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ABSTRACT

ELECTRONIC SENSOR ARRAY INCORPORATING

ARTIFICIAL NEURAL NETWORK ALGORITHMS

FOR RAPID IDENTIFICATION AND QUANTIFICATION OF

ESCHERICHIA COLI AND

SALMONELLA ENTERICA SEROVAR TYPHIMURIUM

AND THEIR VOLATILE METABOLITES

By

Ubonratana Siripatrawan

A rapid method to identify and quantify E. coli and Salmonella enterica

serovar Typhimurium and their specific volatile metabolites was developed using

an array of 12 nonspecific metal oxide electronic sensors incorporating artificial

neural network algorithms. The metabolic volatile compounds used as indicators

of E. coli and Salmonella Typhimurium in the samples were identified using solid

phase microextraction coupled with gas chromatographlmass spectrometer

(SPMEIGCIMS). Principal Component Analysis (PCA) was used for data

exploration and dimensional reduction. The Mahalanobis distance metric was

determined based on Discriminant Factor Analysis (DFA) for sample

classification to differentiate volatiles in control samples from that containing the

target microorganisms. Artificial neural networks were trained to identify and

quantify E. coli and Salmonella Typhimurium and their volatile metabolites.

The neural networks were shown to be capable of correlating voltametric

responses with number of E. coli with low mean square errors. The electronic

sensor array was found to be satisfactorily correlated with colony counting and



GC/MS methods. This technique provides a rapid, simple, and precise analysis

of the biochemical composition of microbiological systems, for identification of

potentially pathogenic microorganisms.



Dedicated to the Land, Kings, and People of Thailand



ACKNOWLEDGMENTS

I would like to extend my intensity of respect and appreciation to King

Chulalongkom the Great and King Bhumibol Adulyadej the Great, for his

impressive contributions to the progress of modern Thai education and for their

keenly awareness of the importance of education and of the value of youth to the

future of Thailand. I also would like to express my gratitude to the Royal Thai

Government, Ministry of University Affairs, and Chulalongkorn University, for

giving me an opportunity to further my studies in the United States to gain

knowledge in order to help fulfill the betterment of Thailand.

I would like to express my highest respect and appreciation to my major

professor Prof. Bruce R. Harte, Ph.D., Director, School of Packaging, who is

recognized for being insightful, intelligent, humorous, and practical, for his time,

kind thought, guidance, personal support, and for showing his appreciation

throughout my research and endowed me with a global perspective. I am also

highly grateful to my committee Prof. John E. Linz, Ph.D., Department of Food

Science and Human Nutrition, for sharing his time, graciously providing me with

all food microbiological facilities, and giving me the constructive suggestions on

food microbiological research. I also wish to thank my committee Dr. Robert H.

Clarke, and Dr. Hugh Lockhart, School of Packaging, for sharing their time

serving as my committee. I am also indebted to the Center for Food and

Pharmaceutical Packaging Research for the in-part support on my research.

| wish to express my sincere appreciation and gratitude to Mr. Matthew D.

Rarick for his tireless helps, time, and constructive suggestions on all of the



microbiological experiments. Many thanks to my friend Antonis Kanavouras for

his help and information on SPME. I also wish to thank Sakakibara sensei for

being very kind and understanding.

My sincere thanks for all my best friends, especially Rujida & Patcharawat

Uthaisombat, Korada (who went through late night working with me all these

years), Napawan, Sunetra, P’Manee, Hiromi, Tatsuya, Derek, Eugene, John, and

Stephen for all their helps, pep talk, and for helping make my stay here a

memorable one.

I wish to thank my far away but always best friends, Araya, Duangjai,

VWai, Angsana, Suntareeya, Nucharin, Michio, and Kul for sending me love, gifts,

and delicious Thai foods all these years. I also wish to thank all my friends from

Agro-lndustry 6, Kasetsart University, friends and colleagues in Food &

Biotechnology, Chulalongkom University. I also wish to thank Mary Ann Merrill,

Colleen, and my friends in School of Packaging and Food Microbiology.

Finally, I would like to express a deepest appreciation and gratefulness to

my wonderful parents, my caring sister and my protective brother for their

constant love, inspiration, personal support, and patiently waiting for me to return

home.

vi



TABLE OF CONTENTS

LIST OF TABLES........................................................................... xi

LIST OF FIGURES.......................................................................... xii

CHAPTER1: INTRODUCTION.......................................................... 1

CHAPTERZ: OBJECTIVES 8: SIGNIFICANCE..................................... 9

CHAPTER 3: LITERATURE REVIEW................................................ 13

A. PATHOGENS ASSOCIATED RISKS IN FRESH VEGETABLES............. 13

1. Introduction ................................................................................. 13

2. Alfalfa Sprouts............................................................................. 14

2.1. Microbial Ecology of Pathogens Associated with Sprout .................. 14

2.2. Sprout Associated Outbreaks..................................................... 15

2.3. Seed Treatment ..................................................................... 16

3. Bacteria Associated with Fresh Vegetables..................................... 17

3.1. Escherichia coli...................................................................... 17

3.1.1. E. coli as a Fecal Indicator .................................................. 17

3.1.2. Pathogenic E. coli.............................................................. 18

3.2. Salmonella............................................................................ 19

4. Conventional Method for Foodbome Pathogen Detection ..................... 21

4.1. Colony Counting Method .......................................................... 21

4.2. Identification of Foodbome Pathogens ....................................... 22

B. SPME/GCIMS METHODS FOR THE ANALYSIS OF

VOLATILE COMPOUNDS............................................................ 22

1. Introduction ................................................................................. 22

2. Solid Phase Microextraction .......................................................... 23

3. Theory of Solid Phase Microextraction ............................................. 24

4. Principle of Headspace Volatile Sampling by SPME............................ 25

5. Application of Solid Phase Microextraction........................................ 26

C ELECTRONIC SENSOR ARRAY.................................................... 27

1. Introduction ................................................................................ 29

2. Electronic Sensor Array Technology................................................ 30

3. Sensor Technology...................................................................... 31

3.1. Metal oxide sensors................................................................. 32

3.2. Conducting polymer sensors.................................................... 33

3.3. Quartz crystal micro-balance sensors........................................ 33

vii



4. Principle of Electronic Sensor Operation ........................................

4.1. Data Acquisition ....................................................................

4.2. Signal Preparation ..................................................................

4.3. Data Analysis........................................................................

5. Application of Electronic Sensor Arrays ..........................................

D. CHEMOMETRICS .....................................................................

1. Introduction ...............................................................................

2. Principal Component Analysis (PCA) ..............................................

3. Discriminant Factor Analysis (DFA) ................................................

E. Artificial Neural Network (ANN) ......................................................

Multilayer Perceptron (MLP) ..........................................................

CHAPTER4: ELECTRONIC SENSORS INCORPORATING ARTIFICIAL

NEURAL NETWORK ALGORITHM FOR ANALYSIS OF VOLATILE

COMPOUNDS PRODUCED BY E. COLI IN NUTRIENT MEDIA...............

ABSTRACT....................................................................................

4.1. INTRODUCTION.......................................................................

4.2. METHODOLOGY......................................................................

4.2.1. Stock Culture Preparation ......................................................

4.2.2. Preparation of Test Solution ...................................................

4.2.3. Colony Counting Method ........................................................

4.2.4. Electronic sensor for monitoring of volatile compound.............

4.2.5. Determination of Volatile Compounds using SPMEIGCIMS......

4.2.6. Multivariate data analyses ................................................

4.3. RESULTS AND DISCUSSION .....................................................

4.3.1. Colony counting Method ........................................................

4.3.2. Electronic Sensor Array Technology........................................

4.3.2.1. Data Collection ............................................................

4.3.2.2. Pattern recognition of electronic sensor responses.............

a) PCA ........................................................................

b) DFA...........................................................................

4.3.3. SPMEIGCIMS.....................................................................

4.3.3.1. Data Collection. .........................................................

4.3.3.2. Pattern recognition of GC/MS data.................................

a) PCA..........................................................................

b) DFA..........................................................................

4.3.5.1. Prediction of number of E. coli using electronic sensors......

c) ANN ........................................................................

4.4. CONCLUDING REMARKS.........................................................

viii

35

35

36

38

38

38

41

42

42

45

46

47

47

48

49

49

51

53

55

57

57

58

59

61

62

62

63

63

65

65

68



CHAPTER 5: ELECTRONIC SENSOR ARRAY INCORPORATING

ARTIFICIAL NEURAL NETWORK TO IDENTIFY AND QUANTIFY

NUMBER OF SALMONELLA ENTERICA SEROVAR TYPHIMURIUM

AND VOLATILE METABOLITES IN NUTRIENT MEDIA........................

ABSTRACT....................................................................................

5.1. INTRODUCTION.....................................................................

5.2. METHODOLOGY....................................................................

5.3. RESULTS AND DISCUSSION ....................................................

5.3.1. Colony counting Method .........................................................

5.3.2. Electronic Sensor Array Technology.........................................

5.3.2.1. Data Collection ............................................................

5.3.2.2. Pattern recognition of electronic sensor responses..............

a) PCA.........................................................................

b) DFA..........................................................................

5.3.3. SPMEIGCIMS....................................................................

5.3.3.1. Data Collection ..........................................................

5.3.3.2. Pattern recognition of GCIMS data.................................

a) PCA ........................................................................

b) DFA.......................................................................

5.3.5.Electronic sensors and ANN algorithms....................................

5.3.5.1. Prediction of number of Salmonella Typhimurium ...............

5.4. CONCLUDING REMARKS..........................................................

CHAPTER 6: ELECTRONIC SENSOR INCORPORATING NEURAL

NETWORKS TO IDENTIFY AND QUANTIFY E. COLI AND VOLATILE

METABOLITES IN PACKAGED ALFALFA SPROUTS..........................

ABSTRACT....................................................................................

6.1. INTRODUCTION.....................................................................

6.2. METHODOLOGY.....................................................................

6.2.1. Preparation of Inoculated Vegetable .......................................

6.2.2. Microbiological Analyses......................................................

6.2.3. Determination of Volatile Compounds Using SPMEIGCIMS.........

6.2.4. Electronic Sensors Procedure................................................

6.2.5. Data Analysis.....................................................................

6.3. RESULT 8. DISCUSSION ..........................................................

6.3.1. Colony Counting Method ......................................................

6.3.2. SPME/GCIMS.....................................................................

6.3.3. Electronic Sensor Array .......................................................

6.3.3.1. Data Collection ............................................................

6.3.3.2. Pattern Recognition of Electronic Sensor Array..................

a) PCA.........................................................................

b) DFA .........................................................................

ix

85

85

86

87

92

92

93

93

94

95

96

98

98

99

99

100

102

103

104

117

117

118

120

120

121

122

123

124

125

125

127

128

128

128

128

130



6.3.5. Electronic Sensors and NN Algorithms........................

6.3.5.1. Prediction of Number of E. coli ...........................................

6.4. CONCLUDING REMARKS.........................................................

CHAPTER 7: CONCLUSION.............................................................

CHAPTER 8: FUTURE PROSPECTS................................................

8.1 Electronic sensor array...............................................................

8.2 Pattern recognition/Neural network ................................................

8.3 Distinctive applications ...............................................................

CHAPTER 9: BIBLIOGRAPHY.........................................................

130

130

132

141

145

145

146

146

148



LIST OF TABLES

Table 4.1. Optimum Condition for Operating Electronic Sensors......... 51

Table 4.2. Number of E. coli in Super broth .................................... 54

Table 4.3. Kruskal-Wallis test of samples with grouping variable.......... 56

Table 4.4. PCA of electronic sensor responses................................. 58

Table 4.5. Canonical DFA analysis of electronic sensor responses....... 60

Table 4.6. Classification result of the DFA algorithm for validation

electronic sensor array data ...................................................... 61

Table 4.7. DFA analysis of SPME/GCIMS data................................. 64

Table 4.8. Classification result of the DFA algorithm for validation

GCIMS data........................................................................... 65

Table 5.1. Colony counts of Salmonella Typhimurium in Super broth

incubated at 37 °C............................................................................... 93

Table 5.2. Kruskal-Wallis Test of samples with grouping variable.......... 94

Table 5.3. Canonical DFA analysis of electronic sensor responses....... 97

Table 5.4. Classification result of the DFA algorithm for validation

electronic sensor array data..................................................... 98

Table 5.5. DFA analysis of SPMEIGCIMS data................................. 101

Table 5.6. Classification result of the DFA algorithm for validation of

GCIMSdata 102

Table 6.1. Optimum condition for operating electronic sensors............. 124

Table 6.2. Population of aerobic bacteria and E. coli on sprouts (CFU/g). 125

xi



LIST OF FIGURES

Figure 2.1. Architecture of a multilayer perceptrons with one hidden layer...

Figure 4.1. Electronic sensor array system........................................

Figure 4.2. SPME/GCIMS method for collecting volatile compounds from

the headspace of sample. .........................................................

Figure 4.3. Sensor responses from the headspace of super broth

(control) and super broth inoculated with E. coli and incubated for 6

hours.....................................................................................

Figure 4.4. Sensor responses of super broth and super broth inoculated

with E. coli and incubated at 37 °C for 2, 4, 6, 8, 10, and 12 hours

analyzed using 12 sensors.........................................................

Figure 4.5. Determination of the number of PCs using a scree plot...........

Figure 4.6. PCA loadings plot of the data from electronic sensors............

Figure 4.7. PCA scores Plot of volatile compounds produced by E. coli in

super broth using 12 electronic sensors. .......................................

Figure 4.8. DFA of volatile compounds of E. coli in nutrient media using

electronic sensors. ...................................................................

Figure 4.9. Chromatogram of volatile compounds from headspace of super

broth......................................................................................

Figure 4.10. Chromatogram of volatile compounds from headspace of

super broth inoculated with E. coli incubated for 12 hours at 37°C......

Figure 4.1 1. Mass Spectrum of indole from super broth inoculated with E.

coli compared with mass spectrum of indole from NIST...................

Figure 4.12. E. colfs catabolism of typtophan to indole. .......................

Figure 4.13. Average concentrations of selected volatile compounds from

headspace of super broth and super broth inoculated with E. coli and

incubated at6,37 °C for 2, 4, 6, 8, 10, and 12 hours analyzed using

SPME/GCIMS. ........................................................................

xii

69

70

71

72

73

74

75

76

77

77

78

79

80



Figure 4.14. Scores Plot of volatile compounds produced by E. coli in

super broth using SPMEIGCIMS. ................................................

Figure 4.15. DFA of volatile compounds produced by E. coli in super broth

using SPME/GCIMS. ................................................................

Figure 4.16. Effect of number of of neurons in hidden layer on the

performance of the networks (MSE) .............................................

Figure 4.17. The predicted vs. true numbers of E. coli using ANN with

back propagation algorithm. .......................................................

Figure 5.1. Sensor responses of different samples groups (control and

media inoculated with Salmonella Typhimurium and incubated for 2,

4, 6, 8, 10, 12, and 14 hours) using 12 metal oxide sensors. ............

Figure 5.2. PCA loadings plot of the data from electronic sensors with

percent of total variance explained ...............................................

Figure 5.3. PCA score plot of volatile compounds produced by Salmonella

Typhimurium in super broth using 12 electronic sensors. ..................

Figure 5.4. DFA of volatile compounds of Salmonella Typhimurium in

nutrient media using electronic sensors. .......................................

Figure 5.5. Chromatograph of the volatile compounds from the

headspace of super broth inoculated with Salmonella Typhimurium

and incubated at 37 °C for 12 hours.............................................

Figure 5.6. Concentrations of volatile metabolites of different samples

groups (control and media inoculated with Salmonella Typhimurium

and incubated for 2, 4 , 6, 8, 10, 12, and 14 hours) using

SPME/GCIMS. ........................................................................

Figure 5.7. PCA loadings plot of the data from electronic sensors with

percent of total variance explained ...............................................

Figure 5.8. Scores Plot of volatile compounds produced by Salmonella

Typhimurium in super broth using SPME/GCIMS. ...........................

xiii

81

82

83

106

107

108

109

110

111

112

113



Figure 5.9. DFA of volatile compounds produced by Salmonella

Typhimurium in super broth using SPME/GCIMS............................

Figure 5.10. Effect of number of hidden layers and number of neurons in

hidden layer on the performance of the networks (MSE) ..................

Figure 5.11. The predicted vs. true numbers of Salmonella Typhimurium

using ANN, back propagation algorithm .........................................

Figure 6.1 . Average concentration of specific volatile compounds

associated with alfalfa sprouts (Control, CTR) and sprouts inoculated

with E. coli (EC) in LDPE bags and incubated at 20 °C for 1, 2, and 3

days. ....................................................................................

Figure 6.2. Average sensor responses from the headspace of alfalfa

sprouts (Control, CTR) and sprouts inoculated with E. coli (EC) in

LDPE bags and incubated at 20 °C for 1, 2, and 3 days using 12

metal oxide sensors. .................................................................

Figure 6.3 PCA loading plot of data of alfalfa sprouts and sprouts

inoculated with E. coli packed in LDPE bags and analyzed using 12

metal oxide electronic sensors.....................................................

Figure 6.4. Contour plot of PC scores on PC1, P02, and PC3 from the

data of alfalfa sprouts and sprouts inoculated with E. coli in LDPE

bags on the first day of inoculation and after incubated at 20 °C for 1,

2, and 3 days. ......................................................................................

Figure 6.5. DFA of volatile compounds using electronic sensor array from

headspace of alfalfa sprouts and sprouts inoculated with E. coli (in

LDPE bag) on the first day of inoculation and incubated for 1, 2, and 3

days. ....................................................................................................

Figure 6.6. The predicted vs. true numbers of E. coli using Neural network

L-M algorithm ..........................................................................

xiv

114

115

116

135

136

137

138

139

140



CHAPTER 1

INTRODUCTION

“It is the excitement, the honesty of a response to Nature, that guides

our hand; and if this excitement is often so strong that one works

without noticing that one is working, if brushstrokes sometimes come

thick and fast like words in a conversation or letter, then one ought

not to forget that it has not always been like that and that there will

be many a depressing day barren of inspiration in the future”

-Vincent van Gogh

Fresh fruits and vegetables are one of the most-rapidly growing food

product categories in the United States. However, contamination of fresh fruits

and vegetables, juices, and fresh prepared salads with foodbome pathogens is a

major food safety concern. Raw fresh fruits and vegetables have been

recognized as potential vehicles for transmission of pathogenic microorganisms

known to cause human disease. The frequency of outbreaks epidemiologically

associated with raw fruits and vegetables has increased in the United States as

a result of change in dietary habits and increased import of food (Altekruse et al.,

1 997).

Foodbome pathogens cause an estimated 65-33 million cases of human

illness and up to 9,000 deaths in the United States each year (ERS, 1999). Over

40 different foodbome pathogens, including bacteria, fungi, viruses, and

parasites, are believed to cause human illnesses and $29-$67 billion in



treatment cost and cost revenue are annually attributed to foodbome illnesses

(Economic Research Service, US. Department of Agriculture, 1999).

