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ABSTRACT

CAD-based Robot Motion Planning for Inspection in

Manufacturing

By

Weihua Sheng

The last several decades have witnessed the rapid development of CAD/CAM

technology and its extensive applications in the manufacturing industry. Although

CAD and CAM technology have been fully developed individually, the connection

between them, or the manufacturing process planning, has not achieved equal success.

In recent years, planning manufacturing processes based on the CAD information has

been receiving more and more attention.

In this dissertation, a general, CAD-based framework is developed for constraint-

satisfying robot motion planning in automotive manufacturing. Particularly, moti-

vated by achieving fully-automated, fast dimensional inspection for automotive parts,

this dissertation focuses on the CAD-based inspection planning, which, essentially, is

the automatic planning of the inspection sensor, or camera.

First, a CAD-based vision sensor planning approach is developed, which utilizes

the geometric information of the part and the knowledge about the sensor model to

generate constraint-satisfying sensor configurations. By using a new concept called

bounding box, the proposed approach combines the advantages of two existing vision

sensor planning approaches. Second, to improve the efficiency and the kinematics

performance of the inspection system, two optimization problems are formulated:

the minimum viewpoint problem and the optimal kinematics performance problem.



Based on a discretization scheme, both are converted into integer optimization prob—

lems. Third, the robot path planning problem is studied. It is formulated as a Trav-

eling Salesman Problem (TSP) and a hierarchical algorithm is developed to obtain

fast, approximate solutions. Finally, the implementation of an eye-in-hand inspection

system is discussed and a new, simple hand/eye calibration method is developed. We

believe that the general framework and the concepts proposed in this dissertation can

benefit many similar robotic applications in manufacturing.
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CHAPTER 1

INTRODUCTION

1.1 Background

In the last few decades, a large number of new technologies have been developed for

the manufacturing industry. Computer Aided Design (CAD) and Computer Aided

Manufacturing (CAM) technology are two of them. Both technologies are products of

the computer era. Since their inceptions, CAD systems have evolved from the early

graphic editors with some built-in design symbols to the current multi—functional,

systematic software packages. Basically, in CAD systems, geometric modeling is used

to mathematically represent an object. An object model usually consists of geometry,

topology and auxiliary information [4]. In CAM systems, computers are utilized to

automate a set of operations and activities which include material selection, planning,

production and inspection, etc. [4].

Although CAD and CAM technology have been fully developed individually, a big

gap still exists between them, which hinders the integration of CAD and CAM, or the

full automation of CAD/CAM system. As a fact, human intervention is still indis-

pensable in the planning of many manufacturing processes [5]. In this sense, people

describe CAD and CAM as “islands of automation” [6]. To fully realize the benefits of

CAD and CAM, computer support for process planning, or namely, Computer Aided

Process Planning (CAPP) should be available to more conventional CAD and CAM

processes [7]. However, as Requicha et al. found out, CAD/CAM applications that

involve synthesis or planning are especially difficult [8]. Essentially, process planning,

or the activity of devising means to achieve desired goals under given constraints and

with limited resources, is an instinctive part of intelligent behavior, often performed

subconsciously by human beings [5].

One big obstacle lies in the fact that CAD systems and CAM systems use dif—



ferent part representations. CAD systems provide a description of the part in low

level, simple geometric entities (faces, edges and vertices), while in the manufactur-

ing environment, high level descriptions of entities are desired to plan manufacturing

processes [9]. Hence, Computer Aided Process Planning (CAPP) systems usually

consist of two critical steps: the automatic understanding of the part shape and the

automatic generation of manufacturing plans based on this understanding [9].

Inspection planning is an important type of manufacturing process planning.

Quality and process control activities in a mechanical product’s life cycle require

that parts be measured, or dimensionally inspected [10]. Inspection generally in-

volves a time-consuming operation that takes up a large portion of manufacturing

lead time and therefore, has been creating serious bottlenecks in production lines [11].

For example, Coordinate Measuring Machine (CMM), an extensively used equipment

for dimensional measurements in the manufacturing industry [10], uses touch probes

to measure the coordinates of specified points on a workpiece’s surfaces. CMMs can

achieve very high precision compared to other measuring equipment. However, CMMs

use a point-by-point scheme, thus the measuring processes are very time-consuming.

For example, to inspect a typical automotive part, it usually takes several days.

In recent years, many active optical inspection techniques have been developed

which greatly reduces the time in dimensional inspection. In fact, most of these

noncontact-type methods are usually 50-100 times faster than the CMM method [11].

Among the current active optical sensing methods, structured light, which obtains

3D coordinates by projecting specific light patterns on the surfaces of the measured

object, is one of the active methods that has been successfully employed in various

applications [12].

However, to achieve full automation, as well as to improve the efficiency of the

inspection system, sensor planning, or finding the suitable configurations of sensors so

that the inspection task can be carried out satisfactorily, is a very important link that



should be paid attention to. In the structured light method, camera configurations,

such as position, orientation and Optical settings are critical parameters that affect

measuring accuracy and efficiency directly. In most of the current structured light

applications, the camera configuration (or viewpoint) planning was based on human

experience, thus the measurements suffer considerable human errors and low effi-

ciency. It is, therefore, highly desirable to develop a camera positioning system that

is able to plan and realize the camera configurations in a fully-automated, accurate

and efficient way. The above goal motivates the work in this dissertation.

To begin with, in the next section, related research work is reviewed.

1.2 Literature Review

First, we briefly survey the current status of the research in Computer Aided Process

Planning (CAPP). Then the previous work on inspection planning, particularly vision

sensor planning, is reviewed.

1.2.1 Computer Aided Process Planning

In the last few decades, there has been much research work in Computer Aided

Process Planning (CAPP) [5]. Most of the research has shown that to effectively

bridge CAD and CAM, it is essential for the system to be able to obtain the higher

level information and representations necessary for the task at hand. This can be

achieved using two approaches: feature-based design and feature extraction.

In the feature-based design approach, the designer uses primitives from a high-

level representation scheme to design the part. In the feature extraction approach,

the higher level information is derived from the low-level model representation of the

part [9]. Based on the high level representations, there exist two different approaches

for process planning: variant approach and generative approach [9].



In the variant approach, a Group Technology [13] is used to select a generic process

plan from a database of standard process plans developed for each part family. The

selected generic plan is then customized interactively for the particular part. If the

plan does not exist for the family, the database is enhanced by an experienced process

engineer. This approach, in its nature, is semiautomatic since it still needs human

involvement. On the other hand, generative process planning systems are relatively

new developments which construct plans from basic input data based on general

rules for manufacturing. However, as Marefat et al. pointed out [9], the generative

approach is still far from maturity.

Obviously, the generative approach is much more promising to achieve full au-

tomation in process planning. In this dissertation we prefer the generative approach

to the variant approach.

In summary, the general trend in Computer Aided Process Planning (CAPP) has

shown that feature, or high level model information, is playing a more and more

important role in automated process planning. However, as a matter of fact, a global

solution to the process planning problem is still far away [14].

1.2.2 Vision Sensor Planning

In recent years, sensor planning in computer vision is an emerging research area and

many systems have been implemented. Here, we briefly review these systems. Based

on whether a CAD model exists beforehand we can divide the vision sensor planning

work into two categories:

0 model-based sensor planning

a non-model-based sensor planning

In model-based sensor planning systems, the task is usually stated like this:



a finished part needs to be inspected to check if the dimensions of certain entities

on the part are within the tolerance of the desired values in the design model.

In [15], Park et al. proposed a CAD-based planning and execution of inspection

system. Aiming at compensating the gap between the representation of vision process

and CAD database, they used rules to select important vision entities from the given

CAD database and generated inspection procedures for each entity. Marefat and

Kashyap [9] developed a knowledge-based inspection planning system for solid objects.

Prieto et al. [16] proposed a CAD-based range sensor system for optimum 3D data

acquisition. Other systems that used CAD models as input for sensor planning are

described in [11, 17, 18, 19]. As we notice, many systems used rule-based approaches

and, inevitably, they heavily depended on the human experience in rule generating.

In non-model-based sensor planning systems, there is no preexisting CAD model

of the actual part that is to be inspected. In fact, to obtain a CAD model is the

goal of these systems. Usually, the process to acquire CAD models from actual

parts is called reverse engineering [20]. Since there is no a priori CAD model, the

strategies to find the sensor configurations are quite different from those with models.

Many sensor planning systems of this type rendered the problem as a “next-best-

view”(NBV) problem. Pito [21] solved the NBV problem to determine which areas

of a scanner’s viewing volume need to be scanned to sample all of the visible surfaces

of an a priori unknown object and where to position/control the scanner to sample

them. Banta and Abidi [22] developed a system that reconstructs a model consisting

of surfaces which have been viewed and volumes occluded from the camera’s view.

Using a similar idea, Reed and Allen [23] proposed an automated scene modeling

system that consists of an incremental modeler and a sensor planner that analyzes

the resulting partial model and computes the next sensor position.

As we have discussed, in our application, the sensor planning is model-based. The

next section focuses on model-based vision sensor planning approaches.
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Figure 1.1: The vision sensor planning problem.

1.2.3 Model-based Vision Sensor Planning Approaches

Model-based vision sensor planning tries to understand and quantify the relationship

between objects to be viewed and the sensors observing them in a model-based, task-

directed way [24]. Figure 1.1 illustrates the vision sensor planning problem. Generally,

to inspect a specific entity on an object, certain task constraints should be satisfied,

which reflect the sensor’s capabilities. A comprehensive survey on the model-based

vision sensor planning can be found in [24].

Since the late 19808, several vision sensor planning approaches have been proposed.

Basically, they fall into two categories: generate-and-test and synthesis.

Generate-and-Test Approach

The generate-and-test approach was first introduced in the HEAVEN system devel-

Oped by Sakane et al. [1]. It was then extended to other systems such as the Vision

Illumination Object (VIO) system [25] and the Illumination Control Expert (ICE)

system [26]. The generate-and-test approach simplifies the vision sensor planning

problem into a search problem in a restricted solution space. Usually a tessellated

sphere is adopted to model the potential sensor configurations which are evaluated

with respect to the task constraints (see Figure 1.2). The determination of sensor



 
Figure 1.2: The generate-and-test approach (from [1]).

configurations is formulated as a search over the tessellated sphere guided by task

related heuristics. In general, the generate-and-test approach is straightforward and

easy to implement. However, the computational burden is relatively high due to the

large number of facets on the tessellated sphere. Additionally, the focus and resolution

constraints are not accounted for in this approach.

Synthesis Approach

Contrary to the generate-and-test approach, the synthesis approach forces an under-

standing of the causal relationships between the parameters to be planned and the

goals to be achieved [24]. Task constraints are modeled as analytic functions and the

task is formulated as a constraint-satisfaction problem.

Cowan and Kovesi’s Work

The early work in this area was carried out by Cowan and Kovesi [2]. Their work

was later extended by Cowan and Bergman [27] to include the planning of illumi-

nator placement as well. This approach was to generate for each task constraint an

equivalent geometric constraint, which in turn was satisfied in a domain of admissible

locations in 3D space. However, the problem with their work is that some orienta-

tional degrees of freedom are omitted, which greatly reduces the solution space.



Tarabanis et al.’s Work

Cowan et al. ’3 work was later developed by Tarabanis et al. in their Machine

Vision Planner (MVP) system [28].

In the MVP system, a generalized viewpoint is proposed, which consists of three

positional degrees of freedom of the sensors and two orientational degrees of freedom

(pan and tilt angle), as well as three optical parameters, namely, the back nodal point

to image plane distance d, the focal length f, and the entrance pupil diameter a of

the lens. In the MVP system, field of view, resolution, and focus constraints are

characterized by closed-form relationships, which result in accurate solution regions

and thus, eliminate the conservative nature of Cowan and Kovesi’s approach. Then

the solution regions obtained for all task constraints are combined in order to find

parameter values that satisfy all constraints simultaneously. The problem is posed in

an optimization setting in which globally admissible generalized viewpoint is sought

that is central to the admissible region. Such a viewpoint will satisfy all the con-

straints and favor points far from the admissible region boundaries. For the visibility,

they also provide an improved algorithm to find the visibility region in a polyhedral

environment [29].

However, the problems with the MVP system are: 1) exact, closed-form constraint

equations are not easy to solve, especially in high dimensional space, and 2) it is very

difficult to mathematically express the exact solution regions to these equations.

1.2.4 New Trends in Sensor Planning

In recent years, new trends in the research of sensor planning have emerged, some of

them are:

1) robust sensor planning.

In most of the previous sensor planning systems, the uncertainty of the sensor

parameters was not considered. However, in real world implementation, sensor con-



figurations are usually required to be robust. That is, the sensor configuration can

tolerate certain errors without affecting the inspection quality much. Several research

work has been reported in robust sensor planning in recent years. Gu et al. proposed

a robust approach for sensor placement in automated vision dimensional inspection

[30]; Yao and Allen solved the multi-constraint robust viewpoint problem using tree

annealing [31].

2) dynamic sensor planning.

Dynamic sensor planning deals with the planning of sensor configurations in an

environment containing objects moving in known ways. Abrams et al. are the first

researchers working in this area [32]. In their work, time becomes a factor and sensor

configurations are generated to satisfy certain constraints over a time interval, which

entails the calculation of the sweep volume of the moving objects.

1.2.5 Challenges

Generally, in most of the existing model-based vision sensor planning applications,

only simple entities, such as line segments or selected entities on inspected parts, are

considered [24]. However, in part dimensional inspection systems, continuous surfaces

are the inspection subject, hence the full coverage of part surfaces should be guaran-

teed. Furthermore, the inspected surfaces are usually large enough to require that the

camera planning problem be solved in a global environment, which, inevitably, brings

new problems on efficiency and optimization that need to be considered. Within our

knowledge, there has been no existing research that addresses vision sensor planning

of complex surfaces in a global way. It is also observed that there lacks a general ap-

proach that can guide CAD-based automated process planning. In this dissertation

we attempt to develop a framework for the automated sensor planning, in hoping

that this framework will benefit many other similar CAD-based manufacturing pro-

cess planning problems as well.
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Figure 1.3: The automated CAD-based vision sensor planning system.

1.3 Our Vision Sensor Planning System

A vision sensor planning system is built in our lab to facilitate the planning and

evaluation of sensor configurations. The framework of this system is depicted in

Figure 1.3. Mainly, the system consists of three components:

0 the sensor configuration planner

o the robot path generator

0 the inspection implementation unit.

The sensor configuration planner is the key component in this framework. The

planner takes the CAD model and the sensor model as two inputs, a number of

sensor configurations are generated to inspect all surfaces of the part. For each

sensor configuration and the corresponding inspected area, given task constraints are

satisfied.

A robot path generator is then employed to calculate a time-efficient path to tour

all these sensor configurations. If there are a great number of sensor configurations,

it is not a trivial problem to find a time-efficient path.

10



Once a robot path is obtained, the robot controller drives the eye-in-hand robot to

carry out the inspection task along the specified path. Currently our demonstration

system does not include the structured light component. Instead, we choose an alter-

native method to verify the generated sensor configurations, which will be discussed

later.

In the next two sections, the CAD model and the sensor model are introduced.

1.3.1 CAD Model

A CAD model contains the geometric information of a part. In 3D modeling, there

are different representation schemes for an object. Typical schemes are [4]:

o Constructive solid geometry (CSG)

0 Boundary representation (B-rep)

a Cell decomposition

o Sweeping

Among them, CSG and B-rep are the most prevalent. CSG uses primitive shapes

as building blocks and boolean set operators to construct an object. In B—rep, objects

are represented by their bounding faces. An alternative way categorizes the represen-

tation schemes into parametric representation and tessellation representation.

