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ABSTRACT

TEMPERED FRACTIONAL BROWNIAN MOTION

By

Farzad Sabzikar

Tempered fractional Brownian motion TFBM modifies the power law kernel in the mov-

ing average representation of a fractional Brownian motion (FBM), adding an exponential

tempering. It also has a harmonizable representation. The increments of TFBM are sta-

tionary, and the autocovariance of the resulting tempered fractional Gaussian noise TFGN

has semi-long range dependence, in which the autocorrelations decay like a power law over a

moderate length scale, but eventually fall off more rapidly. TFBM can be represented as the

linear combination of tempered fractional derivative (or tempered fractional integral) of the

indicator functions. This representation and the classical Itô isometry provides to character-

ize the class of all deterministic functions for which the stochastic integral with respect to

TFBM is well defined. Replacing the Gaussian random measure (Brownian motion) in the

moving average or harmonizable representation of TFBM by a stable random measure, a lin-

ear tempered fractional stable motion (LTFSM), or a real harmonizable tempered fractional

stable motion (HTFSM), respectively. Unlike the Gaussian case, LTFSM and HTFSM are

two completely different processes. Existence, basic properties, sample path behavior, and

dependence structure of both processes will be described.



Keywords: Fractional Brownian motion, tempered fractional derivative, harmonizable
representation, long range dependence, reproducing kernel Hilbert space.



I dedicate this dissertation to my lovely wife, Sara Hazinia.

iv



ACKNOWLEDGMENTS

I wish to express my deepest gratitude to my advisor Dr. Mark M. Meerschaert. His

guidance, patience and thoughtfulness made this work possible. It was a privilege to work

with him.

I would like to thank my thesis committee members Drs. Hira Koul, V. S. Mandrekar,

Yimin Xiao and Mantha S. Phanikumar, for their time and interest. I appreciate the help

and support of the Department of Statistics and Probability in last five years. Finally, I

thank my wife, Sara Hazinia for being there for me during this journey and my parents for

their unconditional support.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Tempered Fractional Brownian Motion . . . . . . . . . . . . . . . 4
2.1 Moving average representation . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Harmonizable representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Tempered fractional Gaussian noise . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Sample path properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3 Tempered Fractional Calculus . . . . . . . . . . . . . . . . . . . . . 17
3.1 Tempered fractional calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Stochastic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Semi-long range dependence . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Anti-persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Harmonizable representation . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 White noise approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Reproducing kernel Hilbert space . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Tempered distributions as integrands . . . . . . . . . . . . . . . . . . 52

Chapter 4 Tempered fractional stable motion . . . . . . . . . . . . . . . . . . 54
4.1 Moving average representation . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Tempered fractional harmonizable stable motion . . . . . . . . . . . . . . . . 72
4.3 Sample path properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Local Times and Local nondeterminism . . . . . . . . . . . . . . . . . . . . . 81

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



LIST OF FIGURES

Figure 2.1 The autocovariance function (2.16) for TFGN with σ = 1, λ = 0.001
and H = 0.7 (solid line) and for the corresponding FGN with σ = 1,
λ = 0 and H = 0.7 (dotted line). . . . . . . . . . . . . . . . . . . . 11

Figure 2.2 Left panel: Sample paths of TFBM (thick black line) with λ = 0.03
and H = 0.3, and FBM (thin black line) with H = 0.3. Both graphs
use the same noise realization B(t). The right panel shows the same
plots for λ = 0.01 and H = 0.7. . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.3 The spectral density (2.21) for TFGN with σ = 1, λ = 0.06 and
H = 0.7 (solid line) and FGN with σ = 1, λ = 0 and H = 0.7 (dotted
line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 4.1 Left panel: Sample paths of LTFSM (thick black line) with λ = 0.03
and H = 0.3, and LFSM (thin black line) with H = 0.3. Both graphs
use the same noise realization Zα(t). The right panel shows the same
plots for λ = 0.001, H = 0.7 and α = 1.5. . . . . . . . . . . . . . . . 77

vii



Chapter 1

Introduction

Fractional Brownian motion (FBM) is a Gaussian stochastic process whose increments,

termed fractional Gaussian noise (FGN), can exhibit long range dependence [7, 22]. FBM has

become popular in applications to science and engineering, since it yields a simple tractable

model that captures the correlation structure seen in many natural systems [34, 43]. Formed

by convolving Brownian motion with a power law, FBM is essentially the fractional inte-

gral or derivative of that Brownian motion [48, 56]. This is also reflected in the correlation

function of FGN, which falls off like a power law with lag, and the corresponding spectral

density, which behaves like a power law near the origin. The increments of long range de-

pendent FBM have a spectral density that blows up like a power law at the origin. This

diverging spectral density is one of the hallmarks of long range dependence. For wind speed

measurements, the spectral density follows this power law model for moderate frequencies,

but the data deviates from that model at low frequencies, and the measured spectal density

remains bounded [55, 28, 53].

In Chapter 2 we define a closely related process, which we call tempered fractional Brow-

nian motion (TFBM). It is defined by exponentially tempering the power law kernel in the

moving average representation of a fractional Brownian motion. TFBM is a Gaussian process

with stationary increments, and we call those increments tempered fractional Gaussian noise

(TFGN). When FGN is long range dependent, TFGN exhibits semi-long range dependence.

Its autocovariance function closely resembles that of FGN on an intermediate scale, but then
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it eventually falls off more rapidly. Its spectral density resembles a negative power law for

low frequencies, but eventually converges to zero at very low frequencies. TFBM can be a

useful stochastic model for applications where the data follows FBM at some intermediate

scale, but then deviates from FBM at longer scales. For example, wind speed measurements

typically resemble long range dependent FBM over a range of frequencies, but deviate signif-

icantly at very low frequencies (corresponding to very long spatial scales). Since the spectal

density of semi-long range dependent TFGN follows the same pattern, it can provide a useful

model for such data.

In Chapter 3 we develop the theory of stochastic integration for TFBM. Our approach fol-

lows the seminal work of Pipiras and Taqqu [56] for FBM. A FBM is the fractional derivative

(or integral) of a Brownian motion, in a sense made precise in [56]. A fractional derivative

(or integral) is a (distributional) convolution with a power law [48, 54, 60]. Multiplying that

power law by an exponential factor leads to tempered fractional derivatives and integrals.

TFBM can be written in terms of tempered fractional derivatives (or integrals) of a Brown-

ian motion. This representation and the classical Itô Isometry allows us to characterize the

class of all deterministic functions for which the stochastic integral with respect to TFBM

is well defined. We also apply the harmonizable representation of TFBM to define another

type of stochastic integral of deterministic functions with respect to TFBM.

In chapter 4 we consider heavy tailed analogues to TFBM. Replacing the Gaussian ran-

dom measure (Brownian motion) in the moving average or harmonizable representation of

TFBM by a stable random measure, we obtain a linear tempered fractional stable motion

(LTFSM), or a real harmonizable tempered fractional stable motion (HTFSM), respectively.

Unlike the Gaussian case, LTFSM and HTFSM are two completely different processes. Ex-

istence, basic properties, sample path behavior, and dependence structure of both processes
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are described in this thesis. We also prove that LTFSM and HTFSM are locally nondeter-

ministic on every compact interval.
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Chapter 2

Tempered Fractional Brownian

Motion

This Chapter has five sections. In Section 2.1, we define tempered fractional Brownian

motion (TFBM) using a moving average representation, and we establish some of its basic

properties. Section 2.2 develops the harmonizable representation of TFBM, and Section 2.3

discusses tempered fractional Gaussian noise (TFGN). Sample path properties of TFBM are

proven in Section 2.4, and an application to wind speed is discussed in Section 2.5.

2.1 Moving average representation

Let {B(t)}t∈R be a real-valued Brownian motion on the real line, a process with stationary

independent increments such that B(t) has a Gaussian distribution with mean zero and

variance σ2|t| for all t ∈ R, for some σ > 0. Define an independently scattered Gaussian

random measure B(dx) with control measure m(dx) = σ2dx by setting B[a, b] = B(b)−B(a)

for any real numbers a < b, and then extending to all Borel sets. Then the stochastic integrals

I(f) :=
∫
f(x)B(dx) are defined for all functions f : R → R such that

∫
f(x)2dx < ∞, as

Gaussian random variables with mean zero and covariance E[I(f)I(g)] = σ2
∫
f(x)g(x)dx,

see for example Chapter 3 in [61].

Definition 2.1.1. Given an independently scattered Gaussian random measure B(dx) on R
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with control measure σ2dx, for any α < 1
2 and λ ≥ 0, the stochastic integral

Bα,λ(t) :=

∫ +∞

−∞

[
e−λ(t−x)+(t− x)−α

+ − e−λ(−x)+(−x)−α
+

]
B(dx), (2.1)

where (x)+ = xI(x > 0), and 00 = 0, will be called a tempered fractional Brownian motion

(TFBM).

It is easy to check that the function

gα,λ,t(x) := e−λ(t−x)+(t− x)−α
+ − e−λ(−x)+(−x)−α

+ (2.2)

is square integrable over the entire real line for any α < 1
2 , so that TFBM is well-defined,

and of course FBM is a special case of TFBM with λ = 0. Note also that

gα,λ,ct(cx) = c−αgα,cλ,t(x), (2.3)

for all t, x ∈ R and all c > 0. The next result shows that TFBM has a nice scaling property,

involving both the time scale and the tempering. Here the symbol , indicates equality of

finite dimensional distributions.

Proposition 2.1.2. TFBM (2.1) is Gaussian stochastic process with stationary increments,

such that {
Bα,λ(ct)

}
t∈R,

{
cHBα,cλ(t)

}
t∈R

(2.4)

for any scale factor c > 0, where the Hurst index H = 1/2− α.

Proof. Since B(dx) has control measure m(dx) = σ2dx, the random measure B(c dx) has
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control measure c1/2σ2dx. Given t1 < t2 < · · · < tn, a change of variable x = cx′ then yields

(
Bα,λ(cti) : i = 1, . . . , n

)
=

(∫
gα,λ,cti(x)B(dx) : i = 1, . . . , n

)
,
(∫

c−αgα,cλ,ti(x
′)c1/2B(dx′) : i = 1, . . . , n

)

so that (2.4) holds with H = 1/2 − α. For any s, t ∈ R, the integrand (2.2) satisfies

gα,λ,s+t(s+ x)− gα,λ,s(s+ x) = gα,λ,t(x), and hence a change of variable x = s+ x′ in the

moving average representation yields

(
Bα,λ(s+ ti)−Bα,λ(s) : i = 1, . . . , n

)
,
(∫

gα,λ,ti(x
′)B(dx′) : i = 1, . . . , n

)

which shows that TFBM has stationary increments.

Proposition 2.1.3. The covariance function of TFBM (2.1) has the form

Cov
[
Bα,λ(t), Bα,λ(s)

]
=
σ2

2

[
C2
t |t|

2H + C2
s |s|2H − C2

t−s |t− s|2H
]
, (2.5)

for any s, t ∈ R, where H = 1/2− α. Here

C2
t =

2Γ(2H)

(2λ|t|)2H
−

2Γ(H + 1
2)√

π

1

(2λ|t|)H
KH(λ|t|), (2.6)

for t ̸= 0, C2
t = 0 when t = 0, where Kν(z) is the modified Bessel function of the second

kind.
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Proof. Use the moving average representation (2.1) with σ = 1 to define

C2
t : = E[Bα,λ|t|(1)

2] =

∫ +∞

−∞

[
e−λt(1−x)+(1− x)−α

+ − e−λt(−x)+(−x)−α
+

]2
dx

=

∫ +∞

−∞
e−2λt(1−x)+(1− x)−2α

+ dx+

∫ +∞

−∞
e−2λt(−x)+(−x)−2α

+ dx

− 2

∫ +∞

−∞
e−λt(1−x)+(1− x)−α

+ e−λt(−x)+(−x)−α
+ dx.

(2.7)

Apply the definition of the gamma function, along with a standard integral formula from

Page 344 in [24], to see that (2.6) holds. Since TFBM has stationary increments, it follows

from (2.4) that E[Bα,λ(t)
2] = |t|2HC2

t for all t real. Recall the elementary formula ab =

1
2 [a

2 + b2 − (a − b)2], set a = Bα,λ(t) and b = Bα,λ(s), take expectations, and use the

stationary increments property again, to see that (2.5) holds.

Remark 2.1.4. The integral representation (2.1) is causal, i.e., Bα,λ(t) depends only on the

values of B(s) for s ≤ t. For applications to spatial statistics, consider

B
p,q
α,λ(t) = p

∫ +∞

−∞

[
e−λ(t−x)+(t− x)−α

+ − e−λ(−x)+(−x)−α
+

]
B(dx)

+ q

∫ +∞

−∞

[
e−λ(x−t)+(x− t)−α

+ − e−λ(x)+(x)−α
+

]
B(dx)

(2.8)

for p, q ≥ 0. It is not hard to check, by mimicking the proof of Proposition 2.1.2, that this

process also has stationary increments, and satisfies the scaling property

{
B
p,q
α,λ(ct)

}
t∈R

,
{
cHB

p,q
α,cλ(t)

}
t∈R

(2.9)

for any scale factor c > 0, where the Hurst index H = 1/2− α. When p = q > 1, (2.8) is a

well-balanced TFBM.
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2.2 Harmonizable representation

Let B̂1 and B̂2 be independent Gaussian random measures with B̂1(A) = B̂1(−A), B̂2(A) =

−B̂2(−A) and E[(B̂i(A))
2] = m(A)/2, where m(dx) = σ2dx, and define the complex-valued

Gaussian random measure B̂ = B̂1+ iB̂2. If f(x) is a complex-valued function of x real such

that its Fourier transform f̂(k) := (2π)−1/2
∫
e−ikxf(x) dx exists and

∫
|f̂(k)|2dk < ∞,

we define the stochastic integral Î(f̂) =
∫
f̂(k)B̂(dk) :=

∫
f̂1(k)B̂1(dk) −

∫
f̂2(k)B̂2(dk),

where f̂ = f̂1 + if̂2 is separated into real and imaginary parts. Then Î(f̂) is a Gaus-

sian random variable with mean zero, such that E[Î(f̂)Î(ĝ)] =
∫
f̂(k)ĝ(k) dk. The Par-

seval identity
∫
f(x)g(x) dx =

∫
f̂(k)ĝ(k) dk implies that (

∫
f(x)B(dx),

∫
g(x)B(dx)) ,

(
∫
f̂(k)B̂(dk),

∫
ĝ(k)B̂(dk)), see Proposition 7.2.7 in [61].

Proposition 2.2.1. The TFBM (2.1) has the harmonizable representation

Bα,λ(t) =
Γ(1− α)√

2π

∫ +∞

−∞

e−itk − 1

(λ− ik)1−α
B̂(dk). (2.10)

Proof. To show that the stochastic integral (2.10) exists, note that

∫ +∞

−∞

∣∣∣∣∣ e−itx − 1

(λ− ix)1−α

∣∣∣∣∣
2

dx ≤
∫ +∞

−∞

4

(λ2 + x2)1−α
dx <∞,

since the last integrand is bounded and O(x2α−2) as |x| → ∞, for α < 1
2 . Observe that the
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function gα,λ,t, given by (2.2), has the Fourier transform

ĝα,λ,t(k) =
1√
2π

∫ +∞

−∞
e−ikx

[
e−λ(t−x)+(t− x)−α

+ − e−λ(−x)+(−x)−α
+

]
dx

=
1√
2π

[∫ t

−∞
e−ikxe−λ(t−x)(t− x)−αdx−

∫ 0

−∞
e−ikxeλx(−x)−αdx

]
=

1√
2π

[
e−ikt

∫ +∞

0
e−u(λ−ik)u−αdu−

∫ +∞

0
e−u(λ−ik)u−αdu

]
=

Γ(1− α)√
2π

e−ikt − 1

(λ− ik)1−α
.

(2.11)

Hence by (2.1),

Bα,λ(t) =

∫ +∞

−∞
gα,λ,t(x)B(dx)

,
∫ +∞

−∞
ĝα,λ,t(k)B̂(dk) =

Γ(1− α)√
2π

∫ +∞

−∞

e−ikt − 1

(λ− ik)1−α
B̂(dk),

which is equivalent to (2.10).

Remark 2.2.2. The spectral representation (2.10) reduces to that of causal FBM in the

special case λ = 0, see for example Equation 7.2.17 in [61]. The general TFBM (2.8) has

spectral representation

B
p,q
α,λ(t) =

Γ(1− α)√
2π

∫
R

e−itk − 1

ik

[
p ik

(λ− ik)1−α
− q ik

(λ+ ik)1−α

]
B̂(dk). (2.12)

2.3 Tempered fractional Gaussian noise

Given a TFBM (2.1), we define tempered fractional Gaussian noise (TFGN)

Xj = Bα,λ(j + 1)−Bα,λ(j), for integers −∞ < j <∞. (2.13)
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It follows easily from (2.1) that TFGN has the moving average representation

Xj =

∫ +∞

−∞

[
e−λ(j+1−x)+(j + 1− x)−α

+ − e−λ(j−x)+(j − x)−α
+

]
B(dx). (2.14)

Using (2.10), it also follows that the harmonizable representation of TFGN is

Xj =
Γ(1− α)√

2π

∫ +∞

−∞
e−ikj e−ik − 1

(λ− ik)1−α
B̂(dk). (2.15)

It follows from (2.5) that TFGN is a stationary Gaussian time series with mean zero and

covariance function

r(j) := E[X0Xj ] =
σ2

2

[
|j + 1|2H C2

j+1 − 2 |j|2H C2
j + |j − 1|2H C2

j−1

]
, (2.16)

where H = 1/2− α, and Cj is given by (2.6).

