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ABSTRACT

EXPLOITING CROSS-TECHNOLOGY INTERFERENCE FOR EFFICIENT NETWORK
SERVICES IN WIRELESS SYSTEMS

By

Ruogu Zhou

In the last decade, we have witnessed the wide adoption of a variety of wireless technologies

like WiFi, Cellular, Bluetooth, ZigBee, and Near-field Communication(NFC). However, the fast

growth of wireless networks generates significant cross-technology interference, which leads to

network performance degradation and potential security breach. In this dissertation, we propose

two novel physical layer techniques to deal with the interference, and improve the performance

and security of sensor networks and mobile systems, respectively. First, we exploit the WiFi in-

terference as a “blessing" in the design of sensor networks and develop novel WiFi interference

detection techniques for ZigBee sensors. Second, utilizing these techniques, we design three effi-

cient network services: WiFi discovery which detects the existence of nearby WiFi networks using

ZigBee sensors, WiFi performance monitoring which measures and tracks performance of WiFi

networks using a ZigBee sensor network, and time synchronization which provides synchronized

clocks for sensor networks based on WiFi signals. Third, we design a novel, noninvasive NFC

security system called nShield to reduce the transmission power of NFC radios, which protects

NFC against passive eavesdropping. nShield implements a novel adaptive RF attenuation scheme,

in which the extra RF energy of NFC transmissions is determined and absorbed by nShield. At

the same time, nShield scavenges the extra RF energy to sustain the perpetual operation. Together

with the extremely lo-power design, it enables nShield to provide the host uninterrupted protection

against malicious eavesdropping. The above systems are implemented and extensively evaluated

on a testbed of sensor networks and smartphones.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the last decade, the advancement of technologies has significantly bridged the performance gap

between wireless technologies and wired communication approaches in terms of bandwidth, de-

lay, security, and etc. As a result, wireless technologies like WiFi, Cellular, Bluetooth, ZigBee,

and NFC (Near-field communication) are being widely adopted worldwide to replace and com-

plement existing wired communication infrastructures. For example, the number of WiFi hotspots

is expected to grow from 1.3 in 2011 to 5.8 million in 2015 [31]. However, a key challenge in

the design of wireless systems is the interference that usually causes communication performance

degradation. In particular, in public areas such as offices, college campuses, and hospitals, the WiFi

networks that provide Internet access for mobile devices are often co-located with sensors embed-

ded in the environment, such as those offering security surveillance [54] and urban environmental

monitoring [91] services. When sensor networks work in overlapping or adjacent frequency bands

with WiFi networks, their performance could be significantly impaired by the WiFi interference

[55]. Besides performance degradation, interference could also lead to security and privacy issues

[97]. An example is the short range NFC technology that has been widely adopted by security

sensitive applications like contactless payment. The interference generated by NFC usually carries

security-sensitive information, e.g., identity, credit card information, etc. As wireless interference

can be easily detected by unintended receivers (i.e., eavesdropper), such sensitive data may be

leaked to malicious attackers.

Many existing approaches [49][92][48][56] strive to mitigate the performance loss on wireless

sensor networks caused by WiFi interference. Most of them consider the interference as “curse"

to wireless networks as they harm the system performance. We argue that there exist abundant
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opportunities for sensor networks to exploit such interference as a “blessing". Sensors are usually

capable of simple spectrum sensing. Using the received signal strength indication (RSSI) register

which is provided by most commercial off-the-shelf ZigBee radios, ZigBee radios can sense the

WiFi interference signals and hence are able to retrieve many useful features from the interference.

For example, the periodic beacon frames transmitted by WiFi Access Points (APs) can cause pe-

riodic interference patterns in the RSS series received by ZigBee radios, which can be used, for

example, as time synchronization reference clock on sensor network platforms. We propose to

exploit such cross-technology interference between WiFi networks and sensor networks to design

several important network services. These services include:

1. WiFi discovery. Due to the limited coverage of existing WiFis, WiFi-enabled devices (e.g.,

laptops and smartphones) must actively discover new WiFi access points (APs) once they

leave the coverage of current network. Such an approach wastes the precious energy of

mobile devices due to excessive listening and scanning operations of WiFi network inter-

face cards (NICs). Several solutions have been proposed to address this issue. The first

approach utilizes a secondary low-power radio that communicates with peer radios on WiFi

APs to find connectivity opportunities or reduce the energy consumption of data transfer-

s [83][84][34][33] [72][69][41]. However, this approach requires significant modifications

to existing network infrastructures. The second approach predicts the availability of WiFi

based on context information. Cellular cell-tower information [35] or together with Blue-

tooth contact-patterns [75] have been used to improve WiFi prediction accuracy. However,

such a context-aware approach requires extensive training based on historical information

and hence is not feasible in unknown environments.

2. WiFi network performance monitoring. Compared with wired LANs, WiFi suffers signif-

icantly higher level of spatial and temporal performance variability. Due to the broadcast

nature of wireless channel, signal propagation are susceptible to environmental condition-

s. As a result, end-users often experience highly variable signal quality. To diagnose such
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transient service degradation and plan for future network upgrades, it is essential to closely

monitor the spatial and temporal performance of a WiFi network as well as to collect the

statistics of its users. The existing WiFi performance monitoring solutions [39][40][43] rely

on 802.11-based listening devices. However, due to the high power consumption of 802.11

radios, the monitoring nodes must be connected to external power supplies (e.g., wall power

or desktop computers). This constraint leads to high installation costs and poor spatiotem-

poral monitoring granularity.

3. Time synchronization for sensor networks. Time synchronization is a fundamental service

for Wireless Sensor Networks (WSNs). A number of protocols are available to synchronize

clocks of nodes through message passing, which include RBS [45], TPSN [47] and FTSP

[67]. However, they incur high messaging overhead or poor accuracy in large-scale WSNs.

For instance, an in-depth analysis showed that the clock skew in FTSP grows exponentially

with network diameter [? ]. An alternative approach is to leverage external global timebases

such as those extracted from Global Positioning System (GPS), timekeeping radio stations

(e.g., WWVB in the US and JJY in Japan), FM Radio Data System [63], or even power

grid [79]. This approach largely reduces the overhead of message exchanges. However,

they require hardware receiver to decode the out of band clock signal, introducing extra cost

and design complexity. Moreover, the signals of GPS and WWVB have poor penetration

through walls while the electromagnetic field is strong enough for clock calibration only in

the vicinity of power lines [79].

Previous work [53] aims to preserve the data security of the NFC interference signals by en-

hancing NFC data encryption. However, without reducing the amount of interference signals gen-

erated by NFC radios, they cannot completely prevent information leakage. Moreover, these secu-

rity protections are not properly implemented [53][50] on many systems and are hence susceptible

to security attacks. Our measurement study on the NFC physical security reveals that the power of

NFC interference signals can be significantly reduced by using physical protection approaches like
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signal attenuation. We propose to utilize signal attenuation to preserve the data security of NFC

systems. Combined with proper encryption, such a physical protection approach will drastically

improve the security of NFC systems.

1.2 Contributions

In this dissertation, we propose to exploit WiFi interference signals in the design of sensor net-

work services and to develop a security system that reduces signal power of NFC interference and

prevents malicious eavesdropping. The contributions of this dissertation include:

1. We develop novel WiFi interference detection techniques for ZigBee sensors to identify WiFi

interference. We develop a new digital signal processing algorithm called Common Multiple

Folding (CMF) that accurately amplifies periodic beacons in WiFi interference signals. We

also adopt a constant false alarm rate (CFAR) detector that can minimize the false negative

(FN) rate of WiFi beacon detection while satisfying the user-specified upper bound on false

positive (FP) rate.

2. We develop a system called ZiFi that identifies the existence of WiFi networks using the WiFi

interference detection technique described above. We have implemented ZiFi on two plat-

forms, a Linux netbook integrating a TelosB mote through the USB interface, and a Nokia

N73 smartphone integrating a ZigBee card through the miniSD interface. Our experiments

show that, under typical settings, ZiFi can detect WiFi APs with high accuracy (< 5% total

FP and FN rate), short delay (∼ 780 ms), and little computation overhead.

3. We develop a new ZigBee-based WiFi performance monitoring system called WizNet. Pow-

ered by batteries, ZigBee sensors of WizNet can be deployed in large quantities to monitor

the spatial performance of a WiFi in long periods of time. We adopt the CMF algorithm and a

novel RSS sequence alignment algorithm for automatic WiFi AP identification and tracking.

To ensure the monitoring fidelity, we exploit the frequency diversity and spatial diversity of

the WiFi interference signals to account for the significant differences in ZigBee and WiFi
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radios, such as bandwidth and susceptibility to multipath and frequency-selective fading.

We also derive a simple yet accurate linear estimator from a signal propagation model for

inferring the access points’ signal to noise ratio (SNR). Moreover, we develop a technique

for collecting WiFi client statistics and classifying device models based on RSS signatures

of 802.11 access point scans. We have implemented WizNet in TinyOS 2.x and extensive-

ly evaluated its performance on a wireless testbed. Our results over a period of 140 hours

show that WizNet can accurately capture the spatial and temporal performance variability of

a large-scale production WiFi.

