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ABSTRACT

GRAFTING SEIBERG-WITTEN MONOPOLES

Stanislav Jabuka

We demonstrate that the operation of taking disjoint unions of J-holomorphic curves
(and thus obtaining new J-holomorphic curves) has a Seiberg-Witten counterpart.
The main theorem (theorem 5.10) asserts that, given two solutions (4;,v;), 1 = 0,1
of the Seiberg-Witten equations for the Spin‘-structures Wg, = E; ® (E; ® K1)
(with certain restrictions), there is a solution (A, ) of the Seiberg-Witten equations
for the Spin‘-structure Wg with E = Ey® E), obtained by “grafting” the two solutions

(Ai, i)
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1 Introduction

In his series of groundbreaking works [12, 13, 14], Taubes showed that the Seiberg-
Witten invariants and the Gromov-Witten invariants (as defined in [15]) for a sym-
plectic 4-manifold (X,w) are the same. His results opened the door to a whole new
world of interactions between the two theories that had previously only been spec-
ulations. The most spectacular outcomes of this interplay were new results that in
one theory were obvious but when translated into the other theory, became highly
nontrivial. An example of such a phenomenon is the simple formula relating the
Seiberg-Witten invariant of a Spin®-structure W to the Seiberg-Witten invariant of

its dual Spin®-structure W*, i.e. the one with ¢;(W?*) = —¢;(W). The formula reads
SWx(W*) = £ SWx(W)

When translated into the Gromov-Witten language, this duality becomes
Grx(E) = +Grx(K - E) (1)

Here K is the canonical class of (X,w) and E € H*(X;Z) is related to W as ¢;(W*) =
2 F — K. This is a highly nonobvious result about J-holomorphic curves, even in the
simplest case when E = 0. In that case we obtain that Gry(K) = £ Gryx(0) = £1,
the latter equation simply being the definition of Grx(0). This gives an existence
result of a J-holomorphic representative for the class K, a result unknown prior to
Taubes’ theorem. The formula (1) has recently been proved by S. Donaldson and I.
Smith [4] without any reference to Seiberg-Witten theory (but under slightly stronger
restrictions on (X,w) than in Taubes’ theorem).
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In the author’s opinion, proving a result about Gromov-Witten theory which had
only been known through its relation with Seiberg-Witten theory, without relying on
the latter, has a number of benefits. One is to understand Gromov-Witten theory
from within better. But also to possibly generalize the theorem to a broader class of
manifolds. Recall that Taubes’ theorem equates the two invariants only on symplectic
4-manifolds. Both Seiberg-Witten and Gromov-Witten theory are defined over larger
sets of manifolds, namely all smooth 4-manifolds and all symplectic manifolds (of any
dimension) respectively. On the other hand, even within the category of symplectic
4-manifolds, one can hope for more nonvanishing theorems i.e. theorems of the type
Grx(FE) # 0 for classes E # 0, K. The techniques used by Donaldson and Smith are
promising in that direction.

The main result of this thesis is to prove an assertion in the same vein but going
the opposite direction. Namely, on the Gromov-Witten side, given two classes E; €
H%*(X;Z),i = 0,1 with Ey-E; = 0 and J-holomorphic curves &; with [Z;] = P.D.(E;),
one can define a new J-holomorphic curve ¥ = ¥,U3%,. By the assumption Ey-E; = 0,
the two curves ¥; are either disjoint or share toroidal components (see [5]). In the
former case, ¥ is simply the disjoint union of £y and ¥, and in the latter case one
needs to replace the shared tori with their appropriate multiple covers. This induces

a map on moduli spaces
M (Eo) x M (Ex) = MF (Eo + Er) (2)

This thesis describes the Seiberg-Witten counterpart of (2). That is, given two com-

plex line bundles Fy and E; (with certain restrictions, see theorem 5.10 for a precise
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statement) and two solutions (A;, ;) of the Seiberg-Witten equations for the Spin°-
structures Wg, = E; © (E; ® K!), i = 0,1, with Taubes’ large r perturbation, we
show how to produce a solution (A,) = (Ao, o) - (A1,¢1) for the Spin‘-structure
Wg with E = Ey ® E;. We say that (A, ) was obtained by grafting the two solu-
tions (A, v;), the choice of this term will be justified by the construction of (A,)
described in section 5. The operation of grafting induces the following commutative

diagram:

MY (Eo) x MZ¥Y(E)) —— M (Eo® E)

el le (3)

MG (Eo) x MG (Er) —— MS (Eo + E)

Here the map © : M3 (E) — MS§7(E) is the map described in [12] that associates
to each solution of the Seiberg-Witten equations an embedded J-holomorphic curve.
We call the map in the top row of (3) the grafting map. The monopole (A4,7) is
constructed out of the the two monopoles (A;, ;). The key observation here is that
for the large r version of Taubes’ perturbation, a solution (B, ¢) of the Seiberg-Witten
equations for the Spin®-structure Wg is “concentrated” near the zero set of \/r a, the
E component of ¢. That is, the restriction of (B, ¢) to the complement of a regular
neighborhood of a~!(0) converges pointwise (under certain bundle identifications) to
the unique solution (Ao, \/7 uo) for the anticanonical Spin‘-structure Wop = C® K.
This is used to define a first approximation of ¢ by declaring it to be equal to ¥; in a

regular neighborhood V; of a;}(0) and equal to /7 uo on the complement of V, U V;.



Bump functions are used to produce a smooth spinor. The first approximation of
A is simply the product connection Ag ® A;. The contraction mapping principle is
then evoked to deform this approximate solution to an honest solution of the Seiberg-
Witten equations. The author has learned the techniques employed in this article
from the inspiring work of Taubes on gauge theory of symplectic 4-manifolds, most
notably from [13].

The thesis is organized as follows. In sections 2 and 3 we review the basics of
Seiberg-Witten and Gromov-Witten theory. Since the emphasis of the thesis is mainly
on Seiberg-Witten theory, most claims in section 2 come with proofs while in section
3 we refer the interested reader to the available literature. Section 4 points out the
specifics of Seiberg-Witten theory on symplectic 4-manifolds. It explains important
bounds that a Seiberg-Witten monopole satisfies and that will be used amply in
the later chapters. It also explains Taubes’ theorem equating the two invariants
on symplectic manifolds and proves some important corollaries. Section 5 contains
the bulk of the work presented here. It explains how to define an “almost” monopole
(A',¢") from a pair of monopoles (A;,¥;), i = 0,1. It analyzes the asymptotic (as r —
oo) regularity theory for the linearized operators L4, 4,) and deduces a corresponding
result for L 4. The latter is used in combination with the contraction mapping
principle to obtain an “honest”monopole (A,v’). Section 6 compares the present
method of grafting monopoles to the one used in exploring Seiberg-Witten theory on
manifolds X which are obtained as a fiber sum: X = X;#ygX,. Finally, section 7

proves a converse to theorem 5.10. It explains which monopoles in the Spin®-structure



WE can be obtained as products of monopoles (A;,%;) in the Spin®-structures Wg,,

i=0,1with E;®@ E; = E.



2 Seiberg-Witten Theory

This section is an introduction to Seiberg-Witten theory. If defines all basic concepts
and provides the statements and proofs of the bare bone theorems needed to get the
gauge theory machinery going. The author has learned most of the material in this
section from professor Tom Parker during a one-semester course on Seiberg-Witten
theory taught at Michigan State University, as well as from his excellent accompanying
notes [10]. The exposition in this section relies heavily on these notes and I would
like to take this opportunity to express my gratitude to him for having done a superb

job.
2.1 Spin‘-structures on 4-manifolds

The Seiberg-Witten equations are a pair of coupled, partial differential elliptic equa-
tions for a pair consisting of a connection A and a positive spinor . This subsection

is concerned with defining the notion of a positive (as well as a negative) spinor.

Definition 2.1 Let V be a (real) vector space of dimension n and let g : Sym*(V) —
Ry be a metric on V. The Clifford algebra C(V,g) associated to the pair (V,g) is the

algebra whose underlying vector space is
C(V,g9) = OV

and whose multiplication law is subject to the relation x -y +y - = —29(z,x) 1 for

allz,y € V (here 1 is to be viewed as 1 € R = V& C C(V,g)).



In particular, if e, ..., e, is an orthonormal basis of V/, then C(V, g) is generated
by elements of the form e;, - ... - e;, with; < ... < and 0 < k < n (with g = 1).
This implies that the dimension of C(V, g) is 2". Notice also that the e; satisfy the
relations

e e, =—1 and ei-e;j=—ej-e fori#j (4)

As vector spaces, C(V,g) and @ ,A'V are isomorphic but not so as algebras, the

reason being the first relation in (4) which in @ ;jA*V doesn’t hold.

Example 2.2 The Clifford algebras of Euclidean spaces are well known:

C(R", g)

3

C
H
Hx H
My (2)
Mc(4)
Mg(8)
Mg(8) & Mg(8)
Mr(16)
n+8 C(R", g) ® Mg(16)

CO J O U i W N =

In the above table, g denotes the Euclidean metric on R™ while Mg(k) are the k x k

matrices with entries belonging to the field IF.

The definition of the Clifford algebra associated to a vector space extends without
difficulty to vector bundles V' — X over manifolds, giving rise to the Clifford algebra
bundle (which we will still denote by C(V,g)). The most important example for us

will be that of the tangent bundle TX of a Riemannian manifold X. We will denote



the associated Clifford algebra bundle simply by C(X) (suppressing the vector bundle
and metric from the notation).
Recall that a Hermitian vector bundle is a complex vector bundle equipped with

a Hermitian metric.

Definition 2.3 A Spin®-structure on a smooth 4-manifold X is a Hermitian, rank

4 vector bundle W — X together with a bundle map of algebras

z—z. :C(X) — End(W) (5)

called Clifford multiplication. We also demand that (z.)* = —z. forz € TX C C(X)

(here x signifies taking the adjoint operator).

Since C(X) is generated by TX, it suffices to define Clifford multiplication on
elements of TX subject to the relation z.y. + y.x. = —2(x,y) Id. This observation
becomes particularly useful when trying to verify that a given bundle map TX — W
defines a Spin®-structure on X.

By abuse of terminology, we will often call the bundle W — X itself a Spin®-
structure, keeping the Clifford multiplication in the background.

Every Spin®-structure W — X admits a splitting W = W+ @ W~ into two
complex, rank 2 bundles called the positive and the negative spinor bundles. The
splitting comes about as follows: for z € X, let e;, i« = 1,...,4, be an orthonormal
frame of TX in a neighborhood of z. It is easy to check that e = (e;.ep.e3.€4.)

is independent of the choice of orthonormal frame and satisfies the relation e? = Id.



Thus, the eigenvalues of e. € End(W,) are £1 and W are the associated eigenspaces,
they fit together to give the bundles W#.

In the special case when X admits an almost-complex structure J, there are two
canonically defined Spin‘-structures called the canonical and anti-canonical Spin®-
structure of X. We will define below only the anti-canonical Spint-structure being
the one we shall use in subsequent chapters. The definiton of the canonical Spin¢-

structure is left as an (easy) exercise to the interested reader.

Definition 2.4 The anti-canonical Spin®-structure Wy = Wit @ Wy — X associated

to an almost-compler structure J on TX compatible with the Riemannian metric g

(i.e. such that g(v,J(v)) =0 for allv € TX), is defined to be
Wg = AT X) © A"¥(T* X) Wy = AT X) (6)
with Clifford multiplication given by
va=vV2 (W, Aa-na) veD(TX), ae (W) (7)

In the above, v§, = (v* +iJ(v*))/2 € A®Y(T*X) denotes the (0,1) projection of
v* € T*X, the dual of v € TX.

That (7) indeed defines a Clifford multiplication on Wy follows from the remark

after definition 2.3 and the following easy check:

vv.a = \/ﬁv.(v(';,l Aa—a)
= =2t,(vg 1 N a) = 2ug; A (Lya)
= =2ty (vg 1) AN —v5, A (a) +ug 1 A (L)

9



= -l a Vv e I(TX), a € T(W)

The anti-canonical Spin®-structure receives its name from the fact that the deter-
minant line bundle of W is K~1, the anti-canonical bundle of J. Notice also that
definition 2.4 says that W = C® K~!