Diseases caused by foodbome pathogens range from mild to severe,

including death. These diseases have significant direct and indirect economic

impacts on society. Direct economic impacts include cost of treatment and lost

productivity. Indirect economic impacts include cost of lost trade and lost

consumer confidence, legal costs, and loss of market confidence (Acnab, 1997).

For fresh fruit and vegetables, maintenance of quality and safety are most

important. The identification and implementation of effective control measures to

attain these goals is a formidable challenge to regulatory agencies, agriculturists

and food manufacturers. The short shelf life of many fresh fruits and vegetables

predicates the need for refrigerated storage and rapid delivery to the retail

market. Such prerequisites tend to preempt microbiological testing for

contamination by foodbome pathogens. However, recent evidence on the

inherent health risk associated with their consumption, underlines the need for

renewed vigilance and stringent controls at all stages of food production,

harvesting, processing, packaging, and distribution (D’Aoust, 1994).

While great effort has been made to prevent contamination of fruits and

vegetables during post-harvest processing, packaging, and handling, much

improvement is needed in effective microbial detection to ensure that products

are not contaminated. Development of a rapid, specific, and economical method

which can routinely be applied to packaged food plant products to allow fast and



accurate detection of microorganisms would help reduce human health

problems, and diminish this threat to the fruit and vegetable industries.

Many approaches have been used in order to develop rapid, precise, and

accurate techniques in order to potentially identify pathogenic organisms in food

products. Novel, reliable, sensitive, and economical methods continue to be

developed to allow rapid, inline, and accurate detection of hazardous organisms

and their toxins. Development of new and improved methods continues to

receive a great deal of research attention and a reasonable amount of private

and public sector funding (CAST, 1999).

Many approaches have been used in order to develop rapid, precise, and

accurate techniques in order to potentially identify pathogenic organisms in food

products. Novel, reliable, sensitive, and economical methods continue to be

developed to allow rapid, inline, and accurate detection of hazardous organisms

and their toxins. Development of new and improved methods continues to

receive a great deal of research attention and a reasonable amount of private

and public sector funding (CAST, 1999).

The annual cost of routine industrial microbiological testing of foods

amounts to many millions of dollars (Haberrnehl, 1984). With such expenditures,

it is necessary to question the raison d’étre for routine microbiological testing.

Microbiological safety and quality testing in the food industry has been based

upon traditional plate count methods. These conventional techniques are

laborious and time consuming.



Measurement of product volatiles has been shown to have promise as a

tool for distinguishing different types of food freshness (Jonsson et al., 1997;

Bachingger et al., 1998; Varns and Glynn, 1979).

The selection of volatiles for possible use as incipient disease indicators

has been discussed in terms of the composite rate of pathogenic destruction

within food products (Borjesson, 1996; Jonsson, 1997).

The metabolic interaction of volatiles arising from pathogen growth is

becoming more important in explaining the pathogenic contamination. Gas

Chromatography (GC), Gas chromatography and Mass Spectrometry (GCIMS),

High Performance Liquid Chromatography (HPLC), Radio-immunoassay, and

Calorimetric tests, are among the techniques available for determining the

identity and quantity of volatiles. However, none of these methods can

completely meet the time, sensitivity, and accuracy requirements, particularly

when used in routine quality control evaluation.

A technique is needed to provide the necessary specificity and rapid

response time required throughout the food distribution channel. The electronic

sensor array is an instrument capable of doing that. Multisensor array

technology has been shown to be able to provide rapid, continuous monitoring of

a wide array of different volatile chemicals. The instrument includes an array of

different electronic chemical sensors with partial specificity and an appropriate

pattern recognition system, capable of recognizing simple or complex volatiles.



Pattern recognition routines based on either statistical methods or on artificial

neural networks are used to evaluate the sensor array responses.

WIth increasing pressure to achieve profit margins and with increasing

labor costs, alternative methodologies which can be used more cost-effectively

are needed by the food industry. Also, it is important to have simple, rapid

feedback methods so that action may be taken quickly if evidence for product

contamination exits. Tests capable of detecting relatively low numbers of

specific microorganisms or their metabolites are needed. These tests must be

both simple and exceptionally rapid, have low operating costs, and must provide

data comparable with traditional data systems. The electronic sensor technique,

with its array of gas sensors together with pattern recognition techniques is rapid,

simple and inexpensive, compared to more conventional methods.

Conceptually, the electronic sensor array technique stands apart from all

other conventional microbiological methods using rapid sequential analysis as a

detectable signal. The electronic sensor array has considerable potential as a

simple and cost-effective means of predicting the microbiological safety of foods,

as a routine part of any HACCP program.

As a result of metabolic activity, microorganisms produce various

metabolites and intermediates in their growth environment. The electronic

sensor array can be qualitatively and quantitatively employed to determine the

specific catabolic products of specific compounds such as fatty acids, glucose,

amino acids, or other compounds produced by microorganisms.



The development of non-specific sensors, which are available

commercially for odor detection, could offer a rapid and relatively simple

technique for monitoring the metabolic activity of microorganisms. However, raw

sensor responses from an array of non-specific metal oxide sensors are

generally insufficient to discriminate between a series of samples. Therefore,

pattern recognition methods are considered important to extract the information

from the electronic voltametric responses.

Array sensors produce data that can be subjected to a variety of

multivariate analyses. Data analysis depends on the information required,

whether identification of substances (classification) or the concentrations of given

compounds. The choice of data analyses is important and the subsequent

pattern recognition process can ensure the success ofelectronic sensor array for

a particular application. In theory, much information can be generated if the

sensors are properly matched to the matrix of analytes encountered.

Multivariate data analysis can be used to recognize the characteristic

variation patterns. One possibility which has potential for the characterization of

these volatile compounds is based on chemometrics. In this study, neural

network and chemometrics techniques were used as an experimental platform in

addition to the instrumental methods.

Using electronic sensors to detect volatile complexes has potential to be a

sensitive, fast, one-step method to monitor E. coli contamination in products.

The analysis of specific volatile organic compounds produced by metabolic





processes of E. coli may provide a rapid method that will allow detection of E.

coli in a packaged plant product. However, the sensor responses obtained from

an array of nonspecific gas sensors are generally insufficient to discriminate

between a series of samples.

Therefore, pattern recognition methods are considered important to

extract the information from the electronic sensor voltametric responses. This

research studied the possibility of using different pattern recognition/classification

techniques for successfully extracting the information from an electronic sensor

array as well as SPME/GCIMS.

A primary advantage of an electronic sensor array as a quality assurance

tool for the food industry is speed of analysis, including data acquisition and

interpretation. Rapid, significant data interpretation is possible using various

multivariate data analyses. In this study, neural network algorithms were used to

develop an integrated framework where feature extraction and predictive

learning are iteratively performed with the goal being optimal approximation.

Neural network is a massively parallel distributed processor constructed of

processing units, which can store learned knowledge, making it available for use

(Hikawa, 2001; Hykin, 1999).

The artificial neural network algorithms developed in this study was

Multilayer perceptrons (MLP) based on a back propagation algorithm. A

Multilayer perceptron network based on a back-propagation algorithm was used

to predict the number of E. coli and concentration of specific volatile metabolites.



The predictive learning ability of a neural network model was assessed by

comparison to a reference method using a mean square error of prediction. The

electronic sensor array coupled with the neural network is a rapid, and simple

technique which can be used to identify and quantify E. coli and the

concentrations of volatile metabolites in food samples. Correlations of data from

electronic sensor array technology and other commonly used methods were

investigated.



CHAPTER 2

OBJECTIVES AND SIGNIFICANCE

OBJECTIVES

The overall objectives of this research were to develop an electronic

sensor array technique incorporating neural network algorithms to provide a

simple and rapid method for detection of the volatile compounds produced by E.

coli and Salmonella enterica serotype Typhimurium, and which could be

correlated to the presence of these microorganisms in packaged plant food

products. Specific objectives include:

1. To determine volatile compounds produced by E. coli and Salmonella

Typhimurium in pure cultures using a gas chromatographlmass

spectrometer.

2. To optimize the electronic sensor array for analysis of volatile

compounds produced by E. coli and Salmonella Typhimurium.

3. To develop an electronic sensor method incorporating pattern

recognition techniques which can be used to detect E. coli and

Salmonella Typhimurium in nutrient media and packaged food

products.

4. To develop the optimal neural network algorithms necessary to

facilitate electronic sensor array identification and quantification of

specific microorganisms and their volatile metabolites.



This research is presented in 3 main sections. Section 1 deals with the

experimental set-up including SPME/GCIMS and electronic sensor assessment

techniques for determination of volatile compounds produced by E. coli in

nutrient media. In Section 2, the volatile compounds produced by Salmonella

Typhimurium in nutrient media is presented. Section 3 deals with determination

of volatiles produced by E. coli in packaged alfalfa sprouts, respectively.

E. coli was selected as the test organism because of the scientific

consensus that it can be used as an indicator of fecal contamination (Jay, 1996).

In addition, Salmonella Typhimurium was selected because it has been

implicated as the causative agent in many food poisoning illnesses, and

outbreaks.

Alfalfa sprouts were used in this research because of the increased

demand for sprouts due to their popularity as a health food, and because sprouts

have been increasingly implicated in foodbome illness. Many have become

aware of the potential for this food to be a vehicle for foodbome illness (US.

Food and Drug Administration, 1999). This research also studied the distinctive

possibility of using artificial neural network algorithms for prediction of number of

bacteria and concentration of volatile metabolites from the electronic sensor

array as well as SPMEIGCIMS.
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SIGNIFICANCE

In this research, it was hypothesized that the electronic sensor array

incorporating neural networks could be used as part of a detection system which

relates the volatile profile in a packaged product to the number of organisms in

the product, and to the barrier and compatibility characteristics of the package

materials.

This research is expected to result in the development of an economical,

specific, and real-time detection system for routine analysis of E. coli

contamination in packaged plant food products. This system would diminish the

pathogen induced threats to the fresh vegetable industries and help reduce

human health problems. A similar system can be easily constructed for the

automatic detection of E. coli in packaged plant food products for the food

industries. The detection system can also be incorporated into a HACCP

protocol in the food industries.

Use of the electronic sensor array method for rapid detection of E. coli and

Salmonella Typhimurium contamination in packaged food products may help to

reduce human health problems. Ultimately, with this technology we may be able

to detect other pathogenic bacteria in packaged food products. The impact of

this would be to decrease the number of foodborne illnesses, the cost of loss

work time, and money spent on treatment. The electronic sensor array technique

may be applicable to monitoring of volatiles from pathogenic microorganisms at

critical control points in HACCP systems, and to enable remediation when results

exceed critical limits. Use of this technique for indicator organisms at critical
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control points, at locations where contamination is likely to be highest, and in final

products can provide actionable information to verify process control and direct

process improvement.

12



CHAPTER 3

LITERATURE REVIEW

A. PATHOGENS ASSOCIATED RISKS IN FRESH VEGETABLES

1. Introduction

Microbial pathogens in food cause 6.5-33 million cases of human illnesses

and up to 9000 deaths each year in the US. Foodbome illnesses cost the

United States $56-$94 billion each year (ERS, 1999; The Council for Agriculture

and Science Technology, 1994). Sources of pathogens including bacteria, fungi,

parasite, and viruses, more than 90 percent of confirmed foodbome disease

cases and deaths are attributed to bacteria (The Center for Disease Control and

Prevention, 1990).

Fruits and vegetables can become contaminated with pathogenic

microorganisms during growing, harvesting, post-harvest, handling, processing,

and distribution (Beuchat, 1999; Lund, 1992). Bacteria normally reside in the

intestinal tracts of animals, including humans, and may contaminate raw fruits

and vegetables through contact with feces, sewage, untreated irrigation water or

surface water (Cliver, 1997). Many microbial contaminants are part of the

environment and vegetables may be inadvertently contaminated. Washing fruits

and vegetables with contaminated water and handling of produce by infected

workers, vendors and consumers help spread pathogenic microorganisms

(Brackett, 1994; Nguyen, 1994). Increased global trade in raw fruits and
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vegetables, as well as increased international travel, could also increase the risk

of produce-associated diseases (Hedberg et al., 1994).

2. Alfalfa Sprouts

There has been an increased demand for sprouts due to their popularity

as a health food. Alfalfa sprouts are food which has high nutritional value and

are good source of vitamins and minerals. Outbreak investigations have

identified several factors that affect the microbial safety of sprouted seeds.

Contaminated seed has been the most likely source for most outbreaks. Seed

contamination can occur at the farm, seed processor, or sprouting facility

(NACMCF, 1999). Frequent failures to isolate pathogens from implicated seeds

suggests that seed contamination may be intermittent, at very low levels, or

unequally distributed within seed lots. However, even low levels of human

pathogens are a concern because pathogens on seeds can grow quickly under

the favorable conditions of the sprouting process (Itoh et al., 1998; Jaquette et

al., 1996).

2.1. Microbial Ecology of Pathogens Associated with Sprout

Various surveys have revealed aerobic plate counts (APC) of 3-6 x 104

CFUlg (Andrews et al., 1979), and 5-400 x 103 CFUlg (Prokopowich and Blank,

1991) on alfalfa seeds. From surveys by Patterson and Woodbum (1980), alfalfa

sprouts sold from retail outlets had APC of 10°40“ CFUIg. They suggested that

it is important to note that high microbial level per se is not necessarily of public
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health concern in sprouts. It Is the presence and growth of pathogenic microbes

that is the major concern. Most microbial analysis of seeds or sprouts have not

found pathogenic bacterial species such as: Salmonella (Patterson and

Woodbum, 1980; Prokopowich and Blank, 1991; Splittstoesser et al., 1983),

Bacillus cereus (Sly and Ross, 1987; Splittstoesser et al., 1983; Patterson and

Woodbum, 1980;), Staphylococcus aureus (Sly and Ross, 1987; Splittstoesser et

al., 1983) and Listeria (Prokopowich and Blank, 1991).

Pathogenic bacteria can be introduced to sprouts by a number of

pathways, including via seeds, water used during germination and sprouting,

unsanitary production practices, or mishandling by the consumer (CDC, 1997a;

Patterson and Woodbum, 1980). Seeds are suspected to be the most likely

source of pathogenic contamination. Conditions during sprouting, e.g. time,

temperature, water activity, pH, and nutrients, are ideal for growth of pathogenic

bacteria such as Salmonella and E. coli (Itoh et al., 1998; Hara-Kudo et al.,

1997; Jaquette et al., 1996; Prokopowick and Blank, 1991).

2.2. Sprout Associated Outbreaks

Enterohemorrhagic E. coli O157:H7, and various types of salmonella have

been the causative agents of documented outbreaks of foodbome illness

associated with sprouts (Jackson, 1998). Epidemiological and microbiological

evidence suggest that seeds were the source of the pathogens. E. coli O157:H7

can reproduce rapidly during sprout production (Itoh et al., 1998; CDC, 1997).

Reported outbreaks of salmonellosis associated with sprouted seeds suggest an
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initial low level contamination of alfalfa seeds, followed by growth during

sprouting (Mahon et al., 1997).

2.3. Seed Treatment

A number of researchers have investigated the ability of chlorine

compounds to inactivate pathogenic bacteria on alfalfa seeds. Beuchat (1997)

inoculated alfalfa seeds with Salmonella and subjected them to a variety of

treatments (calcium and sodium hypochlorite, hydrogen peroxide, and ethanol)

at different concentrations. Significant reductions in Salmonella populations

were observed with most increased in concentration of the test chemical.

A study by Moline (1999) concluded that 2 % calcium hypochlorite

showed the greatest reduction, but did not completely eliminate the natural

microflora. Calcium hypochlorite solution up to 20,000 ppm did not affect

percent germination of the alfalfa seeds. Beuchat (1999), however, found that at

high concentrations, alfalfa seed rate of germination was slowed. FDA (1999)

and NACMCF (1999) suggested that the sprout industry should pursue the use

of calcium hypochlorite at 20,000ppm (a 2% solution) for soaking of the seeds

prior to germination and growth. This seed treatment has the potential to

substantially reduce microbial contamination of seeds which can be passed on

though the growing sprouts.
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3. Bacteria Associated with Fresh Vegetables

3.1 . Escherichia coli

Escherichia coli is classified as an Enterobacteriaceae. It is a gram-

negative, facultatively bacterium. Escherichia coli resides in the lower part of the

intestinal tract of wann-blooded animals. Ordinarily this bacterium is harmless,

but some strains are pathogens (Riemann and Bryan, 1979).

E. coli grow well on a large number of media and in many foods. These

organisms have been reported to grow at temperature as low as -2 °C and 50 °C

(Riemann and Bryan, 1979). In foods, growth is poor or very slow at about 5 °C

although several authors have reported the growth of coliforrns at 3-6°C, (pH 4.4-

9.0). E. coli can be grown on media containing only an organic carbon source

such as glucose and a source of nitrogen such as (NH,) 280,, along with other

minerals. Consequently, these organisms grow well on nutrient agar and

produce visible colonies within 24 hrs at 37°C (Jay, 1996).

3.1.1. E. coli as a Fecal Indicator

It is, in general not feasible to examine every food or food product for the

presence of hazardous organisms. The practice that has been in effect for many

years and continues to be followed is to determine the sanitary quality of foods

by their content of certain indicator organisms (Eley, 1992).

The use of E. coli as an indicator of water-borne pathogens was

apparently first suggested in 1892 by F.Schardinger. Jay (1996) suggested that
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since this organism is generally present in the intestinal tract, its presence

outside the intestines can be regarded as contamination with fecal discharges of

man or animals. Consequently, E. coli was employed as an indicator of fecal

pollution in water and in foods (Choradash and lnsalata, 1978).

The finding of large numbers of these organisms in foods and water is

taken to indicate fecal pollution or contamination and the possibility that the

etiologic agents of these diseases may be present. Whether or not intestinal

pathogens are present, the presence of fecal matter in foods or water is

undesirable (Jay, 1996).

3.1.2. Pathogenic E. coli

Currently, there are four recognized classes of enterovirulent E. coli

(collectively referred to as the EEC group) that cause gastroenteritis in humans

and are of public health importance. Among these are the Enterotoxigenic

(ETEC) , Enteropathogenic (EPEC), Enteroinvasive (EIEC), and Escherichia coli

O157:H7 (Enterohemorrhagic E. coli, EHEC) strains. These organisms have

been isolated from numerous foods and water sources and have been

incriminated in outbreaks of food and waterborne gastroenteritis in both the US.

and other parts of the world (Shelton and Kams, 2001; Mead et al., 1999).

