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ABSTRACT

MINIMUM DISTANCE REGRESSION AND AUTOREGRESSIVE

MODEL FITTING

By

Pingping Ni

This work proposes a class of tests for fitting a parametric regression model

to a regression function when the underlying design variables are random and the

model is possibly hetroscedastic. These tests are based on certain minimized L2

distances between a nonparametric regression function estimator and the parametric

model being fitted. The work obtains the asymptotic distribution of the pr0posed

statistic under the null hypthesis. It also derives the asymptotic distribution of

the corresponding minimum distance estimator. A class of tests based on a slightly

different L2 distance for fitting a parametric autoregressive model to a autoregressive

function is also prOposed in this thesis. The asymptotic prOperties of underlying

parameter estimator and corresponding minimized distanced is derived.
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Chapter 1

Introduction

This thesis is concerned with the classical problem of using a set of variables, say

d—dimensional variable X, to explain the response Y, a 1- dimensional real variable.

As in the practice this is often done in terms of the conditional mean function of Y,

given X, known as the the regression function, and defined as

p.(x) = E(Y|X = x), x 6 Rd,

assuming, of course, E [Y] < 00. In the context of time series where X may be the

vector of the previous (1 lagged variables, ,u is called the autoregressive function.

To be specific, let {(Xi, Yi) : i = 1, ..., n, } be observable random variables, where

(Xi, Y,) has the same distributions as (X, Y), for all 1 g i g n. They are said to obey

a regression model with regression function u if in addition {(Xi,1’,») : i = 1, ..., n.}

are independent and identically distributed (i.i.d). The data is said to have come

from an autoregressive model of order d = 1 with autoregressive function u, if in



addition, Xn+1 is also observable and Y, = Xi“, 1 g i S n.

Let 9 C R", and {mg(-) : 6 E 9}, be a given set of parametric models. The

statistical problem addressed in this thesis is that of model checking, i.e., to test the

goodness-of-fit hypothesis

(1.0.1) H0 : u(x) = m90(x), for some 00 E O, and for all x E I vs.

H1 : H0 is not true,

based on the given data, where I is a compact subset of W.

Several researchers have used nonparametric techniques on model checking in

regression and autoregressive setting since the late 1980’s. For instance, Eubank

and Spiegelman (1990), Eubank and Hart (1992, 1993), Hardle and Mammen (1993),

Stute (1996), and Stute, Thies, and Zhu (1998) address this problem in regression

setting, while An and Cheng (1991), Vidar, Yao, and Tjdstheim (1997), and K011]

and Stute (1999) in the autoregressive setting. In the regression context, some of

these works focus on fixed design rather than random and under some restrictive

assumptions on the error distribution. The proposed tests in these papers, except

Stute (1996), Stute et a1. (1998), and Koul and Stute (1995), are based on some

nonparametric estimator of the regression function while the tests in the latter

papers are based on a certain partial sum empirical process of the residuals.

Here we shall briefly summarize the contents of some of these papers. Eubank

and Spiegelman (1990) consider the sequence of models where d = 1, at stage n, _



X,- = x," with 0 g 113m < < xnn S 1, known nonrandom, and where

[43:31): ,80 + 18133231 + f($in)i 1 S i S TL,

and f is a smooth unknown function. Moreover, here the errors Y,- -— p(xin) are as-

sumed to be i.i.d. N (0, T?) with r2 unknown. It is also assumed that xi" are gener-

ated by a continuous positive density w on [0, 1] through the relation for” w(x)dx =

(23' - 1) / 2n. The problem addressed in this paper is to test the hypothesis f = 0

versus the alternative that f E L2(w)/{1,x}, f is absolutely continuous and its

a.e. derivative f’ is absolutely continuous and square integrable. Here the space

L2(w)/{1,x} consists of all functions in L2(w) orthogonal to 1 and the identity

function.

The paper proposes two tests. For one, they assume that f = Tnpa, a 6 R”,

where Tnp is a vector of known functions orthogonal to 1 and the identity function.

Then the test is based on the the least square estimators of fig, 51 and a. The other

test is based on the spline estimation of f and the least squares estimators of ,80, 61.

They prove the asymptotic normality of their pmposed statistics under their null

hypothesis. We note that the problem addressed in this paper may be thought to

be equivalent to fitting a simple linear regression model, i.e., to test H0 of (1.0.1),

with m = 2, m9(x) = (1, x)6, against a nonparametric class of alternatives.

Hardle and Mammen (1993) consider the problem of testing H0 based on the

model

(1.0.2) Yr = #(Xi) + 52',



where ei’s are allowed to be heteroscedastic with E(e,-|X,-) = 0 and E(5?!Xi = 3;) =

02(x). They propose a class of tests based on

(1.0.3) Mhh(0) := A [n'1 2: Kh(x — X.) (Y,- — 772.9(Xi)) {fh(x)}’2dG(x),

— n
1 u

Mar) == 12 ‘ZKh(a:— Xi), x 6 IR", Km) = it?

i=1

where K is a kernel density function on [—1,1]"1 and G is a o-finite measure on Rd.

Their test is based on the statistic Tn := nhd/QMMM), where the estimator 2 and

the null model are assumed to satisfy the condition

(1.0.4) m5(x) -— mgo(x) =(1/n)Z < n(x),'y(X,-) > e,- + op((nlogn)_1/2),

uniformly in 2:. Here n and 7 are bounded functions taking values in R" for some

h. It is pointed out in the paper that this assumption holds for linear models and

the weighted least squares estimators in nonlinear models if u(-) is ”smooth” with

W?) = (3/39)ma(-) at 9 = 90-

Apart from the usual assumptions such as the kernel K is a symmetric, twice

continuously differentiable with compact support, X lies in a compact set with

probability 1 and the density f of X is bounded away from zero and infinity, they

also assumed that hn = cn‘lMH) for some known constant c > 0, the regression

function ,u and the density f are twice continuously differentiable, and Eexp(te,~) is

uniformly bounded in i for |t| small enough.

Under some additional assumptions, they concluded that the asymptotic null

distribution of nhd/2(Mhh(§) — C") is N(0, 17), where Cn depends on the u = mac,

4



the second derivative of K and it‘d/2, and where

r _ 04($)92(13) x (2) 2
v-2/————f2($)d /(K (0) dt,

and g is the Lebesgue density of G.

The choice of bandwidth hn = cn‘l/(‘H") is asymptotically optimal for the class

of twice continuously differentiable regression functions. It is also crucial in getting

the rates of uniform consistency of nonparametric estimators of u and f, which in

turn play a crucial part in the proofs of this paper.

The paper gives details of the proof for one dimensional case only, i.e, for the

case d = 1. But it is not clear how their proof can be extended to the case d > 1,

without a concern for bandwidth selection.

These authors also did Monte Carlo simulations on both distribution of the test

statistic and its asymptotic distribution. Their studies show that the simulation of

the null distribution of the test statistic has a non-negligible large departure from

the limiting distribution in its mean, variance, and shape. It is also proved in the

paper that the naive bootstrap does not work for degenerate U statistics. So they

suggested to use wild bootstrap to calculate critical values.

Stute, Thies and Zhu (1998) also considered the problem of testing H0 of (1.0.1)

for model (1.0.2) with d = 1. They constructed a class of test statistics by first

splitting the whole sample into two parts, 1 to n1 and n1 to n with n1 —> 00 and

n — n1 —+ 00. The test statistic is based on the cusum process of the residuals of

the second half. Let Fm be the empirical distribution function of XMH, ..., Xn, 6n,



be a fin - nl-consistent estimator of the true parameter under the null hypothesis

based on (X,,Y-), n1 +1 < i < n, and let

RACE)2 (n — n1 ”2 Z 1{X <x}0n11(Xille‘ _ m0n1(Xi)l-

i:m+1

Define the transformation Tn by

(rune)

= m— [1 0.:3(y>mii,,(y>A;3<y>x [fosemmzuwa may).

Here

iflz/yoc m9n1(u)7h0nl(u) ;I2(U)Fnt(du)i

02 is a consistent estimator of 02 based on the first half sample, and m0:
111 59—97"m'"

Under the assumption that f: mgo(u)mg;(u)o‘2(u)F(du) is positive definite for

some $0 < 00, and under some additional smoothness assumptions on the null

model, they proved that under H0, Taft}, -—) B o F in distribution on D[—oo,x0],

where B is a standard Brownian motion and F is the distribution function of X.

They then propose the test statistic o;12F,f2(x0) ff;[TnR;,(x)]2Fn(dx). It is also

proved in this paper that their test statistic converges in distribution to f01 Bz(u)du

under their null hypothesis.

An and Cheng (1991) considered a problem of testing linearity of an autoregres-

sive function. They proposed a Kolmogorov-Simirnov type of test statistic based on



a process similar to R, with

éi = (X,- — X) - 16(Xi—1 - X),

22:1(Xk -' X)(Xk._—1 - X)

22:1(Xk _ X)2

 

_ 1 "

X=—E Xk, and ,5:

n

k=1

The test statistic is defined to be

_ m
m 1/2 A

sup—oc<t<oc A ekI(Xk_1<t) ’

0' k-2

where m = m(n) is a subsequence of n satisfying m —> 00 and m(lnlnn)/n —>

0. It is proved in the paper that this test statistic converges in distribution to

sup0<t<1|B(t)| under the null hypothesis, where B stands for standard Brownian

motion.

Koul and Stute (1999) preposed a class of tests for testing the goodness-of—fit

of an autoregressive model also based on an analogue of Rn. The test statistic is

defined as follows,

lTnVn($)l
sup ———————,

2:90 (In Gn($0)

where, for an x 6 1R,

1 " 1 "

TnVn($) = 777-: [1(Xi—1 S 93) - aZThen(Xi-1M?(Xi-llfiIOJXi—i)

i=1 jzl

XI(XJ'_1 S Xi_1 A $)] (Xi — m9n (Xi-1))?

Gum = iZI<X.--.sa. Ana): / ma.(y>m3‘,(y>1<y2nanny).
i=1

Here 6,. is the least square estimator of 60, of, is a consistent estimator of the variance

of the error. It is also proved that under H0 and when 02(x) = 02, the test statistic _

converges to sup0<t<1|B(t)|, in distribution.

7



Vidar, Yao, and Tjgbstheim (1997) considered a problem of fitting a linear autore-

gressive function by using local polynomial approximation. They pointed out that

one can construct new tests of linearity by exploiting that the first order derivative is

a constant, and the second order derivative is zero for a linear model. From the esti-

mation point of view, the local polynomial method does overcome some draw backs

of kernel type nonparametric estimate provided that the regression/autoregressive

function is ”smooth”, for example the existence of higher order derivatives. If conti-

nuity is the only smoothness condition that is put on the regression/autoregressive

function, then either a kernel type estimates or a local polynomial estimate of the

regression/autoregressive function yield exactly the same estimates. That means

that some tests proposed in this paper can not be extended easily to nonlinear case

without relatively strong smoothness conditions on the regression/autoregressive

function.

Our work uses the minimum distance ideas as developed by Wolfowitz (1952,

1954, 1957), to propose tests of fit for the problem. The inference procedures based

on various Lg-distances have proved to be successful in producing tests for fitting a

distribution and/or a density function, and in producing asymptotically efficient and

robust estimators of the underlying parameters in the fitted model, as is evidenced in

the works of Beran (1977, 1978), Donoho and Liu (1988a, 1988b), and Koul (1985),

among others.

Beran (1977) focuses on fitting a parametric family .7: = {fa : 9 E O} of densities -

to the common density in the one sample setup. The question raised in the paper is

8



how to estimate 6 in order to investigate the fit of the model to the data. This paper

introduces a new efficient parametric estimator based on the minimum Hellinger

distance. The Hellinger distance is defined to be the L2 norm of the difference of

the square roots of two nonnegative densities. The parametric estimator 6,, is the

6 E O that minimizes the Hellinger distance between f9 and fl. It is proved that

under some conditions the estimator 6,, is stable under small perturbations, and

fi(6n — 60) converges in distribution to a normal random variable with mean zero

and variance 4‘1[fsgo(x)sg;(x)dx]“1, where 60 is the true parameter, see is 39—939 at

6 = 60, and 39 = 51/2. The test statistic for testing the null hypothesis that f is

a member of f, against the alternative hypothesis that f is not a member of f,

is the corresponding minimum Hellinger distance. It is also proved in the paper

that under some conditions the suitably standardized minimum Hellinger distance

converges in distribution to N(0, 1) under the null hypothesis.

In the context of density fitting problem in the one sample set up, Beran (1977,

1978) showed that the inference procedures based on the Hellinger distance have

desirable properties. In the regression model fitting context, this motivates one to

consider the square distance

(1.0.5) M,;,,(0) = [(ihha) — manned), 9 6 w,
I

and the corresponding minimum distance estimator a; = argminaeeMghw), where

fihh(x) is a nonparametric estimator of the regression function u(x) based on the



window width h = hn:

n‘1 2;, Kh(x — Xi)Y,-

fill“) .

 

£1th) =

But because the integrand inside the square of Mgh is not centered, and be-

cause of the non-negligible asymptotic bias in the nonparametric estimator flhh,

the goodness-of-fit statistic M;,,(a;) does not have a desirable asymptotic null dis-

tribution. Moreover, the estimator 0;, though consistent, is not asymptotically

normal. In fact it can be shown that generally the sequence (nhd)1/2Ha,’, — 60“

may not even be tight. For example, see Remark 2.4.3 at the end of Chapter 2.

To overcome this difficulty, one may think of using MM, defined in (1.0.3) and let

(in = argmingethhw).

Now, under the null hypothesis H0, the ith summand inside the square integrand

of Mhh(60) is now conditionally centered, given the it” design variable, 1 _<_ i g n.

But the asymptotic bias in n1/2(ci,, — 60) and Mhh(dn) caused by the nonparametric

estimator fh of f in the denominator of uh}, still exists. It turns out that this

difficulty can be overcome if we use Optimal window width, different from h, and

possibly a different kernel, to estimate f. This leads us to consider the following

modification of the above distance and estimator. Define

(1.0.6)fwn (x) = n‘1 ZKMx — X,), x 6 Rd, wn ~ (logn/n)zh,

i=1

Mme) = f1[n"ZKh(r-Xi)(K-me(Xz-)) {fawn-Mae),

where K‘ is a density kernel function, possibly different from K, satisfying a Lips-

10



chitz condition. The proposed minimum distance estimators of 6 are

6,, :2 argmingEthww),

and the pr0posed tests of H0, one for each G, will be based on

326i) th(6) = th(6n).

We also consider the following square distance and estimator:

Mgww) = fi (fihu.(x)—mg(x))2dG(x), 66W,

6;: : argminaeeMIin)»

where

th(x) = n-1 2:ng — mpg/fwd), x 6 RP.

i=1

For the sake of simplicity, we write h for hn and w for wn.

This thesis proves the consistency of 6;, 6n, and the asymptotic normality of

n1/2(6,, — 60). The asymptotic null distribution of the statistic

T, :2 mid/2 (th60 — a.) fit,”

is shown to be standard normal. This result is similar in nature as the corollary to

Theorem 8 of Beran (1977 , p459). A test of H0 can be thus based on Tn. Here, On

is an nhd/z-consistent approximation of an asymptotic centering sequence 0,, and

11



A

I‘n is a consistent estimator of the asymptotic variance F,

Cu 2: n'2Z/Kh(x—X- £€,-2({fx)}'2dG(x),

i=1

a. = n'zz/Kh(::—X:e. é§{fw(x)}—2dG(x), éi=l’i—mén(X,-),lgi§n,

i=1 dx /( /K(u)K(v + u)du)2du,I“ := 2/o4(x)g2(($;

1“,. = hdn‘2:(/Kh(x—X)Kh(x—Xj)5‘éj {fw(x)}‘2dG(x))2,

#J'

 

where 02(x):= E{(Y— u(x))lX—— x}, x 6 Rd.

In autoregressive setup, where autoregressive function is defined to be

(1.0.7) ,u(x) = E(Xn|Xn-1 = x), n E Z,

and Z stands for the set of integers, we prOpose a class of test statistics for testing

H0 of (1.0.1) based on a slightly different LQ-distance Mh(6) defined as

(1.0.8) Mh(6):=/(6th15—i- 1 )(Xi—m9(X,-_1))) dG(x).

The underlying parameter estimator is defined as

(1.0.9) 6,, := argminaethw).

It is proved in this thesis that when d = 1 and 553 are i.i.d with 02(x) E 02,

under some conditions, fi(6n — 60) converges in distribution to a normal random

variable with mean zero and covariance matrix 251172231 under H0, where

(1.0.10) 722: = afmootx)mtta: museum. e<x)==m..(x)f(x),

20: fax))sT))(a:.dG)

l2



It is also proved that under some conditions, a suitably standardized minimized

distance Mh(6n) converges in distribution to a standard normal random variable

under the null hypothesis.