The significance of W is that all other Spin®-structures of X can be obtained from
W, by tensoring it with a complex line bundle F and extending Clifford multiplication

trivially over the F factor, i.e.
Wi =EQW{ and v(p®a)= ¢® (v.a) (8)

with ¢ € I'(E), v € I'(TX), a € T(Wjp). Since complex line bundles are classified by
their first Chern class, it follows immediately that the space of Spin®-structures on a
manifold X admitting an almost-complex structure J, is in 1-1 correspondence with
elements of H2(X;Z). This fact is still true even when such a J does not exist.
Another useful observation is that, for v € I'(T'X), the endomorphism v. exchanges
the parity of W, i.e. v. € End(W*, WT¥). In the presence of an almost-complex
structure J, this is easily checked by direct computation for W, and it follows for all
other Spin‘-structures Wg from (8). It still remains true even in the absence of an

almost-complex structure.
2.2 The Seiberg-Witten equations

In this section we describe the Seiberg-Witten equations. The main ingredients are
the Dirac operator and a certain quadratic map on a spinor bundle, both of which
we now proceed to define.

10



To obtain the Dirac operator, we first need the following definition:

Definition 2.5 Let W — X be a Spinc-structure structure on X and let V° denote
the Levi-Civita connection associated to the Riemannian metric g on X. A connection
V on W s called a Spin©-connection if it is compatible with the Hermitian metric on

W and if the product rule
Vo(v.a) = Vo (v).a + v.V,(a) Vvo,w e I'(TX), a € I'(W) (9)
holds.

It is a known fact that Spin®-connections always exist (c.f. [3]). They are in
1-1 correspondence with connections on the determinant line bundle L of W, the
correspondence being V +— VAV (as L = A2W+). Given a connection A on L, we
will label the corresponding Spin‘-connection by V4. Observe that if A; and A, are
two connections on L with A, — A = a € i)}, then V42 — VA1 = q/2.

Spin-connections preserve the parity of the spinor bundles W%, that is, if a €
[(W%*) and v € T(TX), then V,(a) € T(W*) as well. This can been seen as follows:
recall the element e = e;.ep.e3.€4. € C(X) defined for a local orthonormal frame e;.
Since the individual endomorphisms e;. change the parity of W¥, e. will preserve the

parity. Now, if a € I'(W™), then e.a = a. On the other hand we have
e.V,(a) = Vi(e.a) = eVy(a) = Vy(a) = V,(e).a € T(WT)

Write V,(a) = 8% + 3~ with 3* € W*. Then e.8* = £3* and so the above equation
reads
B =B - (8T+B8)=-28"eW?

11



which immediately gives 5~ = 0 and thus V,(a) = 8t € W*. The case a € W~ is

treated in the same way.

Definition 2.6 Let W — X be a Spinc-structure and let x € X be an arbitrary
point. Let e;, i = 1,...,4 be an orthonormal frame in a neighborhood U of x. For a
connection A on L =det(W™), we define the operator D4 for a section a € T'(W)

with supp(a) C U, as:
Ds(a) = €. Via a € (W) (10)

As is easily checked, this definition is independent of the choice of the orthonormal
basis e; and thus defines a global differential operator Dy : T'(W) — I'(W) called the

Dirac operator assoctated to A.

Since the Spin‘-connection V4 preserves the parity of the spinor bundles W#
and the endomorphism e;. reverses it, it follows from the definition that the Dirac
operator reverses parity, i.e. we get two operators D : (W) — I'(W7¥). In most
cases, where the chance of confusion is little, we will omit the superscript + from
these Dirac operators.

The Dirac operator is defined on a much broader domain than just the set of
smooth sections I'(W). Since it is a first order differential operator, all that is required
of a section, for it to lie in the domain of the Dirac operator, is that it should have
one derivative. Thus, we get a whole panoply of Dirac operators (which will all still
be denoted by D) acting on the various Sobolev spaces: D4 : LP9(W) — LP~19(W),
p > 1 (for a definition and basic properties of Sobolev spaces see for example [1,

12



2]). With this definition understood, the following proposition summarizes some

important properties of the Dirac operator. Its proof can found in [3].

Proposition 2.7 Let W = W*® W~ be a Spin®-structure on X. Pick a connection
A on L=det(W*) and let D% : LP9(W?*) — LP-Y9(WTF), p > 1, be its associated

Dirac operator. Then the following hold:
1. The Weitzenbock formula:
- D+ AgA 1 1
D, Diy=V"V w+st+-2-FA.¢ (11)

where s denotes the scalar curvature of the Riemannian metric g and F¥ is the

self-dual part of the curvature F4 of the connection A on L.

2. The operators Di are elliptic operators. In particular, elliptic reqularity applies

to them:
11150 < C(I1D% ¥llp-1.0 + 11¥1l4) (12)

The constant C only depends on the pair (p,q) and the Riemannian metric g,

but not on .
3. The indez of D} can be calculated by the Atiyah-Singer indez theorem:

Ind(D}) = dim (KerD}) — dim Coker(D})==(L-L—o0x) (13)

> =

with ox = bt — b~ being the signature of X.

4. The Dirac operator obeys the unique continuation theorem: If Dayy = 0 and ¢

vanishes on an open set, then ¢ = 0.

13



The second important ingredient of the Seiberg-Witten equations is the bilinear
map q: W ® W+ — i A2+ (T*X) which we now define. Let v € A2*(TX) for some

re X.

Lemma 2.8 The endomorphism v. : W} — W} is traceless and skew-hermaitian.

Furthermore, the assignment v — v. is injective.

Proof. We proof the lemma here for the case when X admits an almost-complex
structure J, the general case can be found in [3]. It is a somewhat tedious but
straightforward calculation to see that v. is traceless in the case when W = Wj.
The general case now follows from this special case together with the definition (8).
Namely, suppose v. = [v;;] in some basis a;, i = 1,...,4, of (W"),. Let E be any
complex line bundle and ¢ € T'(E) with ¢(z) # 0. Then we still have that v. = [v; ;]
in the basis ¢ ® a; of (E ® Wy),. In particular, tr(v.) = 0.

The fact that v. is skewhermitian follows directly from the definition 2.3. To prove
injectivity, suppose that v. = 0 for some v € T, X. Apply v. to both sides to obtain
v.v. = 0. But by definition 2.1 we know that v.v. = —|v|?Id. Thus v. = 0 implies
|v| = 0 which in turn shows that v =0. ®

Denote the space of traceless, skewhermitian endomorphisms of W+ by Endj(W ™).

The above claim showed that v — v. defines a monomorphism
0 :iA**(T*X) — Endj(WT) (14)

It is easy to calculate that in fact both vector spaces have dimension 3. This leads to

the conclusion that the above monomorphism © is actually an isomorphism

14



Let now ¢ € I(W*) with W* = E® E ® K~! and define the quadratic map
q:T(WH)@T(W*) - iQ%" as
§ (0195 = 2 v3) b2 ¥}
g, ¢) =07 (15)
(21 1/)5 % ('lr/’z 1/’5 -1 wf)
In the above, ¥ = (Y1, ¥5) with ¢ € ['(E), ¥ € I'(E ® K~!) and ¢} is the dual of
¥i (e Y7(p) = (¥i @)
We are now ready to define the Seiberg-Witten equations. Let W = Wt W~ —
X be a Spinc-structure and let u € i Q%+ be an arbitrary self-dual two form. The
Seiberg-Witten equations are a pair of coupled equations for a pair (A, ') where A is

a connection on L =det(W™) and ¢y € ['(W). The equations read:
DA(#/)) =0
Fi=q(¥, ) +p (16)

A spinor v satisfying D 4(y) = 0 is called a harmonic spinor. In the second equation,
F} is the self-dual part of the curvature form F4 of the connection A. The form
u serves as a perturbation parameter of the equations. A solution (A,) of (16) is
called reducible if ¥ = 0 and irreducible otherwise.

For later reference, we calculate the linearized operator
Liagy :TGA®O W) 5 TEA T @ W) (17)

associated to a solution (A, ) of (16). Recall that by definition, for a pair (b, ¢) €

15



F(iA® W) we have

d
Liay)(b) = T (Dases(@ +t@), Fiy—q+to, v +to) —p)

The right-hand side expression is ecasily calculated using the formulas

1
Daw€ =Dal + 2 b.g

Fi,=F;{+d"b
In conclusion, we find the following expression for L4 y):

1
Liay(b,@) = (Dap + §b-¢,d+b —q(¥,¢) — q(p,¥)) (18)
We conclude this section with two useful lemmas.

Lemma 2.9 If (A,v¢) is a solution to the Seiberg-Witten equations (16) of class at

least C?, then ¢ and F7 satisfy the pointwise bounds

, s
|2 <maz {0, 17 1]l co}

S
Fils Smaz {[lallcs, =5 +2llullec}  Voe X (19

Proof. If ¢ = 0 then (19) holds trivially. Thus, assume that 1 # 0. In that case,
|| attains a global maximum at some point £ € X with |¢|; > 0 and A]|2 > 0.

On the other hand we have

Alp[? = d djyf? = d" 2Re ((V4y, )
= 2Re (((V4)'VA9,¥)) — 2| VA2
= 2Re (-39 ~ Ff w,v) — 2V AYP

16



= —3I¥l* = Re (g, ¥) + u)¥,v) = 21V

< =50 = 20"+ lul - P

= [Yl*(=5 — 210 + |ul) (20)
The calculation used the easy to check formula {q(¥, ¥).¢,¥) = 2 |¢|* as well as the
Weitzenbock formula (11) in going from line 2 to line 3.

At the maximum point £ € X we must have —s/2 — 2|¢/|2 + |u|. > 0 leading to
the desired formula |)|?2 < —s/4 + |u|./2. Since z is the maximum of [¢|?, the first
inequality in (19) follows.

For the second inequality, use the second Seiberg-Witten equation together with
lg(w, V)P = 2|y|*:

File < lg@, )l + lnle = V2L + |l
< VZmax {0, + llulles) + luls

S
< max {|lullco,~3 +2llullcs} W (21)

Lemma 2.10 If (A,v) is a solution of the Seiberg- Witten equations (16) of class at

least L2, then (A,v') is gauge equivalent to a C* solution.

Proof.  This follows from the usual bootstrapping process and the fact that the

Seiberg-Witten equations are elliptic. Elliptic regularity of the Dirac operator implies

[¥llp2 < ClI¥]l2 (22)

showing immediately that v € LP? for all p > 1 and thus ¥ € C*®. As for A,
choose first a gauge such that d*a = 0 where a = (A — Ap) and Ap is some C™ base

17



connection. Then elliptic regularity of d* + d* gives

llallp2 < C(llallz + lld*allp,-12) < C(llall2 + l1llp-12 + llg(¥, ¥)llp-12)  (23)

This last inequality together with (22) shows that A € LP? for p > 1 and thus also

AeC® =
2.3 The moduli space

In order to define invariants of the smooth structure of X from the Seiberg-Witten
equations, one needs to ensure that the moduli space of the solutions of (16) has
certain compactness properties. This and other properties of the moduli space is
what we will study in the present section.

The gauge group underlying Seiberg-Witten theory is G =Map(X, S?) (since S! =
U(1) is the structure group of L =det(W™)). The gauge group acts on pairs (A, )
of connections on L and sections of W, in the following manner:

g-A=A—-2g"1dg
9-v =gy g9€g (24)
Notice that the first equation shows that the action of G on a Spin°-connection V4
is given by g - V4 := V94 = V4 — g71dg, implying immediately that F, » = Fa. It
follows directly from the definition that q(g - ¥, g - ¥) = q(¢,¥) since |g| = 1.
That the Seiberg-Witten equations are invariant under this action of G can easily

be checked. We give here the check for the first equation in (16), the invariance of

the second equation is obvious:

Dyalg-¥) = e (Vi (g¥))
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=e.((V2 —97'de,9)(g¥))
=e.(V2(9¢) — de¥)

= e;.(de,p + gVIY — d. W)
= e.(gViY)

=gDa(¥) (25)

From this we see that if the Seiberg-Witten equations (16) have at least one
solution, then they necessarily have infinitely many of them. This leads to a big
redundancy of solutions: from a point of view of trying to formulate invariants of
the smooth structure of X, the solutions (A,v') and g- (A, ) carry exactly the same
information. Thus we are motivated to henceforth identify solutions that differ by a
gauge transformation. The Seiberg-Witten moduli space is the set of these equivalence
classes of solutions.