Outbreaks of Escherichia coli O157:H7 have been linked to alfalfa sprouts (CDC,

1997), radish sprouts (Nathan, 1997), lettuce (Ackers et al., 1996), and apple

cider (CDC, 1996).
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3.2. Salmonella

Salmonella is a rod-shaped, facultative, nonsporeforrning and gram-

negative bacterium. Salmonellae are usually motile (nonmotile exceptions S.

gallinarum and S. pullorum) by peritrichous flagella, usually catalase positive,

oxidase negative, produce acid and sometimes gas from the fermentation of

glucose, and reduce nitrates to nitrites. Most members of this family are found

in the intestinal tract of man and animals as comensals or pathogens (Shanna

and Carlson, 2000; Ekperigin and Nagaraja, 1998).

Environmental sources of the organism include water, soil, manufacturing,

kitchen surfaces, animal feces, raw meats, raw poultry, and raw seafood.

Contaminated foods are often of animal origin, such as beef, poultry, milk, or

eggs, but any food may be a contaminate source. Vegetables may also become

contaminated (Stanley, 1997). Agricultural practices, food processing, food

distribution, and food service operations influence the transmission of

salmonellae and the occurrence of outbreaks. Salmonellae can also survive for

a long time in litter, soil, animal feces, trough water, and other substances in a

farm environment (Ferretti et al., 2001; Pignato, 1996).

Salmonella have simple nutritional requirements and can grow on a large

number of culture media and produce visible colonies well within 24 h at 37°C

(Riemann and Bryan, 1979). They are generally unable to ferment lactose,

sucrose, or salicin, although glucose and certain other monosaccharides are

ferrnentable, with the production of gas. The optimum growth temperature for
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salmonellae is 35-37 °C and, although there is some variation with serotype,

salmonellae can grow at temperatures between 5 and 45 °C. Growth at

temperatures below 10 °C. however, is very slow. Salmonellae grow between pH

4.5-9.0 with an optimum growth range of pH 6.5-7.5, pH above 9.0 and below

4.0 is bactericidal (Becker et al., 1986). Salmonellae do not compete well with

food spoilage organisms, Escherichiae, or lactic acid bacteria (Jay, 1996)

The incidence of salmonellosis appears to be rising both in the US. and in

other industrialized nations. Salmonella enterica serotype Typhimurium and

Salmonella serotype Enteritidis are the most common in the United States

(Centers for Disease Control and Prevention, July 16, 1999). Recently, the most

common cause of food poisoning by a Salmonella species was due to S.

Typhimurium. Salmonellosis is characterized by diarrhea, abdominal cramps,

vomiting and nausea.

Salmonella have been isolated from many types of raw fruit and

vegetables (Beuchat, 1996b; Wells and Butterfield, 1997). Outbreaks of

salmonellosis have been caused by a diversity of fruits and vegetables, including

alfalfa sprouts (Daussard, 1999; Jaquette et al., 1996), tomatoes (Zhuang et al.,

1995), bean sprouts (Mahon et al, 1996), melons (Blostein, 1991), and

unpasteurized orange juice (Cook et al., 1990).

Methods have been developed for many foods having a history of

Salmonella contamination. Conventional culture methods require 5 days for
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presumptive results, while rapid methods available today require only 2 days

(Peplow et al., 1999; Steel et al., 1997).

4. Conventional Method for Foodbome Pathogen Detection

In microbiology the conventional growth-amplification techniques (e.g.

colony counting) for the estimation of microorganisms are both tedious and time

consuming, requiring 24-48 hours for a total viable count, while detection of a

specific organism (e.g. E. coli) may require an additional 24-48 hours incubation.

In conventional methods, to identify bacteria, the organisms must be isolated,

including preenrichment and enrichment processes, from specimens and then

identified using morphological, biochemical, and serological tests.

4.1. Colony Counting Method

For colony counting, the standard plate count is the most widely used

method for determining the numbers of viable cells or colony forming unit (CFU)

in food products (Jay, 1996). Plate counts are essentially direct counts of

numbers of colonies in, or on agar plates, each colony being assumed to

represent the progeny of one organism. In the colony counting method, food

samples are homogenized, serially diluted in an appropriate dilutant, plated in a

suitable agar medium, and then incubated at appropriate temperature and time.

After inoculation and incubation, colonies are counted. The number of viable

cells per unit amount of the original sample is then calculated (Penn, 1991; Kiss,

1984).
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4.2. Identification of Foodbome Pathogens

The conventional methods of laboratory diagnosis usually consist of

utilizing a range of culture media to encourage growth of the pathogen, even in

the presence of many other contaminating bacteria (Eley, 1992).

For detection and identification of infective agents, the diagnosis of

infectious diseases involves growth of microorganisms on plates or in broth

(including preenrichment and enrichment media) to provide damaged organisms

with an opportunity to repair physiologically and to repress populations of

competitive flora whilst encouraging growth of pathogens. This usually requires

several hours for incubation, followed by morphological colony, serological

characterization, and biochemical testing for identification of the organisms.

Recently, a number of commercially available culture test kits have been

introduced which facilitate more rapid detection of certain pathogens. One of

these test kits utilizes a selective enrichment motility technique for detecting

target microorganisms in foods. Following pre-enrichment, a tube containing a

selective medium and an upper indicator medium, separated by a porous

partition, is inoculated with the organism.
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B. SPMEIGC METHODS FOR THE ANALYSIS OF VOLATILE COMPOUNDS

1 . Introduction

Gas chromatographic (GC) analysis of compounds excreted by

microorganisms in growth media is useful for the identification of microbial

species. Gas chromatographic methods have been qualitatively and

quantitatively employed to determine the specific catabolic products of various

specific compounds such as fatty acids, glucose, amino acids, or other metabolic

compounds produced by microorganisms. Gas chromatographic analysis of

microbial cells or their products is useful not only for taxonomic differentiation of

the organisms but also for diagnostic purposes.

Gas chromatography has been applied to pure cultures to identify

bacterial species. However, analyses of volatile or partially volatile organic

compounds with gas chromatography techniques usually begin with

concentration of the analytes of interest though liquid-liquid extraction, purge-

and-trap, headspace, or various other techniques. These procedures typically

require long times, complicated equipment, and tremendous amounts of organic

solvents.

The development of alternative analytical techniques that are rapid and

simple has become increasingly important to reduce per sample time investment

and to conduct real time analyses. Solid Phase Microextraction (SPME) is a

rapid sampling technique which is well adapted to 60 analysis of volatile

compounds. SPME has been applied to the analysis of volatile and nonvolatile

compounds in gaseous and liquid samples. SPME can eliminate the need for
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solvents or complicated apparatus for concentrating volatile or nonvolatile

compounds in liquid samples or in gas samples (Bao et al., 1999).

2. Solid Phase Microextraction

SPME is a simple, effective adsorption/desorption technique, which can

eliminate the need for solvents or complicated apparatus for concentrating

volatile or non volatile compounds in liquid samples or in gas samples. SPME

can extract analytes from a variety of matrices by partitioning from a liquid or

gaseous sample into an immobilized stationary phase. SPME is compatible with

analyte separation/detection by gas chromatography or High Performance Liquid

Chromatograph (HPLC), and provides linear results for a wide concentration of

analytes (Song et al., 1998).

3. Theory of Solid Phase Microextraction

The principle of SPME is centered around the partitioning process of the

analyte between the fiber coating and the sample. SPME eliminates

preconcentration steps by directly extracting the analytes into a

poly(dimethylsiloxane)-coated fiber. SPME is a multiphase (fiber coating, gas

phase or headspace, and a homogeneous matrix such as pure water or air)

equilibration process. The system consists of an aqueous phase with

suspended solid particles having various adsorption interactions with analytes

and a gaseous headspace.
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The kinetics of the extraction process determines the speed of extraction.

Mass transport theory is based on Fick’s second law of diffusion describing mass

balance in a dynamic system (Zhang and Pawliszyn, 1993).

6c(x,t) _ D 62c(x,t)

a: 5x2

(3.1)

where c(x, t) is the concentration of the analyte at position x and time t, and D the

diffusion coefficient of the analyte. For a one dimensional diffusion process, the

mass of analyte absorbed by the polymeric coating at any given time, M(t), can

be calculated by;

M(r) = [c(x,t)dx (3.2)

All diffusion is assumed to behave according to Fick’s law. Factors such

as thermal expansion, swelling, and analyte/analyte interactions are assumed to

be negligible (Gorecki and Pawliszyn, 1997).

Theoretically, SPME extraction is considered to be completed when the

analyte concentration has reached distribution equilibrium between the sample

matrix and the fiber coating (Gorecki et al., 1998).

4. Principle of Headspace Volatile Sampling by SPME

Headspace SPME is based on the equilibrium of analytes among three

phases of the system. These three phases include the polymeric liquid coating,

the headspace, and the aqueous solution (Zhang and Pawliszyn, 1993). SPME

is an equilibrium method and once equilibrium has been reached, the
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concentration of the analytes can be considered constant in all three phases.

The limiting step in this process is considered to be the diffusion of the analytes

through the system. For this reason the equilibrium time of the system must first

be determined (Steffen and Pawliszyn, 1996; Goercki et al., 1998).

In general, volatile compounds require a thick coating, and a thin coating

is most effective for adsorbing/desorbing semivolatile analytes. Full equilibration

is not necessary for high accuracy and precision from SPME, but consistent

sampling time and other sampling parameters are essential (Bao et al., 1999).

Desorption of an analyte from the SPME fiber depends on the boiling

point of the analyte, the thickness of the coating on the fiber, and the

temperature of the injection port. Some analytes can take up to 30 seconds to

desorb, and cryogenic cooling may be required to focus these compounds at the

inlet of the capillary column. Use of an inlet liner with a narrow internal diameter

(e.g. 1mm) generally provides sharp peaks and can eliminate the need for

cooling.

Heating a sample to elevated temperature provides energy for molecules

to overcome energy barriers that tie them to the matrix. However, the absorption

of analytes by the fiber coating is an exothermic process, which means that while

the high temperature is good for the release of analytes from their matrix, it can

adversely affect the absorption by the coating due to a decrease in the partition

coefficients. As a result, there is usually an optimum temperature for headspace

SPME sampling (Jelen et al., 1998; Forsyth and Dusseault, 1997).
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5. Application of Solid Phase Microextraction

Solid Phase Microextraction (SPME) has been introduced as a modern

alternative to current sample preparation technology, and has a wide range of

applications. The use of a fiber for extraction can enhance the selectivity of the

analysis because one may choose the stationary phase that best suits the

analytes. By using headspace SPME, one can reduce matrix effects and

interference present in the liquid sample (Gorecki and Pawliszyn, 1997).

In industry, practical uses of SPME can be found in environmental, food,

pharmaceutical, clinical and forensic applications. SPME minimizes sample

preparation and concentrates volatile analytes in a solvent-free manner.

Headspace SPME is shown to be more sensitive than conventional headspace

analysis of similar samples performed with an airtight syringe, and favorable to

the commonly used purge and trap type analysis.

The SPMEIGC technique has been utilized in such areas of food/flavor

chemistry as pesticide determination in wine (Nogueira and Nascimento, 1999),

examination of volatile compounds produced by tomato, and strawberry fruit

(Song, et al., 1998), analysis of alcohols and esters in beer (Jelen et al., 1998),

monitoring of volatiles of apple (Song et al., 1997), determination of

methylcyclopentadienly manganese tricarbonyl, a gasoline antiknock additive in

beverages (Forsyth and Dusseault, 1997), study of off-flavors in milk (Marsili,

1999), analysis of rancidity in dry-cured ham (Ruiz et al., 1998), detection of

trace levels of taste and odor compounds in water (Bao et al., 1999) and
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characterization of volatile metabolites emitted by microorganisms (Vergnais et

al., 1998; Borjesson et al., 1993; Alugupalli et al., 1992).

Recently, the SPME technique has been applied to the analysis of

bacterial metabolites. Vergnais et al. (1998) evaluated the solid phase

microextraction for analysis of volatile metabolites produced by Staphylococci. It

has been shown that SPME was able to extract esters and oxidation of free fatty

acids from Ieucine catabolism of Staphylococcus xylosus and Staphylococcus

camosus.

Nilsson et al. (1996) use headspace microextraction for the analysis of

volatile metabolites emitted by Penicillium species. Headspace solid phase

microextraction was used to collect volatile compounds emitted from six fungi of

the genus Penicillium grown on yeast extract sucrose agar incubated at 25°C for

4 days. GCIMS was employed for the analysis of the profiles of volatile

metabolites characteristic for each species. The results obtained by HS—SPME

compared favorably with those obtained by Tenax adsorption. The results are in

good accordance with earlier results obtained from the same fungi by collection

on Tenax tubes and the formation of the tentatively identified metabolites is

supported by biosynthetical considerations.

Guerzoni et al (1992) establish the HS-GC determination of the C02

produced by lactic acid bacteria. A rapid gas chromatographic and automatic

methodology for the detection of viable microbial cells in food has been

proposed (Song et al., 1997). This indirect method is based on the gas
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chromatographic analysis of volatile metabolites in equilibrium in the headspace

of sealed vials containing a Lactobacilli MRS-tomato juice broth medium

inoculated with an aliquot of the sample under examination. The enzymatic

activity of the strains was arbitrarily evaluated on the basis of the rate of CO2

production in the headspace expressed as A%CO,lhour when the initial load was

10° cellslmL in the test medium (Guerzoni et al., 1992).

Alugupalli, Larsson, and Slosarek (1992) developed SPME/gas

chromatography/mass spectrometry methods for detecting 2-decosanol, a

alcohol characteristic of Mycobacterium xenopi in drinking water incubated at 42

°C for 12 weeks.
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C ELECTRONIC SENSOR ARRAY

1. Introduction

The conventional method used for foodbome pathogen detection relies on

colony counting method. Major constraints of this method are that it is time

consuming and laborious. Several research groups have been working to

develop innovative and more rapid methods for detection of foodbome

pathogens. They are based on different principles, such as

immunoimmobilizaton, enzyme immunoassays, DNA probes, immuno-PCR, and

hydrophobic grid membrane filters (Sharma and Carlson, 2000; Pignato et al.,

1996).

The physicochemical properties of the products are also measured using

conventional analytical equipment, such as gas chromatography and gas

chromatography-mass spectrometry. Various substrates can be used to

determine intermediary products produced as a result of catabolic activity of

organisms. In turn, these can indicate various biochemical activities carried out

by organisms in vitro and in vivo (Mitruka, 1975). However, complex mixtures

may cause difficulty in manual interpretation of the GC patterns due to the large

number of peaks.

The GC techniques are relatively complicated; therefore, trained

personnel are required to use the methods most effectively. Extraction

procedures, purification, derivative preparation, ion exchange, etc., are

invaluable adjuncts to 60 techniques (Kaipainen et al., 1997). Electronic

sensors make an analysis of the volatile compounds emitted by a sample and
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perform a classification process. The responses are then associated by

statistical treatments and/or a neural network analysis and compared with an

odor library resulting in a classification or prediction. The advantages of

electronic sensor array over classic GC are that they are simpler to use and

faster (Liden et al., 2000).

2. Electronic Sensor Array Technology

An electronic sensor system mimics the human olfactory system with

sensitivity, reproducibility, and high levels of discrimination for the detection of

simple and complex odors (Sberveglieri, 1998). Each chemical sensor

represents a group of olfactory receptors and produces a time-dependent

electrical signal in response to an odor. For data processing, pattern recognition

analysis is the classification and memorizing which is the equivalent process in

the final stage of the human olfactory process in the cerebral cortex of the brain

(Bartlett et al., 1997).

The electronic sensor array is an analytical instrument combining an array

of sensors, which can be specifically used for the analysis, identification, and

recognition of complex odors and volatile organic compounds. The interaction of

the volatiles on the sensing element causes changes in electrical resistance of

the sensor. Since sensor kinetics are different, the data generated are

converted into an odor fingerprint. This fingerprint is stored and can be used for

comparison to standard samples. By storing the fingerprint of the odor, the

electronic sensors can be used as a quality control, and a research and
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development tool (Weber and Poling, 1996). Different pattern recognition

techniques can be applied to the data including Principal Component Analysis,

Hierachial cluster analysis, and Linear discriminant analysis (Sberveglieri, 1998;

Barlett et al., 1997).

3. Sensor Technology

There are many types of sensors which can be used to detect specific

gases and vapors. A basic requirement is that the sensors in an electronic

sensor array must show partial sensitivity, i.e., that they can respond broadly to a

range or class of gases rather than to a specific one. The optimum combination

of sensors, sensor type and number will depend on the particular application

(Lucas, Poling, and Bennincasa, 1998).

3.1. Metal Oxide Sensors

Metal oxides are semiconducting materials which are gas-sensitive.

These sensors are comprised of a thin layer (50 pm) of an oxide film deposited

on a ceramic tube or plate. The selectivity of the sensors is related to different

catalytic amounts of a doping metal introduced as a trace impurity on the sensor

surface. Reaction of an odorant with a sensor changes its conductivity (Lee et

al., 2001; Mielle, 1996).

There are two main types of semiconductors: n-type semiconductors

(mainly composed of zinc, tin or iron oxides) that respond primarily to reducing

compounds, whereas p-type semiconductors (mainly nickel or cobalt oxide)
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respond to oxidizing compounds. Other metal oxides, zinc oxide and tungsten

oxide, are also available for this instrument.

These devices operate at elevated temperatures to avoid interference

from water and to aid in rapid response and recovery times. The detection

principle is based on measurement of the variation of the resistance of the metal

oxide, thus, generating a measurable electronic signal.

Metal oxide sensors have sensitivities in the ppm, to ppb range (for

special sensors) to a very broad range of chemical compounds. Due to their

relatively low selectivity (all sensors respond in some measure to volatile

compounds), the use of an array leads to a specific selectivity; i.e. a pattern or

fingerprint. Metal oxide sensors are relatively resistant to humidity and to aging,

and are made of particularly strong materials.

3.2. Conducting Polymer Sensors

Similar in principle to metal oxide sensors, a change in resistance of

conducting polymer sensors is measured as a reaction to the sample vapor.

Each individual device has a distinctive response characteristic to various

volatiles. The polymers are very responsive to vapors from polar molecular

species, however, they have very little or no response to alkane and non polar

species. This makes them complementary to metal oxides which respond

strongly to both types of species (Persaud and Pelosi, 1992).

The fabrication of these devices involves the deposition of a very thin film

of an electrically conducting polymer material. They are based on heterocyclic
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molecules, monomers, which are electropolymerized with various counter-ions in

a solvent between two electrodes. These sensors work at ambient temperature

with good discriminatory power. Typical sensitivities, however, are mostly in the

ppm range, and the stability] drift is higher than for other sensor technologies

(Martin, Santos, and Agopito, 2001).