This thesis is organized as follows. Chapter 2 discusses the model fitting for

regression function. Theorem 2.2.1 and Theorem 2.3.1 give the asymptotic prOp-

erties of the underlying parameter estimate. Theorem 2.4.1 gives the asymptotic

distribution of the minimized distance under the null hypothesis. A test statistic

therefore can be constructed based on this theorem. Chapter 3 discusses a parallel

results for autoregressive model fitting.

Chapter 4 shows a simulation results in the autoregressive setting. This sim-

ulation compares the level and power performance of a minimum distance test

with that of Koul and Stute and An and Cheng (1991) tests for the sample sizes

50, 100, 200, 500. The minimum distance test is seen to perform better at some of

the chosen altenatives and for all chosen sample sizes. For additional details see

Chapter 4.

In the sequel, all limits are taken as n —) 00, unless specified otherwise.

13



Chapter 2

Minimum Distance Regression

Model Fitting

2. 1 Introduction

This chapter discusses a minimum distance method for fitting a parametric model

to the regression function, i.e. to test H0 of (1.0.1) based on the random sample

{(X,,Y,-) : i = 1,...,n} from the distribution of (X,Y), for which (X,,Y,-) satisfy

(1.0.2), where I is a compact subset of Rd. Moreover, assuming that the given

parametric family of models holds, one is interested in finding the model in the

given family that best fits the data.

In this chapter, we will construct a class of tests based on th(6n) in (1.0.6).

In contrast to Hardle and Mammen (1993), our results do not require the null -

regression function to be twice continuously differentiable nor do the proofs in this

14



chapter need the rate for uniform consistency of [ihw for u. Moreover, we derive the

asymptotic distributions of n1/2(6n — 60) and Tn under H0. This was made feasible

by recognizing to use different window widths for the estimation of the numerator

and denominator in the nonparameteric regression function estimator.

The rest of the chapter is organized as follows. Section 2 states various as-

sumptions, and section 3 contains the consistency proofs. The claimed asymptotic

normality of 6,. and th(6n) are proved in sections 4 and 5, respectively. A sim-

ulation study is presented in section 6 to illustrate the asymptotics for the sample

sizes 50, 100, and 200. The results are presented in terms of densities of \/7—2(6n — 60)

and nhd/2(th(6n) -— C”). These graphs show that the distribution of \fn—(6n — 60)

resembles the asymptotic normal distribution quite well even for the sample of size

50. The distribution of nhd/2(th(6n) — Cn) has a small negative bias compared

with the asymptotic normal distribution for all three sample sizes. But the bias

decreases as n increases.

2.2 Assumptions

Here we shall state the needed assumptions. About the errors, the underlying design

and G we assume the following:

(e1) The random variables {(Xi, Y,); X,- 6 W, Y,- E 1R,i = 1, - ~- ,n}, are i.i.d. with

the regression function ,u(x) = E(Y|X = x) satisfying fu2(x)dG(x) < 00,

where G is a o-finite measure on W.

15



(e2) E(Y — u(X))2 < 00 and the function 02(x) := E{ (Y - u(x))2|X = x} is as.

(G) continuous on I.

(f) The design variable X has a uniformly continuous Lebesgue density f that is

bounded from below on T.

(g) G has a continuous Lebesgue density 9.

About the kernel functions K, K‘ we shall assume the following:

(k) The kernels K, K“ are positive symmetric density functions on [—1,1]d with

finite variances and f lulTK2(u)du + f K’2(u)du < 00, for r = 0,1,2. In addi-

tion, K‘ satisfies a Lipschitz condition.

About the parametric family of functions to be fitted we need to assume the

following:

(m1) For each 6, m9(x) is as continuous in x w.r.t integrating measure G.

(m2) The parametric family of models m9(x) is identifiable w.r.t 6. i.e., if me, (x) =

m92(x), for almost all x (G), then 61 = 62.

(m3) For some positive continuous function 6 on I and for some 6 > 0,

[mp2 (x) — m9,(x)l _<_ “6;; — 61||8€(x), V62, 61 E 6-), x E I.

(m4) The model mg is differentiable in 6 in a neighborhood of 60 with the vector

of derivatives me, such that for every 6 > 0, k < oo,

 

. _ . _ _ T ' .

lim SUpP< Slip lm9(X2) ”1.9002(1) (0 00) m9o(X1)l > 6)

n igign,(nhd)l/2||a—eougk ”0 " 90H
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is 0.

(m5) For every 6 > 0, there is an N, < 00 such that for every 0 < k < 00,

P ( max It‘d/2||mg(X,-) - r'ngo(X,-)|| Z 6) g e, Vn > N,.

igign,(nhd)1/2||9—00Hgk

About the bandwidth h,, we shall make the following assumptions:

(hl) h,,-—)0asn—)oo.

(h2) nhid —+ 00 as n —) oo.

(h3) h ~ n‘“, where a < min(1/2d,4/(d(d + 4))).

Conditions (hl) and (h2) suffice for the consistency of 6", while (h3) is needed for

the asymptotic normality of 6,, and th(6,,). Of course, (113) implies (hl) and (h2).

It is well known that under (f), (k), (111) and (112), cf., Mack and Silverman

 

(1982),

(2-2-1) :21; ht?) - f0)! = 011(1), :21; film) - f(:L') = 0,10).

use) I
2.2.2 . —1 = 0,, 1 ,

( ) :23 nix) | ( ) 

These conclusions are often used in the proofs below.

In the sequel, we write h for h,,, w for w,,; the true parameter 60 is assumed to be

an inner point of O; and the integrals with respect to the G-measure are understood

to be over the set I. The inequality (a + b)2 g 2(a2 + b2), for any real numbers a, b,

is often used without mention in the proofs below.
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A

2.3 Consistency of 6;“, and 6,,

This section proves the consistency of 6;, and 6”. To state and prove these results we

need some more notation. Let L2(G) denote a class of square integrable real valued

functions on Rd with respect to G. Define

p(u1,1/2) := /I(V1(x) — V2($))2dG(.’E), V1, V2 6 L2(G),

and the map

T(u) = argminé,Ee p(u, mg), l/ E L2(G).L2(G).

In the sequel we shall often use the following notation

(in), := fh’2dG, dp = f-2do.

Moreover, for any integral L :2 fydgbh, L 2: f'ydp. Thus, e.g., T(6) stands for

T(6) with aw replaced by (p, i.e., with fw replaced by f. We also need to define

#1101319) 5: "—IZKhix—Xilm0(xi)a

i=1

[1,,(x,6) := n‘IZKh(x—X,-)r'ng(X,-),

i=1

Un(x, 6) := n"1 ZKh(x — X,)Y,- — un(x, 6),

i=1

n-1 2 K),(x — X,)(Y,~ —- m,(X,-)), U,,(x) = Un(x, 00),

Zn($,6) :: “71(1‘19) — Hn($100)

= n"1 ZKh(x —- X,)[mg(X,-) — mgo(X,)], 6 6 IR",

i=1

18



1%,,(1) := n‘1 Ema: — X,), K;(x) z: n-1 2 K;(x — x), :1: 6 ad,

i=1 i=1

20 := /m90(x)mg;(x)dG(x).

To begin with we state

Lemma 2.3.1 Let m satisfy the conditions (m1), (m2), and (m3). Then the fol-

lowing hold.

(a) T(V) always exists, VV 6 L2(G).

(b) If T(V) is unique, then T is continuous at 1/ in the sense that for any sequence

of {11"} E L2(G) converging to V in L2(G), T(l/n) —-> T(V), i.e.,

p(1/,,, u) ——> 0 implies T(Vn) ———) T(V), as n —> 00.

(c) T(mg(-)) = 6, uniquely for V 6 E 9.

Proof. The main ideas of the following proof are essentially as in Beran (1977).

Proof of Part (a). Because 9 is compact, it suffices to show that for every

V E L2(G), the map 6 +—> p(u, m9) is continuous. Accordingly, let 6,, be a sequence

in O, converging to a 6 E 9. Then, by the Cauchy-Schwarz inequalities, we obtain

|P(V1m0n) — [)(V, mall S P(m0n1m0)+ 2P1/2(V1m9)P1/2(m0n»m0) ‘—> 0»

by (m3).

Proof of part (b). Let {14,}, V in L2(G) be such that

(2.3.1) p(u,,,1/) —> 0.
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Set 6 = T(u), 19,, = T(Vn). Then, by the definition of T,

Miami.) S p(Vn.m.a).

By subtracting and adding 11 and expanding the quadratic and using the the

Cauchy-Schwarz inequality on the cross product term, the above bound is bounded

above by

p(1/,,, V) + p(u, mg) + 2p1/2(V,,, V)p1/2(l/, m,;).

In view of (2.3.1), we thus obtain

(2.3.2) lim sup p(u,,, mg") g p(u, my).

On the other hand, again by the definition of T, 6, and 19,, here, p(u, mg) _<_ p(V,m19,.)

which, together with an argument like the above, implies

P(me0n) -p(V»mv) Z P(Vn»mvn) —P(V1m19n)

2 pm. u) — 279/201... uni/Wm.)

But

p(u, mg") S 6p(1/,,,1/) + 4p(1/, mg) = 0(1).

Thus, again in view of (2.3.1), liminfn p(u,,,m,9n) 2 p(z/,m,)), which together with

(2.3.2), yields

(2.3.3) p(1/,,,m,)n) -—> p(1/,m,;).

Ftom this it follows that 6,, —) 6. For, suppose 19,, 4+ 19. Then, by the compact- -

ness of 9, there is a subsequence {"6“} C {6"} such that 19,”, -—> 61 ¢ 60, and by

20



the continuity of the map 6 H p(V,6), and by (2.3.1), we Obtain p(1/,,k,m,9nk) ——>

p(u, 712.9,). Hence, by (2.3.3), p(l/, mm) = p(l/, 171.13), implying, in view of the unique-

ness of T(V), a contradiction, unless 191 = 6.

Proof of part (c) follows from the identifiability condition (m2), which implies

that T(Tl’tg) = 6. D

A consequence of this lemma is the following

Corollary 2.3.1 Suppose H0, (e1), (62), (f), (m1), (m2), and (m3) hold. Then,

6;, —-—> 60, in probability under H0.

Proof. We shall use part (b) of the Lemma 2.3.1 with 12,, = flaw, u = mgo. Note

that Mgw(60) = p(;1hw,mgo), 6;, = T(un), and by the identifiability condition (m2),

T(V) = 60 is unique. It thus suffices to prove

(2.3.4) pm... me.) = opu).

To show this, we note that by plugging in Y, = u(X,-) +5,- and note that u = mgo

under H0, and expanding the quadratic integrand, p([ihw, u) is bounded above by

the sum 2[C,,1 -+- Cn2(60)], where,

C... := / Uitx)d¢w(x).

cam) == f[#n($19)—R;($)mo($)]2d¢w($lv 661v.

It thus suffices to show that both of these two terms are 0,,(1).
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By Fubini, the continuity of f and U2, assured by (e2) and (f), and by (k) and

(h2),

(2.3.5) E/U3(a:)d,o(x) = n-I/EKflx - X)a2(X)d<,o(x) = 0(1/nhd) = 0(1),

we obtain that

(2.3.6) / U:<)dm)=0.<<nhd)-1)

Hence, by (2.2.2),

o... s supu<)/f.<)r/U,3a:<)de<x)=0.<<nhd)-1)
:61

Next, we shall show

(2.3.7) Cn2(60) = 0,,(1).

Let

eh(x, 6) = EK),(x — X)mg(X) = / K(u)mg(x - uh)f(x — uh)du,

e,",,(x, 6) = EK;(x — X)£CTTI.9()=/K(uu)mg( f(x — uw)du.

By adding and subtracting eh(x, 6) and e',’,,(x, 6) in the quadratic term of the inte-

grand, one obtains that

(2.3.8) Cn2(0) S 3Cn21(6) + 3Cn22(0) + 3Cn23(9), 6 E 9,

where

(2.3.9) Cn21(6) = f[u,,(x,6) — e;,(x,6)]2 d¢w(x),

0.226) = f (Rammed)-e:.<x.6)]2da<x).

Cn23(6) = /[€h($,9)—€;(I,6)]2d¢w($).
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By thini, the fact that the variance is bounded above by the second moment,

and by (f), (k) and (m1), one obtains hat

(2.3.10) ECn21(60) _<_ n‘I/EK,2,(x—X)mgo(X)dcp(x) = 0((nhd)‘1).

Hence Cn21(60) = 0p((nhd)‘1) follows from (2.2.2). Similarly, one can obtain that

Cn22(60) = Op((nhd)‘1). The claim C,,23(60) = 0(1) follows from the continuity of

mg, and f. This completes the proof of (2.3.7), and hence that of (2.3.4) and the

corollary. C]

Before stating the next result we give a fact that is often used in the proofs

below. Under (f), (k), and (112),

(2.3.11)/E

= n‘I/EKflx — X)(12(X)dcp(x)+/[EK,,(x — X)a(X)]2dcp(x)

71-1 2 Kh(~"3 - Xi)a(Xil] 060(3)

 

= 0(1) + 0(1) = 0(1), for any continuous function a on I.

We now proceed to state and prove

Theorem 2.3.1 Under H0, (e1), (e2), (f), (k), (m1), (m2), (m3), (Ill), and (h2),

A

(2.3.12) 6,, —) 60, in probability under H0.

Proof. We shall again use part (b) of Lemma 2.3.1 with 11(x) E mgo(x), V,,(x) E

mén(x). Then by (m2), 6,, = T(14,), 60 = T(u), uniquely. It thus suffices to show

that

(2.3.13) p(mén, 777.90) = 0,,(1).
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But observe that

p(mg,, , me.) 5 26011.... mg) + p011”... meoll-

Thus, in view of (2.3.4), it suffices to show that

(2-3-14) th(én) E pmhw, mi.) = 0p(1)-

But this will be implied by the following result.

(2-3-15) 81:1) WWW) - M5,...(9)! = 012(1)-

For, (2.3.15) implies that

Mm.) = Mikel.) + 0,,(1), M;w(9;) = Mme.) + 0,.(1),

(2.3.16) Mm.) — Minx.) = Mini.) — Mater.) + 0,,(1).

By the definitions of 6,, and 6;, for every n, the left band size of (2.3.16) is nonneg-

ative, while the first term on the right hand side is nonpositive. Hence,

Mliw(6n) — th(6fi) = 0P(1)°

This together with the fact that Mgw(6;‘,) S M;w(60) and (2.3.4) then proves (2.3.14).

We now focus on proving (2.3.15). Add and subtract u,,(x, 6) /fw(x) inside the

parenthesis of M,jw(6), expand the quadratic, and use the Cauchy-Schwarz inequality

on the cross product, to obtain that the left hand side of (2.3.15) is bounded above

by

1/2

81:1) Cn2(9) + 2 51:1) (Cn2(9)th(9))
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It thus suffices to show that

(2.3.17) sup Cn2(6) = op(l), sup th(6) = 0,,(1).

9 9

Recall the notation at (2.3.9). Using the same argument as for (2.3.10), and by

the boundedness of m on 1' x 9, one obtains that

sup ECn21(6) = 0(1) = sup ECn22(6).

9 9

By the continuity of mg and f, one also readily sees that Cn23(6) = 0(1), for each

6 E O. In view of an inequality like (2.3.8) for Cng, we thus obtain that Cn2(6) =

0,,(1), for each 6 E O. This and (2.2.2) in turn imply that

 (2.3.18) 0,2(9) g sup . C",,(9)=o,,(1), v9ee.

1'

Finally, by (m3),

lCn2(62) - Cn2(91)l

 s 21192—91usupf2(x) if [n-liKh(x—X,)6(X,)]2d<p(x)
261 1:", (x) i=1

+ [[R;<x)i<x)12d¢(x)].

But (2.3.11) applied once with a E E and once with a E 1 implies that the third

factor of this bound is 0,,(1). This bound and (2.2.2) together with the compactness

o O and (2.3.18) completes the proof of the first part of (2.3.17).

To prove the second part of (2.3.17), note that by adding and subtracting m90(X,-)

to the it“ summand in th(6), we obtain

Mae) 5 2sup<f<x)/f.,<z))2 (/ U§($)dso($) + / 2222926)) .
x61
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But, by the boundedness of m over I x O and by (2.3.11) applied with a E 1,

(2.3.19) 512p / Z3,(x,6)d<,o(x) g of (Kn(x))2d<p(x) = 0,,(1).