4. We experimentally characterize the spatial and temporal characteristics of WiFi beacons in

an enterprise WiFi network consisting of over 50 APs deployed in a 300,000 square foot

office building. We implement a time synchronization protocol called WizSync in TinyOS

2.1x, which exploits periodic WiFi beacons as synchronization reference clock. We conduct

extensive evaluation on a testbed consisting of 19 TelosB motes. Our results show that

WizSync can achieve an average synchronization error of 0.12 milliseconds over a period of

10 days with radio power consumption of 50.9 microwatts/node.

5. We propose a novel, noninvasive NFC security system called nShield to reduce the amount

of interference signals generated by NFC radios, which protects NFC against passive eaves-

dropping. nShield is a credit card-sized thin pad that can be easily stuck on the back of

mobile devices (see Fig. 7.6). nShield implements a novel adaptive RF attenuation scheme,

in which the extra RF energy of NFC transmissions is determined and absorbed by nShield.

At the same time, nShield scavenges the extra RF energy to sustain the perpetual operation.

A key contribution of this work is the analysis of the factors affecting the energy harvesting

efficiency, and the design of a highly effective energy harvesting system. nSheild is capa-

ble of harvesting significant amount of power (55 mW) from commodity mobile devices,

which is at least a 1.8X improvement over the state-of-the-art NFC-based energy harvest-

ing systems. Together with the extremely lo-power design, it enables nShield to provide
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the host uninterrupted protection against malicious eavesdropping. Lastly, the small form

factor, self-sustainability, and transparency to OS, makes nShield an attractive solution to

retrofit existing mobile devices with protection against passive eavesdropping.
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CHAPTER 2

RELATED WORK

In the following, we discuss the work related to each of the systems proposed in this dissertation,

respectively.

2.1 WiFi Network Discovery

The idea of waking up high-power radio using a secondary low-power radio was first proposed

in Wake-on-Wireless [83]. Several recent systems including On-Demand-Paging [34], Cell2notify

[33], and CoolSpots [72], also propose to use a secondary radio to either help detect WiFi signal or

reduce the energy consumption of WiFi data transfers. Wake-on-WLAN [69], S-WOW [70], and

Esense [41] allow ZigBee and WiFi radios to communicate through sensing specially designed

codes. However, the above solutions suffer from at least one of the following issues. (1) They as-

sume a “cooperative" setting where substantial software and/or hardware modifications to existing

network infrastructures can be made, which hinders their wide deployment. (2) As the secondary

low-power radio has significantly shorter communication range, the existing solutions often rely

on additional proxy servers to achieve satisfactory network discovery range. In contrast to these

solutions, ZiFi completely relies on the ZigBee interface on WiFi clients to detect the existence

of WiFi APs and requires no modification to WLAN infrastructure. Moreover, ZiFi detects WiFi

signal by passively sensing its energy, which ensures a similar detection range as WiFi interface.

There exist portable spectrum scanners [10] [14], often referred to as WiFi detectors, which

are specially designed to find WiFi signal. They usually work in standalone mode but may also be

modified to wake up WiFi NICs on mobile devices [84]. However, they require the use of 802.11

radios and hence come with high power consumption. Moreover, as specialized hardware, they

have not gained popularity in WiFi community.

In [71], BreadCrumbs is proposed to build the mobility model of a mobile device by tracking
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its movement from GPS and use the model to predict the connectivity opportunities. Cellular

cell-tower information or together with Bluetooth contact-patterns have been used in [35][75] to

predict the existence of WiFi. A key drawback of these context-aware approaches is that they rely

on historical information and hence cannot be applied to unknown environments. Moreover, they

often require extensive offline training in order to achieve satisfactory runtime prediction accuracy.

In contrast, ZiFi detects WiFi coverage by in-situ processing of signals transmitted by APs without

offline training or context information collection.

2.2 WiFi Network Performance Monitoring

Performance measurement and monitoring are critical for WiFi infrastructure. The existing solu-

tions can be classified into three basic categories.

The first approach consists of various WiFi site-survey tools including Fluke Airmagnet [9],

Berkeley Varitronics Swarm [5], and Airtight Networks[3]. These commercial products are typ-

ically expensive. For example, a single Fluke Airmagnet Express field kit costs over $5,000 [9].

Moreover, they need to be carried by experienced engineers who roam about the site to measure

the network performance. Several recent efforts studied urban-scale WiFi coverage in war-driving

experiments [77][37]. The above site-surveying approaches incur high labor costs and hence are

not suitable for long-term and real-time WiFi performance monitoring. In the Sybot system [59],

mobile robots carrying 802.11 radios can assess the WiFi networks in a building. Because of the

intrusive nature and the challenge of motion planning in complex environments, the use of survey

robots may not be feasible for large-scale enterprise WiFi deployments.

The second approach exploits the already available network infrastructure or installs dedicated

802.11 nodes for distributed WiFi performance monitoring. The DAIR system [39] takes advantage

of networked desktop computers equipped with WiFi network measurement devices for long-term

WiFi monitoring. Although these systems can assess the spatial performance of a network in real-

time, their spatial granularity is constrained to the locations where 802.11 computers are available.

Moreover, installing monitoring devices or software brings privacy concerns and may make desk-
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top users reluctant to participate. Several other systems [95][66][43] deployed dedicated 802.11

nodes for indoor spatial network performance monitoring. This approach is also employed by the

Argos system[78] to monitor urban-scale WiFi networks in outdoor environment. However, due to

the high power consumption of 802.11 NICs, the monitoring nodes must be plugged to wall power,

which not only limits the coverage but also incurs high installation costs.

The third approach utilizes non-802.11 nodes for WiFi monitoring. Similar to this work, WiBee

[90] adopts ZigBee nodes to build real-time WiFi radio RSS maps. However, WiBee does not con-

sider the significant bandwidth difference of heterogeneous radios as well as the indoor frequency-

selective fading. As a result, it suffers from large estimation errors (as high as 15 dB) which

limits its practical use. Moreover, WiBee only focuses on building coarse-grained RSS map of

WiFi while WizNet can monitor fine-grained performance characteristics including SNR, channel

utilization rate, and client statistics.

2.3 Time Synchronization for Sensor Networks

Time synchronization in distributed systems has been extensively studied. The existing approaches

fall into two broad categories. The first category includes the approaches based on network-wide

message exchanging. In the second category, time synchronization is achieved with the assistance

of more accurate external clock signals.

Several clock synchronization protocols based on message passing have been developed for

WSNs. They leverage message passing between nodes to measure and eliminate the time jitter

of various sources. In RBS [45], receivers correct their pairwise clock skew by exchanging the

receiving times of the broadcast reference message. Different from RBS, TPSN [47] and FTSP [67]

employ timestamping of message exchanges between a sender and receiver to eliminate sources

of time jitter. A key drawback of these message passing protocols is that they incur prohibitively

high overhead or poor synchronization accuracy when the network size scales to more than tens of

nodes. For instance, an in-depth analysis showed that the clock skew in FTSP grows exponentially

with network diameter [? ].
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Another time synchronization approach takes advantage of the global timebases induced by

various infrastructures including Global Positioning System (GPS), timekeeping radio stations

(e.g., WWVB in the US and JJY in Japan),FM Radio Data System [63] or even power grid [79].

These solutions largely reduce the message exchanges in the network by synchronizing the nodes

to a global time reference. However, they require extra hardware receivers to decode the global

clock signal. GPS and WWVB signals contain highly accurate global time reference. However,

they cannot penetrate building walls well and hence are largely limited to outdoor applications.

For instance, a recent empirical study in indoor environments [42] shows that the WWVB signal

is only received in 47% of the time. Several recent time synchronization systems exploited the in-

frastructure of buildings. In RT-Link [80], the wiring infrastructure of building is used as antenna

of AM radio to broadcast global time beacons for synchronizing the clocks of sensor nodes. The

Syntonistor system synchronizes nodes’ clocks to periodic signals extracted from electromagnetic

field of AC powerlines [79]. However, due to the significant attenuation of electromagnetic field,

Syntonistor can only work effectively in the vicinity of power lines. Moreover, the performance of

the system may suffer from interference of other electromagnetic sources.

Recent work exploits the use of two clocks for time synchronization [60, 82]. In the HAR-

MONIA system [60], the high-frequency microcontroller clock synchronizes an accurate but low-

frequency (1 Hz) Real Time Clock (RTC). In [82], a fast clock (e.g., 8 MHz FPGA-based clock)

is periodically activated to assist a slow clock (e.g., 32 KHz crystal oscillator) to achieve high-

resolution radio timestamping. Without a global time reference, these systems still require message

passing among nodes to calibrate their clocks.

