4] we have

6r < (2n? + 2n — k)c. (9)

(2) Inequality (9) fails for every k > 4.
(3) 6% = (2n? + 2n — k)c holds identically for some k € (—00,4) if and only if M™

is a totally geodesic Kahler submanifold of M™P(4c).

The theorem describes completely, in a forth claim, the pointwise equality situa-
tion in the case k = 4.

In Theorem 5.4 we extend B.-Y.Chen’s fundamental inequality for Kahlerian cur-
vature invariants. In Proposition 5.5 we give a characterization of strongly mini-
mal surfaces in C3. The last section of the present work is dedicated to the study
of strong minimality through examples. Namely, we prove that the Kahler surface
z) + 23 + 22 = K, with k € C is strongly minimal in C3, and we prove that on the

Kabhler surfaces Az? + Bz + Cz? = 0 and 23 + 2z} + 23 = 1 there exist points where



the strong minimality condition is satisfied. This study is inspired by the discussion

on Chen’s Kahlerian curvature invariants from [22], in the context described above.



2 Chen’s Fundamental Inequality with Classical
Invariants

2.1 The Hypersurface Case

We will discuss in this chapter Chen’s fundamental inequality associated with clas-
sical invariants. To clarify the geometrical interpretation in the equality case, we
distinguish two situations: the hypersurface case and the general codimension case.
The present section is dedicated to the codimension one case.

The main goal of this section is to prove the following:

Proposition 2.1 Let M™ be a hypersurface in a Riemannian (n+1)-manifold M™*!,

Then at every point p € M the following inequality holds:

scal(p) < n—(n2_—1)H2+Z§E(e,-/\ej), (10)

1<)

where scal is the scalar curvature of M at p, H is the mean curvature at p, and
sec(e; A e;) 1is the sectional curvature on the plane generated by vectors e; and e;
tangent to the ambient space M.

The equality holds at p if and only if p is an umbilical point.
We first need the following elementary lemma.
Lemma 2.2 Let g be a real polynomial
g(X)=aoX "+ a1 X" '+ a3 X" 2+ . +a,
with ag # 0 and n > 1. If all the roots of g are real, then

A(g,n) = &ln——l)af — 4apay > 0. (11)



Proof of the lemma: If g has only real roots, then ¢’ has also only real roots. After

(n — 2) steps, we know that g("~2 has only real roots. Hence, we obtain A > 0.

Proof: Now we can prove the proposition. Let p € M and € TI,;L M. Let
{e1, -.,en} be an orthonormal basis of T,M in which S, = S is in diagonal form, i.e.
S(ei) = Aiei, 1 = 1,...,n, where Ay, ..., A\, are the shape operator’s eigenvalues. Then,

taking g in the lemma to be the characteristic polynomial of S, we have

nH = /\1 + ...+ /\n = —a;, (12)

Z/\iAj = asy, (13)

i<j
ag = 1. (14)

On the other hand ( see for example [28], pg.131 ) we have the following well-known

fact
SGC(C,' N ej) — ﬁ(ei A Cj) = /\iAj, (15)

for any i < j. Therefore the inequality in the lemma becomes

2(nn— 1)(nH)2 _ 4Z{sec(e,~ Aej) —3ec(e; Aej)} >0 (16)
or
n(n — 1)H2_22366(6,’/\6]-)-{»-22@(61./\6].) >0 (17)



and since the sum in the second term is nothing but scal(p) we obtain, after a division
by 2, the claimed inequality. The equality case holds if and only if A\; = ... = A\, =

H/n, i.e. when the point p is an umbilical point.

The following fact comes from Lemma 1 of [17] for the hypersurface case:

Corollary 2.3 Let p = 2scal(p)/n(n — 1) denote the normalized scalar curvature
of a hypersurface M™ isometrically immersed in a Riemannian space form R™!(e).

Then we have the inequality:
R< H? +¢, (18)

at every point p € M.

The equality holds if and only if p is an umbilical point.

Proof: For any i # j, 1,7 € {1,...,n}, we use the fact that Sec(e; A e;) = € in the

inequality in the previous proposition.
2.2 The General Codimension Case

We have discussed in the previous section the hypersurface case. We present in this
section an alternate proof of Lemma 1 of [17] in the general codimension case, i.e. as
it was obtained in [17]. One of the main points of this result is that the codimension
is arbitrary. We emphasize that the term in the left hand side of (19) is an intrinsic

quantity and the terms in the right hand side term are extrinsic quantities.

Proposition 2.4 Let M™ be isometrically immersed in a Riemannian manifold M™™.

Let sec, sec, and scal(p) be the sectional curvature of M, the sectional curvature of

10



M, and the scalar curvature of M at p, respectively. Then the following inequality

holds.

n(n—1)
2

scal(p) < |H[? + Y set(e: ;) (19)

i<j
Proof: The argument in the proof also uses Lemma 1. Let {£),...,&m} be an
orthonormal frame of TPLM at p. Let us denote by A], ..., A7, the eigenvalues of the
shape operator S, = S¢,. Then AT + ... + A, = trace(h”) and if S, is in diagonal form
then the characteristic polynomial of S, has the coefficient corresponding to A™~2

equal to

= AN (20)

1<i<j<n

If S, is not in diagonal form, then the quantity ), j AiAj is the sum of the 2 x 2 minors

in the matrix (hf;)i<i<j<n, since two equivalent matrices have the same characteristic
polynomial. In fact, if ¢ = det(S, — AI,) = 0, is the real polynomial in lemma 2.2,

then

1<i<j<n

—Qa; = Ehu, (22)

Qg = 1, (23)

Z,\w =) (kg = (R)) (24)

11



and the inequality A(g,n) > 0 is, in fact, for our choice of g :

4 Y (huhy = (h)P) 20 (25)
1<i<j<n
or, summing forr=n+1,...,n+m:
n+m
n(n—DH?=2>" > (hiR}; — (kL)% > 0. (26)
i1<j r=n+l

To express the last sum we need the Gauss’ equation (and this is the major
difference with respect to the hypersurface case). Let us denote by R the curvature
tensor of M and by R the curvature tensor of M. Then, for any X,Y € T,M, we

have

<RX,Y)X,Y >=< R(X,Y)X,Y > — < h(X, X),h(Y,Y) > +|R(X,Y)[> (27)

or, if {ej, ..., e,} is an orthonormal frame at p € M :

n+m
sec(e; Ae;) —5ec(es Aej) = Y (hGRS; — (RE)?) (28)

r=n+1

and with this substitution the inequality become

2 Zsec(ei Aej) < n(n—1)|H|* + 22%(& A €;j) (29)

i<j i<j
which is the inequality we had to prove, after a division by 2.
Lemma 1 of [17] is the following result, to which we refer as Chen’s fundamental

inequality with classical invariants.

12



Corollary 2.5 Let f : M™ — R"*™(e€) be an isometric immersion of a Riemannian
n-manifold M™ with normalized scalar curvature p into an (n + m)-dimensional Rie-

mannian space form R**™(¢) of sectional curvature €. Then
p<|H*+e. (30)
The equality holds at a point p e M if. and only if p is totally umbilical point.
Proof: For any i # j, 4,5 € {1,...,n} we use that 5ec(e; Ae;) = € in the inequality
proved in the proposition.

One can state the following immediate consequence which is more or less in the

same spirit as the obstruction results obtained in [20].

Corollary 2.6 Let M™ be a Riemannian n-manifold and M™™ be a Riemannian
(n + m)-manifold. If the scalar curvature of M is greater than the scalar curvature

of every n-plane section L of M™™, then M admits no minimal immersion into M.

2.3 A Remark on Totally Umbilical Points

We recall the fact that the inequality A(g,n) > 0 has also been used in [63]. Let us

define
2 2 2
o; = 2||Si|]° - ;(trace(Si)) , (31)

where S; is the shape operator in the normal direction &; and ||S;[|? = (A\)2+...+(AL)2.
Let us denote by L; the length of shape operator’s spectrum in the direction of the

normal vector §;, i.e. the distance on the real axis between the greatest and the

13



smallest of the shape operator’s eigenvalues in the normal direction &. Then the

following result was proved in [63]:

Theorem 2.7 Let M" be a submanifold in a Riemannian manifold M™™. For any

p € M and for any normal basis &, ..., Em we have:

2

T W) < L) < V), (32)

The equality holds if and only if p is a totally umbilical point of M in M.

One may get from the previous inequalities the following.

Corollary 2.8 Let M™, n > 2 be a submanifold of a Riemannian manifold M™™. If
for some p € M there ezists a normal direction £ such that o¢(p) > 0, then the point

p cannot be a totally umbilical point.

Since the double inequality (32) was obtained by the same procedure as Chen’s
basic inequality involving the classic invariants, they have in common the proof basisd
on the idea A(g,n) > 0, as it is presented in the previous two sections. In fact, the
main idea used in both cases is that the shape operator’s characteristic polynomial
has only real roots. The algebraic background of the next section is also related to

the study of Chen’s fundamental inequality with classical invariants.

2.4 A Conformal Invariant Related to Chen’s Fundamental
Inequality with Classical Invariants

In the classic matrix theory, the spread of a matriz has been defined by Mirsky in [47]

and then mentioned in various references, as for example in [46)].

14



Let A € M,(C),n > 3, and let Ay, ..., A, be the characteristic roots of A. The

spread of A is defined to be s(A) = max; j |A\; — A,;|. We denote by ||A|| the Euclidean

norm of the matrix A, i.e.: [|A]|> = 3707, |a;;|*. We also use the classical notation
E, for the sum of all 2-square principal subdeterminants of A. If A € M,,(C), then

we have the following inequalities (see for example [46])

(4) < (UIAIP = ZJirAP), (33)
s(4) < V3l (34)
If A€ M,(R), then
1/2
s(A) < {2 (1 - ;1;) (trA)? — 4E,(A)| (35)

with equality holding if and only if n — 2 of the characteristic roots of A are equal to
the arithmetic mean of the remaining two.

Consider now an isometrically immersed submanifold M™ of dimension n > 2 in a
Riemannian manifold (M™**, 3). Then the Gauss and Weingarten formulae are given
by

VxY = VxY + h(X,Y),
Vxé = —AeX + DxE,

for every XY € I'(TM) and £ € I'(vM). Take a vector 7 in the normal space to
M at the point p and consider the linear mapping A, : T,M — T,M. Consider the

eigenvalues A}, .., A" of A,. We put
2 Ay n

L,(p)= sup (\))—

i=1,...,n 1

nf (). (36)

15



Then L, is the spread of the shape operator’s in the direction 7. We define the spread

of the shape operator at the point p by

L(p) = sup L,(p). (37)

nevpy M

Let us remark that when M? is a surface we have

L2(p) = (A (p) — A2(0))* = 4(|H(®)|* - K(p)),

where v is the normal vector at p, H is the mean curvature, and K is the Gaussian
curvature. In [7] it is proved that, for a compact surface M? in E2**, the geometric
quantity (|H|? — K)dV is a conformal invariant. As a consequence, one obtains that
L2dV is a conformal invariant for every compact orientable surface in E2*.