Parametric representation

In many applications, like die and mold design for automobile, ship and aircraft

manufacturing, free-form surfaces (also called sculptured surfaces) are usually used

[4]. Some common free-form surface models are bicubic surfaces, such as Bezier’s

surfaces, B-spline surfaces, and non-uniform rational B-spline surfaces (NURBS).

All of them are parametric surfaces. Parametric surfaces generally satisfy certain

continuity and smoothness constraints. Most of the parametric surfaces used in CAD
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modeling have low curvatures. By piercing together these well-behaved parametric

surfaces complicated geometry can be formed. Although parametric representation

is mathematically accurate, its local nature brings difficulties for process planning

[33]. In fact, surfaces used in CAD modeling are not designed for manufacturing

purposes. Each parametric surface has its own variables, different from those of other

surfaces, so it is difficult to have a global knowledge on the part geometry if we limit

ourselves to parametric surfaces. While global knowledge of the part geometry is very

important to automated process planning.

Tessellation representation

Tessellation representation is an important and useful scheme to approximate

free-form surfaces. Triangle is most frequently used in tessellation. Usually, the more

triangles, the less approximation error. To tessellate compound surfaces, or surfaces

formed by multiple connected parametric surfaces, there are two approaches:

1) tessellate each parametric surface individually, and

2) tessellate all the compound surfaces as a whole.

The first approach is usually adopted in 3D visualization or rendering. Tessellating

each individual parametric surface instead of all the compound surfaces as a whole

can speed up the rendering of the object. However, there exist small gaps between

surfaces, which needs to be dealt with carefully.

The second approach is usually seen in Finite Element Analysis (FEA). In this

approach, the compound surfaces are tessellated as a whole and there are no gaps

between surfaces.

The advantages of tessellation representation are obvious:

I) tessellation representation is a consistent, open data structure while parametric

representation usually depends on the specific CAD system. Although CAD data

exchange formats (like IGES) are being developed, there still exist heterogeneity and

inconsistency among different CAD systems as far as the flavor of parametric surface

12



is concerned.

2) tessellation representation is far more attractive for calculation than parametric

representation.

3) each tessellation unit, for example, a triangle, is a simple geometric entity,

which is suitable for algorithm implementation.

As a matter of fact, there exist deviation errors, which are dependent on the num-

ber of triangles, between the tessellated surface and the parametric surface. However,

according to Tarabanis et al., the sensor configuration is not very sensitive to surface

deviation errors [24], so these errors can be ignored in vision sensor planning.

1.3.2 Sensor Model

Pinhole model

To a first order, the imaging process can be approximated by a perspective transfor-

mation of object space onto image space with respect to a pinhole which serves as

the center of projection. This model is widely used in computer vision. However, the

efl'ects associated with a lens, such as focusing and image brightness, are ignored. In

this model, everything is perfectly focused and only a single ray of light reaches the

image plane from any point of object space. To use this model, the lens is assumed

to be thin and have an infinitesimally small aperture, which is not usually the case

for most camera lenses in practical use.

Thick lens model

Instead of a simple pinhole model, Tarabanis et al. adOpted a thick lens model in

their MVP system [24], which is more appropriate to model compound lens systems

in practical use.

The thick lens model is shown in Figure 1.4. For a thick lens, the Optical center
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Figure 1.4: The thick lens model used in the MVP system.

is replaced by two points, the front nodal point and the back nodal point. The nodal

points Of an optical system are two conjugate points on the optical axis, such that any

ray passing through the front nodal point emerges from the back nodal point in the

direction parallel to that of the original ray. The principle points of an optical system

are two conjugate points on the Optical axis, such that planes drawn perpendicular to

the Optical axis through these points, are planes of unit magnification. The Gaussian

lens formula applies to a thick lens when distances are measured from the principle

points Of the lens. When the media in the object and image spaces have the same

refractive index (e.g. both in air), the front and back focal lengths are equal, and the

principle points coincide with their respective nodal points. We adopt this thick lens

model in our system.

1.4 Problems Addressed in This Dissertation

The main problems addressed in this dissertation are:

1) how to understand the geometric structure of complex surfaces and thereafter,

how to extract the high-level geometric information based on low-level data represen-

tation to facilitate the vision sensor planning.

14



2) how to efficiently find the viewpoint(s) that can inspect a certain area of surface

with all the task constraints, as well as the coverage requirement, satisfied.

3) how to improve the efficiency of the inspection system, or how to reduce the

number Of viewpoints and how to determine a time-efficient path to visit all the

viewpoints.

4) how to combine the kinematics constraint into vision sensor planning such that

all the viewpoints are well-behaved in kinematics sense.

1.5 Outline of This Dissertation

The outline Of the dissertation is as follows: in Chapter 2, we propose the decomposition-

based vision sensor planning approach for compound surfaces. This chapter mainly

focuses on two subproblems: the decomposition Of compound surfaces and the gen—

eration of sensor configurations (viewpoints) for well-behaved patches. Two Optimal

problems are discussed in Chapter 3: the minimum sensor configurations problem

and the optimal kinematics performance problem. Chapter 4 focuses on the robot

path planning, which is rendered as a Tiaveling Salesman Problem (TSP). A new

approach is provided to solve it quickly, especially for large size problems. Simulation

and experimental implementation issues are discussed in Chapter 5. Conclusions are

provided in Chapter 6.
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CHAPTER 2

SENSOR PLANNING FOR COMPOUND SURFACES

The main topic of this chapter is to solve the vision sensor planning problem for

compound surfaces. Due to the complexity Of the geometry Of inspected surfaces, a

divide-and—conquer strategy is adopted. Firstly, compound surfaces are decomposed

into several patches with each satisfying certain geometric constraint. Secondly, based

on a bounding box concept, sensor configurations that satisfy given task constraints

are generated for each patch.

The first section gives out a mathematical formulation for the vision sensor plan-

ning problem and the second section reviews, in more detail, the synthesis approach

on the solutions to individual task constraint, followed by the general camera planning

strategy. The compound surfaces decomposition algorithm and the sensor configura-

tion generation algorithm are discussed in detail thereafter. Finally, results from the

tests on different real-world parts are reported.

2.1 Problem Formulation

Based on the discussions on the CAD model and the sensor model, the vision sensor

planning problem can be formulated as follows:

Given a CAD model of the part P, which consists of triangles, i. e. P = {T} (i =

l...n)}, and a camera model, design a set of sensor configurations C = {C,- (i = 1...k)}

such that for any point p on the part surface, p E T.- E P, there exists at least one

sensor configuration Cj (Cj E C), such that p is visible, in the field of view, resolvable

and in focus.

Here a sensor configuration C is the necessary parameters that characterize a

unique state of the sensor. For a camera, its configurations usually include Optical

settings, such as the back principal point to image plane distance d, the aperture of

16



the lens a, and the focal length f. However, due to the difficulties in automatically

controlling these settings, we treat them as constants. Hence a sensor configuration,

or viewpoint, of a camera consists of six parameters: the lens front nodal position: x,

y, z; the camera orientation: pan angle 9, tilt angle 21) and the rotation angle around

Optical axis, (15. That is, C = [:5, y, z, 9,11), ¢]T.

2.2 Background

Before we discuss the vision sensor planning approach, a more detailed look into the

synthesis approach is provided and the viewpoint regions that satisfy each Of the three

constraints ( resolution, field Of view and focus) are presented.

2.2.1 Task Constraints and Their Solution Regions

TO inspect a certain entity on a part, usually four task constraints should be satisfied:

visibility, field of view, resolution and focus. The visibility constraint demands that

there be no occlusion between the viewpoint and the entity to be inspected along the

line Of sight. There exist several methods that calculate the visibility region when

an entity is viewed in a polyhedral environment [34]. In our vision sensor planning

problem, the visibility problem is not critical due to the decomposition-based strategy

we use. In fact, the visibility is implied in the other three constraints, which will be

discussed later. The field of view constraint requires that the interested entity be

imaged to the active area Of the image plane. The resolution constraint ensures

that a small entity be imaged to at least one pixel on the image plane. There are

different definitions on the resolution constraint. According to Cowan and Kovesi,

the resolution constraint was defined to be the minimum angle subtended by a given

incremental surface length at the perspective center of the lens, which is illustrated in

Figure 2.1. While in Tarabanis et al.’s work, the resolution is defined as a conventional
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Figure 2.1: The resolution constraint used by Cowan and Kovesi.

pixel resolution. The focus constraint guarantees that the entity of interest is sharply

imaged.

Cowan and Kovesi’s Work

In Cowan and Kovesi’s work, the solution to the field of view constraint is relatively

straightforward. For a 3D Object, Cowan and Kovesi constructed a circumscribing

sphere with radius r and calculated the locus of viewpoints at a distance F from the

sphere center with

 

F =W (2.1)

Pmin

a = 2arctan( 2d ) (2.2)

18



Here Pm," is the minimum dimension of the image plane. d is the distance from

the back nodal point of the lens to the image plane.

With their resolution definition, Cowan and Kovesi determined the locus of the

perspective center of the lens, when the given surface length is barely resolvable, to be

the circular arc of points at which this surface length subtends a constant angle equal

to the resolution angle [2]. Cowan and Kovesi further showed that the 3D region of

viewpoints such that an incremental circle having diameter 1 subtends at least angle

6 is a ball. The parameters of the ball are calculated as follows,

= 2sin6’ (23)

H = Rcos 6, (2.4)

,/ 2 2

6 = 2arctan Liz—Um (2.5)

2d

Here H is the height of the ball center to the circle. R is the radius of the ball. h,

w are the height and width Of one pixel on the image plane. at is the distance from

the back nodal point of the lens to the image plane.

To view a polygonal surface with a minimum spatial resolution, the viewpoint

must lie in the intersection Of the resolution balls of all the vertices on the surface. TO

view a polygonal surface, it is sufficient for the camera to lie within the intersection Of

the resolution balls Of the vertices of the polygon’s convex hull. Figure 2.2 displays the

viewpoint region satisfying the resolution constraint when viewing a triangle AABC.

For the focus constraint, Cowan and Kovesi made use of the depth-Of-field formula

developed by Krotkov [35] that gives the range of distances of entity points that have
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Figure 2.2: The resolution constraint-satisfying region for a triangle.

a blur circle diameter which is less than the minimum pixel dimension, and therefore

in focus. The set of viewpoints, for which an inspected surface has its farthest point

at a distance equal to the upper limit of this range and similarly its nearest point at

a distance equal to the lower limit, defines the boundary Of the locus Of admissible

viewpoints for this constraint. Instead of measuring these distances along the optical

axis as required by the Gaussian lens law, Cowan and Kovesi measured it radially.

In three dimensions, the camera optical axis was assumed to pass through the center

of a circumscribing sphere Of the entities, thus the orientational degrees of freedom

were omitted, which greatly reduces the number of potential viewpoints.

Figure 2.3 shows the regions corresponding to the three constraints (field of view,

resolution, focus) when a square is inspected. By intersecting all the admissible

regions, Cowan and Kovesi were able to find the solution region in which a camera

viewpoint satisfies all the task constraints.

Tarabanis et al. ’3 Work

In Tarabanis et al. ’3 work, the relationship describing the field of view-satisfying locus

of generalized viewpoints is given by the implicit formula as follows,
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Figure 2.3: The viewpoint region for 3 task constraints: resolution, field of view and

focus (from [2]).

(r'k — r}?)- if > 005(—2)|[rK — rv|| (2.6)

where rv is the position vector Of the front nodal point V, v is the unit vector

along the Optical axis in the viewing direction, a is the field-Of-view angle. rK is the

position vector given by the relationship rK = r0 — Rev, where R0 = R,/sin(a/2)

and r0 is the position vector of the center of a sphere circumscribing the object and

R; is the radius of the sphere.

For the resolution constraint, pixel resolution is used to indicate the approximate

size of the smallest scene entity which can be seen by the vision system. The entities

considered are line segments or general entities that can be approximated by a finite

set of line segments. The locus of resolution-satisfying general viewpoints is described

in vector form by the following formula:

”[er - TV) X at] x v” 2

[(m — 7"v) 'vl[(ra — TV) - v] _ dl Z 0 (2-7)
 

where r,4, r3 are the vector of the vertices, A and B of the linear entity AB, with

respect to the Object world coordinate system, u; is the unit vector along the linear

entity AB, l is the length of the linear entity AB, f is the focal length of the lens
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and w is the required length of the image of AB.

For the focus constraint, using a different method from Cowan and Kovesi’s, Tara-

banis et al. found that the region satisfying the focus constraint for a general poly—

hedral entity is the band between the planes perpendicular to the viewing direction,

and at distance D1 and D2 from the farthest and closest entity vertices, respectively.

(Tc — Tv) ' ’U — Dz Z 0 (2.8)

Dl—(Tf—Tv)°’UZO (2.9)

where rc (rf) is the position vector of the nearest (farthest) entity vertex from the

front nodal point of the lens along the viewing direction. D1 and D2 are given by:

 

 

_ afd-I-cfp

__ afd—cfp

Here p is the signed Offset between the front nodal point and the entrance pupil,

c is the limiting blur circle diameter.

2.2.2 Task Constraints Considered in Our System

Specific to our inspection problem, the following task constraints are adopted.

1) Visibility.

Denote the 3D position of the viewpoint as 0, suppose a point p on the part
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surface has a normal ii. The visibility constraint requires that pb - ii 2 0 and the line

segment p’o is not occluded by any other surface. Later we will see that, in a patch,

visibility can be guaranteed if the maximum angle between the average normal of the

patch and normal of each triangle is less than a certain value.

2) Field Of view

Different from the circular field Of view constraint usually used in previous work,

a rectangular field Of view is defined. This field of view is more practical and it is

characterized by a field of view angle a, which is extended by the two side planes

corresponding to the two shorter edges of the field of view rectangle (see Figure 2.4).

3) Resolution

Tarabanis et al.’s calculation Of resolution constraint is more accurate, however, it

is not easy to calculate the solution region. To simplify the implementation, Cowan

and Kovesi’s resolution definition and its method is adopted to Obtain the resolution

region. To view a tessellated surface, the resolution region is the intersection of the

resolution balls Of all the vertices.

4) Focus

Tarabanis et al.’s solution is adopted to calculate the in-focus region. For a given

patch the solution region is the band between the planes perpendicular to the viewing

direction and at distances D1 and D2 from the farthest and nearest patch vertex,

respectively.

Based on the above discussions, the view cone of the camera can be modeled

as in Figure 2.4, where the two parallel planes denote the two depth-of-field planes

corresponding to D1 and D2. (1 is the field of view angle.

2.3 Camera Planning for Compound Surfaces

In this section, the CAD model data representation is discussed, then the camera

planning strategy is developed.
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Figure 2.4: The view cone of the camera.

 

Figure 2.5: The 3D rendering of the part—bpilar.

2.3.1 CAD Model Data Representation

A tessellation representation, the Virtual Reality Modeling Language (VRML), is

chosen as the input CAD model data representation. VRML is a standard for web-

based rendering of objects [36] and it belongs to the type of tessellation by each

parametric surface we mentioned in Chapter 1. This data representation is favorite to

us since it combines the advantages of both the parametric surface and the tessellation

in that we can retrieve the well-behaved parametric surfaces easily and meanwhile

simplify the calculation of viewpoint by using triangles. Figure 2.5 and Figure 2.6

display an original part called bpilar and its tessellated counterpart, respectively.
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Figure 2.6: The bpilar in triangular representation.

2. 3.2 Camera Planning Strategy

It is observed that most parts in automotive manufacturing, especially vehicle bodies,

share a common characteristic: they have several continuous, flat patches joined by

edges, or smooth transitional surfaces like fillets. Therefore, it is possible to partition

the surfaces of the part into flat patches such that each flat patch has attributes

desirable for the camera planning: there are no complex geometries on the flat patch;

the curvatures of the flat patch do not change abruptly; the flat patch extends more

in length and width direction than in depth direction. In this sense, the flat patches

represent the high level information extracted from the low level CAD data.