3.3. Quartz Crystal Micro-balance Sensors

These sensors consist of a piezoelectric quartz crystal oscillator coated

with a sensing membrane such as acetyl cellulose or lecithin. Quartz crystal

micro-balance sensors are based on a change in frequency due to the

absorption of sample vapor on the sensor coating. These changes result in a

distinct fingerprint for the sample. When the sensor is exposed to gas molecules,

absorption and desorption occur from the coating (Erna et al., 1989). The gas,

soluble in the coating, will increase the added mass on the crystal and decrease

the frequency of the oscillation according to:

Af = kAm (3.3)

where Af is resonance frequency, Am is mass change caused by absorbed gas

molecules, and K is a constant and refers to the basic resonance frequency and

mass of quartz plate. The sensitivity and selectivity of the sensor depends on
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the coating material selected and the quantity deposited (Stetter et al., 2000;

Mielle, 1996).

4. Principle of Electronic Sensor Operation

The volatile chemical sensing system consists of three software modules;

data acquisition and instrument control, data manipulation for extraction and

preparation of signals, and data processing.

Data acquisition software samples the sensor array resistance at regular

intervals storing the resultant data in the computer. As the resistance of the

conducting polymers are inversely proportional to temperature, the temperature

of the array is controlled and monitored. Sample temperature and sample

humidity are also monitored. The signal is expressed as the percentage

resistance change of each sensor compared to the initial sensor resistance

(Persaud et al., 1999).

Each sensor element changes in resistance when exposed to volatile

compounds. The degree of response to a given substance depends on the type

of sensor used (Hatfield et al., 1994). The sensor response or sensitivity has

been presented in a variety of ways, including the relative resistance value,

Ran/Rm; log relative resistance value; conductance difference, G9,, - G,,, or the

fractional conductance change, (Goa, - Ga, )IG,,,r , where Ra”, R,.,, Ga“, G,,, are the

resistance or conductance in gas or air respectively (Gardner et al., 1992;

Gardner, 1991). The change in resistance when presented with a volatile
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chemical relative to the base resistance in air (R9,; R,,,,)/R,,,ir is a convenient

measure of response (Persaud et al., 1996).

4.3. Data Analysis

Data interpretation of multiple variables of several sensor responses

requires the use of statistical interpretation for rapid verification of results. The

premise of statistics is to reduce multi-dimensional data of several sensor

responses to two (or three) dimensions.

The relevance of certain methods of data analysis with respect to sensor

arrays was summarized by Ortega et al. (2000). They stated that methods such

as discriminant analysis or partial least squares are parametric, i.e., they rely on

a known probability distribution of the variables. Nonparametric methods such

as principal components analysis have also proved useful (Kokot et al., 1998).

5. Application of Electronic Sensor Arrays

The electronic sensor array has been developed to fulfill a real need in the

food industry for objective, automated, quality-monitoring sampling systems that

can characterize the odor, and thus determine whether the production system is

running to specification without requiring human sensory panels (Mille, 1996).

A considerable number of applications of the electronic sensors have

been reported including, detection of contaminated soils (Getino et al., 1998),

evaluation of the off-odor in salmon fillets stored at different temperatures

(Luzuriaga and Balaban, 1998), evaluation of physiological maturity of tomatoes
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(Maul et al., 1998), characterization of vinegar (Anklam et al., 1998), detection of

boar-taint in meat (Bourrounes et al, 1995), estimation of fish freshness

(Schweizer-Ber—berish et al, 1994), and quality estimation of ground meat

(WInquist et al, 1993). In addition, the electronic sensor array technology meets

a pronounced analytical need in biotechnology research and bioindustrial

applications.

Electronic sensor array has the advantage of being non-invasive and

allowing on-Iine monitoring in the off-gas effluents from a production system

sensitive to microbial contamination. Other analytical techniques currently used

in on-line bioanalysis, such as near-infrared spectroscopy and immunosensors,

although providing real-time analyses, still lack the quality of non-invasiveness

(Liden et al., 2000).

Bazemore and Rouseff (1998) reported that the electronic sensor could

be used to discriminate between different seasonal cultivars (early-mid, and

late), and different heat treatments (unpasteurized, 88 at 96 °C, 120 s at 96 °C,

and 180 s at 96 °C). Bazzo et al. (1998) investigated the sensitivity of the

electronic sensor for quality control of an edible oil. They reported that the

electronic sensor could be used to evaluate the different qualities of an edible oil

and provide good discrimination and stability for successful identification of oil

quality. Repeated electronic sensor measurements also showed consistent

identification and good recognition. There was good correlation between GC

data, sensory panel results, and the electronic sensor responses.
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Kaipainen et al. (1997) studied the possibility of partly substituting sensory

panel work with the electronic sensors. The results showed that an electronic

sensor array could rapidly classify volatiles from the samples. The electronic

sensor result was better than the sensory panel description and GCIMS results.

The electronic sensor was able to discriminate between acceptable and

unacceptable sugar on the basis of volatile compounds.

Bachingger et al. (1998) used an electronic sensor array for on-line

estimation of the glucose and ethanol concentrations in batch fermentation with

Saccharomyces cerevisiae. They reported that the technique was a non-

invasive, and real-time method which could significantly improve bioprocess

monitoring and control.

D. CHEMOMETRICS

1. Introduction

Chemometrics is an approach to analytical and measurement science

based on the idea of indirect observation (Domingo et al., 2000; Mawatari et al.,

1999; Luco, 1999; Wentzell, Andrews and Kowalski, 1997).

2. Principal Component Analysis (PCA)

PCA is an unsupervised technique commonly used in signal processing

and pattern recognition. PCA is used to reduce the dimensionality of multivariate

data whilst preserving most of the variance, and so is an excellent technique for

observing the natural relationships between samples. The transformation is
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designed in such a way that the data set may be represented by a reduced

number of ‘effective’ features, while retaining most of the intrinsic data content.

This means that the data set undergoes a dimensionality reduction (Haykin,

1999; Von der Malsburg, 1990; Oja, 1982).

The algorithm that is used to perform the principal components analysis

on a data vector is as follows;

R = xTx (3.4)

where R represents a correlation matrix of data vector x and superindex T

represents the transposed matrix. The correlation matrix R can be expressed in

terms of its eigenvalues and eigenvectors as:

m

R = 2,11.)qu , j=1,2,...,m (3.5)

j=1

where l. corresponds to the eigenvalues and the associated eigenvectors m-by-

m matrix, Q = [q, , q2 q,,, j. The eigenvalue problem, commonly

encountered in linear algebra, is recognized as;

R0 = M (3-6)

For basic data representation,

aj = qJ-Tx (3.7)
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where aI. are the projections of x onto the principal directions.

a = [a 1, a2, ....aj]T (3.8)

m

j=l

The set of principal components retained can be calculated as follows.

. r

x = Zajqj (3.10)

j=l

As described by Malinowski (1991), PCA The latent variables can be

written as a weighted sum of the original variables.

X = TPT +E (3.11)

where T is a scores matrix, P is a loadings matrix (the superindex T indicates the

transposed matrix), and E is the residual error matrix. The results of PCA can be

displayed in a score plot. In this plot, the scores of the different objects are

plotted as a function of the latent variables. A loading plot shows which of the

original variables make an important contribution to the latent variables and

which of the original variables are well correlated (Lamberto and Saitta, 1995).
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3. Discriminant Factor Analysis (DFA)

Discriminant Factor Analysis (DFA) is related to both multivariate analysis

of variance and multiple regressions. Discriminant Factor Analysis can be used

not only to test multivariate differences among groups, but also to explore which

variables are most useful for discriminating among groups, if one subset of

variables performs equally well as another, and which groups are most alike and

most different (Hill and Engelman, 1992).

Classification is performed by assigning a pattern vector to the class with

the closest Mahalanobis distance metric (Fung, 1995; Aishima, 1979), as given

by

Df= ZZ(;y‘-yr)s"(;rj—y.)"
(3.12)

j=l i=1

where n is the dimensionality of the pattern, c is the number of classes, Tc,- is the

vector of means for class j, y is the pattern vector being classified, and s is the

pooled variance-covariance matrix (Fisher and van Belle, 1993). A discriminant

function is expressed as an equation as follows.

Z=a1X1 +a2X2+a,-X,-+....+ame (3.13)

In DFA, the samples are projected from their places in the complete

measurement space into a suitable sub-space (Fisher and van Belle, 1993;
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Aishima, 1979). For Discriminant functions, the variables are chosen according

to their characteristics that differ between the groups. These variables are then

linearly combined and weighted so that the groups are forced to be as

statistically distinct as possible by choosing the linear combination of variates

that maximizes the one-way analysis of variance F-test, which tests the equality

of the means for the linear combinations.

E. ARTIFICIAL NEURAL NETWORK

A neural network is a massively parallel distributed processor made up of

simple processing units, which has a natural propensity for storing experiential

knowledge and making it available for use. It resembles the brain in 2 aspects:

knowledge is acquired by the network from its environment thought a Ieaming

process, and intemeuron connection strengths, known as synaptic weights, are

used to store the acquired knowledge (Hykin, 1999). Neural networks have the

advantage that they can handle nonlinear data and are more tolerant to noise of

the system, and tend to produce lower prediction error rates than chemometric

techniques (Packianather et al., 2000; Schryer and Mikkelsen, 2000).

1. Multilayer Perceptron (MLP)

The primary element of an ANN is the neuron. These neurons are

arranged in input and output layers of one or more hidden processing layers

(Nakamura and Yoshikawa, 2001). The most common neural network approach

to regression-type problems is multilayer perceptrons (MLP). The popular
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algorithm is known as a back propagation algorithm (Martin, Santos, and

Agaptito, 2001). The majority of published work uses a feed fonrvard net with

back propagation for training. The inputs to a neuron include its bias and the

sum of its weighted input. The output of a neuron depends on the neuron’s

inputs and on its transfer function (Devabhaktuni et al., 2001; Kimura and

Nakano, 2000; Watanabe, 2000). In mathematical terms, a neuron k can be

described by

m

uk = Elwijj (3.14)

where wk] wk", are the weights of neuron k;

uk is the linear combiner output due to the input signals; bk is the bias; ¢(.) is

the activation function; and y, is the output of the neuron.

y)- = cojrvjrn» (3.15)

For MLP, the activation functions used in the network can be linear and/or

a sigmoidal nonlinear function. A linear function can be calculated as

m

¢(v,-(n)) = A. + Ella-x,- (3.16)

where 8 is the regression coefficient and x is the input signal. The nonlinear

sigmoidal activation functions frequently used include

a) logistic function:

I

¢j (Vj (’0) - 1+ exp(—v(n)) (3.17) 
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b) hyperbolic tangent function:

(Pj (Vj ('0) = t311110’1'01» (3-18)

Figure 2.1 shows the architectural graph of multilayer perceptrons with

one hidden layer and an output layer. The function signal is presumed to

perform a useful function at the output of the network and at each neuron of the

network through which a function signal passes, the signal is calculated as a

function of the inputs and associated weights applied to that neuron (Hikawa,

2001; Tanaka and Hasegawa, 2001).

__;-2‘_O\‘.

Input srgnalfl;>\\\:

Input layer Hidden layer Output layer

  

Output signal

 

Figure 2.1. Architecture of a multilayer perceptron with one hidden layer

Neural networks have been applied to a wide variety of applications

including, dynamic system control (Watanabe et al., 2001), electromagnetic

optimization of microwave circuits (Bila et al., 1999), robotic manipulators (Terra

and Tinds, 2001), and hydrologic events forecasting (Coulibaly et al., 2001 ).



CHAPTER 4

ELECTRONIC SENSOR ARRAY INCORPOATING ARTIFICIAL NEURAL

NETWORK FOR ANALYSIS OF VOLATILE COMPOUNDS PRODUCED BY

ESCHERICHIA COLI IN NUTRIENT MEDIA

ABSTRACT

An electronic sensor array with 12 non-specific metal oxide sensors was

evaluated for its ability to monitor volatile compounds in super broth alone and

that inoculated with E. coli (ATCCZ5922) at 37 °C for 2-12 hours. Principal

Component Analysis (PCA) was used for data exploration and dimensional

reduction with 96% of the data accounted for. Using Discriminant Function

Analysis (DFA), it was possible to differentiate super broth alone from that

containing E. coli when cell number was 2105 CFU. The sensor array could also

quantitatively discriminate between numbers of E. coli in samples. There was

good agreement between the volatile profiles from the electronic sensor array

and SPME/GCIMS. The potential to predict the number of E. coli and the

concentration of specific metabolic compounds was investigated using Artificial

Neural Network (ANN). Electronic sensor array incorporating neural network is a

rapid and simple technique which can identify and quantify the number of E. coli

in nutrient media.
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4.1. INTRODUCTION

Many methods have been used to determine the presence of

microorganisms in media or in food product including fiber optics, calorimetry,

piezoelectric crystals, and flow cytometry. Gas chromatography/mass

spectrometric methods have also been used for the detection and identification of

microorganisms. These techniques have limitations (Erti & Mikkelsen, 2001).

The use of an array of sensors of varying affinities allows for the relative

responses between the sensors to be used to produce a unique fingerprint of the

volatile compounds. The volatile fingerprint generated by an electronic sensor

array can be displayed graphically for quality control, or compared with a control,

or other samples using neural network algorithms.

Electronic sensor technology has been used in the food and drink

industries to detect taints and off-taste in food-products, ‘ more recently work has

been reported on its application in environmental monitoring. Some researchers

have reported on its use in assessing agricultural and sewage odors, by showing

the relationships between sensor responses and odor concentration, whereas

others have demonstrated the ability of a non-specific sensor array to

differentiate between tainted and untainted waters for detecting off-flavor,

monitoring bioprocess ingredients for detecting microbial contamination, and

predicting different bacterial types and growth phases (Erti & Mikkelsen, 2001).

One popular technique characteristic of statistical methods and capable of

deriving low dimensional representations is PCA. Discriminant Function Analysis

can be used to build class classifiers. The ultimate goal of pattern recognition is
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to learn classifier models whose expected performance on unseen data falls

within acceptable bounds. This comes from the need to predict the degree of

generalization and robustness of the classifier.

The objectives of this study were to identify volatile compounds generated

by E. coli in super broth using SPMEIGCIMS, to investigate the ability of the

electronic sensor array incorporating chemometrics and neural networks to

identify and quantify E. coli.

This research was chronologically conducted in three steps. The first step

was data acquisition and collection. The second step was feature extraction

using Principal Component Analysis (PCA) to explore the data under

investigation, with data classification using Discriminant Factor Analysis (DFA).

Predictions of the number of E. coli was done in the final step using three

mathematical morphologies.

4.2. METHODOLOGY

4.2.1. Stock Culture Preparation

E. coli ATCC 25922 was obtained from the American Type Culture

Collection (ATCC, Rockville, MD). E. coli was inoculated into Luria Bertani (LB)

broth consisting of 10 g Bacto-tryptone, 5 g Bacto Yeast, and 5 9 NaCl, and

incubated at 37 °C in a gyrotory shaker (G-25 New Brunswick Scientific

Corporation, New Brunswick, NJ) at 100 rpm. The E. coli suspension was then

dispensed into sterile 125 mL GSA bottles, and centrifuged (Rotor-GSA model
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RC 5 C Superspeed Centrifuge, Sorvall Instruments, Dupont Co., Haffman

Estate, ILL) at 1600 x g for 10 min. The supernatant was decanted, and the

resulting cell pellets were resuspended in a sterile 15 % glycerol solution. 1 mL

aliquots of bacterial suspension were transferred into 1.5 mL microcentrifugal

tubes and frozen using liquid nitrogen. The frozen cultures were stored at -80

°C.

4.2.2. Preparation of Test Solution

Super broth consisting of 32 g Tryptone, 20 9 Yeast Extract, 5 g NaCI, 5

mL of 1 N NaOH, was used as a basal medium. Before use, E. coli was

transferred from a stock culture to super broth and incubated at 37 °C for 10 hrs.

Previous trials indicated that cell population reached 108 CFUlmL at this time

point. The culture was then diluted to the desired levelof 102 CFUlmL to allow

for growth during the study. E. coli was inoculated at 102 CFUlmL into super

broth, and 5 mL of super broth were transferred into standard 20 mL headspace

vials and sealed with PTFE—lined Teflon caps (Alpha M.O.S., Hillsborough, NJ)

using a cap crimper.

All experiments were designed to use the headspace sampler and sealed

sample vial system originally designed for use with gas chromatography and

GCIMS. At time zero in the experiment, the cultures were allowed to grow in

vials at 37 °C in a gyrotory shaker. The incubation times were varied, and the

growth of the microorganism was measured. Samples were periodically
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analyzed after incubation at 2, 4, 6, 8, 10, and 12 hours at 37 °C using a colony

counting method, SPME/GCIMS, and electronic sensor techniques.

4.2.3. Colony Counting Method

The samples were serially diluted in sterile Butterfield’s phosphate buffer.

A series of dilutions was also prepared from the stock suspension. Serially

diluted samples were plated in duplicate using 3M Petrifilm Aerobic Count Plates

for determining total aerobic bacteria. The number of E. coli was determined

using 3M Petrifilm E. coli/Coliform Count Plates containing Violet Red Bile

nutrient agar and an indicator of glucuronidase activity for E. coli/Coliform. All

plates were incubated at 37 °C for 48:2 hrs. After incubation, colonies were

counted and the viable cell count per unit amount of the original material

calculated. Plate counts are essentially direct counts of numbers of colonies in

or on plates. Each colony is assumed to represent the progeny of one organism.

Plate counts are recorded as colony forming units (CFU).

4.2.4. Electronic sensor for monitoring of volatile compounds

An electronic sensor (Fox 3000, Alpha M.O.S., Hillsborough, NJ), with 12

metal oxide sensors (SYLG, SYG, SYAA, SYGH, SYGCTI, SYGCT, T301, P101,

P102, P401, T702, and PA2) was used for monitoring changes in volatiles

produced by E. coli in super broth medium. The system for volatile analysis,

shown in Figure 4.1, combines a measurement chamber for generating the

volatile compounds and a detection system. Electronic sensor analysis
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conditions were determined by optimizing the following parameters, headspace

generation temperature, and headspace generation time. The optimum

conditions for detecting volatile compounds (Table 4.1) were then used for

additional experiments. This instrument was linked to an autosampler unit

capable of analyzing a total of 64 samples. The samples were placed in glass

vials and sealed with crimped PTFElmetal septa.

The headspace volatile compounds from super broth and super broth

inoculated with E. coli and incubated for 2, 4, 6, 8, 10, and 12 hours were

monitored using the optimized condition. The samples were placed in the HS100

auto-sampler in arbitrary order. Prior to analysis, the vial was removed from the

sample tray and placed in a temperature-controlled chamber. The automatic

injection unit heated the samples to 35 °C with an incubation time of 300 second.

The temperature of the injection syringe was 40 °C. The injector needle then

removed 5000 pL of headspace and injected this into the sensor chamber. The

delay time between two injections was 300 second.