Let &,41, -..,&nss be a local orthonormal frame in the normal fibre bundle v M. Let

us recall the definition of the eztrinsic scalar curvature from [9):

€x TL(Tl _ 1) ZZ’\'mH' n+r-

r=1 i<j

In [9] it is proved that, for every submanifold M™ of a Riemannian manifold (M, §), the
geometric quantity (|H|? — ext)g is invariant under any conformal change of metric.
When M is compact (see also [9]), this result implies that, for an n-dimensional
compact submanifold M of a Riemannian manifold (M, g), the geometric quantity
J(JH|? — ext)3dV is a conformal invariant.

Let us prove the following fact.

Proposition 2.9 Let M™ be a submanifold of the Riemannian manifold (M,g). Then

spread of shape operator is a conformal invariant.

16



Proof: The context and the idea of the proof are similar to the one given in (3,
pp.204-205]. Consider a nowhere vanishing positive function p on M. Suppose that

we have a conformal change of metric in the ambient space M given by

Let us denote by h and h* the second fundamental forms of M in (M, g) and (M, §*),

respectively. Then we have (see [13])

where U is the vector field defined by U = (dp)*. Let e, ..., e, be a local basis of the
principal normal directions of A¢ with respect to g. Then p~ley, ..., p"le,, form a local

orthonormal frame of M with respect to ¢*, and they are the principal directions of

Ag. Therefore

L*(p) = sup Lg. = sup sup ()\fs)‘ — _inf (/\g)"
ij=l,..,n

§revpM;|lgt|le=1 §revpM;li€tfle=1 \i=1l,..,n

=  sup [ sup (A +g(U, %)) — j=i1n,.t:,n ()\é + Q(U,f))] —

g€ Mi€ll=1 Li=1,...,n

= sup [sup (,\;)—,_ilx}{’n(,\g)} = L(p).

gevpMjli¢]l=1 Li=1,...,n i=

This proves the proposition.

When M is a compact surface, both L and L2dV are conformal invariants.

17



The shape discriminant of the submanifold M in M with respect to a normal
direction 7 was discussed in [63]. Let A, be the shape operator associated with an

arbitrary normal vector n at p. The shape discriminant of 7 is defined by
2 2 2
D, =2||A,||" - ;(trace A7, (38)

where ||A,||* = (A})? + - + (A7)?, at every point pe M C M.

The following pointwise double inequality was proved in [63]:

1< L2< D, (39)

SIS
SN

We will use this inequality later on. The proof of this fact is algebraically related
to the proof of Chen’s fundamental inequality with classical curvature invariants (see

[17]). The alternate proof of this result is presented in [64].

2.4.1 Geometric inequalities on compact submanifolds

In this section, we study the relationship between the spread of the shape operator’s
spectrum and the conformal invariant from [9]. The main result of the present section

is Proposition 2.10. For its proof we need a few preliminary steps.

Proposition 2.10 Let M™ be a compact submanifold of a Riemannian manifold

M™*. Then the following inequality holds:

n

(/M LdV)2(vol(M))2n—"—i < 2n(n—1) (/I.W(IH[2 - e:ct)%dV) . (40)

Equality holds if and only if either n = 2 or M is a totally umbilical submanifold
of dimension n > 3.

18



Before presenting the proof, let us describe what this inequality means. For any

conformal diffeomorphism ¢ of the ambient space M, the quantity

</¢(M) Ld%) 2 (vol (¢p(M)) s

is bounded above by the conformal invariant geometric quantity expressed in (40).

First, let us prove the following.

Lemma 2.11 Let M™ C M™** be a compact submanifold and p an arbitrary point
in M. Consider an orthonormal normal frame &, ...,& at p and let D, be the shape

discriminant corresponding to €4, where a = 1,...,s. Then we have

1 ’ R
m ;Da = IHI — ext. (41)

Proof: Since

s

H=-% (ZA) £

a=1

ert = nz_ 0 Z Z AN,

a_l i<j

we have

AP = eat = =5 375 (4 = mr— ST NN (42)

a=1 i=1 a=1 i<j

A direct computation yields

D, = 2n - )Z(,\* "Z’\"\’ (43)

i<j

Summing from a = 1 to a = s in (43) and comparing the result with (42) one may
get (41).
From the cited result in [9] and the previous lemma, we have

19



Corollary 2.12 If M is a compact submanifold in the ambient space M, then
s 2
f > Da| dv
M \a=1
is a conformal invariant.

Let us remark that for n = 2 this is a well-known fact.

Lemma 2.13 Let M be a submanifold in the arbitrary ambient space M. With the

previous notations we have
A(|H|? - ext) < Y L2(p) < 2n(n — 1)(|H[* - ext)
[e ]
at each point p € M. The equalities holds if and only if p is an umbilical point.

Proof: This is a direct consequence of Lemma 2.11 and (39).
Proof of proposition 2.10 : Let p be an arbitrary point of M and let 79 be
a normal direction such that L(p) = Ly, (p). Consider the completion of 7o up to a

orthonormal normal basis 79 = 7, , 1,. Then we have

L*(p) = L3 (p) < ) Li(p) < 2n(n — 1)(|H|* - eat). (44)

By applying Holder’s inequality, one has

< /M LdV>2 < ( /M L2dV) (vol(M)) .

Applying Hoélder’s inequality one more time yields

n

/A./!(|H|2—e:z:t)d‘/§(/M(IH["’—ea':t)%dV)%(vol(M))f2
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Therefore, by using the inequality established in lemma 2.13, we have

(/M LdV)2 < </M LQdV) (vol(M)) < 2n(n — 1)vol(M) /M (|H|* — ext) dV <

2
< 2n(n — 1) (vl (M)~ </M (|H|? - ext)? dV) "

Let us discuss when the equality case may occur. We have seen that we get identity
ifn=2

Now, let us assume n > 3. The first inequality in (44) is an equality at p if there
exist s — 1 umbilical directions (i.e. Lo(p) = 0 for s = 2,...,n). The second inequality
in (44) is an equality if and only if p is umbilical point (see [63]). Finally, the two
Holder inequalities are indeed equalities if and only if there exist real numbers 6 and
u satisfying L(p) = 6 and |H|? —ext = u at every p € M. The first equality conditions
impose pointwise L(p) = 0, which yields § = g = 0. This means that M is totally

umbilical.

2.4.2 The noncompact case

Let M be an n-dimensional noncompact submanifold of an (n + d)-dimensional Rie-

mannian manifold (M, g).

Proposition 2.14 Let M™ C M™ be a complete noncompact submanifold and
M, -, Na @ local orthonormal basis of the normal bundle. Suppose that 3" AN, > 0

and L, € L} (M). Then

/ (|H|? - ext)dV < oo.
M
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Proof: We use the inequality (39). It is sufficient to prove locally the inequality:

d
]le—extSZDi

=1

This is true since the following elementary inequality holds:

2n iyj 1 2 = i1
AL+ o+ (M) = == YO XN, 52[(Aa)2+...+(/\‘;)2]—;{g(,\a)} .

!<J

This is equivalent to

d d
n(n—1) (A7 —2n2) XN <2(n— 1)) (L) —4(n—1) > AN,
i=1 i=1

<j i<j

or

d
(n? = 3n+2){) (ML)} +2(n* - 2n +2) Y AN, >0,
=1 i<j
which holds by using the hypothesis and that n > 2.
The inequality is the a-component of the invariant inequality we are going to

prove. By adding up d such inequalities and by considering the improper integral on

M of the appropriate functions, the conclusion follows. This is due to

d d
H|? — ext dVS/ D;dV < (% / L?dV
[me-eav s [ Spav <@ [
by the first inequality in (39).

In the next proposition we establish a relation between [, [L(p)]°dV and the

Willmore-Chen integral, [, (|H|* — ezt)dV, studied in [9].

Proposition 2.15 Let M™ C M™? be a complete noncompact orientable submani-
fold. If L(p) € L*(M), then [, (|H|* — ext)dV < oco.
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Proof: By a direct computation, we have

/M(|H|2 — ext)dV 7o) / Z D (AL = M)V < (45)

a=1 i<j

nz(n_ 5 /MZZB )dV = L?(p)dV.

a=1 i<y M

2.4.3 Examples
Let us look now at two examples. First, let us consider the catenoid defined by

v . v
fe(u,v) = (ccosu cosh—,c sinu cosh—,v) .
c c

Using the classical formulas for example from [62] one finds
1 2 U

Al = =Xy = —-cosh™ -
c c

Therefore, we have

° > 2 oV ©  etdt
‘/—OOL(p)dU=[-°°2COSh Zdv=4[-wgm=4ﬂ<w

Let us consider the pseudosphere whose profile functions are given by (see, for

example (37])

a(v) = ae™¥/®

= /v V1 — e 2t/adt
0
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for 0 < v < oo. For simplicity, let us consider just the ”upper” part of the pseudosphere.

We have
v/a
Al = ¢ vV1-— 6—2"/0,
a
-1
Ay = — (ae”/“\/l - 6_2”/“) .
Remark that

1 [ dy

0o et/a
LdV = / —_—dt = - — = 00.
/1;1 0o aVl—e2/a 2/i vy-1

A natural question is to find a characterization for surfaces of rotation that have
finite integral of the spread of their shape operator.
Consider surfaces of revolution whose profile curves are described as ¢(s) = (y(s), s)

(see, for example, [62]). Then we have the following.
Proposition 2.16 Let M be a surface of rotation in Euclidean 3-space defined by
¥(s,t) = (y(s) cost, y(s) sint,s) .

Then the integral of the spread of the shape operator on M 1is finite if and only if there
erist an integrable C*°(R) function f > 0 which satisfies the following second order

differential equation:

—yy" =1+ (¢)* £ f(s)y(1 + (¥)))%
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For the proof, we use the classical formulas from [37, p.228]. We have for \; =
Kmeridian, and respectively for Ay = Kparauter
A = Y
L+ ()2

. 1
FTyl+ @)

Then, the condition that the integral is finite means that there exists an integrable

function f > 0 such that

LlAl — Aolds = /Rf(s)ds.

If we assume that f € C*°, then the equality between the function under integral
holds everywhere and a straightforward computation yields the claimed equality.

For example, for the catenoid f(s) = 0.

2.5 A Fundamental Inequality for Warped Product Mani-
folds

For a warped product N; x; N;, we denote by D; and D, the distributions given
by the vectors tangent to leaves and fibers, respectively. Thus, D, is obtained from
tangent vectors of N; via the horizontal lift and D, obtained by tangent vectors of N,
via the vertical lift. Let ¢ : Ny x y N; = R™(c) be an isometric immersion of a warped
product N; x; N, into a Riemannian manifold with constant sectional curvature c.
Denote by h the second fundamental form of ¢. The immersion ¢ is called mired
totally geodesic if h(X,Z) =0 for any X in D; and Z in D,.

The problem of suitable conditions on isometric immersions in space forms is
analyzed and explained in [23]. Let us consider N; x; N, be the warped product of
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two Riemannian manifolds and let n; and n, respectively their dimensions. We will
use the notation n = n; + n,.

The following inequality for warped product spaces is proved in [23].

Theorem 2.17 Let ¢ : Ny x; N, = R™(c) be an isometric immersion of a warped
product into a Riemannian m-manifold of constant sectional curvature c. Then we

have

Af _ (m+n2)?
—_— —_
7 n, H* + nyc, (46)

where n; = dim N;, ¢ = 1,2, H? is the squared mean curvature of ¢, and A is the
Laplacian operator of Nj.

The equality sign of (46) holds identically if and only if ¢ : Ny Xy N2 = R™(c) is a
mized totally geodesic immersion with trace h; = trace hy, where trace h; and trace h,

denote the trace of h restricted to N; and N,, respectively.