However, due to the large number of parametric surfaces, it is not efficient to plan

viewpoints for each parametric surface separately since it is possible for one viewpoint

to inspect several surfaces that have similar normals. Therefore the challenge is,

how can we merge those surfaces with similar normals so that we can obtain less

patches and eventually, less viewpoints? This problem bears certain similarity with a

segmentation problem in image analysis [37]. Inspired by this Observation, a graph-

based algorithm is developed to merge well-behaved surfaces into big flat patches.

The overall camera planning strategy is shown in Figure 2.7. To decompose the

surfaces of the part into flat patches, we first construct an adjacency graph with each

node representing a surface and each edge representing an adjacency relationship
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Figure 2.7: The camera planning algorithm.

between the corresponding two surfaces. Then, based on this graph 3 merging algo-

rithm is proposed to combine the surfaces with similar normals. Finally, viewpoints

are generated for each flat patch.

2.4 Compound Surfaces Decomposition

In this section, the flatness constraint is introduced first, followed by the concept of

the Flat Patch Adjacency Graph (FPAG) and its construction method. The rest of

this section describes the merging algorithm on the FPAG.

2.4 .1 Flatness Constraint

To begin with, some definitions are introduced.

Definition 2.4.1 (surface) A surface is a collection of all the connected triangles

corresponding to a parametric surface.
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Figure 2.8: The average normal of a surface.

Definition 2.4.2 (average normal of a surface) The average normal of a sur-

face is the area-weighted average of all the unit normals of the triangles in the surface.

i. e.,

k ..

. A.- .-
1, = __Z.=k1"' , (2.12)

Zizl Ai

here, ii,- and A,- are the unit normal and the area of triangle Ti, respectively; It is

the number of triangles in the surface.

A surface and its average normal are shown in Figure 2.8.

Definition 2.4.3 (patch) A patch is a collection of n (n 2 1) connected surfaces.

Definition 2.4.4 (average normal of a patch) The average normal of a patch,

77,, is the area-weighted average of all the unit normals of the triangles in the patch,

01"

(2.13)

m is the number of triangles in the patch.
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To facilitate the camera planning, the flatness is chosen as the geometric constraint

on the patch. The reason lies in the following fact: the bigger curvature a patch

has, the less likely to find a viewpoint which satisfies the resolution and the focus

constraint; if the curvature is too big, even the visibility constraint will be violated.

Figure 2.9 illustrates the cases where the resolution and the visibility constraint are

likely to be violated. Furthermore, if the patch has both big area and big curvature,

the patch can not be hold in the depth Of field range D, thus the focus constraint will

not be satisfied.

The flatness Of a patch can be characterized by the maximum deviation angle

defined below.

Definition 2.4.5 (maximum deviation angle) The maximum deviation angle

(OMDA) of a patch is the maximum of all the angles between the average normal of

the patch, tip, and the normal of each triangle, iii. i. e.,

n - n

9MDA = max(003—1( ..p at )) (2-14)

. H n, ' n: H

Here [| - M denotes the length of a vector in Euclidean space.

28



Definition 2.4.6 (flat patch) A flat patch is a patch that satifies 9mm s 0”,.

Here 9", is a predetermined flatness threshold.

As has been discussed in Chapter 1, parametric surfaces usually have low curva-

tures and are well-behaved, so it is reasonable to assume that each surface satisfies the

flatness constraint if a suitable 0”, is chosen. Hence, according to the above definition,

a surface is a flat patch.

For a flat patch, another concept, the maximum-area—direction, can be introduced,

which designates the direction that when the flat patch is orthographically projected

(with scaling factor m = 1) along this direction, the image of the patch has the

maximum area. What is interesting is that the maximum-area—direction of a flat

patch is the same direction of its area-weighted average normal. It can be shown as

follows.

When the scaling factor equals 1, the image area of a patch in orthographic pro-

jection is:

m

A = 2.4473, - 27]. (2.15)

i=1

Here if is the direction of orthographic projection. To find if such that A is maximum,

we have

— = 0, (2.16)

which results in

T" A", tn .ri

——Z*=17/II—Z'L‘1Afu, (2.17)
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that means the maximum-area-direction Of a patch is the same direction as the area-

weighted average normal of that patch.

For a flat patch, this equivalent relationship still holds under the perspective

projection since, when the scene depth is small relative to the average distance from

the camera, perspective projection can be approximated by orthographic projection

[38]. This small-scene-depth condition can be guaranteed by the flatness of the patch.

2.4.2 Flat Patch Adjacency Graph

Construct Adjacency Relationships among Surfaces

In VRML, since each parametric surface is tessellated separately, no two triangles

from two different surfaces are connected (or share a common edge). Therefore, all

the triangles belonging to one surface can be identified based on the connectedness

relationships among triangles.

A “growth” algorithm is proposed to identify the surfaces. First, a seed triangle is

arbitrarily selected, then its edge-neighboring triangles, or the triangles sharing one

common edge with the seed triangle, are pulled in to form a sub-surface, or a portion

of a surface. Then, for each triangle in the sub-surface, its edge-neighboring triangles

are pulled in. This process continues until no more triangles can be added. The final

collection of triangles form a surface. Again, among the remaining triangles, another

triangle is arbitrarily selected as the seed and the above procedures are repeated

until each triangle is in one of the resulting surfaces. Since each parametric surface is

tessellated separately, whichever seed triangle to choose does not affect the identifying

results.

To build the adjacency relationships among surfaces, it is necessary to calculate the

distance between two surfaces. Following are two definitions related to the adjacency

relationship.
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Adjacent-IAL83;

for each triangle Ti in Surface A do

for edge lj-(Vj1,Vj2) in rt do

1f(lj 1a a boundary—edge of Surface A)

if(vertexZSurface_D1atance(le,Surface H) < THHISHOLD

ea verteXZSurface_Dietance(V32,Surface B) < THRISHOLD)

AdjacentsTRUl;

for each triangle T1 in Surface 3 do

for edge lj-(le,Vj2) in Ti do

if(lj 1a a boundary—edge of Surface 3)

if(vertexZSurface_Dietance(le,Surface A) < THHISHOLD

is vertexzsurface_piatance(Vj2,Surface A) < THHISHOLD)

Adjacent-THUI;

Figure 2.10: The algorithm to check the adjacency relationships.

Definition 2.4.7 (border-edge) An edge of a triangle in surface A is called a

border-edge to surface B if and only if both of its vertices are close enough, that is,

less than certain threshold, to surface B.

Definition 2.4.8 (adjacent) Two surfaces, A and B, are adjacent if surface A

(or B) has at least one border-edge to surface B (or A)

Two patches are adjacent if there exist at least two adjacent surfaces, each from

one patch.

The algorithm to determine whether two surfaces A and B, are adjacent is shown

in Figure 2.10. Every boundary edge of one surface is checked to see if both vertices

Of the edge are close enough (less than a predetermined threshold) to another surface.

In the above algorithm, it is necessary to calculate the distance from one vertex to

one surface, which is essentially the minimum distance of all the distances from the

vertex to each triangle in that surface. Usually the vertex is not in the plane where

the triangle resides, so the vertex is projected onto the plane and thus the problem

is converted into 2D. Figure 2.11 illustrates this idea and the algorithm to calculate

the vertex-tO-triangle distance is shown in Figure 2.12.

In the plane, the distance from the project point V}, to the triangle T, D1,, is

obtained by taking the minimum of the distances from V,,, to each of the three edges
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Figure 2.11: Project the vertex onto the plane.
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Figure 2.12: The algorithm to calculate the vertex-tO-triangle distance.
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of T. However, if V,, is inside the triangle, the distance DP = O. The vertex-tO-triangle

 

distance is calculated as D”, = \/(D,)2 + (Dp)2. A similar algorithm can be found in

[39].

Flat Patch Adjacency Graph

Once the adjacency relationships among surfaces are Obtained, a Flat Patch Ad-

jacency Graph (FPAG) can be constructed. Since a surface is a flat patch, this

nomenclature is suitable to describe the initial adjacency graph where each node is a

surface.

Definition 2.4.9 (Flat Patch Adjacency Graph (FPAG)) A Flat Patch Ad-

jacency Graph is a undirected graph G = (V, E) where V is the set of nodes and

E C V x V is the set of edges. Each node v,- = {rim-,AWBMDM} represents a flat

patch with the triple representing the average normal, area and maximum deviation

angle of the flat patch respectively. Between two nodes v,- and v,- exists the edge e,,- if

the two nodes are adjacent. The weight of the edge, w(i, j), is the angle between the

average normals of the two adjacent fiat patches.

Definition 2.4.10 (merging) A merging on a FPAG is the union of two adjacent

nodes v,- and v, into one node v,,~ if vij is a flat patch.

Following steps take place in a merging action.

1. vij 2' ’U,‘ 63 ’03:.

Here, the merging operator ED is defined as follows,

ij_ A.g i.
Api+Apj I 131+ PJI MDAJ}

 

—o -' fi .

v.- 69 22,- = {npi,Apia9MDAi} EB {TippApj’gMD/U} ={ m

(2.18)

2. Replace node v,, v,- and edge eij with node v,,-.
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Figure 2.13: Example compound surfaces and the corresponding initial FPAC.

3. Recalculate the edge weight of all the affected edges.

In equation (2.18), OMDA,J- is calculated after the new average normal is Obtained.

According to the above definitions, the FPAG has the following properties:

Property 1. A FPAG is a connected graph.

Property 2. When a FPAG undergoes a merging, it is still a FPAG.

Property 3. Each merging reduces the number of nodes in FPAG by 1.

Among the above three properties, Property 1 reflects the fact that all the surfaces

of the part are connected. Property 2 is self-evident based on the definition Of FPAG

and it emphasizes that each node in the FPAG represents a flat patch at any time in

the merging process. Property 3 means that the more mergings take place, the less

flat patches are obtained.

The example compound surfaces and the corresponding initial FPAG are shown

in Figure 2.13.

2.4.3 FPA G-based Surface Merging

Merging adjacent surfaces with similar normals into big patches resembles the seg-

mentation problem in image analysis. Generally, the segmentation problem aims to

partition an image into a number of homogeneous segments and the union of any two

adjacent segments results in a heterogeneous segment [37].

Here a concept, closest normal pair, is defined.
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Definition 2.4.11 (closest normal pair (CNP)) The closest normal pair is

the two adjacent nodes with the minimum edge weight in the FPA G.

The basic idea of the merging algorithm on the Flat Patch Adjacency Graph

(FPAG) is as follows: in the FPAG, find a pair Of flat patches with the closest

normals and test if the merged patch is a flat patch, i.e., the maximum deviation

angle is less than a threshold 9m If yes, update the FPAG. Otherwise, keep the two

flat patches and assign a big value BV (BV 2 26th) to the weight of the edge between

them to keep them from competing in the following iterations if neither Of the two

flat patches corresponding to the edge is changed. Then repeat the whole process on

the updated FPAG. When updating the FPAG, the edge with big value weight BV

will be recalculated if any of its corresponding flat patches is merged with other flat

patches.

The ending condition is that all the edge weights are bigger than 20th (0)). is the

flatness threshold), which is Obtained on the basis of the following Observation:

If the angle between the average normal of two flat patches is greater than 26th,

then the maximum deviation angle (QMDA) of the merged patch must be greater than

19”,, which means the merged patch is not a flat patch.

This Observation is obvious since the average normal of the combined patch is the

linear combination of the average normal Of the two flat patches.

According to Property 3, each merging reduces the number of nodes by 1, so

the merging algorithm guarantees that the number Of nodes, i.e., the number of

flat patches decreases. At the end Of the iterations, the algorithm will find out the

minimum number of flat patches and further merging of any two flat patches will

violate the flatness constraint. The algorithm is shown in Figure 2.14 and the merging

process is illustrated in Figure 2.15.

In Equation(2.18), the non-normalized vector is used to represent the average

normal of a patch. In this way the computational cost can be reduced when we
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Figure 2.14: The merging algorithm based on FPAG.
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Figure 2.15: The merging process.
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calculate the average normal of the merged flat patch. We simply take the area-

weighted average Of the normal of the two patches to get the average normal of the

merged patch, thus avoid enumerating all the triangles in the merged patch.

2.5 Viewpoint Generation

Since flat patches have been generated, the critical problem is brought up: how to

find the constraint-satisfying viewpoints for each flat patch in an efficient way?

A new concept called bounding box is prOposed to facilitate the viewpoint plan-

ning and, based on this concept, a recursive algorithm is developed to find all the

viewpoints for that flat patch.

2. 5. 1 Bounding Box

A “bounding box” concept is prOposed to effectively combine the four task constraints

and simplify the viewpoint search. The viewpoint generating algorithm based on this

concept is an integration Of the generate-and-test and the synthesis approach in the

sense that it adopts the search technique from the generate-and-test approach and

the resolution, focus constraint solution from the synthesis approach.

For a given flat patch, its bounding box is constructed by projecting all the vertices

on three orthonormal directions and finding the corresponding farthest and nearest

project point. Here the three orthonormal directions are: front, or the viewing di-

rection; up and right, the directions that determine the camera rotation around the

Optical axis.

The Opposite direction of the average normal (or the maximum-area-direction) of

the given flat patch is chosen as the front direction. Then all vertices on the patch are

projected to a plane that is perpendicular to the front direction. The up and right

direction are determined so that the smallest rectangular field of view with specified
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Figure 2.16: Bounding box and the potential viewpoint region.

length/width ratio can cover all the project points.

Based on the bounding box, the viewpoints that satisfy the four task constraints

locate in a restricted region (see Figure 2.16). We choose the center of the bounding

box as the look-at position of the camera, the up direction of the bounding box as

the look-up direction. Now the look-from position of the camera is restricted on the

line Of sight which passes through the look-at point. To determine it, the line Of sight

is intersected with three constraint regions: the field of view region, which gives the

lowest position PM, Of the camera on the line of sight with

L

me’ = 2 tan(a/2)’
(2.19)

where L is the length Of the bounding box, a is the field of view angle Of the camera;

the in-focus region, which determines two points Pdofl and Pdofz on the line Of sight

corresponding to the two planes at distances D1 and D2 from the farthest and nearest

patch vertex; the resolution region, which is the intersection Of the resolution balls for

each vertex on the patch. However, due to the high computational cost in calculating

the intersection Of resolution balls, an indirect method is used: discretize the search

space formed by the line of sight and the field of view, in—focus region and test
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Figure 2.17: Visibility for a flat patch.

each discrete point to see if the distances between this point and the centers of the

resolution balls are all less than the resolution ball radius R.

The visibility of the patch is guaranteed by the bounding box and the flatness

constraint of the patch as long as the flat constraint threshold 0),, satisfies the following

condition,

an S

m
u
s

, (2.20)

t
\
D
I
Q

This condition is illustrated in Figure 2.17.

Any position in the intersection of the line of sight and the three constraint regions

is an admissible look-from position. In practice, we choose the lowest solution position

to Obtain a larger image.

Some illustration is necessary for the determination of the line of sight. In the

proposed algorithm, the most important question one might ask is “is the chosen line

of sight most likely to result in admissible viewpoints .7".

. Among the four task constraints, it is Obvious that we only need consider the

resolution constraint. We have the following proposition regarding the resolution

constraint and the viewing direction.

Proposition 2.5.1 For a given fiat patch, if there is one viewpoint that satisfies
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Figure 2.18: Resolution constraint and maximum-area—direction.

the resolution constraint and has a viewing direction other than the maximum-area-

direction, then, there must be one viewpoint on the maximum-area-direction that sat-

isfies the resolution constraint.

Proof.