2.4 NFC Security

Near Field Communication (NFC) is a new short-range wireless communication standard evolved

from HF RFID technology. Several studies have been conducted on the distance of eavesdropping

RFID proximity cards. In [51], the authors measure the passive eavesdropping distance of the

communication between a commercial reader and a Philips Mifare card using a wide band sniffer.
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nShield EnGarde
Radio type Software-define radio Dedicated ASIC NFC radio

NFC TX capability Supports NFC-A (implemented), Jamming only
radio NFC-B, NFC-F

HW accelerated SW encoding No TX support
RX capability Supports NFC-A (implemented), NFC-A, NFC-B, and NFC-F

NFC-B, NFC-F
HW accelerated SW decoding HW decoding

Ant. configuration Dual antenna Dual antenna
Optimization High Q antenna N/A

Voltage matching
Energy Harvestable power 55 mW maximum 30 mW transferred
harvesting constant to antenna

Max initiator 100% (tag-emulation) 66% (subcarrier)
duty-cycle

System pwr Active 8.7 mW 32.7 mW
consumption Sleep 23 uW 38.8 uW

Table 2.1: Comparison of hardware of nShield and EnGarde.

The results show that the possible eavesdropping distance is more than 4 m [51]. In [53], the

authors analyze the security of NFC and estimate the passive eavesdropping distance of NFC to be

about 10 m. However, this result is not experimentally validated. In [61], the maximum passive

eavesdropping distance of NFC is empirically measured to be 30 cm using Mifare tags and an

oscilloscope. However, the antennas of Mifare tags used in their experiments are not optimized

for eavesdropping. To our best knowledge, our work is the first empirical study on the practical

passive NFC eavesdropping distance under realistic experimental settings. We have designed and

implemented a prototype NFC sniffer. Its small form factor and high sensitivity demonstrated the

feasibility of launching passive eavesdropping attack from distance. In particular, we are able to

achieve a 2.4 m eavesdropping distance with our portable NFC sniffer (see Section 7.3).

Several approaches have been proposed to protect NFC from malicious attacks. A common so-

lution is to modify the OS of mobile devices [53] to enhance the security of NFC. However, the

mobile device would become vulnerable if the integrity of the OS is compromised (e.g., by rooting

the device)[50]. To address this issue, several systems adopt additional hardware security de-

vices. RFID guardian [76] provides protection by actively jamming suspicious NFC transactions.
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However, active jamming consumes considerable power and requires bulky hardware (e.g., RF

amplifier and large battery), which significantly limits RFID guardian’s applications. Proxmark

III [22] is a widely used RFID/NFC software defined radio that is capable of detecting an attack,

and generating jam signals. However, it must be plugged in as its FPGA-based design consumes

significant power (about several hundred milliwatts). Furthermore, none of these approaches can

provide anti-eavesdropping protection.

NFC is ideal for energy harvesting, due to the condensed RF field strength generated by its high

transmission power and short communication range. Energy harvesting enables a mobile device to

replenish its energy in the presence of NFC RF field. The NFC Discover kit [26] from ST include

a sensor board can be wirelessly powered by nearby NFC initiators. NFC-WISP [44][19] is a soft-

ware defined passive tag platform, which is capable of harvesting energy from NFC transmissions

and conducting simple sensing and computational tasks. A key difference between the energy har-

vesting component of nShield and the above two systems is the amount of power harvested. With

extensive optimizations to harvesting antenna and energy management circuit, nShield can harvest

a power of about 55 mW, compared to mere 10.2 mW and 17.7 mW of NFC Discover kit and

NFC-WISP, respectively. The significant improvement on the energy harvesting efficiency enables

nShield to power additional components and perform sophisticated operations to ensure system

security.

To date the most relevant work to ours is EnGarde [50]. EnGarde is a hardware NFC security

device that jams ongoing malicious NFC transactions. Different from RFID guardian and Prox-

mark III, EnGarde is optimized for mobile devices and harvests energy from NFC transmissions.

However, EnGarde protects NFC by censoring the content of NFC transactions, and hence cannot

defend against eavesdropping attacks. We provide a comparison between the hardware of the two

systems, which is summarized in Table 2.1.

nShield is built based on a software-define radio (SDR), which is capable of transmitting to

and receiving from NFC initiators. The SDR can be programmed to support standard and custom

protocols. However, as SDR relies on software radio stack to decode and encode messages, it tend-
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s to incur longer delays. In the case of nShield, hardware components (demodulator, modulator,

etc.) are utilized to accelerate the encoding/decoding, which significantly reduces the delay. En-

Garde, on the other hand, employs a hardware-based NFC transceiver (TI TRF7970A) that incurs

shorter delay than SDR-based transceiver. However, EnGarde only employs the receiving chain

of the hardware transceiver, due to its dual antenna configuration. Although EnGarde implements

a simple transmitter that can generate jamming signals, it does not support data transmissions.

The capability of transmission is critical for tag emulation, which increases the amount of energy

harvested from initiator significantly. Another disadvantage of this configuration is the resulted

high power consumption, since the hardware transceiver employed by EnGarde is mainly designed

for power-hungry NFC initiators. Moreover, the hardware-based transceiver does not support the

development of new physical and link-level protocols.

The energy harvesting system of nShield also differs significantly from that of EnGarde. Al-

though a dual antenna configuration is employed by both systems, it is used to meet fundamentally

different requirements. Specifically, EnGarde employs the dual antenna configuration for tag prox-

imity detection, while nShield adopts it for improving power harvesting efficiency. The harvesting

antenna of nShield is specially designed to achieve high Q-factor. nShield also employs a tech-

nique called voltage matching, which carefully matches the output voltage of the antenna to that

of the battery to maximize the amount of power harvested. On the another hand, EnGardes does

not perform any load-source matching, which significantly limits the power harvesting efficiency.

Moreover, EnGarde does not support tag emulation due to the lack of transmission capability, and

can only trigger the initiator to raise its duty-cycle to 66% by using jamming. This further lowers

the amount of energy harvested. Lastly, the active power consumption of EnGarde is much higher

than nShield (32.7 mW vs 8.7 mW), due to the use of hardware-based transceiver.
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CHAPTER 3

DETECTING WIFI INTERFERENCE WITH ZIGBEE SENSORS

Due to the unlicensed 2.4G spectrum, the interference received by ZigBee radios may contain

signals from various devices, such as WiFi APs, Bluetooth headsets, and etc. As a result, in order

to utilize WiFi interference in sensor networks, ZigBee sensors must be capable of identifying

the WiFi interference signals. However this is challenging since ZigBee radios cannot directly

decode WiFi frames, and RSS statistics (power magnitude, time duration, inter-arrival gap, and

etc.) provide little information about the nature and source of incoming signals. Therefore, the

first task of this dissertation is to investigate an approach for WiFi interference detection using

ZigBee sensors, which we discuss in this chapter.
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Figure 3.1: The RSS samples
collected by a CC2420 radio when
a nearby 802.11 AP transmits.
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Figure 3.2: Performance of Autocorrelation and FFT under
different traffic rates.

When 802.15.4 radio operates on the same or adjacent channels as 802.11 APs, the signals

from 802.11 APs can be sensed through RSSI. Fig. 4.3 shows the time series of RSS samples gath-

ered from a TelosB mote equipped with ZigBee-compliant CC2420 radio when a nearby 802.11

AP actively transmits. However, as ZigBee radios cannot directly decode 802.11 frames, RSS

statistics provide little information about the nature and source of incoming signals. We address

this challenge by searching for unique interference signatures in RSS samples.

802.11 beacon signals can cause unique interference patterns in RSS samples, which can be

detected by ZigBee radios. Several properties of 802.11 beacons make them ideal for detection.
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First, they are broadcast periodically by APs and hence lead to periodic traces in RSS samples.

Second, beacons are typically broadcast at the lowest data rate, which makes it easier to capture

by the RSSI register of low-rate ZigBee radios. However, a key challenge is that, thousands of

data frames are typically transmitted between two beacon frames, causing heavy noise in RSS

samples. Moreover, the RSS time duration provides little hint as there is a large overlap between

the in-air times of data and beacon frames. Several signal processing techniques such as Fast

Fourier Transformation (FFT) and Autocorrelation, can be used to detect periodic patterns from

noisy measurement. However, our experimental results in Section 4.3 show that their performance

are highly sensitive to the intensity of noise, making them ill-suited for identifying beacons in

moderate to high traffic workload. Moreover, both of them impose high computation overhead

for mobile devices like smartphones. We adopt a novel digital signal processing algorithm called

Common Multiple Folding (CMF) that can reliably identify periodic WiFi beacons at small delay

and overhead. Fig. 3.2 shows the performance of autocorrelation and FFT under different noise

levels. As can be seen, the results of autocorrelation and FFT can clearly reveal the beacons when

the data rates are 30 Kbps and 100 Kbps, respectively. However when the data rates increase to

180 Kbps and 260 Kbps, respectively, both of them fail to detect beacons. In the following, we

discuss the details of our WiFi interference identification algorithm.