Before continuing the discussion, we first introduce some more notation. Let Ao
be a connection on L which we will referred to as a base connection (but which at this
point is completely arbitrary). Assume throughout that p > 1. We denote by B(L)
the space AP?(L) ® LP*(W™) with AP?(L) being the space of LP? connections on L.
Let B'(L) = AP2(L) ® (LP*(W+*)\{0}). The configuration spaces of the theory are
B(L) = B(L)/G and B*(L) = B (L)/G. The space g(L) is an intermediate of sorts of
the spaces B(L) and B(L) (same is true of its *-analogue) and is defined as B(L) =

{(A,v) € B(L)|d*(A — Ag) = 0} (and B*(L) = {(A,v) € B'(L)|d*(A — Ao) = 0}).
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We also introduce the moduli spaces

My (L) ={(A,¥) € B'(L) | (4,9) solves (16) }
MS¥(L) ={(A,¢) € B*(L) | (A, ) solves (16) }

MS¥ (L) =My (L)/G (26)

(we suppress the perturbations form g from our notation for the moduli spaces, but
keep in mind that different choices of p give rise to different moduli spaces). The
condition d*(A — Ap) = 0 is called the Coulomb gauge fixing condition. While this
condition doesn’t determine a unique gauge for A, it reduces the number of possible
gauges considerably: if (A,v) is a solution of (16) with d*(A — Ag) = 0, then the
subgroup Gy C G of elements g for which d*(g- A — Ap) = 0, is homotopy equivalent
to HY(X;Z) x S! (the S! factor corresponds to the constant maps). In particular,

the moduli space M3W (L) can also be expressed as M3¥ (L)/Go.

Proposition 2.11 The moduli space M3 (L) is compact.

Proof. Without loss of generality, assume that p > 5 (every L!? solution (A,)
of (16) is C* according to lemma 2.10). Choose a sequence (An,%,) € MY (L) =
.//Vlvf(w(L)/ Go. Recall that Ay denotes our base connection and set a, = A, — Ao.
Clearly, the connections A, are bounded if and only if the 1-forms a,, are bounded.
Note that d*a, = 0 and Fa, = Fa,+d%a,. The operator d* +d* : iQ} — ngeang('J’
is elliptic and Karen Uhlenbeck’s theorem applies to it: there exist gauge transforma-

tions g, € Go (chosen from the H'(X;Z) part of Gp) such that a/, = g, - A, — Ao =
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a, — 29! dg, obey the inequality

layllp2 < C (1 + |[(d” + d¥)ap [lp-12) = C (1 +ld%ay |[p-1.2)

< C 1+ llg(n, ¥3)llp-1.2)

(27)

In the above, C is a constant depending only on the Riemannian metric, the Spin®-
structure and Ap and its precise value may change from line to line. The spinor ¥/, is
given by ¢! = g, - ¢¥,. Agree to rename the (a,,.) back to (an,¥,). Observe that

2Dy, = an. + 2Dy, Using elliptic regularity of D4, applied to ¢, gives

[allp2 SC (1D ag¥nllp-1.2 + [¥all2)

<C (llan-Ynllp-12 + [[¥nll2) (28)

Recall that the Sobolev space L3? on a 4-manifold embeds (compactly) into the
space of C? maps. Because of that, lemma 2.9 applies and we get the n-independent
bounds: ||¢,]l; < C. In particular, the L*bounds induce L'?-bounds (these two
norms are equivalent on a 4-manifold). We now repeatedly use equations (27) and

(28) to improve on these bounds (this process is called bootstrapping):

(27) = llanll22 <C (1 + [lg(¥n, ¥n)ll12) < C (L + [[$nll) £ C
(28) = l[¥nll22 <C (llan-¥ulliz + [¥all2) < C(llanll22 - [[¥nlls +1) < C
(27) = [lanlls2 SC (1 +[lg(¥n, ¥n)ll22) < C (1 +[[¢nll32) < C
(28) = [[¥nlls2 <C (llanynll2z2 + [[¥nll2) < C(llanll2z - [[¥nll22 +1) £ C
(29)
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These inequalities serve as the base of the induction process that completes the proof
of the proposition: from (27) and (28) we see that if (a,,,) is a bounded sequence in
LP~12 then it is also a bounded sequence in L. However, the Sobolev embedding
LP~12 — [P? is compact and so (a,,%,) € LP~1? has a convergent subsequence. By
induction on p we conclude that the sequence (a,,,) has a convergent subsequence
in each LP2, p > 5. It still remains to take the quotient of the moduli space under the
S! component of G,. This however preserves compactness as S! is a compact group.
|

Our next aim is to show that for “good ”choices of y in (16), the moduli space
M3 (L) is a smooth manifold of finite dimension. To see this, consider the map

SW : B*(L) — LP~'2(W~ @ A2+(T* X)) given by
SW(A,¢) = (Da(¥), Fy) (30)

Recall that a linear map between Banach spaces is called Fredholm if its image is
closed and both its kernel and cokernel are finite-dimensional. A map between Banach

spaces is called Fredholm if its differential is Fredholm at each point.

Lemma 2.12 The map SW 1is a smooth Fredholm map, transverse to the linear
subspace {(0, ) € LP2(W~ @ A>+(T* X))} at all (A, ) solving (16) with ¢ # 0 and

with d*(A — Ao) = 0.

Proof. To prove the Fredholm property, we first consider the differential d 4 4)SW
of SW at a point (A, ¢). We incorporate the gauge group action by choosing a gauge
fixing condition: d*(A — Ag) = 0 (recall that Ay is a base connection on L). For
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(A ¢) € va\""’(L) we find the said differential

1
dayySW(b,p) = (Dap + §b-w, d*b —q(¥,9) — qle,¥)) (31)

The gauge condition d*(A — Ap) = 0 translates into d*b = 0.

The first component of (30) is evidently smooth while the second component is
smooth since both d* and ¢(v, v) are linear, bounded maps (this fact uses the Sobolev
multiplication theorem). Thus SW is smooth. The Fredholm property is established
by observing that d(4)SW is a compact perturbation (such perturbations preserve
the property of being Fredholm) of the operator D4 @ d*. The Fredholmness of the
later follows from two facts: one being part two of proposition (2.7) (elliptic operators
on compact manifolds are Fredholm) and the second being an explicit calculation of

the kernel and cokernel of d¥|Kep (4.:

Ker <d+|Ker (d')) =M (X)

Coker (d+|Ker (d.)> =~ H2H(X) (32)

Here H!(X) are the harmonic 1-forms and H2*(X) are the harmonic, self-dual 2-
forms on X.

The transversality of SW to the subspace {(0,u) € LP?2(W~ & A>H(T* X))} is
equivalent to the surjectivity of the first component of (31). Suppose that it is not
onto, then there exists ¢ € LP~13(W~) that is L? perpendicular to the image of the

map (b, ) — Dap + %b.w. Said differently, the equation

1
(Dap + §b~¢’, @)z =0
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holds for all b and . Choosing b = 0 and integrating by parts shows that D¢ = 0. A
contradiction is now produced by constructing a special 1-form b: locally b is defined
as b = Re ((¢,e:.¥) €' (where {e;} and {e'} are a dual pair of local orthonormal frames
of TX and T*X). Using Dayy = 0 and D4¢ = 0 one can verify that d*b = 0 and an

easy calculation shows that |b]? = |¢|? [¢|?. Using this b, with ¢ = 0 leads to

0= (b, 6) 12 = |[al]s = /X 16 |2

Since 9 is assumed to be nonzero, ¢ vanishes on at least an open set and thus
everywhere by the unique continuation theorem for the Dirac operator. m

Invoke now an infinite-dimensional analogue of Sard’s theorem (due to Smale
[11]) guaranteeing that the set of regular values of a Fredholm map between Banach
manifolds are of second category (i.e. the countable intersection of open, dense sets).
Agree from now on to choose the perturbation parameter u in the Seiberg-Witten
equations to be such a regular value of the map SW. Under such a choice, the
moduli space M3 (L) is a smooth compact manifold.

To conclude this section, we calculate the dimension of the moduli space. Since
HﬁW(L) = SW~1(0,u), the dimension of Mf(w(L) is given by the index of the

differential of SW and we calculate this dimension first. From (31) we see that
Index (d(4,4)SW) = Index D4 + Index d*

The first summand on the right hand side is provided by (13) while the second follows
from (32) to be: Index(d*) = b; — b*. Putting these together we obtain

Index (da ) SW) = %(L L—0,)+b —b* = %(L (L = 5b" + b + dby)
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Since MY (L) = Mf(w(L)/go and dim G = 1, we find that

1 1

dim M3V (L) = (L L- 56 +b +4b) — 1= 7L L—30x—2x) (33)

Here ex and ox are the Euler characteristic and the signature of X.
2.4 The Seiberg-Witten invariant

This section defines the Seiberg-Witten invariant coming from the moduli space of
gauge equivalent solutions of the Seiberg-Witten equations (16).

To begin with, let W — X be a Spin®-structure of X and denote the determinant
line bundle of W+, as usual, by L. Recall that the moduli space M$¥ (L) is a com-
pact, smooth, finite-dimensional manifold and as such, it carries a fundamental class
[M3¥(L)] in its top dimensional (non-zero) homology group. The Seiberg-Witten
invariant will be obtained by pairing this homology class against certain cohomol-
ogy classes of the configuration space B*(L). Our next task is to understand the
cohomology group of B*(L).

Recall the definitions of g‘(L) and Go:
B'(L)={(A,¢) € B(L)|d"(A— A)) =0} and Gy~ HYX;Z)x S!

Choose to view B*(L) as the quotient B*(L)/Go. The space B(L) is an affine space
and hence contractible. On the other hand, the set B(L)\B (L) = {(A,0) € B(L)} is
an affine set of infinite codimension in B(L) implying that the open set E‘(L) is also
contractible. But the action of Go on B' (L) is free and thus the quotient B*(L) /Go is

the classifying space for Gy. This space is homotopy equivalent to the product of the
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Eilenberg-MacLane space K(H!(X;Z),1) with CP*. To summarize, we have proved

the following

Lemma 2.13 The space B*(L) is homotopy equivalent to T® x CP*® where b; is the

first Betti number of X.
Denote the generator of H2(CP*;Z) by h, thought of as an element of H*(B*(L);Z).

Definition 2.14 Let W — X be a Spin¢-structure on X with determinant line bun-
dle L. Let d = (L?> — 30x — 2ex)/4 be the dimension of the moduli space MY (L).

Then the Seiberg- Witten invariant SWx (L) is defined to be:

1. SWx(L)=0 ;  ifdisoddord<D0.
2. SWx(L) = (2, [ MV(L))) ; ifd is even.

Remark 2.15 The above definition pairs [M3¥ (L)] only the with the correct power
of h € H¥B*(L);Z). In the case when X is not simply connected, this second coho-
mology group has a richer structure and other pairings with [M3¥ (L)] are possible,
leading to more invariants. However, we will restrict ourselves only to the case of

definition 2.14.

Our next objective is to justify the use of the word “invariant "in the above
definition. The Seiberg-Witten moduli space M3¥ (L) depends, a priori, on the
choice of the Riemannian metric g as well as the choice of a (generic) perturbation
form pu. The dependence on the metric g manifests itself on several levels: it defines a
Levi-Civita connection and thus determines what a Spin®-connection is. This in turn

gives rise to the Dirac operator. On the other hand, the metric determines the Hodge
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star operator * : Q4 — QY and so determines the projection  : Q% — Qi‘f which
is used via F; = m(F4) in the Seiberg-Witten equations. While the moduli space
itself may change when altering those two choices, it turns out that these different
moduli spaces carry the same homology class [M$"(L)] and thus determine the same

Seiberg-Witten invariant.

Lemma 2.16 Assume that X is a 4-manifold with b+ > 2. Let W — X be a Spin°-
structure on X with determinant line bundle L. Then the Seiberg- Witten invariant
SWx (L) doesn’t depend on the choice of (a generic, see proof below) Riemannian

metric g and perturbation form .

Proof. We first describe the set of “bad”pairs (g, i), i.e. the ones for which the
Seiberg-Witten equations admit reducible solutions. If (A, 0) is such a solution, then
the second equation in (16) gives (F4 — u)* = 0. Denote by n*(g) the orthogonal
projection from % onto the (anti-) self-dual, harmonic 2-forms H*(g). Likewise,
denote the orthogonal projection from Q% onto the harmonic 2-forms H(g) by n(g).