This together with (2.3.6) then completes the proof of the second part of (2.3.17),

and hence that of the Theorem 2.3.1. [I]

2.4 Asymptotic distribution of 6,,

In this section we shall prove the asymptotic normality of n1/2(6,, - 60). The first

step towards this goal is to show that

(2.4.1) nhdH6,, — 9,,“2 = 0,,(1).

Recall the definition of Z,, from (2.3.1) and let D,,(6) := fZ§(x,6)d<p(x). We

claim

(2.4.2) nlLan(6,,) = (),,(1).

To see this, observe that

n 2

nhthw(6o) = Mid/(n‘IZKMx—Xflei) d¢w(x)

i=1

S nhd/U§(I)d<9(l‘)+nhd/U3($)d<9($):1éir)|f2($)/f3.(x) - 1|

= 0,,(1),

by (2.3.5) and (2.2.2). But, by definition,

th(én) S th(60))
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implying that

nhthw(6,,) = 0,,(1).

These facts together with the inequality

Dn(6) <2i1th(60) + A{hw(én)l

proves (2.4.2).

Next, we shall show that for any a > 0, there exists an N,, such that

(2.4.3) P (D,,(6n)/||6,, — 90))2 _>_ a + llilllfleEOb) > 1 — a, v n > N,,,

where 20 is as in (2.3.1). The claim (2.4.1) then will follow from (2.4.3), (2.4.2), the

positive definiteness of >30, and the fact

nthn(6,,) = nhd||6,, — 9,,“2 [D,,(6,,)/l|6,, — 90”?)

To that effect, let

(2.4.4) u,, := (6,, — 60), d,,,- := mg (X,)— mgo(X,- ) — uzmgo(X,-), 1 513 n.

We have

M— S Dnl + Dnz, where

||9n - 90“2

D“ = f”-127“— “(IIdT‘iIIlrdm

0,2 = fM]99(2).
llunll 
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By the assumption (m4) and the consistency of 6,,, one verifies by a routine argument

that D,,1 = 0,,(1). For the second term we notice that

(245) Dn2 > inf 2,,(6),

where

Z,,(b) := / [bT [1,,(x, 60)]2 d<p(x), b 6 Rd.

By the usual calculations one sees that for each b 6 Rd, 2,,(b) —-) bTZOb, in probabil-

ity. Also, note that for any 6 > 0, and any two unit vectors b, b, 6 Rd, llb— b,” g 6,

we have

2

|2n(b)- $7101)! <5()5+2)[/ ”“219433- Xilllmao(Xz)lld10($)

i=1

But the expected value of the r.v.’s inside the square of the second factor tends to

f Ilm(x)ll f(x)dcp(x), and hence this factor is 0,,(1). From these observations and

the compactness of the set {b 6 W; ”b“ = 1}, we obtain that

sup (2,,(3) — bTEObl = 0,,(1).

l!b||=1

This fact together with (2.4.5) implies (2.4.3) in a routine fashion, and also concludes

the proof of (2.4.1).

We shall now prove the asymptotic normality of n1/2(6,, — 60). The proof is

classical in nature. Recall the definitions (2.3.1) and (2.4.4), and let

th(6) :2 —2/U,,(x,6),[i,,(x,6)d<,b,,,(x).
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Since 60 is an interior point of O, by the consistency, for sufficiently large n, 6,, will

be in the interior of O and th(6,,) = 0, with arbitrarily large probability. But the

equation th(6,,) = 0 is equivalent to

(2.4.6) / U,,(:1:) [2,,(x,6,,)d<,bw(x) = [Z,,(x,6,,)ii,,(x,6,,)d¢w(x).

We shall show that n”2 x the left hand side of this equation converges in distribution

to a normal r.v., while the right hand side of this equation equals R,,(6,, — 60), for

all n 21,with R, = 20 —+- 0,,(1).

To establish the first of these two claims, rewrite this r.v. as the sum 3,, -+- Sm +

gnl + gn2 'i” 97,3 'i' 9,,4, where

5,, = /Un(x);ih(x)d<p(x), ii),(x) = EK),(x — X)mgo(X),

Un($)/lh(13)(f.£2($) - f'2(l‘))dG(1?),

Un(I) [#11031 90) - [Mill d<9($)

Un($l [#n($éril1n($ 6’0W

/

/

as:[useuuaarwuenafa)ar%nwca)

/

a.=/Uw<)hax9) —t%($W%]J ammo)

We need the following lemmas.

Lemma 2.4.1 Suppose (e1), {62), (f), (g), (k), (h1), (h2) hold, Ele|2+5 < 00, for

some 6 > 0, and 9190(2) is continuous in x E I. Then, under H0, nl/QSn —-)d
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N(O, 2) , where

2 = 1m... f / EKh(x-X)Kh(y—X) 02(Xlllhlxlllf(yld$0($)d9°(yl

z fo“(x)moo(x)rh£,(x)92(r)
f(x) dz. 

Moreover, iff is twice continuously difierentiable, and h satisfies (h3), then

(2.4.7) n1/2|Sn1| = 0,,(1).

Lemma 2.4.2 Under H0, (61), (62), (f), (k), (m1), (m2), (m4), (m5), (h1), (h2),

(2-4-8) (9) Til/297:1 = 012(1)» (’9) ”mm = 0,,(1).

(2-4-9) (6) Til/297:3 = 012(1), (d) 711/ng = 019(1)-

The proof of (2.4.7) is facilitated by the following lemma, which along with its

proof appears as Theorem 2.2 part (2), in Bosq (1998).

Lemma 2.4.3 Let fw be the kernel estimate associate with a kernel K‘ which sat-

isfies a Lipschitz condition. If f is twice continuously differentiable with a compact

1

support, if wn is chosen to be on (log n/n)m where an ——> a0 > 0, then

(10g;c fl)‘1(n/10gn)‘fi 81:11) lfwt'c) - f (It)! —> 0, 61-S-

for any positive integer k.

Proof of Lemma 2.4.1. For convenience, we shall give the proof here only for

the case d = 1, i.e., when uh(:r) is one dimensional. For multidimensional case, the '
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result can be proved by using linear combination of its components instead of uh(a:),

and applying the same argument.

Let sm- := th(:r - Xi)eiuh(:r)d<p(x), and rewrite

nl/zSn = 12'“2 Z 3",.

i=1

Note that {3mg 1 g i g n} are i.i.d. centered r.v.’s for each n. By the L-F C.L.T.,

it suffices to show that as n —> 00,

(2.4.10) E33,1 —) 2,

(2.4.11) E {s§,,1(|snll > Til/2M} —> 0, VA > 0.

But,

E33,, E/Kh(:z: — X)8[4h($)d<,9(:v) >< /Kh(y - Xl€flh(y)d99(y)

= f / EKh(:z:—X)Kh(y—X)02(Xlflhlxlfih(yld$0(17ld<fl(y)-

By the transformation :1: - z = uh, y — z = oh, 2 = t, taking the limit, and using

the assumed continuity of 02, f, and 9, we obtain

2 = lim/f/K(u)K(v)02(t)uh($+uh)uh($+vh)f(2:)
h—)0

x g(:z: + uh)g($ + vh)

f2(a: + uh)f2(z + vh)

dx.

du do d1:
 

 
/ 92<x)m3.<x>92(z)

f(x)

Hence (2.4.10) is proved.

To prove (2.4.11), note that by the Holder inequality, the L.H.S. of (2.4.11) is
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bounded above by

A_6/2Tl_6/2E(Sn1)2+6

(fume — X>izh<x>>1¥99<x>)2 [elm] .
S A-6/2 ”_6/2E

 

This upper bound is seen to be of the order 0((nhd)'5/2) = 0(1), by (h2), thereby

proving (2.4.11).

To prove (2.4.7), by the Cauchy-Schwarz inequality, the boundedness of uh(:1:),

(2.3.6), and by Lemma 2.4.3, we obtain

983.. s Cn [(U.(x>9h<x)>zdso(z> sup (mo/fin) — 1 2
zEI

= n Op((nlld)_1)0p((108k n>2<lognm> 9‘?)

= 0,, ((log,c n)2(log n)fi7 nad7h) = op(1),by (h3).

This completes the proof of Lemma 2.4.1. [:1

Proof of Lemma 2.4.2. By the Cauchy-Schwarz inequality,

Hal/29.412 s (1912/ / Uflxldwxl) (..1/2/ 11449.9.) —- flh(x)||2d99(r)) .

By (2.3.5), and (112),

(2.4.12) En1/2/U:($)dcp($) = 0(n'1/2h—d) = 0(1).

To handle the second factor, first note that [4,,(93, (90) — ph(:c) is an average of centered

i.i.d. r.v.’s. Using Fubini, and the fact that variance is bounded above by the second

moment, we obtain that the expected value of the second factor of the above bound
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is bounded above by

(2.4.13) n’l/Q/EIIK),(I — X)r'ngo(:z:)[|2 deem) = 0(n'1/2h’d) = 0(1).

This completes the proof of (2.4.8)(a). This together with (2.2.2) implies (2.4.8)(b).

To prove (c), similarly,

lin1/29n3ll2 S n/U§($)d<p(17)/ I

But, the second integral is bounded above by

9,44, 9.) — m. 90)”? 949(4)
 

max Hm. (X>— mom->1)? / (R.(x>)29<p<x)=o.(hd)x041),
1<i<n

by (2.4.1) and the assumption (m5), and by (2.3.11) applied with a E 1. This

together with (2.3.5) proves (2.4.9)(c). The proof of (2.4.9)(d) uses (2.4.9)(c) and

is similar to that of (2.4.8)(b), thereby completing the proof of the Lemma 2.4.2. [I]

Next, shall show that the right hand side of (2.4.6) equals Rn(6n — 60), where

(2.4.14) [Ln = 20 + 012(1)-

Again, recall the definitions (2.3.1) and (2.4.4). The right hand side of (2.4.6)

can be written as the sum Wnl + an, where

)md

Wm := / [u:(ln))n(,2: 6) 1142K“a: — ::)dn-] dpw(z) = VnuZun,

Wn2 I: ffln($v6n)fln($,60) (195149013) un 2 Ln un say,
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so that the right hand side of (2.4.6) equals [Vn 441+ Ln] un. But,

dni

anu s max —'‘
15‘5"”unll

v... == / 1?.(4) (Inn(x,9.)nd9w<x)

s ggllmxxo—maaxan /K.<x>99w(x>

+ / Rn<x>|mh<49o>nds9w<x>

= can-+0.0).

by (2.2.2), the assumption (m5), and by (2.4.1). This together with (m4) then

implies that lanll = 0,,(1), and by the consistency of 6”, we also have ||Vnuffll = 0,,(1).

Next, consider Ln. We have

Ln = ffln<$160)lpn($aén)—pn($,00)le¢w($)+/fln($i60)fl:(3960)d$5w($)

= L711 + [1,0, say.

But, by (2.2.1) and (m5), “Ln“ = 0,,(1), while

 
an — fflhwigolfiflxigoldifidfl !

s / ((444.90) — p.(x.9o)11299.,<4>

+2 f ((44490) — 444,90)” (In.<x,9o)ud9w(z).

But, by (2.2.2) and (2.4.13), this upper bound is op(1). Moreover, by usual calcula-

tions and using (2.2.2), one also obtains

/no, 90mm, 90ld85w($) = 20 + 04(1).
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This then proves the claim (2.4.14).

Upon combining these results about the left hand side and the right hand side

of (2.4.6), we have the following theorem.

Theorem 2.4.1 Assume (e1), (e2), (f), (g), (k), (m1) - (m5), and (h3) hold.

Suppose, in addition, that E|e|2+5 < 00, for some 6 > 0, andf is twice continuously

difierentiable. Then, under H0,

(2.4.15) Til/2(9), -— 90) = mini/23,, + 0,,(1).

Consequently, n1/2(6n —— 60) => N(0. 2512231), where E is as in Lemma 2.4.1.

Remark 2.4.1 Upon choosing g E f, one sees that

E = f02(z)mgo($)mg;(a:)f(:1:)d$, 20 =/rngo(:r)mg;(a:)f($)dzr.

It thus follows that in this case the asymptotic distribution of n1/2(6n — 60) is the

same as that of the least square estimator. This analogy is in flavor similar to

the one observed by Beran (1977) when pointing out that the minimum Hellinger

distance estimator in the context of density fitting problem is asymptotically like

the maximum likelihood estimator.

Consider a: and 6 are one dimensional case. Let mg(:z:) = 61:, so 7329(2) = 2:.

Let 6n be the minimum distance (MD) estimator, 6,, be the lease absolute distance

(LAD) estimator. The variance of ,/Fz(é,, — 60) is denoted by V1, and

 
= 03f1x292($)f‘1(:r)dx

(f1 9290(4))2
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The variance of fi(6n — 60) is denoted by V2, and

 

1

V2 =W

Let g(2:) = f2(:z:)l(a:). then

a: f. $2f3(x)12($)dx
V1 = 2 .

(f1 x2f2(:r)l(x))

Now consider the example that X ~ N(0, 7'"), l (1:) = f‘1(a:), the error distribu-

tion is N(0, 03), and I is a finite interval [—a, a], then

  

 

V a: ffa 172f($ld$ of

1 (la x2f(z (1:13)2 ffa fiflxldxl

27m2 n02
V = e : ———£.

2 472 2T2

Take r = 1 and a large enough such that

/a $2w($)da‘ > if“) x2w($)da:,

0. —oc

where 7/1 stands for the standard normal density, then V1 < V2.

Or take a = 1 and 7' small enough such that

"
H
O

2 00

/ y2w(y)dy > ;/ y2¢(y)dy,
G

r 00

then V1 < V2.

Remark 2.4.2 Linear regression. Consider the linear regression model, where

q = d+ 1, G) = Rd“, and m(r) = 61 + 6310, with 61 6 IR, 62 6 Rd. Because now the _

parameter space is not compact the above results are not directly applicable to this
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model. But, now the estimator has a closed expression and this regression function

satisfies the conditions (m1) - (m5) trivially. The same techniques as above yield

the following result.

With the notation in (2.3.1), in this case

. , R1103) . EKh(.’L‘ - X)

un(2:.9) E #14235 ,uhm 2

1:” Kh(~73- Xilxi EKh(a:—X)X

230 = / 1 m g($)d$, En: [fln($)fln($)'d¢w($),

:L‘ IBIL‘

_ 1 9’ 02mm)

3 ' f , f(x) dx’
IL‘ 231:

MW) = [we — <9 — 9o)'4n(z>l299w(x>.

The positive definiteness of Z,, and direct calculations thus yield

(9‘. — 90) = 2:3 / no) Un($)d90w(33l-

From the fact that Z,, —-+ 20, in probability, parts (a) and (b) of Lemma 2.4.2,

and from Lemma 2.4.1 applied to the linear case, we thus obtain that if (e2), (k)

and (h3) hold, if the regression function is a linear parametric function, and if

f ||x||2d0(r) < 00, f is twice continuously differentiable, then

n1/2(6n — 60) = 251 / Un(:1:)[ih($)d<p($) + op(1) => N(0,2312251).

Remark 2.4.3 Tightness. Consider when d = 1, from the definition, 0:, satisfies
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the equation

(2.4.16) A (mo; (:16) — m90(1:)) ma;($)dG(r) = An + Bn + C",

 

 

where

1 n , dG'(:r)

An = -— K x—Xie, ma-x . ,

film; "( ll "( )no)

_ l n $_ -m _ _ m. dG(:c)

Bn — /I‘(nt=ZIKh( X1) 00(Xz) Hal) an($) fh($),

. dG($)

Cu 2 EKhx—Xl m0X1 —mo:z: ma-x - ,[I < M .() 9<>> MW)

and

#a = EKh(-’F — X1) (m90(X1l " m90(x))»

and in stand for Elm/86.

The left hand side of (2.4.16) is approximately

(a; — 9o) / miwcm.

An and B, are op(1/\/r—il_i) by Cauchy-Schwarz inequality, consistency of 01;, and

continuity of m on 6 E 9. But 0,, is approximately

40(4)

f (a?) '

 
[fl/KW) (mach: — uh) — m60($)) ”990(23)

So if mao(') is not differentiable, and Vnh(m90(a: — h) — mgo(:1:)) is divergent, then

Vnh(oz; — 60) is not tight.
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2.5 Asymptotic distribution of the minimized dis-

tance

This section contains a proof of the asymptotic normality of the minimized distance

th(6n). To state the result precisely, recall the definitions of C", CmC'n, I‘, f‘n

from (1.0.7) and let

P, := 2nd / / [EKh(a: — X)K,,(y — X)02(X)]2 d<p(:1:)d<p(y).

We shall prove the following

Theorem 2.5.1. Suppose (e1), (e2), (9), (k), (m1)-{m5) hold, E54 < 00, h satis-

fies (h3), and f is twice continuously difierentiable.