Remark 2.3.1. Using the well-known fact that Kν(x) ∼
√
π(2x)−1/2e−x as x → ∞, it

follows easily from (2.6) that

t2HC2
t → 2Γ(2H)(2λ)−2H , as t→ ∞. (2.17)

Hence Cj ∼ Cj+1 as j → ∞. Then, (2.16) along with a Taylor series expansion, shows that

r(j) ∼ σ2C2
jH(2H − 1)|j|2H−2 as j → ∞.

Compare this with Proposition 7.2.10 in [61]. For λ > 0, sufficiently small, the power

law terms in (2.7) dominate, C2
j remains almost constant, and r(j) falls off like |j|2H−2
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for moderate values of j > 0. For larger j, the exponential terms in (2.7) dominate, and

(2.17) implies that r(j) ∼ j−22H(2H − 1)Γ(2H)(2λ)−2H , as j → ∞. Hence TFGN is

short range dependent, but its covariance function is arbitrarily close to that of long range

dependent FGN for small values of λ, and moderate lags. We call this property semi-long

range dependence, since it is analogous to the semi-heavy tails of Barndorff and Nielsen [21].

Figure 2.1 shows a log-log plot of r(j) in the case H = 0.7 and λ = 0.001, where FGN

exhibits long range dependence.

0.001

0.01

0.1

1

1 10 100

lag

Figure 2.1: The autocovariance function (2.16) for TFGN with σ = 1, λ = 0.001 and H = 0.7
(solid line) and for the corresponding FGN with σ = 1, λ = 0 and H = 0.7 (dotted line).

Proposition 2.3.2. TFGN (2.13) has the spectral density

h(k) =
Γ(1− α)2

2π

∣∣∣e−ik − 1
∣∣∣2 +∞∑

ℓ=−∞

σ2

[λ2 + (k + 2πℓ)2]
H+1/2

. (2.18)

Proof. Recall that the spectral density

h(k) =
1

2π

+∞∑
j=−∞

eikjr(j) and r(j) =

∫ π

−π
e−ikjh(k)dk. (2.19)
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Define C =
√
2π/Γ(1− α) and apply (2.15) to write

r(j) =
σ2

C2

∫ +∞

−∞
e−ikj

∣∣∣e−ik − 1
∣∣∣2

(λ2 + k2)(1−α)
dk

=
1

C2

∫ +π

−π
e−ikj

∣∣∣e−ik − 1
∣∣∣2 +∞∑

ℓ=−∞

σ2

[λ2 + (k + 2πℓ)2]
(1−α)

dk

(2.20)

and then it follows from (2.19) that the spectral density of TFGN is given by (2.18).

Remark 2.3.3. Extending (2.13) to all j real, we obtain the continuous parameter TFGN

Xt = Bα,λ(t+ 1)−Bα,λ(t).

The harmonizable representation of this process is given by (2.15) with j replaced by t, and

the proof of Proposition 2.3.2 implies that Xt has spectral density

h(ω) =
Γ(1− α)2

2π

∣∣∣e−iω − 1
∣∣∣2 σ2

[λ2 + ω2]
H+1/2

(2.21)

for all real ω. The fact that e−iω−1 ∼ −iω as ω → 0 yields the low frequency approximation

h(ω) ≈ σ2Γ(1− α)2

2π

ω2

(λ2 + ω2)
H+1/2

.

See Section 2.5 for an application to wind speed data.
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2.4 Sample path properties

We say that the sample paths of a stochastic process X(t) satisfy a uniform Hölder condition

of order β on the compact set K ⊂ R if there exists a positive random variable A such that

|X(x)−X(y)| ≤ A|x− y|β ,

almost surely for all x, y ∈ K. We say that the process has Hölder critical exponent γ ∈ (0, 1)

if the process satisfies a uniform Hölder condition of any order β ∈ (0, γ) on any compact

set K ⊂ R, and fails to satisfy this condition for β ∈ (γ, 1).

Theorem 2.4.1. The sample paths of the TFBM (2.1) have Hölder critical exponent H =

1/2− α, for any α ∈ (−1/2, 1/2), and for any λ ≥ 0.

Proof. Since Bα,λ(0) = 0, it follows from Proposition 4 in [10] that if

γ = sup
{
β > 0 : E

[
Bα,λ(t)

2
]
= o

(
|t|2β

)
as |t| → 0

}
, (2.22)

then the TFBM Bα,λ(t) satisfies a uniform Hölder condition of order β on any compact set

for any β ∈ (0, γ). Moreover, if we also have

γ = inf
{
β > 0 : |t|2β = o

(
E
[
Bα,λ(t)

2
])

as |t| → 0
}
, (2.23)

then this TFBM has Hölder critical exponent γ. Use the harmonizable representation (2.10)
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to write

E
[
Bα,λ(t)

2
]
=

1

C2

∫ +∞

−∞

e−itk − 1

(λ− ik)1−α

[
e−itk − 1

(λ− ik)1−α

]
dk

=
2

C2

∫ +∞

−∞
[1− cos(tk)] (λ2 + k2)α−1dk,

where C =
√
2π/Γ(1−α), and apply the Tauberian theorem for Fourier transforms, Theorem

1 in [57], to see that E
[
Bα,λ(t)

2
]
∼ H(1/t) as t→ 0, where

H(x) =
2

C2

∫
|k|>x

(λ2 + k2)α−1dk.

Since λ2+k2 ∼ k2 as k → ∞, for any ε > 0, there exists someM > 0 such that (1−ε)k2α−2 <

(λ2 + k2)α−1 < (1 + ε)k2α−2 for all k > M , and hence we have

4(1− ε)

(1− 2α)C2
x2α−1 < H(x) <

4(1 + ε)

(1− 2α)C2
x2α−1

, for all x > M . Substitute t = 1/x to see that both (2.22) and (2.23) hold with γ = 1−2α =

2H, which completes the proof.

Remark 2.4.2. The harmonizable representation

X(t) =

∫ +∞

−∞

(
e−itk − 1

)
f̂(k)B̂(dk)

defines a mean zero Gaussian processes with stationary increments for any Fourier filter f̂(k)

such that
∫
[1− cos(tk)] |f̂(k)|2dk <∞. If |f̂(k)|2 is regularly varying at infinity with index

2α − 2 for some −1/2 < α < 1/2, the Karamata Theorem (e.g., see Lemma 5.3.8 (d) in

[47]) implies that H(x) varies regularly at infinity with index 2α − 1, and then the proof

14
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Figure 2.2: Left panel: Sample paths of TFBM (thick black line) with λ = 0.03 and H = 0.3,
and FBM (thin black line) with H = 0.3. Both graphs use the same noise realization B(t).
The right panel shows the same plots for λ = 0.01 and H = 0.7.

of Theorem 2.4.1 extends to show that X(t) has Hölder critical exponent 1 − 2α. Several

examples of such processes are given in [10].

The sample paths of TFBM closely resemble that of FBM for small values of the temper-

ing parameter λ > 0. The left panel in Figure 2.2 compares a typical sample path of both

processes, simulated using the same white noise B(dx), in a case where FBM is negative

dependent. The right panel shows the corresponding sample paths in a case where FBM

is long range dependent. These simulations use a discretized version of the moving average

representation (2.1). It would also be interesting to develop a simulation method based on

the harmonizable representation (2.10).

2.5 Discussion

Wind speed data are important for electrical power generation and structural engineering.

The most popular model for wind speed near the earth surface, due to Davenport [16], see

also [38], can be written in the form st = µ+Xt, where µ = E[st] is the average wind speed,
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Figure 2.3: The spectral density (2.21) for TFGN with σ = 1, λ = 0.06 and H = 0.7 (solid
line) and FGN with σ = 1, λ = 0 and H = 0.7 (dotted line).

and Xt has normalized spectral density

4800DV10
x2

(1 + x2)
4
3

, (2.24)

where V10 is the mean velocity (m/sec) at an altitude of 10 meters, D is the corresponding

drag coefficient, and x = 1200ω/V10. In view of Remark 2.3.3, it is not hard to check

that (2.24) corresponds to the the spectral density of a continuous parameter TFGN with

λ = V10/1200 and H = 5/6. Hence TFGN can provide a useful stochastic process model for

wind speed data. Figure 2.3 compares the spectral density of TFGN and FGN in the case

where FGN is long range dependent. The spectral density of FGN blows up at the origin

like a power law. The spectral density of TFGN follows the same power law at moderate

frequencies, but remains bounded at very low frequencies, a behavior typically seen in wind

speed data for example in [55, 16, 53, 28].
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Chapter 3

Tempered Fractional Calculus

This chapter has three sections. In Section 3.1 we prove some basic results on tempered

fractional calculus, which will be needed in the sequel. In Section 3.2 we apply the methods

of Section 3.1 to construct a suitable theory of stochastic integration for tempered fractional

Brownian motion. Finally, in Section 3.3 we discuss model extensions, related results, and

some open questions.

3.1 Tempered fractional calculus

In this section, we define tempered fractional integrals and derivatives, and establish their

essential properties. These results will form the foundation of the stochastic integration

theory developed in Section 3.2. We begin with the definition of a tempered fractional

integral.

Definition 3.1.1. For any f ∈ Lp(R) (where 1 ≤ p <∞), the positive and negative tempered

fractional integrals are defined by

Iα,λ+ f(t) =
1

Γ(α)

∫ +∞

−∞
f(u)(t− u)α−1

+ e−λ(t−u)+du, (3.1)

and

Iα,λ− f(t) =
1

Γ(α)

∫ ∞

−∞
f(u)(u− t)α−1

+ e−λ(u−t)+du, (3.2)
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respectively, for any α > 0 and λ > 0, where Γ(α) =
∫ +∞
0 e−xxα−1dx is the Euler gamma

function, and (x)+ = xI(x > 0).

When λ = 0 these definitions reduce to the (positive and negative) Riemann-Liouville

fractional integral [48, 54, 60], which extends the usual operation of iterated integration to a

fractional order. When λ = 1, the operator (3.1) is called the Bessel fractional integral [60,

Section 18.4].

Lemma 3.1.2. For any α > 0, λ > 0, and p ≥ 1, Iα,λ± is a bounded linear operator on

Lp(R) such that

∥Iα,λ± f∥p ≤ λ−α∥f∥p, (3.3)

for all f ∈ Lp(R).

Proof. Young’s Theorem [60, p. 12] states that if ϕ ∈ L1(R) and f ∈ Lp(R) then ϕ∗f ∈ Lp(R)

and the inequality

∥ϕ ∗ f∥p ≤ ∥ϕ∥1∥f∥p, (3.4)

where ∗ denotes the convolution

[f ∗ ϕ](t) =
∫ +∞

−∞
f(u)ϕ(t− u)du = [ϕ ∗ f ](t).

Obviously Iα,λ± is linear, and Iα,λ± f(t) = [f ∗ ϕ±α ](t) where

ϕ+α (t) =
1

Γ(α)
tα−1e−λt1(0,∞)(t),

ϕ−α (t) =
1

Γ(α)
(−t)α−1e−λ(−t)1(−∞,0)(t)

(3.5)

18



for any α, λ > 0. But

∥ϕ±α ∥1 =
1

Γ(α)

∫ +∞

0
tα−1e−λtdt =

1

Γ(α)

[
λ−αΓ(α)

]
= λ−α,

using the formula for the Laplace transform (moment generating function) of the gamma

probability density, and then (3.3) follows from Young’s Inequality (3.4).

Next we prove a semigroup property for tempered fractional integrals, which follows easily

from the following property of the convolution kernels in the definition (3.1.1).

Lemma 3.1.3. For any λ > 0 the functions (3.5) satisfy

ϕ±α ∗ ϕ±β = ϕ±α+β , (3.6)

for any α > 0 and β > 0.

Proof. For t > 0 we have

ϕ+α ∗ ϕ+β (t) =
1

Γ(α)Γ(β)

∫ t

0
(t− s)α−1e−λ(t−s) sβ−1e−λs ds

=
1

Γ(α + β)
tα+β−1e−λt = ϕ+α+β(t)

using the formula for the beta probability density. The proof for ϕ−α is similar.

The following lemma establishes the semigroup property for tempered fractional integrals

on Lp(R). In the case λ = 0, the semigroup property for fractional integrals is well known

(e.g., see Samko et al. [60, Theorem 2.5]).
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Lemma 3.1.4. For any λ > 0 we have

Iα,λ± Iβ,λ± f = Iα+β,λ
± f (3.7)

for all α, β > 0 and all f ∈ Lp(R).

Proof. Lemma 3.1.2 shows that both sides of (3.7) belong to Lp(R) for any f ∈ Lp(R), and

then the result follows immediately from Lemma 3.1.3 along with the fact that Iα,λ± f(t) =

[f ∗ ϕ±α ](t).

The next result shows that positive and negative tempered fractional integrals are adjoint

operators with respect to the inner product ⟨f, g⟩2 =
∫
f(x)g(x) dx on L2(R).

Lemma 3.1.5 (Integration by parts). Suppose f, g ∈ L2(R). Then

⟨f, Iα,λ+ g⟩2 = ⟨Iα,λ− f, g⟩2 (3.8)

for any α > 0 and any λ > 0.

Proof. Write

∫ +∞

−∞
f(x)Iα,λ+ g(x) dx =

∫ +∞

−∞
f(x)

1

Γ(α)

∫ x

−∞
g(u)(x− u)α−1e−λ(x−u) du dx

=

∫ +∞

−∞

g(u)

Γ(α)

∫ +∞

u
f(x)(x− u)α−1e−λ(x−u) dx du

=

∫ +∞

−∞
Iα,λ− f(x)g(x) dx

and this completes the proof.

Next we discuss the relationship between tempered fractional integrals and Fourier trans-
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forms. Recall that the Fourier transform

F [f ](k) = f̂(k) =
1√
2π

∫ +∞

−∞
e−ikxf(x)dx

, for functions f ∈ L1(R) ∩ L2(R) can be extended to an isometry (a linear onto map that

preserves the inner product) on L2(R) such that

f̂(k) = lim
n→∞

1√
2π

∫ n

−n
e−ikxf(x) dx, (3.9)

for any f ∈ L2(R), see for example [31, Theorem 6.6.4].

Lemma 3.1.6. For any α > 0 and λ > 0 we have

F [Iα,λ± f ](k) = f̂(k)(λ± ik)−α, (3.10)

for all f ∈ L1(R) and all f ∈ L2(R).

Proof. The function ϕ+α in (3.5) has Fourier transform

F [ϕ+α ](k) =
1

Γ(α)
√
2π

∫ ∞

0
e−ikttα−1e−λtdt =

1√
2π

(λ+ ik)−α (3.11)

by the formula for the Fourier transform of a gamma density. For any two functions f, g ∈

L1(R), the convolution f ∗ g ∈ L1(R) has Fourier transform
√
2πf̂(k)ĝ(k) (e.g., see [48,

p. 65]), and then (3.10) follows. The argument for Iα,λ− is quite similar. If f ∈ L2(R),

approximate by the L1 function f(x)1[−n,n](x) and let n→ ∞.

Remark 3.1.7. Recall that the space of rapidly decreasing functions S(R) consists of the
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infinitely differentiable functions g : R → R such that

sup
x∈R

∣∣∣xng(m)(x)
∣∣∣ <∞,

where n,m are non-negative integers, and g(m) is the derivative of order m. The space S ′(R)

of continuous linear functionals on S(R) is called the space of tempered distributions. The

Fourier transform, and inverse Fourier transform, can then be extended to linear continuous

mappings of S ′(R) into itself. If f : R → R is a measurable function with polynomial growth,

so that
∫
|f(x)|(1 + |x|)−pdx < ∞ for some p > 0, then Tf (φ) =

∫
f(x)φ(x) dx := ⟨f, φ⟩1

is a tempered distribution, also called a generalized function. The Fourier transform of this

generalized function is defined as T̂f (φ) = ⟨f̂ , φ⟩1 = ⟨f, φ̂⟩1 = Tf (φ̂) for φ ∈ S(R). See

Yosida [68, Ch.VI] for more details. If f is a tempered distribution, then the tempered

fractional integrals Iα,λ± f(x) exist as convolutions with the tempered distributions ϕ±α in

(3.5). The same holds for Riemann-Liouville fractional integrals (the case λ = 0), but that

case is more delicate, because the power law kernels ϕ±α of (3.5) with λ = 0 are not in L1(R).

Next we consider the inverse operator of the tempered fractional integral, which is called

a tempered fractional derivative. For our purposes, we only require derivatives of order

0 < α < 1, and this simplifies the presentation.

Definition 3.1.8. The positive and negative tempered fractional derivatives of a function

f : R → R are defined as

Dα,λ
+ f(t) = λαf(t) +

α

Γ(1− α)

∫ t

−∞

f(t)− f(u)

(t− u)α+1
e−λ(t−u)du, (3.12)

22



and

Dα,λ
− f(t) = λαf(t) +

α

Γ(1− α)

∫ +∞

t

f(t)− f(u)

(u− t)α+1
e−λ(u−t)du, (3.13)

respectively, for any 0 < α < 1 and any λ > 0.