Then we have
(Fa-p)*=0 & 717g)(Fa-p)=0 & mn(g)(Fa—p)eH (9) (34)

On the other hand, Ly, := 7(g)(i Fa/27) is independent of the choice of the particular
connection A since it is the unique harmonic representative of L. We conclude that
(g9, p) is a bad pair if and only if 7(g)(i p/27) € Ly + H™(g). The space H™(g) has

codimension b* in H(g) = Codomain (7(g)). This shows that the set

W(Lg) = lu € 195" |7(0) (5= 1) € Lo+ - (a)) (35)
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has codimension b* inside of {Q5".
Consider now two pairs (g;, p:), ¢ = 1,2. Take a path (g¢, u¢), t € 1, 2], connecting

(g1, #1) to (g2, pt2) and define the set W(L; (gt p1e)) as

W(L; (g0, 111)) = {(ge, 1) | 0 € W(L, g1), ¢t € [1,2]}

Since by assumption b* > 2, the set my (W(L; (g¢, 1)) has codimension at least 1
inside of i Q%" (7, is projection onto the second coordinate). It is shown in [11] that
a generic path (g, jz¢) will intersect W(L; (g, p1¢)) in at most finitely many points and
each of these is a transverse intersection point. It follows now, by invoking again the

results from [11], that the set
MV (L; (g, 0)) = {(A, )] (A, ) solve (16) for any of the pairs (g;, ), t € [1,2]}

is a compact, smooth, oriented manifold of dimension d + 1 (d = dim MV (L)),
providing a cobordism between the Seiberg-Witten moduli spaces obtained from using
(91,1) and (ga, p2). In particular, the homology class [M3¥(L)] is independent of
the chosen “good”pair (g, ). m

In the case bt = 1, the Seiberg-Witten invariant does depend on the choice of
the pair (g, ). That dependence is well understood and completely described by the

next lemma (cf. [9]), which we give without proof.

Lemma 2.17 Let X be a 4-manifold with b* = 1 and let w, € Qg{’ be a generator
of the positive forward cone in H*(X;Z). Let W — X be a Spin‘-structure on X

with determinant line bundle L. Then the Seiberg- Witten invariants SWx (L; (g1, p1))
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and SWx (L; (g2, pt2)) calculated from two pairs (gj, p;) are the same, provided the two

eIPressions
1 .
<L'wyj’[X]>“2_/l‘jAwa j=1,2
TJx
have the same sign (notice that this sign doesn’t depend on the specific choice of w,).

Definition 2.18 An element L € H*(X;Z) is called a Seiberg-Witten basic class if

SWx(L) # 0.
Proposition 2.19 The Seiberg- Witten invariants of X have the following properties:

1. If X admits a metric of positive scalar curvature, then SWx(L) = 0 for all

L e H}(X;Z).
2. The number of basic classes of X is finite.

3. There is an inherent duality in Seiberg- Witten theory, namely that of replacing
L by —L. The Seiberg- Witten invariants of a dual pair of Spin®-structures are

related by a simple relation:

SWx (L) = (=1)*F* SWx(-L) (36)

Proof. The first two claims follow readily from (19). We give a proof of claim 3
only in the case when X admits an almost-complex structure J and refer the reader
to the general case to [7]. Let L = 2E — K, then the associated Spin®-structure has
positive spinor bundle W = E & (E ® K!) and we write spinors ¢ € [(W™) as

¥ = (o, 8). The duality L — —L corresponds to replacing E by E® K~!. A direct
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check shows that if (A, (a,3)) is a solution of (16) for the Spin-structure L (with
perturbation form ), then (A4, (8, a)) is a solutions of (16) for the Spin‘-structure
—L (with perturbation form —p). Here A is the dual connection of A. This gives a
diffeomorphism between M3Y (L) and MY (—L) and thus SWx (L) = £ SWx(-L).
The correct sign is calculated by a, somewhat tedious but straightforward, comparison
of the orientations of M35} (L) and M3V (—L), and is omitted here. m

We finish this section with a few examples:

Example 2.20 1. The Seiberg- Witten invariants of CP? and T, x S? calculated

using a pair (g, p) with |p| small and with sy > 0, are all zero.

2. The Seiberg-Witten invariants of the simply-connected, elliptic surfaces E(n)

without multiple fibers are:

( n—2 ) ;L=xqF, F = class of reqular fiber
SWx(L) = !

0 ; otherwise

3. The only basic classes of complex surfaces of general type, are £K (cf. [7]).

The invarinat for each class is 1.
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3 Gromov-Witten Theory

In this section we give a very brief introduction to the theory of counting embedded
J-holomorphic curves in symplectic 4-manifolds. We omit proofs and instead refer
the interested reader to the vast and comprehensive literature available on the sub-
ject. At the onset we would like to point out, as there are many Gromov-Witten
theories in existence today, differing from each other in the types of objects they
are counting (e.g. embedded J-holomorphic curves, immersed J-holomorphic curves,

J-holomorphic maps, etc.), that we will follow the approach of Taubes [15].

Definition 3.1 Let (X,w) be a symplectic 4-manifold. A triple (w,g,J) consisting
of the symplectic form w, a Riemannian metric g and an almost-complez structure J,

1s called a compatible triple if
g(u,v) = w(u, J(v)) u,veTX (37)

It is easy to see that any two members of a compatible triple, uniquely determine the
third member. An important consequence of (37) is that J becomes an orthogonal
map, i.e.
9(J(u), J(v)) = g(u, v)

Also, observe that (u,v) — ¢(u,v) + iw(u,v) defines a Hermitian metric on the
complexified tangent space TcX. Given a symplectic form w, an abundant supply of
compatible triples always exists (cf. [6]). The canonical classes K; and K3, associated
to almost-complex structures J), Jo, each of which belongs to a compatible triple, are
the same. The canonical class only depends on w.
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Definition 3.2 Let C — X be an embedded symplectic submanifold of X. We say
that C s a J-holomorphic curve if the tangent space T,C is a complex subspace of

T, X at every point x € C.

The genus g of a connected J-holomorphic curve C is determined by its square

and its pairing with the canonical class, as given by the adjunction formula
20-2=[CP+K-[C] (38)

Another important property that J-holomorphic curves share with holomorphic curves
is that they intersect each other locally positively. Namely, if C; and C, are two dis-
tinct J-holomorphic curves, then [C)]-[C2] > 0 and each point z € C;NC, contributes
positively to that intersection number. This is a result of Dusa McDuff and can be
found in [5].

For a given E € Hy(X;Z), set

d= %(E"’—E-K) (39)

where K is the canonical class associated to w. Introduce Ay as the set of pairs (J, Q)
with J an almost-complex structure compatible with w and §2 a set of d distinct points
of X. It has the structure of a smooth manifold inherited from the Frechet manifold
C*(End(T X)) x Sym?(X).

Each J-holomorphic curve C comes equipped with a linear operator D¢ : C*°(N¢) —
C>*(Nc®T®1C) obtained as the linearisation of the generalized Cauchy-Riemann op-

erator Oc. Here N is the normal bundle of C in X (which is also a complex subspace
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of TX). In the case when C contains all points of §, let evq : C®(N¢) — @pecalN,
be the evaluation map associated to Q. If d = 0, we say that D¢ is non-degenerate if

Coker(D¢) = {0}. In the case d > 0, D¢ is called non-degenerate if
D¢ ® evg : C*°(N¢) = C®(Ne ® T*!C) Spea Np

has trivial cokernel.
A pair (J,Q) € A,,, m > 0, is said to be generic if the following five conditions are
met (see [15] for more details, especially on the definition of n-non-degenerate which

is immaterial for the present discussion and we omit it):

1. For a fixed class E € Hy(X;Z), there are only finitely many embedded J-

holomorphic curves representing E' and containing d points of €2.
2. For each J-holomorphic curve C, the operator D¢ is non-degenerate.

3. There are no connected J-holomorphic curves representing the class £ € Hy(X; Z)

containing more than d points of €.

4. There is an open neighborhood of (J,§2) in .44 such that each pair (J', Q') from
that neighborhood satisfies conditions 1-3 above. Furthermore, the number of
J'-holomorphic curves containing d points of §', is constant as (J',Q') varies

trough the said neighborhood.

5. If E2 = K- E = 0 then each of the finitely many J-holomorphic curves in E

containing d points of §2, is n-non-degenerate for each positive integer n.
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The set of generic pairs (J, ), which we denote by J™9, is a Baire subset of A4,.
For the choice of a generic pair (J,2), each J-holomorphic curve containing all
the points of Q, is assigned a weight (C). The weights for genus g > 2 curves are
always *1, however, weights of J-holomorphic tori may be other integers as well. The
definition of £(C) is not an all together simple matter and the reader is referred to the
excellent account [15]. We only give here the definition of €(C) for the case d = 0 (and
thus Q = @) and g > 2. In that case, the operator D¢ : C®°(N¢) — C®(Ne @ T*1C)

has the form
Dcs = 0cs +vs+ i3 v e (T"'C), p e T(T™'C ® N¥?)

Here 5 € T'(N) is the dual section of s and the sections v and p are determined
by the almost-complex structure J. Find a path of Fredholm, index zero, operators
D; : C®(N¢) — C®(N¢e ® T®'C) connecting D¢ to the complex linear operator
Ocs + vs. Such a path, if chosen from a suitable Baire set of generic paths, will
have only finitely many singularities, i.e. there are points t; < ... < t, with dim
Ker(D,,) = 1 and dim Ker(D,) = 0 for t # t;. The weight £(C) is defined as (—1)".
While n may depend on the chosen path Dy, its parity does not, and thus €(C) is
well defined.

The Gromov-Witten invariant is now defined in the following manner:

Definition 3.3 Let E € H?(X;Z) be a cohomology class and pick a pair (J, Q) fromJ"9.
Let M$(E) be the moduli space of all J-holomorphic curves passing through each

point of  and homologous to the Poincaré dual of E. Then the Gromov-Witten
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invariant Grx(E) of E s defined as
Grx(E)= )  €(C) (40)
CeM§(E)
An argument similar to the one used in section 2.4 to show the independence of the
Seiberg-Witten invariant of the choice of the pair (g,u), shows that the Gromov-

Witten invariant is independent of the choice of the pair (J,Q) € J"9.
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4 Gauge theory on symplectic 4-manifolds

4.1 Introduction

While Seiberg-Witten theory is defined for all smooth, compact 4-manifolds with
b* > 1, it has some additional features on 4-manifolds which possess a symplectic
structure. The two most outstanding of these are the fact that there are always
Seiberg-Witten basic classes on a symplectic 4-manifold and their spectacular relation
with the Gromov-Witten invariants. Both of these results are due to Taubes.

Let (X,w) be a symplectic, smooth, compact 4-manifold with symplectic form w
and pick a compatible triple (w, g,J). The symplectic form w induces a splitting of
A%+ = A2 (T*X) as

AT =2 R-wo A°? (41)
which will be used below to write the curvature component of the Seiberg-Witten
equations (16) as two equations, one for each of the summands on the right-hand side
of (41).

It proves more convenient and natural for the purposes of this section, to de-
note the Seiberg-Witten invariant of the Spin®-structure Wg = E @ (E ® K1) by
SWyx(Wg) rather than SWx (L) (with L = 2E — K). It also proves convenient to

write the spinor ¢ € I'(W}) in the form
v=vr(a,8) a€Tl(E),BeET(E®K™

where 7 > 1 is a parameter whose significance will become clear later. With this
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notation, the map ¢ from (15) can be calculated to be
ir ir -
a(,v) = g (lal = |8P)w + £ (@6 + af) 42)
4.2 The anticanonical Spin®-structure

Among the first spectacular results in Seiberg-Witten theory was Taubes’ theorem
[16] saying that the Seiberg-Witten invariant of the anticanonical Spin®-structure on
a symplectic manifold is equal to £1. More is true: the equations have exactly one
solution (A, /T - ug), ug € I'(C), for the choice of

ir

y=FI0——8—w (43)

in (16) and for r > 1. The purpose of this section is to describe the solution
(Ao, /T uo) and its linearized operator.

The pair (Ao, /T - up) is characterized (up to gauge) by the condition
(Vuq,uo) =0 (44)

(where V° is the Spin°-connection induced by A4y) and can be obtained as follows:
let up be any section of C® K ! with |ug| = 1 and whose projection onto the second
summand is zero. Likewise, let A be any connection on K~! and let V4 be its induced
Spin®-connection on Wy = C® K1, Set a = (ug, VAuo). This defines an imaginary

valued 1-form as can easily be seen:

a+a= (V%o up) + (uo, VAug) = duol®> = 0

Define the connection Ay on K~! by Ay = A —a which induces the Spin°-connection
V0 = V4 — a on W{. This connection clearly satisfies (44). With the choice of u as
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in (43), the Seiberg-Witten equations (16) take the form

Day =0

Ff - Ff, =5 (ol = 1~ |80 + 2 (a0 + af) (45)

Since the S-component of ug is zero and since |a| = |ug| = 1, the pair (Ag, uo) clearly
solves the second equation of (45). The fact that is also solves the first equation relies
on the closedness of w as well as (44). Taubes [16] showed that there are, up to gauge,
no other solutions to (45) and, as we shall presently see, that the solution (Ag, uo)
is a smooth solution in the sense that the linearisation of (45) at (Ao, ug) has trivial

cokernel. These two facts together prove the
Theorem 4.1 Let (X,w) be a symplectic manifold. Then SWx(W,) = £1.