Several applications of this theorem are given in [23].

The classification of immersions from warped products into real space forms sat-
isfying the equality case of (46) is obtained in [24].

Here, we prove the following inequality, in the same spirit, but whose proof will
use a different argument, namely the idea from our proof to Chen’s fundamental

inequality with classical invariants.

Proposition 2.18 Let . : N; x Ny - M™™ be an isometric immersion of a warped
product manifold into a Riemannian manifold M. Then at every point p € M the
following inequality holds :

26



A -1
nng + scal(T,Ny) + scal(T,N;) < 11_(_71_2__)_H2 + Z sec(e; N ej), (47)
i<j

where scal is the scalar curvature corresponding to the indicated tangent space with

respect to the warped product metric.

Proof: The following relation was proved in [64], it was also proved in section 2.2.

-1
E sec(e; Nej) < %H2 + E sec(e; A €;). (48)
i<j i<j

The left hand side term of the above inequality can be written in detail as
n,
Z sec(e; Nej) = Z Z sec(e; Nes) + Z sec(e; A e;) + Z sec(es Ney)  (49)
i<j s=1 i=1 i<j s<t
where 7,7 = 1,...,n; and s,t = n; + 1,...n are the subscripts corresponding to the
tangent spaces to NNy, respectively Ny, at every point T,(N; X Ny).
We have (see, for example, [5] or [23]):

"22 i sec(e; N es) = nzAf

V)
s=1 i1=1 f

Zsec(ei A e;) = scal(T,Ny),

i<j

Z sec(es A ey) = scal(T,N2).

s<t

Replé,cing these quantities in (48) we get the claimed inequality.
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The equality holds if and only if the following relation holds at every point:

n(n — 1)H? = 2Z[sec(e,~ Nej) — sec(e; A ej)]. (50)

i<j
In the case when in relation (47) the ambient space is a space form, we get the

following.

Corollary 2.19 Let ¢ : Ny x Ny =& R™™(c) be an isometric immersion of a warped

product into a simply-connected space form. Then at every point p € M :

2L scal(T,Ny) + scal(T,N,) < n(n—1)

7 (H? + ¢), (51)
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3 Applications of Chen’s Fundamental Inequality:
the General Case

3.1 Warped Product of Hyperbolic Planes

In the Introduction we have explained that we are interested to construct explicit
examples of Riemannian manifolds with Ric < 0, but which have some positive Chen
invariants.

For such construction, we use the notion of warped product metrics introduced
by Kruckovi¢ in 1957 and by Bishop and O’Neill in [5] in Sections 3.1 and 3.2. (A
reference on warped product metrics is in [1], which is, in particular, useful in the
calculation on Ricci curvature of a warped product metric. Another reference is [56].
A discussion in the context of manifolds with nonpositive curvature, based mainly on

[5], can be found in [57].)

Let us consider two copies of the hyperbolic plane (H?, go). The first has coordi-
nates (z,y) with y > 0 and has metric go = (1/y?)(dz? +dy?). Let u and v denote the
coordinates of the second copy of the hyperbolic plane with v > 0. We consider the
open subset U = {(z,y) € H?|ly > £/2}, for sufficiently small £ > 0. On the product

manifold (U x; H?, g) we consider the warped product metric g = go + f2go, i.e.,
1 f(z,y
g= F(dz2 + dy?) + %(du2 + dv?), (52)

where f is a positive differentiable function. We use the subscripts 1, 2, 3, 4 corre-

sponding to the coordinates z,y, u, v, respectively. At every point p € M, we use the
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following notation for the tangent vectors

2 50 4

9
oz dy " Ou ov

We claim the following: There ezist differentiable functions f on (U x; H?,g)

such that Ric < 0 and §(2,2) > 0 everywhere.

A straightforward computation gives

sec(d; A9,) = —1, (53)

sec(0: N 0,) = sec(0; A B,) = (i” m (% - yg—g) (54)
sec(d, A By) = sec(d, A By) = —ﬁ (-‘3—5 + y%’;> (55)
sl 0 =~ = e [(g_i)z * (%ﬂ (%)

Therefore, the half of scalar curvature at p = (z,y,u,v) is given by

scal(p) = -1 —

1 2y2 a2f azf
fA(z,y) B f(z,y) [aﬁ + 3y2] (57)

o [(ory, (2’
fz,y) |\Oz Oy
Using eventually Proposition 9.106 from (1] and the fact that the components of the

Hessian of a function ¢ are given in general by :

0% 09,

oriork  or Ik

(ho)jk =
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the values of the Ricci tensor are :

0000 =~ s+ 5 T 9

Ric0,0) =~ - 5t (G + 3 ) (%8)

Ric(8a, ) = Ric(d,,8,) = —$ _yf fjf v [Zz + g;f J (60)
G ()]

Ric(8,,0,) = 204 2_of (61)

 f(z,y)0ydz  yf(z,y) oz
Ric(8;,8,) = Ric(ds,8,) = Ric(dy,d,) = Ric(d,,d,) = Ric(8u,8,) =0 (62)

To complete our example, we choose a function “close” to 1 which has the desired
properties: Ric < 0 at every point p = (z,y,u, v), but at least one of Chen invariants
is strictly positive.

Consider f(z,y) = e****"¥_ For this specific function one gets by direct compu-
tation that

Ric(0y,0,) = Ric(0y,0,) = (63)
-1
1 2\2 % 20, 2e arctany < 0.
AT [(1+4%)? + 2ey’(e — y)e ]
This last conclusion shows us that the only minor we need to study is the one

corresponding to subscripts 1 and 2.
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The canonical basis we’ve considered is not an orthonormal one. To complete

the computation on an orthonormal basis let us take e; = y0;, e2 = yd,, e3 =

(v/f(z,y))Ou, €4 = (v/f(x,y))0,. Then
Ric(e1,e1) = y*Ric(0;, 8z),
Ric(ey, e2) = y*Ric(0z, Oy),
Ric(ey, e5) = y*Ric(d,,9,),
Ric(es, e3) = (v*/ f*)Ric(8y, 8u) < 0,
Ric(ea, e4) = (v2/f*)Ric(dy,d,) < 0.

To see that Ric < 0, we have to study the 2 x 2 minor:

2 92
Ricen e = 14 W0 WP

foy f oz
' - Ri _ 22 0*f  2yof
Ric(e;, e3) = Ric(es, 1) = — 5995~ 1 s
- _ WO _ WO
Ricene2) = =1= %5, = F o

or, for the considered function:

2ey

Ric(el,el) =-1+ W’

Ric(ey,e2) = Ric(ez,e1) =0,

2ey  2ey®(e — 2y)

Ri - 1-
’LC(CQ,GQ) 1+y2 (1+y2)2

On the other hand, since on U we get sec(0; A 0,) < sec(0z A 0y), sec(0z A 0y)
< sec(By A By), sec(Oy A 8,) < sec(d; A 8y), sec(Oy A 0,) < sec(0y A ,), the smallest
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values of sec(e; A e;) on the considered basis are sec(0; A 0,) and sec(0y, A 0,), we

have on U:

0(2,2) > 2sec(0; A Oy,) + 2sec(0y A 0,,) (64)

> 0.

y: (0°f O f\ | 2eyP(e—2)
£(z,y) (a * ay?) T (1422

The last inequality allows us to apply Theorem 1.2 to obtain the following :

Proposition 3.1 For sufficiently small € > 0, the Riemannian manifold
M = (U X H2,go + (e2earctan y)go)

cannot be isometrically immersed in any Euclidean ambient space E™ as a minimal

submanifold for any codimension, even though Ric < 0.

One may obtain similar result by applying the same construction with some other
warping functions on an appropriate open set U C H2.

Let us notice that one doesn’t need a specific computation for §(2,2) to apply
Theorem 1.2. An estimate as in the relation (64) is sufficient to obtain the obstruction

to minimal immersions into a Euclidean space of any codimension.

3.2 Multiwarped Product Spaces

Let us now consider a multiwarped product of hyperbolic spaces defined as follows.
Let us use a similar notation U = {(z,y) € H?|ly > 2¢} to the previous section.
Consider the product manifold of U with n warped copies of the hyperbolic plane

H?, endowed with coordinates (z,y,u;, vy, ... ,Un, vp) With y,vy,... ,v, > 0. At an
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arbitrary point of the product manifold let 7, 7,, ..., N2n+2 denote respectively the

tangent vectors:

090 90 0 9 9
0z’ Oy’ Ou,’ Ov,”  ’ Ou, Ov,

The multiwarped product metric on (U x5, H% Xy, .. x5, H?,g) is defined by

1 2 2 - f(z,y) 2 2
9= 5(da" +dy )+§—U?—(du,- + dv?) (65)

where fi(x,y), ..., fa(z,y) are positive differentiable functions.
We claim the following: There are some choices of fi, ... , fn which satisfy Ric < 0

everywhere and at least one of Chen invariants is positive.

By direct computation we have, fori =1,... ,n:

sec(m Amp) = —1, (66)

of; 0% f;
sec(m A maiv1) = sec(m A nait2) = f;_(ilm( 6{/ -y azf; ), (67)

Yy ofi | 0*f;

A 12; = i = - )
sec(nz A m2ir1) = sec(nz A Tai+2) 7.z, 9) (By +y 2 (68)
1 y? AN ECIAY

el AM2) = =y T ey [(31‘) o) @
sec(Naiva A Majr2) = sec(Maira A M2j+1) = sec(Maiv1 A M2jt1) = (70)

S
fi(z,y) fi(z,y) |0z 0z Oy Oy’

scal(p)=——1—g{fli2+z;—; [(%)Z (%)Q]} (71)

34



" (8 Of, "1 [0f0f; , 8f:0f,
_9,,2 — 42 - |2z )
2 Z(asr * a?y) Y D 7 [az oc "y ;)

i= i,j=1;i#j
2 f.
Ric(m,m) = —— + = Zf (é)fz %) (72)
of; 0“f;
RZC(T]Q,T)Q) = —y— - = Z f; ( f ayf) (73)

. 1 a i 2 ai 2
Ric(naiv2, Maiv2) = Ric(M2ig1, M2ig1) = vl y_2 [( f) + ( f) ] (74)

Oz Oy
v2fi (0% fi O 20212 O 1 [0fi0f; Ofi0f;
T2 (31:2 N ayz) Y izlz#jff: ["a?EE“La_yEyi]'

A long computation yields the other terms of the matrix of Ric tensor. Let us
explain how to compute Ric(n;,7,). We need to compute terms of the type R, *,. We

distinguish three cases: k =1, k =2 and k # 1,2. Then

1 &fc 1 0fk
Bula =0 Rara =0 Reo= g e VR

A similar discussion is taking place for every element of the matrix of Ric tensor,

to yield that all non-diagonal terms vanish everywhere, except

~[10% 1 0fi
Ric(n,m) = —2Y | -o2k 4 — Ik 75
(mm) = =23 [fk 3y0z * yF, oz (%)
For a specific example let us consider f;(z,y) = f(z,y) = ef2***¥ fori=1,... ,n.

To simplify the computations one may choose 0 < € < 1/n. For the orthonormal basis
we work with, let us denote as above e; = yn,, €2 = yno, and eaxt1 = (Vk/ fi)N2k+1,

€xk+2 = (Vk/ fe)Mak+2, for k =1,...  n, respectively.
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For the subscript 3 to 2n, the Ric matrix is in diagonal form at every point.