3.1 RSS Sampling and Shaping

The RSS sampler of ZiFi reads the RSSI register of ZigBee radio every T us for total D us. T and

D are referred to as RSS sampling period and sampling window size, respectively. The sampling

period should be short enough to capture the transmission of 802.11 beacon frames. Each sample

contains the RSS value averaged for a number of incoming symbols. For instance, the built-in

RSS register in the CC2420 radio is updated every 32 us when enabled and the value is averaged

for 8 symbols (128 us). However, reading the RSS register every 32 us (i.e., T = 32) incurs

unnecessarily high computation and memory overhead. Intuitively, the sampling period should

be short enough to capture the transmission of 802.11 beacon frames. We now discuss how to
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determine the sampling period based on beacon frame length and channel transmission rate. The

802.11 beacon frame contains a preamble, a physical layer convergence procedure (PLCP) header,

and a MAC frame. The preamble and PLCP header are broadcast at a fixed rate of 1 Mbps while

the transmission rate of MAC fame varies with the version of protocol. The in-air time of a beacon

frame (denoted by Tbeacon) can be calculated as:

Tbeacon =
Lpreamble +LPLCP

Bp
+

LMAC
Bm

(3.1)

where Lpreamble, LPLCP, and LMAC represent the numbers of bits in preamble, PLCP header, and

MAC frame, respectively. Bp and Bm represent the transmission rates of preamble/PLCP header

and MAC frame, respectively. The PLCP header has 48 bits while the formats of preamble differ

in different 802.11 protocols. We only consider two 802.11b and 802.11g-compatible preamble

formats, specifically long preamble(144 bits) and short preamble (72 bits), as they are widely

adopted in practice for maximum network compatibility. A MAC frame should have at least 120

bytes, to account for the necessary parameters included in a beacon including SSID, supported

rates etc. Several data transmission rates are available in 802.11 protocol family. However, due

to the importance of beacon frames, they are always broadcast at the lowest possible rate that

is supported by the protocol, typically 1 Mbps in 802.11b and 6 Mbps in 802.11g. As discussed

above, the minimum in-air time of a beacon frame can be calculated as 256 us when Lpreamble = 72

bits, LPLCP = 48 bits, LMAC = 120 bytes, Bp = 1 Mbps and Bm = 6 Mbps. We choose a sampling

period of 122 us on the TelosB platform, which is 4 ticks of the on-board clock of TelosB. As a

result, for every beacon frame, we will at least capture two RSS samples.

After enough RSS samples are collected, the RSS shaper adjusts the power magnitude of them

to mitigate the noise in the following beacon detection stage. The shaper applies the following two

criteria to RSS samples in order: 1) The magnitude of an RSS sample is set to zero if it is below -90

dBm because, even if the sample contains beacon, a low RSS indicates poor signal quality from

the AP and low probability of successful client association. 2) The magnitude of all remaining

RSS samples are set to 1 mW. 3) The magnitude of S consecutive non-zero samples will be set
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to zero if S /∈ [s1,s2]. A cluster of such samples is typically generated by WiFi data traffic. We

now discuss how to determine s1 and s2 based on beacon size and 802.11 transmission rates. The

802.11 beacon frame has a size between 80 and 200 bytes. When possible 802.11 transmission

rates are considered, the in-air time of a beacon frame is from 256 to 1720 us, which corresponds

to an RSS sample count in [256
T , 1720

T ], where T is the RSS sampling period. Therefore, a number

of consecutive samples can be removed if the count lies outside this range. After the above three

steps, the magnitude of RSS samples is either 0 or 1 and the number of consecutive non-zero RSS

samples is within [256
T , 1720

T ].

3.2 Common Multiple Folding Algorithm

We have developed a novel digital signal processing algorithm called Common Multiple Folding

(CMF) that can identify periodic signals from an RSS series. CMF has several key advantages

including high accuracy and low computation/memory overhead. CMF is based on a technique

called folding that was first used to search pulsar in the radio noise received by a large radio

telescope [81, 85]. We first briefly describe the basic idea of folding and then discuss the details of

CMF.

3.2.1 Basic Idea of Folding

Suppose R represents the time series of N RSS samples and R[i] (i ∈ [1,N]) is the RSS magnitude

in the ith sampling instance. The objective of folding is to search for a periodic signal with period

of P. The series is first divided into smaller sequences with length of P at different starting points

(e.g., phases). For each folding operation, the sequences are added together in an element-wise

fashion. If the phase of folding happens to align with that of the periodic signal, the magnitude of

the sum will be amplified at a period of P while the sum of noise in the series is likely smaller due

to their non-periodicity. The sum of folding consists of P elements of R:
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FP[i] =
⌊N/P⌋−1

∑
j=0

R[i+ j ·P] (3.2)

FP[i] is referred to as the ith folding result and the maximum is referred to as the folding peak of

period P. It can be seen that the folding operation requires N −P number of additions. When P

is unknown, folding can be performed for each possible period and the maximum folding and P

can then be found as the period that yields the maximum folding result. In [85], the fast folding

algorithm (FFA) was developed to implement the above approach while reducing the redundant

additions in the folding of different periods. However, FFA is designed for searching for non-

integer periods between P0 and P0 +1 and it requires the ratio N/P0 to be power of 2.

3.2.2 Common Multiple Folding

A key challenge of searching for WiFi beacons from an RSS series is that the period(s) of beacons

is not only unknown but also has a wide range. Although the default beacon period setting is 102.4

ms on most 802.11 APs, in practical scenarios, the beacon period can range from 60 us to 200 us,

which lends to hundreds of possible beacon settings. As a result, applying folding iteratively for

this range incurs high complexity. As discussed in Section 3.1, N could be large due to the high

RSS sampling rate required to capture a beacon transmission.

We now present a novel algorithm called Common Multiple Folding (CMF) that can minimize

the total number of additions required to fold on multiple periods. The complexity of CMF is

O(lg |P| · lcm(P)+N) where lcm(P) is the least common multiple (LCM) of the numbers in P.

The design of CMF is based on the observation that the folding result of period P can be efficiently

computed from that of period Q if Q is an integer multiple of P, i.e., Q mod P = 0. Formally,

given folding result FQ, only Q−P additions are needed to obtain FP. In comparison, total N −P

additions are needed to compute FP directly from original N RSS samples. For example, Fig. 3.3

illustrates that the folding result of period 6 can be calculated by an additional folding operation

on the result of period 12. For instance, the first element in the folding result of period 6 can be

computed by a single addition of the the first and seventh elements in the folding result of period
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12, i.e., F6[1] = F12[1]+F12[7]. In total, 12−6 = 6 additions are required to fold on period 6 if

the folding results of period 12 are already available. In comparison, total N −6 additions would

be needed if the folding is directly applied to the original RSS samples.
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Figure 3.3: The folding
operations for period 12 and 6.
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Based on the above example, a promising approach to reducing the computational cost is to first

fold on the LCM of all periods in P, and then reuse the results to fold on each of the periods. In

order to maximize the utility of intermediate folding results, this idea can be applied recursively by

partitioning P into subsets and folding on the LCM of all periods in each subset. This process can

be naturally encoded by a tree where a node represents a period set and its LCM and all children

of the node constitute the partition of the set. We refer to such a tree as CMF tree. Fig. 3.4 shows

two CMF trees that differ in how to partition the period set at each node.

Once a CMF tree is constructed from a given period set, folding on all periods in the set can be

performed by traversing the tree in the breadth-first order and folding on the LCM of each node.

For instance, in the left tree in Fig. 3.4, one can first fold on 2520 (by N −2520 additions for total N

RSSI samples), and then on 72 (by 2520-72=2448 additions) and 70 (by 2520-70=2450 additions)

etc., which results in total N +2654 additions. It can be seen that a similar procedure for the right

tree in Fig. 3.4 requires total N +2832 additions. This example shows that the computation cost

of a CMF tree depends on how it partitions the period set at each node. An interesting question is

how to find the optimal CMF tree that yields the least number of additions. We have designed an

algorithm that can find the optimal CMF tree [94].
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3.3 CFAR Beacon Detector

The output of CMF contains the folding results of all periods in P. The next task of ZiFi is to

identify which results correspond to true WiFi beacons. However, this is not trivial due to the

following reasons. 1) Non-beacon signals such as WiFi data frames or interference from other RF

sources may also exhibit periodicity. The resulted strong folding peaks may be falsely detected as

beacons. 2) A beacon frame must compete for the channel with other pending frames and defer its

transmissions when the channel is busy. As a result, the transmission times of beacons may become

aperiodic leading to detection misses. 3) An RSS sample may participate in the folding of multiple

periods. Therefore, the RSS samples of a real beacon signal are essentially noise to the detection

of beacons of other periods. We refer to such noise as cross-period noise. Fig. 3.6 illustrates

cases 1) and 2) in the folding result of a TelosB mote trace. We also used the trace collected by a

WiFi sniffer to label each RSS sample of the TelosB mote and identify three types of peaks due to

beacons, data frames, and deferred beacons. It can be seen that the deferred beacons often cause a

cluster of small folding peaks because of their random backoff delays.
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Figure 3.6: The folding peaks of beacons, data frames, and deferred beacons.