Define S : LYM2(iA' @ Wy) — L?(iA° @ iA>* ® Wy) to be the linearized Seiberg-
Witten operator for the solution (A, up). Thus, for (b, (&, &2)) € LY2(iA'@(COK™Y))

we have

(D 4o(&0,&2) + g b.uo,
S(b, (&,€2)) = d*b— Vrq(€,u0) — Vra(uo, ), (46)

d*b + ?% Im(ﬁofg))

Let S* : L2(iA° @ iA%2* @ Wy ) — LY2(iA' @ Wy") be the formal adjoint of S. The

following proposition and corollary are proved in [13], section 4.

Proposition 4.2 Let S and S* be as above. Then the operator SS* on L*(iA° ®
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iA2T © Wy) is given by

r

1
SS* = ZVO"VO +Ro+ VTR + 3

(47)

where V%* is the adjoint of V° and where R;,i = 0,1 are certain r-independent

endomorphism on L*(i(A° © A2+) © Wy).

The proof is a straightforward calculation, terms of the form D 4,D% are simplified
using the Weitzenbdck formula for the Dirac operator. An important consequence of

(47) is the following:

Corollary 4.3 With S and S* as above, the smallest eigenvalue Ay of SS* is bounded

from below by r/16. In particular, S is invertible and S~! satisfies the bounds

4

\/;Ilyllz and  |[S7"yll2 < Cllyllz (48)

1S~ y|l2 <

where C is r-independent.
4.3 The general case and SWx(Wg) = Grx(E)

Consider now a Spin°-structure Wg = E ® Wy on X. The connection Ay on K1
and a choice of a connection By on E together induce a connection B(‘,g’? ® Ay on

E®?® K~ = ¢;(W{) by the product rule
B§? ® Ao(01 ® 02 ® ¢) = Bo(01) ® 02 ® ¢+ 1 ® Bo(02) ® ¢+ ©1 ® 02 ® Ao(9)

The space of connections on E®?2 @ K~! is an affine space with associated vector

space iQ2%. With the choice of a base connection B§? ® Ay in place, we will from now
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on regard solutions to the Seiberg-Witten equations as pairs (a,v) € iy x ['(WZ)

rather than (4,v) € Conn(E®*?® K~!) x ['(W{), the relation between the two being
A=Bf*Q® Ao +a

We will agree to use henceforth the choice of p in (16) to be

ir
p=—g (49)

For ¢ € T(E ® (C® K1) we will write ¥ = /7 (a ® up,8) with a € ['(E) and
B €T(E® K1) and ug as in the previous section.
With these conventions understood and with the use of (41), the Seiberg-Witten

equations become

D,y =0

FM =" (o = 1P = 1)w (50)
@ 8

Fo2 =g
a 4

Here F}” is the orthogonal projection of 2 F§ + d*a onto A*.

We also use this section to remind the reader of several useful bounds that a so-
lution (a, ) of the Seiberg-Witten equations satisfies. These bounds are provided
courtesy of [12] and their proofs rely solely on properties of the Seiberg-Witten equa-
tions.

A solution (a, ) of (50) satisfies the following bounds:
la] <1+ ¢
T
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C C’
13> < 7(1 = laf®) + ) (51)

|VAa|> <C VT exp (—gdist(x,a‘l(O))) , T€X

11— |a(z)’| <Cexp (—%Fdist(z,a"l(O))> , z€X

The constants C and C’ appearing above only depend on FE and the Riemannian
metric g but not on the particular choice of r.

The inequalities (51) (together with a monotonicity formula which we don’t need
for our discussion) are the basis of [12] where Taubes shows that every solution of
the Seiberg-Witten equations gives rise to an embedded, possibly disconnected, J-
holomorphic curve. The converse of this fact is also true. Namely, in [13] Taubes
shows that every J-holomorphic curve with genus ¢ > 2 can be used to construct
a Seiberg-Witten monopole. Tori are special cases, not every torus gives rise to a
Seiberg-Witten monopole, but certain collections of tori together do. In any case, the
following theorem holds and is a magnificent culmination of the interplay between

Seiberg-Witten and Gromov-Witten theory:

Theorem 4.4 (Taubes, 1996) Let (X,w) be a symplectic manifold with b* > 2 and
E € H¥*(X;Z). Then

SWx(Wg) = Grx(E) (52)

Some of the most immediate consequences of theorem 4.4 are summarized in the
following corollary. Recall that a manifold X is said to have Seiberg-Witten simple
type if for all basic classes L of X, the dimensions of the corresponding moduli spaces
M3Y (L), are all zero.
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Corollary 4.5 1. The Poincaré dual of the canonical class K of a symplectic

manifold can be represented by an embedded J-holomorphic curve.

2. There is a duality in Gromov- Witten theory relating the Gromov- Witten invari-

ant of E to K — E via

GT‘x(E) = :i:GTx(K - E) (53)

3. Symplectic manifolds with b* > 2 have simple type.

Proof. The first claim is a direct consequence of theorems 4.1 and 4.4, while the
second follows from theorem 4.4 and proposition 2.19.

The third point requires a bit more thought. If Wg is a Seiberg-Witten basic
class, then by theorem 4.4, E' is a Gromov-Witten basic class. Thus, its Poincaé dual
can be represented by an embedded J-holomorphic curve ¥ of genus g. Also, the

dimension of the Gromov-Witten moduli space has to be non-negative:
: Gr 1 2
dim M*"(F) = -2—(E -K-E)>0 (54)

Combining (54) and the adjunction formula (38), one obtains the following two in-
equalities:

E*>¢g-1 and K-E<g-1 (55)
Let n > 0 be the integer such that E2 = g — 1 + n and thus (via (38)) also K - E =
g — 1 —n. Now we use, the already proved, second point of the present corollary,

namely Gr(E) = £Gr(K — E). The conclusion is that the class K — E is also a basic

class and so its Poincaré dual is represented by another J-holomorphic curve ¥'.
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Now one invokes the aforementioned result of Dusa McDuff [5] on the positivity
of the local intersection of two J-holomorphic curves: [£] N [Z’] > 0. Translated into

cohomology classes this gives
0KXE- (K-E)=E-K-E’=g—-1-n—(g—-14+n)=-2n<0

Thus n = 0 and E? = K - E = g — 1. The Seiberg-Witten simple type is now an easy

consequence:

dim MW (L) = = ((2E - K)? — (30 + 2¢)) = - (K?> — (30 + 2¢)) = 0

e M
> —

where L=2F - K. m
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5 Grafting Seiberg-Witten Monopoles

This section is the heart of the thesis as it is here where we construct the grafted
monopole (a, ) for the Spin°-structure W from two monopoles (a;, ¥;) for the Spin®-
structures Wg,, ¢ = 0,1 (where as usual E = Ey ® E}). Recall from the introduction
that the term “grafing”refers to the map described by the top row in the commutative

diagram (3).

5.1 Producing the approximate solution (a,v) from a pair

(a0, %0), (a1,%1)

Let Ey and E; be two complex line bundles over X. The aim of this section is to
produce an approximate solution (a, ¢’) of the Seiberg-Witten equations for the Spin®-
structure Wg,gp, from two solutions (ao,%) and (a1,¥:) for the Spinc-structures
WEg, and Wg, respectively. Implicit to our discussion are the choices of two "base”
connections By and B; on Ey and F; and the product connection By ® B; they
determine on Ey ® E;. As before, we will write ¥; = /(o ® uo,3:), ¢ = 0, 1, and

Y = /r(a ® ug, B). We define (a,?) as

a=a+a
a=00® o (56)
B=ao®Pb1+0a1® B

The first task at hand is to check how close (a,’) comes to solving the Seiberg-

Witten equations. We begin by calculating D, locally at a point z € X. Choose an
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orthonormal frame {e;}, in a neighborhood of z and let {e'}; be its dual frame.

D,(¢') = VT Da(ao ® a1 ® ug + ao @ B + a1 ® Bo)
= /T Dq, (o ® wo) ® a1 + Vg ® D, (a1 @ up)+
+ Ve Ve (a0 ® B1 + a1 ® Bo)
= /1D, (a0 ® o) ® a1 + V/Tag ® Dy, () ® up)+
+ V(oo ® € .(V2 ) + o1 ® €.(VE Bo)+
+ (V&) ® €01 + (Vi) ® €'.5)
= V1D, (0 ® ug) ® a1 + V/Tap ® Dg, (a1 ® up)+
+ V(a0 ® Do, 1 + a1 ® Doy o)+
+Vr((VEPag) ® €. + (Vilay) ® €'.00)
= (Day¥0) ® a1 + ag ® (Day¥h1)+
+ Vr((VPa) ® €61 + (Vi) ® €'.5o)
= Vr(V®a0) ® €'.01 + VI(V¥ ) ® €00 (57)
It is easy to see, using the bounds in (51), that the first term in (57) satisfies the

following pointwise estimate :

r|(Vicao) ® €' B2 <

<Crexp (—-%;dist(a:, ao“(O))) - exp (—gdist(z, a;‘(O))> (58)

The second term in (57) satisfies the same bound. In order for the right hand side
of (58) to pointwise converge to zero, it is sufficient and necessary that there exist
some 7o > 1 such that for all 7 > 7o, the distance from ag'(0) to a7 '(0) be bounded
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from below by some r-independent A > 0. This condition, under the map © from
(3), is the Seiberg-Witten equivalent of the condition that ¥; = ©(A;, ¢;) be disjoint
curves. Thus, from now onward we will make the

Assumption: There exists an 79 > 1 and M > 0 such that for all r > r¢ the
inequality

dist(ag'(0),a7(0)) > M (59)

holds.

We now proceed by looking at the second equation in (50):

1
Fi=Xr(jal* =1 |6P)w =

a

_ 11 1,1 i
= Fao + Fal - '8—7'

1 1
=F'+ F)t - g’"|011|2(|0012 —1—|Bo))w - 3" laol*(lor|* — 1 = |81 *) w+

(laof® - o] = 1 = |aol? - |B1]? = e - |Bol* — 2{0B1, 21 B0)) w

+gr (ool = Do = Dw + 27 (o, o) w

£ (1= JaaP) (a0l = 1= 166)w = 57 (1= faol)leal? = 1 = [61) wt
+ %r(kxol2 — )l -Dw+ Z;r (o By, a1 o) w
From this last equation, and again using (51), one easily deduces that

(i =gr (jaf? = 1= | w] < (60)
< Crexp (—%;dist(z,ao'l(O))) - exp (—gdist(x,afl(O)O + —%

Finally, we consider the third equation in (50):

i T
Fo? — d af = F,?(;2 + Ff{2 vy aoarr(aoft + 1)
1

47‘ a1 By — ir |00|25151 - 27‘ oy |* oo

1
= —T +
47 Gofo
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1 1
=71 (1 — |ay|*)adoBo + ZT(I — |ao|?)ai B

Once again using the bounds (51), we find from this last equation:

|F92 - 2raf| < (61)

< Crexp (—gdist(z,agl(O))> - exp (—gdist(:c,afl(()))) + %

To summarize, we have proved the following

Proposition 5.1 Let (a,vy') be defined as in (56) and assume that there exists an
ro > 1 and M > 0 such that for all T > 19, the distance dist(ag'(0),a;'(0)) is
bounded from below by M. Then for large enough r and any x € X the pointwise

bound below holds:

I(Da(w)>Fal‘l - ér([alQ -1- |ﬁ‘2)waF¢?’2 - iraﬁ)lz < % (62)

5.2 Inverting the linearized operators of (a;, ¢;)

This section serves as a digression of sorts. The main result here is theorem 5.5,
an asymptotic (as r — o0) regularity statement for the linear operators Lo, .y, (as
defined by (18)).

We start with two easy auxiliary lemmas:

Lemma 5.2 Let L : V — W be a surjective Fredholm operator between Hilbert spaces.
Then there exists a § > 0 such that for every linear operator € : V. — W with
[1€(z)|lw < d||x||v, the operator L + € is still surjective.
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Proof. Since L is Fredholm, we can orthogonally decompose V as V = Ker(L) &
Im(L*). Let L, be the restriction of L to Im(L*). Then L, : Im(L*) — W is an
isomorphism with bounded inverse L.