In Figure 2.18, if viewpoint V is on a viewing direction other than the maximum-

area-direction, and V satisfies the resolution constraint, then we can find a viewpoint

V’ on the maximum-area-direction with the same distance to the patch as V. We

then get two images of the patch, image I’ from V’ and image I from V. Under the

orthographic projection assumption and the maximum-area-direction definition, the

area Of image I’ , is no less than the area of image I, which implies that the image I’

satisfies the resolution requirement too. <1

The above proposition implies that the line of sight in the maximum-area—direction

is the most likely potential solution direction to the resolution constraint.

2.5.2 Recursive Viewpoint Generation Algorithm

A recursive algorithm is used to determine all the viewpoints for a flat patch. If

the intersection of line Of sight and all the constraint regions Of the current patch
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Figure 2.19: Recursive algorithm to find the viewpoints for a flat patch.

is null, which means no viewpoint exists that satisfies all constraints, we split the

patch into two subpatches using the center plane of the bounding box along the

length direction. For each subpatch, a new bounding box is constructed and the

viewpoints are searched. This process continues until every patch or subpatch finds

its viewpoints. The algorithm is shown in Figure 2.19.

2.6 Algorithm Implementation and Results

The surface merging algorithm and the viewpoint generating algorithm are imple-

mented using C++ on a PentiumTM III 500Mhz PC and they are tested on different
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stamping sheet metal parts from Ford Motor Company.

The camera we use is a Hitachi KPD- 50 with a H0612FI lens and its parameters

are:

d = 12.65mm, a = 0.78mm, f = 12.5mm,

it

p = 2.0mm, c = 3.75pm, 0 = 6’

l 2 2mm, h = 8.4um, w = 9.8am,

which result in

First all the triangles are read into the program. Then the connectness relationship

among the triangles is constructed based on. the vertex indices. It is found that the

Object-oriented feature of C++ is suitable to explore the hierarchical structure among

the point, line, triangle, patch, etc.

Summarized here are some results on the bpilar, which has 293 different parametric

surfaces. The VRML data Of the part is generated from SDRC’s I-DEAS Master

SeriesTM6.0 [40]. With an error tolerance of 3 mm it is tessellated into 2680 triangles.

Its triangular representation is already shown in Figure 2.6. The flatness constraint

threshold 0,), is f

The merging algorithm generates 18 flat patches. Figure 2.20, Figure 2.21 and

Figure 2.22 show three of them. In these figures, the front and back rectangles of

the bounding boxes are shown, with a line connecting the center of the bounding box

and the lower right corner of the front rectangle. Each flat patch consists of multiple

surfaces. Obviously, the merging takes place 293 — 18 = 275 times before it stops.

Once the flat patches are generated, the recursive viewpoint generating algorithm
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Figure 2.22: Flat Patch 3.
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Figure 2.23: All the viewpoints.

Table 2.1: Testing results on different parts

No. of No. of No. of No. of Running

Surface Flat Patch Time

 

is used to compute the viewpoints that satisfy all the four task constraints. Figure 2.23

shows all the viewpoints generated. In the figure, the frames show the actual field

Of view of all the viewpoints. Table 2.1 summarizes the testing results on different

parts.

As it can be seen from the table, the number of flat patches is much smaller than

the number of surfaces, which implies that most of the surfaces have similar average

normals.

We also find that a big portion of the running time is spent in building the Flat

Patch Adjacency Graph.
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2.7 Discussions

In this chapter, a divide-and-conquer strategy is adopted in the vision sensor plan-

ning. First, based on the tessellation representation of the surfaces of the part, a .

merging algorithm on the Flat Patch Adjacency Graph (FPAG) of the part surfaces

is deveIOped. This algorithm utilizes the adjacency information of the surfaces and

the similarity of the surface normals to cluster the homogeneous surfaces into big flat

patches. Second, for each flat patch, a recursive algorithm which combines existing

vision sensor planning approaches is developed to find viewpoints that satisfy certain

task constraints. Experiments on real-world parts show that the new approach is

successful.

It is worth pointing out that the surface merging algorithm can also benefit many

other CAD-based path planning problems like spray painting path planning because

it is important to generate large, global, flat patches to Obtain time-efficient spraying

paths [41].
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CHAPTER 3

OPTIMIZATION IN VISION SENSOR PLANNING

Inspections in automotive manufacturing usually have to deal with large parts, while

a camera has a relatively small field of view, which is dependent on the focus and the

resolution capability of the camera. How to determine the camera viewpoints such

that the part surfaces can be inspected satisfactorily with a minimum set of view-

points is one problem studied in this chapter. By partitioning a large flat patch into

near-square cells, candidate viewpoints are constructed to cover a certain number of

neighboring cells. To find the minimum set Of viewpoints, a set-partitioning problem

is formulated.

Another practical problem that usually arises in the implementation of an inspec-

tion system is that the viewpoints, or correspondingly, the robot hand-tip positions,

should be within the robot’s reachability space and, furthermore, it is desirable that

the robot can reach these viewpoints “comfortably”. In this sense, both the four

task constraints and the robot kinematics constraint should be considered in sensor

planning. Based on the same cell-partitioning scheme, kinematics performance mea-

sure Of the robot is assigned to each candidate viewpoint and a weighted set-covering

problem is formulated to find the fully-covering viewpoints that achieve the highest

kinematics performance.

3.1 Minimum Sensor Configuration Problem

3.1.1 Background

It is Obvious that the number of sensor configurations will determine the inspection

time as well as other subsequent costs for inspection. It is highly desirable to Obtain

minimum sensor configurations to cover all the surfaces Of the part. Hence, an optimal

problem can be formulated:
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find the minimum sensor configurations such that any point on the part surface

can be “cover ” by at least one of these sensor configurations.

However, the minimum covering problem is not easy to solve. Even its 2D version,

that is, to inspect all the interior edges of a polygon with minimum viewpoints, is a

NP-hard problem [42], which implies that for large size problems there is no efficient

algorithm to find the optimal solution. In fact, the latter is a traditional “art gallery”

problem which tries to find the minimum number Of guards necessary to see all of the

walls (edges) Of a gallery (a simple polygon) [43].

Recently, some research work on the minimum viewpoint problem has been re-

ported. Danner and Kavraki [44] proposed a randomized approach to select art

gallery-style guards (viewpoints) and connect them to form an inspection path. They

took the visibility, the length Of the line of sight and the incidence angle between

the line Of sight and the edge being Observed as three constraints imposed on each

guard (viewpoint). Their approach was first applied to a 2D polygonal workspace,

then extended to a 3D polyhedral environment. However, the constraints they used

are not complete or accurate to model the real-world sensors, and how to guarantee

the full coverage of the guards (viewpoints) is not mentioned in their paper. Another

disadvantage of their approach is that the local greedy nature Of the randomized

algorithm does not necessarily generate the Optimal or even sub-Optimal solution.

Kang et al. [45] provided a method to determine the minimum number of view-

points from where all surfaces of the Object are visible. An index theory was developed

for the analysis and computation. Based on that, the geometric problem is transferred

into a searching process with purely algebraic computations. Although their method

does not restrict itself in 2D, 3D inspection is not discussed in their paper. Addi-

tionally, only visibility is considered since the task constraint and the visibility region

calculation is costly, especially in high dimensions. However, what inspires us is that

Kang et al. pointed out the importance Of the partition, or discretization, of surfaces
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into patch elements, which eventually renders the problem as an integer optimization

problem on a finite set.

Kay and Luo [42] raised the minimal number of camera problem in their automatic

guided vehicle (AGV) system. They proved the NP-hardness of the camera placement

problem, which is essentially a set-covering problem. However, in their system, the

potential camera positions are limited to predetermined locations and only a ZD flat

floor is considered in their paper.

For most of the parts commonly seen in automotive manufacturing, the surfaces

are usually in free-from shape, or they are 3D surfaces. As far as we know, no view-

point Optimization work has been reported on free-from surfaces with consideration

of all the four task constraints: visibility, field of view, resolution and focus.

In the previous chapter, the recursive algorithm generates viewpoints by dividing a

large flat patch into two halves. This algorithm, although easy to implement, does not

imply the minimal number of viewpoints. Hence a new strategy is needed to find the

minimum set of viewpoints. Here we prOpose an approach that generates candidate

viewpoints in a constructive way and solves a set-covering problem to Obtain the

minimum viewpoints.

After the FPAG-based surface decomposition, all the flat patches are Obtained.

Since big curvatures occur at borders where different flat patches meet, it is sufficient

to consider each flat patch individually. More generally, the minimum viewpoint

planning problem can be stated as follows,

given a large flat patch which has no big curvature, find a minimum set of view-

points that can inspect any point on the flat patch with the following four task con-

straints satisfied: visibility, field of view, resolution and focus.

In the following sections, the set-partitioning problem is introduced first; then

the constructive candidate viewpoint generation method is described; after that, we

present the implementation and experimental results.
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3.1.2 Set-Partitioning Problem

Set-partitioning problem, and its generalized version, set-covering problem, are special

structures in integer programming [46]. They can model many industrial scheduling

and planning problems like bus crew scheduling, air crew scheduling, facility location

etc. These problems can be formulated as follows,

given 1) a finite set M with m members; 2) a constraint set defining a family F

of n ‘acceptable’ subsets of M; find a minimum collection of members of F which is

a partition or a cover of M [46].

Mathematically, the set-partitioning problem can be formulated as [42],

n

minimize z = ij (3.1)

i=1

n

subject to Zaijxj = 1, i = 1,2, ...,m (3.2)

j=1

xj = 0 or 1, j =1,2,...,n. (3.3)

Where a,,- = 1 means that member i belongs to the subset j. x,- = 1 means that

subset j is selected and xi = 0 otherwise.

To model the minimum viewpoint planning problem as a set-partitioning problem,

we need to

1) partition the flat patch into finite cells c1, c2, ....cm

2) obtain finite viewpoints, V1, V2, ...Vn, with each covering, or inspecting a subset

of all the cells.

Essentially, both the flat patch and the camera configuration space need to be

discretized. Once the minimum viewpoint problem is mapped to the set-partitioning

problem, aij = 1 means that viewpoint V} can cover, or inspect cell c,- and xj = 1

means that viewpoint V,- is selected as one member Of the minimum set.
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The set-partitioning problem has been studied extensively for many years. Gen-

erally there exist two types of algorithms: exact algorithms and heuristic algorithms.

The former attempt to solve the set-partitioning problem to Optimality while the

latter try to find approximate solutions quickly.

One type of exact algorithm solved the problem based on cutting planes [47]. An-

other type of exact algorithm uses tree search (Branch-and-Bound). Various bounding

strategies, including linear programming and Lagrangian relaxation, have been ex-

ploited. These include the algorithm developed by Marsten [48] and an improved

version of this algorithm by Marsten and Shepardson [49]. Other exact algorithms

are found in: [50, 51, 52].

There have been relatively few heuristic solution algorithms for the set-partitioning

problem. Ryan and Falkner [53] provided a method of Obtaining a good feasible

solution by imposing additional structure, derived from the real-world problems but

not already implicit in the mathematical model. Atamturk et al. [54] developed

a heuristic algorithm incorporating problem reduction, linear programming, cutting

planes and a Lagrangian dual procedure. Recently, some parallel genetic algorithms

have appeared [55, 56]. Optimal and sub—Optimal solutions can be obtained for many

problems Of even large size using genetic algorithms.

3.1.3 Candidate Viewpoint Construction

It is well-known that both the set-partitioning and the set-covering problem are NP-

hard [46], which means that the size of the problem will bring difficulty to finding

the optimal or even sub-Optimal solution. A straightforward way is to reduce the

size of the problem, that is to reduce the number of surface cells and the number of

candidate vieWpOints.

Square cells are used to partition the flat patch. By determining suitable dimen-

sions Of the square cell, the number of Surface cells can be controlled to keep the size
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Figure 3.1: Cell-partitioning of a large flat patch.

of the set-partitioning problem moderate.

Since the dimension of the camera configuration space, or degree of freedom, con-

sidered in our system is 6, an extremely huge number Of viewpoints will be generated

if we use small rectangloids to decompose the camera configuration space, a scheme

usually used in robot motion planning [57]. On the other hand, it is not necessary to

enumerate all those candidate viewpoints since most of them are very close to each

other or do not correspond to admissible viewpoints. Hence a method is needed to

construct the candidate viewpoints such that they

1) distribute uniformly in the entire camera configuration space,

2) are sufficiently distinct from each other, and

3) all correspond to admissible viewpoints.

Therefore, it is necessary to obtain a certain understanding of the geometric struc-

ture Of the viewpoint distribution around the flat patch. Here we develop a method,

which, based on the geometric structure Of the flat patch, generates all the candidate

viewpoints. In this way, the number of candidate viewpoints is greatly reduced and

a certain degree of redundancy is maintained.

Cell-Partitioning Of Flat Patch

As shown in Figure 3.1, the procedures to partition a flat patch are:
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1) construct a minimum-area bounding box for the flat patch, denote the length

and width of the bounding box as Lb and W5.

2) build parallel planes along the length and the width direction to form grids,

the in-between distance in both directions is D,,,,

3) partition the small triangles into N x M cells based on the grids. Here N =

[lg—ti], M = [3115:], where [x] denotes the nearest integer that is greater or equal to

x. Denote each cell as c,,-, 1 g i _<_ N, 13 j g M.

Here the minimum-area bounding box is constructed in a similar way as discussed

in Chapter 2 except that the top and right direction are determined so that the front

rectangle has the minimum area. Each cell c,-j can also be assigned an index number

which can be calculated as i - M + j.

Cell Combining

The strategy we use to construct candidate viewpoints is as follows: first, the neigh-

boring cells are combined to from subpatches of different sizes, then the corresponding

viewpoints for these subpatches are found. There are different ways to combine neigh-

boring cells and they result in a sufficient number of distinct viewpoints.

It is apparent that the maximum area a camera can cover on a plane is the

maximum field of view, which is determined by the depth of field distance D1, or the

resolution constraint, whichever is smaller. It is easy to understand that the depth of

field determines a maximum field of view, which is corresponding to D1. Figure 3.2

illustrates how the resolution constraint determines another maximum field of view.

For the resolution constraint to be satisfied, the resolution ball Of a point on the

inspected surface should include the viewpoint 0, which gives the farthest plane from

the viewpoint as is shown in the figure.

Suppose the dimension of the largest rectangular field Of view is W; x Lf, (Lf 2

WI). Similarly, it can be partitioned into Nf x Mf square cells Of dimension D," x D,,,,
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Figure 3.2: The resolution constraint and the field of view.
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Figure 3.3: Partition the maximum field Of view.

as is shown in Figure 3.3. Nf and Mf are determined as follows,

W L

  

Obviously, Mf 2 Nf.

To discuss cell combining, the following definition is introduced first.

Definition 3.1.1 (generating pattern) A generating pattern, Pat(i,j), is a

cell matrix with i rows and j columns in the maximum field of view.
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1 2 3 Mf-l Mf

Nf-l

 Nf
Figure 3.4: A sample generating pattern.

Essentially, the generating patterns are designed to group neighboring cells on a

flat patch into subpatch that has a potential viewpoint. Figure 3.4 shows a pattern

with 4 rows and 6 columns, or, Pat(4, 6). Obviously, the total number of generating

patterns is,

N910 2 Nfo

Definition 3.1.2 (generating subpatch) A generating subpatch is a surface

area on the flat patch, which is a collection of surface cells that conform to one of the

generating patterns.

Any generating pattern can be mapped to a number of generating subpatches on

the flat patch. For generating pattern Pat(i, j), there are (N — i + 1) x (M — j -I- 1)

different locations to map it on the flat patch. As a result, there are the same number

Of generating subpatches. Usually the field of view is not a square (or Lf > WI):

the direction of the mapping should be considered. For those generating patterns

Pat(i, j) with j > Nf, they can be mapped along both the row direction and the

column direction, each resulting in different generating subpatches. The number Of

those generating patterns is Nf x (Mf -— Nf). Hence, the total number of generating

subpatches can be calculated as follows,
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Figure 3.5: Map a generating pattern to get a generating subpatch.
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In Figure 3.5, a generating pattern Pat(3,4) is mapped to the flat patch and a

generating subpatch is obtained.