If λ = 0, the definitions (3.12) and (3.13) reduce to the positive and negative Marchaud

fractional derivatives [60, Section 5.4].

Note that tempered fractional derivatives cannot be defined pointwise for all functions

f ∈ Lp(R), since we need |f(t) − f(u)| → 0 fast enough to counter the singularity of the

denominator (t− u)α+1, as u→ t.

Next we establish the existence and compute the Fourier transform of tempered fractional

derivatives on a natural domain.

Theorem 3.1.9. Assume f and f ′ are in L1(R). Then the tempered fractional derivative

Dα,λ
+ f(t) exists and

F [Dα,λ
± f ](k) = f̂(k)(λ± ik)α, (3.14)

for any 0 < α < 1 and any λ > 0.

Proof. A standard argument from functional analysis (e.g., see [50, Proposition 2.2]) shows

that if f, f ′ ∈ L1(R), then

I :=

∫
R

∫
R

|f(t)− f(u)|
|t− u|1+α

dt du <∞, (3.15)
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for any 0 < α < 1. To see this, write I = I1 + I2 where

I1 : =

∫
R

∫
R∩{|t−u|<1}

|f(t)− f(u)|
|t− u|1+α

dt du

=

∫
R

∫
{|z|<1}

|f(t)− f(z + t)|
|z|1+α

dz dt

≤
∫
R

∫
{|z|<1}

|z|−α
∫ 1

0
|f ′(t+ uz)| du dz dt = 2

1− α
∥f ′∥

L1(R) <∞

and

I2 : =

∫
R

∫
R∩{|t−u|≥1}

|f(t)− f(u)|
|t− u|1+α

dt du

≤
∫
R

∫
{|z|≥1}

|f(t)|+ |f(z + t)|
|z|1+α

dt dz =
2

α
∥f∥

L1(R) <∞.

Now it follows easily from (3.15) that Dα,λ
± f exists for all f, f ′ ∈ L1(R). Define

F (t) :=
α

Γ(1− α)

∫ t

−∞

f(t)− f(u)

(t− u)α+1
e−λ(t−u) du,

and apply the Fubini Theorem, along with the shift property F [f(t− y)](k) = e−iky f̂(k) of

the Fourier transform, to see that

F̂ (k) =
α

Γ(1− α)
√
2π

∫ +∞

−∞
e−ikt

∫ ∞

0

f(t)− f(t− y)

yα+1
e−λy dy dt

=
α

Γ(1− α)

∫ +∞

0
y−α−1e−λy

(
1− e−iky

)
f̂(k) dy =

Iλ(α)

Γ(1− α)
f̂(k),

(3.16)

where

Iλ(α) =

∫ +∞

0

(
e−λy − e−(λ+ik)y

)
αy−α−1 dy.
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Integrate by parts with u = e−λy−e−(λ+ik)y and use the fact that e−λy−e−(λ+ik)y = O(y)

as y → 0, to obtain

Iλ(α) =
[(
e−λy − e−(λ+ik)y

) (
−y−α)] ∣∣∣∣∞

0
+

∫ ∞

0
y−α

[
−λe−λy + (λ+ ik)e−(λ+ik)y

]
dy.

Use the definition of the gamma function, and the formula for the Fourier tranform of the

gamma probability density, to obtain

Iλ(α) = −λ
∫ ∞

0
y−αe−λy dy + (λ+ ik)

∫ ∞

0
y−αe−(λ+ik)y dy

= −λαΓ(1− α) + (λ+ ik)
Γ(1− α)

λ1−α

(
1 +

ik

λ

)α−1

= Γ(1− α) [(λ+ ik)α − λα] .

Then F̂ (k) = f̂(k) [(λ+ ik)α − λα], and hence F [Dα,λ
+ f ](k) = (λ+ ik)αf̂(k). The proof for

F [Dα,λ
− f ](k) is similar.

Remark 3.1.10. Theorem 3.1.9 can also be proven, under somewhat stronger conditions,

using the generator formula for infinitely divisible semigroups [48, Theorem 3.17 and Theo-

rem 3.23 (b)].

Next we extend the definition of tempered fractional derivatives to a suitable class of

functions in L2(R). For any α > 0 and λ > 0, we define the fractional Sobolev space

Wα,2(R) := {f ∈ L2(R) :
∫
R
(λ2 + k2)α|f̂(k)|2 dk <∞}, (3.17)

which is a Banach space with norm ∥f∥α,λ = ∥(λ2 + k2)α/2f̂(k)∥2. The space Wα,2(R) is

the same for any λ > 0 (typically we take λ = 1) and all the norms ∥f∥α,λ are equivalent,
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since 1 + k2 ≤ λ2 + k2 ≤ λ2(1 + k2) for all λ ≥ 1, and λ2 + k2 ≤ 1 + k2 ≤ λ−2(1 + k2) for

all 0 < λ < 1.

Definition 3.1.11. The positive (resp., negative) tempered fractional derivative Dα,λ
± f(t) of

a function f ∈ Wα,2(R) is defined as the unique element of L2(R) with Fourier transform

f̂(k)(λ± ik)α, for any α > 0 and any λ > 0.

Remark 3.1.12. The pointwise definition of the tempered fractional derivative in real space

is more complicated when α > 1. For example, when 1 < α < 2 we have

Dα,λ
+ f(t) = λαf(t) + αλα−1f ′(x) +

α

Γ(1− α)

∫ t

−∞

f(u)− f(t) + (t− u)f ′(t)
(t− u)α+1

e−λ(t−u)du,

for all f ∈ W 1,2(R), compare [48, Remark 7.11].

Lemma 3.1.13. For any α > 0, β > 0 and λ > 0 we have

Dα,λ
± Dβ,λ

± f(t) = Dα+β,λ
± f(t),

for any f ∈ Wα+β,2(R).

Proof. It is obvious from (3.17) that Wα,2(R) ⊂ Wβ,2(R) for α > β. It is clear from

Definition 3.1.11 that Dβ,λ
± f(t) exists and belongs to Wα,2(R) for any f ∈ Wα+β,2(R), and

likewise, Dα,λ
± f(t) exists and belongs to L2(R) for any f ∈ Wα,2(R).

Lemma 3.1.14. For any α > 0 and λ > 0, we have

Dα,λ
± Iα,λ± f(t) = f(t) (3.18)

26



for any function f ∈ L2(R), and

Iα,λ± Dα,λ
± f(t) = f(t) (3.19)

for any f ∈ Wα,2(R).

Proof. Given f ∈ L2(R), note that g(t) = Iα,λ± f(t) satisfies ĝ(k) = f̂(k)(λ±ik)−α by Lemma

3.1.6, and then it follows easily that g ∈ Wα,2(R). Definition 3.1.11 implies that

F [Dα,λ
± Iα,λ± f ](k) = F [Dα,λ

± g](k) = ĝ(k)(λ± ik)α = f̂(k), (3.20)

and then (3.18) follows using the uniqueness of the Fourier transform. The proof of (3.19)

is similar.

Lemma 3.1.15. Suppose f, g ∈ Wα,2(R). Then

⟨f,Dα,λ
+ g⟩2 = ⟨Dα,λ

− f, g⟩2, (3.21)

for any α > 0 and any λ > 0.

Proof. Apply the Plancherel Theorem along with Definition 3.1.11 to see that

⟨f,Dα,λ
+ g⟩2 =

∫
f(x)Dα,λ

+ g(x) dx = ⟨f̂ , (λ+ ik)αĝ⟩2 = ⟨(λ− ik)αf̂ , ĝ⟩2 = ⟨Dα,λ
− f, g⟩2

and this completes the proof.

Remark 3.1.16. One can also prove (3.21) for f, f ′, g, g′ ∈ L1(R)∩L2(R) using integration

by parts, compare [69, Appendix A.1].
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A slightly different tempered fractional derivative

D
α,λ
+ f(t) =

α

Γ(1− α)

∫ t

−∞

f(t)− f(u)

(t− u)α+1
e−λ(t−u)du,

D
α,λ
− f(t) =

α

Γ(1− α)

∫ +∞

t

f(t)− f(u)

(u− t)α+1
e−λ(u−t)du,

(3.22)

was proposed by Cartea and del-Castillo-Negrete [12] for a problem in physics, and studied

further by Baeumer and Meerschaert [4, 48] using tools from probability theory and semi-

groups. When 0 < α < 1, F [D
α,λ
± f ](k) = f̂(k)[(λ± ik)α − λα]f̂(k) for suitable functions f .

The additional λα term makes the evolution equation

∂

∂t
u(x, t) = [pD

α,λ
+ + qD

α,λ
− ]u(x, t), (3.23)

for p, q ≥ 0 mass preserving, which can easily be seen by considering the Fourier transform

û(k, t) = exp(t[(λ± ik)α−λα]) of point source solutions to the tempered fractional diffusion

equation (3.23). Now x 7→ u(x, t) are the probability density functions of a tempered stable

Lévy process, as in Rosiński [59]. That process arises as the long-time scaling limit of a ran-

dom walk with exponentially tempered power law jumps, see Chakrabarty and Meerschaert

[13]. The tempered fractional diffusion equation (3.23) has been applied to contaminant

plumes in underground aquifers, and sediment transport in rivers [49, 70, 71].

Remark 3.1.17. Tempered fractional derivatives are a natural analogues of integer (and

fractional) order derivatives. For suitable functions f(x), the Fourier transform of the deriva-

tive f ′(x) is (ik)f̂(k) (e.g., see [48, p. 8]), and one can define the fractional derivative Dα
±f(t)

as the function with Fourier transform (ik)αf̂(k). Definition 3.1.11 extends to tempered frac-

tional derivatives.
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3.2 Stochastic Integrals

In this section, we apply tempered fractional calculus to define stochastic integrals with

respect to TFBM. First we recall the moving average representation of TFBM as a stochastic

integral with respect to Brownian motion.

Recall from Definition 2.1.1, the stochastic integral

Bα,λ(t) =

∫ +∞

−∞

[
e−λ(t−x)+(t− x)−α

+ − e−λ(−x)+(−x)−α
+

]
B(dx). (3.24)

When λ = 0 and α < −1/2, the right-hand side of (3.24) does not exist, since the integrand

is not in L2(R). However, TFBM with λ > 0 and α < −1/2 is well-defined, because the

exponential tempering keeps the integrand in L2(R). In fact, if α < −1/2 and λ > 0, or

if α = 0 and λ > 0, we will now show that TFBM is a semimartingale, and hence one

can define stochastic integrals I(f) :=
∫
f(x)Bα,λ(dx) in the standard manner, via the Itô

stochastic calculus (e.g., see Kallenberg [30, Chapter 15]).

Theorem 3.2.1. A tempered fractional Brownian motion {Bα,λ(t)}t≥0 with α < −1/2 and

λ > 0 is a continuous semimartingale with the canonical decomposition

Bα,λ(t) = −λ
∫ t

0
Mα,λ(s) ds− α

∫ t

0
Mα+1,λ(s) ds (3.25)

where

Mα,λ(t) :=

∫ +∞

−∞
e−λ(t−x)+(t− x)−α

+ B(dx). (3.26)

Moreover, {Bα,λ(t)}t≥0 is a finite variation process. The same is true if α = 0 and λ > 0.

Proof. Let {FB
t }t≥0 be the σ-algebra generated by {Bs : 0 ≤ s ≤ t}. Given a function
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g : R → R such that g(t) = 0 for all t < 0, and

g(t) = C +

∫ t

0
h(s), ds for all t > 0, (3.27)

for some C ∈ R and some h ∈ L2(R), a result of Cheridito [14, Theorem 3.9] shows that the

Gaussian stationary increment process

Y
g
t :=

∫
R
[g(t− u)− g(−u)] B(du), t ≥ 0 (3.28)

is a continuous {FB
t }t≥0 semimartingale with canonical decomposition

Y
g
t = g(0)Bt +

∫ t

0

∫ s

−∞
h(s− u)B(du)ds, (3.29)

and conversely, that if (3.28) defines a semimartingale on [0, T ] for some T > 0, then g

satisfies these properties. Define g(t) = 0 for t ≤ 0 and

g(t) := e−λtt−α for t > 0. (3.30)

It is easy to check that the function g(t − u) − g(−u), which is the integrand in (3.24), is

square integrable over the entire real line for any α < 1/2 and λ > 0. Next observe that

(3.27) holds with C = 0, h(s) = 0 for s < 0 and

h(s) :=
d

ds
[e−λss−α] = −λe−λss−α − αe−λss−α−1 ∈ L2(R) (3.31)

for any α < −1/2 and λ > 0. Then it follows from [14, Theorem 3.9] that TFBM is a
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continuous semimartingale with canonical decomposition

Bα,λ =

∫ t

0

∫ s

−∞
−λe−λ(s−u)(s− u)−α − αe−λ(s−u)(s− u)−α−1B(du) ds (3.32)

which reduces to (3.25). Since C = 0, Theorem 3.9 in [14] implies that {Bα,λ(t)} is a finite

variation process. The proof for α = 0 is similar, using g(t) = e−λt for t > 0.

Remark 3.2.2. When α = 0 and λ > 0, the Gaussian stochastic process (3.26) is an

Ornstein-Uhlenbeck process. When α < −1/2 and λ > 0, it is a one dimensional Matérn

stochastic process [5, 23, 26], also called a “fractional Ornstein-Uhlenbeck process” in the

physics literature [40]. It follows from Knight [32, Theorem 6.5] that Mα,λ(t) is a semi-

martingale in both cases.

Cheridito [14, Theorem 3.9] provides a necessary and sufficient condition for the pro-

cess (3.28) to be a semimartingale, and then it is not hard to check that TFBM is not a

semimartingale in the remaining cases when −1/2 < α < 0 or 0 < α < 1/2. Next we will

investigate the problem of stochastic integration with deterministic integrands in these two

cases. Our approach follows that of Pipiras and Taqqu [56].

Next we establish a link between TFBM and tempered fractional calculus.

Lemma 3.2.3. For a tempered fractional Brownian motion (3.24) with λ > 0, we have:

(i) When −1/2 < α < 0, we can write

Bα,λ(t) = Γ(κ+ 1)

∫ +∞

−∞

[
Iκ,λ− 1[0,t](x)− λIκ+1,λ

− 1[0,t](x)
]
B(dx) (3.33)

where κ = −α.
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(ii) When 0 < α < 1/2, we can write

Bα,λ(t) = Γ(1− α)

∫ +∞

−∞

[
Dα,λ
− 1[0,t](x)− λI1−α,λ

− 1[0,t](x)
]
B(dx). (3.34)

Proof. To prove part (i), write the kernel function from (3.24) in the form

gt,λ(x) : = e−λ(t−x)+(t− x)−α
+ − e−λ(−x)+(−x)−α

+

=

∫ t

0

d
[
e−λ(u−x)+(u− x)κ+

]
du

du

= −λ
∫ +∞

−∞
1[0,t](u)e

−λ(u−x)+(u− x)
(κ+1)−1
+ du

+κ

∫ +∞

−∞
1[0,t](u)e

−λ(u−x)+(u− x)κ−1
+ du

and apply the definition (3.2) of the tempered fractional integral.

To prove part (ii), it suffices to show that the integrand

gt,λ(x) = e−λ(t−x)+(t− x)−α
+ − e−λ(0−x)+(0− x)−α

+ =: ϕt(x)− ϕ0(x)

in (3.24) equals the integrand in (3.34). We will prove this using Fourier transforms. The

substitution u = t− x shows that

ϕ̂t(k) =
1√
2π

∫ t

−∞
e−ikxe−λ(t−x)(t− x)−α dx =

e−iktΓ(1− α)√
2π(λ− ik)1−α

,

using the formula for the Fourier transform of the gamma density, and hence

ĝt,λ(k) = ϕ̂t(k)− ϕ̂0(k) = Γ(1− α)
e−ikt − 1√

2π(λ− ik)1−α
. (3.35)
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On the other hand, from Lemma 3.1.6 and Theorem 3.1.9 we obtain

F [Dα,λ
− 1[0,t] − λI1−α,λ

− 1[0,t]](k) = [(λ− ik)α − λ(λ− ik)α−1] · e
−ikt − 1

(−ik)
√
2π

= (λ− ik)α−1 · e
−ikt − 1√

2π
,

(3.36)

where we have used the formula (which is easy to verify)

ĥ(k) = F [1[a,b)](k) =
e−ikb − e−ika

(−ik)
√
2π

. (3.37)

The desired result now follows by the uniqueness of the Fourier transform.

Next, we explain the connection between the fractional calculus representations (3.33) and

(3.34). Substitute κ = −α into (3.33) and note that the resulting formula differs from (3.34)

only in that the tempered fractional integral I−α,λ
− is replaced by the tempered fractional

derivative Dα,λ
− . Lemma 3.1.14 shows that Iα,λ− and Dα,λ

− are inverse operators, and hence it

makes sense to define I−α,λ
± := Dα,λ

± when 0 < α < 1. Now equations (3.33) and (3.34) are

equivalent.

Next, we discuss a general construction for stochastic integrals with respect to TFBM.

