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ABSTRACT

KPSS AND LEYBOURNE-McCABE AUTOCORRELATION
CORRECTIONS IN STATIONARITY TESTS

By
Yongsu Cho

We consider tests of the null hypothesis that a time series is stationary that were
proposed by Kwiatkowski et al.(1992) and Leybourne and McCabe (1994, 1999). We
identify a problem with the Leybourne and McCabe (1999) test and suggest two
modifications of the test to solve it. We provide consistent model selection rules to pick
the number of lags used in the tests. Then we conduct simulations to compare the size
and power characteristics of the tests under different data generating processes and
different treatments of the number of lags. Generally speaking, the results are favorable
to the use of formal model selection rules, and they are unfavorable to the (unmodified)

Leybourne and McCabe (1999) test.
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Chapter 1

Introduction

1. Preliminaries

From a statistical point of view, the correct treatment of the stationary or
nonstationary nature of time series data is quite crucial for valid statistical inference,
owing to the spurious regression phenomenon. However, standard unit root tests are not
necessarily very powerful against relevant alternatives. A unit root is typically the null
hypothesis being tested, and the null hypothesis is accepted unless there is strong enough
evidence against it.

Since the influential work of Nelson and Plosser (1982), which found that most
U.S. macroeconomic time series contain a unit root, it has been a well-established
empirical fact that standard unit root testing methods such as Dickey-Fuller tests, ADF
tests and Phillips-Perron tests do not clearly determine whether the observed time series
data contains a unit root or not. Dejong et al.(1989), Diebold and Rudebusch (1990),
Dejong and Whiteman (1991) and Phillips (1991) provide empirical evidence supporting
this argument.

These studies suggest that, in trying to decide whether macroeconomic data are
stationary or integrated, it would be useful to perform tests of the null hypothesis of
stationarity as well as tests of the null hypothesis of a unit root. Tanaka (1990),

Kwiatkowski, Phillips, Schmidt and Shin (1992), hereafter KPSS, Saikkonen and
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Luukkonen (1993), and Leybourne and McCabe (1994), hereafter LM94, have proposed
score-based tests of the null hypothesis of stationarity against the alternative hypothesis
of a unit root. Leybourne and McCabe (1999), hereafter LM 99, have also proposed a test
of the null hypothesis of stationarity. This thesis will propose some extensions of these

tests and will analyze their properties, mainly through a large number of simulations.

2. The “local level model” and score tests

The KPSS and Leybourne-McCabe stationarity tests were derived from a
parameterization which provides a plausible representation of both stationary and
nonstationary variables. The “local level model” is a components representation in which
the time series under study is written as the sum of a deterministic trend, a random walk,
and a stationary error. See, e.g., Harvey (1989, pp. 31-32), who also refers to this as the
“random walk plus noise” model. If y, is the observed series, we write it as follows:

y,=pt+u +u,. 1)
Here 4 is a random walk: 4, = 4,_, +Vv,, where the v, are iid (0, 0,%) and the initial
value L is treated as fixed, and serves as an intercept. Also u, is iid (0, o;‘z); later, the iid

assumption will be relaxed. The term S allows for deterministic linear trend.
Define A = 0‘3 / 0'3 . Then the null hypothesis of stationarity corresponds to A=0

(hence o’ =0, so no random walk component exists). The unit root alternatives are

indexed by A>0. Thus A=0 corresponds to stationarity around a constant level (if f=0) or



around a |

of apure

o is

L
the rand
LM test
(LBD t
Levbou

u, bet

defme

LBl St

The |
deﬁ\';

by T

Whe,



around a trend (if +0). Cases with A>0 have a unit root. As A—o0, we approach the case

of a pure random walk.

1) 6.’ is known

Under the further assumptions that the stationary error u, is normal white noise,
the random walk innovation v, is normal, and the variance a.,z is known, the one-sided
LM test statistic for the stationarity hypothesis is the same as the locally best invariant
(LBI) test statistic. Nyblom (1986), Nabeya and Tanaka (1988), KPSS (1992), and
Leybourne and McCabe (1994) all consider a model equivalent to the model above. Let

u, be the residual from an OLS regression of y, on the intercept and time trend. Then we

{
define the partial sum process of the residuals: S, =Z u i, =12,...,T. Then the LM and

LBI statistic is
T
LM =) S}/ol. 2)
=1

The LBI derivation is given by Nyblom and Nabeya and Tanaka, while the LM
derivation is given by KPSS. We will follow the notation of KPSS, with a normalization

by T
2 d 2 2
n,=T"Y 8" ol 3)
1=1

where the subscript “t” indicates that we have allowed for linear deterministic trend.

In the case that we wish to test the hypothesis of level stationarity (i.e., we impose
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B=0) instead of trend stationarity, we define %, as the residual from regression of y on an

intercept only (#, = y, — ¥ ) instead of the above, and the rest of the test is unaltered.

Now we write

T
n,=T7?Y.8%cl, (4)

t=1
where the subscript “u” indicates that we have extracted a mean but not a trend from y.
The asymptotics for the two tests are similar. First we will discuss the test for
level stationarity (7,). Let W(r) be a Wiener process (Brownian motion), and let V(r) be
the Brownian bridge:

Vir)=W(r)-rW(l), 0<r<l1. (5)
Under the null hypothesis, Y, = K4, +u, where up is fixed and u, is iid. Then
u, =y, —y=u,-u,and cumulations of the #, converge to a Brownian bridge:

TS, =0 V(r),0<r<1, (6)

where [7T] denotes the integer part of »T and “=" denotes weak convergence. Then it

follows that
1
n, = J‘V(r)zdr (7
0

Critical values based on this distribution have been widely tabulated; e.g., KPSS (1992, p.
166).

Now consider the alternative that A>0. Let W(r) be the demeaned Wiener process:

W(r)=W(r)- [W(b)db. (®)
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Then KPSS (1992, p.168) show that (for &,”>0)
TS, =0, [W(s)ds )
0
and correspondingly
T 1 r
T, =T*Y.8 ol = (0} /0}) [([W(s)ds))ar.. (10)
t=1 00

The analysis for the test of trend stationarity is very similar. Under the null, we

simply replace the Brownian bridge V(r) by the “second-level Brownian bridge”
1
V,(r) = W(r)+(2r =3 W(Q)+(6r* —6r) [W(s)ds, as given by KPSS (1992, equation (16).
0
Under the alternative, we replace the demeaned Wiener process W(r) by the “demeaned
1 1
and detrended Wiener process” W' (r)=W(r)+(6r—4) IW(S)dS+ IS W(s)ds, as given by
0 0

KPSS (1992, equation (26)).

The essential point of this discussion is that 7, (or 7;) is Opy(1) under the null, but
O,,(Tz) under the unit root alternative. Thus these tests are consistent. It should also be
noted that the normality assumption for u, and v, was made to allow the derivation of the
LM or LBI test. However, the consistency of the tests and the validity of the asymptotic
distribution results given above do not depend on these normality assumptions. The tests
may have certain optimal properties under normality, but they are valid without the

normality assumption.
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2) o, is unknown
Now we continue to assume that the stationary error , is normal white noise, and

the random walk innovation v, is normal, but we relax the assumption that the variance
0.’ is known. Let 6 be an estimate of o2 that is consistent under the null. Then in the

level-stationary case we define the statistic
L 2
A, =T?Y 8/6%. (11)
t=1
This differs from 7, in (4) only because & replaces o. Similarly, in the trend-
stationary case, we define 7, by replacing o in (3) by &2, an estimate of o that is
consistent under the null. Replacing o by a consistent estimate &} does not alter the

distribution theory under the null.