Through a direct computation, we obtain, for = 1,... | n, that

1
g

< 0.

(76)

Ric(ezit1, €2i+1) = Ric(eziya, €2i42) =

Gt 1 (0F\' ¥
N (3y> ~ foy?

In order to estimate Chen invariant, we compute the sectional curvatures as fol-

lows, fori,j =1,... ,n,1# j:
sec(m Amz) = —1, (77)
€
sec(m A naiy1) = sec(n A Taiye) = ___31_2 >0, (78)
1+y
ey(y> —ey = 1)
sec(ny A 1mo; = sec(ng A no; = >0, 79
(772 T2 +1) (772 T2 +2) (1 + y2)2 ( )
1 e%y?
sec(Maiv1 AMgigo) = —— — ——= < 0, 80
(772 +1 72 +2) f2 (1 + yg)g ( )
£2y?
sec(Mair1 A Maj+1) = sec(Maiva A M2jr2) = sec(Naiz1 A ojra) = —m <0. (81)

In fact, one can easily obtain that

sec(Mit1 A Mairz) < sec(Naiva A M2jt2). (82)

This allows us to obtain the estimate of the (2,2,...,2)-order Chen invariant (2

repeats n + 1 times) such that

5(2,...,2) >7(p) — |sec(m Ama) + Z sec(Mit1 A Taiv2) | = (83)
i=1
2eny?
=20 9y —
(1+y2)2( y—¢en) >0

Thus, by applying Theorem 1.2, we have proved the following.
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Proposition 3.2 The Riemannian manifold (U x H? x ... x H?, g), endowed with the
metric given by (65) with fi(z,y) = e*2*"¥ { = 1,...,n, cannot be isometrically
immersed as a munimal submanifold into a Fuclidean space for arbitrary dimension,

even though Ric < 0.

The same procedure with some other functions f; may also give rise to other
specific examples of Riemannian manifolds whose Chen’s invariants obstruct mini-
mal immersions via Theorem 1.2, although the classical invariants do not provide

obstruction to minimal immersions.
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4 Curvature and Topology: A Myers Type Theo-
rem for Almost Hermitian Manifolds

The classic S.B.Myers’ theorem (see [48]) asserts that a complete Riemannian mani-
fold M that satisfies the condition Ric,(v,v) > r=2 > 0, for every point p € M and
for any unit vector v € T, M, is compact and its diameter is less than or at most equal
to mr. The condition Ric,(v,v) > 0 everywhere and a Ricci curvature condition along
geodesic rays from a point py € M has been studied by Calabi in [6]. For some other
references on the topic one may see for example [28].

Let us consider (M?",J,( , }) an almost Hermitian manifold with curvature tensor
R. To establish the notations, let us consider just for this section the following sign

convention for the curvature tensor
R(X, Y)Z =~-VxVyZ +VyVxZ + V[x,y]Z,

for any tangent vector fields X,Y, Z € TM. The Ricci tensor will be denoted by Ric

and the sectional curvature by sec. The holomorphic sectional curvature is given by

(R(JX, X)JX,X)
(X, x>

H(X) =sec(X NJX) =
The main result of this section is Theorem 4.1. Chronologically, the first result of
Myers type in Kahlerian context was established by Tsukamoto in [68]; his result
states that a complete 2n-dimensional Kahlerian manifold M whose holomorphic
sectional curvature is greater than or equal to a > O is compact and has the diameter
less than or equal to 7/y/a. Furthermore, under the mentioned hypothesis, M is

simply connected.
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A result of Myers type for nearly Kahler manifolds, with the holomorphic cur-
vature condition, has been proved by A.Gray in [35]. Gray also proved in [36] a

corresponding result for almost Hermitian manifolds as follows.

Theorem A Let M?" be a complete almost Hermitian manifold. Assume that the

holomorphic sectional curvature of M satisfies:
H(X) = [[(Vx)XIPIIX|I™* 2 a >0, (84)

for all X € T,M and all p € M. Then M is compact and the diameter of M is not

greater than w/\/a. Furthermore, M is simply connected.

A theorem of Myers type for locally conformal Kahler manifolds has been proven
by Vaisman in [69]. A generalization of Myers’ theorem for contact manifolds has
been proven by Blair and Sharma in [3].

Recall that in [33] Gallaway established the following fact, mentioned also in [28].

Theorem B Let M™ be a Riemannian manifold. Suppose there erxist constants
a > 0 and ¢ > 0 such that for every pair of points in M?" and minimal geodesic v

joining these points having unit tangent '(t), the Ricci curvature satisfies:

Ric(y (1), (1) > a+ L (85)

along vy, where f is some function of the arc length t satisfying |f(t)| < ¢ along 7.

Then M is compact and:

diam(M®) < g [c + V(@ tan— 1))] (86)
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Furthermore, the universal covering of M?™ is compact, with diameter bound as in

(86) and the fundamental group of M*" is finite.

For ¢ = 0 one may get the classic Myers theorem. It’s natural to think about a
result similar to Theorem B in the almost Hermitian context, i.e. the context from
Theorem A. The curvature condition we study is inspired from A.Gray’s Theorem A.

We establish the following (see [66]).

Theorem 4.1 Let M?" be a complete almost Hermitian manifold. Suppose there erist
constants a > 0 and ¢ > 0 such that for every pair of points in M?" and minimal
geodesic vy joining these points having unit tangent +'(t), the holomorphic sectional
curvature satisfies:

d
dt

H(Y(t)) 2 a+ (87)

along vy, where f is some function of the arc length t, satisfying |f(t)| < c along ~.

Then M?" is compact and
diam(M?™) < g [c N a)] . (88)

Furthermore, the universal covering of M*" is compact, with diameter bound as in

(88), and M?* is simply connected.

Proof: Let us consider two points p,q € M. Let v be a minimizing geodesic
parametrized by arc length ¢ that joins p and g, 7 : [0,1] & M, the length of v being

l. Let us consider the vector field (as for example in [36]):
V(t) = (sm“Tt) I (), (89)
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for any t € [0,1]. Then let us consider the proper variation of -y in direction of V. We

denote by E the energy functional given by:

l
E(y) = / /()12

Synge’s second variation formula (see for example [28]) yields:

] 2
so20 == [[(vio. 5f + R, vior o) d (90)

or, replacing the expression of V(t) from relation (89):

1) - - / ' <(3m”7t) (@), (-’{2) (smth) Jv’(t)> - o)
- /0 l <(sm7r7t) JY (), R(¥'(t), (szn?) J7’(t))v’(t)> =

2 ! :
= 7;—2 sin? (th) dt —/ sin® (WT) ', R(JY',~")Jv') dt.
0 0

The curvature term in the last equation is the holomorphic sectional curvature sec(Jy'A

7') and we may use the condition (87) to get:

lﬂ(o) < ﬂ—z _d /l sin? (W—t) idt. (92)
0

1d’E 2 al Lo ot

- < — = — n— t)|dt <

570 < 5=+ [ lsinTilsolar < (93)
< m_d + e
-2 2 ’



Thus, if [ > 7(c + V/c2 + a)/a then the variation would minimize the length of v,
contradicting the fact that -y is minimizing. Hence, the length of v is bounded above
by this quantity, therefore (88) holds.

To see the last claim of the theorem, let’s assume the contrary (the argument is
the same as in [36]). Then there exists a non-trivial free homotopy class of loops
which contains a non-trivial minimal geodesic -y, defined on [0,!]. Assume that o
has unit speed. The deformation of -y in the direction of Vo(t) = sin(wt/l)J(t)

yields, by the second variation formula, since the length of 7o is bounded above by

n(c+ vt +a)/a:
1d’E

2a <0

therefore vy cannot be a minimal geodesic. Therefore M is simply connected.

Corollary 4.2 Let M?" be a complete Kahler submanifold in a complez space form
M2k (). Suppose there exist constants a > 0 and ¢ > 0 such that for every pair of
points in M*" and minimal geodesic vy joining these points having unit tangent v'(t),

the second fundamental form h satisfies along ~y:

20O, YN +at D <e, (94)

where f is some function of the arc length t, satisfying |f(t)| < c along y. Then M*"

is compact and:
diam(M™) < g [c+ = a)] (95)

Furthermore, the universal covering of M?" is compact, with diameter bound as in
(95), and M?" is simply connected.
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Proof of Corollary 4.2 : It is known (see, for example, [51]) that

H(X)=c-2)Y_ g(AaX, X)* = e = 2|h(v'(t), Y D).

Then we apply Theorem 4.1.
Let us remark the Corollary’s hypothesis cannot be relaxed to a = ¢ = 0. For

example, in the case € = 0 there exist complex totally geodesic noncompact subman-

ifolds.

Let us remark that Myers’ Theorem can be stated in terms of Chen’s invariants.
In {18] B.-Y.Chen introduced also the following string of Riemannian curvature in-

variants.

~

d(n1,no, ...,ng) = scal(p) — sup{scal L; + ... + scal L, }, (96)

where L;, Ly, ... Ly, are mutually orthogonal linear spaces of dimension n,, n., ...

n,. With this notation, we can state Myers’ Theorem as follows.

Theorem 4.3 Let (M, g) be a Riemannian manifold such that, at every pointp € M,

the condition: é(n — 1) > a2 > 0 holds. Then M is compact.
Proof: One may write, for any unit vector,
Ric(v,v) > é(n —1) > a® > 0.

Thus, the hypothesis from Myers’ theorem is verified.
In general, the positivity of a certain Chen invariant doesn’t imply compactness.
For example, §(2,2, ...,2) > a? doesn’t imply compactness, as one may see from the
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following example. Consider M = S?(1) x R? x ... x R?, where R? is taken n times.

In this case 6(2,2,...,2) =1 > 0 at every point, but M is not compact.
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5 Chen’s Fundamental Inequality for Complex Sub-
manifolds

5.1 New Kahlerian Invariants

Let M™ be a Kihler manifold of complex dimension n. Let us denote by J its complex
structure. We denote by sec(X AY') and scal(p) the sectional curvature of the plane
determined by the vectors X and Y and respectively the scalar curvature at the point
p. Consider U a coordinate chart on M and e,,..., e,,e] = Jey,...,e;, = Je, a local

orthonormal frame on U. Then we have at p € U:

scal(p) = Zsec(ei Nej), 4,7=1,..,n,1% ..., n" (97)

i<j

Let m C T,M be a plane section. Then 7 is called totally real if J= is perpen-
dicular to 7. For each real number k, B.-Y.Chen’s Kahlerian invariant of order 2 and

coefficient k at p € M is defined by

0r(p) = scal(p) — kinf sec(n"), (98)

where inf sec(n") is taken over all totally real plane sections in T, M.

In [22] the following theorem is proved:

Theorem 5.1 For any Kahler submanifold M™ of compler dimension n > 2 in a
complez space form M™P(4c), the following statements hold:

(1) For each k € (—o0,4] we have

o < (2n* + 2n — k)c. (99)
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(2) Inequality (99) fails for every k > 4.
(3) 6 = (2n% + 2n — k)c holds identically for some k € (—o00,4) if and only if M™

is a totally geodesic Kihler submanifold of M™P(4c).

The theorem describes completely, in a forth claim, the pointwise equality situa-

tion in the case k = 4.