Then, under H0, nhd/2(th(6n) — Cu) asymptotically normally distributed with

mean zero and variance I‘. Moreover, (FnF‘l — 1| = 0,,(1).

Consequently, the test that rejects H0 whenever f‘;1/2nhd/2|th(6n)—Cnl > 7.0/2,

is of the asymptotic size a, where .20 is the 100(1 — a)% percentile of the standard

normal distribution.

Our proof of this theorem is facilitated by the following five lemmas.

Lemma 2.5.1 If (e1), (e2), (f), (g), (k) hold and if nhd —> 00, then

nhd/2(th(60) —C,,) is asymptotically normally distributed with mean zero and vari-

ance I‘.
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Lemma 2.5.2 Suppose (e1), (62), (f), (1:), (m3), (m4), (m5), (h1), (h2) hold and

E84 < 00. Then nh‘l/2 th(60) — th(6n) = op(1).

Lemma 2.5.3 Suppose, in addition to (61), (62), (k), (m3), (m4), (m5). and

Be4 < 00, f is twice continuously difierentiable and h satisfies (h3). Then,

”ltd/2 thlgol — thlgol = 012(1)-

Lemma 2.5.4 Under the same conditions as in Lemma 2.5.3,

nhd/2(C'n — C3,) = 0,,(1).

Lemma 2.5.5 Under the conditions of Theorem 2.5.1., f‘n — I‘ = 0,,(1). Conse-

quently, the positive definiteness ofl‘ implies, lf‘nF‘l — 1! = 0,,(1).

Proof of Lemma 2.5.1. Note that th(60) can be written as the sum of Cu and

Mug, where

Mn2 = n—22/Kh($—Xi)Kh(IL‘—Xj) €15jd§0($).

i¢j

We shall prove that

(2.5.1) nhd/2Mn2 is AN(O,1",,).

To prove (2.5.1), we shall use Theorem 1 of Hall (1984) which is reproduced here

for the sake of completeness.

Theorem 2.5.2. Let TC, 1 S i S n, be i.i.d. random vectors, and let

Un. I: Z Hn(Xi9X~j)i Gn($1y) = EHH(X1?$)HTI(X1ay)’

131(an
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where Hn is a sequence of measurable functions symmetric under permutation, with

EHn()~(1,)~(2)|)~(1) = 0, a.s., and EH:(X1,X2) < 00, for each n _>_ 1.

If

- - - - - - 2

EGE,(X1,X2) +n-1EH3(X1,X2)] / [EH§(X1,X2)] —+ 0,

then Un is asymptotically normally distributed with mean zero and variance

n2 EH3<X~1, 210/2.

Apply this theorem to X,- = (XT 5,)T and

Hn(Xi,Xj) = n_1ltd/2/Kh(III—Xi)Kh($—Xj)5i8jd§0($),

so that

”Ltd/2Mn222 Z Hn(Xi,X~j).

lgi<j5n

Observe that this Hn(X1, X2) is symmetric, E(Hn(X1,X2)|X1) = 0, and

EH§(X1, X2)

= n—2lLd/f [EKh($ — X1)Kh,(?/ _ X1)02(X1) ]2 d90($)d90(y)

 s (nzhdl‘I/f {/K(U)K(y;$+U)02($-uh)f($-uh)dU]2d90(I)d<p(y)

< 00, for each n 2 1.

Hence, in View of Theorem 2.5.2., we only need to show that

(2.5.2) EGfi(X1,X2)/[EH§(X1,X2)]2 = 0(1),

(2.5.3) n‘lEH2()~(1,)~{2)/ [EH§(X1,X2)]2 = 0(1).
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To prove (2.5.2) and (2.5.3), it suffices to prove the following three results.

(2.5.4) 563,021, X2) = 0(n-4hd),

(2.5.5) EHf,(X1, X2) = 0(n-4h-d),

(2.5.6) EH§(X1,X2) = 0(n'2).

To prove (2.5. 4), write a t 6 Rd“ as tT= (tT,t2), with tle61R". Then, for any

t,s 6 Rd“,

Gn(t,s) = n‘2hd//Kh($—t1)Kh(z—sl)t232

xE[Kh(r — X1)Kh(z — X1)02(X1) ammo).

For the sake of brevity write dcpxm-— d<p(a)dgo(z)dgo(w)dgp(v), and

EKWI - XilKhlz - X1)02(X1)

= /K,,(:r -— t)K),(z — t)02(t)f(t)dt

= “(fo

= Bh(z(—3:) say.

u)02(:r; — uh)f(x - uh)du 

Then, by expanding square of the integrals and changing the variables, one obtains

that

EGi(X~11 X2)

n’4h2d////Bh(:1: — w)B),(z —:1:)Bh(z — v)Bh(v — w) dSPzzwv

= 0(n"4hd)
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This proved (2.5.4). Similarly, one obtains

EH§(X1,X2)

= TL-4h2dE (/ Kh($ — XllKh($ " X2)5152 (190(55) )4

= n‘4}12d//// (EKh(a: — X1)K,,(y — X1)Kh(s — X1)Kh(t -— X1)<7“(X1))2

dsoxyst

= 0(n‘4h_d),

and that

EH§(X1,X2)

= 7.4thf / Kh(a: — xgmz — X2)K,.(y — X.)Kh(y — X2)e¥e§ d<p(:v)dsp(y)

= n‘zhd/f [EKh(x — X1)Kh(y- X1)02(X1)]2 d90($)d80(3/)

= 002-2).

thereby verifying (2.5.5) and (2.5.6). This completes the proof of (2.5.1).

By (2.5.7),

(1 /2)n2EH3,(f(1, 5(2)

= 2261/] (/K(u)h‘dK(¥ +u)02(a: — uh)f(x — uh))2 d<p(:z:)d<,0(y)

——> (U?) /(02($))29($)d¢(13) f(f K<u>K<v + u>du>2dv

by the continuity of 02 and f. This complete the proof of Lemma 2.5.1. [:1
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Note that 0,, = n‘lEfKflx—Xl) 5f (190(27). Let 6,, :2 Ef Kflx—Xflef (190(1).

Then, by routine calculations,

, 2

E (Mid/2(6), — Cn))

n 2

= E (n-lhd/z 2 [/ Kflx — X06? (190(3) — enJ)

i=1

3 72,-1th (/ Kin: — X06? (190(10):,

(f Km: — X1) d¢(x))2€i]

= 0((nhdl’1) = 0(1).

= n'lth

 

Combining this with the Lemma 2.5.1, one obtains that nhd/2(th(60) — Cu) is

AN(0, F”).

Proof of Lemma 2.5.2. Recall the definitions of Un and Z,, from (2.3.1). To prove

part (b), add and subtract m90(X,-) to the 2"" summand inside the square integrand

of th(én), to obtain that

th(60) — th(én) = 2/Un($)Zn($,én) d¢w(:1:) —/Z§(3:,én) dgbw(2:)

= 2Q1 - Q2~ 533’-

We need to show that

(2.5.7) (2) nhd/zQI 2 010(1), (22) nILd/2Q2 = 0,,(1).
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By subtracting and adding (én — 90)Trhgo(X,-) to the 2"" summand of the second

factor of integrand in Q1, we can rewrite Q1 as the sum of Q11 and Q12, where

/ Una)

Q12 = (93. — 001T / Unomnwnwwo)

Q11

 

12-1 Z Kh(.’L‘ - Xi)dm'] (($11,013),

i=1

where dm- are as in (2.4.4). By (2.4.1), for every n > 0, there is a k < 00, N < 00,

such that P(An) 2 1— n, for all n > N, where An := {(nhd)1/2||én — 00“ < k}. By

the Cauchy-Schwarz inequality, (2.2.2), (2.3.6) and the fact that

(2.5.8) / (Rn(:r))2 dam = 0.0).

we obtain that on the event An, nhd/leul is bounded above by

nl/zllén — 00||(nhd)1/2 sup in—I-L— Op((nhd)"1/2).

i.<nhd11/*Ha—oon<k llén - 90”

This bound in turn is 0,,(1) by Theorem 2.4.1 and the assumption (m4). Hence to

prove (2.5.7)(i), it remains to prove that nhd/2IQ12I = 0,,(1).

But Q12 can be rewritten as the sum of Qm and Qm, where

Q12. = (é. — 9017‘ / Un(z>pn(x.é.)d¢w(z),

Q1222 = (én — 60)T/Un($) [lin($aén) — #413390) d‘iaw(x)

Arguing as above, on the event An, (nhd/2IQ122I)2 is bounded above by

nzhduén — eon? max 11mm» — moo(Xz-)||20p((nhd)‘1) = 0pc),
lgign

by (2.2.2), (2.3.6), (2.5.8), and assumptions (m5) and (h2).
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Next, note that Qm is the same as the expression in the left hand side of (2.4.6).

Thus, it is equal to

(2.5.9) ((9,. — 60V / Z..<x,én>un(x,én>d¢w(z)

= (6.. — 00):” / zn<x.é.)un(x.eo>d¢w<x>

+<én — 6017‘ f 2.42:. 62.) [w.én) — mm] mm

2 D1 + D2, say,

But, by the Cauchy-Schwarz inequality, (2.2.2), (2.3.19), and (2.5.8), nhd/2IDll is

bounded above by

nhd/2llén ‘ 90l|20p(1l = 010(1),

by Theorem 2.4.1 and the assumption (m5) and (h2). Similarly, one shows nhd/2|Dgl

is bounded above by

nhd/znén — 9o||20p(1) = 0.0).

This completes the proof of (2.5.7)(i).

The proof of (2.5.7)(ii) similar. Details are left out for the sake of brevity. D

Proof of Lemma 2.5.3. Note that

nhd/21thwo) — Mama» 5 mid/2 / U2<x>d¢<x> sup (mo/fin) — 1|
2:61

= mild/20A(nhd)‘1)0p((10gk”)(log n/nlfi) = 0,,(1),

by (2.3.5) and Lemma 2.4.3. Hence the lemma. (3

Proof of Lemma 2.5.4. Let

t:- = mg, (Xi) — mom). Ana) == mm) (mm) — Wm) .



Then,

1 ” -
0,, = E:/ K§(z—x,)(e. —t,-)2d<pw($)

i=1

1 n

= EZ/ K1210” ‘ Xi)(€i — til2dSP<$l

i=1

4.5—2 2 / Kflz — X,)(E,- - ti)2An($)d¢($)

2' AM + Ang, say.

In order to prove the lemma it suffices to prove that

(2.5.10) (a) nhd/2(An1 — C1,) = 0,,(1), and (b) mild/QAng = 0,,(1).

By expanding the quadratic term in the integrand, Am can be written as the sum

of C", Ann, and An13, where

A7112 = n-2Z/K§($ - Xi)t?d(p($),

i=1

141113 = —2n_ZZ/K,2,(CL‘—Xi)Eitid¢(I).

i=1

But |An12| S maxlSiSn [align—2 zyzlfKflx — X,)dgp(:z:). By (m4) and (2.4.1),

one obtains that main-Sn |ti|2 = Op((nhd)‘1). Moreover, by the usual calculation,

one obtains that

n"? 2/ Kflw — Xadm) = Mum-1).

Hence,

lAnrzl = 0p((nhd)’1)0p((nhdl‘1) = 0p((nhd)‘2)-
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Similarly,

lAn13l S 2m<ar3cltiln-2Z/K§($—Xi)lsildgo(x)

— i=1

= 0p((nhdl’1/2)Op((nhdl'1) = 0p((nhd)‘3/2).

Hence

Inhd/2(An1 — C'n)| = Mid/2 (Op((nhd)”2) + Op((nhd)_3/2))

= mum-W21“) + 0p((nh2d>-W) = 0.0).

To prove the part (b) of (2.5.10), note that Aug can be written as the sum of

Arm, Arm, and An233 where

Am = 71-22/X2 MUM)

An22 = Z/Kh AM)dflx)

An23 = 71—2 til/Khwii) {)1'5'it Anl‘( )d(,0(.’13).

By taking the expected value and the usual calculation, one obtains that

n-ZZ/Xm—XX>§d<p()= 0p((nhd>-1>.
i=1

Hence

2:61

Inhd/zAnml S SUP lAn(x)ln—2 Z/ Kflx _ Xi)52?d‘P($)

i=1

2 'nhd/QOp(log,c n (log n/n)d—:‘)Op((nhd)‘1)

= 0,,(h—d/210g, n (low/mm) = 0,,(1).
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by Lemma 2.4.3 and (2.2.2). Similarly, one obtains that

Inhd/2Anggl S suplAnx),,3:())max [t,-[2nJZ/Kfi:1:(—X d(px()

:6

= mild/201(Iogkn(logn/n12/‘d+‘”10p((nh1- 10p((nh.1*)

= 0p((nh3d/2)‘1)= 011(1),

and

(”ha/211,23. _<_ 2sup1A(x1(max(tInzz/Kg($_x115-(M1

= nizd/201(logkn (logn/n12/‘d+4)10p((nhd11/210p((nhd1-11

= 0p((nh2d)-1/2) = 012(1),

thereby completing the proof of the part (b) of (2.5.10), and hence that of the

lemma. C].

Proof of Lemma 2.5.5. Define

-—hnd‘ZZ(/Kh(x—X-)XK;,(3:—ji)esjd(p(:r))2 :HZXX

i=1

We shall first prove

(2.5.11) in, — 1”“, = 0,,(1),

(2.5.12) r, —r =0,,(1)

The claim of this lemma follows from these results and the fact that I‘n —> I“.

49



For the sake of convenience, write Kh(2: — X,-) by K1(2). Now, rewrite P" as the

sum of the following terms:

B1 = hd“1‘2: (fKr-(ale )(Ei-t1)(€r-tj)dso($))2.

B2 = (fin-2Z (/ X.(:c1X.-(x1(e.- — t.1(e.- -t1)An($)d¢($))2.

B. = 422:”: (jer( .-(-t.-1(o- —t.-1d<.e(a:1)

x (fX.(z1X.(e1(e.—t.-1(e.—t.1A.(x1de(e1) .

In order to prove (2.5.11), it suffices to prove that

(2.5.13) 81—1111 —_10p( ), 82 = 0p(1), and B3 17- 0p(1).

By taking the expected value, Fubini, and usual calculation one obtains that

(2.5.141 1"(Ln-220m.- (211.1511.1de(1)2=0.(11.

(2.5.15) hdn‘2:()KK,(r) ()le,ld(,0(1‘))2 = 0,,(1),

(2.5.16) hdn"2 in; (/ K,(r)Kj(r)d(p(r))2 = 0,,(1).

Further more,

(2.5.17) Egg/1.111) .—_ 0,,(1), by (2.2.2)

(2.5.18) .221. (1,-1 = 0,,(1). by (1114) and (2.4.1).
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Note that by expanding (er — ti)(€j — tj) and the quadratic terms, |B1 — f‘nl is

bounded above by the sum of 812 and 813, where

13,. = 1d1n-2Z(/K.(r)x 1:)(,1tt,-1+1e,t,(+1tej1)do(r))2,

B... = heE(jK xhlsetldm))

x,-(2:)(/KK e)(.1tt,1+1e.t1+1t.-e1>de<e2))

But B12 2 op(1) by (2.5.15), (2. 5. 16),(.25.18), and the fact that {t} are free ofz

It further implies that 813 = 0,,(1) by (2.5.14) and applying the Cauchy-Schwarz

inequality to the double sum. Hence [81 - f‘nl = 0,,(1).

Note that

2

B. s sup1A4eW”Z:(fme) 514-5-— must—11.1445)
1:61

= 0p(1)0p(1) = 012(1),

by the inequality

|€i — tillfj - til S lfifjl + (ltitjl + IEitz’l + ltz'Ejl),

and expanding the quadratic terms, and by (2.5.17), (2.5.14), and the result that

Bu and 813 are both 0,,(1). Finally, again an application of the Cauchy-Schwarz

inequality to the double sum yields B3 = 0,,(1). This completes the proof of (2.5.13),

and hence that of (2.5.11).

To proved (2.5.12), note that 1‘” = Ef‘n. Hence

2 2 m - - - - 2 -

E (1“,, — 1“,.) g ZEH3(X,-,Xj) +c Z EH§(X,,Xj)H§(X,-,Xk)

i=1 i¢j¢k

g (n2 +en3)EH3(X1,X2)
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for some constant c by expanding the quadratic terms and the fact that the variance

is bounded above by the second moment. But by (2.5.5), this upper bound is

0((nhd)‘1) = 0(1). Hence (2.5.12) is proved, and so is the Lemma 2.5.5. [:1

2.6 Simulations

The simulation study of the distribution of 6,, and the the minimum distance

th(én) was conducted for a linear regression function family {171.9(2) = 02:, 9 6 IR}

with various sample sizes. First we generated random sample {Xi}?, n = 50, from

uniform [—1.1] distribution, and random sample {at};I from normal distribution with

mean zero and standard deviation 0.1. Then let Y,- = mgO(X,-) + 8,, with 60 = 1,

2' = 1, ..., n. The kernel functions we used to construct the test statistic are

X(u) = K‘(u) = 3/4(1- U2)I{|u| S 1}.