For the case we are currently considering (iid u,, o} unknown), both KPSS and

LM94 would suggest the following estimate of o :

A2
o,

T
Y42 (12)
t=1
This is indeed a consistent estimate of af under the null. However, under the unit root

alternative, & is Oy(T). Specifically, for the level-stationary case we have:
T 1
7762 =T7?Y i’ = o? Ili’(s)zds, (13)
1=1 0

where W(s) is demeaned Wiener process of equation (8). As a result 77, is Oy(T) under the

alternative (instead of O,(T?), as 7, was, with known o). Specifically,
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T 1[r 2 1
T'h, =T*Y $2/T"6! = j( Ij’[’_(s)dsJ dr/ [W(r)dr. (14)
=1 o\o 0

The analysis for the 7, test is essentially the same. We just replace W(r) by W'(r),
the demeaned and detrended Wiener process. The essential point is still that using & in
place of o} does not alter the asymptotic distribution theory under the null, but it does

change the distribution theory under the alternative. The test is Op(Tz) under the

alternative with o> known, but only O,(T) under the alternative when &2 is used in

place of o

3. LM99 test and its modifications

Leybourne and McCabe (1999) proposed a new version of the KPSS/LM94

stationarity test. The idea is to find an estimate & that is consistent for o? under the
null of stationarity, and that is Op(1) under the unit root alternative. Then 7, (or 7,)

using this estimate will be Oy(T2), not O,(T), under the unit root alternative.
It is well known that the model (1) is second-order equivalent in moments to the
ARIMA(0,1,1) process:

(1-L)yy,=p+Q1-6L),, 0<6<1. (15)
Here ¢, is white noise with mean zero and variance ag . The correspondence between the

parameterizations (15) and (1) is as follows:

o}=0,16 (16A)



O=(A+2-(A +41)")/2 (16B)
where as before A =0c2/0?. Here the null hypothesis of stationarity isa? =0 (or A=0)

in (1), and corresponds to 6=1 in (15). It implies that y, is stationary. The alternative

o? >0 corresponds to 0<6<1 and implies that y, has a unit root. It is important for later

development to stress that model (1) implies 0<8<1 in (15); negative 0 are not consistent

with (1). Also the pure random walk corresponds to A=< in (1), or 8=0 in (15).
LM99 use the relationship (16A) to obtain their estimates of o2 . Let
~ ~2A
L =86, (17
where a‘g and @ are the quasi-ML estimates of the ARIMA(0,1,1) process (15). “Quasi-

ML” refers to the fact that the form of the likelihood assumes normality, but the

consistency of the estimates does not depend on this assumption being correct. LM94
note that o"z and @ are consistent under the null and O,(1) under the unit root alternative.
Therefore, 6‘3 is also consistent under the null and Op(1) under the alternative. If we use
G as the denominator of the test statistic instead of 6’ asin (11), we have the LM99

stationarity test 77,
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L

w - (18)

t=1

Obviously, 7, is Op(1) under the null hypothesis, and Oy(T?) under the alternative. This
suggests that it may be more powerful than the KPSS/LM94 test 7, , which is only Op(T)

under the alternative.



We will now proceed to suggest two modifications of the LM99 test. These are

based on the following observation. The LM99 test, like KPSS and LM94, is an upper tail

test. However, the LM99 estimate & can be negative. Even though 6<0 is not consistent

~

with the local level model (1), 6 <0 is possible, and & = 6‘2 -0 is negative if 6 is
negative. In this case we will have 77, <0 and the test will not reject. This will be a very
rare occurrence under the null (6=1), but it may not be rare under the alternative. Note

especially that in the pure random walk case (6=0) we will have 6 < 0 witha probability
that approaches 0.5 as T—0, and the power of the LM99 test against pure random walk
alternatives will be close to 0.5, not 1.0, for large T. Our simulations will confirm this,
and will show that correspondingly the LM99 test will have poor power against unit root
alternatives that are close to random walks (i.e., for large values of A, correspondingly,
small values of 6). LM99 specifically assume 6>0, thus avoiding this problem in terms of
asymptotics, but still it is odd and not desirable to have a test whose power is low against
a random walk. This ought to be the easiest alternative to detect.

To avoid this problem, we propose two modifications of the LM99 test statistic.
The first, which we will call LMM]1, uses the variance estimator 5,,2 = 6’3. This is a
consistent estimator of af under the stationary null, since 6=1 under the null. Under the

alternative, it is not a consistent estimator of o, but it is Op(1). Therefore, LMMI is
Op(1) under the null and O,(T?) under the alternative. This modification of the LM99 test

may cost some power, because a‘} > éo“'z when 0<6<1, and we expect 0<d<1 when 6 is



not close to zero. However, we may gain power when 8 is close to zero since &, can not
be negative.

We also propose another modification of the LM99 test statistic, which we will

call LMM2. This is based on the estimator 6‘3 = |t9‘ . o"g2 , which is also consistent under

the null and Op(1) under the alternative. For 6 close to one, we expect 6 >0 with high
probability, and so &2 should equal &7 with high probability. Thus we do not expect

substantial size distortions, and the power of LM99 and LMM2 should be similar when 0
is close to one (i.e., when power is low). However, for 8 close to zero (large 1), we may

expect LMM2 to be more powerful than LM99, and LMM2 (unlike LM99) is consistent

against the pure random walk alternative.
4. Short-run dynamics

The time series data to which a stationary test is applied are typically highly
dependent over time, and so the iid error assumption under the null is unrealistic.
Empirically, it is important to allow the stationary errors «, to be correlated. The essential
assumption for the u, is that they satisfy a functional CLT, so that their cummulations

follow a Wiener process. That is, we assert

rT
T2y u, = oW (r) (19)

=1
T 2
for 0 <o <. Here 0% = limT "'E(Z u,) is the “long run variance”, and the assertion

t=1

that it is finite is an assertion of “‘short memory” of the process u,. Assumptions on , that
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guarantee (19) include the regularity conditions of Phillips-Perron (1988), which involve
mixing plus existence of certain moments, or the Phillips-Solo (1989) linear process

assumptions.

1) KPSS test

If (19) holds, then the numerator of the KPSS statistic follows:
T 1

T2y S = o [V(r)dr (20)
t=1 0

Therefore KPSS use an estimate of o2 for the denominator of the statistic, to cancel the
o’ in the numerator. A consistent estimator of the long-run variance o ’is constructed

from the residuals #,:

T T
s2(1)=T"Z:12,2 +2T"w(s,l)2ﬁ,ﬁ,_“ (21)
t=1

t=s+1
where w(s,l) is an optional weighting function that corresponds to the choice of a spectral
window. KPSS use the “Bartlett window”, which is 1- s/7+1) as in Newey and West
(1987) to guarantee the nonnegativity of s*(/). For the consistency of s*(/), it is necessary
that the lag truncation number /- but //T — 0 as T—o. The rate I=o0(T"?) will usda]ly
satisfactory under both the null and the alternative.