5.2 Strongly Minimal Submanifolds

It is known ( see for example [51]) that the shape operator of a Kahler submanifold

M™ in M™P satisfies:
Aje, = JA,, JA, =-A.J, (100)

for r = 1,..,p,1%,...,p*, and where we use the well-known convention A, = A, .

Therefore the shape operator of M™ takes the form

A A" —A" A
Aq = ( Ag _X: >’ Age = ( A/a A?/l )) a=1,..,p (101)

where A], and A’ are n x n matrices. The condition (101)implies that every Kahler

submanifold M™ is minimal, i.e. trace A, = trace Ae =0, a=1,...,p.
Definition: A Kihler submanifold M™ of a Kihler manifold M™*? is called

strongly minimal if at each point there exists an orthonormal frame e;,..., e e} =

Jey,...,e;, = Je, such that the shape operator satisfies the conditions
trace A, =trace A, =0, a=1,..,p.

This class of submanifolds was introduced and studied by B.-Y.Chen in [22]. From

[22] we have the following two results.

46



Theorem 5.2 [22] A complete Kahler submanifold M™ (n > 2) in CP"*P(4c) satisfies

the equality
6 =2(n* +n-2)c (102)

tdentically if and only if
(1) M™ is a totally geodesic Kahler submanifold, or

(2) n =2 and M? is a strongly minimal Kdhler surface in CP**?(4c).

Theorem 5.3 [22] A complete Kdhler submanifold M™ (n > 2) of C**P satisfies
07 = 0 identically if and only if

(1) M™ is a complez n-plane of C**P, or

(2) M™ is a complez cylinder over a strongly minimal Kahler surface M? in C™*P
(i.e. M™ is the product submanifold of a strongly minimal Kdhler surface M? in CP+2

and the identity map of the complez Euclidean (n — 2)-space C"2).

Among the examples studied in [22] let us mention a nontrivial example: The
complex surface N? in C? given by the equation 22+ 22 + 22 = 1 is a strongly minimal
Kahler surface.

The above mentioned results and examples motivate our present study of the
strongly minimal submanifolds. One of the problems we discuss in the present dis-

sertation is the characterization of strongly minimal surfaces in C3.
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5.3 An extension of B.-Y. Chen’s Fundamental Inequality
with Kahlerian Invariants

In the present section we extend the inequality (99) to orders higher than 2. Let
us motivate first this generalization. As we have mentioned before, the first form of
B.-Y.Chen’s fundamental inequality in Riemannian context has been given in [14],
in 1993, and the string of B.-Y.Chen’s fundamental inequalities has been obtained
in [20], in 2000. It is natural to ask what could be the most general statement one
may get from the geometric idea of B.-Y.Chen’s fundamental inequality for Kahler
submanifolds in space forms, presented in [22].

An l-dimensional linear subspace L, C T, M is called totally realif JL, is orthogonal
to L. For each real number k£ one may extend the above invariants to Kahlerian

wnvariant of order | and coefficient k by

k

Gialp) = seal(p) — 7= inf  [scal(Li(p))], (103)

where L] runs over all totally real linear subspaces in T, M, and the scalar curvature

of a linear subspace is

scal[Li(p)] = Z sec(m: A n;),

1<i<j<l
for the orthonormal basis 7, ..., 7 in L;.
Let us now assume that M™ is a Kahler submanifold of complex dimension n in a
complex space form M™*P(4c). We are closely following the notations from [22] unless
stated otherwise.

Let us consider the orthonormal basis ey,..., e,,e} = Jey,...,e;, = Je, such that
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L, = span { e,..., ¢}, where L; achieves the infimum for scal[L]|, with dim L = [. If

R is the curvature tensor of M, then the Gauss equation is

(R(X,Y)Z,W) = (h(X,W),h(Y, Z)) — (h(X, Z), (Y, W)) + (104)

+e{(X, W) (Y, Z) — (X, Z) (Y, W) + (JY, Z) (JX,W) —
—(JX, Z) (JY,W) +2(X,JY) (JZ, W),

where h is the second fundamental form.

The result we prove is the following.

Theorem 5.4 Let M™ be a Kahler submanifold of complex dimension n > 2 in a
complex space form M™P(4c). Let oz, be the Chen’s Kdhlerian invariant of order |
and coefficient k. Then we have

(1) For any 2 <l < n, the following inequality holds
< (@2n?+2n—(3))e (105)

The equality case for I = 2 has been described in [22]. Equality holds at every point
for a fized 1l > 3 if and only if M™ is a totally geodesic submanifold.

(2) For any k € [0,4] the following inequality holds
r 2 k l
(5k,, S [271 -+ 2n — Z (2):| C. (106)

Equality holds at every point for a fired | > 3 if and only if M™ is a totally geodesic

submanifold.
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Proof: Let us discuss first claim (1) of the theorem. Taking X = W = e, and

Y =Z =e,for1 <k,s<tinthe Gauss’ equation one gets
14
sec(ex Nes) = 3 [hhS, — (he,)" + hgehSs — (hg)?] +c. (107)
a=1
Consider | € {2,3,...,n}, the dimension of the totally real space L. Then

scal(L)) = ) (R(ex,es)es, €x) = (108)

1<k<s<l

P
Z > {[ans = )] + A hsy — (W]} + G) e
a=11<k<

s<i

For the following computations, we use (h%)* + (h%)? > —2h%.hS,, the similar

relations for a* and that | > 2 implies

2(hg,)" > (hg.)?. (109)

[-1

As in relation (3.5) from [22] one may compute the quantity

4n(n + 1)c — 2scal = 4Z{||A:,||2+ |11} > (110)

a=1

242;):{2 242 Y (h%) +Z(hw 2 3 () }_

i=1 1<i<y<i 1<i<j<l

ﬂi{m«[(zhj)l L I }

i<j

4i{ > [(lhit)l (h“")"’] r23 () }

i<j
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a _2hgh?j a\2
> 42 Z -1 + 2(hij) +
1<i<j<l
L4 —2h&*ho:
1 ax\2
*42{ [—#”("“)”2
1<i<j<l

~ —2
4 { b - a1}
=11

Therefore we have proved

2n(n + 1)c — (4)c > scal — scal(Ly)

-1

for every totally real I-dimensional space Lj. Therefore

< 2n(n+1) - )e

(111)

(112)

From the sequence of inequalities above, it is clear that equality holds everywhere

if and only if (h2)2 + (h;-"j)2 = —2h%h%;, for any disjoint pair ¢,j from 1 to ! and

Y59
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2= ﬁ The equality case for | = 2 has been completely described by B.-Y.Chen in
[22]. For I > 3 the fact that h;; = 0 is immediate.

Now let’s prove the claim (2) of the theorem 5.4. It has been proved in [22] that
scal < (2n? 4 2n)c. (113)

We multiply this inequality by p > 0 and we add it to (105) term by term. We get
(p + 1)scal — Z—j——l—inf scal(L}) < [(p + 1)(2n* 4+ 2n) — ())]c (114)

Dividing both sides by p+ 1 > 0 we get

scal — inf scal(L?) < [(2n* 4 2n) — 5 ! ;)]e. (115)

4
(—Dp+1) 1
By denoting ’% =k, we get p = 1 — 1 = 4% Using this in (115) we can write the

result as

scal — k inf scal(L?) < [(2n® + 2n) — g(g)]c, (116)

-1
which is the claimed inequality. From the equality case in relation (3.3) in [22], claim
3 of Theorem 2 from [22] and the claim (1) of present theorem, if the equality holds
at every point for some k € [0,4] and some ! between 2 and n, then M? is a totally
geodesic submanifold. In detail, the argument can be written as follows, for k € (0, 4).

(The argument is practically the same as in [22].)

k k k
[2n2 + 2n — Z(lz):l c= (1 - Z) 6’1 + Z(SZ” < (117)
< l——E (2n2+2n)c+é[2n2+2n——(’)]c-—- 2n2+2n—§(1) c
= 4 4 2 4%
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From this equality, in particular one gets 83, = (2n? + 2n)c. It is shown in [22] that

this equality at every point implies that the submanifold M? is totally geodesic.

Let us remark that the implication of being totally geodesic from the equality
doesn’t have a statement which is similar to (4) of Theorem 2 in [22]. In fact, for the
case | = 2, the equality situation has already been completely discussed in [22]. In
this sense, the equality case for n > 3, 3 < [ < n, is different from the situation for
! = 2 where strongly minimal complex surfaces appear naturally. We have seen in the
generalization that a natural cut off in the expression of 4n(n + 1)c — 2scal matches
an expression obtained from Gauss equation. This match points out the sharpness of

inequality in the case | = 2 studied in [22].
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5.4 Characterizations of Strongly Minimal Surfaces in the
Complex Three Dimensional Space

In this section we consider a complex surface M? C C3. The coordinates of the ambient
space are 21, z, z3; for j = 1,2,3. Put z; = z; + 1y;. We suppose M is embedded so

that there exists ¢ € hol(C?) such that M = {z € C3| ¢(z) = 0} = V(¢) and
08 _ (06 08 00
(92 - 621 ’ 822, 623

never vanishes on M.

Let us assume that p = (22,29, 2?) is a nonsingular point on M. Two unit normal

vectors at p are £ and J§, where

1 0¢

¢ = l1og/aa] 02

By definition, M? is called strongly minimal in C3 if the second fundamental form can
be written pointwise as follows. There exist an open neighborhood U C M of p such
that there exists two orthogonal unit length vector fields X and Y on U, such that
the second fundamental form with respect to the orthonormal basis {X,Y,JX, JY}

can be written in the form:

a(z) b(z) c(z) d(2)
s | b e de) —c(2)
= o2) dz) —a(z) —b(z)

d(z) -c(z) —b(z) a(2)

and, respectively,
—c(z) —d(z) a(z) b(2)
Ao | —de) o) b2) -a(2)
3

a(z) b(z) c(2) d(2)
b(z) =—a(z) d(z) —c(2)

where a, b, ¢, d are real analytic functions on U.
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Suppose that the strongly minimal submanifold is realized on U as a graph man-
ifold, i.e., z3 = f(z1,22). Let us consider an open set V C C? and w : V — C3 such

that w(z, 22) = (21, 22, f(21, 22)). We also have ¢(zy, 29, z3) = f(21,22) — z3. Then

el a“’:(l,o,ﬁ> e—-a‘”=(o,1,ﬂ),

G 92,) 0 0z 92,
and Je; = ie;, where j = 1,2. To express f as a function of a(z), b(z), c(z),d(z), one
may use relations of type:

a(z) = <A£X$X> = (h(XaX)vf) = (vXX - VXX,€> )

b(z) = (A{Y,X> = (h(}/, X))&) = <€7YX - VYX)£> ’
c(z) = (AJX, X) = (h(JX, X),€) = (VxJX — VxJIX,E),
d(z) = (AeJY, X) = (R(JY, X),€) = (VxJY — VxJY,E).

We use below these equations in the proof of the parametric equations of a strongly
minimal surface.

We consider the real and complex parts of the function f as follows.