We have developed a constant false alarm rate (CFAR) detector [88] to identify WiFi beacons

from folding results of CMF. A CFAR detector minimizes the FN rate while satisfying the FP rate

upper bound specified by user [88]. There exist fundamental trade-offs between the FN and FP

rates of beacon detection. For instance, although using a high threshold to detect folding peaks

reduces FPs, it may cause excessive FNs when the folding peaks of real beacons are not strong.

CFAR enables a user using ZiFi to specify the FP upper bound based on the mobile devices’ energy

budget, while allowing ZiFi to automatically minimize the FN rate, i.e., the probability of missing

20



WiFi connectivity.

A challenge of designing a CFAR detector for our problem is to model the detection FPs and

FNs caused by non-beacon signals and 802.11 backoff. Our analysis in [94] showed that the

inaccuracy of beacon detection is closely dependent on channel utilization. Intuitively, a busier

channel likely reduces the signal to noise ratio in beacon detection due to more interference from

periodic noise. At the same time, the likelihood that a beacon frame suffers from backoffs is also

higher. Our analytical results in [94] ensure that the beacon detector can use the optimal detection

threshold to achieve desired upper bound on FP rates while minimizing the FN rate. We further

optimize the beacon detector by adopting a cross-period noise reduction mechanism. Specifically,

when a beacon signal is identified, all the RSS values of it are removed before the folding is

performed on another period.

The pseudo code of beacon detector is shown in Algorithm 1. It takes as input the RSS samples

R, user-specified upper bound on FP rate (denoted by FP), and outputs the periods and beacons

that are detected. Initially, the channel utilization U is estimated based on R as follows:

U =
|{R[i] | (R[i] ∈ R)∧ (R[i] ̸= 0)}|

|R|
(3.3)

In Eq. (3.3), the channel is deemed as busy if the RSS sample has a non-zero magnitude. At step

2, the detector computes the detection threshold α based on U and FP according to our analytical

result in [94]. At step 3, the detector runs CMF to perform folding on RSS samples R for all the

periods in P. The folding results are stored in {FP} where FP is the set of folding results of period

P. At step 4, the maximum folding result is first normalized by factor P and then compared against

the threshold α . We note that the normalization is needed because the number of additions in a

folding result is inversely proportional to the period. A folding peak greater than the threshold

indicates a successful detection. The period and phase of the maximum folding peak are then used

to find the RSS samples of detected beacon. The magnitude of these RSS samples are set to zero

at step 9 to reduce the cross-period noise. The above process is then repeated for finding beacons

of other periods until the maximum folding peak is smaller than the detection threshold.

As discussed previously, the WiFi interference detection performance is inherently probabilis-

21



Algorithm 1 Beacon Detector.
Input: R - RSS samples; FP - user-specified FP rate upper bound; P - set of possible beacon periods.
Output: P∗ - set of periods of detected beacons, initially empty.

1: Compute channel utilization U using R by Eq. (3.3).
2: Compute threshold α using U and FP by Eq. (3.4).

/*perform folding for all possible periods*/
3: {FP|P ∈ P}=Common_Multi_Folding(R,P).

/*find the max normalized folding result of each period*/
4: {Fmax

P |P ∈ P;Fmax
P = P ·maxi FP[i]}.

5: Sort {Fmax
P } in the descending order.

6: for all {Fmax
P | P ∈ P} do

7: if Fmax
P ≥ α then

8: î = argmaxi ·FP[i]
/*remove RSS values of detected beacons.*/

9: ∀ j ∈ [0,⌊N/P⌋−1], R[î+ j ·P] = 0
10: P∗ = P∗∪{P}
11: goto 1
12: else
13: return
14: end if
15: end for

tic due to several error sources: the periodicity of non-beacon WiFi signals, beacon back-off delays,

and cross-period noise. We have modeled the impact of the first two factors on the detection per-

formance. We only give the results of the FP model in this dissertation, the detailed analysis of the

FP model and the FN model can be found in [94].

The overall FP rate (denoted by FP) is equal to the probability that a FP occurs for any period

P ∈ P where P is the period set searched by ZiFi:

FP = 1− ∏
P∈P

(1− f (P,α)) (3.4)

f (P,α) = 1−

1−
N/P

∑
k=⌊α

P ⌋

(
N/P

k

)
Uk(1−U)N/P−k


P

(3.5)

where N is the number of RSS samples collected, and U is the average channel utilization ratio. We

did not model the impact of cross-period noise, as it is effectively mitigated by iteratively removing

RSS samples of detected beacons.
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For a given FP upper bound, detection threshold α can be easily computed by Eq. (3.4).

To reduce computation overhead, we discretize the possible FP range, compute corresponding α

values offline, and store them in a table for online lookups. We note that a small FP bound is often

desired in order to reduce unnecessary WiFi NIC wake-ups. Therefore, the storage cost of α table

is small.
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CHAPTER 4

WIRELESS LAN DISCOVERY

4.1 Introduction

In recent years, WiFi networks have enjoyed an unprecedent penetration rate. In particular, they are

increasing deployed to provide Internet access in mobile environments. However, due to the limited

coverage, existing WiFi infrastructure is only capable of providing intermittent connectivity for

the users with high mobility. WiFi-enabled devices (e.g., laptops, PDAs, and smartphones) must

actively discover new WiFi access points (APs) once they leave the coverage of current network.

However, this approach wastes the precious energy of mobile devices due to excessive listening

and scanning operations of WiFi network interface cards (NICs).

In this chapter, we propose a system called ZiFi for discovering the availability of WiFi cov-

erage for mobile users. The design of ZiFi is motivated by the fact that low-power radios such as

ZigBee and Bluetooth often not only physically collocate with WiFi NICs but also share the same

open radio frequency band with them. Leveraging the inter-platform interference caused by such

coexistence, ZiFi enables ZigBee radios to identify the unique interference signatures generated

by WiFi signals. As a result, a mobile device can use a ZigBee radio to detect the existence of

WiFi APs in a purely passive manner, and only wakes up the WiFi NIC when WiFi connectivity is

available. To capture WiFi interference signatures, ZiFi utilizes the received signal strength (RSS)

indicator available on ZigBee-compliant radios. However, we observed that the statistics of WiFi

RSS samples, such as power magnitude, time duration, and inter-arrival gap, exhibit surprising re-

semblance with those of other RF sources, and hence provide little hint about the existence of WiFi.

Motivated by this observation, ZiFi is designed to search for 802.11 beacon frames in RSS samples.

Periodic beacon broadcasting is mandatory in WiFi infrastructure networks and hence provides a

reliable means to indicate WiFi coverage. However, beacons are extremely scarce in normal WiFi
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traffic as hundreds of data frames are likely transmitted between two beacon instances. Without

being able to decode incoming signals, finding beacon frames in RSS samples is like finding a

needle in a haystack. To address this challenge, ZiFi adopts the digital signal processing (DSP)

and stochastic signal detection techniques described in Chapter 2 to reliably identify the periodic

interference patterns caused by WiFi beacon frames.

We envision the approach of ZiFi to be increasingly feasible as more mobile devices are e-

quipped with both low-power and high-power NICs that work in the same open radio spectrum.

For instance, numerous ZigBee modules [32] have USB interface and hence can be easily con-

nected to WiFi-enabled laptops. Several cell phone vendors (e.g., Nokia and Pantech & Curitel)

also provide smartphones [21] with built-in ZigBee interface or ZigBee modules [96] that can be

connected to smartphones (e.g., through miniSD interface). ZiFi can also be easily implemented

on other platforms (e.g., some Bluetooth radios [1][23]) that offer the RSS sampling interface.

4.2 Design of ZiFi

The design objectives of ZiFi include the following: 1) High accuracy. We characterize the accura-

cy of AP detection using false positive (FP) and false negative (FN) rates. In particular, FPs falsely

trigger the wake-up of NICs leading to energy waste while FNs mean the misses of opportunities

of WiFi connectivity. 2) Low delay. This is of particular importance for mobile environments. For

instance, recent war driving experiments in Boston metropolitan area [37] showed that the medi-

an duration of WiFi connectivity at vehicular speeds is only 13 seconds. Fast WiFi discovery is

thus required to utilize such short connectivity windows. 3) Low overhead. Due to the resource

constraints of mobile devices, the computation and memory overhead in WiFi discovery must be

small.

ZiFi is designed for two different types of platforms to discover WiFi APs: the platforms

(e.g., smartphones) that have both built-in ZigBee and WiFi interfaces, and the platforms that

can connect a WiFi node with an external ZigBee node. Fig. 4.1 shows two platforms of the

second type on which ZiFi has been implemented. Fig. 4.1 (a) is a Nokia N73 mobile phone that
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integrates a ZigBee module through the miniSD interface. Fig. 4.1 (b) is an ASUS Linux netbook

that connects a TelosB mote (equipped with a ZigBee-compliant CC2420 radio [74]) through the

USB interface.