Let 77,(/) be the KPSS statistic that uses / lags in estimation of the long run

variance. (Or, in the case of testing for trend stationarity, 7, (/)is defined similarly).

Under the null it has the same asymptotic distribution as in the cases previously

considered:

11



1
ﬁ#(1)=r-2is,2/s2(1)—> J'V(r)zdr 22)
t=1 0

Under the alternative, the numerator is OP(TZ) as before. However, KPSS (1992, p. 168)
show that s*(/) is Oy(/T) under the unit root alternative. Therefore, under the unit root

alternative, 7, (/) is only Op(T/I). Recall that this compares to Op(Tz) when the u, are

white noise and o is known, and to O,(T) when the u, are white noise but & is not

known. So we expect the allowance for autocorrelation of the %, to cause a loss of power.
A possibility that is not noted in the existing literature is that we can make the
KPSS test Oy(T) under the alternative, under the assumption that the », are MA(/), where /

is known, or where we have an upper bound for / that is “fixed” (does not depend on T).

Then the maximum non-zero autocorrelation is /, and we can estimate o consistently

using the ‘unweighted’ variance estimator

s'(l) = T“i&,’ + ZZI:T" iﬁ, (23)
s=1

=1 t=s+1
where [ is a fixed number. The unweighted variance estimator s*(/) is consistent under the
null hypothesis (s*(/)—>0c?), and Oy(T) under the alternative, with / fixed.

Note, however, that under the MA(/) assumption, with / fixed, the asympfotic
distribution of the KPSS statistic under the alternative does depend on /. The constant

K’=(1+2]) would appear in the denominator of the expression for the distribution of

T"ﬁ# (/). In that sense the KPSS statistic is still Op(T//) ; but with / fixed, this does not

contradict the fact that it is Oy(T).

We can summarize this discussion simply, in a way that relates to the remainder

of the thesis. We may let /> as T—oo, as in the original KPSS article. In this case the
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test is valid for very general forms of autocorrelation of the u,, and the statistic is Oy(T//)
under the alternative. This version of the test will be analyzed further in Chapter 3.
Alternatively, we may assume that u, is MA(/) with / known, in which case the statistic is
Oy(T) under the alternative. This version of the test will be analyzed in Chapter 2.
Finally, we may assume that u, is MA(J) for finite but unknown /, and use some model
selection procedure to choose /. If the model selection procedure is consistent, the
statistic is again Op(T) under the alternative. This version of the test will be considered in

Chapter 4.

2) LM94 test
Leybourne and McCabe (1994) based their test (which we call LM94) on the

assumption that u, is an autoregressive process with known order p. Their model is
O(L)y, =pt+u, +¢,, (24)

where 4 is a random walk as in (1), ®(L)=1-@L-....—¢,L" is a pth order

autoregressive polynomial in the lag operator L with roots outside the unit circle, and & is

white noise. Thus the stationary error in the solution for y, would be u, = (D"(L)e, ,

which is AR(p). Note that the equivalent of (15) above would be the ARIMA(p,1,1)

model:
O(L)1-L)y, = +(1-6L),. (25)
The LM94 test statistic is calculated as follows. First, we get ML estimates of ¢

(and 6) from the ARIMA(p,1,1) model

13



Ayl = ﬂ+ﬁ¢iAyr-i +§1 _6;,_1 . (26)
i=1

Note that this model is estimated in first differences of the y,, so as to obtain consistent
estimates under both the null and alternative, and so to avoid low power problems' under

the alternative hypothesis. Next, we construct the filtered series

Y=y, - ﬁ¢,-‘y,_,-, 7)
i=]

where ¢, are the ML estimates of ¢; Then we calculate the residuals from the regression
of y, on an intercept (and time trend in the trend-stationary case). Finally, we construct
the LM94 statistic in the same way as the 77, (or 7,) test was constructed from the
residuals #,. That is, having filtered the data, we are back in the setting of white noise
error with unknown variance.

It follows that the LM94 test statistic, when the order (p) of the AR polynomial is
known, is Op(1) under the null and Oy(T) under the alternative. Also the distribution of
the test statistic does not depend on the value of p. In Chapter 2, we will analyze this case
further. As with the KPSS test, there are other possibilities. In Chapter 3, we consider_ the
case p— as T—oo. The asymptotic properties of LM94 with this method of choosing p

are unknown. Finally, we may use a model selection procedure to choose the relevant AR

order p. This will be discussed in Chapter 4.

! For simplicity, assume p=1, and a=B=0. In that case, if we regress y, on its lagged term y,., to get residuals
that could be a basis for the test, then, under the unit root alternative, the parameter g — 1and the residuals

are approximately stationary, since y, and y,.; are I(1). If the stationarity test is based on these stationary
residuals, then the statistic will behave as if the null of stationarity is true. This will cause the test to lose
power under the unit root alternative. To avoid this problem, we estimate the parameters by ML estimation
on differenced y,. In this case, the parameter estimtes are consistent under both the null and the alternative,
and the residual is nonstationary under the alternative. See Leybourne and McCabe (1994) for details.
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3) LM99 and LMM1, LMM2

The LM99 test (and its modifications LMMI1, LMM2) handles short-run
dynamics in the same way as the LM94 test. Treating p as known, we estimate the
ARIMA(p,1,1) model (26) and filter the data as in (27). Having done so, we calculate the
LM99 statistic in the same way as was done with white noise errors. When p is known,
the LM99, LMM1 and LMM2 test statistics are Op(Tz) under the alternative and their
distribution does not depend on the value of p. We consider this case in Chapter 2. When
p is unknown, we can let p—>c0 as T—c. The asymptotic properties of the test in this case
are unknown. We analyze this case further in Chapter 3. Finally, when p is finite but
unknown, we can also use a model selection procedure to choose it. Leybourne and
McCabe (1999) suggest a consistent model selection rule for LM99 and they show that
the model selection rule does not affect the distribution of the test statistic. We consider

model selection rules further in Chapter 4.

4) Overfitting and near cancellation
The LM94 and LM99 test are based on estimation of the ARIMA(p,1,1) model

given in the equation (25) above. Here we rewrite this as:

O(L)Ay, = B+O(L)S, (28)
where ©(L) =1- 6L . The asymptotic theory for the quasi-MLE assumes that there are no
cancellations in the lag polynomials ®(L) and @(L). That is, if we factor O(L) as

O(L)=(1-4,L)(1-$;L)...(1-g5L), (29)
it is assumed that 6=¢ for any j. There is generally no reason to expect such a

cancellation. However, it is worth noting that the tests may suffer from serious power loss
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if there is a near cancellation. We will see examples of this phenomenon in our
simulations.

An important and practically relevant case in which this occurs is when we
overspecify p and the DGP has A = 0’3 / 0’3 large. For example, in the pure random

walk case we have A=, or 6=0; and in the near random walk case we have A large and 0
near zero. If we overspecify p, then one or more of the ¢ equals to zero, and we have a

cancellation or near cancellation of (1-¢.L) and (1-6L). In this case, the test will be seen to
lose considerable power in finite samples. Thus we will see that all of the LM tests will

tend to perform poorly against alternatives with A large, unless the AR order p is known.