Candidate Viewpoint Generation

For any generating subpatch 08,-, (i 6 {1,2, ...,Ng,}), the viewpoint planning al-

gorithm developed in Chapter 2 is applied. What is different from the recursive

algorithm is that the subpatch is not split if no viewpoint exists. The algorithm is

shown in Figure 3.6. Suppose among the N9, generating subpatches there are N, gen-

erating subpatches each having at least one admissible viewpoint. These viewpoints

are numbered from V1 to VN, For each viewpoint Vj, an index set S, is assigned to

it, which records the indices of all the cells that is in the corresponding subpatch, i.e.,

S,- = {i1,i2, ...,i,,} (i = 1,2, ...,N,).

It should be pointed out that, for every single cell, it is reasonable to assume that

there exists at least one viewpoint. The reason resides in the following fact,
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the closer a surface area approaches the upper depth-of-field plane, or the plane

corresponding to D2, the more curvature this surface area can tolerate for it to be

inspected without violating all the task constraints.

This fact is illustrated in 2D in Figure 3.7. Obviously, both the visibility and

the field of view constraint are trivial, so only the focus and the resolution constraint

need to be considered. Furthermore, the surface area can be assumed to be within

the depth of field, we only need to consider the resolution constraint. As can be seen

in the figure, for surface area that is closer to the upper depth of field plane, the

resolution ball is much more likely to include the viewpoint 0 than the surface area

that is far away from the upper depth of field plane.

Hence, it is reasonable to say that as long as the size of the cell is carefully chosen,

each cell can have at least one feasible viewpoint.

56



'--——---~

’ ‘

I’ ‘s
s

’ \

,x’Resolutoin Ball A

 

-
-
-
-

’
-

fi
-

’

"
s

‘
s

’
a

-
-
-
-

“
~
.

I

  
Figure 3.7: Curvature tolerance with respect to the viewpoint-surface distance.

3.1.4 Formulation of Minimum Viewpoint Planning Problem

Now the minimum viewpoint planning problem can be converted to a set-partitioning

problem, which can be stated as follows,

given a viewpoint set {V1, V2, ..., VN,}, VJ- corresponds to an index set 31- = {i1, i2, ..., inj},

find out the minimum set of, say, Nm viewpoints from {V1, V2, ..., VN,} such that the

union of the corresponding index sets Ufi‘lSj = {1, 2, ..., NM}.

Mathematically, the minimum viewpoint problem can be stated as follows:

minimize z = 251.3 (3.4)

i=1

S’ltbjCCt to 20,333]: = 1, Z=1,2,...,N X M (3.5)

(3.6)

i=1

IIIJ' =00'I' 1, j: 1,2,...,N3.
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Figure 3.8: The tessellation representation of a flat patch from a car hood.

3.1.5 Implementation and Results

Implementation

The minimum viewpoint planning approach is implemented in two steps. First, the

candidate viewpoints are generated. This step is implemented in C++. Second, the

set-partitioning problem is solved to get the minimum set of viewpoints. This step

is solved in a commercial optimization software IPLOG StudioTM [58], which can

solve various integer Optimization problems.

Results

The approach is tested on sample patches generated from I — DEASTM6.0 and sheet

metal parts from Ford Motor Company as well. The first sample flat patch is a

patch from a car hood. Its dimensions are about 0.97m x 0.58m. Its tessellation

representation is shown in Figure 3.8. The total number of triangle is 4286.

The maximum field of view of the camera is 0.3m x 0.4m. The grid size D,” 2

0.10m. Hence, N = 6, M = 10, Nf = 3, and M, = 4. The flat patch is partitioned

into 10 x 6 = 60 cells. Based on the above data, the number of generating subpatch

is 591. The program generates 275 candidate viewpoints totally, which are taken
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as the input to the Optimization software IPLOG’ StudioTM. The total number of

viewpoints that can cover the whole patch is 5, which are shown in Figure 3.9. The

frames indicate the covering area of each viewpoint.
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Figure 3.10: The covering area of the viewpoints generated by the recursive algorithm.

As a comparison, the recursive algorithm is run on the same patch. The total

number Of viewpoints is 7, which are shown in Figure 3.10.

Tests on other sheet metal parts from Ford Motor Company show that the number

of viewpoints can be reduced significantly. Table 3.1 summarizes the testing results.
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Table 3.1: Testing results on different parts

 

 

 

 

Parts NO. Triangle NO. Viewpoints No. Viewpoints

(Recursive) (Optimized)

Door 8235 85 64

Pillar 7820 32 23

Fender 4512 16 12      
 

3.2 Optimal Kinematics Performance Sensor Planning

3.2.1 Background

Kinematics constraint is an important issue usually considered in robot motion plan-

ning. Constraints like reachability of the robot to task points is the least requirement

for a task to be carried out. There also exist other quantitative measures that evaluate

the specific performance of the robot at a task point.

However, to deal with kinematics issues, most of the research in robot motion plan-

ning takes them as two separate problems. In the first problem, the positions and

orientations Of the robot end-effector are generated to satisfy given task constraints.

In the second problem, an Optimal robot placement problem, or equivalently, an Op-

timal task point placement problem is solved to obtain a suitable relative position

and orientation Of the robot with respect to the task points so that all the task

points can be reached with satisfactory kinematics performance measures. A typi-

cal robot placement problem is shown in Figure 3.11, where a suitable robot base

position/orientation is calculated to make the task points reachable.

The first problem is usually task specific, while the second problem is general and

has received much attention recently. In [59], Hsu et al. presents an efficient algorithm

for Optimizing the base location of a robot manipulator in an environment cluttered

with Obstacles. In Nelson et al.’s work [60], using the concept of manipulability, a

rating is given to different placements of the assembly task in the workspace so that a
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Figure 3.11: A typical robot placement problem.

robot’s ability to manipulate objects can be objectively compared at various positions

and orientations. To find the optimal placement a search procedure is carried out.

Pamanes et al. [61] solved a similar Optimal placement problem. Instead of using

a single kinematics criterion, they used multiple criteria. Seraji [62] addressed the

problem of base placement for mobile robots using a reachability analysis.

However, solving the robot base placement or the task points placement problem

requires high computational effort in searching for an optimal or sub—Optimal solution,

and as a common headache in many nonlinear optimization problems, the search

usually ends up in local minima or maxima.

3.2.2 Optimal Kinematics Performance Sensor Planning

We take a different view on kinematics issues in sensor planning. Instead of solving

the two separate problems, we integrate the kinematics constraint into the sensor

planning so that the generated sensor configurations are reachable by the robot and

also have high kinematics performance measures. In other words, the kinematics is

taken as an additional constraint in sensor planning.
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Given a part/robot setup, which is usually determined based on human experience

and/or physical restriction Of fixtures, it is unrealistic to presume that any generated

viewpoint will be reachable for the robot. However, as discussed in the first part Of

this chapter, there are plenty of ways to inspect a flat patch. Each way corresponds

to a particular subset of the candidate viewpoint set. This provides a kind of re—

dundancy to allow certain subsets of the viewpoints to fall in the workspace of the

robot and meanwhile, for each of those subsets the full coverage Of the flat patch

is guaranteed. Furthermore, to choose which subset of viewpoints, another criteria,

the kinematics performance measure, is taken into consideration. In this sense, the

problem is rendered as a weighted set-covering problem so as to find the subset of

viewpoints with Optimal kinematics performance.

In the following sections, the weighted set-covering problem and its algorithms are

reviewed first. Then the reachability check is discussed, followed by the introduction

Of kinematics performance measures. Finally, the implementation and testing results

are provided.

3.2.3 Weighted Set- Covering Problem

The mathematical formulation of the weighted set-covering problem is,

n

minimize z = Z cjxj (3.7)

j=1

subject to 20:5ij 2 1,i 2 1,2, ...,m (3.8)

i=1

x; = O or 1,j=1,2,...,n (3.9)

Here Cj is the cost Of subset j. The optimal solution results in a minimum cost

cover of the whole set.
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Similar to the set-partitioning problem, the set-covering problem is NP-hard [47].

Existing exact algorithms include cutting planes [63], column subtraction [51], etc.

Some of the approximation algorithms are: a simple greedy algorithm by Chvatal [64];

a Lagrangian heuristic algorithm by Beasley [65]; a randomized rounding algorithm

by Peleg et al. [66]. Other algorithms use neural network [67], genetic algorithms

[68, 69] and simulated annealing [70].

3.2.4 Reachability Check

To check if the robot can position the camera to a given viewpoint, the first step is to

find, for a given viewpoint, the corresponding robot hand position and orientation in

the robot base coordinate system. This involves the transformation from a viewpoint

in part coordinate system to a hand position and orientation in the robot base coor-

dinate system. How to find the transformation is the calibration problem which will

be discussed in detail in Chapter 5. In this chapter we assume the transformation is

known.

Suppose for each viewpoint V,-, the corresponding Cartesian position and orienta-

tion of the end-effector, or hand, Of the robot is in the form Of a 4 by 4 homogeneous

transformation matrix 0A3,- (i = 1, 2, ..., N,). For a 6—jOint non-redundant manipula-

tor, the inverse kinematics gives out,

Q,- = f(°AE,-) i=1,2,...,N,, (3.10)

where Q,- = [01,, 02,-, ..., 95.]T is the ith joint angle vector. If equation(3.10) has no

feasible solution, it implies that the given viewpoint can not be reached. If there are

feasible solutions, it is checked against the joint range to see if the solution falls in

the joint range, that is,
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93' min S 911' S 93' max Vj=1,2,---6-

If any joint angle is out of the corresponding joint range, which means it violates

the physical constraints of the robot mechanism, the viewpoint can not be reached

either.

3.2.5 Kinematics Performance Measure of Sensor Configuration

It is known that the kinematics performance, or the comfortableness, Of a robot

manipulator during the achievement of a task depends on the relative position and

orientation of manipulator/task [61]. An ill relative position and orientation takes

the risk of ineflicient Operation even as falling in singularities.

In literature, there are several kinematics performance measures that have been

proposed and used in different Optimal placement problems [61]. Some Of them are:

1. Manipulability

2. Remoteness Of the manipulator links from their joint limits

3. Condition number

4. Compatibility index

The manipulability is introduced by Yoshikawa [71] and it is quantified by w =

det(JJT), where J is the Jacobian matrix of the manipulator. The manipulability

is a measure of the ease to arbitrarily change the position and orientation of the

end effector and it depends on the kinematics parameters and consequently on the

instantaneous configuration Of the manipulator defined by a joint vector. To Optimize

the manipulability, w should be maximized. The remoteness of the manipulator links

from their joint limits is usually adopted to keep the joint angles away from their
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Figure 3.12: Kinematics performance calculation.

 

 

limits as much as possible [72]. The condition number of the Jacobian transpose

matrix J7 of the manipulator is given by C(JT) =|| JT |||| J‘T ||. The condition

number can be used to minimize the error propagation from input torques to output

forces. The compatibility index [73] allows to Optimize the magnitude and accuracy

of force and velocity of the manipulator on preferred displacement directions.

3.2.6 Formulation of Optimal Kinematics Performance Sensor Plan-

ning Problem

For part inspection, it is desirable that the manipulator is kept far away from sin-

gularities when it reaches viewpoints. Hence the manipulability is chosen as the

kinematics performance measure to be Optimized. The algorithm to calculate the

kinematics performance measure of each viewpoint is shown in Figure 3.12.

As the kinematics performance measure is assigned to each viewpoint as a cost,

the Optimization problem can be rendered as a weighted set-covering problem, which
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Figure 3.13: The tessellation representation of the flat patch.

is stated as follows,

Na

minimize z = Z cjxj (3.11)

i=1

c, = (‘/det(J,-JjT))‘1 (3.12)

Na

subject to Zaijxj Z 1,i=1,2,...,N x M (3.13)

j=l

x,- = 0 or 1,j=1,2,...,N, (3.14)

Here c, is the cost of each viewpoint. Since (3.11) achieves minimum, instead of

the manipulability, its inverse is taken as the cost, i.e.,

The optimal solution implies a minimum-cost cover of the whole flat patch.

3.2.7 Implementation and Results

The Optimal kinematics performance [sensor planning approach is implemented and

tested. The eye-in-hand setup is the same as we discussed in Chapter 2. The first

sample flat patch is a free-form surface built in I - DEASTM6.0. Its dimensions are

about 0.42m x 0.53m. Its tessellation representation is shown in Figure 3.13. The
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total number of triangle is 4900.

The maximum field of view Of the camera is 0.3m x 0.4m. The grid size D," =

0.10m. Hence, Nf = 3 and Mf = 4. The flat patch is partitioned into 5 x 6 = 30

cells. The program generates 235 candidate viewpoints totally.

The IPLOG StudioTM optimization software is used to solve the weighted set-

covering problem. First, we run the software without kinematics constraint. That is,

all the candidate viewpoints have the same weight. Figure 3.14 shows the field of views

of the 4 viewpoints. Then we run the software with the inverse Of the manipulability

as the cost. Figure 3.15 shows the 4 camera field of views Obtained.
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Figure 3.14: The field of views when no kinematics constraint is considered.

 

 

Figure 3.15: The field of views when kinematics constraint is considered.

Table 3.2 gives out the cost (or w; l) of each viewpoint as well as the sum Of the
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Table 3.2: Cost of viewpoint

 

Cases V1 V2 V3 V4 z

Constraint 1.35 2.65 3.26 3.70 10.96

No constraint 250.5 1000.0 10.26 1000.0 2260.76

 

 

       
 

 

Figure 3.16: The field of views with maximum kinematics performance measure.

cost in the above two cases. In this table, a cost of 1000.0 means there is no inverse

kinematics to the corresponding viewpoint. A big value means the viewpoint is close

to the singularity. From this table it is obvious that the viewpoints found by the

algorithm with kinematics constraint have low cost, or high kinematics performance

measures.

Sheet metal parts from Ford Motor Company are also tested. Figure 3.8 shows a

flat patch from a car hood. Figure 3.16 shows the 5 field of views with the maximum

kinematics performance measure and Table 3.3 lists the cost of viewpoints.

Simulations of the robot movement are done in ROBCADTM. Figure 3.17 shows

the simulation setup for the first sample patch, where the frames represent the posi-

Table 3.3: Cost of viewpoint

 

Cases V1 V2 V3 V4 V5 2

Constraint 1.76 3.88 3.72 4.21 3.70 17.27

No constraint 1000.0 4.56 1000.0 15.78 6.33 2026.67
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Figure 3.18: The simulation in ROBCAD for the patch from the car hood.

tions and orientations of the selected viewpoints that have the maximum total kine-

matics performance measure. It is found that all the 4 viewpoints can be reached by

the Puma560 easily. Figure 3.18 shows the simulation setup for the flat patch from

the car hood and the 5 viewpoints can be reached easily too.

3.3 Discussions

In this chapter, two optimization problems are addressed. One is the minimum view-

point problem. By discretizing the flat patch and the sensor configuration space,

the problem is converted to an integer optimization problem, or a pure algebraic
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problem. A constructive viewpoint generation method is used to Obtain a number of

representative viewpoints distributed in the sensor configuration space.

The other is the kinematics performance Optimization problem. By modeling

it as a weighted set-covering problem, we integrate the kinematics constraint into

sensor planning. Depending on different task requirements, the weight of the sensor

configuration can be difierent from the one we used.