23 = f(zla 22) = U(l‘l,mg, yl,y2) + iU(.Tl,l'g, ylayQ)-

We use the notation:

ou

—_— zuz
6131 v

and the other similar notations. In fact, we have
Uy

= vy, Vr; = —Uy,, (118)
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since f is holomorphic with respect to both variables. Let us compute e; and e; in

terms of function u and its derivatives:

Ow

€1 = a = (laoau.‘clvo)o: _u’yl)y
Ow

€2 = 572 = (Oa lau:rza 0’01 —'u’y2)7

where the first three components correspond to the real part, and the last three
components correspond to the imaginary part of e, and ej, regarded in C3. Let us

compute

Vee1 = <0,0 aﬁf) (119)

" 922
To compute the projection V,, e, of Ve, e, to T, M, one needs to compute every term

of the expression:

= (31 (5] = €9 €9
V.o = <ve,e ,——>-——+<Vele ,-—>——+ 120
! b1l Tl b Tleall/ Teal (120)

_ Je; > Je, <- Je; > Je;
Ve €1, + ( Ve, €1,
(P ) T (v T5e0) T

In the following considerations, one may use the Cauchy-Riemann equations and

the fact that u = Re f is harmonic, one may express everything in terms of u.

Let us remark that the harmonicity of u can be written as

Ug z; + Uyy, = 0, Uzyz, + Uyyy, = 0.

We get the following expressions for the covariant derivatives on the complex

surface.
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’U,I:,’urlzl + Uyl’u.rlyl (1,0’ uI],O’ O’ _uyl) + (121)
Ve,er = 1+u? +ul

Uy, Uz z, — url’;"l‘lyl (0, 0, Uy, 1, 0,ux1)+
1+u2 +ul

Up, Uz z, + Uy, Uz y, (1,0,uz,,0,0, —uy,‘,) +
1+ u?n + u;:

1Ly2Ua:1xx - u.‘tzg’l'lyl (O, 07 Uy,, 1, 0, Uzz),
1 + ugg + u‘yz

Uz, Uz 2, + Uy, Uy, 25 (1, 0’ Ug,, 0, 0, _uy1) + (122)
Veer = 2(1+u2 +u2)

Uy, Uszyz; — Uz Upiz, (0,0,uy,,1,0,uz, )+

Uz, Uz, zs + Uy, Uy, 2, (1, 0, Ug,y, 0, 0, —uyz) + 2(1 + ugl + uf“)

2(1+u2, +u,

Uy, Uz zy — Uz, Uy, z, (0’ 0’ Uy,, 1, 0, U:2),
2(1 +u2, +ul)

123
Uzlu:z:gzz + uyl uI2y2 (1, 0’ uIl y 0, 0, —-uyl) + ( )
Ve,e2 = 1+ U:%x + u!211

Uz, Uzyz, + Uy, Uzsy, (1, 0, Ug,, 0,0, _uy2)+
1 + u?:z + u1212

YyUaaza — Umaamn ) 4 1,0, ug,)+
2
1 + ugl + uyl
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Uy, Upozs — Ur,Ugsys
y'l‘r' 22 ’”2”" (0,0,uyz,l,O,un).
+uz, + Uy,

The other expressions for covariant derivative may be deduced as follows.

Vezel = Vele'Z)

VJelel = JVelel + [J€1,61] = JVelel,

Vje,e2 = JVe,e0 + [Jeg, €] = JVe, €2,

VJ6182 = Jvezel + [J61762]7

VJezel = JVele2 + [JCQ, el])

VJe,Jel = JVelJel + J[Jel,el] = —Velel,

Ve, Jea = IV, Jey + J[Jey, e,

VJe2J61 = VJelJez + [JCQ, Jel],

Vjez.]eg = JVJezez + J[Jez,eg] = JVJezeg.
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Let us use the notation suggested by the example in the work [22] and let us
consider two vector fields X = (a3, as, a3, 61,02, 03) and Y = (71,72, 73,61, 02,03) on

the open neighborhood U. We put

a = (01,02,03), ﬁ = (ﬂl)ﬁ?)ﬁf})) 7= (’71772a ’73), 6 = (61a62763)‘

The fact that X and Y are tangent vector ficlds can be expressed as

of

X = (a1 + iﬁl)<1,0, 0_21) + (ag + zﬂz)(O, 1, g—z’;) (124)
Y =(n+ iél)(l,O, %> + (72 +i52)(0,1,gz—f2) (125)

and, for the third component, one may get by direct computations the following.

a3 = a1Ug, + Biuy, + Qauz, + Potty,, (126)

B3 = Bruz, — a1y, + Botlz, — QoUy,. (127)

The conditions g(X,Y) = g(JX,Y) = 0 can be written

a1 + azye + azys + G161 + B2ds + G363 =0, (128)

—NBr — Y22 — 1303 + a101 + a0, + azds =0, (129)

where a;, 8;,7;,d;, are real analytic functions on the open set U C M, for j = 1,2,3.
(The conditions g(X,JY) = ¢g(JX,JY) = 0 are insured by the relations above and

the conditions g(X, JX) = g(Y, JY) = 0 yield trivially.)
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The fact that X and Y are unit vector fields can be written as

A+ ai+ai+ 4B+ 06 =1, (130)

V442482462402 =1 (131)

We have the following parametric equations of strongly minimal complez surfaces

in C3.

Proposition 5.5 Let u be the real part of a holomorphic function f(z1, 22, 23). Then
the complez surface V(f) = M 1is strongly minimal if, for every point p € M, there
exist an open coordinate neighborhood U C M of p such that on U there exist four
real analytic functions a, b, ¢, d and two orthonormal tangent vector fields X and' Y

such that g¢(X, X)=9g(Y,Y) =1, g(X,Y)=¢(X,JY)=0

X = (a1, a2,03,01,02,0), Y =(1,72,73,01,02,03)

a = (a1, a,a3), 8 = (B, 82,03),7 = (71, 72,73), 0 = (61, 2,03),

such that on U we have
—a(z)(1+ul +ul + "3; + u;‘;z)l/2 = (a® = Bz z, +20181Uzyy, + (132)

(102 — B1B2) Uz, z, + (0182 + 021Uy, 2y + (O3 — B3)Uzyz, + 200 2Usyy,
= -(712 - Jf)uzlzl - 27161“'113/1 - (7172 - 6162)u:112

—(7152 + ’7251)Uy1x2 - (’Y% - 53)%2:2 - 2’7252%21;2,
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—b(z)(1+ 2+, +ud +ul)? = (o — Bi6))te,z, + (133)

1
(Bim + a10y)uzy, + 5(02’71 + a1y — 201 — Br102) Uz 2, +

1
=(Bom1 + Biyve + a20) + 0162)uy, 2, + (Q2¥2 — B202)Usgyz, + (B2 + @202)Us,y,,
2

—C(Z)(l + ugx + uiz + u32/1 + “52)1/2 = _zalﬁluzlxl + (a% - ﬁlz)uzlyl - (134)

(01,82 + 02/81)“11:2 + (0102 - ﬁlﬁ?)u‘_lnlz - 20213211'1212 + (ag - ﬂg)u:tzyg =
271(51U1111 + ((5% - 7?)“11‘5{1 + (7162 + 7251)1]'111'2_*_

(5152 - ’71’)’2)Uy1z2 + 2'7252U1212 + (63 - 'Y%)uzzyz’

d(2)(1 +u? +u?, +ul +u2)? = (1) + Brv1)teyz, — (135)

1
—(a1m1 = Bi61)Uz,y, + '2'(0152 + a6y + Brye + Ban)Uzyz, +

1
(8201 + G102 — com1 — a1Y2) Uy, 2, + (@202 + Bo¥2)Uszyz, + (B202 — Q2Y2)Uszgy,-
2

Proof: Let us remark that the normal unit vector field £ has the form (see for

example [70])

E=(1+u2 +u? + uzl + ugz)_w(u:l,uzz, —1,uy,, Uy,, 0) (136)
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Applying this fact, let us consider the expression which yields the first entry
in the second fundamental form operator: g(A¢X,X) = a(z). Now, Let us use a

computational idea presented as relation (3.2) in [70] respectively relation (5.12) in

[22] to get
0 - " LT an
o (NI Xy ) = (137
where
O
T 82,02

This can be written in detail as

) 3% ¢ tan )
o ay —if 9z 8210z, 0 a; + i
"”'a—“_lg az — if; a_"’:'% 2% , | az+if2 = a(z).
2 Qa — ,3 21022 0z3 + ﬂ
3— 3 0 0 0 asz + 103

Let us remark that in general one can use as basis of the tangent fibre bundle on

U the orthonormal frame {X,Y, JX, JY'}. This means, for our computations, that
V" = (0, X)X + (v,Y)Y + (v,JX) JX + (v,JY) JY.

In fact we need just g(v**, X) = (v, X). (We denote consistently by ( , ) the scalar
product in RS.)

In this context, we have

- Q
Xij = (aluzlxl + rglullyx + 721‘3!11‘2 + %uylxz’ (138)

a, B
_2— + 7uy1x2 + Q2Uzyz; + Pallzay,, 0,
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B @ (631 B
M Uzyy, — Blunn - —2—11,1}12 + 7“1/1:21 7uy122 - 7“1112 + QoUz,y, — 18211‘1212’0)'

Computing the 6-dimensional scalar product we get the claimed equation. Similar
computations prove the other analogous equalities.

Now, let us study the Gauss and Codazzi equations of a strongly minimal complex
surface into C3. Following [61] and [50], the computational idea is to write explicitly
relevant relations of the complex surface in C3. In [61] there are defined and studied
the symmetric covariant tensors h and k and the tensor field s, of type (0,1), such

that the Gauss and Weingarten formulae are

VxY =VxY + h(X,Y)¢ + k(X,Y)JE, (139)

Vxé =—-AX + s(X)JE. (140)
With these notations, the Gauss and Codazzi equations (see for example [61]) are
R(X,Y,Z,W) = g(AX, Z)g(AY, W) — g(AX,W)g(AY, Z) + (141)

+9(JAX,W)g(JAY, Z) — g(JAX, Z)g(JAY, W),

(VxA)Y — (Vy A)X = s(X)JAY — s(Y)JAX (142)

The Gauss equation has been used to prove Proposition 6 in [22]. It is also the

main idea in the following.

Proposition 5.6 Let {X,Y} a pair of orthonormal tangent vectors X,Y € T,M,

such that g(X,Y) = g(X,JY) = 0, with respect to which the shape operator of the
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manifold M = V(@) on the open set U satisfies the strong minimality condition. Then

we have

Ric(X,X) = Ric(Y,Y) = =2(a® + b* + ¢ + d°).
Proof: We compute, by the Gauss equation, that
sec(X NY) = g(AcX, X)g(AY,Y) — g(AeX, Y)g(AcY, X)+
+9(JAeX,Y)g(JAY, X) — g(JA X, X)g(JAY,Y).

Either using this relation or using relation (5) from [61], we get the claimed fact.
As a remark, the condition [Af, A¢] = 0 proved also in Proposition 6 from the
cited work is satisfied identically once we prescribe the shape operator in the form

Ag, as we did.

Proposition 5.7 Let U be an open neighborhood of a regular point M such that on U
there exists a pair of orthonormal tangent vector fields X and Y, with the property that
at every point g(X,Y) = g(X,JY) = 0, satisfying the strong minimality condition.