5. Organization of the thesis

In this chapter we have discussed the testing problem of interest and defined the
statistics that we will consider. Each of these depends on the choice of a parameter that
we will call the “number of lags” which is / for the KPSS test and p for the Leybourne-
McCabe tests. The remaining chapters analyze the size and power properties of the tests
for different methods of choosing the number of lags.

In Chapter 2, we will suppose that the number of lags is known and fixed to a pre-
selected value. We will investigate the size, power and size-adjusted power of the
stationarity tests using finite sample simulations. There will be three kinds of data
generating processes (DGP) used for our simulations. First, we will consider iid errors. In
this case, the true / or p is zero but the simulations will be performed assuming / and p

from zero to three. Secondly, we will consider MA(1) and AR(1) errors, and

16



correspondingly we will use the KPSS test with /=1 and the Leybourne-McCabe tests
with p=1. In this case, we might expect the KPSS test to work well for MA(1) errors and
the Leybourne-McCabe tests to work well for AR(1) errors. However, our interest in this
simulation is also on the opposite cases where the KPSS test is performed with AR(1)
errors and Leybourne-McCabe with MA(1) errors. This is to see the performance of each
stationarity test under incorrect specification. Similarly we will use ARMA(1,1) errors in
our simulations. In this case all of the tests are based on a misspecified model.

In Chapter 3, we will allow the number of lags in the KPSS and Leybourne-
McCabe tests to increase with the sample size. We will look at the size, power and size-
adjusted power of the various stationarity tests using same kinds of DGPs described in
Chapter 2.

In Chapter 4, we will consider model selection rules for the number of lags in the
KPSS and Leybourne-McCabe tests. Leybourne and McCabe (1999) proposed a model
selection rule to choose p in their tests, and we propose a rule to choose / in the KPSS
test. In both cases we also analyze the case that the critical levels of the pretest depend on
the sample size. This is done to avoid asymptotic overfitting (choosing / or p larger than
the true value). We investigate the size, power and size-adjusted power of each tests
using the same three DGPs as in the previous chapters.

Finally Chapter 5 gives our conclusions.
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Chapter 2

Performance of the KPSS and Leybourne-McCabe Stationarity Tests

with a Fixed Number of Lags

1. Introduction

In this chapter we consider the performance of the KPSS test and various versions
of the Leybourne-McCabe test (LM94, LM99, LMM1 and LMM2) when the number of
lags is fixed to some value chosen a priori. Here, as defined in Chapter 1, the “number of
lags” is the parameter “I”, the number of lagged terms in the long-run variance estimate,
for KPSS; and it is the parameter “p”, the assumed order of the AR polynomial, for the
various Leybourne-McCabe tests. In this chapter, the number of lags does not grow with
the sample size (as it does in Chapter 3) and is not determined by the information
contained in the observed data series (as it is in Chapter 4).

The use of a fixed number (/) of lags for KPSS reflects an assumption thatb the
stationary error is MA(J), and therefore, in this chapter we use the “unweighted” long-run
variance estimator, as opposed to the “weighted” estimate of KPSS which used the
Bartlett window w(s,/) =1-s/(/+1) as in Newey-West (1987). Recall from Chapter 1
that with / fixed the KPSS statistic is Op(1) under the null hypothesis of stationarity and is
Op(T) under the unit root alternative. However, the value of / does appear in the
asymptotic distribution under the alternative, so picking a needlessly large value of /

should be expected to cause a loss of power, even asymptotically.
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All of the Leybourne-McCabe test variants are O,(1) under the null hypothesis.
Under the unit root alternative, LM94 is O(T) and LM99, LMM1 and LMM2 are O,(T?).
See Chapter 1 for details. Furthermore, for all of the Leybourne-McCabe tests, the
limiting distribution is not affected by the value of p. Thus choosing a needlessly large
value of p may affect the power of the test in finite sample but it will not do so

asymptotically.

2. Simulations

In this section we provide some Monte Carlo evidence on the size and power of
the KPSS and Leybourne-McCabe tests in finite samples. The simulations were

performed using GAUSS 3.2.25 and the Maxlik optimization procedure. The DGP is
equation (1) of Chapter 1, with p=0. Thus y, = 4, +u,, u, = u,_, +v,, where the u,
are iid N(O, O'f ), the v; are iid N(0, af ), and # and v are independent. The data contain no

deterministic trend and we consider only the tests that allow for level but not trend (e.g.,

KPSS 7, but not 7,, and similarly for the Leybourne-McCabe tests). The number of

replications is given below, but is generally 20,000 for KPSS and 10,000 for Leybourne-
McCabe tests.

We will first consider the case of white noise errors, with the number of lags for
the tests ranging from zero to three. White noise errors are probably not empirically
relevant. However, they do provide a fair comparison between the KPSS and Leybourne-
McCabe tests, in the following sense. The KPSS test with / fixed is based on an MA(J)

assumption, while the Letbourne-McCabe tests with p fixed are based on an AR(p)
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assumption. The advantage of white noise is that it is both MA(/) with finite / and AR(p)
with finite p. Furthermore, with white noise errors we can easily investigate the power
loss from overspecifying / in the KPSS test or p in the Leybourne-McCabe tests.

We will also consider MA, AR, and ARMA errors. The primary point here will be
to see how the various tests perform when they are based on an incorrectly specified

model.

1) The KPSS test with iid errors

We first consider the size of the KPSS test in the presence of iid errors. The null
hypothesis is o2 =0 (A=0) and then y, =u,, so y,is white noise. The test is set at the
5% nominal significance level, and the results are based on 20,000 replications.

Table 2.1 gives the size of the test with various sample sizes (T) and numbers of

lags (/) used to calculated s>(/). We consider T from 50 to 500 and / from zero to three.
The actual size of the KPSS test (7j,) as reported in Table 2.1 is 0.05 for all T when we

set the lag truncation number / equal to zero. Since the DGP is white noise, that is what
we expected. With the number of lags greater than zero, we found considerable size
distortions (overrejection) for relatively small sample size (T=50), and the size distortions
are worse as we increase /. However, the size distortions disappear with larger sample
sizes such as T=200 even with /=3. Thus, for moderate sample sizes like T=200,
overspecifying / does not seem to cause much size distortion.

Now we turn to the power of the test. Here the main question is the extent to

which power is reduced when / is overspecified. Now o’ >0 and our results depend on
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A=0’/0} aswell as T and /. The unit root component grows as A grows, and we expect

power to be higher when A or T is larger and when / is smaller.

Table 2.2 gives the power of the KPSS test as a function of T, A, and /, for the
same values of T and / as in Table 2.1, and for A ranging from 0.001 to 10,000. As
expected, the power of the test increases with T and A for all values of /. Conversely,
given T and A, power of the test decreases rapidly as we increase the number of lags (/).
(There are a few exceptions to this statement, for small T and A, but these are cases of
significant size distortions, and these exceptions will disappear when we consider size-
adjusted power, in Table 2.4.)