The bandwidth h is chosen to be 7171/3 and w is chosen to be nil/5. The measure

G is a measure with Lebeague density g(:1:) = 1 on {—1.1}.

Recall that 5,, is the minimizer of th(6). By taking the derivative of th(6)

in 6 and solving the equation of (’9th(6)/86 = 0, the minimum distance estimate

of 90 is given by

én = An/Bnt
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where

An = [:(gKh(:r—X:;. )(ZKh(:c—X)- X-Z)Kw(x—X- )2d2:

Bn 2 /:(éKhHH 02(ngx—X- )2dz.

The normalized value of 6",, then is calculated by Jag), — 1). The corresponding

minimum distance and the estimate of its asymptotic mean are calculated by

2 n -2

th(é,,) = f: (14:16“x—X,- 13—6,,X,))) (2Kw($—Xr)> dz,

i=1

(3”,, = [I (Z K,‘~:(r — X,)(Y, —)(énxy) (5: Kw(:c — X0) dz.

The value of the test statstic is calculated by nhd/2(th(én) — C1,). In order to plot

a density curve, we repeated the above sampling and calculations for 1000 times.

The density curves of normalized 9,, and the test statistic are plot by using density

plot command with Gussian kernel Option in SPLUS2000. We also did the above

simulation for n = 100 and n = 200.

The first three graphs in Figure 2.1 are the Monte Carlo density curves of

Jag" — 1) from 1000 runs with sample size n = 50, n = 100, n = 200 respectively.

The fourth graph is the N (0, (0.173025)2) density, the density curve of the limiting

distribution of Jag” — 1) based on the theorem we obtained in section 4. The first

three graphs in Figure 2 are the Monte Carlo density curves of nhd/2(th(§n) — Cu)

from 1000 runs with sample size n = 50, n = 100, and n = 200 respectively. The

fourth graph is the density curve of the limiting distribution of nltd/2(th(én) - C’n) _

in Theorem 5.1. which is N(0, (0.026344)2) in the present case. The graphs show
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Figure 2.1: The density curve of fi(én — 1).
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that the distribution of fiwn — 1) resembles the asymptotic normal distribution

quite well even for sample size is 50. The distribution of nhd/2(th(én) — 6'”) has a

small negative bias compared with the asymptotic normal distribution for all three

sample sizes. But the bias decreases as 77. increases.

A simulation for d = 2 and m = 2 was also conducted. The hypothesis to be

tested is

H0 : 11(3) = 0.52:1 + 0.82:2, vs. H1 : H0 is not true.

The parametric model to be fitted is

{mg(:1:1,:1:2) = 611131 + 02252, 0 = (01,62)T 6 R2 x = ($1,232)T E R2}.

We chose the following five models to generate simulated data from:

model 0. Y,- = 0.5X1,-+ 0.8X2i + 5i,

model 1. Y, = 0.5X1i + 0.8X2i + 0.3(X1i - 0.5)(X2i — 0.2) + 51',

model 2. Y,- = 0.5X1i + 0.8X2i + 0.3X11-X22- — 0.5 + 51':

model 3. Y,- = 0.5X1i + 0.8X25+1.4(e$p{—0.2X12i} — e$p{0.7X§i}) + 5,,

model 4. Y, = [{Xzi > 0.2}X1i '1' 51‘,

The error distribution is N(0,0.3). X1, are i.i.d N(0,0.7) and X2,- are i.i.d N(0,1).

The sample sizes chosen are 30, 50, 100, and 200. The nominal level that is used to

implement the test is a = 0.05. There are 1000 replications for each combination of

(model, sample size). Data from model 0 are used to study the empirical size, and
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the data from models 1 to 4 are used to study the empirical power of the test. The

empirical size (power) is computed by

Relative frequency of ( value of the test statistic > F‘1(1 — (1)),

where F is the asymptotic distribution of the test statistics under H0.

The bandwidth h is chosen to be n“1/4'5 and w is chosen to be (log n/n)1/(d+4),

the measure G is taken to be the uniform distribution on [—1,1].

The density curves of normalized 6,, and th(6n) are plotted by using den-

sity plot command with Gussian kernel Option in SPLUS2000 for one dimenstion

and Surface-Spline Fine Grid for two dimension, where 6,, = (91",62n)T and 00 =

(0.5, 0.8)T.

The results of the power study are shown in the table. The tables gives the

empirical sizes and powers for testing model 0 against models 1 to 4.

The simulation results of the densities of fiwn — 60), and the minimum distance

test statistics are shown in Figure 2.3 to 2.9.

Figure 2.3 is the Monte Carlo density curves of x/V—llgm — 0.5) from 1000 runs

with sample size n = 30, n = 50, n = 100, n = 200 respectively. Figure 2.4 is

the Monte Carlo density curves of fiwgn — 0.8). Figure 2.5 is the Monte Carlo

density surface of fiwn — 60) when n = 30. Figure 2.6 is the Monte Carlo density

surface of fiwn — 00) when n = 50. Figure 2.7 is the Monte Carlo density surface

of fiwn — 60) when n = 100. Figure 2.8 is the Monte Carlo density surface of

\/'r_1.(6n — 90) when n = 200. Figure 2.9 is the Monte Carlo density of the test
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statistic under H0 with sample size n = 30, n = 50, n, = 100, n = 200.

In the following figures, ”-
19

is forn=30,”---

is for n = 100, and a heavy solid line is for n = 200.

Table 2.1: Empirical sizes and powers for testing models 0 vs. model 1 to 4.

”

isforn=50,”— — —

 
 

 

 

      

n = 30 n=50 n=100 n=200

model 0 0.005 0.022 0.036 0.049

model 1 0.003 0.062 0.670 0.895

model 2 0.931 0.999 1.000 1.000

model 3 0.461 0.975 1.000 1.000

model 4 0.035 0.368 0.977 1.000     
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The density of \/r—i(61n — 0.5).Figure 2.3:
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Figure 2.4: The density of \/r—i(62n — 0.8).
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Figure 2.5: The 2 dimentional density of Jim” — 00) when n = 30.
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Figure 2.6 The 2 dimentional density of fiwn — 90) when n = 50.
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Figure 2.7 The 2 dimentional density of \/T_l(9n — 00) when n = 100.
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Figure 2.8 The 2 dimentional density of \/r—i(0n — 90) when n = 200.



Figure 2.9: The density of test statistics under H0.

 

1.0 4

.
0
c
o

.
0
0
)

.
0
A

0.2

0.0

I ‘ '\ 1

*1 ’ \_ 2

l t x .

l 1," ‘ w

l _ n. ' \ \ ii

1 g“: ‘.\

_l ' -. .\

' i s \

1 ,4‘ .-
) 1- 1

r " .

4 f i 1‘

( t" ‘1“

l 1' \ \

if)
—4 .‘ '

I 3 .‘It
i l \‘.

“t.
p 1.

‘J, 31“
3 . \

; O, . i \\l

f! , \ \

-1 1" . K \-
1 / I ‘ ' ‘\\ ~.

l
5., ’

\\\

,. I ' \x.

‘ / I - \\i "V. \
-// I

_ 01:;\ \

/ I . ‘\.\"’;'-

4(— ’ "me__ .A 1......

 

 

65

 



Chapter 3

Minimum Distance Autoregressive

Model Fitting

3. 1 introduction

This chapter discusses application of minimum distance idea in fitting a parametric

model to the autoregressive function. To be Specific, let Xn be a real valued strictly

stationary process having finite expectation. The autoregressive function is defined

to be

Mr) = E(anXn_1 = 1:), n E Z

Let {mg(-) : 9 E 9},9 C R", G compact, be a given set of parametric functions.

The statistical problem of interest here is to test the goodness-of-fit hypothesis

H0 : u(:r) = m90(.’L‘), for some 60 E 6'), and for all :1: E I vs. H1 : H0 is not true,
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based on the sample {X,- : i E Z, } from the stochastic process, where I is a compact

subset of IR.

In the context of regression fitting problem under the i.i.d set up, the asymptotic

prOperties of minimum distance estimator of the parameter 6,, are studied, where 6,,

is defined to be the argument that minimizes a transformation of the L2(G) distance

between the nonparametric estimate of regression function ,a and the parametric

function me. It has been shown that the so defined minimum distance estimator is

consistent, asymptotically normally distributed with rate of Vii. The corresponding

minimized distance is also asymptotically normally distributed. Thus a class of tests

can be constructed by using suitably standardized minimum distance. Encouraged

by what have been shown in i.i.d case, we consider to apply the same idea to the

autoregressive model checking.

when dealing with regression model fitting, to reduce the bias caused by fh in

Mhh(6) defined in chapter 1, we used an optimal window width for the Nadaraya-

Watson type estimation of f, i.e. flan. But it still causes bias. Hence in this chapter

we consider using a slightly different L2 distance defined as M),(6) of (1.0.8), which

is actually the L2—distance between 7:197 and a kernel estimator 771.9 f defined as

A 1 "

mof = 5 2; K44 — X.-.)X.-.

where G is a o-finite measure with bounded Lebesgue density 9.

The estimate of the parametor is defined as (1.0.9). The test statistic Tn is
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defined to be

”hi/2

1 " 2 .2
Tn = f“?! (Mh(0n) - E 521/6; Kh(I — Xi_1)dG($)Ei) ,

 

where F3, is a consistent estimator of F,

o?)2/If2(r)g2(r)d:1:(it)(/(/KI\’)(u+v)du)2dv,

and 5,- = X,- — mgn(X,-_1). Similar to the discussion in chapter 2, F3, can be chosen

to be

4/1 (iiKh(z—X,_1)é?>2g2(z)d2:(u)/</KK()u-l—v)du)2dv.

In this chapter a proof of the consistency of 6,,, the asymptotic normality of

\/r7(6,, — 60), and asymptotic normality of the test statistic Tn are presented. A test

of H0 can be thus based on Tn.

3.2 Assumptions

Recall that the definition of ”Geometrically Strongly Mixing” (GSM) from section

2.3 of Bosq (1998). {X,} is GSM if there exists co > 0 and p 6 [0,1) such that

a(k) S copk,k 2 1, where

a(k)= = supa(0{X..s s t},e{X..s 2 t+ k1),

a(.A,B): = sup |P(AflB)—P(A)P(B)|,

AEA,BEB

where o{X,, s g t} stands for the a field generated by {X,, s S t}. It’s also pointed _

out in Bosq (1998) that the usual linear processes are GSM .
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Here we shall state the needed assumptions.

(M) The time series {X,-; X,- 6 IR, i E Z}, where Z stand for all integers, is strictly

stationary satisfying GSM mixing condition and X, = p(X,-_1) + 5,.

McKeague and Zhang (1994) pointed out that it is easier to check geometric

ergodicity, which implies strong mixing with a geometric mixing rate. From Tweedie

(1983), one obtains that a sufficient (but by no means necessary) condition for

geometric ergodicity of the nonlinear autoregressive process is that p and o are

bounded on compact sets, where o2 = E(efleo).

About the errors and underlying design we assume the following:

(81) The autoregressive function n() satisfies fp2(:1:)dG(:v) < 00, where G is a

o-finite measure on R.

(82) {5,} are i.i.d and 5,-1.1 is independent to X-, j = 0, ..,i, and o2 2: Eef.

(S3) The density of X0 is twice continuously differentiable Lebesgue density f that

is bounded from below on I. Denote the first and second derivatives of f by f’

H ‘

and f , respectively. We also suppose that 311901222324 t5.t6} liftt.t2,t3.t4.te.telloo <

00, where ft1.t2.t5.t4,tt.te IS a Jornt densrty of X,“ X,,, Xta, X,“ th, and Xto.

About the kernel function K we shall assume the following:

Conditions (K), (Al), and (A2) are the same as those in chapter 2.

(A3) For each 6, mg(:z:) and m90(.v) are as continuous in a: w.r.t the integrating _

measure G.
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(A4) The function 6 1——> me is continuous in L2(G): For any sequence 6,,, 6 E 6),

”6,, — 6” —> 0, implies p(m9n,m9) —-> 0.

(A5) For every 5 > 0, there is an N, < 00 such that for every 0 < k < 00,

max h1/2llmg(X,-) - r'rigo(X,-)H = 0,,(1).

ISiSn.(nh)‘/’ll0-00llsk

About the bandwidth h we shall make the following assumptions:

(H) h ~ n‘“ for some a > 0, and there is a 7 > 0 such that nh“7 -—> 00.

In this chapter we will often use an inequality in Bosq (1998). We list it here as

a lemma.

Lemma 3.2.1 Let X and Y be real valued random variables such that X E Lq(P),

Y E L’(P), where q,r >1 and 3 -l- i = 1 — i, then

ICOU(Xe Yll S 219(20ll/pllelqllYlln

in particular

|00v(X.Y)l S 4al|X||ee||Yl|ee.

where

a = 01(0(X),0(Y)).

“XII... = inf{b: P(|X| > b) = 0}.
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Analog to the notations defined in section 2.3, we introduce some notations that

will be needed in this chapter.

1 n

Un($.9) = a :KMIF - Xi-1)(Xi — m6(Xi-1))t and

Un(l‘) = (,1? 60): iZKh(I — Xi_1)8i,

and Z,,(z, 6), 11,,(23, 6), and 0,,(2, 6) are as defined in section 2.3 with X,- replaced by

X,_1. Note that

14,490) = / Ug(r)do(r).
I

We also introduce the following notation,

.7h3={yElR:|$—y|§h,$C-’I}.

3.3 Consistency of 6,,

The main result of this section is the consistency of 6,,. Similar to the proof of

consistency of 6,, in previous chapter, we will first prove the consistency of 6; in

Lemma 3.3.3, where now 6;, is defined to be

6:, = argminOEeMgw), and

n 2

M;(6): = A(iZKh(at—X,~_1)X,—m9(2:)f(2:)) dG(a:).

i=1

This result will be in turn used to prove the consistency of 6,, in Theorem 3.1 .

Lemmas 3.3.1 and 3.3.2 list some results that will be needed in the proof of -

Lemma 3.3.3 and theorem.
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Lemma 3.3.1 Let 112,, be a sequence ofmedimension vectors of real valued functions

defined on IR, bounded on J, uniformly in n. Then, under the condition (M), the

following hold for V2: 6 I and V0 < a < l:

Tl

n-1 : (Kh(.’13 - Xi-iWrthi—il — EKhCL‘ — X0)1/2,,(X0))

i=1

— (—¥—>
_ 0p VnhH“

I

(a)

  

 

Tl

LIL—1 (Kh(.’L' '— Ari_1)’l/)n(Xi_1)— EKh($ — X0)’ll)n(X0)) dG(.’E)

1

(b)

 

  

i:

1

\/ nh

= Op(

n-1 2 K44: — X.-.)v..(X.-_.) — EKtlx — Xo)w..(Xo)(c)E/I

1

: 0(nh1+a)’

 

).

2

dG(:r)

 

   

 

where || || stands for the usual L2 norm defined on IR", i.e.

 

”((11, mtamlTH = a? + - - - + a3", V(a1, ...,am)T E R”.

Proof. Note that the lemma holds for {tin} if and only if it holds for all 3""

component of {urn}, 1 g j S m. Hence we only need to prove the lemma for the

case of m = 1. Recall m is the dimension of G.

Leta<b< 1. ForaanI, let

¢n(Xi) 3= Kh($ — Xt)¢’n(Xi) - EKMI - Xi)7l)n(Xi)-

Then E¢n(Xi) = 0. SO

71

(3.3.1) E (71-1 Z(K,,(.v — X,_,)tp,,(x,_,) — EKh(:1: — X0)2/2,,(X0)))

i=1

: n—1E¢i(XU) '1" 271-2 Z COV(¢n(Xi—l)i ¢n(Xj—1))

i<j
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The first term is 0(——) by the fact that the variance is bounded above by its second

moment, boundedness of 1b,, and f. By Lemma 3.2.1, the second term is bounded

above by

(3-3'2) 2n—2Z2b—1((]201—i)X)bH¢n(i—llllqll¢n(XJ-1)llr

i<j

n—1n-k

22+bn-2 ablkWlibni—1)llqll¢n(Xi+k-1)llr

k=1 i=1

n—l

S 22+bn‘1 ab(k)l|¢n(Xo)ll21

k=1

by taking q = r = 2/(1— b) and p = 1/b. But note that

11¢.(Xo111:= (E1114X011212/2 = 001-212-2221 = 001-12221 obi-‘22“).