Each injection was repeated, with separate samples (three times for all

variations per day) for seven days. The electronic signals from the sensors were

digitized, then transferred to the control computer. Resistance changes

(difference in sensor resistance between air blank and odorous atmosphere)

were recorded.
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Table 4.1. Optimum Conditions for Operating Electronic Sensors

 

HS 100

Headspace generation time (s ) 300

Headspace generation temperature (°C) 35

Syringe temperature (°C) 40

Syringe type (mL) 5

Vial type (mL) 20

SENSORS

Acquisition time (s) 180

Acquisition period (s) 1

Delay (s) 120

Flow (mUmin) 300

Injection volume (pL) 5000

 

4.2.5. Determination of Volatile Compounds Using SPMEIGCIMS

Preliminary tests were done to determine the optimum SPME fiber

(Supelco, lnc., Bellefonte, PA) for collecting the volatile compounds by

comparing results from Polydimethylsiloxane fibers, Polydimethylsiloxane/

Divinylbenzene fibers, and Carboxeanolydimethylsiloxane fibers. The results

showed that the Carboxen/Polydimethylsiloxane fiber was the most suitable

SPME fiber because it could collect more compounds produced by E. coli than

other fibers. The Carboxeanolydimethylsiloxane fiber was, therefore, used for

all further experiments.
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Before use, the SPME fiber was conditioned at 250 °C for 1 hr. The

SPME process is shown in Figure 4.2. A 1 cm length of fused silica fiber, coated

with a polymer is bonded to a stainless steel plunger and installed in a holder that

looks like a modified microliter syringe. Volatile compounds were collected using

a SPME device. The fiber is housed in a hollow, stainless steel needle. The

plunger moves the fused silica fiber into and out of a hollow needle. To use the

unit, the analyst draws the fiber into the needle, passes the needle though the

septum that seals the sample vial, and depresses the plunger, exposing the fiber

to the sample or the headspace above the sample. The fiber was pushed out of

the needle and exposed to the headspace at 35 °C until equilibrium was reached.

For headspace sampling, 5 mL of liquid sample was placed into a 20 mL

vial and the fiber was exposed to the head space of the media solution.

Sampling temperature was 35°C, and sampling duration was 10 min., which was

sufficient to permit the establishment of a near equilibrium for the compounds

tested. Once sampling was finished, the fiber was withdrawn into the needle and

transferred to the injection port of the gas chromatograph (HP-6890, Hewlett-

Packard Co., Wilmington, DEL). Absorbed volatiles were desorbed from the fiber

coating by inserting the SPME fiber through a predrilled septum (Thennogreen

LB-2, Supelco Co., Bellefonte, PA) and into a glass lined, split-less injector port

of a gas chromatograph. The GC column inlet was immersed in a liquid nitrogen

bath during the desorption period, so that the volatiles were collected before

entering the column for analysis. After 3 min of desorption, the fiber was
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retracted and removed as was the liquid nitrogen. The oven was then closed

and the 60 was manually started.

A HP-6890 GC was used in analysis of the compounds. Volatiles were

separated using a capillary column (SPBS, 30m x 0.1 mm id., 0.25 pm coating

thickness). The carrier gas used was ultrapurified Helium (99.99% purity) at a

flow rate of 0.5 mL min“. The temperature program was isothermal for 2 min at

40 °C and raised to 240 °C at a rate of 50 °C min". Electron impact ionization

(FCD-650, LECO Corp., St Joseph, MI), was used by the time-of-flight (TOF)

mass spectrometer for volatile detection- Mass spectra were collected at a rate

of 40 spectra/s over a range of 30-400 m/z. The ionization energy was 70 eV.

Identification of volatile components was determined by comparison of collected

mass spectra with those of authenticated standards and spectra in the National

Institute for Standards and Technology (NIST) mass spectral library.

4.2.6. Multivariate data analyses

Multivariate data analysis techniques were used as pattern recognition

tools and for multivariate calibration. The electronic responses and GCIMS data

sets were obtained from a total of 7 days of consecutive analysis. Three

replications of each variable were analyzed on each day to avoid growth of E.

coli during the analytical operation. A Kruskal-Wallis was used to test if the

samples tested each day were different. Descriptive statistics and a residuals

plot were conducted to determine the normality of the data using SPSS Software

for VVIndows Version 10.0 (SPSS Inc., Chicago, IL). The outliers were
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determined and discarded from the data set. All matrix calculations were

performed using the routines MATLAB Version 5.3 (Mathworks, lnc., Natick, MA)

written by the author.

4.3. RESULTS AND DISCUSSION

4.3.1. Colony Counting Method

The population of E. coli grown in closed vials containing super broth is

shown in Table 4.2. The data are from 15 replications. Prior to 6 hr incubation,

the growth of E. coli was slow, probably because they were in the lag phase.

After 12 hours, numbers increased from ~102 to 1.01 x 1010 CFUlmL.

Table 4.2. Number of E. coli in super broth

 

 

Time (Hours) Number

(CFUlmL)

2 3.85x102

4 3.56x103

6 6.29x105

8 5.34x108

1o 6.89x109

12 1.01x101°
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4.3.2. Electronic Sensor Array Technology

4.3.2.1. Data Collection

Figure 4.3 shows the comparison of sensor signal intensities during the

acquisition period between super broth and super broth with E. coli and

incubated for 6 hours. Each line represents a response from a sensor. In this

study, twelve metal oxide sensors were used. The media had low responses

from the sensor array. Different sensor signal intensities between samples are

important to discriminate between samples. By choosing a growth medium with

a minimum of volatile materials, the background contributed by the medium does

not ovenlvhelm the analytical signal. Growing the bacteria in sealed vials retains

and collects volatiles in the headspace gases so they are not swept away by

conventional aeration.

Figure 4.4 shows the average responses of the seven subgroups to the 12

sensors. The total operational testing time for each sample was 8 min.

Therefore, only 3 samples from each variable (incubation time) were tested daily

to avoid biochemical changes due to the growth of E. coli during the analytical

period. The data from days 1 to 7 were statistically analyzed to determine if they

were different by measuring the responses of each sensor to the samples from

each day using nonparametric statistics (Kruskal-Wallis test). The results are

shown in Table 4.3.

Kruskal-Wallis is equivalent to one-way ANOVA testing whether several

independent samples are from the same population. The results (Table 4.3)

show that samples tested each day were from the same population because all
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results had a low Kruskal-Wallis statistics value with high probability (p2 0.05).

There was no significant difference between samples on different days when the

whole process, i.e., inoculation, growing, and analysis was repeated. The

samples to be analyzed using SPMEIGC/MS were tested in the same manner

and the same conclusion was drawn.

Table 4.3. Kruskal-Wallis test of samples with grouping variable (Day 1-7)

 

 

Sensors Kruskal-WallisTest Probability

Statistics

SYLG 0.421 0.981

SYG 0.329 0.988

SYAA 0.331 0.988

SYGH 0.084 0.999

SYGCTI 0.140 0.998

SYGCT 0.258 0.992

T301 1.059 0.901

P101 0.728 0.948

P102 0.063 1.000

P401 0.611 0.962

T702 0.263 0.992

PA2 0.770 0.942
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4.3.2.2. Pattern recognition of electronic sensor responses

a) PCA

Prior to PCA, the data matrix was standardized to zero mean and unit

variance. This procedure ensures that the variables have the same weighting in

the Principal Component (PC) model. The whole of the standardized data matrix

was then submitted to PCA.

The most common criterion for choosing the number of principal

components is the scree plot (Figure 4.5). In this case, 2 PCs were calculated

and included in the model. The number of principal components is the number of

substantively meaningful independent (uncorrelated) patterns, among the

variables. The first PC accounts for a major fraction (83.21%) of the total

variance of the data. The second principal axis is accounts for 12.60% of the

variation not accounted for by the first factor.

Table 4.4 shows the eigenvalues and the percentage of variance

explained by each PC. More than 83% of the data information was obtained by

PC1and more than 12% was obtained by P02. These two PCs together

represent 96% of the information in the overall data set.
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Table 4.4. PCA of electronic sensor responses

 

 

PC Eigenvalue Explained Variance Cumulative

Variance

1 11.043 9.985 83.205

2 0.638 1.487 95.599

 

Figure 4.6 shows a loadings plot of all samples. Sensors such as SYLG,

SYGCTI, SYGCT, SYAA, and SYGH, had the highest negative loadings on PC1,

but had positive loading on P02. On the other hand, P101, T301, T702, PA2,

and P401 had a high positive loading on P01 and a positive loading on P02.

SYLG had a high positive loading on P01 but low negative loading on P02. On

P01, all sensors are important because of their high negative/positive loading.

The score plot in Figure 4.7 shows 5 distinct clusters with positive and negative

scores for both PCs. The variance is uniform and generates low within-group

vanaflons.

The control media and nutrient media inoculated with E. coli and

incubated for 2 and 4 hours overlapped. The medium is indistinguishable from

the early inoculants (number of E. coli were 3.85 x 102 and 3.56 x 103 CFUlmL,

respectively), all of these points are grouped under the same area in the PCA

score plot. This indicates that the electronic sensors were not able to detect a

difference in the volatile metabolites at the early growth stage. Only after 6 hours

(6.29 x 105 CFUlmL) do the sensor responses become statistically

distinguishable from the control medium. Groups of samples incubated for 6, 8,
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10, and 12 hours occupied different areas, indicating that the electronic sensors

differentiated between these samples. As a result, in the method reported here,

E. coli could be detected when the number was above 105 CFUlmL, or about 10‘

times less than the densities found in mature cultures.

b) DFA

In order to perform the classification, the Mahalanobis distance was

employed on relevant groups of samples. Canonical DFA was used in order to

visualize the class separation.

The results are given in Table 4.5. Eigenvalues are indicative of the

relative importance of the discriminant function in determining group separation.

The separation of class-labeled samples is shown in Figure 4.8. The samples in

the learning set were attributed to the groups whoSe average Mahalanobis

distance was similar to the average value of the data points of a certain group.

From the DFA pattern (Figure 4.8) the data were classified into 5 groups.

The control and nutrient media inoculated with E. coli and incubated for 2 and 4

hours overlapped. The medium is indistinguishable from the early inoculants, as

all points were grouped under the same area in the DFA canonical plot. Samples

incubated for 6, 8, 10, and 12 hours occupied different areas, indicating that the

electronic sensors can differentiate between samples with different number of E.

coli. As a result, E. coli could be detected when its number was above 105

CFUlmL.

59



The technique developed from the learning set was applied to unknown

samples (validation set). The classification result from unknown samples using

discriminant analysis algorithm is presented in Table 4.6. Considering the

percent correct classification, groups A, D, E, F, and G were always classified

correctly (100 % correct). The misclassification groups were B classified as

group A, and group 0 classified as group B. Percent corrects of sample in

groups B and 0 did not reach 100 % because as shown in Figure 4.8 the

electronic sensor could not discriminate samples from groups A, B, and 0 due to

the low concentrations of volatile compounds produced by E. coli.

Table 4.5. Canonical DFA analysis of electronic sensor responses

 

 

Discriminant Eigenvalues Cumulative Dispersion (%)

Functionsth

1 228.444 85.90

2 34.714 99.00

3 1.981 99.70

4 0.663 100.00

5 0.031 100.00

6 0.001 100.00
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Table 4.6. Classification result* of the DFA algorithm for validation

electronic sensor array data

 

 

 

A B C D % Correct

A 4 0 0 0 0 0 0 1 00

B 3 3 0 0 0 0 0 50

C 0 1 2 0 0 0 0 88 .

D 0 0 0 5 0 0 0 100

E 0 0 0 0 4 0 0 100

F 0 0 0 0 0 5 0 100

G 0 0 0 0 0 0 4 100

Total 7 4 2 5 4 5 4 91

 

*cases in row categories classified into column: control (A), super broth

with E. cell after incubated for 21(8), 410), 6(0), 8 (E), 10 (F), and 12 hrs (6).

4.3.3. SPMEIGCIMS

4.3.3.1. Data Collection

The volatile compounds from the headspace of vials containing E. coli in

super broth media incubated at 37 °C for 12 hours using SPME coupled to a gas

chromatograph and a mass spectrometer was used to identify E. coli volatile

metabolites. Figure 4.9 shows the chromatogram of volatile compounds from the

headspace of the super broth media. Figure 4.10 shows the chromatogram of

volatile compounds from the headspace of super broth inoculated with E. coli and

incubated 37 °C for 6 hours.
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Library searches of the mass spectrum were used to identify individual

compounds from the chromatograph, based on their mass spectra. The mass

spectrum of lndole from the headspace of samples inoculated with E. coli was

determined from the Standard Mass Spectrum provided by NIST as shown in

Figure 4.11. From library matches, the specific compounds produced by E. coli

grown in super broth include, Dimethyl disulfide; Ethanol, O-acetimidoeyl; 2-

Heptanone; Cyclopropane, pentyl; E-11,13-Tetradecadien-1-ol; Indole; and 2-

Nonanone.

The basal media used in this research was super broth which has a high

concentration of tryptophan. Trytophan is broken down into lndole due to the

activity of the enzyme tryptophanase from E. coli (Figure 4.12). Tryptophanase

degrades tryptophan to Indole, pyruvate, and ammonia (Moat & Foster, 1988).

The alcohols and carbon dioxide detected in the superbroth media are possibly

from amino acid decarboxylation and deamination. Dimethyl disulfide may be

present due to degradation of sulfur containing amino acids such as methionine

and cycteine.

4.3.3.2. Pattern recognition of GCIMS data

a) PCA

In this study, the concentration of the specific compounds could be

determined using selective normalization. The normalized concentration of each

compound was then standardized to zero mean and unit variances.
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Figure 4.13 shows the average concentration of the seven compounds in

seven sub groups. Each sub group contains 15 samples. The corresponding

principal components score plot is presented in Figure 4.14. Samples with

similar mass spectral pattern will have data points close to each other in the

score plot. Accordingly, samples having in divergent mass spectra will be

located further apart. Sample groupings are, therefore, easily identified in the

score plot.

b) DFA

Data from SPMEIGC/MS analysis was evaluated as explained in Section

4.3.2.2 b. The result obtained from DFA is shown in Figure 4.15. DFA was used

to visualize the class separation between samples. Using DFA, six discriminant

functions were found and 100% cumulative data dispersion was accounted for

(Table 4.7). The first two functions have the highest eigenvalues and accounted

for as much as 99.50% of the data. The data, for brevity however, were

displayed using only two discriminant functions. From Figure 4.15, 5 sample

groups accounted for the different numbers of E. coli in super broth due to the

different incubation times.

The classification result from unknown samples using the discriminant

analysis algorithm is presented in Table 4.8. Considering the percent correct

classification, groups A, D, E, F, and G were always classified correctly (100 %

correct). Group B was misclassified as group A, and group 0. Group 0 was

misclassified as group B. Percent corrects of sample in groups B and 0 did not
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reach 100 % because (as shown in Figure 4.15) the electronic sensor could not

discriminate between samples from groups A, B, and 0 due to low

concentrations of volatile compounds produced by E. coli.

Table 4.7. DFA analysis of SPMEIGCIMS data

 

 

Discriminant Eigenvalues Cumulative Dispersion (%)

Functionsth

1 203.928 98.10

2 3.016 99.50

3 0.770 99.90

4 0.1 12 100.00

5 0.089 100.00

6 0.005 100.00
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Table 4.8. Classification result* of the DFA algorithm for validation GCIMS

 

 

 

data

A B C D E F G % Correct

A 4 0 0 0 0 0 0 100

B 1 3 2 0 0 0 0 50

C 1 2 3 0 0 0 0 50

D 0 0 0 5 0 0 0 100

E 0 0 0 0 4 0 0 100

F 0 0 0 0 0 5 0 100

G 0 0 0 0 0 0 4 100

Total 6 5 5 5 4 5 4 86

 

*cases in row categories classified into column: control (A), super broth

with E. coli after incubated for 2(8), 4(0), 6 (D), 8 (E), 10 (F), and 12 hrs (G).

4.3.5. Artificial Neural Networks for Prediction of Number of E. coli

The root mean square error (RMSE) indicated that the standard deviation

of the error between the predicted measured values can be used to evaluate the

performance of calibration algorithms.

 

2I

g(Cpredicted —Ctrue )

n

RMSE = (4.2)
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The neural network algorithm used was Multilayer perceptrons (MLP)

based on back propagation. Figure 4.16 shows the effect of the number of

neurons in the hidden layer on the mean square error (MSE) of the neural

network to predict the number of E. coli (Figure 4.16)

The network architecture created for the E. coli data matrix comprises

input layer, one hidden layer of neurons and one output layer. The transfer

function in the hidden layer was a hyperbolic tangent sigmoidal nonlinear and a

linear function was used in the output layer.

(0,- (V, (17)) = a tanh(V,~ (11)) (45)

where ¢(.) is the activation function associated with the neuron and vj (n) is the

induced local field of neuron j.

The training function used was a Levenberg-Marquardt (LM) algorithm.

x... = xk— [JTJ+ I1" JTe (4.6)
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Fae, 6e, 69, .

6x1 6x2 6x"

8e2 622 6e2

J = 6x, ax, ”ax" (47)

6e" 6e" 6e"

_6x, 6x2 6x" _  

where e is a vector of network errors (Choralambus, 1992). The LM algorithm is

useful when accurate training is required.

The performance function performed during training feedforward neural

networks was the mean sum of squares of the network errors (MSE).

l N 2

MSE = N201. —a,-) (4.8)

i=1

The network outputs were plotted versus the target prediction of number

of E. coli and concentration of the selected compounds. Figures 4.17 shows

the predictions versus true values of numbers of E. coli in super broth by

electronic sensor array data using ANN algorithms. The correlation coefficient,

R2, between the outputs and targets is a measure of how well the variation in the

output is explained by the targets and outputs. R2 is close to 1, which indicates a

good fit. All calibration techniques predicted the number of E. coli.
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4.4. CONCLUDING REMARKS

The electronic sensor array, which is based on adsorption/desorption

reactions of volatiles on the surface of different electronic sensors, has been

shown to discriminate between media without E. coli and media inoculated with

E. coli. The influence of number of E. coli as a result of incubation time proved to

have an effect on the electronic sensor responses. E. coli can be identified and

quantified by their volatile metabolites. The electronic sensors therefore have

potential to detect E. coli from their volatile metabolites. The results were shown

to be reproducible when the entire analysis (i.e., inoculating, growing and

analysis) was repeated.

While GCIMS is extremely useful in identifying the microorganisms from

their volatile metabolites, it is not a panacea. Electronic sensor array is an

equally good candidate to monitor changes in the composition of the gas phase

of chemical products. The advantages of electronic sensor array over classic G0

are that it is simpler and has higher speed. However, with the electronic sensor,

the compounds are not analytically identified.

Multilayer perceptron neural network with back propagation algorithm

showed the potential of the electronic sensors to predict number of E. coli and

the concentration of selected compounds in unknown samples. The electronic

sensor array was found to be satisfactorily correlated with colony counting and

GCIMS methods as determined by using canonical correlations. The electronic

sensor array coupled with neural networks can be used to identify and quantify

the number of E. coli and volatile metabolites.