The loss in power from choosing a needlessly large value of / can be substantial.
For example, for T=50 and A=0.1, compare power of 0.721 with /=0 (the “true value”
since the errors are white noise) to 0.432 with /=3. This loss of power seems to be less for
larger T, even though theoretically it does not disappear asymptotically. For example,
with T=500 and A=0.001, we have power of 0.788 with /=0 and 0.751 with /=3, a much
smaller power loss (at a comparable level of power with /=0) than with T=50 and A=0.1.

We now proceed to consider size-adjusted power. As usual, the motivation is to
quantify the intrinsic ability of the test statistics to distinguish the null hypothesis and the
alternative. Table 2.3 gives the “actual critical values”, by which we mean the critical
values that would yield correct size (5%) in our simulations under the null hypothesis.

Table 2.4 provides the size-adjusted power of the KPSS test based on the actual
critical values in Table 2.3. The results are quite similar to those in Table 2.3. Power

increases with T and A, and decreases with /. The main change is that we have now
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removed the increase in power as / increases, for small values of T and A. We conclude

that this anomaly was due to size distortion, the effects of which have now been removed.

2) The Leybourne-McCabe tests (LM94, LM99, LMM1 and LMM2) with iid errors

In this section we provide simulation results on the size and power of the various
Leybourne-McCabe tests in presence of iid errors. Our experimental design is very
similar to the design for the KPSS simulations just reported. We consider T=100, 200 and
500, values of A ranging from zero (the null) to 100, and number of lags (p) from zero to
three. To make the calculations simpler and faster, we used only 10,000 replications, and
we dropped T=50, because we encountered an annoyingly large number of failures of the
MLE algorithm when T=50 and p=2 or 3.

We first consider the size of the tests. This corresponds to the entries in Table 2.5
with A=0. Note that p=0 is the true value of p, since the errors are white noise, and that
for p=0, LM94 is the same as KPSS with /=0. For p=0, there are no substantial size
distortions though the LMM]1 test rejects too seldom. For larger values of p, the tests
reject too often under the null, and unsurprisingly these size distortions are larger when T
is smaller and p is larger. Most notably, the size distortions (overrejection) are worse for
all of the LM tests than they were for the KPSS test (with / for the KPSS test equal to p
for the Leybourne-McCabe tests), and they are worse for the LM99 and LMM?2 tests than
for the LM94 and LMM 1 tests. For example, for T=100, compare size of 0.056 for KPSS
(with /=3), to 0.077 and 0.074 for LM94 and LMMI, respectively (with p=3), and to

0.100 for both LM99 and LMM2 (with p=3). Any power gains of the LM99 test or its
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modifications would have to be weighed against its size problem when T is moderate and
p is overspecified.

We note in passing that LM99 and LMM2 are essentially identical in our
simulations, under the null hypothesis. The probability of obtaining a negative estimate of
0, when the true 0 equals one, is negligible.

Except for the LM99 test, the power of the tests increases with T and generally
with A. For the LM99 test, we have the disturbing feature that power increases with A for

small A, but then decreases with further increases in A. This is a reflection of the fact that,

for the pure random walk case of A=c0, the probability of 6<0 approaches 0.5 as T—o.
Correspondingly the power of LM99 is close to 0.5, not 1.0, for large T and A, and this is
what our simulations show. In our view, this is a serious defect of the LM99 test, but it is
easily solved by using the LMM?2 test instead (that is, by taking the absolute value of 6).

For LM94, LMM1 and LMM2, power essentially always increases as we increase
T for a given A (and p), as we would expect, given the consistency of the tests. But, for
large A, power does not necessarily increase with A for a given T (and p). This is a
reflection on the “near cancellation” problem discussed in Chapter 1. It does not occur
with the KPSS test.

Because we had some substantial size distortions, and these varied across tests
and the value of p, we will avoid a detailed comparison of power of the tests and the way
that it depends in p, and turn to a discussion of size-adjusted power.

Table 2.6 presents the “actual critical values”, as Table 2.3 did for KPSS. Then
Table 2.7 gives size-adjusted power (power using the actual critical values from Table

2.6) for the various LM tests.
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We note first that the LM99 test has poor power (approximately 0.5) when T and
A are large. This is the same phenomenon that was commented on above, and it is
probably the most striking result in either Table 2.5 or Table 2.7.

The other obvious and striking result in Table 2.7 is that, for given values of T, A
and p, all of the various Leybourne-McCabe tests have very similar size adjusted power.
(The exception, as note, is the LM99 test, for large T and A.) There is simply not much
difference between these tests. It is generally true, perhaps, that LMM2 has greater size-
adjusted power than LM94, but the differences are small. This is perhaps surprising, in
light of the fact that the LM94 statistic is only O,(T), while the others are Op(TZ).

Size-adjusted power usually falls as p increases, for a given T and A. This is as
expected since we are estimating needlessly many parameters. However, this decrease in
size-adjusted power is not terribly large. For example, for T=100, A=0.01, for LM94 we
have size-adjusted power of 0.606, 0.579, 0.549 and 0.530 for p=0, 1, 2, 3, respectively.
For LMM2, the size-adjusted powers follow a similar pattern: 0.621, 0.590, 0.556, 0.524.
It is revealing to compare these to the size-adjusted power of KPSS, from Table 4, where
for T=100, A=0.01, we find 0.590, 0.535, 0.504, 0.451, respectively, for /=0, 1, 2, 3.
Obviously overspecifying p in the Leybourne-McCabe tests does not cause as much 'of a
power loss as overspecifying / in the KPSS test. This is as suspected from the asymptotic
theory.

More generally, the KPSS test with /=0 is identical to LM94 with p=0, and it has
size-adjusted power that is very similar to that of the other Leybourne-McCabe tests with
p=0. However, KPSS with a positive number of lags “/” is generally less powerful than

the LM tests with p=I.
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Empirically, one is unlikely to know the “correct” number of lags. Then the main
advantage of the KPSS test over the Leybourne-McCabe tests is that overspecifying the
number of lags causes less size-distortion for KPSS than for Leybourne-McCabe.
Conversely, the main advantage of the Leybourne-McCabe tests over the KPSS test is

that they are more powerful when the number of lags is overspecified.

3) The KPSS and Leybourne-McCabe tests with AR(1) errors

Here we perform simulations with AR(1) errors of the form: u=pu,.;+€, , where g,
is normal white noise. We set the coefficient value p to be 1/3 to have the “long-run
variance” of the AR(1) series be equal to that of the MA(1) error series (which we will
consider in the following section) with coefficient 6=0.5. For details see Appendix I. We
consider the KPSS test with /=1 and the Leybourne-McCabe test with p=1. The
Leybourne-McCabe tests are based on a correctly specified model, while the KPSS test is
not (since AR(1) corresponds to the MA(x)) and we want to see how much difference
this makes.

Table 2.8 gives the size and power of the various tests, for values of T and A
similar to those considered previously. Table 2.9 gives the “actual critical values”, while
Table 2.10 gives size-adjusted power.

The KPSS test shows moderate size distortions (e.g., size=0.78 for T=500). This
should be expected since its long run variance calculation does not take into account the
correlations of order greater than one. (Presumably the size distortion would be larger for
larger values of p in the AR(1) DGP.) Its power compares favorably to the power of the

Leybourne-McCabe tests, but this is only due to the size distortion. From Table 2.10, the
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size-adjusted power of KPSS is lower than that of the Leyourne-McCabe tests. This is
also as expected. We can also note that the LM99 test has low power compared to all of
the other tests when A=1 as well as when A=100. This is a reflection of a “near
cancellation” between the AR root of 1/3 and the MA root of 0.389, which causes the
estimates of p and 0 to be imprecise. Apparently this imprecision is sufficient to cause a
substantial number of negative estimates of 6. LMM2, which takes the absolute value,
does not suffer from this problem.