Hence (3.3.1) is MW). Consequently (a) holds. Similarly, one may prove (b) and

(c). [3

Corollary 3.3.1 Let ’l/J(:E) be a real valued continuous function on IR. Then under

the conditions (M), (51), (S2), and (53),

n‘1 Zn: K1,(:r — X,-_1)2/2(X,-_1) ——> w(:r)f(:1:), in probability, VI 6 I.

Proof. Note that by the continuity of f and w,

EKh(:r — X,)ib(X,-) = / K(u)1,/)(:1: — uh)f(x — uh)du ——-> z/J($)f(a:),

so the corollary follows by applying Lemma 3.3.1 (a) to 1b,, = it. C]

Lemma 3.3.2 Under the conditions (SI), (52), and (K),

E/Zf,($,6,,)dG'(:r) ——-> 0.

I
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Proof. By adding and subtracting Kh(:r—X,-_1)X,- to the ith summand in Z,,(x, 6,,),

and expanding the quadratic term, one Obtains

/ z§(x,0,.)do(:c) s 2Mh(6n) + 2Mh(60) S 4Mh(60)-
I

The second inequality follows from the definition of 9". Therefore, to prove the

lemma it suffices to show that EMh(90) —> 0. Note that by Fubini,

EMh(00)

2 2 7‘

= 3. / EXEC: — X0)dG(:z:) + —- 2 E/ Km: - Xi—1)Kh($ - Xj—ildG($l€i€j-
T). I 77. I

K)”

The first term is O((nh)‘1) by direct calculation. The second term is O by taking

conditional expectation on o{X, : s S j} first. Hence

(3.3.3) EMh(60) = EAU§(x)dG($) = 0((nh)—1).

So the lemma is proved. D

Lemma 3.3.3 Under the conditions (51), (52), (83), (K), (A1), and (A4),

6; —> 00, in probability under H0.

Proof. The proof is similar to Corollary 3.1 in chapter 2. According to Lemma 3.1

in chapter 2, it suffices to show that

(3.3.4) A (£ZKM1: — Xi_1)X,- — m90(.7:)f(1:)) dG(a:) = 0,,(1).

Note that by plugging in X,- = m90(X,~_1) -+- 5,, adding and subtracting

EKh(z — Xi_1)m90(X,-_1) in the 2"" summand of the integrand, the left hand side of
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(3.3.4) is bounded above by the sum of the following three terms:

(a) [I U3<z>dcm

(b) [I (g; ZlKhUF — Xi-ilmao(Xi-1l - EKh($ — Xi—llmeo(Xi—1ll) (10(17)

(c) / (Em: - X.)m..<X.> — more»? dam.
I

The term (a) is Op(1/(nh)) by (3.3.3). The term (b) is op(1) by Lemma 3.3.1

(c) with 2b,, = mgo. The term (c) is 0(1) because it is equal to

A(/ K(U)(meo($ — uh)f(x — uh) — met,(:L‘)f(:1:))du)2 (10(3) = 0(1)

by continuity of rage and f, compactness of 1'. Hence (3.3.4) holds, so does the

lemma. D

Now we are ready to present the main theorem of this section.

Theorem 3.3.1 Under the conditions (M), (51), (52), (53), (K), (.41), and (A4),

6,, —> 60, in probability under H0.

Proof. The proof of this theorem is similar to Theorem 3.1 in chapter 2. Here

we only sketch the proof. Recall the definition of p from section 2.2 and note that

M};(6) = p(rn, mgf), where rn(:1:) := 11‘1 2:1 Kh(a: — Xi_1)X,-.

By the same argument as in the proof of Theorem 2.3.1 with Mgw and th

replaced by M}: and Mh, it suffices to prove the following result,

(3.3.5) sup ith) — M;(t9) = 0,,(1).
969
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To prove (3.3.5), add and subtract n“1 1:, X)(: - Xi_1)mg(X,-_1) inside the

parenthesis of A1,:(0), expand the quadratic, and use the Cauchy-Schwarz inequality

on the cross product, to obtain that the left hand side of (3.3.5) is bounded above

by

sup (W) + 2 sup<Cn(6)Mh<6>)1/2,
668 969

where

Cn(6) :fr (£21042: — Xi_1)(m9(X.-_1) — mg(x))) dG(a:).

To prove (3.3.5), it suffices to prove that

(a) sup Cn(6) 2 010(1), and (b) sup Mh(9) 2 010(1).

068 966

First to prove (a). Note that Kh(x — X,) is nonzero only if X,- 6 J1 for large n

such that h g 1, so Cn(6) is bounded above by

"19(9) "m0($ll2fl (iZKfiz—Xi-il) 610(17)-

As a consequence of Lemma 3.3.1 part (c) with 2b,, = 1,

(3.3.6) [I (rt-1 2 Km: — X._,)) (10(3) = 0,,(1).

And

sup

ly_zlshvz9ye~71

 

SUP SUP mo(y)—me(:v) =00)

'2

969 ly-zlsh.z.y€.71
 

because of the continuity of m and compactness of (9 and J1. Hence

sup 0,,(9) = 0,,(1).

age
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Next to prove (b). By plugging in X,- = mgo(X,-_1) + 52', one obtains that Mh(6)

is bounded above by:

2/ U,2,(I)dG(I) + 2/ Z:($,9)dG(IL‘).

I I

The first term is 0,,(1) by (3.3.3). For large n such that h g 1 , the second term

is bounded above by

968,116.71

2
1 n

4 sup mim- / (;ZX.(x-X.-1>) dG(:c) =op<1>
I i=1

by the continuity of m, the compactness of G) and .71, and (3.3.6). Hence

sup Mh(6) = 0,,(1).

069

So (3.3.5) is proved, so is the theorem. D

3.4 Asymptotic distribution of (We, — 60).

In this section we will prove the asymptotic normality of 6,,. Before that we introduce

some notations that are going to be used in this section. Define

(3.4.1) §n(I) = EKh(IE — X0)r'n90(X0),

7771(15) = Tn’en(1:) _ mfio (I) - mi; ($)(9n _ 60),

and {(x), 772 are as defined in (1.0.10) of Chapter 1.

Note that under the condition (M), 6,, is a solution to the equation 0Mh(6)/86 =

O. i.e.

[Unfit 9n)un(:1:, 9n)dG($) = 0.

I
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Plug in X.- = m90(X.-_1) + e,- in Un(.’L‘,9n) and rewrite the above equation in the

following form:

(3.4.2) [I Un(I)un(I,6n)dG(I) = / z.(z,9,,)pn(x,9..)do(z)

I

As in the proof of Theorem 2.4.1, we will use Lemmas 3.4.1 and 3.4.2 below to

show that the left hand side of the above equation is approximated by an average of

martingale differences. Hence, by the martingale central limit theorem (M.G.C.L.T)

converges in distribution to a normal random variable with rate 1/\/n. The right

hand side can be written as (6,,, — 60) times a random variable which, by Lemma

3.4.3, converges in probability to a positive constant. So the theorem about the

asymptotic normality of 9,, follows.

Now we start with three lemmas.

Lemma 3.4.1 Under the conditions (M), (51), (52), 5(3), (K), (A1), and (A4),

there is a function f such that the following hold:

 
lunwo) — doll = 0.0),(a) SUP

(b) sup Hm, 9..) — as!) = 0.0).
261'

Lemma 3.4.2 Let Z be a real valued continuous function on I. Under the conditions

(M), (51), (52), (53), (K), (AI), (A3), and (A4),

fi/ (£21041? — Xi—1)l(Xi—1)Ei€n($)) dG(:1:)
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converges in distribution to a normal random vector with mean zero and covariance

matrix given by

0.1/W>m9.<MW19%WW
I

The result is also true when {n are replaced by 5.

Lemma 3.4.3 Under the conditions (M), (51), (52), (S3), (K), (A1), (A2), (A3),

and (A4),

(3-4'3lll0n — QOlI‘I/(i‘ZK’I(x — Xi1)nn(Xi—1))€($)d0($)= 012(1)-

We will state the main theorem of this section.

Theorem 3.4.1 Under the conditions (M), (51), (52), (53), (K), (A1), (A2),

(A3), and (A4), was, — 60) converges in distribution to a normal random vec-

tor with mean zero and covariance matrix 20172261, where 20, n2 are as defined

in (1.0.10).

Proof. Note that the right hand side of (3.4.2) can be written as (6,. — 00)R,.,

where R, is a sum of following terms:

R... -—- [fln($a90)fi:($,9nldc($l

Rn2 : _/I(%IZIK’1($—Xi-€T)H—6£§%ll)lfln(x,6n)dG($).

By Lemma (3.41), Rnl-— fI($ (II)dG() + op(1). By Lemma (3.4.3) and

Lemma (3.4.1), Rug = op(1). Hence R4. converges in probability to 20.
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Note that by adding and subtracting Kh(.’L‘ — Xi_1)€($) to the ith summand, the

left hand side of (3.4.2) can be written as a sum of the following two terms:

L1,. = fl madame),

Li. [I Una) 112446..) - 6(4)] 40(4).

By Lemma 3.4.2 with l = 1 and En = {, URL), converges in distribution to a

normal random vector. By Lemma 3.4.1 and (3.3.3), the term L312 = op((nh)'1/2) .

So the left hand side of (3.4.2) is op((nh)‘1/2) and the right hand side of (3.4.2)

is (0,, — 60)Rn where Rn converges to 2 in probability. Hence

(3.4.4) (6,. — 60) = op((nh)-1/2).

Next we shall show that (6,1 - 60) is actually Op(1/fl Note that by adding

and subtracting Kh(.’13 — X,_1)r'ngo(X,-_1) — 5,,(12) to the ith summand, the left hand

side of (3.4.2) can also be written as the sum of the following three terms:

L... = (I U.<x>é.(x)dc(x>,

Liz = / Una) (1234.60) — 54(4)) 40(4),
I

{
‘
1

:
3

t
o

w

l

/IUn(I)Zn(I,6n)dG(I).

By Lemma 3.4.2 with l = 1, fiLil converges in distribution to a normal ran-

dom vector. The term L22 = op(1/\/ii) by the Cauchy-Schwarz inequality, Fubini,

Lemma 3.3.1 (c), and (3.3.3). The term L3“, = op(1/\/n) is by (3.4.4), (3.3.3), and

the assumption (A5).
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Combine the above discussion to conclude that

[(971 ’65an: [Ln2+0P(1')

Hence the Theorem holds by Lemma 3.4.2. [3.

Next we are going to prove the three lemmas.

Proof of Lemma 3.4.1.

We will prove a bit more general form of this lemma. i.e. for any continuous

function I on I,

(3.4.5) sup 11:14“a; — X,_1)l(X,-_1) — l(I)f(I)| —+ o

261'

where f is the density function of X0.

Because l(I)f(I) is continuous on compact set I, so it is bounded on I. So

sup E—ZKhI-Xz1)l(X_1)—l($)f(.’lf)l

IEI

= sup l /K(u)[l((I — uh)f(I - uh) — l(I)f(I)]du|

IEI

sup imam) — two)! ——> o.l
/
\

In order to complete the proof of (3.4.5), we still need to show that

(346))sup——2 Kh((a: — X,-_ ()zX,_,) — EKh(I — X0)l(X0)l .—_ 6,,(1)

I6

Let Cn(I) = £22; Kh(.’1,‘ — Xi_1)l(X,-_1). Consider covering compact set I E

B = {I 6 IR: III S b} for some b < 00 by 12,, closed set: Bjn = {I : Ill-xjnl < b/l/n},

where 1 g j g 14, such that BO” 03271 ——¢ for j ¢ 16.
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By the assumption that K is Lipschitz, there is a finite positive number 5 such

 

 

that

s 1 " b6 1 "

Katy) — Cn($jn)l S Eill' — Ijnl If; ”(Xi—IN S h2l/n g; ”(Xi—Illa

b8 .

IECn(I) _ E<n($jn)l S (1.21/7; Ell(X0)la V1: 6 Bjna IS .7 _<_. 77..

So

(3.4.7)

i211) 161(3) - ECn($)l

S sup sun |<n($)-ECn(I)l

S SUI) SUI) (Katy) — <n(xjn)l + lCn($jn) _ ECn(:Bjn)l + IECn($jn) - ECn($)l)

133311,. 268),;

2b
_ —7fl0p(1)+ SUI) lCn($jn)_ECn($inll'

h2 n 15.75%

Note that lKh(£L‘ -— X,_1)l(X,-_1)I is zero unless X,_1 6 J1 for large n such that

h g 1, and it is bounded by c/(2h) when Xi._1 6 J1 for some constant c. By

Theorem 1.3, part (1) of Bosq (1998), for any 1 < q < (n/2),

P(|C(I ) E(( )|>e)<4 —52 h2 +22 1+—4€1 W [n
n. 'n — nx'n I - ' " —°

J J ‘ 6p 8c2 q q eh “2c:

Choose 11,, = n, and q = (fr—i/ h, then

P( sup ICn(xjn) - E<n($jn)l > 6)
ISjSVn

2 4c 1

1/2

S 411,,eIp(—8£—C2 - nhz+7> + 221/nq (1+ :5) a[h"’/2]

3 c1 ne‘c’ "h2 + c3n3/2h‘1p0" "h2/2 = 0(1),
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for some positive constants c1, C2, and c3 by conditions (M) and (H) . Hence (3.4.7)

is 0,,(1), so is (3.4.6). this also completes the proof of (3.4.5).

By taking l = mgo in (3.4.5), then part (a) of the lemma is proved. To prove

part (b) of the lemma, it suffices to prove that

(34.8) 3;; Hum.) — Mrflohl = 010(1)-

Because for large n such that h S 1, Kh($ — X44) is nonzero only if )(.--1 E .71,

so by the continuity of mg, compactness of 9 and .71, and the consistency of 0”,

sun Handy) - m00(y)ll = 012(1)-
116.71

Apply (3.4.5) with l(I) = 1, one obtains that

sup n’1 2 Kh(:t‘ — Xi_1) = 0,,(1).

IEI i=1

Hence (3.4.8) is bounded above by

sup 11min) — 644(4)”W2: X414 — X.-.) = 0.0)
1163: 2:61 i=1

That completes the proof of the part (b) of the lemma. [:1

We are going to apply the Martingale Central Limit theorem, i.e. Corollary 3.1

of Hall and Heyde (1989) to prove Lemma 3.4.2. For the sake of completeness, we

state the corollary here as a lemma:

Lemma 3.4.4 Suppose Snkn = 2;, X"). and (19,14,314) is a zero-mean, square

integrable martingale array with differences X7125 and n2 is an as finite random
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variable. If {Xm} satisfy the following conditions:

(a) V5 > 0, Z E[X:,I{lxn,l>5}|7n.i_1] ——> 0, in probability.

i=1

(b) =ZE(X:|,.7m-_1) -—>r)2, in probability.

(C) 95...- C 35.4.1... for i S i S kmn 21.

Then, Snkn converges in distribution to a normal random variable with mean zero

and variance n2.

Proof of Lemma 3.4.2. W.L.O.G, here only gives the proof for the case that 9 is

one dimension. We will construct a martingale array and verify the three conditions

of the Lemma 3.4.4. Define

j

Snj = Zn—l/Q/IKh($_Xi—1)l(Xi—1)€n($)dG($)€iv

7n.) = 0{X0.X1.---.Xj,€1.-.-.€j}-

Then {Sm-”7“} is a zero mean, square integrable martingale array, and .7,”- Q

7”,”, Xm- = 77,—”2 f1 K),(I-—X,_1)l(X,~_1)fn(I)dG(I)e,-. So the condition (c) holds.

For any A > 0 and c > 0,

(3.4.9) ZE[X§1{|X,,,|>X}|I,,,1]< X? E[|X,,,-(2+C|J-‘,,,_,].

:1

Because 5,,(I) = EK),(I — X0)m90(X0) = f K(u)r'n90(I — uh)f(I — uh)du, the

kernel function K has bounded support, and continuity of mg, and f, so 5,, is

bounded uniformly in n at I E I, and suppose the bound is 85. Furthermore, note
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that

(3.4.10)

[IKMIC — Xt)||€n($)||dG($) S Bg/K(U)9(Xt + uh)du S BgSUPgu/l < 00-

It

So by stationary of X,- and definition of 7714-1, (3.4.9) is bounded above by

—’C _c C 1 n C

/\ n /2(Btsupg(yllz+ 521311511“ lfnr—Il
3’

i=1

= A‘Cn—c/2C = op(1),

for some constant C. Hence the condition (a) holds.