In their nature, both problems sample the camera configuration space to generate

sufficient candidate configurations with each covering a finite set Of surface cells. In

this way, the geometric problems can be converted into algebraic problems. Mathe-

matically, both algebraic problems are NP — hard, which implies that the size of the

cell is an important parameter to control the size Of both Optimization problems. The

value depends on the size of the flat patch, the camera capability (such as resolution

and focus), etc. In other words, the cell size should not be too small considering the

size of the set-partitioning/covering problem and not too big considering the resolu-

tion and focus capability Of the camera for each surface cell.
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CHAPTER 4

NEAR-OPTIMAL-TIME PATH PLANNING FOR

INSPECTION

In this chapter, how to plan the robot path among the viewpoints is studied. The

criteria used in path planning is the overall traveling distance among viewpoints.

Under certain assumptions, the problem is rendered as a Traveling Salesman Problem

(TSP) on a complete graph with straight-line distance as the weight of the edges.

After reviewing previous related work on TSP and its variants, we propose a

hierarchical approach to solve the TSP quickly to its sub-Optimality. The approach

has two steps: first, a large number of viewpoints are clustered into several groups

with each group containing a moderate number of viewpoints. Second, a clustered

Traveling Salesman Problem (CTSP) is solved. A new algorithm is developed to solve

the CTSP. Different from some previous work, the inter-group path is preferred in

our new algorithm.

4. 1 Background

For a given part, after all the viewpoints are generated, the path planning problem

then follows: find the minimum-time movement Of the robot to carry out the in-

spection. It is a reasonable assumption that the camera completely stops at each

viewpoint and the time to execute an inspection at all viewpoints is the same, i.e.,

all equal to a constant time. Obviously, the time for a complete inspection of the

whole part consists of 1) the time spent on the traverse among the viewpoints and 2)

the time spent on the execution of inspection at all the viewpoints. Since the latter

is constant, the optimization of the total inspection time is, essentially, the mini-

mization of the time spent on the traverse of the camera among viewpoints. Mainly,

two factors determine the traverse time, 1) the trajectory, or time history of joint
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positions, velocities, accelerations, and torques, between each pair of viewpoints; 2)

the order to visit all the viewpoints. In this dissertation only the second factor is

addressed. To begin with, we briefly review some previous work on these two factors.

4.1.1 Related Work

For a robotic system, the minimum-time geometric path Of the robot’s end-effector is

not necessarily equivalent to the path Of minimum Euclidean distance, but depends on

the manipulator’s kinematics and its inertial parameters [74]. Furthermore, consider-

ing the dynamics of the robot manipulator, the geometric path planning and velocity

trajectory should be considered simultaneously to achieve a minimum solution [74].

Shin and Mckay [75] developed a method that provides a complete solution to the

global Optimization problem by solving both the geometric path planning and veloc-

ity trajectory planning. Based on some assumptions, their study has shown that the

near-minimum-time path of the robot manipulator is a geodesic in the manipulator’s

inertia space.

Based on Shin and Mckay’s algorithm, Edan et al. developed a computationally

efficient algorithm that allows the determination of the near-minimum-time path be-

tween n task points. They modeled the problem as a Traveling Salesman Problem

(TSP) and took the distance between two points as the length of the geodesic path,

which reflects the time to travel between the two points. A Nearest Neighbor algo-

rithm was adopted to solve the TSP. To reduce the computation time, they divided

the task points into several groups and solved the TSP group by group. However,

they did not talk about how to find the paths connecting different groups, which will

be a nontrivial problem that need to be addressed as the number of groups increases.
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4.1.2 Traveling Salesman Problem and Algorithms

The 'Ifaveling Salesman Problem can model many scheduling and planning problems

in real-world applications. It is stated as follows,

if a salesman, starting from his home city, is to visit exactly once each city on

a given list and then return home, how to determine the order of the visit to all the

cities such that the total distance traveled is minimum [76].

In computation complexity theory, the Traveling Salesman Problem is NP-complete

[76].

Since the Traveling Salesman Problem was formally proposed in 1930’s, there has

been intensive research efforts in it [76]. Mainly, there are two type of algorithms to

solve it.

1) Exact algorithms and

2) Approximation algorithms

The exact algorithms aim to find the optimal solutions, however, these algorithms

are slow, especially for large size problems. Some of the exact algorithms are: cutting

planes [77], Branch-and-Bound, [78] and dynamic programming [79]. The approxi-

mation algorithms try to find sub-optimal solutions using heuristic approaches and

hence, they are much faster compared to the exact algorithms. Approximation algo-

rithms can be categorized into: 1) construct algorithms and 2) improve algorithms.

The former directly generate sub-Optimal solutions while the latter find sub-Optimal

solutions by improving given initial solutions. Some of the construct algorithms are :

Nearest Neighbor [80], Minimum Spanning Tree [81] and Christofides’ algorithm [82].

The famous Lin-Kernighan algorithm [83] is one of the improve algorithms.

As variants of the Traveling Salesman Problem, the shortest Hamiltonian path

problems try to find the shortest path that visits all the cities without returning to

the starting city. There are three variants:

1) the shortest free-end Hamiltonian path (SFHP) problem — there is no specifi-
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cation on the end cities,

2) the shortest one-end Hamiltonian path (SOHP) problem — one end city is

specified, and

3) the shortest two-end Hamiltonian path (STHP) problem — both end cities are

specified.

All the three Hamiltonian path problems can be transformed into classical Trav-

eling Salesman Problems by enhancing the distance matrix [76]. They can also be

solved directly using approximation algorithms. For the first two variants, namely,

SFHP problem and SOHP problem, a straightforward adaptation Of Christofides’ al-

gorithm yields an algorithm with a 1.5 performance bound [84], which measures the

ratio of the total length Of the solution returned by the approximation algorithm to

the total length Of the optimal solution. For the last variant, or STHP problem, there

is an approximation algorithm with g performance bound [84].

4.2 Problem Formulation

TO model the robot path planning problem, a graph, G = (V, E) is constructed in

the following way: take each viewpoint as a vertex v,-, the path between two vertices

v,- and v,- as an edge eij and the minimum distance to traverse between these two

vertices as its cost, or weight, w,,-. The goal is:

find a shortest Hamiltonian path, which means that the robot visits all the vertices

and does not go back to the starting vertex.

TO simplify the problem, the following facts are assumed:

1) the Euclidean distance between two viewpoints corresponding to vertex v,- and

21,-, d(v,-, vj), is taken as weight w,,-.

2) the graph is complete.

Under the first assumption, the incidence matrix Of the problem is symmetric,

that is,
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wij 2' '11in

and the triangle inequality is satisfied:

wij + wjk Z wika ViJ, k

The second assumption means that there exists a straight path between any pair Of

viewpoints. This is usually true for automotive sheet metal parts since all viewpoints

are most likely high above the part surfaces.

4.3 Hierarchical Approach to Solve Traveling Salesman Prob-

lem

It is apparent that the number of viewpoints will increase as the area Of the surfaces

of the part and the geometric complexity increase. Due to the nature Of the Traveling

Salesman Problem, the time to solve it grows rapidly as the problem size grows, even

for approximation algorithms.

On the other hand, based on the generic shapes of the automotive sheet metal

parts and the decomposition of compound surfaces, the resulting viewpoints tend to

form groups in 3D space. That means the distances between viewpoints in the same

group are relatively smaller than the distances between viewpoints among groups.

This geometric structure Of the viewpoints inspires us to solve the problem in a

hierarchical way:

cluster the viewpoints based on their distance similarity into several groups; solve

the TSP for each group, as well as determine the path to visit all the groups.

By taking advantage Of the cluster nature of the problem, it is possible to find

sub-optimal solutions very quickly. Following are some useful definitions when the

hierarchical TSP is referred to.
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Definition 4.3.1 (inter-group edge) An inter-group edge is an edge e,,- =

(v,, vj) with its vertices v,- and vj in different groups.

Definition 4.3.2 (inter-group path) The inter-group path is the collection of

inter-group edges that visit all the groups.

The shortest inter-group path is the shortest one among all the inter-group paths.

In this sense, it is the shortest “connections” among all the groups. Apparently, if

the number of the groups is N9, the number of inter-group edges on the inter-group

path is Ng — 1.

Definition 4.3.3 (intra-group Hamiltonian path) The intra-group Hamilto-

nian path is a path that visits all the vertices exactly once in a group without leaving

the group.

Any overall path for N9 groups consists Of an inter-group path and N9 intra—group

Hamiltonian paths.

Due to the cluster nature Of the viewpoints, it is expected that the final path

solved by the hierarchical approach are close to the path Obtained by solving the

whole TSP as one group.

4.3.1 Related Work on Hierarchical Approach

Clustered Traveling Salesman Problem

Once the viewpoints are clustered into groups, the hierarchical Traveling Salesman

Problem becomes the clustered Traveling Salesman Problem (CTSP) [85, 86]:

Let G = (V, E) be a complete graph with vertex set V and edge set E. The vertex

set is partitioned into k groups, g1, g2, ..., gk, determine a shortest path to visit all the

vertices and the vertices of each group are visited consecutively.
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The clustered Traveling Salesman Problem has received far less attention than the

Traveling Salesman Problem in research community [87]. Chisman [85] transformed

the CTSP back to a TSP by adding big costs to the inter-group edges. However, his

algorithm focuses on the group constraint instead of the computational cost. In this

sense, his method does not reduce the computational cost Of the original TSP. Lokin

[86] provided a Branch-and-Bound algorithm to exactly solve the CTSP problem,

and as can be expected, it is not time-efficient. Approximation algorithms were

also developed. Among them are: three heuristic algorithms by Gendreau et al.

[88] which, however, only consider the CTSP with predefined order Of groups; the

genetic algorithm by Potvin and Guertin [89]; A Tabu search heuristic using genetic

diversification by Laporte et al. [87].

Recently, Guttmann-Beck et al. [84] proposed approximation algorithms with

performance bounds for some variants of the CTSP. Their algorithms are based on a

modified Christofides’ algorithm for the shortest Hamiltonian path in each group, as

well as another modified Christofides’ algorithm to find a shortest path connecting

all the groups. The latter utilizes the solution to a Rural Postman Problem, which

tries to find a shortest path to visit a specified subset Of the edges in the graph.

Guttmann-Beck et al. considered three variants of the CTSP : 1) both the starting

and ending vertices are given for each group; 2) only one end vertex is specified; 3)

no end vertices are specified. For each variant, Guttmann-Beck et al. determined

the shortest intra-group Hamiltonian paths first, then calculated the paths among

groups. Furthermore, they provided the corresponding performance bounds for the

three variants.

4.3.2 New Approach to Solve the CTSP

As discussed above, to solve the CTSP, Guttmann-Beck’s algorithms favor the intra-

group Hamiltonian paths, which implies that inter-group path may be sacrificed if
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Figure 4.1: Estimate the penalty Of Guttmann’s algorithms.

the end vertices in each group are determined first.

To roughly estimate the penalty caused by favoring intra—group Hamiltonian

paths, the following definition is introduced first,

Definition 4.3.4 (diameter of a group) The diameter Of a group, D(g), is

the maximum distance of all pairs of vertices in that group, i. e.,

D(g)= max d(v,,vj).

v5, 11ng

For the case where intra—group Hamiltonian paths are favored, like Guttmann-

Beck et al.’s algorithms, assume that the shortest inter-group path enters group g,- at

a and leaves it at b (see Figure 4.1). While the shortest free-end Hamiltonian path

(SFHP) of 9,- takes a' and b’ as the end vertices. Obviously, for group g,-, the penalty

is less than 2 times of the diameter of the group, or 2D(g,-).

On the other hand, we have the following lemma,

Lemma 4.3.1 Denote the total length of the shortest free-end Hamiltonian path of

group 9 as d(SFHP), denote the total length of the shortest two-end Hamiltonian

path of the same group as d(STHP), then the following inequality holds,

d(STHP) g d(SFHP) + 213(9)
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Figure 4.2: Construct a two-end Hamiltonian Path from a SFHP.

Here D(g) is the diameter of group 9.

Proof.

As shown in Figure 4.2, the n vertices are numbered sequentially from v1 to vn

in the order of the shortest free-end Hamiltonian path (SFHP). Given any pair Of

starting and ending vertex, (11,-, 22,-), the following method can construct a two-end

Hamiltonian path.

1) v,- and v; are adjacent Begin at v,, trace back to v1 in the reverse order of

SFHP; travel directly from v1 to vn; then trace in the reverse order of SFHP to vj.

It is obvious that by adding an edge (v1,v,,) and deleting an edge (vj_1,vj), a

Hamiltonian path is obtained with given starting and ending vertices.

2) v,- and v,- are not adjacent.

Similarly, beginning at v,- and trace back to v1 in the reverse order of SFHP; then

travel directly from v1 to v,-+1; on the SFHP travel to vj_1; directly connect vJ-__1 and

v"; trace in the reverse order of SFHP to vj.

By adding two edges, (v1, v,-+1) and (vj_1, vn) and deleting two edges (v,-,v,-+1) and

(vj-1, v,-), a Hamiltonian path is obtained with given starting and ending vertices.

Hence, by adding at most two edges a SFHP can be converted to a two—end

Hamiltonian path with any given starting and ending vertices, which implies that the

length of the STHP of any pair Of starting and ending vertices should be no more

than the length of SFHP plus 2 times Of the diameter Of the group, i.e.,
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d(STHP) g d(SFHP) + 219(9).

<1

The above discussions imply that the penalty caused by favoring either the inter-

group path or the intra—group Hamiltonian paths, are comparable. This hints us to

solve the CTSP in an alternative way which determines the inter-group path first.

In the following sections, the viewpoint clustering approach is discussed first, then

the a new hierarchical algorithm, namely, the two-level-TSP Hierarchical algorithm is

described, which is followed by the performance analysis. Finally, the implementation

and results are provided.

4.3.3 Viewpoint Clustering

Cluster analysis is a mathematical tool widely used in statistics to explore the struc-

ture of a data set. It can be stated as follows,

given a set of data points, each having a set of attributes, and a similarity measure

among them, find clusters such that data points in one cluster are more similar to

one another and data points in separate clusters are less similar to one another [.90].

There exist many clustering algorithms. Basically, they can be divided into hi-

erarchical clustering algorithms and non-hierarchical algorithms. The former include

agglomerative method, the stored matrix method and the stored data method etc.

The latter include MacQueen’s k-Means method and its variants [90].

The requirements we consider to cluster the viewpoints are:

1) the number of viewpoints in each group should be moderate.

2) the number of groups should be moderate.

The above two requirements guarantee a reduced computational cost Of the hier-

archical approach to the TSP.
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Based on the Nearest Neighbor clustering algorithm [91] we prOpose a new clus-

tering algorithm which is described as follows,

1) begin with a small threshold t (t > O) and the viewpoint set {V1, V2, ..., Va}.

2) assign VI to group g1; set i = 1, k = 1.

3) set i = i + 1; find the nearest neighbor Of V,- among the viewpoints already

assigned to groups.

4) let the nearest neighbor be in group m; if its distance is greater than t, increment

k and assign V,- to a new group gk, else assign V,- to gm.

5) ifi < n, go to step 3).

6) if the number of groups is greater than a threshold N9, let t = 2t, redo step 2)

to step 6); if the number Of groups is less than N9, let 3 = WIT—p and t = %, Nmp is

the number of steps.

7) t = t+ s; redo 2) to 5); if the number of groups is less than N9, go to 8);

otherwise repeat 7).

8) recursively divide those groups with more than Np viewpoints into equal size

until all the groups has less than Np viewpoints.

In the above algorithm, a typical Nearest Neighbor clustering algorithm is applied

to obtain certain number of groups. A small t is used first so the number of resulting

groups is expected to be big. Then t is doubled each time to rerun the Nearest

Neighbor algorithm until the number Of groups is smaller than the threshold N9. To

refine the number of the groups, t increases in small steps and the Nearest Neighbor

algorithm is rerun. Finally, the groups with more than Np viewpoints are split in

halves recursively to make sure the numbers of viewpoint in these groups are less

than Np.
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Figure 4.3: The two-level-TSP algorithm.