If the lemma were not true then we could find for all integers n > 1 an operator
¢, : 'V - W with ||l,z|lw < 1/n-||z||lv and with Coker(L + ¢,) # {0}. Let
0 # y, € Coker(L +¢,) with ||y.||lw = 1 and z,, = L7 (y,). Notice that the sequence
{z,}. is bounded by ||LT"||. Since y, € Coker(L+¥,), yn is orthogonal to Im(L +¢,,).
In particular,

((L + En)xmyn> =0

This immediately leads to a contradiction for large enough n since (L z,,y,) = 1 and

I(enl‘nv y")l S ||Ll_]”/n u

Lemma 5.3 LetV and W be two finite rank vector bundles over X and L, : L'*(V) —
L*(W) a smooth one-parameter family (indezed by r > 1) of elliptic, first order,
differential operators of index zero. Assume further that there exists a 6 > 0 and
To > 1 such that for any zeroth order linear operator ¢ : LY?(V) — L%*(W) with
[|¢(x)||2 < 6&||x||12, the operator L, + € is onto. Then there exists a 71 > 1o and a

M > 0 such that for all T > r; the inverses of the operators L, are uniformly bounded

by M, i.e. |[L7Mylli2 < Mllylla-

Proof.  Notice that a universal upper bound on L;! is equivalent to a universal
lower bound on L,. Suppose the lemma is not true: then there exists a sequence

r, — oo and z, € LY2(V) with ||z,|l;2 = 1 and ||L,, z,|l2 < 1/n. Choose n
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large enough so that 1/n < & and define the operator ¢ : L*?(V) — L*(W) by

l(z) = —(Tn,x)12 - L, (z,). For this £ the assumption of the lemma is met, namely

1
€zl < ~lelliz < dllzlliz

Thus the operator L, + € should be onto and into (since the index of L, + ¢ is zero).
But z, is clearly a nonzero kernel element. This is a contradiction. m

Recall that the set J of almost-complex structures compatible with the symplectic
form w, contains a Baire subset Jy of generic almost-complex structures in the sense

of Gromov-Witten theory (see [15]). Also, as in the introduction, let
6 : M¥"(Wg) » MF (E) (63)

be the map introduced in [12] which associates an embedded J-holomorphic curve to

a Seiberg-Witten monopole.

Proposition 5.4 Let J be chosen from Jy and let (a,v) be a solution of the Seiberg-
Witten equations (50) such that ©(a,vy) doesn’t contain any multiply covered com-
ponents. Then there exists a 6 > 0 and an 1o > 1 such that for all linear operators
0: LY 6N @ EQ W) — L2(iA° @ iA>T © E ® Wy) with norm ||€(x)||2 < 8]|z]|1.2,

the operator L(qy) + € is surjective.

Before proceeding, the reader interested in the proof of proposition 5.4 is advised
to familiarize her/himself with the definitions and notation in [13] since our proof will
heavily rely on results proved therein.

Proof. The proof is a bit technical and relies on the even more technical account
from [13] on the connection between the deformation theory of the Seiberg-Witten
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equations on one hand and the Gromov-Witten equation on the other. The idea is
however very simple: for large r > 1, a certain perturbation of the operator L (with
the size of the perturbation getting smaller with larger r) has no cokernel if a certain
perturbation of the linearisation of the generalized del-bar operator has no cokernel.
The latter is ensured by the choice of a generic almost complex structure J from the
Baire set Jy of almost complex structures compatible with w.

For the convenience of the reader we restate here the parts of lemma 4.11 and a
slightly modified version of lemma 6.7 from [13] relevant to our situation.

Lemma 4.11 The equation Lq + nq = g is solvable if and only if, for each k, the
equation

Agw* + 5 (w) + me(w) = 2(g*) +71(g)
is solvable.

In the above, k indexes the set of components of ©(a,?) and A, represents,
roughly speaking, the Cauchy-Riemann operator associated to the component of
O(a,v) with index k. The terms 7 and z(g*) are constructed from 7 and g re-
spectively while 7 and 7, are some auxiliary operators which depend on r (and
whose norm gets smaller as r increases, they should be thought of as small correction
terms). The assignment of 7 to 7 is linear i.e. for two operators 7 and n’, we have
(040" =k + .

Lemma 6.7’ The equation (Ly,(,) + ¢)p = g has an L*? solution p if and only if

there exists u = (u', ..., u*) € ®L¥*(N™) for which

At + o5 () + b(u) = Tr'z(g*) + 85 (9)

50



holds for each k.

Here y is a J-holomorphic curve without multiply covered components and ¥, (y)
is its associated Seiberg-Witten monopole. As with the notation in lemma 4.11, the
terms ¢, and z(g*) are constructed from ¢ and g respectively. Similar to the terms 7;
from lemma 4.11, the terms ¢; serve as correction terms whose size diminishes as r
grows.

The proof of lemma 6.7’ is almost identical to that of the original lemma 6.7 in
(13]. The only difference is in Step 2 where Taubes shows that one can write the
equation Ly (,)p = g in the form Lp + np = g with L as in lemma 4.11 and with
n = y/r2w(q,p). The difference here is that in our case one can write (Ly, () +€)p =g
as Lp+1'p = g (with L again as in lemma 4.11) but with n'(p) = /72w(q’, p) + €(p).
Since ¢ is assumed bounded, lemma 4.11 applies to 7’ in the exact same way as it
applied to the original  and the proof of lemma 6.7 in [13] transfers verbatim to our
case. Note also that the operators ¢¥ occurring in lemmas 6.7 and 6.7’ are identical
so in particular they continue to satisfy the bounds asserted in lemma 6.7 of [13].

According to lemma 5.2 there exists a ¢’ > 0 such that A, + ¢ is still surjective
if ||¢'|| < &'. Choose r large enough so that ||5|| < &’/2k. On the other hand,
since £x(v) = T(Xass4€( 1 X100540% ) (see (66) for a definition of xs in the present
context) we find that ||¢x|| < C|¢||. Thus choosing § = §'/2C ensures that Ly, () + ¢
is surjective provided that ||¢|| < §. This finishes to proof of proposition 5.4. m

Together, the last lemma and proposition imply the following:

Theorem 5.5 Choose J € Jy and let (a,¢) be a solution of the Seiberg-Witten
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equations for the Spin®-structure Wg with parameter r. Assume that ©(a,v) contains
no multiply covered components. Then there erists a r—independent M > 0 and

ro 2> 1 such that for all T > g

LG py@lhe < Mljzlls (64)

(a,¥)"

5.3 The linearized operator at (a, v)

In order to use the contraction mapping principle to deform the approximate solution
(a,¥) to an honest solution of the Seiberg-Witten equations, we need to know that
L = L4 y) admits an inverse whose norm is bounded independently of . We start by
exploring when the equation

L (65)

I
Q

has a solution £ for a given g. Here
E€ LGN O (Ey®@E, W) and g€ L*GA°@iA*T @ (B ® E; @ Wy))

The idea is to restrict equation (65) first to a neighborhood of a;'(0). Over such
a neighborhood the bundle FE) is trivial and, under an isomorphism trivializing FE),
the equation (65) becomes a zero-th order perturbation of the equation Lo = go
(with & and gy being appropriately defined in terms of £ and g). This allows one to
take advantage of the results of theorem 5.5 about the inverse of Lo = L(a,.y,)- Then
one restricts (65) to a neighborhood of a;'(0) where the bundle Ep trivializes and
once again uscs theorem 5.5, this time for the inverse of Ly = L(q, y,). Finally, one

restricts to the complement of a neighborhood of ay!(0) Ua;!(0) where both Ey and
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E; become trivial and L becomes close to S - the linearized operator of the unique
solution (Ao, /7 uo) for the anticanonical Spin®-structure Wp.

To begin this process, choose regular neighborhoods V; of o; !(0), i = 0, 1 subject
to the condition

dist(Vo, V1) > M for some M > 0

The existence of such neighborhoods V; follows from our main assumption (59).
A priori, as one chooses larger values of r, it seems that the sets V; may need to be
chosen anew as well. However, it was shown in [12], section 5c, that in fact this is not
necessary. An initial ”"smart” choice of V; for large enough r ensures that for ' > r,
the zero sets a;'(0) continue to lie inside of V;. Choose an open set U such that

X =V, U Vi UU and such that
Un(ag'(0)ua;’(0) =0

Arrange the choices of V; and U further so that dV; is an embedded 3-manifold of X
and so that U NV, contains a collar dV; x I. Here I is some segment [0,d] and 9V,
corresponds to dV; x {d}. For the sake of simplicity of notation, we shall make the
assumption that for large values of r, the sets a;}(0), i = 0,1, are connected. The
case of disconnected zero sets of the a;’s is treated much in the same way except for
that in the following, one would have to choose a bump function xs; (see below) for
each connected component. This complicates notation to a certain degree but doesn’t
lead to new phenomena.

Fix once and for all a bump function x : [0,00) — [0, 1] which is 1 on [0,1] and 0
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on [2,00). For 0 < § < d/1000 define xs; : X — [0,1] by

1 z € V\(0V; x I)
X(t/8) == (y,t)€dV, x I (66)
0 x gV

Xs.i(T) =

Set Vg = Vo UU and V{ = V; UU. Define the isomorphisms To : C x Vj — E1|v,

and T; : C x V| — Ey|,, as To(A,z) = ai(z) - A and T;(A,z) = ao(z) - A. The

v,
isomorphism T, defined here shouldn’t be confused with the isomorphism of the
same name appearing in lemma 6.7’. While both serve to identify a pair of bundles,

the bundles in question in these two situations are not the same.

For i = 0, 1 define the operators

M : LY (AN © (E;@ Wy ); V) = L2GA° @ iA*T @ (E; @ Wy ); V)
and

T: LY (iN @ W U) — L (iN° @ iA*> @ Wy ;U)

by demanding the diagrams
LY (iN' @ (Ey ® Ey @ W) V) LY (N & (E; @ W('); V)

] [
L2(iA° @ iA2+ @ (Eo ® By @ Wy ); V) —— L2(iA° ©iA>* @ (E, @ Wy ); V)
and

LA @ (B ® By @ W) U) X8 LI2(GA @ Wi U)

Ll lr
LA @ iA* @ (Eo ® Ey @ Wy ), U) <228 [2(iA° @ A2+ @ Wy, U)

to be commutative diagrams.

We now start our search for a solution £ of (65) in the form

€ = To(X10050&0) + T1(x1005,1&1) + To L1 ((1 = x460)(1 — Xa6,1)7) (67)
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Here & € LM (iA'@(E;®@W,")) and n € LM2(iA'@W;'). Givena g € L2((A°®iA>+ &
(Ey®E,®@Wy)), define g; € L2(iA°@iA>* ©(E:®Wy)) and v € L (iA°@iA>T W)
as

gi = Y7 (xess:9) and = (ToT1)™ (1 — x2560)(1 — X2561)9) (68)

It is easy to check that g, g; and ~ satisfy a relation similar to (67), namely

9 = Yo(x1005090) + T1(x1006191) + To Y1 ((1 — x460)(1 — Xx46,1)7) (69)

Putting the form (67) of £ and the form (69) of g into equation (65), after a few

simple manipulations, yields the equation

TO(Xloos,o(MO(fO) - TIP(dX46,0, 1) — 9o))+ (70)
+T1(x10051 (M1(&1) — ToP(dxas1,m) — 91))+

+ToY1((1 — x460)(1 — x45.1) (T + P(dx10050, €0) + P(dX10051,&1) — 7)) =0

In the above, P denotes the principal symbol of L. This last equation suggests a

splitting into three equations (each corresponding to one line in (70)):

Mo(&) — T1P(dx4s0,m) = 9o
My(&1) — ToP(dxas1,m) = g1 (71)

Tn + P(dx100505 &) + P(dxi00s,1,&1) =

Equation (70) (and hence also equation (65)) can be recovered from (71) by multi-
plying the three equations by Yo - x10060, Y1 - X100s1 and Yo Y1 - ((1 — Xx4s0)(1 — X46,1)

respectively and then adding them. Thus, given a g and with g; and v defined by
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(68), solutions &; and n of (71) lead to a solution £ of (65) via (67). However, the
problem with (71) is that the operators M; and T are not defined over all of X. We
remedy this in the next step.

Define new operators :

M LY2(iA' @ (E; @ Wy)) — L2 (A" @ A% @ (E; @ Wy))
and

T LY2(iA @ W) — L2GA° @ A2+ @ W)

M = xo200s.:M; + (1 — Xx2008:) L

T' = (1 - xs50)(1 = xs.)T + (x50 + x61)S (72)
Here L; = L,,4,)- Now replace the coupled equations (71) by the following system:

My(&) — ToP(dxas0,1) = Go
M{(&) — T1P(dxas1,m) = 9 (73)
T'n + P(dx10060, £0) + P(dx1006.1,€1) = 7

The advantage of (73) over (71) is that the former is defined over all of X. On the

other hand, solutions of (73) give rise to solutions of (65) in the same way as solutions
of (71) did because
X1005,i * A'f,'/ = X100s,i * M; 1=0,1
(1 = xa50)(1 = xa6)T" = (1 = Xa50)(1 = xa6)T
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Lemma 5.6 For every € > 0 there exists an re > 1 such that for r > 7. the following
hold:
(M = Loz |l2 < ellzill2
(T = Sy ll2 < ellyll2
Here x; € L' 2(iA' ® E; @ W) and y € LY (iA' © Wy).