68



(1)

(2)

(3)

(4)

(5)

  

 
 

 

       
 

 

   
 

 

 

 

 

   
D
D
D
D
D
D

    
  O

O
0

0
0
0
0
0

O O

 

         
 

 

Figure 4.1. Electronic sensor array system.

Synthetic air and a humidity regulator

Measurement chamber to control the temperature of the heads pace

Glass container with the (a) manual odorant sampler or (b) an

autosampler (Block of 2 x 32 Vials)

Electronic nose with 12 sensor channels

Microcomputer for storing and processing sensor data
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Gas Chromatograph/Mass Spectrometer

Figure 4.2. SPMEIGCIMS method for collecting volatile compounds from

the headspace of sample.
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Control Superbroth+E.coli

(after 6 hours)  
 

Figure 4.3. Sensor responses from the headspace of super broth (control)

and super broth inoculated with E. coli and incubated for 6 hours.
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Figure 4.4. Sensor responses of super broth and super broth inoculated

with E. coli and incubated at 37 °C for 2, 4, 6, 8, 10, and 12 hours analyzed

using 12 sensors.
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Figure 4.5. Determination of PCs using a scree plot.
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Figure 4.6. PCA loadings plot of the data from electronic sensors.
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Figure 4.7. PCA scores Plot of volatile compounds produced by

E. coli in super broth using 12 electronic sensor. The samples

are labeled after the following scheme: control (A), after

incubated for 2 hrs (B), 4 hrs (0), 6 hrs (D), 8 hrs (E), 10 hrs (F),

and 12 hrs (G).
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Figure 4.8. DFA of volatile compounds of E. coli in nutrient media

using electronic sensors. The samples are labeled using the

following scheme: control (A), after incubated for 2 hrs (B), 4 hrs

(0), 6 hrs (D), 8 hrs (E), 10 hrs (F), and 12 hrs (G).
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Figure 4.9. Chromatogram of volatile compounds from headspace of super
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Figure 4.10. Chromatogram of volatile compounds from headspace of

super broth inoculated with E. coli incubated for 12 hours at 37°C.
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Figure 4.1 1. Mass Spectrum of indole from super broth inoculated with E.

coli compared with mass spechum of indole from NIST.
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Figure 4.12. E. coll’s catabolism of typtophan to indole.
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Figure 4.13. Average concentrations of selected volatile compounds from

headspace of super broth and super broth inoculated with E. coli and

incubated at 37 °C for 2, 4, 6, 8, 10, and 12 hours analyzed using

SPMEIGCIMS.
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Figure 4.14. Scores Plot of volatile compounds produced by E. coli in

super broth using SPMEIGCIMS. The samples are labeled using the

following scheme: control (A), after incubated for 2 hrs (B), 4 hrs (0), 6

hrs (D), 8 hrs (E), 10 hrs (F), and 12 hrs (G).
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Figure 4.15. DFA of volatile compounds produced by E. coli in super broth

using SPMEIGCIMS. The samples are labeled using the following scheme:

control (A), after incubated for 2 hrs (B), 4 hrs (0), 6 hrs (D), 8 hrs (E), 10

hrs (F), and 12 hrs (G).
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Figure 4.16. Effect of number of hidden layers and number of neurons in

hidden layer on the performance of the networks (MSE) of sensor

responses v.s. number of E. coli.
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CHAPTER 5

ELECTRONIC SENSOR ARRAY INCORPORATING

ARTIFICIAL NEURAL NETWORK TO IDENTIFY AND QUANTIFY NUMBER

OF SALMONELLA ENTERICA SEROTYPE TYPHIMURIUM

AND VOLATILE METABOLITES IN NUTRIENT MEDIA

ABSTRACT

A method was developed to predict the number of Salmonella enterica

serovar Typhimurium in super broth and concentrations of specific volatile

metabolites using a metal oxide electronic sensor array and neural network. To

evaluate the complex data obtained from electronic sensors and SPMEIGC/MS,

Principal Component Analysis (PCA) was used for data exploration and

dimensional reduction. Using Discriminant Factor Analysis (DFA) it was possible

to differentiate super broth from that containing Salmonella Typhimurium. The

multilayer perceptron neural network can be trained to identify and quantify

Salmonella Typhimurium and volatile metabolites in nutrient media. Once

trained, the networks were shown to be capable of correlating voltammetric

responses with number of Salmonella Typhimurium. The electronic sensor array

data was found to satisfactorily correlate with colony counting (R2 = 0.866).
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5.1. INTRODUCTION

There is a need for more rapid, precise, and accurate analyses of the

biochemical composition of microorganisms for the identification of potentially

pathogenic organisms. Electronic sensor array is an instrument-based technique

which satisfies these requirements. Electronic sensor array technology has

provided a new way for rapid simple and inexpensive analysis of volatiles.

Artificial Neural Network (ANN) has recently been introduced for modeling,

simulation, and optimization of complex data. Fast, accurate, and reliable neural

network models can be developed from measured/simulated data (Tanaka &

Hasegawa, 2001; Bila et al., 1999). Artificial Neural Networks are among the

possible nonlinear techniques which can be applied to the data collected in this

study.

In this research, a method was developed to determine the presence of

Salmonella Typhimurium in super broth using both an electronic sensor array

and neural network system. This study demonstrates on a laboratory scale that

the concentrations of five key volatile metabolites of Salmonella Typhimurium

can be predicted from the electronic sensor responses using neural network

algorithms. The predictive Ieaming ability of an ANN model was assessed by

comparison to a reference method using a mean square error of prediction.
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5.2. METHODOLOGY

5.2.1. Stock Culture Preparation

The culture used was Salmonella enterica serotype Typhimurium obtained

from Food Microbiological laboratory, Department of Food Science and Human

Nutrition, Michigan State University, Ml. Salmonella Typhimurium was inoculated

into Luria Bertani (LB) broth consisting of 10 g Bacto-tryptone, 5 g Bacto Yeast,

and 5 9 NaCl, and incubated at 37 °C in a gyrotory shaker (G-25 New Brunswick

Scientific Corporation, New Brunswick, NJ) at 100 rpm. The Salmonella

Typhimurium suspension was then dispensed into sterile 125 mL GSA bottles,

and centrifuged (Rotor-GSA model R0 5 0 Superspeed Centrifuge, Sorvall

Instruments, Dupont 00., Haffman Estate, ILL) at 1600 x g for 10 min. The

supernatant was decanted, and the resulting cell pellets were resuspended in a

sterile 15 % glycerol solution. 1 mL aliquots of bacterial suspension were

transferred into 1.5 mL microcentrifugal tubes and frozen using liquid nitrogen.

The frozen cultures were stored at —80 °C.

5.2.2. Preparation of Test Solution

Super broth consisting of 32 g Tryptone, 20 9 Yeast Extract, 5 9 NaCl, 5

mL of 1 N NaOH, was used as a basal medium. Before use, Salmonella

Typhimurium was transferred from a stock culture to super broth and incubated

at 37 °C for 10 hrs. Salmonella Typhimurium was inoculated at 102 CFUlmL into

super broth, and 5 mL of super broth were transferred into standard 20 mL

headspace vials and sealed with PTFE-lined Teflon caps (Alpha M.O.S.,
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Hillsborough, NJ) using a cap crimper. All experiments were designed to use the

headspace sampler and sealed sample vial system originally designed for use

with gas chromatography and GCIMS. At time zero in the experiment, the

cultures were allowed to grow in vials at 37 °C in a gyrotory shaker. The

incubation times were varied, and the growth of the microorganism was

measured. Samples were periodically analyzed after incubation at 2, 4, 6, 8, 10,

12 and 14 hours at 37 °C using a colony counting method, SPME/GCIMS, and

electronic sensor techniques.

5.2.3. Colony Counting Method

The samples were serially diluted in sterile Butterlield’s phosphate buffer.

A series of dilutions was also prepared from the stock suspension. Serially

diluted samples were plated in duplicate using 3M Petrifilm Aerobic Count Plates.

All plates were incubated at 37 °C for 48: 2 hrs. After incubation, colonies were

counted and the viable cell count per unit amount of the original material

calculated. Plate counts are essentially direct counts of numbers of colonies in

or on plates. Each colony is assumed to represent the progeny of one organism.

Plate counts are recorded as colony forming units (0FU).

5.2.4. Electronic sensor for monitoring of volatile compounds

An electronic sensor (Fox 3000, Alpha M.O.S., Hillsborough, NJ), with 12

metal oxide sensors (SYLG, SYG, SYAA, SYGH, SYGCTI, SYGCT, T301, P101,

P102, P401, 1702, and PA2) was used for monitoring changes in volatiles
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produced by Salmonella Typhimurium in super broth medium. The optimum

conditions for electronic sensor analysis were, 35 °C for headspace generation

temperature, and 300 seconds for headspace generation time. This instrument

was linked to an autosampler unit capable of analyzing a total of 64 samples.

The samples were placed in glass vials and sealed with crimped PTFElmetaI

septa.

The headspace volatile compounds from super broth and super broth

inoculated with Salmonella Typhimurium and incubated for 2, 4, 6, 8, 10, and 12

hours were monitored using the optimized condition. The samples were placed

in the HS100 auto-sampler in arbitrary order. Prior to analysis, the vial was

removed from the sample tray and placed in a temperature-controlled chamber.

The vial temperature was held at 35°C whilst being spun in order to produce an

equilibrated headspace. The time the vial remains in this chamber is the

headspace generation time. The automatic injection unit heated the samples to

35 °C with an incubation time of 300 second. The temperature of the injection

syringe was 40 °C. The injector needle then removed 5000 uL of headspace and

injected this into the sensor chamber. The delay time between two injections

was 300 second.

Each injection was repeated, with separate samples (three times for all

variations per day) for seven days. The electronic signals from the sensors were

digitized, then transferred to the control computer. Resistance changes

(difference in sensor resistance between air blank and odorous atmosphere)

were recorded.
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5.2.5. Determination of Volatile Compounds using SPMEIGCIMS

Preliminary tests were done to determine the optimum SPME fiber

(Supelco, lnc., Bellefonte, PA) for collecting the volatile compounds by

comparing results from Polydimethylsiloxane fibers, Polydimethylsiloxane]

Divinylbenzene fibers, and Carboxen/Polydimethylsiloxane fibers. The results

showed that the Carboxeanolydimethylsiloxane fiber was the most suitable

SPME fiber because it could collect more compounds produced by Salmonella

Typhimurium than other fibers. The Carboxen/Polydimethylsiloxane fiber was,

therefore, used for all further experiments.

Before use, the SPME fiber was conditioned at 250 °C for 1 hr. A 1 cm

length of fused silica fiber, coated with a polymer is bonded to a stainless steel

plunger and installed in a holder that looks like a modified microliter syringe.

Volatile compounds were collected using a SPME device. The fiber is housed in

a hollow, stainless steel needle. The plunger moves the fused silica fiber into

and out of a hollow needle. To use the unit, the analyst draws the fiber into the

needle, passes the needle though the septum that seals the sample vial, and

depresses the plunger, exposing the fiber to the sample or the headspace above

the sample. The fiber was pushed out of the needle and exposed to the

headspace at 35 °C until equilibrium was reached.

For headspace sampling, 5 mL of liquid sample was placed into a 20 mL

vial and the fiber was exposed to the head space of the media solution.

Sampling temperature was 35°C, and sampling duration was 10 min., which was

sufficient to permit the establishment of a near equilibrium for the compounds
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tested. Once sampling was finished, the fiber was withdrawn into the needle and

transferred to the injection port of the gas chromatograph (HP—6890, Hewlett-

Packard 00., Wilmington, DEL). Absorbed volatiles were desorbed from the fiber

coating by inserting the SPME fiber through a predrilled septum (Thennogreen

LB-2, Supelco Co., Bellefonte, PA) and into a glass lined, split-less injector port

of a gas chromatograph. The G0 column inlet was immersed in a liquid nitrogen

bath during the desorption period, so that the volatiles were collected before

entering the column for analysis. After 3 min of desorption, the fiber was

retracted and removed as was the liquid nitrogen. The oven was then closed

and the 60 was manually started.

A HP-6890 G0 was used in analysis of the compounds. Volatiles were

separated using a capillary column (SPB5, 30m x 0.1 mm id., 0.25 pm coating

thickness). The carrier gas used was ultrapurified Helium (99.99% purity) at a

flow rate of 0.5 mL min“. The temperature program was isothermal for 2 min at

40 °C and raised to 240 °C at a rate of 50 °C min". Electron impact ionization

(FOD-650, LECO Corp., St Joseph, MI), was used by the time-of-flight (TOF)

mass spectrometer for volatile detection. Mass spectra were collected at a rate

of 40 spectra/s over a range of 30-400 m/z. The ionization energy was 70 eV.

Identification of volatile components was determined by comparison of collected

mass spectra with those of authenticated standards and spectra in the National

Institute for Standards and Technology (NIST) mass spectral library.
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5.2.6. Multivariate data analyses

Descriptive statistics and a residuals plot were conducted to determine the

normality of the data using SPSS Software for Windows Version 10.0 (SPSS

Inc., Chicago, IL). The data were explored and classified using Principal

Component Analysis (PCA) and Discriminant Function Analysis (DFA). All matrix

calculations were performed using the routines MATLAB Version 5.3

(Mathworks, lnc., Natick, MA) written by the author.

5.3. RESULTS AND DISCUSSION

5.3.1. Colony counting Method

The population of Salmonella Typhimurium grown in closed vials

containing super broth is shown in Table 5.1. After 14 hours incubation, the

numbers increased from 102 to 6.47x109 CFUlmL.
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Table 5.1. Colony counts of Salmonella Typhimurium in Super broth

 

 

incubated at 37 °C

Time (Hours) Number

(cfulmL)

2 6.15x10‘

4 4.76x103

6 2.77x106

8 2.01x1o7

1o 3.25x1o9

12 5.36x109

14 6.47x1o9

 

5.3.2. Electronic Sensor Array Technology

5.3.2.1. Data Collection

A total of 80 samples were analyzed in 8 subgroups including the control,

2, 4, 6, 8, 10, 12, and 14 hours of incubation. The sensor responses were given

in units of the maximum change of the sensor's electrical resistance divided by

the initial resistance (ARmax lRo).

Figure 5.1 shows the average sensor response intensity of all subgroups.

The intensity patterns of all samples were different due to the difference in

concentration of volatile metabolites generated by different numbers of

Salmonella Typhimurium produced during the growth period from 2-14 hours.
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Three samples from each variable (incubation time) were tested daily to

avoid biochemical changes due to the growth of Salmonella Typhimurium during

the operating period. The experiments were repeated for 5 days. The were

statistically analyzed using the Nonparametric statistics, Kruskal-Wallis test as

shown in Table 5.2. The results show that there was no significant difference

between samples from the different days. Samples also analyzed using

SPMEIGC/MS and the same conclusion was found.

Table 5.2. Kruskal-Wallis Test of samples with grouping variable (Day 1-5)

 

 

Sensors KruskaI-WallisTest Statistics Probability

SYLG 0.166 0.997

SYG 0.146 0.997

SYAA 0.062 1 .000

SYGH 0.251 0.993

SYGCTI 0.183 0.996

SYGCT 0.108 0.999

T301 0.591 0.964

P101 0.314 0.944

P102 0.150 0.997

P401 0.231 0.989

T702 0.079 0.999

PA2 0.194 0.996
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5.3.2.2. Pattern recognition of electronic sensor responses

a) PCA

Standardization was applied to this data matrix to transform the data into a

more expedient form with size effects removed and variance scaled. PCA was

then carried out on this pretreated data.

The data information was retained by P01 (96.58%) and P02 (1.44%). As

a result, the first two PCs allowed 98.03 % of the relevant information from the

data to be explained.

Figure 5.2 shows a loading plot of all samples. All sensors behaved in a

similar way in that they had high loading on P01 but zero or low loading on P02.

Sensors such as SYG, SYGCTI, SYGCT, SYAA, and SYGH had high negative

loadings on P01. SYLG, P102, P101, T301, T702, PA2, and P401, had high

positive loading on P01. The loadings displays facilitate an exploration of the

contributions of the variables to each PC.

Sample patterns can be separated from each other using simple scatter

plots of principal component scores. The score plot in Figure 5.3 shows 5

distinct clusters with positive and negative scores on both PCs. The medium is

indistinguishable from the early stage of incubation (number of Salmonella

Typhimurium were 6.15x102, 4.76x103, and 2.77x1o6 CFUlmL, respectively). All

of these points are grouped together under the same area in the PCA score plot.

Samples incubated for 8, 10, 12, and 14 hours were separated. The grouping of

samples with high concentration of volatiles in the lower right quadrant was

evident. Samples with a similar number of Salmonella Typhimurium (the same
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incubation time) will have data points close to each other. Accordingly, samples

having divergent numbers will be located further apart. Sample groupings are,

therefore, easily identified in the score plot. Still, for many samples, it is difficult

to predict whether a sample contains Salmonella Typhimurium.

PCA reduces a large data set of correlated variables to smaller numbers

of uncorrelated components. Following its application, orthogonal projection

directly leads to dimensionality reduction and possibly to feature selection.

b) DFA

In this study, DFA was used to determine if it is possible to separate two

or more individual groups, given measurements for these individuals on several

variables. Canonical DFA was used in order to visualize the class separation.

Since there were eight subgroups of treatment variables (control and 2-14

hours incubation times), seven discriminant functions were derived. Table 5.3

shows the eigenvalues and cumulative dispersions of the discriminant functions.

The separation of class-labeled samples is presented in Figure 5.4. The

samples in the learning set were attributed into the groups whose average

Mahalanobis distance was similar to the average value of the data points of a

certain group, using the knowledge of the real qualitative groups as originally

designated by the operator.

After this discriminant analysis has been performed, the same discriminant

Ieaming template can be applied to ‘unknown’ samples. The classification

resulting from analysis of unknown samples using a discriminant analysis
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algorithm is presented in Table 5.4. All sample groups were classified correctly

(100 % correct).

Table 5.3. Canonical DFA analysis of electronic sensor responses

 

 

Discriminant Eigenvalues Cumulative Dispersion (%)

Functionsth

1 382.900 95.30

2 14.432 98.90

3 3.551 99.80

4 0.774 100.00

5 0.107 100.00

6 0.003 100.00

7 0.000 100.00
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Table 5.4. Classification result“ of the DFA algorithm for validation

electronic sensor array data

 

 

 

0 1 2 3 4 6 7 % Correct

0 8 0 0 0 0 0 0 100

1 0 7 0 0 0 0 0 0 100

2 0 0 7 0 0 0 0 0 100

3 0 0 0 5 0 0 0 0 100

4 0 0 0 0 8 0 0 0 100

5 0 0 0 0 0 5 0 0 100

6 0 0 0 0 0 0 7 0 100

7 0 0 0 0 0 0 0 7 100

Total 8 7 7 5 8 5 7 7 100

 

*cases in row categories classified into columns: control (0), after

incubated for 2 hrs (1), 4 hrs (2), 6 hrs (3), 8 hrs (4), 10 hrs (5), 12 hrs (6),

and 14 hrs (7).