If s is the tensor field of type (0,1) defined by the Weingarten formula
Vx€ = —AX + s(X)JE,

then the following relations hold:

X(c(2)) — IX(a(2)) = s(X)a(z) + s(JX)c(2); (143)

X(a(z)) + JX(c(2)) = —s(X)c(2) + s(JX)a(z); (144)
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Y(c(z)) — JY (a(2)) = s(Y)a(z) + s(JY)c(2); (145)

Y(a(2)) + JY(c(2)) = —s(Y)e(2) + s(JY)a(2). (146)
Proof: Tt is convenient to work with the following form of the Codazzi equation:
Vx(AeY) — Vy(AeX) + A([Y, X)) = s(z)JAY — s(Y)JAeX. (147)

Let us prove for example the third equation from the ones stated above. We write
the Codazzi equation in Y and JY and multiply on the right by Y (we understand

by multiply the product given by the metric ( , ) in C3). We get
(Vy(4¢JY),Y) = (Vuy(4eY),Y) = s(Y) (JAJY,Y) — s(JY) (JAY,Y) . (148)

Using JY = 1Y and the metric property of the Riemannian connection on the

submanifold U, we have

Y (AY,JY) — (AY,VyJY) — JY (AY)Y) + (AY, Vi Y)
= —s(Y)a(z) — s(JY)c(z2).

Now, one can use the fact that: JVyY = VyJY = VyiY = iVyY to simply
the expression. Furthermore, the shape operator A, has a prescribed form on the

considered basis. Therefore, we find

Y(=c(2)) = (AcY, JVyY) — JY (—a(2)) + (A¢Y,iVyY)
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= —s(Y)a(z) — s(JY)c(2).

This proves the relation (145).

Similarly one can prove by the same steps the other equations.

We have used so far four cases of the Codazzi equation: in X and JX multiplied
by X and JX, and in Y and JY multiplied by Y and JY. Let us now use Codazzi
equation in X, JX multiplied by Y, respectively JY, then Codazzi equation in Y,

JY, multiplied by X, respectively JX.

Proposition 5.8 Let U be an open neighborhood of a reqular point M such that on U
there exists a pair of orthonormal tangent vector fields X andY, with the property that
at every point g(X,Y) = g(X,JY) = 0, satisfying the strong minimality condition.

If s is the tensor field of type (0,1) defined by the Weingarten formula
Vx€ = -AX + s(X)JE,

then the following relations hold:

X(d(2)) = JX(b(2)) = s(X)b(z) + s(JX)d(z); (149)
X(b(2)) + JX(d(z)) = —s(z)d(z) + s(JX)b(2); (150)
Y(d(2)) — JY (b(2)) = s(Y)b(z) + s(JY)d(z); (151)
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Y (b(2)) + JY (d(2)) = —s(Y)d(z) + s(JY)b(2). (152)
The proof is similar to the one given in the previous proposition.

Corollary 5.9 Let U be an open neighborhood of a regular point M such that on U
there ezists a pair of orthonormal tangent vector fields X and Y, with the property that
at every point g(X,Y) = g(X,JY) = 0, satisfying the strong minimality condition.

If s is the tensor field of type (0,1) defined by the Weingarten formula
V€ = —AeX + s(X)JE,
then we have the following relations:
(X +Y)(d(2) + b(2)) + (JX + JY)(d(2) — b(2)) = (153)
(s(X) + s(Y))[(b(2) = d(2)) + i(b(2) + d(2))]

(X +Y)(c(2) +a(2)) + (JX + JY)(c(2) — a(2)) = (154)

(s(X) + s(Y))(a(2) — ¢(2)) +i(c(2) + a(2))]

(X +Y)(a(z) + b(2) + c(2) + d(2)) + (JX + JY)(c(2) + d(2) — a(z) — b(2)) (:155)
(s(X) + s(Y))[(a(2) + b(2) — ¢(2) — d(z) + i(a(z) + b(2) + c(2) + d(2))].

Proof: Straightforward linear computations from the previous two propositions.
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Proposition 5.10 Let U be an open neighborhood of a regular point M such that on U

there exists a pair of orthonormal tangent vector fields X andY, with the property that

at every point g(X,Y) = g(X,JY) = 0, satisfying the strong minimality condition.

Suppose that at least one of the analytic functions a, b, ¢, d is nonvanishing everywhere

on U, say a # 0 on U. Then we have

X(d(z) - ib(z)) = %ﬂ?—ﬁ—i‘%mm ~ ia(2)),

Y (d(z) - ib()) = Z—((Z))-:—%Y(c(z) — ia(2)).

Proof: We have the relations:
X(d(2)) — IX(b(2)) = s(X)(b(2) + id(z)),

X(c(z)) — JX(a(2)) = s(X)(a(2) +ic(2))-

(156)

(157)

Solving the second equation for s(X) and replacing in the first, then using JX =X

and keeping in mind that a # 0 everywhere on U, we get the claimed result. Similar

relations hold true in Y.
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6 A Study of Strong Minimality Through Exam-
ples

6.1 42 =0 on degree two complex surfaces

In the previous section we have seen a few characterizations of strongly minimal
complex surfaces in C3, as for example the parametric equations, in Proposition 5.5.
We keep the same notations in the present section, which is consistent with the
notation of [22].

In [22] it was proved that 2z} + 22 + 27 = 1 is a strongly minimal surface. We
compute here locally the functions a,b,c,d and see how the parametric equations

look like in this case. First of all, we have

f(z1,20) = (1 = 2§ — 25)"/2,
where we work locally on the principal branch of the complex radical. Since z; =
z; +1y;, 7 = 1,2,3, we will denote ¢ by

C=1-22-22=(1-2% - 22+ v + 42) + i(-2z1y1 — 2T20>).

If we denote by 6 the polar angle of the complex number { then, on the principal

branch of the complex radical, we get

6 6
(1/2) — - 1 isin —
¢ |C|(cos2+zs1n2),

or, by a direct computation, we have

1 .
flz1,22) = ﬁ(\/lq + Re{ +i/|¢| — Re(),
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where Re( = 1 — z2 — 73 + y? + y3. Therefore, we find

V¢ + Re(, (158)

Sl

u(l'l)x% Y1, yZ) =

wmﬁmmmbﬁ% I~ Rec. (159)

It was established by Chen in [22] that, for a position vector z = (a; + @by, a2 +

iby, a3 + 1b3) € V(f), the basis realizing the strong minimality condition is given by

1 bg z'a1
e = — , ,1 160
‘ \/é(\/ag+bg NEY ) (160)

1 by a; .
ey = — , i, 161
: ﬂ(¢af+bg V2 + 8 ) (161)

Therefore, by a direct computation, we get

ote) = -1 (Bt +1) (162)
b(z) = 12| (163)

e(z) =0 (164)

i) = -1 (Bt - 1) (165)

at every point z = (a; + iby, a + ibe, a3 + ib3) € V(o).

Let us study here the following generalization of B.-Y.Chen’s example presented

in [22]: what are the sufficient conditions for a complez surface given by Az% + Bz2 +
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Cz2 =1 to be strongly minimal ? The general answer is stated below in Proposition
6.1. The existence of points where the strong minimality is observed is proved in
Proposition 6.2.

Let M? be the complex surface in C3 defined by:
M?={z2€C?®/A2? + Bz} + C22=1,A #0,B # 0}, (166)

We have seen in the previous section that M? is strongly minimal if at every point
p € M we can prove the existence of two vectors X,Y € T,M such that the following

system holds

9(X,Y) =g(X,JY) =0, (167)

9(X, X)=g(V\Y) =1, (168)

9(X,&) = g(X, JE) = g(¥,§) = g(¥, JE) = 0, (169)
9(AeX, X) + g(AeY,Y) = 0, (170)
9(AseX, X) + g(AsY,Y)=0. (171)

From equations (167, 168), using the notation X = a + 8 and Y = 7y + id, we get

(0,7) +(B,6) =0, (a,8)=(8,7), (172)

el + 118112 =1, |IyvI[>+116]1* = 1. (173)
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Let us remark that (Q){ = 2(Az;, Bzy,Cz3) never vanishes on M?. The unit normal

vector field is:

£= @%ﬁ = 2||‘?)—§-||-1(A(a1 — iby), B(az — ib2), C(as — ibs)), (174)

where || 2|| = 2(A*(a;+b1)%+ B%(az+b3)2+ C(az +b3)?)'/2. The conditions g(X, £) =

g(Y, &) = 0 yield the equations

Aaja; + Basag + Caszasz — Ab1B1 — BbyBy — Cb333 = 0, (175)

Aal'yl + Basy, + C(1373 — Ab16; — Bbydy — Cbad; = 0. (176)
The conditions g(X, J€) = g(Y, J§) = 0, yield the equations:

Abya; + Bbyay + Cbzas + Aa181 + BagyBs + Casf3 =0, (177)

Abl’)‘l + Bb2’72 + Cb3’73 + Aa161 + 30262 + Ca363 =0. (178)

Let us compute now the matrix:

o2 f
szc')zk

= 2diag{A, B, C}. (179)
By direct computation we see that g(A¢X, X) + g(A¢Y,Y) = 0 is equivalent to

Ale] = B + 7 = 81) + B(ag — B + 75 — &) + C(of — B3 +v3 — 85) = 0. (180)
Using the properties of the complex structure J, from

9(AseX, X) + g(AsY,Y) =0,
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we get
9(AeJ X, X) + g(AcJY,Y) = 0. (181)
This equation can be written as
Aa; 3y + BasBy + CazfB3 + Ay, + Byyds + Cy3é3 = 0. (182)

Besides the above presented equations, we have also the constraints that describes

that p = (a; + iby, az + by, a3 + ib3). These two relations are

A(af - bf) + B(a% - bg) + C(a§ -b) =1, (183)

Aa1b1 + Bagbg + C’a3b3 =0. (184)
Therefore we have proved the following.

Proposition 6.1 The manifold M? = {z € C3/Az? + Bz} + C2% = 1} is strongly

minimal in C® if and only if the following system of equations admits a solution in

a, 3,7, 9:
(a,7) +(B,6) =0, (185)
(a,8) = (B,7), (186)
ladl® + 118112 = Iv11* + 118]* = 1, (187)
Aaya; + Bayay + Cagas — Abi By — BbyBy — Chsf3s = 0, (188)
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Aal’h + Baz’)’g + C(13’)’3 - Ablél - Bb2(52 - Cb3d3 =0. (189)

Abya; + Bbyas + Cbzas + Aa, 3y + BaqBy + Cas33 = 0, (190)

Abyy, + Bbyyga + Cbyys + Aaid; + Baydy + Cazds = 0. (191)

A(ai = B+ 71 —0) + Bla3 — B+ 73 — ) + Clag — B3 + 75 — 65) = 0. (192)

A(alﬂl + ’7161) + B(agﬁz + ’72(52) + C(agﬁg + ’)‘3(53) =0 (193)
This result is needed to prove the following.

Proposition 6.2 On the compler manifold M? = {z € C3/Az?+B22+C22 =1,A #

0, B # 0} there exists points of strong minimality. At these points &} = 0.