When we compare the various Leybourne-McCabe tests, we first notice that none
of them show any substantial size distortions. Power and size-adjusted power are
therefore more or less equivalent to compare. As in the previous section, the various
Leybourne-McCabe tests are all more or less equally powerful (except that, as before,
LM99 is very poor when A is large). LMM2 is a little more powerful than LM94, but the

difference is small.

The size and power characteristic of the Leybourne-McCabe tests with p=1 are
very similar whether the DGP is AR(1) with p=1/3 (Table 2.8-2.10) or white noise (Table
2.5-2.7). Of course, white noise is AR(1) with p=0, so this is evidence supporting the
conjecture that, if p is correctly specified, the precise values of the AR parameters are not

too important.

4) The KPSS and Leybourne-McCabe Tests with MA(1) errors
Now we perform simulations with MA(1) errors of the form: y;=¢+0¢,.1, where ¢,
is normal white noise. We pick 6=0.5 to make the long run variance equal to that of the

AR(1) process of the previous section. As in the previous section, we consider the KPSS
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test with /=1 and the LM tests with p=1. Now, however, the KPSS test is based on a
correctly specified model while the Leybourne-McCabe tests are not.

Our results are given in Tables 2.11-2.13. These have the same format as Tables
2.8-2.10 of the previous section.

Now the KPSS test has the correct size, whereas the Leybourne-McCabe tests
suffer from size distortions. The Leybourne-McCabe tests underreject under the null
hypothesis. This causes their power to be low. In terms of size-adjusted power, the
Leybourne-McCabe tests are roughly similar to each other (again, except for LM99 when
A is large), and they generally, but not always, have slightly lower size-adjusted power
than the KPSS test.

The size-adjusted power of the KPSS test with /=1 is lower when the errors are
MA(1) with 6=0.5 than when the errors are white noise (i.e., MA(1) with 6=0). This is

most noticeable when power is relatively low.

5) The KPSS and Leybourne-McCabe tests with ARMA(1,1) errors

Here we perform simulations using ARMA(1,1) errors of the form: y=py:.1+
£+0¢..;, where p=1/3 and 6=1/2. We choose these specific values of the AR and MA
parameters to equate the contributions of the AR and MA terms to the *“long-run
variance” of the ARMAC(1,1) error series. (See Appendix I for details.)

In doing so we are trying to ensure a fair comparison of the KPSS test with /=1
and the Leybourne-McCabe tests with p=1, none of which are based on a correctly
specified model. Our results are given in Tables 2.14-2.16, which have the same format

as the previous tables for the AR and MA cases.
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All of the tests show considerable size distortions even for large sample sizes such
as T=500. The KPSS test overrejects while the Leybourne-McCabe tests underreject the
null. The power of the KPSS test is apparently greater than that of the Leybourne-
McCabe tests for small values of A, but generally less for large values of A (except that,
as before, LM99 has low power for large A). Given the size distortions of the tests, and
especially since these are in different directions for different tests, size-adjusted power is
a fairer comparison. The size-adjusted power of the KPSS test and Leybourne-McCabe
tests is similar when A<1, but the power of the Leybourne-McCabe tests is greater than
that of the KPSS test when A>1. The exception is still the LM99 test which is not
powerful when A is large.

An interesting detail is the very low power of the LM99 test when A=1; e.g., size-
adjusted power is 0.002 for A=1, T=500. This is again a reflection of a “near
cancellation” problem. The AR root of 1/3 nearly cancels the MA root of 0.389 implied
by A=1, leaving the MA root of —-0.5 from the ARMA process. Therefore the estimate of
0 is nearly always negative, and LM99 has virtually no power. LMM2, which takes the

absolute value of the estimate of 0, does not suffer from this problem.

3. Conclusions
In this chapter we considered the KPSS and Leybourne-McCabe tests that use a

fixed number of lags. We investigated the size and power characteristics of the tests via

simulations. In these simulations our data generating processes included white noise,
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AR(1) errors, MA(1) errors, and ARMA(1,1) errors. We gave our conclusions as we
discussed the simulations, but we will repeat some of them here.

1. The LM99 test is not recommended. It has poor power for large values of A
(alternatives close to a pure random walk). In fact, for A=, as T—>w power approaches
one half, not one. The LMM2 test, which simply uses the absolute values of the LM99
statistic, solves this power problem, and it does so without causing any noticeable size
distortions, since the probability of a negative test statistic under the null is negligible.

2. The LM94 test and the modified versions of the LMMI1 and LMM2
sometimes show a loss in power due to the “near cancellation” problem, identified in
Chapter 1, that occurs when the value of 0 is close to one of the AR roots. This
commonly occurs for large values of A when p is overspecified, so that 0 is close to zero
and one of the AR roots equals zero. In these circumstances the LM tests generally are
dominated by the KPSS test, which does not suffer from this problem.

3. There is not much difference in power between the LM94 test, on the one
hand, and the LM99 test or its modifications (LMM1, LMM2), on the other hand. This is
perhaps surprising because the LM statistic is Oy(T) under the alternative while the others
are OP(TZ). |

4. The white noise case was argued to be a fair setting for comparison of the
KPSS and Leybourne-McCabe tests, since it satisfies both the MA(/) and AR(p)
assumptions. With white noise errors, the KPSS test with /=0 is the same as the LM94
with p=0, and it performs similarly to the other LM tests with p=0. If the errors are white
noise, but we overspecify / (for the KPSS test) or p (for the Leybourne-McCabe tests),

there is a trade-off between size and power considerations. Overspecifying / in the KPSS
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tests causes smaller size distortions than overspecifying p in the Leybourne-McCabe
tests, but it also results in a greater loss of power for the KPSS test than for the
Leybourne-McCabe test.

5. Our simulations with AR(1), MA(1) and ARMA(1,1) errors show that there
are size distortions and loss of size-adjusted power if one underspecifies / or p. So, the
KPSS test with fixed / does not do well if the DGP is AR(p), and the Leybourne-McCabe

tests with fixed p do not do well if the DGP is MA(/).
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Appendix I

We wish to perform simulations with AR(1) errors and also with MA(1) errors.
We want to pick values for the AR parameter “p” and the MA parameter “0” that yield

equal values for the long-run variance of the process.

Here we define the long-run variance o’ as:
2
O =y, +2y,+2y, + 2y, +...... =70+22yj, (Al)

where y; is the jth autocovariance.

1. MA(1)case: y, =u, =&, +0¢,_, where ¢, is white noise. Then
7o =(1+6%)0?, where o? is variance of €,
7, =6c?, and
V= 0 forj>1.
Therefore, in the case of an MA(1) process, the long-run variance equals

ol=y,+2y, =(1+6% +20)c’ =(1+0)*c]. (A2)

2. AR(1)case: y, = py,, +&,, where g, is white noise. Then

1 2 P 2 P2 2
——=0., V=PV = O, V2 =PV =50, ....
a-p% 70T (-pY) U a-pY)

Vo=

31



.......