Proof.  The above Sobolev inequalities are proved by first calculating pointwise
bounds for |(M]—L;)z; |, and |(T"—S)y |p, p € X. Notice firstly that |(M;—L;)z; |, =
Oifpe Viand |(T' - S)y|,=0if p¢ U. For p ¢ V; and for q € U, a straightforward

but somewhat tedious calculation shows that

(M) = L)z |, < C (Vr |l = |eal| + VT 1Bi] || + [V i) |zl
(T = S)yls < C (VT 1= |ool’| + VT |1 = |aa?| + VT |Bol+

+ V1B + V%o + |V ay|) [yl,

Squaring and then integrating both sides over X together with a reference to (51)

gives the desired Sobolev inequalities. m
The lemma suggests that the system (73) can be replaced by the system
Lo(&) — YoP(dxaso,n') = go
Ly(&) = T1P(dxas1,m) = g1 (74)
S’ + P(dx10060,&0) + P(dx1005,1,61) = 7

Lemmas 5.6 and 5.2 say that for r > 0, (73) has a solution (&, &;,n) if (74) has a

solution (&, £&1,7n’). It is this latter set of equations that we now proceed to solve.
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Since S is onto, we can solve the third equation in (74), regarding &) and &; as

parameters. Thus
n =n'(&,&) = S7 (v = Pdxi00s0, &) — P(dx10051,1)) (75)
Recall that the inverse of S satisfies the bound (48)
1574lle < Zlvlle for v € LA @in** @ Wy)

We will solve the first two equations in (74) simultaneously by first rewriting them

in the form:

& =Lg ' (90 + ToP(dxas0. 7' (£, £1)))

& =L (g1 + T1P(dxas1, 7' (£, €1))) (77)

To solve (77) is the same as to find a fixed point of the map Y : L2(iA' @ W) x

LAY @ Wi ) — L (iA' @ Wi ) x L2(iA' @ W) given by

Y(&.€1) = (78)

=(Lg"(go + TT'To 1P (dXas0,7")), LT (91 + T1P(dxa51,7)))

with ' given by 75. The existence and uniqueness of such a fixed point will be
guaranteed by the fixed point theorem for Banach spaces if we can show that Y is
a contraction mapping. To see this, let z, y € L?(iA' @ W, ) x L*(iA' @ W) be
two arbitrary sections. Using the first bound of (48) and the result of theorem 5.5 to

bound the norms of L;*, one finds

Y (2) = Y ()II; =
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= /L5 (g0 + YoP(dxas0,1(z))) — L5 (g0 + ToP(dxas0. n(y)))II3

+IL7 (g1 + T1P(dxasr, () = LT (g1 + T1P(dxas1, n()I13

<ColIn(z) = n)II3 + Cilln(z) — n(y)l3

SC“S_I('P(Xmooa.o, y) — P(dx10050, ) + P(dx1008,1,y) — P(dX1006,1, 17))”%
C

<=

z —yl|? 79
_Tll-v yll2 (79)

Choosing r > 2C, where C is the constant in the last line of (79), makes Y a
contraction mapping. Thus we finally arrive at an L? solution (&}, &]). It is in fact an
L'? solution because of (77). This, together with equation (75) provides a solution
(&5, €1, m") of (74). As explained above, this gives rise to a solution (&, &;,7) of (73)
and thus provides a solution £ € L'? € (iA! @ Wy) of (65). In particular, we have

proved half of the following

Theorem 5.7 Let (a,y) be constructed from (a;, ;) as in (56). Suppose that the
(ai, ;) meet assumption (59) and that J has been chosen from the Baire set Jo
of compatible almost complez structures. Then Ly : LY (iA' @ Ey ® Ey @ W) —
L (iAN°DiA> YO Ey® E, QW ) is invertible with bounded inverse |[L("al_w)y||1,2 < Cllyll2

for all sufficiently large r. Here C is independent of T.

Proof. It remains to prove the inequality IIL&I’w)yHLg < C|lyl|2- Each of the two

lines of (77), together with the bound (64) on L}, yields:

11112 < C (llgill2 + 11n'(&, €1 112) (80)

A bound for the second term on the right-hand side of (80) comes from (75) and the
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L? bound in (48):

’ / !’ C ! ’
(1 (0 ED)M12 < ﬁ(lhllz + [1&ll2 + [1€61]12) (81)

Adding the two inequalities (80) for i = 0, 1 and using (81) gives

(1- \%) (goll2 + 1€1l12) < C (llgoll2 + llgnll2 + %Ilvllz) (82)

For large enough r, this last inequality gives a bound on the L'? norm of (&},&}) in
terms of an r-independent multiple of the L? norm of (go, g1,7). With this established,
the missing piece, namely the L'? bound of n’, comes from (75) and the L'? bound

in (48):
In'll12 < C (11112 + 1I&ll2 + [1€1112) < C (Uvll2 + lgoll2 + [lg1]]2) (83)

It remains to relate the now established bound on (&}, £],n’) to a bound for (&, &, 7).

To begin doing that, write the systems (74) and (73) schematically as

F(&.&,1') = (90,91,7) and  G(&,&1,m) = (90, 91,7)

Lemma 5.6 implies that for any € > 0 there exists a 7. > 1 such that for all r > r. the
inequality ||(F — G) z||2 < €|x||2 holds. The established surjectivity of F guarantees
(by means of lemma 5.2) that G is also surjective. The proof of theorem 5.7 thus far,

also shows that ||F~1|| < C where C is r—independent. Now the standard inequality
NG < NFH+ NG = FHI < NE+IFTH 167116 = Fl

implies the r—independent bound for ||G~!||

I ¢
~FT-1g — 1 = T Ce

-1 <
167111 < 5
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This last inequality provides L!'? bounds on (&, £;) and 7 in terms of the L? norms
of (go,91) and « which in turn imply an r—independent L'? bound on £ = L~!g in
terms of the L? norm of g through (67) and (68). This finishes the proof of theorem

57. m

5.4 Deforming (a,7) to an honest solution

The goal of this section is to show that the approximate solution (a, ) can be made
into an honest solution of the Seiberg-Witten equations by a deformation whose size
goes to zero as r goes to infinity.

To set the stage, let SW : L12(iA' @ W) — L2(iA° @ 1A% @ W) denote the

Seiberg-Witten operator
ir
SW(b,¢) = (Dv, Fyf — F1 — q(¢,9¢) + §w)

We will search for a zero of SW of the form (a, ) + (a’, %) with (a’,¢’) € B(é). Here
B(6) is the closed ball in L}?(iA' @ W) centered at zero and with radius § > 0 which
we will choose later but which should be thought of as being small. The equation

SW((a,v) + (a’,v")) = 0 can be written as
0= Sl’V(a, 1}9) + L(a,w)(a', ”(,/)I) + Q(a', ’l/},) (84)

Here Q : LY2(iA' @ W) — L2(iA° @ iA%>* & W) is the quadratic map given by

Q(b, @0, 62) = (b.(60 + 62), 5100 = |&al)w + 7o + 00 d2))  (8)

i
8
Lemma 5.8 Forz, y € L"?(iA' @ W}), the map Q satisfies the inequality:

1Q(z) = Q)2 < C ([lzll2 + llylh2) [z — vl (86)
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Proof. This is a standard inequality for quadratic maps and it can be explicitly
checked using the definition of @ and the multiplication theorem for Sobolev spaces.
We give the calculation for the first component of the right hand side of (85). Let

x = (b,¢) and y = (¢, ), then we have

6.0 — c.oll2 =[]b.6 — c.6 + .6 — colla < [|(b = c).@ll2 + |lc.(d = @]
S Clb = clhz2llglle + Cllelhzll¢ = @l
< C(11(6,0) =, @)ll2) ([1(b, @)l112 + [, ©)l]1.2)
The other components are checked similarly. m
Solving cquation (84) for (a’,y’) € L"?(iA' @ W) is equivalent to finding a fixed

point of the map Y : B(§) — B(§) given by

Y (b,¢) = —LZ%, (SW(a, %) + Q(b,)) (87)

In order for the image of Y to lie in B(d) we need to choose r large enough and 4
small enough. To make this precise, let (b,¢) € B(#). Using the bounds in (62) we
find that

15W (a,9)]2 < %

and so together with the results of theorem 5.7 and lemma 5.8 we get
C
Y (b, < = - 62
n«wm_ﬁ+c
Choosing § < 1/2C and r > 4C?/§? ensures that Y is well defined.

Lemma 5.9 The map Y : B(§) — B(6) as defined by (87) is a contraction mapping
for r large enough and 6 small enough.
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Proof. Let z,y € B(J), then using (86) we find

1Y (z) = Y()lhe < ClIQMz) — Q)2 < Cllz + ylli2llz — ylh2 (88)

Choosing § < 1/2C makes C ||z + y||12 < 2C6 less than 1. m

We summarize in the following:

Theorem 5.10 Let (a,v) be constructed from (a;,¢;) as in (56). Suppose that the
(a;,v;) meet assumption (59) and that J has been chosen from the Baire set Jy of
compatible almost complex structures.

Then there ezists a dg > 0 such that for any 0 < § < g there exists an rs > 1 such
that for every r > rs there exists a unique solution (a,¥)+(a’,y') of the Seiberg- Witten
equations (with perturbation parameter r) with (a’,¢') € LY2(iA' ® W§) satisfying

the bound ||(a’,v¥")|]12 < 4.
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6 Comparison with product formulas

Before proceeding further, we would like to take a moment to point out the similarities
and differences between our construction of (A,) from (A;,v;) on one hand and
product formulas for the Seiberg-Witten invariants on manifolds that are fiber sums
of simpler manifolds. We begin by briefly (and with few details) recalling the scenario
of the latter.

Let X;, i« = 0,1 be two compact smooth 4-manifolds and ¥; — X; embedded
surfaces of the same genus and with $5 - £y = =X, - £;. In this setup one can
construct the fiber sum

X = Xo#s, X1

by cutting out tubular neighborhoods N(Z;) in X; and gluing the manifolds X =
X,\N(%,) along their diffeomorphic boundaries.

Under certain conditions one can calculate some of the Seiberg-Witten invariants
of X in terms of the Seiberg-Witten invariants of the building blocks X (see e.g. [8]).
One accomplishes this by showing that from solutions (B;, ®;), ¢ = 0,1 on X; one can
construct a solution (B, ®) on X (this isn’t possible for any pair of solutions (B;, ®;)
but the details are not relevant to the present discussion). This is done by inserting

a "neck” of length 7 > 1 between the X! so as to identify X with
X =XyU([0,r] xY)UX]

with Y = ON(E) = ON(Z,). A partition of unity {¢o, 1} is chosen for each value
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of r > 1 subject to the conditions

o:=1lon X|
©: = 0 outside of X;U[0,7] x Y

loi] < g on [0,7] x Y

An approximation ¢’ of ® is then defined to be &' = g Py + ¢ ®; (similarly for
B', a first approximation for B). The measure of the failure of (B’, ®') to solve the
Seiberg-Witten equations can be made as small as desired by making r large. The
honest solution (B, ®) is then sought in the form (B, ®’) + (b, ¢) with (b, ) small.

The correction term (b, ¢) is found as a fixed point of the map
(b,@) — Z(b,¢) = _L(walr‘qy) (Q(b, ¢) + err)

Here "err” is the size of SW(B’,®') and L and @ are as in the previous section.
Choosing r large enough and ||(b, ¢)|| small enough makes Z a contraction mapping
and so the familiar fixed point theorem for Banach spaces guarantees the existence
of a unique fixed point.

In the case of fiber sums there are product formulas that allow one to calculate
the Seiberg-Witten invariants of X in terms of the invariants of the manifolds X;.

The formulas typically have the form:

SWx(We)= Y. SWx,(Wg,) - SWx,(Wg,) (89)
E0+El=E

Due to the similarity of our construction of grafting monopoles to the one used

to construct (B, ®) from (B;, d;), it is natural to ask if such or similar formulas exist
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for the present case, that is, can one calculate SWx(Wg,gg,) in terms of SWx(WEg,)
and SWx(Wg,)? The author doesn’t know the answer. However, if they do exist,
they can’t be expected to be as simple as (89). The reason for this can be understood
by trying to take the analogy between our setup and that for fiber sums further.