Proof: Inspired by the solution given by B.-Y.Chen in [22], we will look for solu-
tions satisfying the conditions: a; =0, 5, =63 =0, 71 = 73 =0, §2 = 0. Two of the

equations of the system vanish identically. The other eight equations are:

a10; + a3dz = Pay2, (194)

of +a3+ 62 =1, (195)

va+ 62462 =1, (196)

Aa a; + Cazaz — Bby3, = 0, (197)
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Bag‘)’g - Ab151 - Cb3(53 = 0, (198)

Ab101 + Cbgag + Bazﬁz = 0, (199)
Bb2’72 + Aa1(51 + Ca3(53 = 0, (200)
A(al - 8}) + B(v; - B3) + C(a - 8}) = 0. (201)

Let us consider points with a = (a,,0,0), and b = (0, b5,0). The constraint is Aa? —
Bb2 = 1. Let us assume further that a; # 0, by # 0.
With this assumption, two of the equations vanish identically. The remaining

system has six equations:

10, + azdz = By, (202)

o +al+ 6 =1, (203)

2482 462 =1, (204)

Aajoq — BbyB, =0, (205)

Bbyy, + Aayé, =0, (206)

A(a? - &) + B(73 — B3) + C(aj — 63) = 0. (207)
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Let us solve for a; in (205) and for é; in (206):

%
. Bbyy,
4 = Aa, (209)

We obtain a system with four equations and with four unknowns, as, (3,2, 2 and

d3, as follows.

B2b33,
_——Aga% 2 + agds = B, (210)
sz2ﬁ2
g ted =1, (211)
BZbZ,YZ
2 272 2 _

72 + Azaf + 63 - 1) (212)
B?b; 2 2 2 2 2 2
Aa? (B —72) + B(rz — B3) + C(az — 63) = 0. (213)

1

This system can be written equivalently as:

azdz = (1 + —i;‘%) B2z, (214)
(1 - ﬁjﬁ%) Z+al=1, (215)
(1 + ﬁjﬁ%) 2462 =1, (216)
65— (5 -B) +cat - -0 (217)



In this setting the constraint is Bb3 + 1 = Aa?. This system admits the solution
(in particular for A = 1 and B = 1 the result is consistent to the one obtained by

B.-Y.Chen in [22] for all the points of the surface with A= B =C = 1)

o= <\/2(A2f¥b2+ B2b§),o, %) , (218)
0= (0’ \/2(,42:; n B%3)’ 0) ’ (219)
' (0’ \/2(Azfg vl O) ! (220)

o= (_ \/2(A2ffbi 5 %) ' (221)

This concludes the proof of Proposition 6.2.

If the previous result proved the existence of points satisfying the strong mini-
mality condition in C? for a specific class of surfaces, the next Theorem describes an

example where the strong minimality holds at every point.

Theorem 6.3 The Kdhler submanifold given by
M2:{26C3/21+22+z§:n,n€<€}
is strongly minimal in C3.

Proof: We use consistently the notations from [22], as well as everywhere in this
current section. Let f(z1,22,23) = 21 + 23 + 22, then %z[ = (1,1,223). For z =
(21, 22, 23) = (a1 + by, ap + b2, a3 + ib3), we get ||%f|| = (24 4(a2 + b2))/2 > 0.
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We compute also a:i;af:_.. = diag(0,0,2).
The submanifold is strongly minimal if and only if at every point z there exists

two vectors X and Y such that

9(X, X)=g(Y,Y) =1, (222)

9(X,Y) = g(X,JY) =0, (223)

9(X, &) = g(X, J§) = g(Y,§) = g(Y, JE) = 0, (224)
9(AeX, X) + g(AY,Y) =0, (225)
9(AseX, X) + g(AsY,Y) = 0. (226)

From the first equation of the system we keep just g(X, X) = ¢g(Y,Y), and in the
last step we will normalize the basis obtained. With this adjustment, the system be-

comes, using the same notation convention as before, i.e. X = (a1, as, as, 51, 52, 63),

Y = (1,72, 7,01,02,03)

A+t + B+ B+ =Y e+ v+ 8+ 65+ 63, (227)
(a,7) +(B,6) =0, (228)

(a,8) = (B,7), (229)

a; + ag + 2aza3 — 203083 = 0, (230)
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B1 + B2 + 2a303 + 2bsaz = 0, (231)

M + 72 + 2a373 — 2b303 = 0, (232)
61 + 0y + 2a363 + 2b3y3 = 0, (233)
od - 43— =0, (234
asfs + 7303 = 0. (235)

A solution for this system is obtained if one is taking 33 = 73 = 0. With this

choice, one may elliminate the unknown

o = —ag —2a3a3 [ = =P — 2bsas, (236)
Y1 =-—72+ 2b3(53 (51 = —(52 — 2(1363. (237)
Setting oy = 0, ag = 1 and 63 = —1 one may get, through a direct computation:
a = (—2a3,0,1), (238)
V2 + 4b3 V2 +4b

B= (b - Y8 gy Y2 ), (239)

2 + 4b2 V2 + 4b2
7= (=by+ Y8 - Y22 ), (240)
d = (0, 2a3, —1). (241)
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One may verify directly that the system (227)-(235) is satisfied by the above
solution. Therefore, after normalization, the basis satisfying the strong minimality

condition is

. V2 + 4b2 Vv 2
X = (24 4a2 + 4p2)71/? (—2a3 —i(by + ——+——3),i(—b3 2+ 4b3), 1) , (242)

2 2

. V2 + 4b2 V2 + 4b3
Y = (2 4 4a2 + 463)71/2 (—b3 + —2%—”‘ —b3 — —%—3 + 2asi, —i) . (243)

6.2 J; =0 on degree three complex surfaces

The surfaces z; + zp + 23 = 1 and 22 + 22 + 22 = 1, as we have seen, are strongly
minimal. We mentioned above sufficient conditions for Az? + Bz2 + Cz2 =1 to be
strongly minimal. Let us extend our discussion to complex hypersurfaces of higher

algebraic degree; we prove the following.

Theorem 6.4 On the complez surface M given by the algebraic equation 23 +23+23 =

1 there ezists points where the strongly minimality condition in C3 is satisfied.

Proof: Using the notations from [22], we get f(z) = 23 + 23 + 23 — 1; therefore

of
e (322,322,322).
Let us prove first that | gf | # 0 at every point p. We have

of
15,11 = 3[(z2 — yi)® + (23 — ¥3)? + (2f — v3)* + 42y} + 4zdys + 423yl =
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(@t +yd)* + (23 +y2)? + (22 +42)* > 0.

The unit normal vector £ (written as a real vector field) is given by

3 -1/2
£ = (Z(If + y;’Z)2) (I% - y?, 17% y2a TS 1/3’ 2113}1, —2$2y2, _2I3y3)' (244)

=1
Let us consider a point p in C* whose position vector is given by (a; +1by, az +1iby, az+
1b3). The tangent space to our complex surface M at p is the set of all vectors of the

form

Z = (uy + vy, ug + vy, uz + iv3)

which satisfy the following conditions:

f\ _ I\ _
g(Z,E)—O g(Z,z—a-;)—O,

and these conditions yield the equations:

uy (22 — yi) + ua(23 — y3) + us(23 — y3) — 221101 — 2T2y202 — 273y3v3 = 0, (245)

2u1T1y1 + 2uaTays + 2u3zays + vi(zd — yP) + vo(ad — y3) + vs(2f — y3) = 0. (246)

The condition that the point p = (z), 2, 23) lies on the complex surface M is

expressed by the following two equations:

Z(a — 3a;b%) =1, (247)

3
> (3a2b; — b3) = 0. (248)
i=1
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Now let us study the shape operator, using the formula (discussed in {70] and applied

in a similar setting in [22]):

6§f tan
AW = — ! 24
‘ ” H { (331'52/:)} (249)
First note that
2 621 0 0
66 6f = 0 62 O (250)
0%k 0 0 6z

The product in braces yields

2
x2S

6zjazk = (6(01 — iﬁl)(irl - iyl),6(02 - i,@z)(.’lg - iyg),ﬁ(a:; - iﬂs)(xs - Zy3)) —

(251)

(6(a1z1 — Byr) — 6i(aiyr + Biz1), 6(e2z2 — Boy2) — 6i(aay2 + Ba2),
6(asz3 — Bsys) — 6i(asys + Bszs3) ).
The first condition for strong minimality is g(A¢X, X) + g(A¢Y,Y) = 0:
_ 8§f tan _ a'if tan _
g ({Xazjc'?zk} ,X) +g ({Yaz,-azk Y] =0 (252)

This equation can be written also as

3
> [(F - BD)a; — 20;8b; + (7} — 67)a; — 27;8;5,] = 0 (253)
j=1
The second condition for strong minimality is g(Aje X, X) + g(AsY,Y) = 0. Since
Aje = JAg = —J A¢ (see for example [61]), this is the same as discussing: g(A¢J X, X)+

9(A¢JY,Y) = 0. This can be written as

_ 2 tan 2
o({rozi) ") o ({omi) ) -0
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or, breaking down the computation, as

Z[OJ —a;3; — a;b;) + B;(8;b; — a;a;) + vi(—a;0; — ;b;) + 6;(d;b; — v;a5)] =0
(255)

and, grouping terms as in the similar relation above, we get

E[ 2a;0;8; + b;(8? — a?) — 2a;v;6; + b;(82 — ¥?)] = 0. (256)

i=1
In fact, to prove the strongly minimality of M in C3 is equivalent to find an ortho-

normal basis {ej, e2}, €; = (a +if3), e; = (v + 16), satisfying the following system:

al(af - bf) + Qz(ag - b%) + ag(ag - bg) - 2a1b1ﬂ1 - 2(12b2ﬂ2 - 2a3b3ﬂ3 = 0, (257)
7 (af - b:f) + ’)’2((1% - b%) + ’73(0% - bg) - 2a1b151 - 2a2b262 - 20,3b3(53 =0 (258)
20,a1b; + 200a2b; + 203a3bs + Bi(a? — b2) + Ba(ad — b2) + Ba(a2 — b2) =0, (259)

271a1b1 + 2’)’2ng2 + 2'73a3b3 + Jl(af - bil)') + (52((1% - bg) + (53((1:2; - bg) = 0, (260)

i [(e? — B)a; — 2a;8;b; + (v} — 63)a; — 27;0;b;] =0, (261)
i=1
3

Z:;[—hﬂjﬁj +b;(87 — a?) — 2a;v;6; + b;(62 —42)] = 0. (262)

(a,7) +(8,6) =0, (263)

(a,8) = (B,7), (264)
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A talt a4+ B = 44402+ 6+ 62 =1 (265)

a3 — 3a,b? + a3 — 3asby + a — 3azb? =1, (266)

3a2b; — b + 3alby — b3 4 3a3b; — b3 = 0, (267)

Given two vectors a,b € R? with constraints (266), (267), the equations above (257)-
(265) are an undetermined system which admits some nontrivial solutions a, 8,7,8 €
R3.

At the point (1,0,0) the system implies from relation (257) that oy = 0. From
this and the next three relations we deduce that: a = (0,as,a3), 8 = (0,52, 53),
v = (0,72,73), 6 = (0,2, d3).

The system we need to solve now is

llall® + 11811 = 1, (268)
V12 + 118117 = 1, (269)
(a,7) +(B,6) =0, (270)
(a,8) = (B,7). (271)

This system admits the solution:

o= (o,%,o) . 8= (o,o,\/ii) (272)
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y= (o,%,o) , b= (0,0,——%) . (273)

This means the strongly minimality condition is satisfied at (1,0,0).
For the points of type (a;,0,0), (0,a;,0), (0,0,a3) a similar system admits the
same solutions. Therefore along these curves the stronlgy minimality condition is

satisfied on the orthonormal basis e; = a + i3, e; = v + #4. This concludes the proof

of theorem 6.4.
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