V,=PYja =<

Therefore, long-run variance can be calculated as

Ol =y, +2y, + 27, + 27, ...

=[ 1 +2p+2p2+ ...... }o-f
(1-p*) Q-p°) (A-p?)

_ 1
(1-p%)

[+2p+2p% +....J07

_ (1_1/02)[(1+,o+p2 Fon )t (4 Pt )o?

1 [ 1 p }
= + o]
1-pH|A-p) U-p)

__1 '(1+p)},2
1-p)0-p]°

= ! o2
(l_p)z £ - (A3)

For our MA(1) process with parameter 0 to have the same long run variance as
our AR(1) process with parameter p, we require

1
(1-p)*

(1+6)" = (Ad)

For 6=1/2, this is satisfied for p=1/3.
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Table 2.1

Size of KPSS Test with Fixed Number of Lags
(DGP: iid errors, no time trend)

5% significance level

T =0 =1 =2 =3
50 0.050 0.050 0.061 0.077
100 0.049 0.051 0.052 0.056
200 0.051 0.051 0.051 0.050
500 0.050 0.047 0.050 0.050

Simulation results based on 20,000 replications.
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Table 2.2

Power of KPSS Test with Fixed Number of Lags
(DGP: iid errors, no time trend)

5% significance level

T A =0 L=1 =2 =3
50 0.0001 0.051 0.057 0.067 0.075
0.001 0.075 0.081 0.084 0.091
0.01 0.287 0.261 0.234 0.203
0.1 0.721 0.615 0.524 0.432
1 0.924 0.741 0.607 0.502
100 0.958 0.762 0.625 0.509
10000 0.959 0.758 0.625 0.504
100 0.0001 0.063 0.062 0.066 0.066
0.001 0.168 0.161 0.153 0.151
0.01 0.587 0.543 0.511 0.473
0.1 0.927 0.845 0.757 0.681
1 0.989 0.909 0.809 0.723
100 0.994 0.921 0.812 0.723
10000 0.998 0.918 0.813 0.721
200 0.0001 0.097 0.095 0.097 0.099
0.001 0.399 0.280 0.373 0.370
0.01 0.846 0.814 0.782 0.746
0.1 0.990 0.963 0.919 0.872
1 0.999 0.980 0.942 0.891
100 1.000 0.983 0.944 0.896
10000 1.000 0.980 0.941 0.898
500 0.0001 0.307 0.305 0.305 0.298
0.001 0.788 0.774 0.764 0.751
0.01 0.997 0.979 0.971 0.955
0.1 1.000 0.998 0.993 0.984
1 1.000 0.979 0.995 0.985
100 1.000 0.999 0.996 0.987
10000 1.000 0.999 0.995 0.985

Simulation results based on 20,000 replications.
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Table 2.3

Actual Critical Values of KPSS Test with Fixed Number of Lags
(DGP: iid errors, no time trend)

5% significance level

T =0 I=1 I= =3
50 0.4770 0.4937 0.5048 0.5365
100 0.4599 0.4733 0.4661 0.4877
200 0.4509 0.4753 0.4744 0.4586
500 0.4622 0.4585 0.4587 0.4646

Simulation results based on 10,000 replications
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Table 2.4

Size-Adjusted Power of KPSS Test with Fixed Number of Lags
(DGP: iid errors, no time trend)

5% significance level

T A =0 =1 =2 =3
50 0.0001 0.047 0.047 0.050 0.050
0.001 0.074 0.067 0.065 0.059
0.01 0.288 0.235 0.203 0.131
0.1 0.722 0.591 0.482 0.333
1 0.922 0.720 0.581 0.406
100 0.957 0.745 0.597 0414
10000 0.960 0.736 0.590 0418
100 0.0001 0.063 0.056 0.062 0.056
0.001 0.166 0.150 0.154 0.135
0.01 0.590 0.535 0.504 0.451
0.1 0.927 0.834 0.753 0.665
1 0.990 0.904 0.804 0.699
100 0.995 0.916 0.808 0.712
10000 0.994 0.915 0.817 0.709
200 0.0001 0.102 0.091 0.088 0.098
0.001 0.403 0.382 0.364 0.365
0.01 0.853 0.811 0.770 0.742
0.1 0.991 0.958 0.919 0.878
1 0.999 0.980 0.936 0.894
100 1.000 0.982 0.944 0.896
10000 1.000 0.982 0.940 0.896
500 0.0001 0.310 0.311 0.305 0.296
0.001 0.790 0.776 0.765 0.748
0.01 0.987 0.981 0.971 0.953
0.1 1.000 0.999 0.993 0.984
1 1.000 0.999 0.996 0.986
100 1.000 0.999 0.995 0.985
10000 1.000 0.999 0.996 0.986

Simulation results based on 20,000 replications.
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Table

2.5

Size and Power of Leybourne-McCabe Tests with Fixed Number of Lags

(DGP: iid errors, no time trend)

5% significance level
p=0
T A LM94 LM99 LMM1 LMM2
100 0 0.048 0.054 0.040 0.054
0.001 0.170 0.179 0.156 0.179
0.01 0.601 0.626 0.590 0.626
1 0.988 0.999 0.996 1.000
100 0.994 0.537 0.999 1.000
200 0 0.049 0.050 0.044 0.050
0.001 0.398 0.404 0.386 0.404
0.01 0.854 0.870 0.853 0.870
1 1.000 1.000 1.000 1.000
100 0.998 0.552 1.000 1.000
500 0 0.050 0.051 0.045 0.051
0.001 0.782 0.788 0.779 0.778
0.01 0.987 0.991 0.988 0.991
1 1.000 1.000 1.000 1.000
100 1.000 0.582 1.000 1.000
p=1
T A LM94 LM99 LMMI LMM2
100 0 0.055 0.063 0.050 0.063
0.001 0.165 0.180 0.154 0.180
0.01 0.594 0.620 0.586 0.620
1 0.974 0.902 0.981 0.985
100 0.908 0.417 0913 0.917
200 0 0.054 0.058 0.049 0.058
0.001 0.391 0.400 0.379 0.400
0.01 0.847 0.861 0.848 0.861
1 0.998 0.970 0.999 0.999
100 0.947 0.448 0.947 0.948
500 0 0.054 0.055 0.050 0.055
0.001 0.784 0.791 0.780 0.791
0.01 0.986 0.989 0.987 0.989
1 1.000 0.998 1.000 1.000
100 1.000 0.486 0.979 0.979

Simmlation results based on 10,000 replications.
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Table 2.5 (Continued)

Size and Power of Leybourne-McCabe Tests with Fixed Number of Lags

(DGP: iid errors, no time trend)