For a standard Brownian motion {B(t)}t∈R on (Ω,F , P ), the stochastic integral I(f) :=∫
f(x)B(dx) is defined for any f ∈ L2(R), and the mapping f 7→ I(f) defines an isometry

from L2(R) into L2(Ω), called the Itô isometry:

⟨I(f), I(g)⟩
L2(Ω)

= Cov[I(f), I(g)] =
∫
f(x)g(x) dx = ⟨f, g⟩

L2(R). (3.38)

Since this isometry maps L2(R) onto the space Sp(B) = {I(f) : f ∈ L2(R)}, we say that
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these two spaces are isometric. For any elementary function (step function)

f(u) =
n∑

i=1

ai1[ti,ti+1)
(u), (3.39)

where ai, ti are real numbers such that ti < tj for i < j, it is natural to define the stochastic

integral

Iα,λ(f) =
∫
R
f(x)Bα,λ(dx) =

n∑
i=1

ai
[
Bα,λ(ti+1)−Bα,λ(ti)

]
, (3.40)

and then it follows immediately from (3.33) that for f ∈ E , the space of elementary functions,

the stochastic integral

Iα,λ(f) =
∫
R
f(x)Bα,λ(dx) = Γ(κ+ 1)

∫
R

[
Iκ,λ− f(x)− λIκ+1,λ

− f(x)
]
B(dx)

is a Gaussian random variable with mean zero, such that for any f, g ∈ E we have

⟨Iα,λ(f), Iα,λ(g)⟩
L2(Ω)

= E
(∫

R
f(x)Bα,λ(dx)

∫
R
g(x)Bα,λ(dx)

)
= Γ(κ+ 1)2

∫
R

[
Iκ,λ− f(x)− λIκ+1,λ

− f(x)
] [

Iκ,λ− g(x)− λIκ+1,λ
− g(x)

]
dx,

(3.41)

in view of (3.33) and the Itô isometry (3.38). The linear space of Gaussian random variables{
Iα,λ(f), f ∈ E

}
is contained in the larger linear space

Sp(Bα,λ) =
{
X : Iα,λ(fn) → X in L2(Ω) for some sequence (fn) in E

}
. (3.42)

An element X ∈ Sp(Bα,λ) is mean zero Gaussian with variance

Var(X) = lim
n→∞

Var[Iα,λ(fn)],
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and X can be associated with an equivalence class of sequences of elementary functions (fn)

such that Iα,λ(fn) → X in L2(R). If [fX ] denotes this class, then X can be written in an

integral form as

X =

∫
R
[fX ]dBα,λ (3.43)

and the right hand side of (3.43) is called the stochastic integral with respect to TFBM

on the real line (see, for example, Huang and Cambanis [27], page 587). In the special

case of a Brownian motion λ = α = 0, Iα,λ(fn) → X along with the Itô isometry (3.38)

implies that (fn) is a Cauchy sequence, and then since L2(R) is a (complete) Hilbert space,

there exists a unique f ∈ L2(R) such that fn → f in L2(R), and we can write X =∫
R f(x)B(dx). However, if the space of integrands is not complete, then the situation is

more complicated. We begin with the case −1/2 < α < 0, where the corresponding FBM is

long range dependent.

3.2.1 Semi-long range dependence

Here we investigate stochastic integrals with respect to TFBM in the case −1/2 < α < 0, so

that 1/2 < H < 1 in (2.4). Equation (3.41) suggests the appropriate space of integrands for

TFBM, in order to obtain a nice isometry that maps into the space Sp(Bα,λ) of stochastic

integrals.

Theorem 3.2.4. Given −1/2 < α < 0 and λ > 0, let κ = −α. Then the class of functions

A1 :=

{
f ∈ L2(R) :

∫
R

∣∣∣Iκ,λ− f(x)− λIκ+1,λ
− f(x)

∣∣∣2 dx <∞
}
, (3.44)
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is a linear space with inner product

⟨f, g⟩A1
:= ⟨F,G⟩

L2(R) (3.45)

where

F (x) = Γ(κ+ 1)[Iκ,λ− f(x)− λIκ+1,λ
− f(x)],

G(x) = Γ(κ+ 1)[Iκ,λ− g(x)− λIκ+1,λ
− g(x)].

(3.46)

The set of elementary functions E is dense in the space A1. The space A1 is not complete.

The proof of Theorem 3.2.4 requires one simple lemma, which shows that Iκ,λ− − λIκ+1,λ
−

is a bounded linear operator on Lp(R) for any 1 ≤ p <∞.

Lemma 3.2.5. Under the assumptions of Theorem 3.2.4, suppose 1 ≤ p < ∞. Then for

any f ∈ Lp(R) we have

∥Iκ,λ− f(x)− λIκ+1,λ
− f(x)∥p ≤ C∥f∥p (3.47)

where C is a constant depending only on α and λ.

Proof. It follows from Lemma 3.1.2 that Iκ,λ− f(x)− λIκ+1,λ
− f(x) ∈ Lp(R) and that

∥Iκ,λ− f(x)− λIκ+1,λ
− f(x)∥p ≤ ∥Iκ,λ− f(x)∥p + λ∥Iκ+1,λ

− f(x)∥p ≤ 2λ−κ∥f∥p

for any f ∈ Lp(R).

Remark 3.2.6. It follows from Lemma 3.2.5 that A1 contains every function in L2(R), and

hence they are the same set, but endowed with a different inner product. The inner product
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on the space A1 is required to obtain a nice isometry.

Proof of Theorem 3.2.4. The proof is similar to [56, Theorem 3.2]. To show that A1 is an

inner product space, we will check that ⟨f, f⟩A1
= 0 implies f = 0 almost everywhere. If

⟨f, f⟩A1
= 0, then in view of (3.45) and (3.46) we have ⟨F, F ⟩2 = 0, so F (x) = Γ(1 +

κ)[Iκ,λ− f(x)− λIκ+1,λ
− f(x)] = 0 for almost every x ∈ R. Then

Iκ,λ− f(x) = λIκ+1,λ
− f(x) for almost every x ∈ R. (3.48)

Apply Dκ,λ
− to both sides of equation (3.48) and use Lemma 3.1.4 along with Lemma 3.1.14

to get

f(x) = Dκ,λ
− Iκ,λ− f(x) = Dκ,λ

− λIκ+1,λ
− f(x) = λ

[
Dκ,λ
− Iκ,λ−

]
I1,λ− f(x) = λI1,λ− f(x)

for almost every x ∈ R, and in view of the definition (3.1) this is equivalent to

f(x) = λ

∫ +∞

x
f(u)e−λ(u−x)du = λeλx

∫ +∞

x
f(u)e−λudu (3.49)

for almost every x ∈ R. Observe that the functions f(u) and e−λu are in L2[x,∞) for any

x ∈ R and then, by the Cauchy-Schwartz inequality, the function f(u)e−λu is in L1[x,∞). It

follows that
∫ +∞
x f(u)e−λudu is absolutely continuous, and so the function f(x) in (3.49) is

also absolutely continuous. Taking the derivative on both sides of (3.49) using the Lebesgue

Differentiation Theorem (e.g., see [66, Theorem 7.16]) we get

f ′(x) = λf(x)− λeλxf(x)e−λx = 0 for almost every x ∈ R.
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Then for any a, b ∈ R we have

f(b) = f(a) +

∫ b

a
f ′(x) dx = f(a).

and so f(x) is a constant function. Since f ∈ L2(R), it follows that f(x) = 0 for all x ∈ R,

and hence A1 is an inner product space.

Next, we want to show that the set of elementary functions E is dense in A1. For any

f ∈ A1, we also have f ∈ L2(R), and hence there exists a sequence of elementary functions

(fn) in L
2(R) such that ∥f − fn∥2 → 0. But

∥f − fn∥A1
= ⟨f − fn, f − fn⟩A1

= ⟨F − Fn, F − Fn⟩2 = ∥F − Fn∥2,

where Fn(x) = Iκ,λ− fn(x)− λIκ+1,λ
− fn(x) and F (x) is given by (3.46). Lemma 3.2.5 implies

that

∥f − fn∥A1
= ∥F − Fn∥2 = ∥Iκ,λ− (f − fn)− λIκ+1,λ

− (f − fn)∥2 ≤ C∥f − fn∥2

for some C > 0, and since ∥f − fn∥2 → 0, it follows that the set of elementary functions is

dense in A1.

Finally, we provide an example to show that A1 is not complete. The functions

f̂n(k) = |k|−p1{1<|k|<n}(k), p > 0,

are in L2(R), f̂n(k) = f̂n(−k), and hence they are the Fourier transforms of functions

fn ∈ L2(R). Apply Lemma 3.1.6 to see that the corresponding functions Fn(x) = Γ(κ +
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1)[Iκ,λ− fn(x)− λIκ+1,λ
− fn(x)] from (3.46) have Fourier transform

F [Fn](k) = Γ(1− α)[(λ− ik)α − λ(λ− ik)α−1]f̂n(k) =
−ikΓ(1− α)

(λ− ik)1−α
f̂n(k). (3.50)

Since α < 0, it follows that

∥Fn∥22 = ∥F̂n∥22 = Γ(1− α)2
∫ ∞

−∞

∣∣∣f̂n(k)∣∣∣2 k2

(λ2 + k2)1−α
dk <∞

for each n, which shows that fn ∈ A1. Now it is easy to check that fn − fm → 0 in

A1, as n,m → ∞, whenever p > 1/2 + α, so that (fn) is a Cauchy sequence. Choose

p ∈ (1/2 + α, 1/2) and suppose that there exists some f ∈ A1 such that ∥fn − f∥A1
→ 0 as

n→ ∞. Then ∫ ∞

−∞

∣∣∣f̂n(k)− f̂(k)
∣∣∣2 k2

(λ2 + k2)1−α
dk → 0 (3.51)

as n → ∞, and since, for any given m ≥ 1, the value of f̂n(k) does not vary with n > m

whenever k ∈ [−m,m], it follows that f̂(k) = |k|−p1{|k|>1} on any such interval. Since

m is arbitrary, it follows that f̂(k) = |k|−p1{|k|>1}, but this function is not in L2(R), so

f̂(k) /∈ A1, which is a contradiction. Hence A1 is not complete, and this completes the

proof.

We now define the stochastic integral with respect to TFBM for any function in A1 in

the case where 1/2 < H < 1 in (2.4).

Definition 3.2.7. For any −1/2 < α < 0 and λ > 0, we define

∫
R
f(x)Bα,λ(dx) := Γ(κ+ 1)

∫
R

[
Iκ,λ− f(x)− λIκ+1,λ

− f(x)
]
B(dx) (3.52)
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for any f ∈ A1, where κ = −α.

Theorem 3.2.8. For any −1/2 < α < 0 and λ > 0, the stochastic integral Iα,λ in (3.52)

is an isometry from A1 into Sp(Bα,λ). Since A1 is not complete, these two spaces are not

isometric.

Proof. It follows from Lemma 3.2.5 that the stochastic integral (3.52) is well-defined for any

f ∈ A1. Proposition 2.1 in Pipiras and Taqqu [56] implies that, if D is an inner product

space such that (f, g)D = ⟨Iα,λ(f), Iα,λ(g)⟩
L2(Ω)

for all f, g ∈ E , and if E is dense D, then

there is an isometry between D and a linear subspace of Sp(Bα,λ) that extends the map

f → Iα,λ(f) for f ∈ E , and furthermore, D is isometric to Sp(Bα,λ) itself if and only if D

is complete. Using the Itô isometry and the definition (3.52), it follows from (3.45) that for

any f, g ∈ A1 we have

⟨f, g⟩A1
= ⟨F,G⟩

L2(R) = ⟨Iα,λ(f), Iα,λ(g)⟩
L2(Ω)

,

and then the result follows from Theorem 3.2.4.

3.2.2 Anti-persistence

Next we investigate stochastic integrals with respect to TFBM in the case 0 < α < 1/2, so

that 0 < H < 1/2 in (2.4). It follows from (3.34) that the stochastic integral (3.40) can be

written in the form

Iα,λ(f) =
∫
R
f(x)Bα,λ(dx) = Γ(1− α)

∫ ∞

−∞

[
Dα,λ
− f(x)− λI1−α,λ

− f(x)
]
B(dx)
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for any f ∈ E , the space of elementary functions. Then Iα,λ(f) is a Gaussian random

variable with mean zero, such that

⟨Iα,λ(f), Iα,λ(g)⟩
L2(Ω)

= E
(∫

R
f(x)Bα,λ(dx)

∫
R
g(x)Bα,λ(dx)

)
= Γ(1− α)2

∫
R

[
Dα,λ
− f(x)− λI1−α,λ

− f(x)
] [

Dα,λ
− g(x)− λI1−α,λ

− g(x)
]
dx.

(3.53)

for any f, g ∈ E , using (3.34) and the Itô isometry (3.38). Equation (3.53) suggests the

following space of integrands for TFBM in the case 0 < H < 1/2. Recall that Wα,2(R) is

the fractional Sobolev space (3.17).

Theorem 3.2.9. For any 0 < α < 1/2 and λ > 0, the class of functions

A2 :=
{
f ∈ Wα,2(R) : φf = Dα,λ

− f − λI1−α,λ
− f for some φf ∈ L2(R).

}
. (3.54)

is a linear space with inner product

⟨f, g⟩A2
:= ⟨F,G⟩

L2(R)
(3.55)

where

F (x) = Γ(1− α)
[
Dα,λ
− f(x)− λI1−α,λ

− f(x)
]

G(x) = Γ(1− α)
[
Dα,λ
− g(x)− λI1−α,λ

− g(x)
]
.

(3.56)

The set of elementary functions E is dense in the space A2. The space A2 is not complete.

We begin with the two lemmas. The first lemma shows that the set A2 contains every

function in Wα,2(R), and hence they are the same set, but different spaces, since they have
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different inner products.

Lemma 3.2.10. Under the assumptions of Theorem 3.2.9, every f ∈ Wα,2(R) is an element

of A2.

Proof. Given f ∈ Wα,2(R), we need to show that

φf = Dα,λ
− f − λI1−α,λ

− f, (3.57)

for some φf ∈ L2(R). From the definition (3.17) we see that
∫
(λ2 + k2)α|f̂(k)|2 dk < ∞.

Define h1(k) = (λ − ik)αf̂(k) and note that h1 is the Fourier transform of some function

φ1 ∈ L2(R). Define h2(k) := (λ− ik)α−1f̂(k), and observe that

∫
|h2(k)|2 dk =

∫
|f̂(k)|2(λ2 + k2)α−1 dk

=

∫
|h1(k)|2

λ2 + k2
dk <∞,

since h1 ∈ L2(R) and 1/(λ2 + k2) is bounded. Hence there is another function φ2 ∈ L2(R)

such that h2 = φ̂2. Define φf := φ1 − λφ2 so that

φ̂f (k) = φ̂1(k)− λφ̂2(k) = f̂(k)(λ− ik)α − f̂(k)λ(λ− ik)α−1. (3.58)

Since f ∈ Wα,2(R) ⊂ L2(R), we can apply Definition 3.1.11 and Lemma 3.1.6 to see that

(3.57) holds.

Lemma 3.2.11. Under the assumptions of Theorem 3.2.9, if f ∈ Wα,2(R), then there exists
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a sequence of elementary functions (fn) such that fn → f in L2(R), and also

∫ +∞

−∞
|f̂n(k)− f̂(k)|2|k|2αdk → 0 as n→ ∞. (3.59)

Proof. Equation (3.59) is proven in [56, Lemma 5.1]. For any L > 0, that proof constructs

a sequence of elementary functions fn such that f̂n(k) → 1[−1,1](k) almost everywhere on

−L ≤ x ≤ L, and shows that |f̂n(k)| ≤ Cmin{1, |k|−1} for all k ∈ R and all n ≥ 1. In

the notation of that paper, we have f̂n(k) = k−1Un(k). Apply the dominated convergence

theorem to see that ∫ +L

−L
|f̂n(k)− 1[−1,1](k)|

2dk → 0

and note that ∫
|k|>L

|f̂n(k)− 1[−1,1](k)|
2dk ≤ 2C2

∫ ∞

L

dk

k2
≤ 2C2

L
.

Since L is arbitrary, it follows that f̂n(k) → 1[−1,1](k) in L
2(R), and then the result follows

as in [56, Lemma 5.1].

Proof of Theorem 3.2.9. For f ∈ A2 we define

∥f∥A2
=
√

⟨f, f⟩A2
=
√

⟨φf , φf ⟩2 = ∥φf∥2. (3.60)

where φf is given by (3.57). Next, use (3.58) to see that

φ̂f (k) = (−ik)(λ− ik)α−1f̂(k). (3.61)
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To verify that (3.55) is an inner product, note that if ⟨f, f⟩A2
= 0 then

∥f∥2A2
= ∥φf∥22 = ∥φ̂f∥22 =

∫ ∞

−∞
|f̂(k)|2 k2

(λ2 + k2)1−α
dk (3.62)

equals zero, which implies that |f̂(k)| = 0 almost everywhere, and then f = 0 almost

everywhere. This proves that (3.57) is an inner product.

Next we show that E is dense in A2. Apply Lemma 3.2.11 to obtain a sequence (fn)

in E such that ∥fn − f∥2 → 0 and (3.59) holds. It is easy to check using (3.37) that any

elementary function is an element of Wα,2(R), and then Lemma 3.2.10 implies that it is also

an element of A2. Now use (3.62) to write

∥fn − f∥2A2
=

∫ +∞

−∞

∣∣∣f̂n(k)− f̂(k)
∣∣∣2 (k2 + λ2)α dk

− λ2
∫ +∞

−∞

∣∣∣f̂n(k)− f̂(k)
∣∣∣2 1

(λ2 + k2)1−α
dk.