Figure 4.1: Two different platforms on which ZiFi has been implemented. (a) is a Nokia N73 mobile
phone and a ZigBee card integrated via the miniSD interface. The top of figure shows front and back views
of the ZigBee module and its main components. (b) is an ASUS netbook and TelosB mote integrated via
the USB interface.

Fig. 4.2 shows the system architecture of ZiFi. The RSS sampler reads the built-in received

signal strength indicator (RSSI) register of ZigBee radio at a designated frequency. The RSS

samples are then processed by a RSS shaper that adjusts the RSS values to mitigate noise (e.g.,

the data frames) in the beacon detection. The shaped RSS samples are then processed by the

Common Multiple Folding (CMF) algorithm. CMF is a digital signal processing algorithm that

amplifies the periodic signals in RSS samples. A key advantage of CMF is that it can minimize

the cost of amplifying unknown signals whose possible periods lie in a wide range. The amplified

RSS samples are fed into a constant false alarm rate (CFAR) [88] beacon detector that classifies

a periodic signal as genuine WiFi beacons if its amplitude exceeds a threshold. By adopting a

theoretically derived threshold, the beacon detector can minimize the false negative (FN) rate while

satisfying the user-specified upper bound on false positive (FP) rate. Finally, if WiFi beacons are

detected, the radio controller turns on the WiFi NIC. In this chapter, we also present an analytical

framework that models the FN and FP rates of beacon detection based on the utilization ratio of

wireless channel. The utilization ratio is measured from RSS samples by the channel profiler. The
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analytical FN and FP models guide the selection of optimal detection thresholds for ZiFi’s beacon

detector.

RSS sampler

RSSI register

RSS shaper Common Multiple 

Folding (CMF)
CFAR

beacon detector

radio controler

ZigBee transceiver WiFi transceiver

AP profiler

Figure 4.2: System architecture of ZiFi.
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Figure 4.3: The RSS samples collected
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As discussed above, ZiFi utilizes energy sensing through the RSSI of ZigBee radio to detect

the existence of WiFi APs. ZiFi can be easily implemented on other radio platforms that provide

the RSSI interface. For instance, a few existing Bluetooth radios [1][23] provide RSSI although it

is not a mandatory feature in Bluetooth standard.

A challenge in the design of ZiFi is that WiFi APs operate on unknown channels. Running

ZiFi on each of the 11 802.11 channels in 2.4 GHz band would lead to significant detection delay.

Due to the overlap between 802.11 and 802.15.4 channels [93], we found that running ZiFi on four

802.15.4 channels (1,5,8,11) can reliably detect the APs running on all 11 802.11 channels.

ZiFi is able to find multiple beacons from different APs. Thus an interesting issue is how to aid

WiFi NIC to choose the best AP to associate with. The quality of an AP depends on several factors

such as channel utilization and SNR. ZiFi is able to obtain such information during the detection

processes to assess the quality of each AP, through a module called AP profiler.

AP profiler assess two quality metrics of AP solely from Zigbee RSS series: channel utilization

rates, and SNR of APs. These two metrics largely determine the achievable throughput between

the client and the AP. When the application can tolerate certain communication delay, user turns on

WiFi NIC only if the quality of detected APs is beyond a certain threshold. This scheme reduces

the energy consumption since the resulted high throughput allows data to be transmitted in shorter
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time. Therefore, AP profiler allows user to trade off between communication delay and energy

consumption.

Channel utilization. Channel utilization indicates the percentage of occupied time slots on an

802.11 channel. Due to the sharing nature of wireless channels, only non-occupied time slots

on a channel can be utilized by clients. As discussed in Section 3.3, ZiFi computes the channel

utilization as the ratio of the number of RSS samples that have signal strength above the noise

threshold, to the total number of RSS samples. The channel utilization is computed by AP profiler

for each channel scanning.

Beacon SNR. SNR indicates the quality of the signals received by the client. It largely determines

the maximum throughput between client and AP when the channel is vacant. ZiFi periodically

assesses the noise level by averaging the RSS values in the RSS series when there is no activity on

the channel. The signal strength of beacons is obtained during the beacon removal process after

an AP is detected. Since the RSS sampling usually spans over multiple beacons periods, one RSS

series always contains multiple beacon signals of the same AP. The strengths of these signals are

averaged to mitigate signal fluctuations caused by wireless channel dynamics, such as multipath

fading.

4.3 Experimentation

4.3.1 Experimental Setup and Methodology

We implemented ZiFi on two platforms: ASUS Linux netbook integrating a TelosB mote through

the USB interface, and Nokia N73 smartphone integrating a ZigBee card through the miniSD in-

terface. The CMF algorithm is implemented in Mablab on netbook and in C++ on Nokia N73. On

both platforms, the RSS sampler of ZiFi is implemented in ZigBee module and all other compo-

nents run on netbook or Nokia N73.

Our experimental testbed consists of four 802.11g APs, four Linux-based 802.11 netbooks, two

TelosB motes equipped with CC2420 radios, and a Nokia N73 smartphone. The performance of
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ZiFi depends on both the characteristics of WiFi APs (e.g., data rate and transmit power) and user

traffic (e.g., workload). In our experiments, the user traffic is generated from a high-fidelity Inter-

net traffic generator called D-ITG [7] that runs on our APs. D-ITG has several advantages over the

existing traffic generators such as the capability of generating multiple simultaneous flows from

different protocols. Empirical results showed that D-ITG can reproduce realistic traffic patterns

under a wide range of network settings [7]. The use of D-ITG allows us to evaluate ZiFi in com-

prehensive WiFi and traffic settings, which would be impossible for using particular operational

WiFi deployment. We note that several large-scale WiFi traces (e.g., the SIGCOMM [25] and OS-

DI [6] traces) are publicly available. However, they are collected under particular network settings.

Moreover, it is extremely difficult to replay the collected WiFi traces with high fidelity.

4.3.2 Detection Accuracy

We evaluate the detection accuracy of ZiFi using a Linksys WRT54G2 router as AP, and two

ASUS Linux netbooks as clients. ZiFi is executed on one netbook which connects with a TelosB

mote via USB. The traffic generated by another netbook contains one TCP stream and one UDP

stream. The length of frames is uniformly distributed, from 5 to 1400 bytes for TCP and from 50

bytes to 1400 bytes for UDP. We vary the average frame transmission rate to control the channel

utilization. The distance between AP and ZiFi node is 3 meters. The network traffic is logged as

ground truth for micro-scale analysis of ZiFi performance. The experiments were conducted in

a residential environment. The AP uses channel 1 and both AP and client transmit at the default

power level. The length of AP beacon period is configurable at a step of 1.024 ms. We varied the

period length and observed no obvious performance variation of ZiFi. We used a fixed period of

96×1.024 = 98.304 ms throughout all experiments. However, as this setting is unknown to ZiFi,

the CMF algorithm of ZiFi searches for the beacon period within the range of (60 ∼ 120)×1.024

ms.

Comparison with other signal processing approaches. Autocorrelation and FFT are two signal

processing algorithms widely used to detect periodic signals. We now compare the performance of
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Figure 4.7: Detection performance of ZiFi.

them against that of ZiFi. Fig. 3.2 shows the results when they are applied to 10000 RSS samples

(i.e., 1.22 second) of the traffic. The AP modulation rate is set to 2 Mbps. As can be seen from

Fig. 3.2 (a) and (b), the results of Autocorrelation and FFT can clearly reveal the beacons when

the data rates are 30 Kbps and 100 Kbps, respectively. However when the data rates increase to

180 Kbps and 260 Kbps, respectively, both of them fail to detect beacons. These results show that

Autocorrelation and FFT cannot reliably identify the existence of WiFi networks. In contrast, ZiFi

successfully detects beacons under all settings. Fig. 3.2 (c) shows the folding results of ZiFi for

400 Kbps where the beacon peaks can be clearly identified.

Impact of RSS window size. The size of RSS window used by ZiFi is a critical design parameter

as it directly determines the detection delay. Fig. 4.4 shows the detection error rates of ZiFi with

different RSS window sizes. The AP cycles through four modulation rates during transmission

while the channel utilization ratio is always tuned to 30%. Each data point is the average of 5

runs. For each run, ZiFi carries out the detection for 40 times and the error rate is computed as

the probability of failing to detect a beacon or falsely detecting a non-beacon signal, i.e., the sum
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of FN and FP rates. Since the in-air time of data frames transmitted at 11 Mbps is very close to

that of beacon frames, only a few RSS samples of data frames are removed by the RSS shaper,

causing significant noise in the folding results. However, even in this worst case, the error rate of

ZiFi quickly decreases to near-zero when the RSS window contains more than only 7 beacons. For

instance, when 8 beacon periods of RSS samples are used (which corresponds to a total delay of

8×96×1.024 = 786.4 ms), ZiFi’s average error rate under four channel rates is only 4.8%.