5% significance level
p=2
T A LM9%4 LM99 LMMI1 LMM2
100 0 0.070 0.085 0.064 0.086
0.001 0.187 0.205 0.180 0.205
0.01 0.588 0.618 0.584 0.618
1 0.931 0.705 0.937 0.941
100 0.915 0.433 0.922 0.926
200 0 0.060 0.065 0.055 0.065
0.001 0.400 0.412 0.390 0.412
0.01 0.839 0.855 0.839 0.855
1 0.982 0.805 0.983 0.984
100 0.952 0.456 0.952 0.953
500 0 0.050 0.051 0.047 0.051
0.001 0.780 0.787 0.778 0.787
0.01 0.986 0.989 0.987 0.989
1 1.000 0.924 1.000 1.000
100 0.983 0.485 0.983 0.983
p=
T A LM9%4 LM99 LMM1 LMM2
100 0 0.077 0.100 0.074 0.100
0.001 0.194 0.217 0.188 0.218
0.01 0.576 0.608 0.576 0.609
1 0.914 0.685 0.920 0.926
100 0.919 0.432 0.927 0.930
200 0 0.062 0.072 0.058 0.072
0.001 0.405 0.420 0.399 0.420
0.01 0.832 0.847 0.834 0.847
1 0.975 0.800 0.976 0.976
100 0.985 0.469 0.959 0.959
500 0 0.057 0.058 0.054 0.058
0.001 0.781 0.789 0.780 0.789
0.01 0.985 0.988 0.987 0.988
1 0.999 0.950 0.999 0.999
100 0.983 0.498 0.983 0.983

Simulation results based on 10,000 replications.
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Table 2.6

Actual Critical Values of Leybourne-McCabe Tests with Fixed Number of Lags
(DGP: iid errors, no time trend)

5% significance level

T LM94 LM99 LMM1 LMM2
p=0

100 0.4575 0.4709 0.4323 0.4709

200 0.4578 0.4629 0.4371 0.4629

500 0.4618 0.4657 0.4476 0.4657
p=1

100 0.4870 0.5160 0.4621 0.5160

200 0.4805 0.4922 0.4584 0.4922

500 0.4756 0.4804 0.4613 0.4804
p=2

100 0.5285 0.5863 0.5158 0.5873

200 0.4946 0.5141 0.4767 0.5141

500 0.4631 0.4691 0.4491 0.4685
p=3

100 0.5501 0.6502 0.5461 0.6515

200 0.5040 0.5332 0.4897 0.5332

500 0.4885 0.4955 0.4774 0.4955

Simulation results based on 10,000 replications.
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Table

2.7

Size-Adjusted Power of Leybourne-McCabe Tests with Fixed Number of Lags

(DGP: iid errors, no time trend)

5% significance level
p=0

T A LM9%4 LM99 LMMI1 LMM2
100 0.001 0.172 0.175 0.171 0.175
0.01 0.606 0.621 0.610 0.621

1 0.988 1.000 0.997 1.000

100 0.994 0.537 1.000 1.000

200 0.001 0.401 0.405 0.404 0.404
0.01 0.855 0.870 0.863 0.870

1 1.000 1.000 1.000 1.000

100 0.998 0.552 1.000 1.000

500 0.001 0.783 0.787 0.785 0.787
0.01 0.987 0.991 0.989 0.991

1 1.000 1.000 1.000 1.000

100 1.000 0.582 1.000 1.000

p=1

T A LM94 LM99 LMM1 LMM2
100 0.001 0.153 0.153 0.154 0.153
0.01 0.579 0.590 0.586 0.590

1 0.972 0.901 0.981 0.984

100 0.905 0.413 0.913 0914

200 0.001 0.380 0.381 0.383 0.381 -

0.01 0.841 0.854 0.850 0.854

1 0.997 0.970 0.999 0.999

100 0.945 0.447 0.948 0.947

500 0.001 0.777 0.782 0.781 0.782
0.01 0.985 0.988 0.987 0.988

1 1.000 0.998 1.000 1.000

100 0.979 0.486 0.979 0.979
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Table 2.7 (Continued)

Size-Adjusted Power of Leybourne-McCabe Tests with Fixed Number of Lags

(DGP: iid errors, no time trend)

5% significance level
p=2
T A LM94 LM99 LMM1 LMM2
100 0.001 0.156 0.152 0.153 0.152
0.01 0.549 0.556 0.554 0.556
1 0.923 0.699 0.933 0.935
100 0.908 0.425 0.918 0.919
200 0.001 0.377 0.378 0.391 0.378
0.01 0.827 0.838 0.833 0.838
1 0.981 0.804 0.983 0.983
100 0.950 0.454 0.952 0.951
500 0.001 0.780 0.784 0.783 0.784
0.01 0.986 0.989 0.988 0.989
1 1.000 0.924 1.000 1.000
100 0.983 0.485 0.983 0.983
p=
T A LM94 LM99 LMMI1 LMM2
100 0.001 0.153 0.143 0.152 0.143
0.01 0.530 0.524 0.533 0.524
1 0.901 0.671 0.912 0.912
100 0.911 0.423 0.922 0.921
200 0.001 0.380 0.379 0.383 0.379 .
0.01 0.817 0.826 0.823 0.826
1 0.973 0.798 0.975 0.975
100 0.956 0.467 0.958 0.957
500 0.001 0.770 0.775 0.773 0.775
0.01 0.983 0.987 0.986 0.987
1 0.999 0.950 0.999 0.999
100 0.982 0.497 0.983 0.982

Simulation results based on 10,000 replications.
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Table 2.8

Size and Power of KPSS and Leybourne-McCabe Tests with AR(1) Errors
(DGP: y=py.1t€:, p=1/3)

5% significance level

KPSS LM9%4 LM99 LMM1 LMM2
T A =1 p=1 p=1 p=1 p=1

100 0 0.071 0.053 0.056 0.055 0.056
0.001 0.199 0.171 0.182 0.172 0.182

0.01 0.588 0.595 0.618 0.601 0.618

1 0.918 0.936 0.627 0.942 0.945

100 0.924 0.989 0.468 0.996 0.997

200 0 0.078 0.051 0.052 0.052 0.052
0.001 0.436 0.409 0.418 0.409 0.418

0.01 0.839 0.845 0.860 0.849 0.860

1 0.983 0.982 0.758 0.982 0.982

100 0.984 1.000 0.497 1.000 1.000

500 0 0.078 0.047 0.047 0.047 0.047
0.001 0.811 0.787 0.792 0.788 0.792

0.01 0.983 0.985 0.988 0.986 0.988

1 0.999 0.999 0.956 0.999 0.999

100 1.000 1.000 0.510 1.000 1.000

Simulation results based on 20,000 replications for the KPSS test, 10,000 replications for the Leybourne-

McCabe tests.

42



Table 2.9

Actual Critical Values of KPSS and Leybourne-McCabe Tests with AR(1) Errors

(DGP: y=py..1*&,, p=1/3)

5% significance level

KPSS LM94 LM99 LMM1 LMM2

T =1 p=1 p=1 p=1 p=1
100 0.5241 0.4710 0.4806 0.4780 0.4811
200 0.5501 0.4672 0.4711 0.4728 0.4711
500 0.5448 0.4519 0.4533 0.4514 0.4533

Simulation results based on 20,000 replications for the KPSS test, 10,000 replications for the Leybourne-

McCabe tests.
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Table 2.10

Size-Adjusted Power of KPSS and Leybourne-McCabe Tests with AR(1) Errors
(DGP: y=pyi-1te, p=1/3)

5% significance level

KPSS LM9%4 LM99 LMM1 LMM2
T A =1 p=1 p=1 p=1 p=1

100 0.001 0.1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>