Since 1/(λ2 + k2)1−α is bounded, it follows easily using (3.59) and ∥fn − f∥2 → 0 that

∥fn − f∥A2
→ 0, and hence E is dense in A2.

Finally, we want to show that A2 is not complete. The proof is similar to that of Theorem

3.2.4. The functions

f̂n(k) = |k|−p1{1/n<|k|<1}(k).

are the Fourier transforms of some functions fn ∈ L2(R). Clearly fn ∈ Wα,2(R), and

then it follows from Lemmas 3.1.6 and 3.1.9 that the corresponding functions Fn(x) =

Γ(1− α)[Dα,λ
− fn(x)− λI1−α,λ

− fn(x)] from (3.56) have Fourier transform (3.50), that is,

F [Fn](k) = Γ(1− α)
−ik

(λ− ik)1−α
f̂n(k).
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Then

∥fn∥2A2
= ∥Fn∥22 = ∥F̂n∥22 = Γ(1− α)2

∫ ∞

−∞

∣∣∣f̂n(k)∣∣∣2 k2

(λ2 + k2)1−α
dk <∞

for any p < 3/2, so that fn ∈ A2. Now it is easy to check that fn − fm → 0 in A2,

as n,m → ∞, so that (fn) is a Cauchy sequence. Suppose 1/2 < p < 3/2 and that

∥fn− f∥A2
→ 0 for some f ∈ A2. Then f̂(k) = |k|−p1{0<|k|<1}, but this f̂ is not in L2(R),

so f̂ /∈ A2, and hence A2 is not complete.

We now define the stochastic integral with respect to TFBM for any function in A2 in

the case where 0 < H < 1/2 in (2.4).

Definition 3.2.12. For any 0 < α < 1/2 and λ > 0, we define

Iα,λ(f) =
∫
R
f(x)Bα,λ(dx) : = Γ(1− α)

∫
R

[
Dα,λ
− f(x)− λI1−α,λ

− f(x)
]
B(dx) (3.63)

for any f ∈ A2.

Theorem 3.2.13. For any 0 < α < 1/2 and λ > 0, the stochastic integral Iα,λ is an isom-

etry from A2 into Sp(Bα,λ). Since A2 is not complete, these two spaces are not isometric.

Proof. The proof is similar to that of Theorem 3.2.8. It follows from Lemma 3.2.10 that the

stochastic integral (3.63) is well-defined for any f ∈ A2. Use Proposition 2.1 in Pipiras and

Taqqu [56], and note that the Itô isometry, the definition (3.63), and equation (3.55) imply

that for any f, g ∈ A2 we have

⟨f, g⟩A2
= ⟨F,G⟩

L2(R) = ⟨Iα,λ(f), Iα,λ(g)⟩
L2(Ω)

.
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Then the result follows from Theorem 3.2.9.

3.2.3 Harmonizable representation

By now it should be clear that the Fourier transform plays an important role in the theory of

stochastic integration for TFBM. Here we apply the harmonizable representation of TFBM

to unify the two cases −1/2 < α < 0 and 0 < α < 1/2.

For any −1/2 < α < 1/2 and any λ > 0, Proposition 3.1 in [46] shows that TFBM has

the harmonizable representation

Bα,λ(t) =
Γ(1− α)√

2π

∫ ∞

−∞

e−itk − 1

(λ− ik)1−α
B̂(dk)

where B̂ = B̂1 + iB̂2 is a complex-valued Gaussian random measure constructed as fol-

lows. Let B̂1 and B̂2 be two independent Brownian motions on the positive real line with

E[(B̂i(t))
2] = t/2 for i = 1, 2, and define two independently scattered Gaussian random

measures by setting B̂i[a, b] = B̂i(b)− B̂i(a), extend to Borel subsets of the positive real line,

and then extend to the entire real line by setting B̂1(A) = B̂1(−A), B̂2(A) = −B̂2(−A).

Apply the formula (3.37) for the Fourier transform of an indicator function to write this

harmonizable representation in the form

Bα,λ(t) = Γ(1− α)

∫ +∞

−∞
1̂[0,t](k)

(−ik)
(λ− ik)1−α

B̂(dk).

It follows easily that for any elementary function (3.39) we may write

Iα,λ(f) = Γ(1− α)

∫ ∞

−∞
f̂(k)

(−ik)
(λ− ik)1−α

B̂(dk), (3.64)
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and then for any elementary functions f and g we have

⟨Iα,λ(f), Iα,λ(g)⟩
L2(Ω)

= Γ(1− α)2
∫ ∞

−∞
f̂(k)ĝ(k)

k2

(λ2 + k2)1−α
dk. (3.65)

Theorem 3.2.14. For any α ∈ (−1/2, 0) ∪ (0, 1/2) and λ > 0, the class of functions

A3 :=

{
f ∈ L2(R) :

∫ ∣∣∣f̂(k)∣∣∣2 k2

(λ2 + k2)1−α
dk <∞

}
. (3.66)

is a linear space with the inner product

⟨f, g⟩A3
= Γ(1− α)2

∫ +∞

−∞
f̂(k)ĝ(k)

k2

(λ2 + k2)1−α
dk. (3.67)

The set of elementary functions E is dense in the space A3. The space A3 is not complete.

Proof. The proof combines Theorems 3.2.4 and 3.2.9 using the Plancherel Theorem. First

suppose that 0 < α < 1/2 and recall that φf = Dα,λ
− f − λI1−α,λ

− f is a function with Fourier

transform

φ̂f = [(λ− ik)α − λ(λ− ik)α−1]f̂ = [λ− ik − λ](λ− ik)α−1f̂ = (−ik)(λ− ik)α−1f̂ .

Then it follows from the Plancherel Theorem that

⟨f, g⟩A2
= Γ(1− α)2⟨φf , φg⟩2 = Γ(1− α)2⟨φ̂f , φ̂g⟩2

= Γ(1− α)2
∫ +∞

−∞
f̂(k)ĝ(k)

k2

(λ2 + k2)1−α
dk = ⟨f, g⟩A3
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and hence the two inner products are identical. If f ∈ A3, then

∫ +∞

−∞
|f̂(k)|2(λ2 + k2)α dk =

∫ +∞

−∞
|f̂(k)|2 k2

(λ2 + k2)1−α
dk

+ λ2
∫ +∞

−∞
|f̂(k)|2 1

(λ2 + k2)1−α
dk.

(3.68)

The first integral on the right-hand side is finite by (3.66), and the second is finite since

1/(λ2 + k2)1−α is bounded. Then it follows from the definition (3.17) that f ∈ Wα,2(R).

Conversely, if f ∈ Wα,2(R) then since

k2

(λ2 + k2)1−α
=

k2

λ2 + k2
(λ2 + k2)α ≤ (λ2 + k2)α

it follows immediately that f ∈ A3, and henceWα,2(R) and A3 are the same set of functions.

Then it follows from Lemma 3.2.10 that A2 and A3 are identical when 0 < α < 1/2, and

the conclusions of Theorem 3.2.14 follow from Theorem 3.2.9 in this case.

If −1/2 < α < 0, then the function k2/(λ2 + k2)1−α is bounded by a constant C(α, λ)

that depends only on α and λ, so for any f ∈ L2(R) we have

∫
R

∣∣∣f̂(k)∣∣∣2 k2

(λ2 + k2)1−α
dk ≤ C(α, λ)

∫
R

∣∣∣f̂(k)∣∣∣2 dk <∞ (3.69)

and hence f ∈ A3. Since A3 ⊂ L2(R) by definition, this proves that L2(R) and A3 are the

same set of functions, and then it follows from Lemma 3.2.5 that A1 and A3 are the same

set of functions in this case. Let κ = −α and note that φf = Iκ,λ− f − λIκ+1,λ
− f is again a

function with Fourier transform

φ̂f = [(λ− ik)α − λ(λ− ik)α−1]f̂ = (−ik)(λ− ik)α−1f̂ .
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Then it follows from the Plancherel Theorem that

⟨f, g⟩A1
= Γ(κ+ 1)2⟨φf , φg⟩2 = Γ(1− α)2⟨φ̂f , φ̂g⟩2

= Γ(1− α)2
∫ +∞

−∞
f̂(k)ĝ(k)

k2

(λ2 + k2)1−α
dk = ⟨f, g⟩A3

and hence the two inner products are identical. Then the conclusions of Theorem 3.2.14

follow from Theorem 3.2.4 in this case as well.

Definition 3.2.15. For any α ∈ (−1/2, 0) ∪ (0, 1/2) and λ > 0, we define

Iα,λ(f) = Γ(1− α)

∫ ∞

−∞
f̂(k)

(−ik)
(λ− ik)1−α

B̂(dk) (3.70)

for any f ∈ A3.

Theorem 3.2.16. For any α ∈ (−1/2, 0) ∪ (0, 1/2) and λ > 0, the stochastic integral Iα,λ

in (3.70) is an isometry from A3 into Sp(Bα,λ). Since A3 is not complete, these two spaces

are not isometric.

Proof. The proof of Theorem 3.2.14 shows that A1 and A3 are identical when −1/2 < α < 0,

and A2 and A3 are identical when 0 < α < 1/2. Then the result follows immediately from

Theorems 3.2.8 and 3.2.13.

3.3 Discussion

In this section, we collect some remarks and extensions.
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3.3.1 White noise approach

Heuristically, the TFBM (3.33) with 1/2 < H < 1 in (2.4) can be written in terms of

tempered fractional integrals of the white noise W (x)dx = B(dx), since in view of (3.8) we

can write

Bα,λ(t) = Γ(κ+ 1)

∫ +∞

−∞

[
Iκ,λ+ W (x)− λIκ+1,λ

+ W (x)
]
1[0,t](x) dx.

In the same way, when 0 < H < 1/2 we can write

Bα,λ(t) = Γ(1− α)

∫ +∞

−∞

[
Dα,λ
+ W (x)− λI1−α,λ

+ W (x)
]
1[0,t](x) dx,

using Lemma 3.1.15. These ideas could be made rigorous using white noise theory [36]. Set-

ting λ = 0, we recover the fact that FBM is the fractional integral or derivative of a Brownian

motion [56, p. 261]. The white noise approach is preferred in engineering applications (e.g.,

see [6]).

3.3.2 Reproducing kernel Hilbert space

The reproducing kernel Hilbert space (RKHS) of TFBM provides another approach to

stochastic integration that produces an isometric space of deterministic integrands. The

RKHS for FBM was computed in [6, 56]. For any mean zero Gaussian process {Xt}t∈R

with covariance function R(s, t) = E[XsXt], the RKHS of X is the unique Hilbert space

H(X) of measurable functions f : R → R such that R(·, t) ∈ H(X) for all t ∈ R, and

⟨f,R(·, t)⟩H(X) = f(t) for all t ∈ R and f ∈ H(X) [25, 65]. As noted in [25], if there exists
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a measure space (Λ,B, ν) and a set of functions {ft} ⊂ L2(R, ν) such that

R(s, t) =

∫
Λ
fs(x)ft(x)ν(dx) for all s, t ∈ R, (3.71)

Then H(X) consists of the functions g(t) =
∫
ft(x)g

∗(x)ν(dx) for g∗ ∈ Sp{ft}, the closure

in L2(R, ν) of the set of linear combinations of functions ft. Then H(X) is a Hilbert space

with the inner product

⟨g, h⟩H(X) =

∫
Λ
g∗(x)h∗(x)ν(dx).

Let Sp(X) denote the closure of the set of linear combinations of random variables {Xt}

in the space L2(Ω). The mapping J that sends

J∑
j=1

ajR(·, tj) 7→
J∑

j=1

ajXtj

is an isometry that maps H(X) onto Sp(X), and hence these two Hilbert spaces are isometric.

Then J (f) is the stochastic integral of any f ∈ H(X).

For TFBM with −1/2 < α < 0, let κ = −α. Since Bα,λ(t) =
∫
R 1[0,t](x)Bα,λ(dx), it

follows immediately from the definition (3.52) that TFBM has covariance function

R(s, t) = Γ(κ+ 1)2
∫
R

[
Iκ,λ− 1[0,s](x)− λIκ+1,λ

− 1[0,s]

] [
Iκ,λ− 1[0,t](x)− λIκ+1,λ

− 1[0,t]

]
dx,

and hence the RKHS H(Bα,λ) consists of functions

g(t) = Γ(k + 1)

∫
R

[
Ik,λ− − λIk+1,λ

−
]
1[0,t](x)g

∗(x)dx
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for g∗ ∈ L2(R), with the inner product

⟨g, h⟩H(X) =

∫
R
g∗(x)h∗(x)dx = ⟨g∗, h∗⟩

L2(R). (3.72)

For TFBM with 0 < α < 1/2 and λ > 0, the RKHS H(Bα,λ) consists of functions

g(t) = Γ(1− α)2
∫
R

[
Dα,λ
− − λI1−α,λ

−
]
1[0,t](x)g

∗(x)dx

for g∗ ∈ L2(R), with the same inner product (3.72). The proof is similar to [56, Section

6]. Complete details will be provided in the forthcoming paper [45]. Here we take Λ =

L2(R), with ν the Lebesgue measure on R. The main technical difficulty is to show that

L2(R) = Sp{ft}, where ft(x) = Γ(k + 1)[Ik,λ− − λIk+1,λ
− ]1[0,t](x) in the case −1/2 < α < 0,

and ft(x) = Γ(1− α)[Dα,λ
− − λI1−α,λ

− ]1[0,t](x) for 0 < α < 1/2.

3.3.3 Tempered distributions as integrands

Jolis [29] proved that the exact domain of the Wiener integral for a fractional Brownian

motion BH(t) is given by

ΛH = {f ∈ S ′(R) =
∫
R
|f̂(k)|2 |k|1−2H dk <∞},

where S ′(R) is the space of tempered distributions. This gives an isometry using the inner

product (for a standard FBM)

⟨f, g⟩ = Γ(2H + 1) sin(πH)

2π

∫
f̂(k)ĝ(k)|k|1−2Hdk,
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that makes ΛH isometric to Sp(BH). She also proved that this space contains distributions

that cannot be represented by locally integrable functions in the case of long range depen-

dence (1/2 < H < 1). Tudor [63] extended this result to subfractional Brownian motion.

The distributional approach is useful in the study of partial differential equations with a

Gaussian forcing term [9, 15, 64].

Following along these lines, we conjecture that the exact domain of the Wiener integral

with respect to TFBM is given by the distributional fractional Sobolev space

Λα,λ = {f ∈ S ′(R) :
∫
R
|f̂(k)|2 (λ2 + k2)α dk <∞}

with the inner product

⟨f, g⟩ = Cα,λ

∫
f̂(k)ĝ(k)(λ2 + k2)αdk.

Proving this using [29, Theorem 3.5] would require computing the second derivative of the

variance function (2.5) and taking the (inverse) Fourier transform of the result. This com-

putation seems difficult, due to the Bessel function term.
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Chapter 4

Tempered fractional stable motion

This chapter has four sections. In Section 4.1, we define linear tempered fractional stable

motion (LTFSM) using a moving average representation, and we establish the dependence

structure of its increments, which we call tempered fractional stable noise (TFSN). Sec-

tion 4.2 defines tempered fractional harmonizable stable motion (HTFSM) and shows that

LTFSM is different from HTFSM. Sample path properties of LTFSM and TFHSM are proven

in Section 4.3. Finally, Section 4.4 investigates the local times and local nondeterminism

properties for LTFSM and HTFSM .

4.1 Moving average representation

Let X be a real-valued random variable. We say that X has a symmetric α-stable, SαS,

distribution if its characteristic function has the form

E [exp {i(θX)}] = exp {−c|θ|α} ,

for some constant c > 0 and 0 < α ≤ 2. The parameters α and σ are called the index of

stability and the scale parameter respectively (see Chapter 1 in [61]). We denote the SαS

distribution by Sα(σ, 0, 0) and write X ≃ Sα(σ, 0, 0) to indicate that that X has the stable

distribution Sα(σ, 0, 0). A real-valued stochastic process {X(t)} is called SαS if all linear
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combinations
∑n

j=1 θjX(tj) are real-valued SαS random variables. Consider (R,B(R), dx),

where B(R) is the σ-algebra of Borel subsets of R. We say the process {Zα(B), B ∈ B(R)}

is a real-valued SαS random measure with Lebesgue control measure dx if

E
[
exp

{
iRe(θZ̃α(B))

}]
= exp {−|B||θ|α} ,

for any θ ∈ C where |B| denotes the Lebesgue measure of B (B ∈ B(R)). Now, Let Zα be a

SαS random measure on (R,B(R)) with Lebesgue control measure dx. Then, we define the

stochastic integral

I(f) :=

∫ +∞

−∞
f(x) Zα(dx) (4.1)

for all measurable functions f : R → R satisfying the condition

∫ +∞

−∞

∣∣∣f(x)∣∣∣α m(dx) <∞ (4.2)

for any 0 < α < 2, (α ̸= 1). We denote the collection of functions satisfying (4.2) by

Lα(R) =
{
f : f : R → R is measurable,

∫ +∞

−∞

∣∣∣f(x)∣∣∣α dx <∞
}
. (4.3)

Proposition 3.4.1 in [61] shows that I(f), for any f ∈ Lα(R,B(R), dx), has the characteristic

function

E
[
exp{iθI(f)}

]
= exp

{
−
∫ +∞

−∞

∣∣∣θf(x)∣∣∣α dx
}
.
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For the stochastic integral I(f) in (4.1) we define

∥∥∥I(f)∥∥∥α
α
=
∥∥∥∫ +∞

−∞
f(x) Zα(dx)

∥∥∥α
α

:=
(
− logE

[
exp{i I(f)}

])
=

∫ +∞

−∞

∣∣∣f(x)∣∣∣α dx

(4.4)

for any 0 < α < 2.