4.3.4 Two-level- TSP Algorithm

As implied in its name, the two-level-TSP algorithm constructs two TSPs in different

levels. In the higher level, the shortest “connections”, or the shortesta inter-group

path, among groups are determined. In the lower level, with the entering and the

leaving vertex already known in each group, the shortest Hamiltonian path problem is

solved group by group. By combining the paths generated in both levels, a complete

path can be Obtained. The two-level-TSP algorithm is shown in Figure 4.3.

In the low level, there exist different possibilities when the shortest inter-group

path enter and leave each group, which will be discussed later.

Shortest Inter-group Path

TO find the shortest inter-group path, a new graph, called group graph, is constructed

with each vertex representing a group and the distance between two vertices represent—

ing the distance between the two corresponding groups. Here the distance between

two groups is defined as follows,
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Figure 4.5: The distances between groups and the group graph.

Definition 4.3.5 (distance between two groups) The distance between two

groups, D(g,-, g,), is the minimum of the length of the inter-group edges between 9,

and g,. i.e.,

D(gir gJ) : “6192:3691. d(vii ’Uj).

Obviously, the group graph is complete.

An example problem is shown in Figure 4.4. The distances between groups and

the corresponding group graph are shown in Figure 4.5, where 1P1, 1P2, ...IP5 are the

corresponding distances between groups.

The shortest free-end Hamiltonian path on the group graph is corresponding to

the collection of the inter-group edges with minimum total distance that visit all the

groups. In Figure 4.5, the thicker lines (IP1,IP2,]P3) highlight the shortest inter-

group path.

83



Shortest Intra—group Hamiltonian Paths

As far as the way the shortest inter-group path enters and leaves each group is con-

cerned, There are four possibilities:

I) in the starting group Of the shortest inter-group path, there is only one leaving

vertex,

2) in the ending group of the shortest inter-group path, there is only one entering

vertex,

3) in some intermediate groups, entering and leaving vertices are different.

4) in some intermediate groups, entering and leaving vertices coincide.

Figure 4.5 shows all the four cases, the shortest inter-group path (1P1, 1P2, IP3)

begins in group 1 at vertex a and ends in group 4 at vertex e. In group 3, the entering

vertex c and the leaving vertex d are different, while in group 2, the entering vertex

and the leaving vertex coincide at b.

TO deal with these four cases, correspondingly, there are four ways to find the

shortest intra—group Hamiltonian paths.

1) The shortest one-end Hamiltonian path (SOHP) problem is solved to find the

shortest intra-group Hamiltonian path that ends at the starting vertex Of the inter-

group path.

2) The shortest one-end Hamiltonian path (SOHP) problem is solved to find the

shortest intra—group Hamiltonian path that starts at the ending vertex of the inter-

group path.

3) A shortest two-end Hamiltonian path (STHP) is found which begins at the

entering vertex and ends at the leaving vertex.

4) A shortest two-end Hamiltonian path (STHP) is found which begins at the

entering vertex of the current group and ends at the entering vertex Of the next

group. As a result, in the overall path, the corresponding inter-group edge is replaced

by the new edge joining the two consecutive groups.
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Figure 4.6: Find the intra-group Hamiltonian paths.

The four different types of intra—group Hamiltonian paths (or extended intra—group

Hamiltonian paths as in the fourth case) are shown in Figure 4.6.

In the fourth case, the following lemma holds on the length Of the shortest two-end

Hamiltonian path that extends to the next group.

Lemma 4.3.2 Denote the length of the shortest two-end Hamiltonian path that ex-

tends from group g,- to the next group 9,- as d(STHP,’), denote the length of the shortest

Hamiltonian circle in group g,- as d(SHCi), [P.- is on the shortest inter-group path

and it joins g,- with gj, denote d(IP,) as its length, then

«er10;) g d(SHc.) + d(1P,-) (4.1)

Proof.

In Figure 4.7, assume SHC,- is the shortest Hamiltonian circle in group 9,. Delete

the last edge of SH0,, or ep, which is the edge between the starting vertex 3,- and the

vertex preceding 3,- On SHC,. Connect the preceding vertex with the starting vertex

33- of the next group 9,- by edge IP,’ . Thus an extended intra-group Hamiltonian path

is constructed from s,- to Sj. Obviously, the length of this Hamiltonian path is no less
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Figure 4.7: The relation between the shortest Hamiltonian circle and the shortest

extended intra-group Hamiltonian path.

than d(STHP,’). On the other hand, due to the triangle inequality, the length of this

Hamiltonian path is less than d(SHCi) + d(IP,). Therefore Equation(4.1) holds. <1

Performance Analysis

Here we analyze the performance of the two-level-TSP algorithm. That is, assuming

both the shortest inter-group path problem and the shortest intra-group (or extended

intra-group) Hamiltonian paths problem achieve Optimal solutions, how far is the

solution from the optimal solution of the CTSP?

Similarly to lemma 4.3.1, we have the following lemma,

Lemma 4.3.3 Denote the total length of the shortest free-end Hamiltonian path of

group g as d(SFHP), denote the total length of the shortest one-end Hamiltonian

path of the same group as d(SOHP), then the following inequality holds,

d(SOHP) g d(SFHP) + D(g)

The proof is similar to that of lemma 4.3.1. The difference is that only one edge

needs to be added and another one be deleted tO construct a one-end Hamiltonian

path from the shortest free-end Hamiltonian path.
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Denote the total length of the optimal solution of the CTSP as d(OPT). Obvi-

ously, the following inequality holds,

d(OPT) 2 d(IP) + d(SFHP)

Here d(IP) = 2:11 d(1P,-) is the total length of the shortest inter-group path

solved based on the group graph. d(SFHP) = Zf=1d(SFHP,) is the sum of the

length of the shortest free-end Hamiltonian paths in all groups. The equality holds

only when in each group the two end vertices determined by the two level TSPs are

the same.

Theorem 4.3.1 Denote the total length of the overall path returned by the two-level-

TSP algorithm as d(TLT), then

I:

d(TLT) _<_ d(OPT) + 2Z D(g,).

i=1

k is the number of groups.

Proof.

The overall path returned by TLT algorithm consists Of the inter-group path and

the intra—group paths.

For the starting and ending group where only one end vertex is given, as proved

in lemma 4.3.3, d(SOHR) S d(SFHH) + D(g,).

For the groups with two different entering and leaving vertices, lemma 4.3.1 has

shown that d(STHP,) S d(SFHR) + 2D(g,-).

For those shortest intra—group Hamiltonian paths that extend to the next group,

as we have proved in lemma 4.1, d(STHP,’) S d(SHCi) +d(I13,-). While the length of

the shortest Hamiltonian circle should be less than the length of the shortest free-end

Hamiltonian path plus the diameter of the group, i.e., d(SHCg) S d(SFH13,-) +D(g,-),

we have
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d(STAN?) _<. d(SFHP.) + 0(a) + d(IPtl-

It is obvious that

k k k-l

d(TLT) 3 Z SFHP, + 2Z D(g,-) + Z d(IP,-) (4.2)

_1 i=1 i=2

= d(SFHP) + d(IP) + 2Z mg.) (4.3)

:1

g d(OPT) + 2Z D(g,-). (4.4)

i=1

4.4 Implementation and Results

4.4.1 Implementation

The modified Nearest Neighbor clustering algorithm and the TLT algorithm are im-

plemented in C. The shortest inter-group path, or the high level of the TSP is solved

using a simulated annealing method based on a minimum spanning tree [92]. For the

SFHP, SOHP and STHP, a Christofides-like algorithm is adopted [93], which, essen-

tially, is based on minimum spanning tree and minimum matching. The computing

platform is UnixTM with a Ultraspark 1 167 Mhz CPU and 512 M RAM.

Here a brief description of Christofides’ algorithm and its modification by Hoogeveen

on Hamiltonian paths problems is provided.

Christofides’ Algorithm

Christofides’ algorithm consists Of three steps [76].

Step 1), construct a minimum spanning tree T on the set of all the points I.

Step 2), construct a minimum matching M"' for the set of all Odd-degree vertices

88



in T.

Step 3), find an Eulerian tour for the Eulerian that is the union Of T and M‘, and

convert it to a tour using shortcuts.

Hoogeveen’s Algorithm for Hamiltonian Paths

Hoogeveen provided the following modified algorithm for finding shortest Hamil-

tonian paths with 0, 1 or 2 points fixed [93]. The algorithm consists of 4 steps.

Step 1), construct a minimum spanning tree T of the Graph G.

Step 2), first, determine the set S of vertices that are of wrong degree in T, i.e., the

collection of fixed endpoints of even degree and other vertices Of Odd degree. Next,

construct a minimum matching M on S that leaves 2 - k vertices exposed, where k

is the number of fixed endpoints. Such a matching can be found by constructing a

minimum matching on S augmented with 2 -— k dummy vertices in an obvious fashion.

Step 3), consider the graph that is the union of T and M. This graph is connected

and has either two or zero Odd-degree vertices. The latter case occurs only if there is a

single fixed endpoint that belongs to S and is left exposed by M; in this case delete an

arbitrary edge incident to this vertex. Find an Eulerian path in the resulting graph.

This path traverses each edge exactly once and has the two Odd-degree vertices as its

end-points.

Step 4), transform the Eulerian path into a Hamiltonian path by applying short-

cuts.

4.4.2 Testing Results

The TLT algorithm is tested on several sets of points. We compare the TLT algorithm

with SFHP algorithm that runs on the whole set Of 2D points (we call it one-level-TSP

(OLT) algorithm).

First, to get some general idea on the performance of the TLT and OLT algorithm,

a 2D testing data is designed which is shown in Figure 4.8.
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Figure 4.8: The testing 2D points for TLT and OLT algorithm.

Using the TLT algorithm, the total length of the final path is 3412.9 m. The com-

puting time on this set Of 2D data is 2.4 seconds. Using the OLT algorithm, the total

length Of the final path is 3842.2 m and the computing time is 4.2 seconds. Figure 4.9

and Figure 4.10 show the final paths from TLT and OLT algorithm respectively.
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Figure 4.9: The final path from the TLT algorithm.

Then we test the algorithm on large number of random 3D points. The length of

an arbitrarily-ordered initial path, the final best path length and the computing time

for each set of points are shown in Table 4.1.

In the above table, it is clear that both optimization algorithms are effective by

comparing the length Of an arbitrarily-ordered initial path and the Optimized path. It
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Figure 4.10: The final path from the OLT algorithm.

Table 4.1: Testing results on random point sets

 

 

 

 

 

 

No. of Initial Length (m) Time (3)

Point Length (m) OLT TLT OLT TLT

set 1 300 599.6 100.7 133.3 62.3 4.4

set 2 400 1089.1 169.5 211.5 97.2 5.2

set 3 500 1670.3 236.4 308.1 123.2 7.5

set 4 800 4221.8 531.1 656.2 216.2 8.4         
 

is also clear that the TLT algorithm is much faster than the one-level-TSP algorithm.

This advantage becomes apparent when the problem size grows. The total lengths of

the paths are comparable for both algorithms.

Then, several automotive parts from Ford Motor Company are used in testing

the algorithm. First, the viewpoints that satisfy the task constraints are generated.

Second, these viewpoints are clustered into multiple groups by the modified nearest

neighbor algorithm. Third, by using the TLT algorithm, a complete path is Obtained.

As an example, a floor pan is used, which is shown in Figure 4.11. Totally 510

viewpoints are generated due to its large size and detailed geometry. An arbitrarily

ordered initial path gives a length of 124.97 In. These viewpoints are clustered into

46 groups. The generated path is shown in Figure 4.12, where the stars denote the

position Of the viewpoints. The total length of the path is 59.96 m and the computing
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Figure 4.11: A floor pan.

time is 17.35 s. The overall path obtained by OLT is shown in Figure 4.13 with a

path length of 45.26 m and computing time 264.25 s.

It.”

 

Figure 4.12: The sub-optimal path by the TLT algorithm.

Table 4.2 summarizes the performance (computing time and path length) of the

two-level-TSP and the one-level—TSP algorithm on different parts.

4.5 Discussions

In this chapter, the robot path planning problem is solved so that the inspection can

be carried out time-efficiently. By modeling the problem as a TSP, a hierarchical
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Figure 4.13: The sub-optimal path by the OLT algorithm.

Table 4.2: Testing results on different parts

 

 

 

 

 

No. of Initial Length (m) Time (3)

Point Length(m) OLT TLT OLT TLT

pillar 55 35.22 16.58 17.62 17.50 1.82

door 103 97.45 35.28 36.78 37.02 6.26

floorpan 510 124.97 45.26 59.96 264.25 17.35         
 

approach is proposed and a new algorithm is developed which can find approximate

solutions quickly. Performance bounds of the algorithm is provided. This algorithm

favors the highly clustered TSPs.

Some assumptions are taken to set up the TSP model. The complete graph

assumption, however, may not reflect the reality because the surfaces of the part will

become Obstacles between a pair of viewpoints and no straight path exists between

them. In this sense, the graph is not complete. Hence, there is need to investigate the

hierarchical approach on non-complete graph. One way to do that is to put virtual

edges with very big distance for those pairs without a straight path, thus the virtual

edges make the graph complete. However, the triangle inequality does not hold on

this graph and further investigation is needed to see if the hierarchical approach can

be modified to work on this graph.
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CHAPTER 5

IMPLEMENTATION

This chapter focuses on issues in experimental implementation. An eye-in-hand setup

is used to realize the viewpoints and it requires that two calibration problems be

solved: the robot localization and the hand/eye calibration. After reviewing exist-

ing methods for these two problems, we provide a new, simple method to solve the

hand/eye calibration problem. Experimental evaluation of viewpoints is reported in

the last section.

5.1 Implementation on Eye-in-Hand Setup

5.1.1 System Setup

To demonstrate the inspection system and evaluate the generated camera viewpoints,

an eye-in-hand robot is set up in the Robotics and Automation Lab. The setup

includes: a Puma560 manipulator and its controller which is implemented on real-

time Operating system QNX4.25; a Hitachi KPD—50 CCD camera, which is mounted

on the Puma560; a Kineticsystems’ Vibraplane optical table which is used to fix the

part to be inspected; a monitor and a frame grabber (Matrox Meteor); a PC with

Okino’s NugrafTM [94], which can import a CAD file and render it with a given

camera viewpoint. The system setup is shown in Figure 5.1.

The viewpoint evaluation procedure is as follows: given an ordered sequence Of

viewpoints, the robot manipulator is controlled to reach each viewpoint. A picture is

taken at each viewpoint and it is compared with the rendered image by NuGrafTM

under the corresponding viewpoint.
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Figure 5.1: The system setup.

5.1.2 Calibration Problems

For the eye—in—hand robot to execute inspection tasks, it is necessary to give out

commands specifying where the robot hand should move to, or in other words, the

position and orientation of the robot hand in the robot base coordinate frame have

to be explicitly specified. However, what we generate in the vision sensor planner

is the camera positions and orientations in the part coordinate frame. Thus a basic

problem arises: how can we find the position and orientation of the robot hand in the

base coordinate frame for a given position and orientation of the camera in the part

coordinate frame?

Denote the robot base coordinate frame as {B}, the hand coordinate frame as

{H}, the camera coordinate frame as {C}, the optical table coordinate frame as

{W} and the part coordinate frame as {P}. All these frames are illustrated in

Figure 5.2. The above coordinate transformation problem can be broken down into

two sub-problems [3] :

e the robot localization problem and

e the hand/eye calibration problem.

The robot localization problem tries to solve the transformation between the robot
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Figure 5.2: The coordinate frames (from [3]).

base coordinate frame {B} and a fixed world frame assigned somewhere, which, in

our eye-in-hand setup, is the coordinate frame attached to the table, {W}.