For the condition (b), note that

EV: %:E ((/I Khlx — Xi—1)1(Xi—1l€n($ldG($))202)

= E(f Xta - Xt>z<Xt>6(4)4G(x>)202

= [I (I (EXtta: — XdXtty - Xo)12(Xo))€n(I)€n(y)dG($)dG(y) ~02

—> 02 (I m3.<4)F<4>.42<4>13<4)dx.

Let Vm- denote (f, Km: — X,)l(X,_1)§n(I)dG(I))202. Note that, V", is bounded

uniformly in ni. Then

71

(3.4.11) Var(V,,2) = E ( (Vm- — Evan)

:
H
H

i=1

1 2 "
: Elana/710+ fiZCOVO/ni’ an)’

i<j

By (3.4.10), and the fact that variance is bounded above by its second moment,

the first term on the right hand side of the last equality sign of (3.4.11) is bounded ,

above by c (nh)‘1 for some constant c. Hence it converges to zero.
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By Lemma 3.2.1 and (3.4.10), the second term on the right hand side of the last

equality sign of (3.4.11) is bounded above by

1 1 1

,3": z4||Vntllica < c.— = 4.1
Iczl jik-z

for some constant C1. So (3.4.11) tends to zero. This proves that condition (b) holds.

So by Lemma 3.4.4, fif (i- 232, Kh(23 — X,)l(X,-)e,-+1) €n(I)dG(I) converges in

distribution to a normal random variable with mean zero and variance given by

02 ffi13.(x)l2(x)92(x)f3(x)dx

in particular when l = 1, the variance is

'12 = 02 f mt<x>gz<x>ra<4>de

Proof of Lemma 3.4.3.

By (A2) and consistency of 6,,, one obtains

(3'4-12) maXOSiSn-llnn(Xi)l/ll6n -' 60H = 019(1)-

Similar to the proof of (3.4.10), f1 Kh($ — Xi)l€($)ldG(.’L‘) are bounded uniformly

in i and h g 1, hence

[IKMIC " Xi)l€($)ldG($)l7ln(Xi)l/ll0n - 90” = 012(1) uniform in i-

So (3.4.3) is also a 0,,(1). C1 -
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3.5 Asymptotic behavior of the minimum

distance.

In chapter 2, it has been proved that the standardized minimum distance is asymp-

1/2 under the i.i.d setup. In this sectiontotically normally distributed with rate nh

we will show that the same result is also true if the observations are from a stochas-

tic process satisfying a GSM condition. This result can be seen from the following

three propositions.

Before present the propositions, Define

E," = Xi — rngn(X,-_1) 2: 1, ...,n.

Proposition 3.5.1 Under the conditions (M) to (H),

1

nhl/2 )

M),(6,,) — M),(00) = e.(

Proposition 3.5.2 Under the conditions (M) to (H),

1 " ~ - 1,1, Z [1 K20: — X.-1)dG(:r)(e? — e?) = 04m)-

Proposition 3.5.3 Under the conditions (M) to (H),

71—22:] Kh(£L‘ — Xi_1)Kh(iE — Xj_1)dG($)€i€j

i<j I

is asymptotically normally distributed with mean zero and asymptotic variance 0%,

where 02 is specified in the condition (CI) of the proof of Proposition 3.5.3.
T].

A natural consequence of these three propositions is the following theorem.
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Theorem 3.5.1

~ ”Ill/2 1 n 2 ~2

Tn = F2 Mh(0n) - £5 2:]! Kh($ — Xi_1)dG(.’E)E,

i=1 0

converges to a standard normal random variable as n tends to infinity, where

[‘2 24(02)2Af2($)g2($)d$ / (/K(u)K(u+v)du)2dv.

Similar to the discussion in chapter 2, one obtains that Ff, defined in the in-

 

troduction section of this chapter is a consistent estimator of F2. Hence based on

this theorem, we can therefore conduct the goodness-of-fit test by using Tn as a test

statistic.

Next we will prove the prOpositions and the theorems. But before that we will

present some lemmas first.

Lemma 3.5.1 Under the conditions (M) to (H),

AOL—1 ZKh($ — Xi—llnani—ll/llgn - 90H) 610(13): 019(1)-

Proof. Let Inn(X,-)|/||9n — 60H 2 7”,. Note that the left hand side of the lemma can

be expanded as a sum of two terms:

1 fl

(3.5.1) E E )1 Km: — Xi_1)7,2,(,_1)dG(I), and

i=1

2 " .

fl Z/I‘K’JI _ Xi-llKh(I — ki-lldG($)7n(i—1)7n(j—l)~

i<j

The first term of (3.5.1) is equal to

1 1
1

i=1

nh
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by the boundedness of g and (3.4.12). Note that

E / m(e — X.)1<,.(.t — X,)dG(I)

= f/K(u)K(va),,-( —uh, I — vh)dudvdG(I)

< SUP fij($ay)G(I) < 00-

1,116.71

Hence the second term of (3.5.1) is 0,,(1). This completes the proof. (:1

Lemma 3.5.2 Under the conditions (M) to (H),

LZ:(I,9n)dG(I) = 0,,(n’1).

Proof. By plugging in mgn(X,-_1) — m90(X,-_1) = mg;(X,_1)(6n — 60) + 77,,(X,_1) to

the i1th summand in Z,,(I, 6n), and basic inequality, the left hand side of the lemma

is bounded above by a sum of following two terms:

216. — 96l|2 / underwear

m(X ) 2
2 6,. —9 2[i K( )(77—"—"‘—1 dG x .

The first term is 0,,(3—1) by Lemma 3.3.1 part (c) with #1,, = m9O and Theorem

34.1. The second term is op(—11;) by Lemma 3.5 1 and the Theorem 3. 4.1. Hence the

lemma is proved. Cl

Now we are ready to prove the propositions.

Proof of proposition 3.5.1. By plugging in X,- = mgo(X.-_1) -+- e,- to the ith

summand in M).(l9n) and Mh(60) , and expanding the quadratic, the left hand side I
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of pr0position 3.5.1 is equal to a sum of following two terms:

(a) f 2344. 6.1240(4), and (b) 2 / 2.4.4. 0.>U..<x>dc(4).

(a) is 0pg-) by Lemma 3. 5. 2. By plugging1n

mgn(X,-_1) - m90(Xi-1) = r'n'i.(Xt—1)(6.. - 90) + Tln(Xi—1l

to the ith summand in Z,,(I, 6,,) , the term (b) can be written as a sum of following

two terms:

(b1) (6. — if / unwashed).
I

((92) (an golTHI (%ZKh($-WHO Un(l‘)dG($).

The term (b1) is 0,,(31-17/3) by Lemma 3.4.1 (a) , Lemma 3.4.2 with l = 1 and 5,,

replaced by 5, (3.3.3), and Theorem 3.4.1. The term (b2) is op( Tull/2) by Cauchy-

Schwarz inequality, Lemma 3.5.1. (3.3.3), and Theorem 3.4.1. Hence the pr0position

follows. U

Proof of proposition 3.5.2. By plugging in e“.- = X.- — 771.9,, ()(.--1) and X.- =

mgo(X,--1) + e,- to the ith summand, and expanding the quadratic, the left hand side

of this proposition can be written as a sum of following two terms:

1 n

(a) ‘3 Z/Kflx — Xt—1)(mo..(Xt—1) — m90(Xi-1))2dG($)1

Tl i=1 I

(b) 272 Z /1: KZ(I — X,_1)e.- (mgn(X,-_1) — mg0(X,-_1))dG(I).

To prove the pr0position, it suffices to show that

(3.5.2) (a)=o.(fi117) and (them—51,72).
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Note that by plugging in man (Xi_1) —mgo(X,-_1) = mg;(X,-_1)(6n —90)+nn(X,-_1)

to the it“ summand in (a), expanding the quadratic, term (a) is bounded above by

the sum of following terms

”97, —60l|2—22:21th(23— Xi— 1 )rn90(X,-_1)dG(I), and

7711(Xi-1) I

In _QOll_1:Z/Ki2t($_i—)(_—_H6_,0H.>dc<>.

The first term of (a) is 0,,(51) by taking the expectation of the summation and

Theorem 3.4.1. Similar to the argument of first term in (3.5.1), the second term of

(a) is Opn(—1—h.) Hence the first part of (3. 5. 2) holds.

Using the same skill and similar argument as above, one obtains that term (b)

can be written as a sum of following two terms

1h _
T E :% Xi— 1 .

(611— 60) — In('ni:1 h, h,——)m90(XXi_1)Ei) dG(.’L‘),

T(6n 2( T — TlnX(i 1)

(9" 9°) Id.4.1471“:24K h“In. won)Ml“)

By taking the expectation of the absolute value of the integration, and Theorem

 

3.4.1, the first term is op( n/——,)h1,. Similarly the second term is also op( ——1)—n,)h,. Hence

the second part of (3.5.2) holds, so does the proposition. [:1

Now we prove the prOposition 3.5.3.

Proof of proposition 3.5.3. Define

4513' = [116.02 — Xi-1lKh($ — Xj—rldG(33)€i€j,

n1 j

an = fi2¢ijy Unzzlvnj'

I: J:
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Then, Un is a sum of Martingale differences. In order to apply the M.G.C.L.T to

prove the proposition 3.5.3, one needs to check the following three conditions:

(Cl) Var(U =2 EVn

1

(C2) 32— 2 v3, -—. 1 in probability,

0 1 " 2 . . .
( 3) 53 2E {an1{lvnjl>gan}lfn‘j_1}} ——> Om probab111ty,Ve > 0.

The proof of proposition 3.5.3 is broken down into four lemmas.

Lemma 3.5.3 Under the conditions (M) to (H),

(71211)En(4 Z ¢ij¢1j)2= 0((1).

i<l<j

Lemma 3.5.4 Under the conditions (M) to (H),

Var(U) =25:an2 = = 0(712IL).

Lemma 3.5.5 Under the conditions (M) to (H),

0,:4 2 EV”: —

i=1

Lemma 3.5.6 Under the conditions (M) to (H),

07:2"-4 2%?) " Elf/1%) = 010(1)-

i<j

The condition (Cl) and (C3) are the direct consequences of lemma 3.5.4 and

Lemma 3.5.5 respectively. Note that

'=;,IZ(Z (11?,- + 2 Z am”) .

i<l<j
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So,

(‘43 - EijVUi

j:

n

2
_ 2 __ 2

_ 03”.; Z(¢ij Easij) + 0.721724

i<j

H
»
:

  
Z(¢1j¢1j '— E¢ij¢zj) = 0p(1)

i<l<j

by Lemma 3.5.3, Lemma 3.5.4, and lLemma 3.5.6. Hence the condition (C2) holds

by Lemma 3.5.4. Therefore the proposition is proved. [:1

Next we will focus on the proof of the four lemmas.

Proof of Lemma 3.5.3. Note that left hand side of lemma is equal to

h2

(3.5.3) 53 Z E¢ij¢1j¢ry¢rf

(i<l<j),(i’<l’<j’)

where the summand E¢ij¢lj¢iljr¢pjl is

E/ Kh($ — X,_1)K,,(x — Xj_1)K,,(y — Xz—1)Kh(y - Xj—l)
IxIxIxI

Kh(8 - Xir_1)Kh(S — le._1)Kh(t — X1r_1)Kh(t — in_1)EiE‘IEEEiIEpEidcxyat,

and deW 2: dG('J:)dG(y)dG(s)dG(t).

Define

E, = {(i < l < j, i' < l' < j') : there are 11 distinct values in i,l,j,i',l',j'. }.

Then on Fy, (3.5.4) is bounded above by

1

(3.5.4) const -W = 0( 

Denote the 11 distinct indices defined in FV by (i1 < i2 <, ..., < iv). Define dj be

the 3"" largest difference among 2',“ — i,, i = 1, ...,1/ — 1. Also define

Km...j.I-,-.-.->= H Kh(-—Xz_1)e§”.
(E(jljflp..jk)
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where p, is either 1 or 2. Then (3.5.3) can be written as

h2 6
(3-5-5); 2 Cu 2 E¢ij¢1j¢ry¢ry = 03/13 + c4A4 + 05A5 + c6A6, say,

11:3 Fl,

for some constants 03, c4, c5, and c6. In order to prove the lemma, it suffices to show

that A, = 0(1), for u = 3,4,5, 6.

But when u = 3 or 4, by (3.5.4) and (3.5.5),

h2 1 1

A3 = 0(3 ' n3 ' F) = 0(a) = 0(1),

h2 4 1

So we only need to show A5 = 0(1) and A6 = 0(1).

Define

7' = min {j S 5: dj = il+1 — i1, and EK,,,..,i,(-, -, -, ) = Ofor some 1.}.

It is seen from this definition that on FV

(3.5.6) 7' g 8 — u.

Next we will show that

1

71.4"Th2

(3.5.7) A, = O( ), V = 5,6.

Suppose d, = i,“ — i, for some I. On F”, u = 5, 6, (3.5.3) is equal to

/ COV (Ki1,..,i( (1:! y? S) t)? Kil+1,..,iu (1:) ya 39 t)) dG($)dG(y)dG(S)dG(t).

IxIxIxI

By Lemma 3.2.1, the above term is bounded above by

(3.5.5/I I I I2p[Za(dr)ll/”llKi.....z-.llqllKi...,.....,IlrdG(:v)dG(y)dG(s)dG(t).
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l l l =for any p, q,r > 1, and q + q -+- r 1, where

IIK.... .,I|.,= (EIK.,(:1:, y,s,t)lq)1/q.

By an usual calculation, (3.5.8) is bounded above by

 const - p[a(d,)]1/p
 

By taking q = r = V, A, is bounded above by

h2 T u—l—‘r 3/51 1

const - gin Ed, [a(d.,)] h_4 = O(—), V = 5,6,

 

The lemma therefore is proved. [3

Proof of Lemma 3.5.4. Because E¢ij = 0 for any i 75 j, so EVM-Vnz = 0 for 3' ¢ 1,

and EUn = 0. Hence

(3.5.9) Var(Un) = Eu: = E (:2 14,-) =:2E.

—n4: 1%.,- +14: Ems

i<j i<l<j

By Lemma 3.5.3 the second term of right hand side of the above equation is

0((n2h)‘ ). Note that Ed; can be written as a sum of two terms:

(a) Cov (Ki(x, 3,053, KJ-(x, we?) dG(a:)dG(y),

IxI

(b) / Imam/>1”) dG<)dG(y).
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where

((433131): K1101? — X,_1)K,,(y - X14)-

By Lemma 3.2.1, the term (a) is bounded above by

(3-5-10) const-QPlQOU-iNI/pf lle-(IL‘.y)Hq||Kj($.y)|lrdG(I)dG(3/)
IxI

for any p,q,r > land %+%+%=I. Take p = q = r = 3, then (3.5.10) is bounded

above by

(3.5.11) const [0 (j —i)]1/3-——

Hence (a) is bounded above by

»:1/3 2
const—”7—22” 2.: Z( 0((n h)1).

k:lj——i=k

On the other hand, by the direct calculation,

1.. / (Emu: y)W) dG(>dG<y>
IxI

——> (a2)2/If2(x)gz(xmz /(/K(u)K(n+v))du)2dv =: 1‘2.

This together with (3.5.9) as well as Lemma 3.5.3 implies that

 

n-l

n2h - V(U,,) = n2h-c731 = n2h - 2 EV; ——> F2.

i=1

So Lemma 3.5.4 is proved. [:1

Proof of Lemma 3.5.5.
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Note that

(3.5.12) n4h22El/n2j "1017213950 +62%; 2: E<Z522j¢zj +Cshn42: E¢ij¢zj

j i<j i;l<j i¢l<j

+C4;‘ Z E¢ij¢lj¢kj+c5::_:' Z E¢ij¢lj¢sj¢tj

i¢l¢k<j i¢l¢s¢t<j

for some constants c1, C2, c3, c4 and c5.

By direct calculation, the first term on the right hand side of (3.5.12) is bounded

above by

I}:

const 7H:h—3 =O(n—1-2h) =0(1).

i<j

Similarly, the second and the third terms are bounded above by

const ' h— : hi: O(-1—) = 0(1),

124 . .
z¢l<J

and the fourth term is bounded above by

const - if: E l - O(h) - 0(1)

714 I _ _ 'L
i¢z¢k<j

So in order to prove the lemma, it suffices to show that the fifth term on right hand

side of (3.5.12) is 0(1). But note that the fifth term is actually a special case of

(3.5.3), hence it is 0(1) by Lemma 3.5.3. The lemma is proved. C]

Now we are about to prove Lemma 3.5.6. But before that we first prove an

inequality. This inequality is an extension of Theorem 1.3 part ( 1) of Bosq (1998).