5.3.3. SPMEIGCIMS

5.3.3.1 . Data Collection

Headspace gases in the vials containing super broth and super broth

inoculated with Salmonella Typhimurium and incubated at 37 °C for 2-14 hours

were collected and analyzed. SPME coupled to a gas chromatograph and mass

spectrometer enabled identification of Salmonella Typhimurium volatile

metabolites.

Figure 5.5 shows the chromatogram of volatile compounds from the

headspace of super broth inoculated with Salmonella Typhimurium, and
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incubated at 37 °C. Library searches of the mass spectra were used to identify

individual compounds from the chromatograph, based on their mass spectra.

The specific compounds produced by Salmonella Typhimurium grown in super

broth include Hydrogen sulfide, Ethanol, Carbon disulfide, Dimethyl

cyclopropane, and 1-Propanol. The average concentrations of each compound

of different sample groups are displayed in Figure 5.6. The higher the incubation

time the higher the concentration of volatile metabolites.

5.3.3.2. Pattern Recognition of GCIMS Date

a) PCA

The selected volatile compounds including Hydrogen sulfide, Ethanol,

Carbon disulfide, Dimethyl cyclopropane, and 1-Propanol were used as

measurement variables and were arranged into the data matrix with 80 rows and

5 columns.

In this study, no internal standard was added, and thus the concentration

of the selected compounds could be determined using selective normalization.

The normalized concentration of each compound was then standardized to zero

mean and unit variances before submitted to PCA.

With PCA, PCs, total variance factor loading, and factor scores were

calculated. The corresponding principal components scores plot is presented in

Figure 5.8. Samples with similar mass spectral pattern will have data points

close to each other in the score plot. The score plot shows the location of the 80

samples spanned by the two most significant PCs, which explain 97.68 % (P01
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96.64%, P02 1.05%) of the total variation in the chromatogram. The score plot

displays the relationships among the samples. Samples located near each other

are considered similar, while dissimilar samples tend to be well separated. From

the score plot, the 2 PCs are needed for sample separation.

Within the GCIMS data and PCA, it is difficult to distinguish the different

number of Salmonella Typhimurium. Although overlapping, there was a trend

toward increased total volatile concentration levels along P01. The repeatability

(10 repetitions per group) of the measurement of the individual samples is lower

than that found with the electronic sensors.

b) DFA

DFA was used to visualize the class separation between samples. Using

DFA, seven discriminant functions were found. Table 5.5 shows the eigenvalues

and cumulative dispersion of the first five discriminant functions. From DFA

(Figure 5.9), all samples were divided into 8 groups in the plot of samples on the

first and second discriminant factors as shown in Figure 5.9. Each of 8 groups

consists of an approximate similar number of bacteria and concentration of

volatile metabolites. WIth SPME/GCIMS and DFA, all samples could be

discriminated from control samples.

The classification result of unknown samples using discriminant analysis

algorithm is presented in Table 5.6. All groups, except groups 6 and 7, were

classified correctly (100 % correct). The percent corrects in groups 6 and 7 may

not have reached 100 % because as shown in Table 5.1, the number of
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Salmonella Typhimurium in super broth of groups 6 and 7 were slightly different

and the same concentrations of volatile metabolites were expected.

Table 5.5. DFA analysis of SPMEIGCIMS data

 

 

Discriminant Eigenvalues Cumulative Dispersion (%)

Functions“

1 185.905 99.00

2 1 .252 99.70

3 0.554 100.00

4 0.030 100.00

5 0.020 100.00
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Table 5.6. Classification result" of the DFA algorithm for validation of

 

 

 

GCIMS data

1 6 7 % Correct

0 0 0 0 0 0 0 100

1 0 4 0 0 0 0 0 0 100

2 0 0 4 0 0 0 0 0 100

3 0 0 0 5 0 0 0 0 100

4 0 0 0 0 5 0 0 0 100

5 0 0 0 0 0 4 0 0 100

6 0 0 0 0 0 0 4 1 90

7 0 0 0 0 0 0 1 4 90

Total 5 4 4 5 5 4 5 4 98

 

*cases in row categories classified into columns: control (0), after

incubated for 2 hrs (1), 4 hrs (2), 6 hrs (3), 8 hrs (4), 10 hrs (5), 12 hrs (6),

and 14 hrs (7).

5.3.5. Electronic Sensors and ANN for Prediction of number of

Salmonella Typhimurium

The objective of this work was to investigate if the electronic sensor array

technique could be used to predict number of Salmonella Typhimurium and

concentration of Salmonella Typhimurium volatile metabolites in nutrient media

using neural network.
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Figure 5.10 shows the effect of the number of neurons in the hidden layer

on the mean square error (MSE) of the neural network to predict the number of

E. coli (Figure 5.10). The network errors did not decrease dramatically when

used with more than 10 neurons.

The transfer function in the hidden layer was hyperbolic tangent sigmoidal

nonlinearity and linear transfer function was used in the output layer. From a

preliminary study, the Levenberg-Marquardt (LM) algorithm was able to obtain

lower mean square errors than any other algorithms tested. Therefore, the

training function used in this study was Levenberg-Marquardt algorithms.

Neural networks were trained using selected parameters in data sets from

several cultivations and were subsequently validated on independent data sets

for estimating the concentration variables. The best estimation accuracy was

observed on the validation sets.

The performance of a trained network can be measured by the errors in

the training, validation and test sets. The network outputs are plotted versus the

targets (prediction of number of Salmonella Typhimurium). Regression analysis

was performed between the network output and the corresponding targets.

Figure 5.11 shows the predictions versus true values of numbers of

Salmonella Typhimurium in super broth using electronic sensor array data and

neural network algorithms. The correlation coefficient, R2, between the outputs

and targets is a measure of how well the variation in the output is explained by

the targets and outputs. From the result, R2 (0.9999) is close to 1, which
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indicates a good fit and, therefore, the network created can correctly predict the

number of Salmonella Typhimurium (RMSE = 0.0290).

This study has shown that electronic sensor arrays and neural network

can be considered to provide accurate information on the number of Salmonella

Typhimurium. Electronic sensor array and ANN has potential in real-time

detection of Salmonella Typhimurium.

5.4. CONCLUDING REMARKS

A method was developed to predict the number of Salmonella

Typhimurium in super broth and concentrations of specific volatile metabolites

using electronic sensor array and ANN. The presence of Salmonella

Typhimurium in super broth is detected by the electronic sensors as changes in

the biochemical composition of the headspace vapors. It is noticed that

Salmonella Typhimurium can be identified and quantified by their volatile

metabolites. The electronic sensors have potential to detect Salmonella

Typhimurium from their volatile metabolite, by responding to an entirely different

part of the complex chemical mixture.

PCA provides considerable advantage by reducing the data dimensionality

without loss of information. PCA is a useful aid in the visualization of multivariate

data. For this application, DFA is performed. Unlike PCA, DFA allowed for a

better separation of the clusters than simply plotting the raw data, because the

variance of the data set is preserved in a smaller number of factors.
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Artificial neural network created in this study was trained to predict the

number of Salmonella Typhimurium and volatile metabolites from analytical

electrical responses. The algorithm used in this work was back-propagation with

LM learning. The networks used consisted of a hidden layer containing biased

neurons using sigmoidal transfer functions, and an output layer containing linear

transfer function. The network structures used in this work were those that

contained the minimum number of hidden neurons and hidden layers while still

satisfactorily modeling the systems.

Considering the overall performance of the electronic sensor, good

agreement was found between the electronic sensors array and colony counting

methods and between electronic sensors and GCIMS. The electronic sensor

technology is as good as the conventional GCIMS technique in predicting the

number of Salmonella Typhimurium in the samples.

105



R
e
s
p
o
n
s
e
s

 
Figure 5.1. Sensor responses of different samples groups (control and

media inoculated with Salmonella Typhimurium and incubated for 2, 4 , 6,

8, 10, 12, and 14 hours) using 12 metal oxide sensors.
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Figure 5.2. PCA loadings plot of the data from electronic sensors

with percent of total variance explained by P01 96.584% and P02

1.413%.
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Figure 5.3. PCA score plot of volatile compounds produced by Salmonella

Typhimurium in super broth using 12 electronic sensors. The samples are

labeled after the following scheme: control (0), after incubated for 2 hrs (1),

4 hrs (2), 6 hrs (3), 8 hrs (4), 10 hrs (5), 12 hrs (6), and 14 hrs (7).
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Figure 5.4. DFA of volatile compounds of Salmonella Typhimurium in

nutrient media using electronic sensors. The samples are labeled using the

following scheme: control (0), after incubated for 2 hrs (1), 4 hrs (2), 6 hrs

(3), 8 hrs (4), 10 hrs (5), 12 hrs (6), and 14 hrs (7).
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Figure 5.5. Chromatograph of the volatile compounds from the headspace

of super broth.
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Figure 5.6. Chromatograph of the volatile compounds from the headspace

of super broth inoculated with Salmonella Typhimurium and incubated at

37 °C for 12 hours.
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Figure 5.7. Concentrations of volatile metabolites of different samples

groups (control and media inoculated with Salmonella Typhimurium and

incubated for 2, 4 , 6, 8, 10, 12, and 14 hours) using SPMEIGCIMS.
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Figure 5.8. Scores Plot of volatile compounds produced by Salmonella

Typhimurium in super broth using SPMEIGCIMS. The samples are labeled

using the following scheme: control (0), after incubated for 2 hrs (1), 4 hrs

(2), 6 hrs (3), 8 hrs (4), 10 hrs (5), 12 hrs (6), and 14 hrs (7).
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Figure 5.9. DFA of volatile compounds produced by Salmonella

Typhimurium in super broth using SPMEIGCIMS. The samples are labeled

using the following scheme: control (0), after incubated for 2 hrs (1), 4 hrs

(2), 6 hrs (3), 8 hrs (4), 10 hrs (5), 12 hrs (6), and 14 hrs (7).
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Figure 5.10. Effect of number of hidden layers and number of neurons in

hidden layer on the performance of the networks (MSE) of sensor

responses v.s. number of E.coli .
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CHAPTER 6

ELECTRONIC SENSOR ARRAY INCORPORATING ARTIFICIAL NEURAL

NETWORKS TO IDENTIFY AND QUANTIFY ESCHERICHIA COLI AND

VOLATILE METABOLITES IN PACKAGED ALFALFA SPROUTS

ABSTRACT

An array of 12 metal oxide electronic sensors incorporating neural network

algorithms was used to identify and quantify E. coli and its volatile metabolites in

packaged alfalfa sprouts. The metabolic volatile compounds used as indicators

of E. coli were identified using solid phase microextraction coupled with gas

chromatograph! mass spectrometry (SPME/GCIMS). The volatiles from the

headspace of packaged alfalfa sprouts were collected and analyzed using an

electronic sensor array. The electronic sensor responses alone were not

sufficient to distinguish samples with and without E. coli. Neural networks based

on Multilayer perceptron (MLP) was trained to identify and quantify specific

volatile compounds in mixtures under conditions where there were significant

complications due to food components and volatile metabolites from other

microflora in alfalfa sprouts. The networks were shown to be capable of

correlating voltametric responses with number of E. coli with low mean square

errors.
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6.1. INTRODUCTION

Many approaches have been used to develop rapid, precise, and accurate

techniques to potentially identify pathogenic organisms in food products. Novel,

rapid, reliable, sensitive, and economical methods continue to be developed to

allow rapid, in line, and accurate detection of hazardous organisms and their

toxins. Development of new and improved methods continues to receive a great

deal of research attention and a reasonable amount of private and public sector

funding (CAST, 1999).

In this research, a method was developed to identify and quantify E. coli in

packaged alfalfa sprouts using an electronic sensor array and neural networks.

Alfalfa sprouts were studied because the National Advisory Committee on

Microbial Criteria for Foods, NACMCF (1999) identified sprouts as a special

problem because of the potential for pathogen growth during production. Also

there is an increased demand for sprouts due to their popularity as a health food.

Raw sprouts have been associated with at least eleven foodbome illness

outbreaks since 1995. Exposure can occur due to seed contamination at the

farm, seed processor, or sprouting facility. The processes used for the

production of sprouted seed offer ample opportunity for cross contamination from

a few seeds or sprouts to the entire production lot (FDA, 1999). E. coli was used

as a target microorganism in packaged alfalfa sprouts because its presence in

foods indicates fecal contamination, and possible pathogenic microorganisms

(Eley, 1992).
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Specific volatile metabolites were identified using Solid phase

microextraction/Gas chromatograph/Mass spectrometry (SPMEIGC/MS).

Volatile E. coli metabolites can be used to indicate if E. coli is present in a

product. The electronic sensors were used to analyze the volatile in the

headspace above the samples.

Using electronic sensors to detect volatile complexes has the potential to

be a sensitive, fast, one step method to monitor E. coli contamination in food

products. Analysis of specific volatile organic compounds produced by the

metabolic processes of E. coli may be able to be used to develop a rapid method

that will allow detection of E. coli in a packaged plant product.

The primary advantage of the electronic sensor array in a quality

assurance method is in its speed of analysis, including data acquisition and

interpretation. Rapid, significant data interpretation is possible using various

multivariate data analyses. In this study, the neural network algorithms were

used to develop an integrated framework where feature extraction and predictive

learning are iteratively performed with the goal being optimal approximation.

Neural network is a massively parallel distributed processor constructed of

processing units, which has propensity to store learned knowledge, thus making

it available for use (Haykin, 1999). Neural networks have been used to solve

many engineering problems ranging from image analysis (Tsuruta et al, 2000),

dynamic systems (Watanabe et al, 2001), and robotic manipulation (Terra &

Tinos, 2001).
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The neural network algorithms developed in this study was Multilayer

perceptrons based on a back propagation algorithm. The Multilayer perceptron

network based on a back propagation algorithm was used to predict the number

of E. coli and concentration of specific volatile metabolites.

6.2. METHODOLOGY

6.2.1. Preparation of Inoculated Vegetable

E. coli ATCC 25922 was obtained from the American Type Culture

Collection (ATCC, Rockville, MD). E. coli was inoculated into Luria Bertani (LB)

broth consisting of 10 g Bacto-tryptone, 5 g Bacto Yeast, and 5 9 NaCl. The

broth/culture was incubated at 37 °C in a gyrotory shaker (G—25 New Brunswich

Scientific Corporation, NJ) at 100 rpm. The E. coli suspension was then

dispensed into sterile 125 mL GSA bottles, and centrifuged (Rotor-GSA model

RC 5 0 Superspeed Centrifuge, Sorvall Instruments, Dupont Co., Haffman

Estate, ILL) at 1600xg for 10 min. The supernatant was decanted, and the

resulting pallets were resuspended in a 15 % glycerol solution. 1 mL aliquots of

the bacterial suspensions were transferred into 1.5 mL microcentrifugal tubes

and frozen using liquid nitrogen. The frozen culture was stored at —80 °C. E. coli

ATCC 25922 was cultured in tryptic soy broth and incubated at 37 °C for 8 hrs in

a gyrotory shaker. Before use, the culture was centrifuged at 6000 x g for 15

min. Broth was poured from the culture and the sedimented pellet was

resuspended in sterile Butterfield’s phosphate buffer. Preliminary experiments
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were done to determine the population of E. coli necessary in the dipping

suspension to result in an initial population of ~105 CFUlg on sprouts.

The alfalfa seeds (Natural Sprout Company, Springfield, MO) were soaked

in 20,000 ppm of calcium hypochlorite prior to germination as advised by FDA

(1999) and NACMCF (1999). Alfalfa sprouts were grown in a laboratory, under

controlled conditions at the School of Packaging, Michigan State University. The

sprouts were washed and drained several times. Alfalfa sprouts were placed in

screened baskets, submerged in the suspension containing E. coli for 3 min and

drained. The uninoculated control was similarly treated except sterile phosphate

buffer was used in place of the inoculum. 50 g of sprouts were then dispensed

into a commercial 1.5 mil, 6x8 in2 LDPE bag (OTR = 62 ccl100 sq.inlday). The

samples were incubated at 20 °C for 1, 2, and 3 days. The samples were

analyzed using a colony counting method, gas chromatograph-mass

spectrometer, and the electronic sensors.

6.2.2. Microbiological Analyses

The microbial cell count was determined on the date of inoculation and

periodically throughout storage at days 1, 2, and 3. Sprout samples (25 g) were

removed from the package and placed into sterile stomacher bags. Sterile

phosphate buffer (225 mL) was added to the sample and the contents were

homogenized by pummeling for 60 seconds in a Stomacher. A series of dilutions

was prepared from the stock suspension, and Petri plates were inoculated with

those dilutions expected to give countable colonies. Inocula consisting of each of
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a dilution series were deposited on prepared plates in duplicate using 3M

Petrifilm Aerobic Count Plates for determining aerobic bacteria and 3M Petrifilm

E. coli/Colifonn Count Plates containing Violet Red Bile nutrient as an indicator of

glucuronidase activity for E. coli/Coliform. All plates were incubated at 37 °C for

48: 2 hrs. After inoculation, colonies were counted and the viable cell count per

unit amount of the original sample was calculated.

6.2.3. Determination of Volatile Compounds Using SPMEIGCIMS

Volatile compounds were collected using a Solid Phase Microextraction

(SPME) (Supelco, lnc., Bellefonte, PA) device. The preliminary tests were done

to determine the optimum SPME fiber for collecting the volatile compounds by

comparing the results from the Polydimethylsiloxane fiber,

Polydimethylsiloxane/Divinylbenzene fiber, and Carboxeanolydimethylsiloxane

fiber. The results showed that the SPME device most suitable was a

Carboxen/Polydimethylsiloxane fiber. This fiber therefore, was used in further

experiments. For headspace sampling, the fiber was exposed to the head space

of the samples in the LDPE bag.

A gas chromatograph (HP-6890, Hewlett-Packard Co., WIImington, DEL)

was used to analyze the volatile compounds in the headspace of samples.

Volatiles were separated using a capillary column (SPBS 30mx0.1 m id., 0.25 um

coating thickness). Helium gas was used as the carrier gas at a flow rate of 0.5

mL min". The temperature program was isothermal for 2 min at 40 °C, and

raised to 240 °C at a rate of 50 °C min". Electron impact ionization (FCD-650,
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LECO Corp., St Joseph, MI), was used by the time-of-fiight (TOF) mass

spectrometer to detect the volatiles. Mass spectra were collected at a rate of 40

spectras over a range of mlz 40-300. The ionization energy was 70 eV.

Identification of volatile components was accomplished by comparison of

collected mass spectra with those of authenticated standards and spectra in the

National Institute for Standards and Technology (NIST) mass spectral library.

6.2.4. Electronic Sensors Procedure

The 12 metal oxide sensors (Fox 3000, Alpha M.O.S. Hillborough, NJ)

were used to monitor the changes in volatiles produced by E. coli on the sprouts.