Definition 4.1.1. A stochastic process {X(t), t ∈ R} is called an SαS Lévy motion if

1. X(0) = 0 a.s.

2. X has independent increments.

3. X(t)−X(s) ∼ Sα(σ
α|t−s|

1
α , 0, 0) for any −∞ < s < t <∞ and, for some 0 < α ≤ 2,

and some σ > 0.

Note that the process X has stationary increments. It is Brownian motion when α = 2.

Also it is 1
α - self similar , that is, for all c > 0,

{
X(ct)

}
t∈R

,
{
c
1
αX(t)

}
t∈R

,

where , indicates equality in the sense of finite dimensional distributions.

Definition 4.1.2. Given a SαS random measure Zα(dx) on R with control measure m(dx),

for any 0 < α ≤ 2 and H > 0 and λ ≥ 0, the stochastic integral

XH,α,λ(t) :=

∫ +∞

−∞

[
e−λ(t−x)+(t− x)

H− 1
α

+ − e−λ(−x)+(−x)H− 1
α

+

]
Zα(dx), (4.5)
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where (x)+ = max{x, 0} and 00 = 0 will be called a linear tempered fractional stable motion

(LTFSM).

Remark 4.1.3. When α = 2, {XH,α,λ(t)}t∈R is TFBM defined in (2.1).

It is easy to check that the function

gα,λ,t(x) := e−λ(t−x)+(t− x)
H− 1

α
+ − e−λ(−x)+(−x)H− 1

α
+ (4.6)

belongs to the linear space Lα(R) in (4.3) provided that H > 0, so that LTFSM is well

defined and we have

∥∥∥XH,α,λ(t)
∥∥∥α
α
=
∥∥∥∫

R
gα,λ,t(x) Zα(dx)

∥∥∥α
α

:=
(
− logE

[
exp{i XH,α,λ(t)}

])
=

∫
R

∣∣∣gα,λ,t(x)∣∣∣α dx,

(4.7)

for any 0 < α < 2. Note also that this function has a scaling property

gα,λ,ct(cx) = cH− 1
α gα,cλ,t(x), (4.8)

for all t, x ∈ R and all c > 0. The next result shows that LTFSM has a nice scaling property,

involving both the time scale and the tempering.

Proposition 4.1.4. LTFSM (4.5) is symmetric α-stable stochastic process with stationary

increments, such that

{
XH,α,λ(ct)

}
t∈R ,

{
cHXH,α,cλ(t)

}
t∈R

, (4.9)
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for any scale factor c > 0.

Proof. Since Zα(dx) has control measure m(dx) = σαdx, the random measure Zα(c dx) has

control measure c
1
ασαdx. Given t1 < t2 < · · · < tn, a change of variable x = cx′ then yields

(
XH,α,λ(cti) : i = 1, . . . , n

)
=

(∫
gα,λ,cti(x)M(dx) : i = 1, . . . , n

)
=

(∫
gα,λ,cti(cx

′)M(c dx′) : i = 1, . . . , n

)
≃
(∫

cH− 1
α gα,cλ,ti(x

′)c
1
αM(dx′) : i = 1, . . . , n

)
=
(
cHXH,α,cλ(ti) : i = 1, . . . , n

)
,

where ≃ denotes equality in distribution, so that (4.9) holds. For any s, t ∈ R, the integrand

(4.6) satisfies gα,λ,s+t(s + x) − gα,λ,s(s + x) = gα,λ,t(x), and hence a change of variable

x = s+ x′ yields

(
XH,α,λ(s+ ti)−XH,α,λ(s) : i = 1, . . . , n

)
=

(∫ [
gα,λ,s+ti

(x)− gα,λ,s(x)
]
M(dx) : i = 1, . . . , n

)
≃
(∫ [

gα,λ,s+ti
(s+ x′)− gα,λ,s(s+ x′)

]
M(dx′) : i = 1, . . . , n

)
=

(∫
gα,λ,ti(x

′)M(dx′) : i = 1, . . . , n

)
=
(
XH,α,λ(ti) : i = 1, . . . , n

)
, which shows that LTFSM has stationary increments.

When a stochastic process {Y (t)}t∈R is stationary Gaussian with mean zero, we can

describe its dependence structure by its covariance function E [Y (t)Y (0)]. However, in the

non-Gaussian stable case, the covariance function does not exist. Instead, we use the follow-
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ing. For a stationary process {Y (t)}, let

r(t) : = r(θ1, θ2, t) = E [exp {i(θ1Y (t) + θ2Y (0))}]

− E [exp {iθ1Y (t)}]E [exp {iθ2Y (0)}] , θ1, θ2 ∈ R,
(4.10)

and

I(t) : = I(θ1, θ2, t)

: = − logE [exp {i(θ1Y (t) + θ2Y (0))}]

+ logE [exp {iθ1Y (t)}] + logE [exp {iθ2Y (0)}] , θ1, θ2 ∈ R.

(4.11)

The following relationship between r(t) and I(t) is valid:

r(θ1, θ2, t) = K(θ1, θ2, t)
(
e−I(θ1,θ2,t) − 1

)
,

where

K(θ1, θ2, t) = E [exp {iθ1Y (t)}]E [exp {iθ2Y (0)}]

= E [exp {iθ1Y (0)}]E [exp {iθ2Y (0)}]

:= K(θ1, θ2).

(4.12)

Further, if I(t) → 0 as t → ∞, then r(t) ∼ −K(θ1, θ2)I(t) as t → ∞ which means r(t) and

I(t) are asymptotically equivalent. If {Yt}t∈R is Gaussian, −I(1,−1, t) coincides with the

covariance function and thus r(t) is a natural extension. The quantity r(t) was used in [2],

where the authors studied the dependence structure of linear fractional stable motion.
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Given a LTFSM (4.5), we define tempered fractional stable noise (TFSN)

YH,α,λ(t) := XH,α,λ(t+ 1)−XH,α,λ(t) for integers −∞ < t <∞. (4.13)

Remark 4.1.5. For two non-negative functions f(t) and g(t) on R, we will write f(t) ≍ g(t)

if C1 ≤ f(t)
g(t)

≤ C2 for all t sufficiently large, for some 0 < C1 < C2 <∞.

Theorem 4.1.6. Let 0 < α < 1, 0 < H < 1, λ > 0 and YH,α,λ(t) be the tempered fractional

stable noise (4.13). Then

r(θ1, θ2, t) ≍ e−λαttHα−1,

as t→ ∞.

Proof. It follows easily from (4.5) that TFSN has the moving average representation

YH,α,λ(t) =

∫ +∞

−∞

[
e−λ(t+1−x)+(t+ 1− x)

H− 1
α

+ − e−λ(t−x)+(t− x)
H− 1

α
+

]
Zα(dx). (4.14)

Define gt(x) = (t− x)
H− 1

α
+ e−λ(t−x)+ for t ∈ R and compute I(θ1, θ2, t) and K(θ1, θ2, t) for

TFSN {YH,α,λ} as follows:

I(θ1, θ2, t) = − logE
[
exp {i(θ1YH,α,λ(t) + θ2YH,α,λ(0))}

]
+ logE

[
exp {iθ1YH,α,λ(t)}

]
+ logE

[
exp {iθ2YH,α,λ(0)}

]
=

∫ +∞

−∞

∣∣∣θ1 [gt+1(x)− gt(x)] + θ2 [g1(x)− g0(x)]
∣∣∣α dx

−
∫ +∞

−∞

∣∣∣θ1[gt+1(x)− gt(x)
]∣∣∣α dx−

∫ +∞

−∞

∣∣∣θ2[g1(x)− g0(x)
]∣∣∣α dx

:= I1(θ1, θ2, t) + I2(θ1, θ2, t),

(4.15)
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where

I1(θ1, θ2, t) =

∫ 0

−∞

∣∣∣θ1 [gt+1(x)− gt(x)] + θ2 [g1(x)− g0(x)]
∣∣∣α dx

−
∫ 0

−∞

∣∣∣θ1[gt+1(x)− gt(x)
]∣∣∣α dx−

∫ 0

−∞

∣∣∣θ2[g1(x)− g0(x)
]∣∣∣α dx

and

I2(θ1, θ2, t) =

∫ 1

0

∣∣∣θ1 [gt+1(x)− gt(x)] + θ2g1(x)
∣∣∣α dx

−
∫ 1

0

∣∣∣θ1[gt+1(x)− gt(x)
]∣∣∣α dx−

∫ 1

0

∣∣∣θ2g1(x)∣∣∣α dx.

Also,

K(θ1, θ2) = E
[
eiθ1Y (t)

]
E
[
eiθ2Y (0)

]
= E

[
eiθ1Y (0)

]
E
[
eiθ2Y (0)

]
= exp

{
− (|θ1|α + |θ2|α)

∫ +∞

−∞

∣∣∣g1(x)− g0(x)
∣∣∣α dx

} (4.16)

by stationarity. Therefore, I(θ1, θ2, t) = K(θ1, θ2, t)(I1(t) + I2(t)) and to verify the asymp-

totic dependence of I(t) we just need to verify the asymptotic dependence of I1(t) and I2(t)

as t→ ∞. We first verify the asymptotic dependence of I1(t). A change of variable in I1(t)

for t > 1 gives

I1(t) =

∫ ∞

0

∣∣∣θ1[e−λ(t+1+x)(t+ 1 + x)H− 1
α − e−λ(t+x)(t+ x)H− 1

α
]

+ θ2
[
e−λ(1+x)(1 + x)H− 1

α − e−λ(x)(x)H− 1
α
]∣∣∣αdx

−
∫ ∞

0

∣∣∣θ1[e−λ(t+1+x)(t+ 1 + x)H− 1
α − e−λ(t+x)(t+ x)H− 1

α
]∣∣∣αdx

−
∫ ∞

0

∣∣∣∣θ2[e−λ(1+x)(1 + x)H− 1
α − e−λ(x)(x)H− 1

α
]∣∣∣∣α dx.
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Let

ft+1,t(x) :=
∣∣∣θ1[e−λ(t+1+x)(t+ 1 + x)H− 1

α − e−λ(t+x)(t+ x)H− 1
α
]∣∣∣α. (4.17)

For every t > 1 and x > 0 we get

eαλtt−α(H− 1
α )ft+1,t(x) =

∣∣∣θ1∣∣∣α∣∣∣e−λ(1+x)
(t+ 1 + x

t

)H− 1
α − e−λx

(t+ x

t

)H− 1
α
∣∣∣α

→
∣∣∣θ1∣∣∣α e−λαx

∣∣∣e−λ − 1
∣∣∣α as t→ ∞

and

sup
t>1

∣∣∣∣eαλtt−α(H− 1
α )ft+1,t(x)

∣∣∣∣ ≤ ∣∣∣θ1(e−λ − 1)
∣∣∣α e−λαx,

which belongs to L1(0,∞). Now we can use the Dominated Convergence Theorem to see

that

∫ ∞

0
ft+1,t(x) dx→

∣∣∣θ1(e−λ − 1)
∣∣∣αe−λαttα(H− 1

α )
∫ ∞

0
e−λαx dx

=

∣∣∣θ1(e−λ − 1)
∣∣∣αe−λαttα(H− 1

α )

λα
,

(4.18)

as t→ ∞. Now consider,

gt,t+1,0,1(x) :=
∣∣∣θ1[e−λ(t+1+x)(t+ 1 + x)H− 1

α − e−λ(t+x)(t+ x)H− 1
α
]

+ θ2
[
e−λ(1+x)(1 + x)H− 1

α − e−λ(x)(x)H− 1
α
]∣∣∣α (4.19)

−
∣∣∣θ2∣∣∣α∣∣∣[e−λ(1+x)(1 + x)H− 1

α − e−λx(x)H− 1
α
]∣∣∣α.
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Then,

eλαtt−α(H− 1
α )gt,t+1,0,1(x) =

∣∣∣∣∣θ1[e−λ(1+x)
(
t+ 1 + x

t

)H− 1
α
− e−λx

(
t+ x

t

)H− 1
α ]

+ θ2

[
e−λ(1+x)eλt

(1 + x

t

)H− 1
α − e−λxeλt

(x
t

)H− 1
α
]∣∣∣∣∣
α

−

∣∣∣∣∣θ2[e−λ(1+x)eλt
(1 + x

t

)H− 1
α − e−λxeλt

(x
t

)H− 1
α
]∣∣∣∣∣
α

=:
∣∣∣at + bt

∣∣∣α −
∣∣∣bt∣∣∣α

where

at = θ1

[
e−λ(1+x)

(
t+ 1 + x

t

)H− 1
α
− e−λx

(
t+ x

t

)H− 1
α
]

and

bt = θ2

[
e−λ(1+x)eλt

(1 + x

t

)H− 1
α − e−λxeλt

(x
t

)H− 1
α

]
.

It is obvious that at → Cx := θ1e
−λx(e−λ − 1) and bt → ∞ as t → ∞. Then, |at + bt|α −

|bt|α → 0 as t→ ∞ since 0 < α < 1. Therefore

eλαtt−α(H− 1
α )gt,t+1,0,1 → 0,

as t → ∞. Moreover, for any 0 < α < 1, using the inequality
∣∣∣|a|α − |b|α

∣∣∣ ≤ ∣∣∣a − b
∣∣∣α (see

[61], Page 211), we get

gt,t+1,0,1 ≤ ft+1,t,

where gt,t+1,0,1 and gt,t+1,0,1 are defined in (4.17) and (4.19) respectively, if we let a =
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θ1(gt+1 − gt) + θ2(g1 − g0) and b = θ2(g1 − g0). Consequently

sup
t>1

∣∣∣eλαtt−α(H− 1
α )gt,t+1,0,1

∣∣∣ ≤ sup
t>1

∣∣∣∣eαλtt−α(H− 1
α )ft+1,t(x)

∣∣∣∣
≤
∣∣∣θ1(e−λ − 1)

∣∣∣α e−λαx

which also belongs to L1(0,∞). Applying the Dominated Convergence Theorem yields

∫ +∞

−∞
gt,t+1,0,1(x)dx→ 0 as t→ ∞. (4.20)

Therefore from (4.18) and (4.20)

I1(t) ∼ −|θ1(e−λ − 1)|αe−λαttα(H− 1
α )

λα
, (4.21)

as t→ ∞. Consider now,

I2(t) =

∫ 1

0

∣∣∣θ1[gt+1(x)− gt(x)] + θ2g1(x)
∣∣∣α dx

−
∫ 1

0

∣∣∣θ1[gt+1(x)− gt(x)]
∣∣∣α dx−

∫ 1

0

∣∣∣θ2 g1(x)∣∣∣α dx,

Define,

ut(x) := θ1
[
e−λ(t+1−x)(t+ 1− x)H− 1

α − e−λ(t−x)(t− x)H− 1
α
]

(4.22)

and

v(x) := θ2e
−λ(1−x)(1− x)H− 1

α . (4.23)

We can rewrite

I2(t) =

∫ 1

0
ξ(ut(x) + v(x))− ξ(ut(x))− ξ(v(x)) dx,
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where

ξ(g(x)) =
∣∣∣g(x)∣∣∣α. (4.24)

Lemma 3.1 in [2] implies that

I2(t) =

∫ 1

0
ξ(ut(x) + v(x))− ξ(ut(x))− ξ(v(x)) dx

≤ Pα

∫ 1

0

∣∣∣ut(x)∣∣∣α dx,

(4.25)

where Pα = 2 + 4 tan(πα2 )(see [2], Page 11). On the other hand

∣∣∣ut(x)∣∣∣ 6 ∣∣∣θ1∣∣ ∣∣∣∣( 1α −H)(t− x)H− 1
α−1e−λ(t−x) + λ(t− x)H− 1

α e−λ(t−x)
∣∣∣∣

≤
∣∣∣θ1∣∣∣e−λ(t−1)

[
(
1

α
−H)

∣∣t− 1
∣∣H− 1

α−1
+ λ |t− 1|H− 1

α

]

≤
∣∣∣θ1∣∣∣e−λ(t−1)

[ 1
α
−H + λ

] ∣∣∣t− 1
∣∣∣H− 1

α
,

(4.26)

since 0 < x < 1. From (4.25) and (4.26) we get

I2(t) ≤ Pα

∫ 1

0

∣∣∣ut(x)∣∣∣α dx

= Pα

∣∣∣θ1∣∣∣αe−λα(t−1)
[ 1
α
−H + λ

]α∣∣∣t− 1
∣∣∣Hα−1

.

(4.27)

Hence from (4.21) and (4.27) we get

I(t) ≍ e−λαttHα−1

as t→ ∞ and this completes the proof.

Theorem 4.1.7. Let 1 < α < 2, 1
α < H < 1, λ > 0 and let YH,α,λ(t) be the tempered
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fractional stable noise (4.13). Then

I(t) ≍ e−λtt(H− 1
α ),

as t→ ∞.