Impact of ZigBee interference. The RSS samples gathered by ZiFi may contain the transmissions

of other devices operating in the open radio spectrum. These transmissions create noise in WiFi

beacon detection. In particular, the RSS samples can be easily contaminated by the traffic of

peer ZigBee nodes due to the similar signal in-air time. Since decoding is disabled during RSS

sampling to decrease the possibility of RSS sampling interrupting, such noise cannot be eliminated.

We now evaluate the impact of such interference from peer ZigBee nodes. In the experiment, a

pair of TelosB motes transmit on an overlapping channel. The frame sizes are uniformly distributed

between 14 and 74 bytes. The in-air time of these frames has a significant overlap with that of WiFi

traffic. The data rate of transmission is varied from 1.35 to 27.1 Kbps to obtain different channel

utilization ratios. Three ZiFi variants are used as baselines for comparison. ‘ZiFi-α=x’ refers

to the implementation of ZiFi where the detection threshold is manually set to be α ·N/P where

α ∈ (0,1], N and P are the total number of RSS samples and the real beacon period, respectively.

‘ZiFi-opt’ refers to the default implementation of ZiFi that computes the threshold based on an

0.05 FP upper bound. Fig. 4.5 shows that ZiFi-opt yields near-zero false positives. In contrast, two

ZiFi variants falsely classify more ZigBee signals as WiFi beacons when the channel workload

is higher. The main reason is that ZigBee traffic contains more periodic signals under heavier

traffic load, which results in many folding peaks. ZiFi-opt automatically chooses high detection

thresholds to avoid such false positives and yield similarly performance as ‘ZiFi-α=0.9’ which has

a manually set high threshold.

Impact of traffic workload. Our objective of evaluation in this experiment is three-fold. First,

we test the FP and FN rates of ZiFi under various settings of channel utilization ratio and bit
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rate. Second, we compare the experimental results with analytical result presented in [94]. Third,

we plot the receiver operating characteristic (ROC) [88] curve of ZiFi. ROC characterizes how

true positive (TP) rate varies with FP rate and is widely adopted for evaluating the capability of

detection systems.

The maximum channel utilization ratio in our evaluation is set to 30%. We note that real-world

WiFi deployments usually have low channel utilization ratio. Our analysis of over 104 seconds

of traces collected at OSDI 2006 [6] and SIGCOMM 2008 [25] show that the channel utilization

ratios (computed per second) have a mean of 7.58% and 0.81%, and median 7.2% and 0.3%,

respectively. This result is also consistent with the recent finding [49] that significant white space

exists in real WiFi traffic. Fig. 4.7(a) and (b) show the FP and FN rates under different channel

utilization ratios. It can be seen that ZiFi variants with fixed detection thresholds yield poor FP

or FN rate. For instance, although a low threshold (e.g., 0.6) has a near-zero FN rate, it leads to

extremely high FP rates when channel is heavily loaded. This is because the folding peaks of noise

(data frames) become higher and many of them exceed the low threshold. However, when the

threshold is set to 0.9, although the FP rate is low, many beacons are missed. In contrast, ZiFi-opt

can achieve both satisfactory FP and FN rates by automatically adjusting the threshold based on

channel workload. Under all settings, ZiFi-opt has a FP rate lower than the preset upper bound

0.05 while achieving low FN rates. It can be seen from Fig. 4.7(b) that the theoretical prediction

matches the experimental FN under all settings. However, Fig. 4.7(a) shows a considerable gap

between theoretical and experimental FP rates when the channel utilization is high (>). This is

due to two reasons. First, ZiFi implements an RSS shaper that can remove some noise, e.g., the

RSS samples that are likely data traffic (see Section 3.1). However, the impact of RSS shaper is

not modeled in our FP analysis. Second, our theoretical FP analysis is based on a uniform channel

utilization model where the probability at which any slot is busy is constant. However, the data

traffic under this model yields better periodicity than reality because the burstiness [49] of real

WiFi traffic is not considered. As a result, the theoretical FP rate is a pessimistic estimation of real

FP rate. Improving the accuracy of our theoretical FP model by accounting for the above factors is
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left for future work.

Fig. 4.7(c) plots the ROC curves of ZiFi. We vary the user-specified FP upper bound from 0.01

to 0.46 at a step of 0.05, and calculate the true positive (TP) and FP rates for each setting. It can be

seen that ZiFi achieves a good TP rate if the allowable FP rate is above 4%. We can also see that

ZiFi has a desirable configurability and allows a user to achieve trade-offs between FP rate and

TP rate. For instance, a mobile device may set a higher FP bound to maximize the opportunity of

finding WiFi networks while setting a lower FP bound to reduce the number of NIC wake-ups for

energy conservation.

4.3.3 Computational Overhead

We measure the CPU overhead of ZiFi on Nokia N73 smartphone in this experiment. 80K RSS

samples are used for finding beacons whose periods lie between 25 ms and 150 ms. We note that

this range can be properly scaled to obtain other period ranges. We use two CMF variants for

performance comparisons. They differ from CMF-opt in how to create a new node. CMF-Random

randomly choose children from a given node set while CMF-Huffman chooses the two nodes with

the minimum values. Fig. 4.6(b) shows the CPU overhead of folding on the trees found. We can

see that the CPU usage for both CMF variants increases sharply when the period range exceeds 100

ms. In contrast, CMF-opt has significantly lower overhead. The CPU time of running CMF-opt

under all settings is up to 200 ms.

Figure 4.8: The site survey covers multiple
regions of East Lansing, Michigan.

Figure 4.9: Five paths travel through different
regions of the city.
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Channel utilization
0.1 0.2 0.3 0.4

SN
R

50dB 17.3Mbps 15.3Mbps 13.6Mbps 11.1Mbps
20dB 16.0Mbps 14.9Mbps 12.4Mbps 10.8Mbps
10dB 12.1Mbps 10.8Mbps 9.2Mbps 8.4Mbps
5dB 5.1Mbps 4.3Mbps 3.8Mbps 3.1Mbps
2dB N/A N/A N/A N/A

Table 4.1: Resulted throughput under different SNR and channel utilization combinations.

4.3.4 Effectiveness of AP Profiling

We evaluate the effectiveness of the AP profiling module in this section. A testbed consisting of

one AP and two laptops is adopted to test the throughput under different combinations of SNR and

channel utilization measured by ZiFi. The two laptops, which we refer as laptop A and laptop B,

are associated with the AP during experiments. A traffic generator running on laptop A creates a

desired utilization rate on the channel, emulating the traffic generated by already associated users.

Laptop B, which is the client that attempts to connect to the network, collects RSS samples using a

TelosB on the same channel and computes the SNR of the AP and the channel utilization rate using

the methods described in Section 4.2. We manually tune the parameters of the traffic generator on

laptop A as well as adjusting the distance between laptop B and the AP to create a certain channel

utilization and SNR combination. We then measure the throughput between the AP and laptop B

using iPerf[13], which is a widely used traffic generator and bandwidth measurement tool. Tab.

4.3.4 shows the results of our experiments.

As expected, the result shows that the measured throughput monotonically decreases with SNR

and channel utilization rate. Note that the throughput cannot be measured for combinations with

SNR less than 2 dB, since the laptop failed to reliably associate with the AP under such low SNR

in our test. We observed a almost 6X difference in throughput (17.3Mbps vs 3.1Mbps). This sig-

nificant throughput variance implies that user can save more energy by only initiating association

when the achievable throughput is high enough. This is because that higher (lower) throughput

means transmitting/receiving the same amount of data takes less (more) time, which reduces (in-
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creases) energy consumption of the WiFi interface. Users can exploit this result by adopting a rule

that filters out the APs with low throughput during ZiFi detection process. Even if the user prefers

to associate to APs whenever is possible (e.g., to avoid delay), the AP profiling module can still

help filter out those APs with extremely low SNR that would otherwise fail association and waste

the energy.

4.3.5 Performance in Mobile Scenarios
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Figure 4.10: Accuracy of ZiFi
detection in mobile scenario.
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comparison on all paths.

In this section, we use trace-driven simulations to study the detection accuracy and the power

consumption of ZiFi in mobile scenarios. We collected the data trace in a large scale site survey

around the City of East Lansing, Michigan. The footprint of the surveyed area is approximately

25 square miles, covering residential areas, business areas, Michigan State University campus, and

etc. During the site survey, a laptop recorded all the overheard WiFi traffic on channel 1, 6 and 11

every 5 seconds, spending 1 second on each of the three channels. A GPS attached to the laptop

provides geographical coordinates. We conducted the site survey on a motor vehicle for a period

of 6 hours over a distance of 51 miles. The resulted data trace contains 1402 APs, with signal

strength varying between -30 dBm and -95 dBm. For possible privacy concerns, we anonymized

all the IP addresses and MAC addresses. The actual coverage of our site survey is shown in Fig.

4.8.

We study the mobile performance of ZiFi with simulations driven by the collected data traces.