The inequality is given in the following theorem.
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Theorem 3.5.2 Suppose {fn} is a family of o~field satisfying Tn Q 7H1. Eij is

measurable w.r.t fivj, Eéij = O for i 7E j, and |§ij| S b. Then for any 5 > 0,

n 2 1/2

qe 8b n

P026131 >135) Sclqexp{—87p}+c2q2 (1+?) .0 (w),

for some constants c1, c2 > O and 1 s q S [’5‘]

Proof.

First consider blocking. Let p be an integer between 1 and n. Let q = [£1 + 1.

Define

n

11 . .

V1() = EEij,z=1~p,]=1~p, ......

i<j

11

v3“) = 250,1: 21p+1~ (21+ 1);), j = 2lp+1,~ (21+1)p,

i<j

n

21 . .
V1” = E {ij,z=1~p,]=p+1~2p, ......

i<j

Vf’“) = Zg.,,i=2zp+1 ~ (2l+1)p,j=(21+1)p+1 ~2(1+1)p,

i<j

n

3 . .
V1“) = Eéij,z=p+1~2p,]=p+l~2p, ......

i<j

143‘” = :§,,,z'=(21+1)p+1 ~2(l+1)p,j =(21+1)p+1~2(l+1)p,

i<j

11

V4“) — -- '— 1 2 ”—2 1 3
1 — Zngaz—p'l” N P,]— p‘l' N p, ......

i<j

n

4(1) _ .. ._ .1.

V: — 25:],3—(21+1)p+1~2(l.1)p,

i<j

j=(21+1)P+1~(2(l+2)+1)p, ......
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Define

Ak={(i,j):(k—1)p<j—i5kp,i=1~n,j=1~n}.

Then

11 2Q

Z€ij=z 2 Eg-

Ki k=1 (13776.41

So for any 5 > 0,

(3.5.13) P(|:€ijl > n25) _<_ :Pl 2 €ij|>1;—

I<J (i,j)€Ak

On each Ak, define WW 2' = 1 ~ 4 as above, then

(3.5.14) 2 g“: 2 (6100+ 2 W200 + Z 142(k) + Z V140“)

l l l
(i .7))EAI:

Hence

4

z w— sin:0sz>125)
(idle/4k i=1

But by recursively using Bradley’s lemma 1.2 in Bosq (1998), there are indepen-

dent random variables Wlilk), ..., Wlilk), such that Pw‘“) _—. Pvflk), and

l l

. 1/2

1' i lVlm + '00
(3.5.15) P(|w,""—v,"°’|) 311- (l l ,\ C" a(p).

for any 0 < A 3 MW”) + CHOO. Hence

(3 516) |ZV“"’| > 9—25. . I , 8g

= POZV”(>7:3——2:IW,“’°— Vf‘k’lsAM)

l

+Pm(UuWi‘k’— vi“): > n)
l

 

l
/
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Choose

71%

= . _, 6 — 1 2/\ mzn(16q2 ( )bp),

then

IIW’""+cHw s Hv,“"’llx+cs<6+1>bp2

III/1““ + one. 2 c — 1114““le 2 (6 -1)5p2 > 0.

So, 0 < A g ”VIM“ + cHoo. Hence in view of (3.5.15), (3.5.16) is bounded above by

(3.517)

 

22 1/2

P(IZW:‘")I>”;—:-)+q u (max<§ii,16”b(5+1)>) -a<p>
n28

Choose 6 such that

6—1— n25

 

1 _ 16(12pr _ 4b

3

then (3.5.17) is bounded above by

1/2

(3.5.18) m(zwgml. $11 ..., (1.3;) ...(p).

But by applying Hoeffding’s inequality to Wink), one may obtain that

2(n—26)2 n52i(k) __ __ 16q < . _

PO2W I >153) 2e:l:p{ _q(bp2)2} _ 261p { 16b2p}'

Hence (3.5.18) is bounded above by

n52 8b ”2

2 -— 11- - 1 — . .e$p{ 16b2p}+ q ( + E) 0(1))
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So (3.5.13) is bounded above by

n52 8b In

16-q-e$p{—i—6—fiI—9}+88-q2 (1+?) -a(p).

The theorem is thus proved. D

We will apply the above inequality to prove Lemma 3.5.5.

Proof of Lemma 3.5.6.

We will show that for any A > 0,

P ((32 2"] f, — E33)! > A) = 0(1).

n i<j

Apply Theorem 3.5.2 with 5,3- = d)%— Eqfifj, By boundedness of g and kernel

function K, one obtains that {U is bounded above by c/h.2 for some constant c that

doesn’t depend on i, j. For any positive number A,

(3.5.19) P 0%,ng —E¢§,) > A) _<_ P ([233,—E¢§))|> 71.2%)

i<j z<J

By Theorem 3.5.2 with e = A/h and b = c/hz, one obtains that (3.5.19) is

 

bounded above by

52 8c 1 ”2 n

0 .2 I O -————- O 2 ' 2 . _ . — . — o(3 5 0) 61 q exp{ 862 qh }+ 02 q (1+ 5 h) a([2q])

Choose q = nil, then qh2 —> 00 and n/(2q) = O(nfi?) —> 00 as n tends to 00.

Hence both two terms in (3.5.20) tend to 0 by condition (M). therefore the proof of

the Lemma 3.5.6 is complete. [:1
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Chapter 4

Simulations

This chapter contains a simulation study comparing three tests. More precisely, let

{Xh t = 0, i1 i 2, ...} be a stationary stochastic process satisfying

Xt = #(Xt-1)+ 5:,

where {at} are i.i.d. r.v.’s with mean zero and at is independent of Xt_1, for all

t. The parametric family of functions to be fitted to u is chosen to be m9(x) =

6:13, x 6 1R, 6 6 IR with 90 = 0.8. That is, the hypothesis to be tested is

 

H0 : p(:1:) = 0.82:, vs. H1 : H0 is not true.

We chose the following three models to generate simulated data from:

model 1. Xt+1 = 0.8Xt + €t+1,

model 2. Xt+1 = 0.8Xt—1.Ze:1:p(—X,2))Xt+ EH1 + 0.1,

model 3. X,+1 = 0.8x, + 0.5(X, —— 0.5)2 —— 0.3(X, - 0.5)3 + am.
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The error distribution is either N (0, 0.1) or double exponential. The sample sizes

chosen are 50, 100, 200, and 500. The three different tests are those of Koul and

Stute (1999) denoted by KS, An and Cheng (1991) denoted by AC, and the mini-

mum distance test of Chapter 3 denoted by MD. The nominal level that is used to

implement the test is a = 0.05. There are 1000 replications for each combination of

(model, sample size, error distribution). Data from model 1 are used to study the

empirical size, and the data from models 2 and 3 are used to study the empirical

power of these tests. The empirical size (power) is computed by

Relative frequency of ( value of the test statistic > F‘1(1 — (1)),

where F is the asymptotic distribution of the test statistics under H0.

The steps to compute the test statistics are as follows: Let X(O) g, ..., _<_ X(n)

denote the ordered X0, X1, ...,Xn.

1. Koul and Stute test:

Step 1: Compute the least square estimate of 00 under H0:

else = Ext—IXi/ZIXE—r

Step 2: Compute Vn(X,-), i = 1,2, ...n, where

3

1

Vn($) = 7Z (Xi — 6186X1_1)1(Xi_1 S III), 1' E R.

i=1

3

Step 3: Compute An(X(,-)), X(i) g 230, where 230 is the 99th percentile of the sample
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Ana) — fy21(?/>I)Gn(dy)—lZX.2_11(X1-1>23),

Gn(:c) = liI(X1_1<x), $61K

Step 4: Compute the estimate of the error variance:

-:léw -9136Xi—1)2 -

Step 5: Compute TnVn(X,-), i = 1,2, ...,n, where

TI

1 1 "

Tnvna) = 752 [Ion--1 s::)— ;ZX1-1A;1(Xj-1)X._1

i=1i=1

XI(Xj—1 S Xi-l /\ 37)] (Xi - glseXi-ll'

Step 6: compute the test statistic

T3: sup lTnVn($)l = sup lTnVn(Xi)l.

$310 (In Gn(l‘0) X13450 0'11 Gn($0)

The limiting distribution of the test statistic is sup0<t<1 |B(t)|, where B(t) is a

standard Brownian motion. The 95th percentile of this distribution is approximately

equal to 2.2414 obtained from the formula

P( sup |B(t)|<b)= ((1P|B))|<b +2:(—1)‘P((2i-1)b<B(1)<(2i+1)b),
0<t<1

given on page 553 of the book by Resnick (1992). The number 2.2414 is such that

IP( sup lB(t)| < 2.2414) — 0.95) g (0.1)6.
0<t<1

The same cut off value was also used by An and Cheng (1991).
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2. An and Cheng test:

Step 1: Compute the sample covariance:

1 " 1 "
A’_— X-2 , (l A =- XiXi—-

Step 2: Compute

. ’71

P = T-

70

Step 3: Compute 6'2 = n‘1 2;,(Xi — fiXi_1)2.

Step 4: Compute (E,- = X,- — fiXi_1.

Step 5: Compute Kn(X,-), i = 1,2, ...,n, where

 

where m = m(n) is a subsequence of n for which m/n is about 0.75.

Step 7: Compute the test statistic Kn = sup, IRn(t)| = sup,- IRn(X,-)|.

The limiting distribution of the test statistic is the same as that of the KS test.

3. Minimum distance test:

Choose the kernel function K (a) = 2(1 — v2)1(}u| _<_ 1), the compact set I =

[—1,1],h = n’1/4 and C(27) = x on [—1,1].

Step 1: Compute the minimum distance estimate of 00,

 

f1 (Eli Kh($ - Xi—llxi) (221:1 K1107 " Xi—1)Xi_1) d1".

9., = n

f1 (21:1 Kh(17 " Xi—1)Xi—1)2 dx

Step 2: Compute the residuals by

55 = Xi — 6,,Xi_1,z=1,2,...,n.
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Step 3: Compute the test statistic

Tnzn::/2[/I(nleh(i)i2$—X—lé) dI——:/K2($— Xi_1)5?d$].
 

n

where

MAE21941“ Xi-llzé?)d/(/K(u))K(u+v
)du)2dv.

The simulation programming was done using C language. To generate a time

series of size n from a given error distribution, first a random sample was generated

from uniform [0, 1], then by calling rnorm function from R the errors from N(0, 0.1)

were generated, while the errors from the double exponential were generated by

inverting the distribution function. Then a series of (101 + n) r.v.’s are generated

based on models 1, 2, 3, and the errors. Finally, X0, ...,Xn are taken to be the last

(71. + 1) observations.

The sizes and powers of the three tests were simulated for the sample sizes

a = 50, n = 100, n = 200 and n = 500, each repeated 1000 times. The density

curves of normalized 6n and Mh(6n) are plotted by using density plot command with

Gussian kernel option in SPLUS2000.

The results of the simulation study are shown in the Tables 4.1 to 4.3. The

Tables 4.1 and 4.2 give the empirical sizes and powers of the three tests for testing

model 1 against model 2, and for the error distributions double exponential and

N(0, 0.1), reSpectively. Table 4.3 gives a similar data when testing model 1 against

model 3 with the error distribution N(0,0.1) only. From these tables, one sees

that all three tests have equally good power performance for the sample size 500.
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But KS and MD tests have better empirical sizes than the AC test for most of all

remaining sample sizes. Compared to the other two tests, the MD test performs

better for testing model 1 against model 3, and also has good performance in testing

model 1 against model 2 when the error distribution is N (0, 0.1) and the sample size

100 or more, but its power is not as good as that of the other two tests when the

sample size is as small as 50. Overall, AC test has good power performance but it

seems the empirical size is not good for testing model 1 against model 2 with double

exponential errors. KS test seems to have better performance than AC and MD in

testing model 1 against model 2 with normal error distribution, but not as good as

the other two for testing model 1 against model 3 with N (0, 0.1).

Table 4.1: Tests for model 1 22.3. model 2 with double exponential errors.

 

 

 

 

      

n = 50 n=100 n:200 n=500

tests size power size power size power size power

AC 0.059 0.027 0.308 0.209 0.132 0.789 0.128 0.934

KS 0.072 0.137 0.064 0.446 0.054 0.837 0.051 0.990

MD 0.012 0.111 0.043 0.406 0.045 0.824 0.050 0.999
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Table 4.2: Tests for model 1 vs. model 2 with N(O, 0.1) errors.

 
 

 

 

 

  

n = 50 n=100 n=200 n=500

tests size power size power size power size power

AC 0.010 0.867 0.022 0.999 0.025 1.000 0.034 1.000

KS 0.029 0.998 0.036 1.000 0.042 1.000 0.049 1.000

MD 0.011 0.659 0.019 1.000 0.023 1.000 0.044 1.000      

Table 4.3: Tests for model 1 vs. model 3 with the N(0,0.1) errors.

 

 

 

 

     

n = 50 n=100 n=200 n=500

tests size power size power size power size power

AC 0.019 0.372 0.019 0.947 0.025 1.000 0.029 1.000

KS 0.013 0.554 0.071 0.777 0.059 0.871 0.046 1.000

MD 0.011 0.421 0.021 0.982 0.035 1.000 0.049 1.000

  
 

 

  

  
 

Tables 4.4 and 4.5 below list the mean and standard deviation of 9,, under H0

with double exponential and N(0, 0.1) errors, respectively. From the tables one can

see that 6,, converges to 60 = 0.8 as sample sizes change from 50 to 500, and the

standard deviation tends to be smaller as sample size tends to be larger.

The simulation results of the densities of fiwn — 0.8), the minimum distance

test statistics, and suitably scaled minimized distances are shown in Figure 4.1 to

Figure 4.12.
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Table 4.4: Mean and s.d.(6,,) under model 1 with double exponential errors.

 
 
 

 

       

sample size n=50 n=100 n=200 n=500

mean 0.82 0.809 0.807 0.802

stdev 0.0963 0.0777 0.0533 0.0339

 

 
 

 

Table 4.5: Mean and s.d(6,,) under model 1 with normal errors.

sample size n=50 n=100 n=200 n=500

mean 0.845 0.821 0.813 0.807

stdev 0.0957 0.0682 0.0475 0.0306        

 

  

 

  

Figure 4.1 is the Monte Carlo density curves of fiwn — 0.8) from 1000 runs

with sample size n = 50, n = 100, n = 200, n = 500 respectively when the error

distribution is double exponential. Figure 4.2 is the Monte Carlo density curves of

was, — 0.8) when the error distribution is N(0,01). The graphs show that the

distribution of fiwn — 0.8) converges to its asymptotic normal distribution very

quickly.

Figure 4.3 is the Monte Carlo density of Tn under H0 when the error distribution

is double exponential. Figure 4.4 is the Monte Carlo density of Tn under H0 when

the error distribution is double exponential. Figure 4.5 is the Monte Carlo density

of Tn under H0 when the error distribution is N(0,0.1). Figure 4.6 is the Monte

Carlo density of T1., under H0 when the error distribution is N(0,0.1). Figure 4.7
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is the Monte Carlo density of Tn under H0 when the error distribution is N (0. 0.1).

From these graphs, it can be seen that eventually the density of the test statistics

converge to a standard normal density under H0, and to a normal density with unit

variance and a positive mean under the alternatives.

Figure 4.8 to Figure 4.12 are the Monte Carlo density of nh1/2Mh(6n) with

sample size n = 50, n = 100, n = 200 under models 1, 2, and 3, when the error

distributions are double exponentail and normal. From the graphs we find that the

densities under models 2 and 3 are approximately their counterparts under model 1

with positive shifts.

” 1’

In the following figures, ” ------ is for n = 50, ”— - — is for n = 100, a heavy

solid line is for n = 200, and a light solid line is for standard normal distribution.
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The density of fiwn — 0.8) when the errors are double exponential.Figure 4.1:
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Figure 4.2: The density of Jim” — 0.8) when the errors are N(0,0.1).
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Figure 4.3: The density of Tn(0n) under model 1 with double exponential errors.
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Figure 4.4: The density of Tn(0n) under model 2 with double exponential errors.
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The density of Tn(6n) under model 1 with N(0,0.1) errors.Figure 4.5:
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The density of Tn(0n) under model 2 with N(0,0.1) errors.
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Figure 4.7: The density of Tn(9n) under model 3 with N(O, 0.1) errors.
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Figure 4.8: The density of the suitably scaled minimized distance under model 1

with double exponential errors.
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Figure 4.9: The density of the suitably scaled minimized distance under model 2

with double exponential errors.
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Figure 4.10: The density of the suitably scaled minimized distance under model 1

with N(0,0.1) errors.
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Figure 4.11: The density of the suitably scaled minimized distance under model 2

with N(O, 0.1) errors.
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Figure 4.12:

with N(0,0.1) errors.

The density of the suitably scaled minimized distance under model 3
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