Proof. The proof is similar to that of Theorem 4.1.6. Let ft+1,t(x) be the function which is

defined by (4.17). Then

eλt t−(H− 1
α )ft+1,t(x) =

∣∣∣θ1∣∣∣αeλtt−(H− 1
α )∣∣∣e−λ(t+1+x)(t+ 1 + x)H− 1

α − e−λ(t+x)(t+ x)H− 1
α
∣∣∣α

= at · bt,

where

at :=
∣∣∣θ1∣∣∣αeλt(α−1)t(H− 1

α )(α−1)

and

bt :=
∣∣∣e−λ(1+x)(1 + 1

t
+
x

t

)H− 1
α − e−λx(1 + x

t

)H− 1
α
∣∣∣α.

Note that at → 0 (since 1 < α < 2) and bt →
∣∣∣e−λ(1+x) − e−λx

∣∣∣α as t → ∞. Now, let

h(t) = e−λt(α−1)t(α−1)(H− 1
α ). Observe that h(t) attains its maximum at t = 1

λ(H − 1
α).

Then

sup
t>1

∣∣∣eλt t−(H− 1
α )ft+1,t(x)

∣∣∣ = ∣∣∣e−λ − 1
∣∣∣α∣∣∣θ1∣∣∣αe−λαx sup

t>1

∣∣∣h(t)∣∣∣
=
∣∣∣e−λ − 1

∣∣∣α∣∣∣θ1∣∣∣αe−λαxe−(H− 1
α )(α−1)

[H − 1
α

λ

](α−1)(H− 1
α )
,

and so ft+1,t(x) is bounded by an L1(0,∞) function. Therefore the Dominated Convergence
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Theorem implies that ∫ ∞

0
ft+1,t(x) → 0 (4.28)

as t→ ∞. Consider now, eλtt−(H− 1
α )gt,t+1,0,1 where gt,t+1,0,1 is given by (4.19). Then

eλtt−(H− 1
α )gt,t+1,0,1 =

∣∣∣at + bt

∣∣∣α −
∣∣∣bt∣∣∣α

where

at := θ1

[
e−λt(1− 1

α )e−λ(1+x)
(t+ 1 + x

t
1
α

)(H− 1
α )

− e−λt(1− 1
α )e−λx

(t+ x

t
1
α

)(H− 1
α )
]

and

bt := θ2

[
e
λt
α t

−(H− 1
α )

α
[
e−λ(1+x)(1 + x)(H− 1

α ) − e−λxx(H− 1
α )
]]
.

Observe that limt→∞ bt = ∞ and limt→∞ at = 0. Since |at + bt|α − |bt|α ∼ α|at||bt|α−1, as

t→ ∞, we get,

eλtt−(H− 1
α )gt,t+1,0,1 ∼ α

∣∣∣θ1∣∣∣∣∣∣e−λt(1− 1
α )e−λ(1+x)

(t+ 1 + x

t
1
α

)(H− 1
α )

− e−λt(1− 1
α )e−λx

(t+ x

t
1
α

)(H− 1
α )∣∣∣

∣∣∣θ2∣∣∣α−1
eλt(1−

1
α )t−(H− 1

α )(1− 1
α )
∣∣∣e−λ(1+x)(1 + x)(H− 1

α ) − e−λxx(H− 1
α )
∣∣∣α−1

and consequently

eλtt−(H− 1
α )gt,t+1,0,1 → α

∣∣∣θ1∣∣∣∣∣∣e−λ(1+x) − e−λx
∣∣∣∣∣∣θ2∣∣∣α−1∣∣∣e−λ(1+x)(1 + x)H− 1
α − e−λxxH− 1

α
∣∣∣α−1

.
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Moreover,

sup
t≥1

∣∣∣eλtt−(H− 1
α )gt,t+1,0,1

∣∣∣ = sup
t≥1

∣∣∣at + bt

∣∣∣α −
∣∣∣bt∣∣∣α

≤ sup
t≥1

∣∣∣at∣∣∣α + α sup
t≥1

∣∣∣at∣∣∣∣∣∣bt∣∣∣α−1
,

(4.29)

where we have used the following inequalities (Lemma 2 in [41]): |a − b|α ≤ aα + bα and∣∣∣|a + b|α − |b|α
∣∣∣ ≤ ∣∣∣a∣∣∣α + α

∣∣∣a∣∣∣∣∣∣b∣∣∣α−1
valid for a ≥ 0 and b ≥ 0 and α ∈ (1, 2). In order to

find an upper bound for supt≥1 |at|α, write

∣∣∣at∣∣∣α =
∣∣∣θ1∣∣∣α∣∣∣e−λt(1− 1

α )e−λ(1+x)
(t+ 1 + x

t
1
α

)(H− 1
α )

− e−λt(1− 1
α )e−λx

(t+ x

t
1
α

)(H− 1
α )∣∣∣α

=
∣∣∣θ1∣∣∣αe−λαxe−λt(α−1)

∣∣∣e−λ
(t+ 1 + x

t
1
α

)(H− 1
α )

−
(t+ x

t
1
α

)(H− 1
α )∣∣∣α

≤
∣∣∣θ1∣∣∣αe−λαx

∣∣∣e−λ(1 + 1 + x)H− 1
α − (1 + x)H− 1

α
∣∣∣α

≤
∣∣∣θ1∣∣∣αe−λαx

[
e−λα(2 + x)Hα−1 + (1 + x)Hα−1

]
≤ 2
∣∣∣θ1∣∣∣αe−λαx(2 + x)Hα−1.

(4.30)

On the other hand,

α
∣∣∣at∣∣∣∣∣∣bt∣∣∣α−1

= α
∣∣∣θ1∣∣∣∣∣∣θ2∣∣∣α−1

∣∣∣ e−λ(1+x)
(t+ 1 + x

t

)(H− 1
α )

− e−λx
(t+ x

t

)(H− 1
α )

︸ ︷︷ ︸
:=S(t)

∣∣∣×K(x)

where

K(x) =
∣∣∣e−λ(1+x)(1 + x)(H− 1

α ) − e−λx(x)(H− 1
α )
∣∣∣α−1

. (4.31)
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Note that S(t) is a decreasing function and hence

sup
t≥1

α
∣∣∣at∣∣∣∣∣∣bt∣∣∣α−1

= α
∣∣∣θ1∣∣∣∣∣∣θ2∣∣∣α−1

∣∣∣e−λ(1+x)(2 + x)(H− 1
α ) − e−λx(1 + x)(H− 1

α )
∣∣∣×K(x)

(4.32)

where K(x) is given by (4.31). From (4.29), (4.30) and (4.32)

sup
t≥1

∣∣∣eλtt−(H− 1
α )gt,t+1,0,1

∣∣∣ ≤ 2
∣∣∣θ1∣∣∣αe−λαx(2 + x)Hα−1 + α

∣∣∣θ1∣∣∣∣∣∣θ2∣∣∣α−1

∣∣∣e−λ(1+x)(2 + x)(H− 1
α ) − e−λx(1 + x)(H− 1

α )
∣∣∣×K(x)

(4.33)

which belongs to L1(0,∞), since Hα > 1. Then, the Dominated Convergence Theorem

implies that

∫ ∞

0
gt,t+1,0,1(x) dx→ αθ1

∣∣∣θ2∣∣∣α−1
e−λtt(H− 1

α )

∫ ∞

0

∣∣∣e−λ(1+x) − e−λx
∣∣∣∣∣∣e−λ(1+x)(1 + x)H− 1

α − e−λxxH− 1
α
∣∣∣α−1

dx

= C2(α, λ, θ1, θ2)e
−λtt(H− 1

α ),

(4.34)

as t→ ∞, where

C2(α, λ, θ1, θ2) = αθ1

∣∣∣θ2∣∣∣α−1

∫ ∞

0

∣∣∣e−λ(1+x) − e−λx
∣∣∣∣∣∣e−λ(1+x)(1 + x)H− 1

α − e−λxxH− 1
α
∣∣∣α−1

dx

(4.35)

is a constant that is independent of t. Therefore from (4.28) and (4.34)

I1(t) ∼ C2(α, λ, θ1, θ2)e
−λtt(H− 1

α ), (4.36)
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as t→ ∞. Finally, recall that

I2(t) =

∫ 1

0

∣∣∣θ1[gt+1(x)− gt(x)] + θ2g1(x)
∣∣∣α dx

−
∫ 1

0

∣∣∣θ1[gt+1(x)− gt(x)]
∣∣∣α dx−

∫ 1

0

∣∣∣θ2 g1(x)∣∣∣α dx,

and that ut(x) and v(x) are given by (4.22) and (4.23) respectively. Then

I2(t) =

∫ 1

0
ξ(ut(x) + v(x))− ξ(ut(x))− ξ(v(x)) dx

where ξ(g(x)) is given by (4.24). Lemma 3.1 in [2] implies that, using argument similar to

(4.26), we have

I2(t) =

∫ 1

0
ξ(ut(x) + v(x))− ξ(ut(x))− ξ(v(x)) dx

≤
∫ 1

0
Rα

∣∣∣ut(x)∣∣∣∣∣∣v(x)∣∣∣α−1
dx+ Sα

∫ 1

0

∣∣∣ut(x)∣∣∣α dx

≤ Rα

∣∣∣θ1∣∣∣ ∫ 1

0

[
H − 1

α
+ λ
]∣∣∣t− 1

∣∣∣H− 1
α
e−λ(t−1)

∣∣∣v(x)∣∣∣α−1
dx

+ Sα

∣∣∣θ1∣∣∣α[H − 1

α
+ λ
]α∣∣∣t− 1

∣∣∣Hα−1
e−λα(t−1)

= Rα

∣∣∣θ1∣∣∣[H − 1

α
+ λ
]∣∣∣t− 1

∣∣∣H− 1
α
e−λ(t−1)

·
∫ 1

0

∣∣∣θ2e−λ(1−x)(1− x)H− 1
α
∣∣∣α−1

dx

+ Sα

∣∣∣θ1∣∣∣α[H − 1

α
+ λ
]α∣∣∣t− 1

∣∣∣Hα−1
e−λα(t−1)

:= C3(α, λ, θ1)
∣∣∣t− 1

∣∣∣H− 1
α
e−λ(t−1)

+ Sα

∣∣∣θ1∣∣∣α[H − 1

α
+ λ
]α∣∣∣t− 1

∣∣∣Hα−1
e−λα(t−1),

(4.37)
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where

C3(α, λ, θ1) = Rα

∣∣∣θ1∣∣∣[|H − 1

α
|+ λ

]
·
∫ 1

0

∣∣∣θ2e−λ(1−x)(1− x)H− 1
α
∣∣∣α−1

dx

is a constant. Recall that Rα = α
(
1 + tan(πα2 )

)
, and Sα = (α + 1) + (α + 3) tan(πα2 ) (see

[2], Page 11) are also constants. Note that the upper bound which is obtained by (4.37) is

of the same order as the upper bound for I1(t), given by (4.34). Hence

I(t) ≍ e−λtt(H− 1
α )

and this completes the proof.

Definition 4.1.8. A symmetric α-stable stationary process {Yt} has long memory if r(θ1, θ2, t)

defined in (4.10) satisfies
∞∑
n=0

∣∣∣r(θ1, θ2, n)∣∣∣ = ∞ (4.38)

Lemma 4.1.9. The LTFSM process does not have long memory property in the sense of

(4.38).

Proof. From Theorems 4.1.6 and 4.1.7 we have

∞∑
n=0

∣∣∣r(θ1, θ2, n)∣∣∣ <∞

which proves the statement.

Remark 4.1.10. Theorem 4.1.7 gives the fact that when the tempering parameter λ is

sufficiently small, TFSN exhibits semi-long range dependence, with the asymptotic rate I(t)
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that falls off like tH− 1
α for moderate values of t > 1, and eventually that rate falls off like

e−λttH− 1
α for t sufficiently large.

4.2 Tempered fractional harmonizable stable motion

Let X = X1 + iX2 be a complex-valued random variable. We say X is isotropic SαS if the

vector (X1, X2) is SαS and for any θ = θ1 + iθ2

E [exp {i(θ1X1 + θ2X2)}] = exp {−c|θ|α} ,

for some constant c > 0. A complex-valued stochastic process {X̃(t)} is called isotropic SαS

if all complex linear combinations
∑n

j=1 θjX̃(tj) are complex-valued isotropic SαS random

variables. Let (R,B(R), dx), where B(R) is the σ-algebra of Borel subsets of R. We say

the process {Z̃α(B), B ∈ B(R)} is a complex-valued isotropic SαS random measure with

Lebesgue control measure dx if

E
[
exp

{
iRe(θZ̃α(B))

}]
= exp {−|B||θ|α} ,

for any θ ∈ C where |B| denotes the Lebesgue measure of B (B ∈ B(R)).

Definition 4.2.1. Let {Z̃α(B), B ∈ B(R)} be a complex-valued isotropic SαS random mea-

sure with Lebesgue control measure dx. Then the stochastic integral

Ĩ(f) := Re

∫ +∞

−∞
f(k)Z̃α(dk),

72



where f ∈ Lα(R) is the complex-valued SαS random variable such that

E
[
exp

{
iRe

∫ +∞

−∞
f(k)Z̃α(dk)

}]
= exp

{
−
∫ +∞

−∞

∣∣f(k)∣∣α(dk)}

and

∥∥∥Ĩ(f)∥∥∥α
α
=
∥∥∥Re∫ +∞

−∞
f(k)Z̃α(dk)

∥∥∥α
α

:=
(
− logE

[
exp{iRe Ĩ(f)}

])
=

∫ +∞

−∞

∣∣∣f(k)∣∣∣α dk,

(4.39)

for any 0 < α < 2.

Definition 4.2.2. The real harmonizable tempered fractional stable motion (HTFSM) is the

process

X̃H,α,λ(t) = Re

∫ +∞

−∞

e−ikt − 1

(λ− ik)H+ 1
α

Z̃α(dk) (4.40)

where 0 < α < 2, H > 0, λ > 0 and Z̃α is a complex isotropic SαS random measure.

Remark 4.2.3. The stochastic integral in (4.40) is well defined, since

∫ +∞

−∞

∣∣∣∣∣ e−ikt − 1

(λ− ik)H+1
α

∣∣∣∣∣
α

dk <∞, (4.41)

for any H > 0 and 0 < α < 2 (as |k| → ∞, the integrand behaves like |k|−Hα−1, which is

integrable for any 0 < α < 2 and H > 0; as |k| → 0, the integrand tends to zero).

Definition 4.2.4. Given a HTFSM (4.40), we define tempered fractional harmonizable sta-
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ble noise (TFHSN)

ỸH,α,λ(t) := X̃H,α,λ(t+ 1)− X̃H,α,λ(t) for integers −∞ < t <∞. (4.42)

It follows easily from (4.40) that TFHSN has the harmonizable representation

ỸH,α,λ(t) = Re

∫ +∞

−∞
eikt Ψ(dk), (4.43)

where

Ψ(dk) =
eik − 1

(λ+ ik)H+ 1
α

Z̃α(dk) (4.44)

is a complex symmetric α-stable (SαS) random measure with the control measure

m(dk) =
|eik − 1|α

|λ+ ik|Hα+1
dk, (4.45)

for any 0 < α < 2, λ > 0 and H > 0.

Theorem 4.2.5. The tempered fractional stable motion (LTFSM) defined in (4.5) and tem-

pered fractional harmonizable stable motion (HTFSM) defined in (4.40) are different pro-

cesses.

Proof. To prove that the processes {XH,α,λ(t)} and {X̃H,α,λ(t)} are different it is enough

to show that

lim
t→∞

rYH,α,λ
(θ1, θ2, t) = 0 (4.46)

and

lim
t→∞

r
ỸH,α,λ

(θ1, θ2, t) > 0, (4.47)
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where {YH,α,λ(t)} and {ỸH,α,λ(t)} are the increments of {XH,α,λ(t)} and {X̃H,α,λ(t)} re-

spectively. Lemma 6.1 in [33] shows that if

Y (t) =

∫ +∞

−∞
f(t− x)Zα(dx),

for f ∈ Lα(R), {Zα} is the SαS random measure on R, then

lim
t→∞

rY (θ1, θ2, t) = 0.

Along the same lines, we now define f(x) := (x+1)
H− 1

α
+ e−λ(x+1)+−(x)

H− 1
α

+ e−λ(x)+ . Then

YH,α,λ(t) = XH,α,λ(t+ 1)−XH,α,λ(t)

=

∫ +∞

−∞

[
(t− x+ 1)

H− 1
α

+ e−λ(t−x+1)+ − (t− x)
H− 1

α
+ e−λ(t−x)+

]
Zα(dx)

=

∫ +∞

−∞
f(t− x) Zα(dx)

and hence by applying Lemma 6.1 [33], as described above,

lim
t→∞

rYH,α,λ
(θ1, θ2, t) = 0

which is Property (4.46). Theorem 3.1 in [37] states that if

Ỹ (t) = Re

∫ +∞

−∞
eikt Ψ(dk) for −∞ < t <∞
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is a stationary real harmonizable SαS process, then

lim inf
T→∞

1

2T

∫ T

−T
r
Ỹ
(θ1, θ2, t) dt ≥ K(θ1, θ2)c0

(
m{0}F0 +

1

2π
m(R− {0})F1

)
> 0,

where m is the control measure of the isotropic complex-valued random measure Ψ, F0 ∈ R

and F1 > 0 are some constants depends on α, m, θ1 and θ1. Along the same lines, we now

define

ỸH,α,λ(t) = X̃H,α,λ(t+ 1)− X̃H,α,λ(t)

= Re

∫ +∞

−∞

e−ik(t+1) − e−ikt

(λ− ik)H+ 1
α

Z̃α(dk)

= Re

∫ +∞

−∞
eiktΨ(dk),

where Ψ(dk) and m(dk) are given by (4.44) and (4.45) respectively. Hence by applying

Theorem 3.1 in [37], as explained above, we get

lim inf
T→∞

1

2T

∫ T

−T
r
ỸH,α,λ

(θ1, θ2, t) dt ≥ K(θ1, θ2)c0

(
m{0}F0 +

1

2π
m(R− {0})F1

)
> 0

and consequently

lim
t→∞

r
ỸH,α,λ

(θ1, θ2, t) > 0,

which is Property (4.2) and this completes the proof of the theorem.