The electronic sensors analysis conditions used in this study are shown in Table

6.1. Each injection was repeated, with separate samples. Injection was made

with an HS100 autosampler.

The headspace volatile compounds from sprouts, and sprouts inoculated

with E. coli and incubated for 0, 1, 2, and 3 days were monitored—using the

optimized condition. Injection of the headspace gas containing volatiles resulted

in a measurable electronic signal. The electronic signals from the sensors were

digitized, and then transferred to the control computer. Resistance changes

(difference in sensor resistance between air blank and odorous atmosphere)

were recorded.
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Table 6.1 Optimum condition for operating electronic sensors

 

Headspace generation time (s ) 300

Headspace generation temperature (°C) 35

Syringe temperature (°C) 40

Syringe type (mL) 5

Vial type (mL) 10

 

6.2.5. Data Analysis

All matrix calculations were carried out using MATLAB 5.2 (Mathworks,

lnc., Natick, MA) routines written by the author. Descriptive statistics were done

using SPSS Version 10.0 (SPSS Inc., Chicago, IL). Graphical demonstrations

were carried out with MATLAB.
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6.3. RESULT AND DISCUSSION

6.3.1. Colony Counting Method

The cell counts of aerobic bacteria and E. coli on sprouts are shown in

Table 6.2. All samples had a high number of total aerobic bacteria. However, E.

coli was not found in the control samples. After 3 days incubation, the numbers

of E. coli increased from 3.5 x 105 to 2.1x108 CFUlg.

Table 6.2 Population of aerobic bacteria and E. coli on sprouts (cfulg)

 

 

 

Storage time (day) Sprouts Sprout inoculated with

E. coli

Aerobic E. coli Aerobic E. coli

count count count count

1.4x107 - 1.6x107 3.5x105

1.8x108 - 1.8x10° 3.8x105

1.2x109 - 1.8x109 1.6x107

4.2x 109 - 4.3x 109 2.1x108

 

The alfalfa seeds were soaked in 20,000 ppm of calcium hypochlorite prior

to germination as advised by FDA (1999) and NACMCF (1999). This treatment

has the potential to substantially reduce microbial contamination which can be

passed on to the growing sprouts. However, the total number of aerobic bacteria

was as high as Log 7 (CFU)Ig (Table 6.2). A study by Moline (1999) indicated
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that 2 % calcium hypochlorite showed the greatest reduction but did not

completely eliminate the natural microflora.

The number of aerobic bacteria, E. coli and salmonella on the alfalfa

seeds was determined. The number of aerobic bacteria was ~1-2 Log (CFU)lg,

while no E. coli or salmonella were found. The number of aerobic bacteria

increased from ~1-2 Log (CFU)lg to ~8 Log (CFU)lg when the alfalfa sprouts

were fully grown.

The conditions during sprouting, e.g. time, temperature, water activity, pH,

and nutrient level, may have promoted the growth of microfiora (CDC, 1997).

Microorganisms on seeds can grow quickly under favorable conditions of

sprouting (e.g. water activity, temperature, pH, time, and nutrients). Thus, the

risk of foodborne disease associated with sprouts increases during sprouting

(NACMCF, 1998).

Food composition may affect the type and extent of contamination by the

nature of the raw product or ingredients that compose the food, thus providing

nutrients and other intrinsic properties (e.g., pH, oxygen availability, presence of

natural antimicrobials). Thus, the food source may allow, encourage, or

discourage microbial growth. Food composition will also impact the presence

and growth of other microorganisms (Ghazala, 1998; Nguyen & Carlin, 1994).
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6.3.2. SPMEIGCIMS

Headspace gases from the control samples (sprouts without E. coll) and

sprouts inoculated with E. coli incubated at 20 °C for 1, 2, and 3 days were

collected and analyzed using SPME coupled to a gas chromatograph and mass

spectrometer. Library searches of the mass spectra were done to identify

individual compounds, based on their mass spectra.

The volatile compounds present in the headspace of inoculated sprouts

and absent in the headspace of uninoculated sprouts can be possible indicators

of E. coli contamination. The specific compounds produced by E. coli on sprouts

included lsopropyl alcohol; Ethanol, O-acetimidoyl-; Furan, 2-pentyI-; 2-

Heptanone; Propyl cyclopropane; and lndole.

Trytophan is an amino acid found in alfalfa sprouts (Nguyen & Carlin,

1994) and is broken down into indole due to the activity of the enzyme

tryptophanase from E. coli. Trytophanase degrades tryptophan to indole,

pyruvate, and ammonia (Moat & Foster, 1988). In Figure 6.1 is shown the

average concentrations of volatile compounds from the headspace of sprouts,

and sprouts inoculated with E. coli at days 1, 2, and 3, respectively.
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6.3.3. Electronic Sensor Array

6.3.3.1. Data Collection

A total of 80 samples were analyzed (8 subgroups) which includes the

control, and alfalfa sprouts inoculated with E. coli at time zero, and incubated for

1, 2, and 3 days. The sensor responses are given in units of maximum change

of sensor’s electrical resistance divided by the initial resistance (ARmax lRo).

Figure 6.2 shows the average sensor response intensity of the 8

subgroups (control sample and sprouts inoculated with E. coli and incubated at

20 °C for 0, 1,2, and 3 days). The intensity patterns of all samples were different

due to the different concentrations of volatile metabolites generated by the

different numbers of E. coli produced during the incubation period.

6.3.3.2. Pattern Recognition of Electronic Sensor Array

a) PCA

Standardization was applied to the data matrix to transform the data into a

more expedient form with size effects removed and variance scaled. PCA with

Varimax rotation was then carried out on this pretreated data.

In this study, the correlation matrix of the data was used because the

sensor responses were measured in the same unit. The results are displayed in

a loading plot (Figure 6.3) and a score plot (Figure 6.4). The data information

was retained by PC1 (43.08 %), P02 (18.45 %), and P03 (28.01 %). As a result,

the first three PCs accounted for 89.45 % of the relevant information from the

data.

128



Figure 6.3 shows a loading plot of all samples. The loadings display

facilitates an exploration of the contributions of the variables to each PC.

Sensors SYG, SYAA, and SYGH had high negative loadings on PC1, whereas

sensors SYLG, T301, T702, and P02 had high positive loadings on P01.

Sensors SYGCTI and SYGCT were the important sensors contributing to P02

and sensors P101, P102, and P401 were the important variables contributing to

P03.

PCA reduces a large data set of correlated variables to smaller numbers

of uncorrelated components. PCA was also employed to detect outliers. If any

outlying samples were detected, they were removed from the data set. The

result are displayed using a contour plot (Figure 6.4).

The score plot in Figure 6.4 shows several distinct clusters with positive

and negative scores for P01, P02 and P03. Samples in the same subgroups

are grouped together under the same area in the PCA score plot. Samples

having divergent numbers are located further apart. Many sample groups

overlapped and thus, for many samples, it was difficult to predict whether a

sample contained E. coli.

In this study, PCA did not provide sufficient discrimination. If no priori

knowledge of class labels exists, it is difficult to differentiate between subgroups.

However, once a PCA model has been developed (including scaling vectors,

eigenvalues, loadings, and scores), the data can be evaluated using other data

processing methods including multivariate calibration (Kresta et al., 1991) or

multivariate statistical process control (Nomikos & MacGreger, 1995).
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b) DFA

DFA was used to determine whether it is possible to separate two or more

individual groups, given measurements for these individuals from several

variables. The separation of class-labeled samples is presented in Figure 6.5.

The samples in the Ieaming set were attributed to the groups whose

average Mahalanobis distance was similar to the average value of the data

points of a certain group, using the real qualitative groups as originally

designated by the operator. Applying DFA, good classification was achieved.

Samples from the first day of inoculation, and the control incubated for one day

overlapped.

In this study, DFA (based on the Mahalanobis distance) was found to be a

useful technique to describe and classify the training and validation of samples.

DFA derives a projection that separates the different classes as far as possible,

and compresses the individual classes as tightly as possible (Etemad &

Chellappa, 1997).

6.3.4. Electronic Sensors and Artificial Neural network

The objective of using neural network in this study was to create a model

whose expected performance on unseen data falls within acceptable bounds.

This arises from the need to predict the degree of generalization and robustness

of the model.

In this study, BR had better generalization than other algorithms. The

Bayesian regularization activation function was, therefore, selected in order to
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improve generalization. The training was stopped when the square error was

relatively constant over several iterations.

The neuron model architecture created for E. coli comprises an input

layer, one hidden layer of neurons and one output layer. The transfer function in

the hidden layer was a hyperbolic tangent sigmoidal nonlinear function. A linear

transfer function was used in the output layer. Linear and hyperbolic tangent

sigmoidal functions were used as transfer functions in the network.

Training of the network was carried out by comparing the calculated target

values and the desired output by calculation of sum square errors. Neural

networks were trained using selected parameters in data sets from several

cultivations and were subsequently validated on independent data sets for

estimating the concentration variables. The best estimation accuracy was

observed on the validation sets.

The performance of a trained network can be measured by the errors in

the training, validation and test sets. The network outputs are plotted versus the

targets (prediction of number of E. coli). Regression analysis was performed

between the network output and the corresponding targets.

Figure 6.7 shows the predictions versus true values of numbers of E. coli

in super broth using electronic sensor array data and neural network algorithms.

The correlation coefficient, R2, between the outputs and targets is a measure of

how well the variation in the output is explained by the targets and outputs. A

perfect fit, R2 = 1, is indicated and, therefore, the network created can correctly

predict the number of E. coli (RMSE = 0.0115).
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This study has shown that electronic sensor arrays and neural network

can provide accurate information on the number of E. coli. Electronic sensor

array and neural network has potential in the real-time detection of E. coli.

6.4. CONCLUDING REMARKS

The volatile metabolites from the headspace of packaged alfalfa sprouts

inoculated with E. coli were analyzed using SPMEIGCIMS. The volatile

compounds present in the headspace of inoculated sprouts and absent in the

headspace of uninoculated sprouts can be used as possible indicators of E. coli

contamination. The specific compounds produced by E. coli on sprouts include

lsopropyl alcohol; Ethanol, O-acetimidoeyI-; Furan, 2-pentyl-; 2-Heptanone;

Propyl cyclopropane; and lndole.

The electronic sensor was used to monitor changes in the composition of

the gas phase of biochemical products from E. coli volatile metabolites directly

from packaged alfalfa sprouts (without culturing in standard media). In this

research, the electronic sensor array has shown potential to detect specific E.

coli volatile metabolites, even though the sprouts contained high aerobic counts.

However, the capability of the electronic sensor array to detect the

volatiles produced by E. coli occurred when the number of E. coli was higher

than105 CFUlg. A low number of target organisms in a heterogeneous

population of organisms may be present in food, and may be extremely

significant in food poisoning. The proper selective growth enrichment stage may
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be required prior to physical testing using the electronic sensor array, or

SPMEIGC/MS in order to reduce the level of false-negative results.

Principal component analysis was used to explore the data matrices

obtained from the electronic sensors. PCA provides considerable advantage by

reducing the data dimensionality without loss of information. Unlike PCA, DFA

allows for better separation of the clusters than simply plotting the raw data,

because variance in the data set is preserved in a smaller number of factors.

Multilayer perceptrons, based on the back propagation neural network

algorithms created in this study, were trained to predict the number of E. coli and

volatile metabolites from analytical electrical responses. The algorithm used in

this work was back propagation with LM Ieaming.

The networks used consisted of a hidden layer containing neurons using

sigmoidal transfer functions and an output layer containing a linear transfer

function. The network structures used in this work were those that contained the

minimum number of hidden layers while still satisfactorily modeling the systems.

Electronic sensor array, with neural networks has the potential to be a

rapid and real time method, and to detect target microorganisms in food products

(such as alfalfa sprouts). Neural network algorithms can help identify and

quantify E. coli. These results demonstrate that handling of data using pattern

recognition/classification techniques has potential to extract more structural

information from electronic sensor array and GCIMS data.
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This system is not limited to the aforementioned applications. The system

can be applied to other packaged food products or incorporated into HACCP

protocols or quality control systems in the food industries.
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Figure 6.1. Average concentration of specific volatile compounds

associated with alfalfa sprouts (Control, CTR) and sprouts inoculated with

E. coli (EC) in LDPE bags and incubated at 20 °C for 1, 2, and 3 days using

SPMEIGCIMS.
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Figure 6.2. Average sensor responses from the headspace of alfalfa

sprouts (Control, CTR) and sprouts inoculated with E. coli (EC) in LDPE

bags and incubated at 20 °C for 1, 2, and 3 days using 12 metal oxide

sensors.
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Figure 6.3 PCA loading plot of data of alfalfa sprouts and sprouts

inoculated with E. coli packed in LDPE bags and analyzed using 12 metal

oxide electronic sensors
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Figure 6.4. Contour plot of PC scores on P01, P02, and P03 from the data

of alfalfa sprouts and sprouts inoculated with E. coli in LDPE bags on the

first day of inoculation and after incubated at 20 °C for 1, 2, and 3 days.
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Figure 6.5. DFA of volatile compounds using electronic sensor array from

headspace of alfalfa sprouts and sprouts inoculated with E. coli (in LDPE
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bag) on the first day of inoculation and incubated for 1, 2, and 3 days.
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LM algorithm.
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CHAPTER 7

CONCLUSION

The preceding chapters demonstrated the potential utility of the electronic

sensor array incorporating multidimensional data analyses including

chemometrics and neural networks to identify and quantify the target

microorganisms E. coli and Salmonella enterica serovar Typhimurium in control

media and packaged alfalfa sprouts. The organism can be detected by

identification of certain unique metabolites associated with the metabolic activity

of the particular organism.

In chapter 4, the study was chronologically conducted in three steps. The

first step was data acquisition and collection using SPMEIGC/MS and the

electronic sensor array. The second step was feature extraction using Principal

Component Analysis (PCA) to explore the data, with data classification using

Discriminant Factor Analysis (DFA).

Artificial Neural Network (ANN) technique showed the potential of the

electronic sensors to predict the number of E. coli in unknown samples. The

electronic sensor array coupled with neural networks can be used to identify and

quantify the number of E. coli.

In chapter 5, a method was developed to predict the number of

Salmonella Typhimurium in super broth, and concentrations of their specific

volatile metabolites using electronic sensor array and neural networks. The
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presence of Salmonella Typhimurium in super broth was detected by the

electronic sensors as changes in the biochemical composition of the headspace

vapors. The neural network algorithm created in this study was trained to predict

the number of Salmonella Typhimurium and volatile metabolites from analytical

electrical responses.

Considering the overall performance of the electronic sensor, good

agreement was found between the electronic sensor array and colony counting

methods and between electronic sensors and GCIMS. This study proves that

electronic sensor array coupled with neural network can predict the number of

Salmonella Typhimurium, and concentration of their volatile metabolites.

In Chapter 6, the volatile metabolites from packaged alfalfa sprouts

inoculated with E. coli were analyzed using SPMEIGC/MS. The volatile

compounds present in the headspace of inoculated sprouts and absent in the

headspace of uninoculated sprouts can be possible indicators of E. coli

contamination. The electronic sensor was used to monitor changes in the

composition of the gas phase of volatile metabolites directly from packaged

alfalfa sprouts without culturing in standard media. The electronic sensor array

has potential to detect the specific E. coli volatile metabolites, even though the

sprouts contained high aerobic counts.

The Multilayer perceptrons based on back propagation neural network

algorithms and created in this study were trained to predict the number of E. coli

and volatile metabolites from analytical electronic responses.
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Artificial neural networks have been found to be powerful and versatile

techniques particularly suited to information processing. Their flexibility is a

decisive asset compared with parametric techniques that require the

assumptions of a specific hard model form. The results demonstrate that

handling of data using pattern recognition/classification techniques has potential

to open up new possibilities to extract more structural information from electronic

SGI’ISOI’ array.

While GCIMS is extremely useful in identifying the microorganisms from

their volatile metabolites, it is not a panacea. GCIMS requires an experienced

operator and has high maintenance. Because of these concerns, appropriate

consideration must be given to properly quantify and normalize the data.

Electronic sensor array is an equally good candidate to monitor changes

in the composition of the gas phase of chemical products. The advantages of

electronic sensor array over classic G0 are that it is simpler and is higher speed.

However, with the electronic sensor, the compounds are not analytically

identified.

This research has shown the distinctive possibility of using different

pattern recognition/classification techniques for successfully extracting

information from electronic sensor array. The electronic sensor array

incorporating neural networks is a rapid and real time method to detect the target

microorganisms in food products.
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The electronic sensor technique can be economical, specific and real-

time. The electronic sensor array has great potential in quality control, and

process monitoring in the food industry both in principle and in practice.

This research has shown the potential of the electronic sensor array

incorporating neural networks for pattern recognition/classification techniques to

identify and quantify E. coli and their volatile metabolites in packaged alfalfa

sprouts. This system is not limited only to the aforementioned applications. The

system can be applied to other packaged food products, incorporated into a

HACCP protocol or quality control system in the food industries.
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CHAPTER 8

FUTURE PROSPECTS

As this research was pioneering in nature, much research remains. The

future prospective works can be placed into 3 categories.

8.1 . Electronic sensor array

a. Improve stability and sensitivity of the sensors. The electronic sensor

array could not detect low levels of microorganisms and volatile metabolites in

the samples, and thus, it is necessary to further improve the limit of detection and

determination.

b. Since there is no universal electronic sensor technique at present that

can solve all volatile sensing problems, the development of application-specific

electronic sensor technology appropriate to the application is required.

c. Investigate and characterize sensor drift and create techniques to

correct the specific problem.

d. Study the effects of selectivity and affinity of specific volatiles to the

sensing elements of the electronic sensors to improve degree of sample

discrimination.

e. Perform the previous research using samples with different, practical,

and challenging scenarios.
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8.2. Pattern recognition/Neural network

a. Study different pattern recognition techniques which can be

automatically incorporated in the electronic sensing system. Several linear and

nonlinear multivariate data analysis techniques should be further studied

including Nonlinear PCA, Soft independent modeling of class analogy (SIMCA),

and Cluster analysis (0A), for instance.

b. Incorporate online-monitoring. It is essential to maintain high quality in

assembly recordings so that subsequent analyses can be successful. This

requires some degree of on-Iine monitoring of signals, and particularly of

separation.

c. Determine the optimum method for analyzing the neural networks. In

addition to a procedure for amplitude covariation, trial-by-trial latency covariation

should be studied which is more problematical. A number of methods can be

used to determine response latency of an individual trial.

d. Simplify the depiction of the simulating model used for extracting and

predictive Ieaming of multivariate data from electronic sensors. The conclusion

from the simulation is model-dependent. However, the simulation may well

provide a different answer if another set of assumptions is chosen.

8.3. Distinctive applications

a. Determine the possible interactions between specific volatile

compounds and packaging materials.
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c. Apply this technique to other packaged food products.

d. Incorporate the techniques into a HACCP protocol or quality control

system.
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