In the case of fiber sums, once one has established that the two solutions (B;, ®;)
on X; can be used to construct a solution (B,®) on X, one needs to establish a
converse of sorts. That is, one needs to show that every solution (B, ®) on X is of
that form. It is at this point where the analogy between the two situations breaks
down. It is conceivable in our setup, that there will be solutions for the Spin®-
structure (Ep ® E;) ® Wy that can not be obtained as products of solutions for the
Spinc-structures E; ® W;. Worse even, there might be monopoles that can not be
obtained as products of solutions for any Spin‘-structures F; ® W;" with the choice
of Fj, j = 0,1 such that F = Fy ® F} and F} # 0. Those are the monopoles where
a~!(0) is connected. Thus if a product formula for our situation exists, it must in
addition to a term similar to the right hand side of (89) also contain terms which
count these "undecomposable” solutions. But then again, they might not exist.

The next section describes which solutions of the Seiberg-Witten equations for
the Spin‘-structure (Ey ® E;) ® W;" are obtained as products of solutions for the

Spinc-structures E; @ Wy, E = E, ® E;.
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7 The image of the multiplication map
This section describes a partial converse to theorem 5.10. Recall that
6 : MX¥ (Wg) —» MY (E)
is the map assigning a J-holomorphic curve to a Seiberg-Witten monopole.

Theorem 7.1 Let E = Ey ® E; and let (A, ) be a solution of the Seiberg-Witten
equations in the Spin‘-structure Wi with perturbation term p = F3 — irw/8 and
with ¥ = /7 (@ ® uy, B). Assume further that J has been chosen from the Baire set
Jo and that ©(A, ) contains no multiply covered components. If there exists an 1o
such that for all T > 1o, a™*(0) splits into a disjoint union a~1(0) = Lo U L, with

(2] =P.D.(E;) then (A,v) lies in the image of the multiplication map
MSY (Eo) x MYV (Er) - MYV (Eo ® Er)

The proof of theorem 7.1 is divided into 3 sections. In section 7.1 we give the def-
inition of (Af,y!) - first approximations of Seiberg-Witten monopoles (A;, ;) for the
Spin-structure Wg, which when multiplied give the monopole (A, ) from theorem
7.1. Section 7.2 shows that for large values of r, (A},¥!) come close to solving the
Seiberg-Witten equations. In the final section 7.3 we show that L(4: ) is surjective
with inverse bounded independently of 7. The contraction mapping principle is then
used to deform the approximate solutions (A}, ) to honest solutions (4;, ;). Section
7.3 also explains why (Ao, ¥0) - (A1, ¢1) = (4,9).

We tacitly carry the assumptions of the theorem until the end of the section.
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7.1 Defining (A’ ¢!)

The basic idea behind the definition of (A, 1)) is again that of grafting existing
solutions. For example, one would like ¥§ to be defined as the restriction of ¢ to a
neighborhood of ¥, (under an appropriate bundle isomorphism trivializing E; over
that neighborhood) and to be the restriction of /7 uy outside that neighborhood.
This is essentially how the construction goes even though a bit more care is required,
especially in splitting the connection A into Aj and Aj.

To begin with, choose regular neighborhoods V4 and V; of £y and £;. Once r is
large enough, these choices don’t need to be readjusted for larger values of r. Choose,

as in section 5.3, on open set U such that

X=WuluV

Also, just as in section 5.3, arrange the choices so that U NV, contains a collar
dV; x [0,d] (with 9V; corresponding to dV; x {d}) and choose § > 0 smaller than
d/1000. Assume that the curves ¥; are connected, the general case goes through with
little difficulty but with a bit more complexity of notation.

Over UUV), choose a section g € T'(Ep; UUV;) with |vo| = 1. Choose a connection

By on Ej with respect to which 7y is covariantly constant over U U V, i.e.
Bo(w(z))=0 VreUuW (90)

Notice that such a connection is automatically flat over U U V;. Choose a connection
By on E; such that By ® By = A over X. Now define a,’ € I'(E;;U U V;) and
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5-1’ eN(E,® KL, UUV) by

a=v®a’ (91)

~/

B=%®03 (92)

Proceed similarly over V. However, since some of the data is now already defined,

more caution is required. Choose a section v, € I'(E}; Vp) with

Y1 dll on (Uﬂ ‘/0)\(6‘/0 X [0,46))

(93)
lm|=1 on (VWL\U)U 0V x [0,26))
We continue by defining ap’ and ﬁol over Vg by
o= do/ ® ™M (94)
B = 50, @M (95)
Choose one forms ay and a; such that over V; the following two relations hold:
(Bi+ia)m=0 (96)
(Bo+iap) ® (B +ia;)=A (97)
With these preliminaries in place, we are now ready to define (A, ¢!):
do = X460 00 + (1 — Xa60)70 ﬁ:o = X46,0 o .
a1 = (1= xas0) @1’ + Xas0M1 Br = (1= xas50) B (98)
Ap = Bo + ixas0 a0 A} = By +ixssoa

Lemma 7.2 The (A}, ¢!) defined above, satisfy the following properties:
a) Ay®@ Al = A onall of X.

b) Go = 0 on (U N Vy)\(8V5 x [0,45)).

69



¢) Fg, =0 on UU V) and Fg,4ic; =0 on V.

d) On (UN )\ (0 x [0,46)), |a;| and |dd;| converge ezponentially fast to zero as

T — O0.

Proof. a) This is trivially true everywhere except possibly on the support of dx4sp
which is contained in U N V. However, on U NV, we have A = By ® B, and
A = (Bo + iap) ® (By + ta;) and thus ap + @y = 0. In particular, Ay ® A] =
Bo ® By +ixus0(a0 +a1) = Bo® By = A

b) Notice that on (U N VWp)\(0Vp x [0,44)), m = a.’1 Thus, a = v ® 71 and
a= c;(, ® 1 imply that vy = c;{). The claim now follows from the definition of ap.

c¢) Follows from the fact that both connections annihilate nowhere vanishing sec-
tions on the said regions.

d) On (UNV,)\(8V, x [0,46)) we have a = vy ® v, and VA = VBotiao @ gBi+iar

Also, recall that VB, = 0 and VB*i%5, = 0. Thus
Via = (Ve @ VAN (1 @ 1) = iagy0 ® ™
This equation yields
|ao| = ——— (99)

The claim follows now for ao by evoking the bounds (51). The same result holds
for a; by the proof of part (a) where it is shown that ag + a; = 0 on U N V. The
statement for da; follows from part (c), the equation Fyq = Fp,1ia, + FB,+ia, and the

bounds (51) for |F4|. m

70



7.2 Pointwise bounds on SW (A, y!)

Proposition 7.3 Let (A, v)) be defined as above, then there exists a constant C and

an rg > 1 such that for all v > ry the inequality

|SW (A}, ¥ <

%IQ

holds for all z € X.

Proof. We calculate the size of the contribution of each of the three Seiberg-Witten
equations separately. The only nontrivial part of the calculation is in the region of
X which contains the support of dxuso i.e. in 0V, x [46,86]. We will tacitly use the

results of lemma 7.2 in the calculations below.

a) The Dirac equation

To begin with, we calculate the expression D 4((ao ® uo + ﬁo) ®71) in two different

ways. On one hand we have:
Da((Go ® uo + o) ® 1) = Dala + xa508) = (1 = Xa50) Dacx + dxaso-B
On the other hand we get:
Da((co ® uo + o) ® M) = (100)

=7 ® Dy (do ® uo + fo) + €'.(do @ uo + o) ® Aj(m)

= ® Dy (dio ® uo + fo) + i(xas0 — 1)arm
Equating the results of the two calculations we obtain:

o - | D gy (Gio®uo + Bo)| = |11 ® Doy (cio ® uo + fBo)| <
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< C(laflai| + [Daal +18]) <

C
\/F
Since over 9V, x [44,84], |a| — 1 exponentially fast as r — oo we obtain that

|D 4 (cto ® uo + Bo)| < (101)

sl

b) The (1,1)-component of the curvature equation

Again, we only calculate for z € 9V, x [44, 84]:

ir o ~ i s
F/gt,)‘l) - Fx)‘l)—-g (Iaol2 -1- lﬁolz) w = Xas0 (dag) ™V + §|5ol2w

ir

8al?

= X460 (dao)™V + Ixas.0% 18w

Both terms in the last line converge in norm exponentially fast to zero on 9V x (44, 8]

as r — OQ.

c) The (0, 2)-component of the curvature equation

Similar to the calculation for the (1,1)-component of the curvature equation on

0Vp x [44,86], we have for the (0,2)-component of the same equation:

0.2 02) Ir— =
Ff% = ngo )_Z 0 B0 = Xaso (dag)®? —

ir _
a
1]a? X450

Once again, both terms on the right-hand side of the above equation converge in

norm exponentially fast to zero as r converges to infinity. The proofs for the case of

(A},v) are similar and are left to the reader.
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7.3 Surjectivity of L4, and deforming (A;,?;) to an exact
solution

The strategy employed here is very similar to the one used in section 5.4 and we only
spell out part of the details. We start by showing that L4, ;) is surjective, the case
L4 ;) is identical.

We begin by asking ourselves when the equation

L(A;,,w;,)ﬁo = Go (102)

has a solution & € L"(iA' @ W) for a given go € L2(iA° @ iA** & W, ). Define

the analogues of the isomorphisms Y; from section 5.3 to be

To:Cx(UUV)) = I'(Ey;UUV;) given by To(A,z) = - y0(x) and

T, :C x Vo — ['(Ey; Vo) given by Ti(A,z) = X 1(z)

Let v € L*2(iA°©iA*>+* ® Wy ; UUV;) be determined by the equation xas50 go = Yo(7)
on UUV, and s € L2(iA° @ iA>* @ W5 ; Vp) be given by the equation Y7'(s) =

(1 — x2560) go on Vi. Thus we can write gy as

90 = X10050 Yo(7) + (1 = xa60) T1'(5) (103)

This last form suggests that, in order to split equation (102) into two components

involving L(4,y) and S, one should search for & in the form

€0 = X100s0 Yo(n) + (1 = Xa50) T1 () (104)

with n € LM (A @ Wy U U Vy) and & € LY2(iA' @ W2 Vp). Using relations (103)
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and (104) in (102) one obtains the analogue of equation (70):

x10050Lo(T(n) = Yo' TT'P(d x160, &) — ¥)+

+ (1 = x40) YT (M (k) + Y1 ToP(d X10080,7) — §) = 0 (105)

The operators T and M’ are defined over U U V] and Vj respectively, through the

relations
L(Ag',‘/,.(/)) To = ToT
Loy Tit=T7'M

We use these operators, defined only over portions of X, to define the operators

T’ and M’ defined on all of X by

TI =(1 - XJ’O)T + X(s,oS

M’ =x20050M + (1 = X20060) L)
Split equation (105) into the following two equations:

T'(n) = Yo' T7'P(d xa60, k) = 7

M'(k) + T1 YoP(d x10050,7) = S (106)

It is easy to see that solutions to the system of equations (106) provide solutions to
(105) by multiplying the two lines with x10050 o and (1 — x450Y") respectively and
adding them.

The following lemma is the analogue of lemma 3.6, its proof is identical to that of

lemma 3.6 and will be skipped here.
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Lemma 7.4 For every e > 0 there exists an re > 1 such that for r > r. the following
hold:
(M’ = Lawy) allz <e lallz
(T = S) yll2 <ellyll
Here z € LY2(iA' © W) and y € LY2(iA' & WY).
The lemma allows us to replace the system (106) by the system
S(n) = Y5 ' YT P(d xa50, ) = 7
Liay) (k) + T1 ToP(d X10080,7) =< (107)

The process of solving (107) is now step by step the analogue of solving (74). In

particular, we solve the first of the two equations in (107) for 7 in terms of «:

n=n(k) =S~ (Y TT'P(dxs0, %) +7)
Use this in the second equation of (107) and rewrite it as

Kk = Lisy (s = T1 ToP(d x10060, 1(K)))

To solve this last equation is the same as to find a fixed point of the map Y :
L (iA' @ W) — L2(:A! @ W) (the analogue of the map described by (78)) given
by:

Y(k) = L('Alyw) (s = T1 ToP(d x10050,1(K)))
The proof of the existence of a unique fixed point of Y follows from a word by
word analogue of the proof of theorem 5.7 together with the discussion preceding the

theorem.
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With the surjectivity of L4/ ) proved, the process of deforming (A}, ;) to an
honest solution (A;, ;) is accomplished by the same method as used in section 5.4
and will be skipped here.

To finish the proof theorem 7.1, we need to show that

This follows from the fact that as r — oo, the distance dist((A;, ¢:), (Ai¢})) converges

to zero, together with the following relations which follow directly from the definitions:

d0®d1=a
Go® By +dy ® o =18

A, A=A
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