4.3 Sample path properties

In this section, we present some results about the sample path properties of LTFSM and

HTFSM. The path behavior of the linear fractional stable motion (LFSM) process XH,α
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Figure 4.1: Left panel: Sample paths of LTFSM (thick black line) with λ = 0.03 andH = 0.3,
and LFSM (thin black line) with H = 0.3. Both graphs use the same noise realization Zα(t).
The right panel shows the same plots for λ = 0.001, H = 0.7 and α = 1.5.

(see Definition 7.4.1 [61]) depends on the structure of the kernel gα,t(x) := (t − x)
H− 1

α
+ −

(−x)H− 1
α

+ , t, x ∈ R (see [62]). When H − 1
α < 0, the function gα,t(x), x ∈ R, has singu-

larities at x = 0 and x = t. By the same argument, The paths behavior of the LTFSM

process XH,α,λ depends on the structure of the kernel gα,λ,t(x) := (t− x)
H− 1

α
+ e−λ(t−x)+ −

(−x)H− 1
α

+ e−λ(t−x)+ . In fact, The function gα,λ,t(x) has singularities at x = 0 and x = t too.

These singularities magnify the stable noise processes Zα(dx) and cause large spikes in the

paths of the LFSM and LTFSM processes. The left panel in Figure 4.1 compares a typical

sample path of both processes, simulated using the same noise realization Zα(t), in the case

H − 1
α < 0. In the case H − 1

α > 0, (since 0 < H < 1 it follows that α > 1) the paths

of the fractional stable motion can be made continuous with probability one (see Chapter

10 in [61]), since its kernel is bounded and positive for all t > 0. Similarly, the kernel of

LTFSM, gα,λ,t(x), is bounded and positive for all t > 0 and hence the paths of the process

XH,α,λ can be made continuous with probability one when H − 1
α > 0. The right panel in

Figure 4.1 shows the corresponding sample paths in the case α = 1.5. These simulations use

a discretized version of the moving average representation of LTFSM (4.5).

Theorem 4.3.1. Let 0 < α < 2, 0 < H < 1
α and X = {XH,α,λ(t)}t∈R be the LTFSM
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process defined in (4.5). Then, for any separable version X∗ = {X∗
H,α,λ(t), t ∈ (a, b)} of the

process X, we have that

P
(
{ω : sup

t∈(a,b)

∣∣X∗
H,α,λ(t, ω)

∣∣ = ∞}
)
= 1,

That is, every version of the process X = {XH,α,λ(t)}t∈R has unbounded paths.

Proof. We apply Theorem 10.2.3 in [61]. Indeed, consider the countable set T ∗ := Q∩ [a, b],

where Q denotes the set of rational numbers. Since T ∗ is dense in [a, b], there exists a

sequence {tn}n∈N ∈ T ∗ such that tn → x as n→ ∞. Therefore

f∗(T ∗;x) := sup
t∈T∗

∣∣∣gα,λ,t(x)∣∣∣
≥ sup

tn∈T∗

∣∣∣gα,λ,tn(x)∣∣∣ =: f∗n(T
∗;x) = ∞,

as n → ∞ and hence
∫ b
a f

∗(T ∗;x) dx = ∞, and this contradicts Condition (10.2.14) of

Theorem 10.2.3 in [61]. Therefore, the stochastic process {XH,α,λ} does not have a version

with bounded paths on the interval (a, b), and this completes the proof.

Lemma 4.3.2. Let 1 < α < 2, 1
α < H < 1 and λ > 0. Then there exist a positive constant

C1 such that the LTFSM (4.5) satisfies

∥∥∥XH,α,λ(t)−XH,α,λ(s)
∥∥∥α
α
≥ C1

∣∣∣t− s
∣∣∣Hα

,

locally uniformly in s, t ∈ [0, 1].

78



Proof. We write

∥∥∥XH,α,λ(t)−XH,α,λ(s)
∥∥∥α
α
≥
∫ t

s
|t− u|α(H− 1

α )e−λα|t−u| du

≥ e−λα|t−s|
∫ t

s
|t− u|Hα−1 du

=
e−λα|t−s|

Hα
|t− s|Hα

= C1 |t− s|Hα

and this gives the lower bound.

Lemma 4.3.3. Let 1 < α < 2, 1
α < H < 1 and λ > 0. Then there exist positive constants

C1 and C2 such that the HTFSM (4.40) satisfies

C1

∣∣∣t− s
∣∣∣Hα

≤
∥∥∥X̃H,α,λ(t)− X̃H,α,λ(s)

∥∥∥α
α
≤ C2

∣∣∣t− s
∣∣∣Hα

, (4.48)

locally uniformly in s, t ∈ [0, 1].

Proof. To get the upper bound, write

∥∥∥X̃H,α,λ(t)− X̃H,α,λ(s)
∥∥∥α
α
=

∫ +∞

−∞

|e−ikt − e−iks|α

|λ− ik|Hα+1
dk

≤ C

∫ +∞

−∞
(1 ∧ |t− s|α|k|α) |λ− ik|−Hα−1 dk

= C
[
|t− s|α

∫
|k|< 1

|t−s|
|k|α||λ− ik|−Hα−1 dk

+

∫
|k|> 1

|t−s|
|λ− ik|−Hα−1 dk

]
≤ C

[
|t− s|αI1 + I2

]

(4.49)
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where

I1 :=

∫
|k|< 1

|t−s|

∣∣∣k∣∣∣α∣∣∣λ− ik
∣∣∣−Hα−1

dk

and

I2 :=

∫
|k|> 1

|t−s|

∣∣∣λ− ik
∣∣∣−Hα−1

dk

and C is a constant. Observe that

I1 =

∫
|k|< 1

|t−s|

∣∣∣k∣∣∣α∣∣∣λ2 + k2
∣∣∣−Hα−1

2 dk

≤
∫
|k|< 1

|t−s|

∣∣∣k∣∣∣α∣∣∣k∣∣∣−Hα−1
dk =

∫
|k|< 1

|t−s|

∣∣∣k∣∣∣−Hα−1+α
dk

≤
∣∣∣t− s

∣∣∣Hα−α
· 2

α(1−H)

(4.50)

and

I2 =

∫
|k|> 1

|t−s|

∣∣∣λ2 + k2
∣∣∣−Hα−1

2 dk

≤
∫
|k|> 1

|t−s|

∣∣∣k2∣∣∣−Hα−1
2 dk =

∫
|k|> 1

|t−s|

∣∣∣k∣∣∣−Hα−1
dk

≤
∣∣∣t− s

∣∣∣Hα
· 2

Hα
.

(4.51)

Finally, from (4.49), (4.50) and (4.51) we get

∥∥∥X̃H,α,λ(t)− X̃H,α,λ(s)
∥∥∥α
α
≤ C

[∣∣∣t− s
∣∣∣αI1 + I2

]
≤ C

[
2

α(1−H)
+

2

Hα

] ∣∣∣t− s
∣∣∣Hα

= C2

∣∣∣t− s
∣∣∣Hα

which gives the upper bound in (4.48). In order to get the lower bound, we use the fact that
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there exist positive constants c1, c2 such that |e−iy − 1| > c1|y| for |y| < c2. Therefore

∥∥∥X̃H,α,λ(t)− X̃H,α,λ(s)
∥∥∥α
α
=

∫ +∞

−∞

∣∣∣e−ikt − e−iks
∣∣∣α ∣∣∣λ− ik

∣∣∣−(Hα+1)
dk

=

∫ +∞

−∞

∣∣∣e−ik(t−s) − 1
∣∣∣α ∣∣∣λ− ik

∣∣∣−(Hα+1)
dk

≥ c1

∫
|k|< c2

|t−s|

∣∣∣k∣∣∣α∣∣∣t− s
∣∣∣α∣∣∣λ− ik

∣∣∣−(Hα+1)
dk

= c1|t− s|α
∫
|k|< c2

|t−s|

∣∣∣k∣∣∣α(λ2 + k2)
−(Hα+1)

2 dk.

We now use the fact that

(
λ2 + k2

)−(Hα+1)
2 ≥

(
1 + c22

)−(Hα+1)
2

∣∣∣t− s
∣∣∣Hα+1

,

for λ < 1
|t−s| and |k| < c2

|t−s| to continue the rest of the proof as follows:

c1

∣∣∣t− s
∣∣∣α ∫

|k|< c2
|t−s|

∣∣∣k∣∣∣α(λ2 + k2
)−(Hα+1)

2 dk

≥ 2c1

(
1 + c22

)−(Hα+1)
2

∣∣∣t− s
∣∣∣α∣∣∣t− s

∣∣∣Hα+1
∫ c2

|t−s|

0
kα dk

= C1

∣∣∣t− s
∣∣∣Hα+α+1∣∣∣t− s

∣∣∣−α−1
= C1

∣∣∣t− s
∣∣∣Hα

and this gives the lower bound.

4.4 Local Times and Local nondeterminism

In this section, we prove the existence of the local time for LTFSM and HTFSM.We also show

that LTFSM and HTFSM are locally nondeterministic on every compact interval. We first

recall the definition of the local time (see [11] for more details). Suppose X = {X(t), t ≥ 0}
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is a real-valued separable random process with Borel sample functions. For any Borel set

B ⊂ R+

µB(A) = η({s ∈ B,X(s) ∈ A})

is called the occupation measure of X on B, where η is the Lebesgue measure on R+. If µB

is absolutely continuous with respect to the Lebesgue measure on R, then we say that X has

a local time on B and define its local time, L(B, .), to be the Radon-Nikodym derivative of

µB with respect to Lebesgue measure. We write L(t, x) instead of L([0, t], x).

Proposition 4.4.1. The LTFSM defined in (4.5) with 1 < α < 2 and 1
α < H < 1 has a

square integrable local time L(t, x).

Proof. According to Theorem 3.1 in [11], a stochastic process {X(t), t ∈ [0, T ]} has a local

time L(t, x) which is continuous in t for a.e. x ∈ R and square integrable with respect to x

if {X(t), t ∈ [0, T ]} satisfies

• Condition (H): There exist positive numbers (ρ0, H) ∈ (0,∞) × (0, 1) and a positive

function ψ ∈ L1(R) such that for all κ ∈ R, t, s ∈ [0, T ], 0 < |t− s| < ρ0 we have

∣∣∣∣∣E exp
(
iκ
X(t)−X(s)

|t− s|H
)∣∣∣∣∣ ≤ ψ(κ). (4.52)

We prove that the LTFSM {XH,α,λ(t)} satisfies (H). Apply (4.7) and Lemma 4.3.2 to get

E exp
(
iκ
XH,α,λ(t)−XH,α,λ(s)

|t− s|H
)
= exp

(
− |κ|α

∥XH,α,λ(t)−XH,α,λ(s)∥αα
|t− s|αH

)
≤ exp

(
− |κ|αC

)
:= ψ(κ)

where the function ψ(κ) belongs to L1(R, dk) which means the HTFSM satisfies H and this
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completes the proof.

Proposition 4.4.2. The HTFSM defined in (4.40) with 1 < α < 2 and 1
α < H < 1 has a

square integrable local time L(t, x).

Proof. We prove that the HTFSM {X̃H,α,λ(t)} satisfies (H). Apply (4.39) and Lemma 4.3.3

to obtain

E exp
(
iκ
X̃H,α,λ(t)− X̃H,α,λ(s)

|t− s|H
)
= exp

(
− |κ|α

∥X̃H,α,λ(t)− X̃H,α,λ(s)∥αα
|t− s|αH

)
≤ exp

(
− |κ|αC

)
:= ψ(κ),

where the function ψ(κ) belongs to L1(R, dk) which means the HTFSM satisfies H and this

completes the proof.

We next show that HTFSM is locally nondeterministic on every compact interval [ϵ, T ],

for any 0 < ϵ < T < ∞. Recall that a stochastic process {X(t)}t∈T is locally nondetermin-

istic (LND) if

1. ∥X(t)∥α > 0 for all t ∈ T

2. ∥X(t)−X(s)∥α > 0 for all t, s ∈ T sufficiently close; and

3. for any m ≥ 2,

lim inf
ϵ↓0

∥X(tm)− span{X(t1), . . . , X(tm−1)}∥α
∥X(tm)−X(tm−1)∥α

> 0,

where the lim inf is taken over distinct, ordered t1 < t2 < . . . < tm ∈ T with |t1 − tm| < ϵ,

T ⊂ R and ∥X∥α =
[
− log(E exp(iX))

]1/α
for 0 < α ≤ 2 (see [51, 52, 67] for more details).

Next, we show that HTFSM also is LND.
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Proposition 4.4.3. The HTFSM (4.40) with 1 < α < 2 and 1
α < H < 1 is LND on every

interval [ϵ, κ] for ϵ < κ <∞.

Proof. Theorem 3.3 in [19] shows that a harmonizable multifractional stable motion is LND

[ϵ, κ] for ϵ < κ < ∞. Our proof is a modification of that Theorem. We need to verify

conditions (1), (2) and (3) as described above. The first and second condition follows from

Lemma 4.3.3 ∥∥X̃H,α,λ(t)− X̃H,α,λ(s)
∥∥α
α ≥ C1

∣∣t− s
∣∣Hα

,

where C1 is a positive constant. To prove the third condition, observe first that the inverse

Fourier transform of

fH,α,λ(t, k) :=
e−ikt − 1

(λ− ik)H+ 1
α

(4.53)

on Lα(R) which is

F−1fH,α,λ(t, k) =
Γ(H + 1

α)√
2π

[
e−λ(t−x)+(t− x)

H−α−1
α

+ − e−λ(−x)+(−x)H−α−1
α

+

]
(4.54)

by (2.11). In order to verify the third condition, we shall establish a lower bound for

∥∥∥X̃H,α,λ(tm)−
m−1∑
j=1

ujX̃H,α,λ(tj)
∥∥∥
α
=
∥∥∥fH,α,λ(tm, k)−

m−1∑
j=1

ujfH,α,λ(tj , k)
∥∥∥
Lα(R)

where fH,α,λ(t, k) is defined in (4.53). Let β = α
α−1 . By applying the Hausdorff-Young
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inequality (see Theorem 5.7 in [39]):

∥∥∥fH,α,λ(tm, k)−
m−1∑
j=1

ujfH,α,λ(tj , k)
∥∥∥
Lα(R)

≥ C
∥∥∥F−1fH,α,λ(tm, k)−

m−1∑
j=1

ujF−1fH,α,λ(tj , k)
∥∥∥
Lβ(R)

= C

(∫ tm−1

−∞

∣∣∣F−1fH,α,λ(tm, k)−
m−1∑
j=1

ujF−1fH,α,λ(tj , k)
∣∣∣β

+

∫ tm

tm−1

∣∣∣F−1fH,α,λ(tm, k)
∣∣∣β dk) 1

β
.

(4.55)

From (4.54) we have

F−1fH,α,λ(tm, k) =
Γ(H + 1

α)√
2π

[
e−λ(tm−x)+(tm − x)

H−α−1
α

+ − e−λ(−x)+(−x)H−α−1
α

+

]

and the second term, e−λ(−x)+(−x)H−α−1
α

+ , vanishes on the interval [tm−1, tm]. Hence we

can continue (4.55) as the following:

≥ C

[∫ tm

tm−1

(tm − x)
β(H− 1

β
)
e−λβ(tm−x) dx

] 1
β

≥ C e−λ(tm−tm−1)
∣∣∣tm − tm−1

∣∣∣H ≥ C e−λ(κ−ϵ)
∥∥∥X̃H,α,λ(tm)− X̃H,α,λ(tm−1)

∥∥∥
α

(4.56)

for tm and tm−1 close enough (and C is a constant). In the last line in (4.56), we used the

fact that |tm − tm−1| < κ − ϵ and we also applied Lemma 4.3.3 to get the last inequality.
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Therefore

∥∥∥X̃H,α,λ(tm)− span{X̃H,α,λ, . . . , X̃H,α,λ(tm−1)}
∥∥∥
α
=
∥∥∥X̃H,α,λ(tm)−

m−1∑
j=1

ujX̃H,α,λ(tj)
∥∥∥
α

≥ C
∥∥∥X̃H,α,λ(tm)− X̃H,α,λ(tm−1)

∥∥∥
α

and consequently

lim inf
ϵ↓0

∥∥∥X̃H,α,λ(tm)− span{X̃H,α,λ, . . . , X̃H,α,λ(tm−1)}
∥∥∥
α∥∥∥X̃H,α,λ(tm)− X̃H,α,λ(tm−1)

∥∥∥
α

> C,

where C is a positive constant and this verifies Condition (3) of the LND property and this

completes the proof.
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