The hand/eye calibration is the process Of identifying the fixed yet unknown po-

sition and orientation Of the inspection sensor, say, camera, with respect to the robot

hand coordinate frame [3]. In our system, it is the transformation between the hand

coordinate frame {H} and the camera coordinate frame {C}.

The transformation between the part coordinate frame {P} and the table coor-

dinate frame {W} can be easily determined and it depends on the setup of the part

on the table.

5.1.3 Robot Localization Problem

Techniques to solve the robot localization problem can be classified into those using

pose measurements and those using only position measurements [3]. However, due to

the fact that orientation measurements are usually expensive to Obtain, we adopt the

technique that uses only position measurements.
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The localization procedure is as follows: select a number of points with known 3D

coordinate in the world coordinate frame {W} ( it is easy to achieve since the Optical

table has regular holes on it); direct the robot hand tip to approach these points

with different known heights and record the joint angles of the robot; use forward

kinematics to find the 3D coordinate of these points in the robot base coordinate

frame.

Let “TI, and "’Th be the homogeneous transformations relating the robot base to

the world frame and the hand to the world frame, respectively. Let "’R). and "’ph be

the orientation matrix and the position vector Of ”Th, respectively. Similarly for "’Rb,

"’pb, ”Rh and bp,,. The following equation then holds:

wPh = wa ’19}: + mm (5.1)

Since bph is the function of the robot joint variables and link parameters, what we

needed to do is estimate “’Rb and "’pb provided that hp), and "’ph are given at a number

of robot configurations. As discussed above, the position vector "’ph is measured by

an end-efl'ector position measuring device and hp), is computed by using the robot

forward kinematics solver.

For simplicity and generality, the localization problem can be formulated as follows

[3],

given m 3D points 1p, and m 3D points 2p,~, (i = 1,2, ...,m) in two coordinate

frames, estimate the rotation R and the translation t that transform 1p, to 2p,, i.e.,

21),: R 12),-+1 ,i=1,2,...,m. (5.2)
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There are several existing techniques to solve equation (5.2). A quaternion-based

method [3] is adOpted in our work. Here we give out the solution to R and t.

2,250 + CO 2,1;va — kzsd 15.2.09 + kysfl

R = kxkyvd + kzsd ky2v0 + 00 kykzvd — kzsd

kxkzvfi — kysd kykzvd + kxsd kzzvd + CO   .l

where v9 = 1 — cos(0), c0 = cos(0), 30 = sin(6)

Step 4), after R is solved, t can be solved as follows,

t=2p,—R1p,- i=1,2,...,m

the least square solution for t is

5.1.4 Hand/Eye Calibration Problem

Existing Method

One solution to the hand/eye calibration problem can be found in [95]. This method

is to move the robot at least twice, each by a known amount, and to observe the

resulting sensor motion induced by the robot motion (see Figure 5.3).

Let T6 be the transformation between {H} and {B}, and OBJ be the transfor-

mation representing the object in the camera coordinate frame (see Figure 5.4). How

to find OBJ is called the camera calibration problem, which we will address in more

detail later.

The following equation holds:
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Figure 5.3: The hand/eye calibration (from [3]).
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Figure 5.4: The formulation of the hand/eye calibration problem (from [3]).
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T61XOBJ1 = T62XOBJ2 (5.3)

The above equation can be written as

Tg2lT51X = XOBJ2OBJl—l (5.4)

By defining A E. Tg2’T61 and B E CBJgOBJf1, one can have the following

homogeneous transformation equation,

AX = XB (5.5)

where X is the 4 x 4 transformation matrix from the robot hand coordinate frame

{H} to the camera coordinate frame {C}.

To solve equation (5.5), there exist two approaches [3]. One approach first obtains

the rotation part of the unknown transformation matrix and then determines the

translation part of it, this approach is based on quaternion algebra. Another approach

uses nonlinear iterative algorithm.

Our Method

We propose a new method to solve the hand/eye calibration problem, which does not

need move the robot as in the previous method and hence, it is more straightforward

and simpler.

It is noticed that after solving the robot localization problem, the transformation

“’Tb between the robot base coordinate frame {B} and the table coordinate frame
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{W} is known. The transformation from the camera coordinate frame {C} to the

robot base coordinate frame {B} can be Obtained as follows,

”T, ='” Tb-IOBJ-l. (5.6)

On the other hand, we can easily obtain the transformation ”Th between the

hand coordinate frame {H} and the robot base coordinate frame {B} by solving the

forward kinematics. SO a fixed hand/eye transformation can be Obtained as follows,

”T, = ”Th-1 ”Tc. (5.7)

Camera Calibration

Our method and the existing method both need the transformation between the world

coordinate frame {W} and the camera coordinate frame {C}, which, in literature, is

called the camera calibration problem [3]. Essentially, the camera calibration problem

is to identify the set of extrinsic parameters (position and orientation of the center

of the camera lens, or the perspective project center, in the world coordinate frame)

and intrinsic parameters (focal length, scale factors, distortion coefficients, etc.) of

the camera using a set of points known in both frames.

There exist rich literatures on camera calibration techniques. In the remainder of

this section, some basic concepts of the camera calibration problem are introduced,

followed by existing approaches to solve the calibration problem.

Camera model used in calibration

In camera calibration, people usually use either distortion-free lens model or lens

distortion model. The distortion-free lens model, essentially, is the pinhole model
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Figure 5.5: The distortion-free and distortion model.

where every Object point is connected to its corresponding image point through a

straight line that passes through the perspective center Of the camera lens. The lens

distortion model is a more practical model for most of the “Off-the-shelf” lenses which

sustain a variety Of aberrations and do not obey a perfect model. Lens distortion

efiects can be classified into radial and tangential distortions. Radial distortion,

which causes an inward displacement Of a given image point from its ideal location

is the dominant distortion effect. In Figure 5.5, both models are illustrated. In this

figure, {xw, yw, zw} is the world coordinate frame. {xc, go, 26} is the camera coordinate

frame and {X, Y} or {u, v} is the 2D coordinate frame on the image plane. 0 is the

perspective center Of the camera. Pu is the distortion-free image point while Pd is the

point with radial distortion.

A question naturally arises: does this pinhole model in calibration conflict with

the general thick lens model we adopt for vision sensor planning? The answer is “no”.

In fact, when the front principle point (FPP) is taken as the perspective center, we

can transform the general thick lens model into its equivalent pinhole model which is
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illustrated in Figure 5.6. By a translation (see Figure 5.6), the back principle point

(BPP) coincides with the front principle point (FPP), so the resulting geometry Of

imaging is equivalent to the ideal pinhole model.

Formulation of the problem

Now the camera calibration problem can be stated as follows: given a certain

number Of 3D points in {W}, and their corresponding image points in {C}, find the

transformation matrix "’Tc between {W} and {C}.

Since the Optical table has regular grid points on its top plane, it can be taken as

a calibration board. The camera calibration procedure is as follows,

Step 1), control the robot to move the camera to a suitable configuration. At

this configuration, a certain number of grid points, or calibration points, are clearly

visible in the camera. Save the picture.

Step 2), from the picture, calculate the X and Y value of the specified calibration

point in the image plane. A good way to find the image coordinate of these points

is: a) binarize the color image to get a black and white image, b) calculate the center

Of the blobs by averaging the X and Y coordinates. An alternative and easy way to

find the coordinate of these calibration points is to use image software and directly

read out the coordinate values by pointing the cursor to the center of each blob. A

sample image of calibration points is shown in Figure 5.7.
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Figure 5.7: The calibration points.

Let a point in {W} be denoted as [xm yw, zw]T and a point in {C} be denoted as

[xc, ye, zc]T, the transformation between them is

xc xw

yc =c Ru, y", +6 tw (5.8)

zc zw

Where the rotation matrix ”R", and the translation vector ‘tw are written as

7‘1 7‘2 7'3

C .—

Rw - r4 r5 r6

7‘7 7‘8 T9

‘t,,, = [t3 Iy t,]T

Based on the perspective project, we have

33 y
= — V = -

u f 2 f z

where f (= d) is the (effective) focal length of the camera and (a, u) are the analog
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coordinates in the image plane. The image coordinates (X, Y) are related to (a, u)by

the following equations,

Xzsflu Y=suu

The scale factors, 3,, and 3., perform unit conversion from the camera coordinates

(a, V) which is measured in meters, to image coordinates (X, Y), which is measured

in pixels.

Define

f. 5 f8.. fy E fsu

and combine equation (5.8), we have

rlxw + rgyw + rgzw + it

 

 

 

X = 5.9

f1: T7310 + TByw + T92,” + tz ( )

r x + r + r z + t
Y : fy 4 w Syw 6 w y (510)

ryxw + rgyw + rgzw + tz

The above two equations can be further rewritten as

= 0111311; + 0123120 + aiszw + 014 (5 11)

0315511; + 0321/12 + a33zw + 034

a x a + a z + aY _____ 21 w + 22.77:» 23 w 24 (5.12)
 

0315511: + any.» + 03321» + 034
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The coefficients a11,..., a34 correspond to what is called the “Perspective Trans-

formation Matrix”. We can set a34 = 1 since the scaling of the coefficients a11,..., a34

does not change the values ofX and Y. So equation (5.11) and (5.12) can be combined

into the following model:

011

xw yw zw 1 0 0 0 0 —Xxw —wa —sz X

0 0 0 0 xw yw zw 1 —wa —Yy,,, —Yzw Y

  033

(5.13)

The eleven variable in this model can be solved by linear least squares and the

minimum number Of calibration points is six. It can be seen that the constraint on

these points is that they should not be coplanar.

However, this method is not practical due to two facts: 1) a 3D calibration fixture

is very expensive, 2) the model Obtained is only sub-optimal. We have to resort to

other methods. Tsai provided a RAC-based camera calibration algorithm to solve

this problem [96]. Basically, Tsai found that by defining several independent param-

eters the RAC equation can be converted into a set of linear equation in terms of

these intermediate parameters, which has unique solution under certain conditions.

The rotation and translation parameters can be recovered from these intermediate

parameters subsequently. The detailed solution is provided in Appendix A.

5.2 Viewpoint Evaluation

To evaluate the viewpoints, pictures taken from individual vieWpOints are compared to

the corresponding 3D scenes rendered by NuGrafTM . Figure 5.8 shows one picture
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and its corresponding rendering scene. Figure 5.9 shows another picture and its

corresponding rendering scene.

   
Figure 5.8: Picture 1 and rendering scene 1.

 

Figure 5.9: Picture 2 and rendering scene 2.

The above results show that the pictures and the 3D rendering scenes match quite

well in the sense of the field of view and the visibility. The sharpness and resolution of

the interested area in pictures are also within requirements. A thorough check on all

the pictures shows that the viewpoints and their realization are satisfying, considering

the positioning error of the robot and the calibration error. As another important

issue, the coverage of all the surfaces by the pictures is guaranteed by the algorithm

itself and the accuracy of the robot positioning.
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5.3 Discussions

In this chapter, viewpoints are implemented and evaluated on an eye-in-hand robot.

Some issues related to the implementation are discussed. Mainly, a new hand/eye

calibration method is developed, this method is simpler than the existing method.

Viewpoints are verified by comparisons between the real pictures and rendered images.
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CHAPTER 6

CONCLUSIONS

6.1 Contributions of This Dissertation

In this dissertation, a CAD-based framework is proposed for constraint-satisfying

robot motion planning in manufacturing applications. Under this framework, we

deveIOped an automated vision sensor planning system that can aid the dimensional

inspection of automotive parts. The main contributions of this research are:

1) A divide-and-conquer strategy is proposed to solve the robot motion planning

for compound surfaces. By decomposing the complex surfaces Of the part into several

patches with each satisfying certain geometric constraint, the robot motion planning

is easy to solve.

2) A graph-based surface merging algorithm is developed to decompose the com-

pound surfaces, which extracts the global geometric structure of the surfaces Of the

part.

3) A new vision sensor planning approach is proposed which combines two existing

approaches and a bounding box concept is invented to efficiently integrate the four

task constraints.

4) By discretizing the large flat surfaces, minimum viewpoint problem is solved

by formulating it as a set-partitioning problem.

5) Robot kinematics constraint is integrated into vision sensor planning, which is

set up as a weighted set-covering problem based on the discretizing scheme used in

minimum viewpoint problem.

6) Robot path planning is studied and it is rendered as 3. Traveling Salesman

Problem. A fast hierarchical approach is developed to solve it and a new algorithm

is provided with bounded performance.

7) A new hand/eye calibration method is provided based on the solutions to the
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robot localization and the camera calibration problem.

Although this work is mainly dedicated to the automated vision sensor planning

problem for automotive parts, its general framework and basic ideas are not restricted

on vision sensor planning. Many other CAD-based path planning problems in man-

ufacturing can benefit from this framework, as well as the basic ideas. For example,

as we already mentioned, automated painting gun path planning based on the CAD

model of a part is a similar problem [41]. Other applications may include NC part

programming, polishing path planning, etc.
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APPENDIX A

TSAI’S RAC-BASED CAMERA CALIBRATION

ALGORITHM

Tsai’s Radial Alignment Constraint (RAC) algorithm calculates the camera extrinsic

parameters, i.e. the elements Of R and t, and other modified intrinsic parameters

based on a set of coplanar calibration points, which is favorable in our system setup

since we take the accurate grid points on the table as calibration points and they are

coplannar.

The camera calibration algorithm consists Of two steps.

1) calculate rotation matrix ch and the translational parameters t3 and t,,,

2) calculate the remaining parameters using the results Of the first step.

As a discovery by Tsai, defining several independent intermediate parameters can

convert the RAC equation into a set of linear equations in terms of these intermediate

parameters, which has unique solution under certain conditions. The rotation and

translation parameters can be recovered from these intermediate parameters subse-

quently.

The calibration algorithm is summarized as follows,

Stage 1), compute R and t3, and t,,.

a) define

_ —1 —1 —1 —1 —1

{V11V21V31V41V5}: {Tlty 1T2ty atxty ar4ty 175ty }

form a linear equation,
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I (Bung/i yw,i Yr —$w,iflXi —yw,iHXi]

 

V1

V2

V3

V4

V5  J

= ”Xi

here x,” and yum. are the coordinates Of the ith calibration point. The minimum

number of non-colinear calibration points needed to solve the equation is 5.

b) solve the {V1,l/2,V3, 114,115} using least square method.

c) define

V1 V2

C II
I

V4 V5

If no row or column of C identically vanishes, it can be shown that

 

2 = Sr — \/S,2 — 4(1/11/5 - V4l/2)2
 

t

y 2(1/11/5 - 1141/2)?!

where Sr 5 1112 + 1222 + V32 + V42 + V52. Otherwise the solution is

where u,- and u,- are the nonzero elements in the appropriate row or column of C.

ty2 2 (V;2 'l' Vj2)_l

Assume ty > 0, the following parameters are calculated,

71 = l/Ity T2 = Vgty

T4 = V4ty T5 = Ugly
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t3; = Vgty

Then using an arbitrary calibration point, the following coordinates are calculated,

IL‘ = T127", + T2yw + tx

y = r4xw + r5yw + ty

The sign of x and X ( y and Y) should be consistent, so if the above coordinates

conflict the consistency, the sign of t,, is reversed.

 

7‘3=\/1—T12—T22

 

T6 = —sign(r1r4 ‘l' T2T5)\/1— 7'42 — T52

[7‘7 7'3 TQIT =[[T1T2 T3]T X [T4 T5 TGIT

Once R and t1, t3, are known, one can estimate tz through the following equation

I t,

—X,' III,‘ — £13,732 I fa; : Xiwi

-ka  
where

x,- E rlxwr + rgyw- + t1.
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w,- E T7$w,5 + Tgywfi'

fz E fsu is the product of the focal length and scale vector. k is the radial

distortion coefficient.
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