We first create paths emulating the routes of users using a Matlab graphical mapping tool. We
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Path Length regions passed APs
1 11,201 m dense business 132
2 7,075 m residential, business 221
3 6,840 m residential 154
4 4,839 m university 95
5 3,597 m university, dense resi-

dential
176

Table 4.2: Statistics of the five paths.

create five non-overlapping paths traveling through different sections of the city with different

WiFi coverage conditions, as shown in Fig. 4.9. The statistics of the five paths are given in Tab.

4.3.5. We then generate WiFi coverage maps of the five paths based on our survey data. For

the WiFi detection algorithm, a location is WiFi-covered if the maximum signal strength of the

received beacons is above -85 dBm1. As no Zigbee data trace is available, we use a method called

RSS resampling to generate the Zigbee RSS series according to the collected WiFi data traces.

This method essentially simulates the sampling operation of ZigBee radios. The RSS magnitude is

set to either a fixed value when the sampling time falls within a beacon duration or zero otherwise.

Using the coverage map generated by WiFi detection algorithm as ground-truth, we calculate

the accuracy of ZiFi detection algorithm. Fig. 4.10 shows the resulted FP and FN rates. As can be

seen, the FP and FN rates of all paths fall below 0.04 and 0.14, respectively, while the average FP

and FN rates are 0.014 and 0.08, respectively. Interestingly, we observe that the moving speed of

the client is strongly correlated with the FN rate. Path 2 and 1 achieve the highest and lowest FN

rates among five paths, respectively. It is worth noting that, the moving speeds of the vehicle during

the site surveying along the two paths are also the highest and lowest. Path 2 which travels through

a large residential area, had little road traffic, resulting in the highest possible moving speed during

our site survey. Path 1 which is across the downtown of East Lansing, had heavy road traffic. This

leads to a very slow driving speed. This observation likely indicates that the moving speed of the

client has significant impact on the resulted FN rate. The client traveling at high speed covers a

1Our experiments indicate that a reliable association usually occurs when the signal strength of
the beacon is above -85dBm.
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long distance during one ZiFi scanning window, in which some beacons were not reliably captured

due to signal fading. This lowers the folding peak, causing the miss-detection of the beacons. We

also observe the correlation between FP rate and AP density in the area. The three paths (2, 3,

5) traveling across residential areas have the highest AP density, and they achieve higher FPs rate

than the other two paths. This is possibly because that high density of APs usually leads to heavy

WiFi traffic, which increases FP rate(as shown in the results in Section 4.3.2).

We then estimate the energy consumption of ZiFi and the default 802.11 WiFi detection al-

gorithms along the five paths. We measure the parameters (current consumption and scanning

duration) for computing the energy consumption offline, using a TelsoB mote and an EeePC e-

quipping with an Atheros AR9270 WiFi NIC. According to our measurements, we set the active

current of WiFi and ZiFi to be 100 mA and 20 mA, respectively, and the scanning duration of

WiFi and ZiFi are set to 4s and 2s, respectively. Both of the two detection algorithms are executed

periodically every 10s. In ZiFi, a WiFi scanning only occurs when a positive scanning result from

ZigBee radio is returned. We refer to the WiFi scanning triggered by a positive ZigBee scanning

result as a follow-up WiFi scanning. In both algorithms, when WiFi driver detects a nearby AP

with signal strength higher than -85 dBm, the client automatically associates to this AP until the

signal strength of the AP drops below -85 dBm. When associated, we assume that the AP scanning

performed by WiFi does not incur additional energy cost. We also assume that the client can roam

from one AP to another if the two APs have overlapping coverage.

Fig. 4.11 shows the detection energy consumption over time on path 4. The upper sub-figure

shows the energy consumed by the two detection algorithms, while the lower sub-figure shows the

accumulated number of APs detected over time. We also marked the time period when the client

associated with APs. As can be seen, the default WiFi detection algorithm consumes roughly five

times of the energy of the ZiFi detection algorithm. We can also clearly observe that the energy

consumption of WiFi detection algorithm increases linearly when the client is not associated with

an AP. This is because the WiFi detection algorithm is performed periodically and every detection

process consumes a constant amount of energy. The energy consumption of ZiFi largely depends
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on the AP density that can be computed as the slope of the curve on the lower sub-figure. With

higher AP density, more positive results are returned by ZiFi detection algorithm, which triggers

more follow-up WiFi scans.

Fig. 4.12 shows the average power consumption of clients on all paths. We can see that, ZiFi

detection algorithm consumes approximately one-fifth the power of WiFi detection algorithm in

all cases. We notice that clients have different power consumptions on the five paths. Due to

higher AP density, on path 2, 3 and 5, the clients spend more time in associated state, leading

to lower power consumptions on AP detection. However, since ZiFi detection algorithm returns

more positive results on these three paths than the other two paths due to denser AP deployments,

more follow-up WiFi scans are triggered. This leads to higher detection energy consumption on

the client managed by ZiFi.
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CHAPTER 5

WIFI NETWORK PERFORMANCE MONITORING

5.1 Introduction

In the last decade, WiFi networks have enjoyed a phenomenal penetration rate, making them an im-

portant communication infrastructure for pervasive computing applications. However, compared

with wired LANs, WiFi suffer significantly higher level of spatial and temporal performance vari-

ability. Due to the broadcast nature of wireless channel, signal propagation are susceptible to

environmental conditions. As a result, end-users often experience highly variable signal quality.

To diagnose such transient service degradation and plan for future network upgrades, it is essential

to closely monitor the spatial and temporal performance of a WiFi network as well as to collect the

statistics of its users.

The existing WiFi network performance monitoring solutions [39][40][43] rely on 802.11-

based listening devices. However, due to the high power consumption of 802.11 radios, the moni-

toring nodes must be connected to external power supplies (e.g., wall power or desktop computers).

This constraint leads to high installation costs and poor spatiotemporal monitoring granularity. In

this chapter, we propose a new approach for WiFi monitoring by leveraging distributed cheap

off-the-shelf wireless sensors. Our approach is motivated by the fact that an increasing num-

ber of low-power wireless technologies such as ZigBee and Bluetooth co-exist with WiFi in the

unlicensed radio spectrum[55]. For instance, many low-power wireless sensor platforms adopt

ZigBee-compliant radios that operate in the open 2.4 GHz band. These radios are capable of sim-

ple spectrum sensing, e.g., sampling the Received Signal Strength (RSS) indicator. When the RSS

is measured in a frequency range overlapping with 802.11 channels, it indicates partial power of

802.11 signals and hence provides important hints of WiFi coverage. The power consumption of a

ZigBee radio is typically an order of magnitude lower than that of WiFi radio. Fig. 5.1 shows the
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measurement of the power consumption of a TelosB mote and a USB WiFi NIC when they work

in scanning and sleep modes. Based on these measurements, the expected lifetimes of ZigBee

and WiFi nodes are 3 months and 3.3 days, respectively, if they are powered by 2 AA batteries

and adopt a 10% duty cycle (i.e., active for 10% of the time). Due to their low power consump-

tion, ZigBee nodes can be deployed in places like corridors and stairs in a large building where no

power outlets are available. The capability of sustaining long lifetimes on small batteries makes

low-power ZigBee networks an inexpensive solution for monitoring WiFi performance at large

spatial and temporal scales.
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Figure 5.1: Current consumptions of a ZigBee mote and a USB WiFi NIC during scanning and sleeping.

This chapter describes the design and implementation of WizNet – a WiFi performance moni-

toring system built on 2.4 GHz off-the-shelf ZigBee sensors. By adopting digital signal processing

techniques, WizNet automatically identifies 802.11 signals from ZigBee RSS measurements and

associates them with wireless access points. To ensure the monitoring fidelity, WizNet accounts

for the significant bandwidth difference between ZigBee and WiFi radios. Moreover, the impact

of multipath and frequency-selective fading is mitigated by exploiting the wireless spatial diversity

through multi-sensor fusion. WizNet adopts a simple yet accurate linear estimator derived from a

signal propagation model to infer the access points’ signal to noise ratio (SNR). WizNet also mea-

sures the channel utilization rate from RSS series, which faithfully indicates the congestion level

of wireless channels. The measured SNR and channel utilization rate can be used to predict the

WiFi network throughput. Moreover, WizNet detects unauthorized APs (rogue APs) by analyzing
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the temporal signatures of 802.11 beacons. Lastly, WizNet is able to identify 802.11 AP scans

and classify device models based on their RSS signatures, hence can be deployed in the areas with

little or no WiFi coverage to collect statistics of potential users. We have implemented WizNet

in TinyOS 2.x and extensively evaluated its performance on a wireless testbed. Our results over a

period of 140 hours show that WizNet can accurately capture the spatial and temporal performance

variability of a large-scale production WiFi network.

5.2 Background and System Overview

5.2.1 802.11/802.15.4 Spectrum Sensing

Both 802.11 and 802.15.4 technologies work in the unlicensed radio spectrum. In particular,

802.11 standards define 11 channels from 2.412 to 2.462 GHz and 802.15.4 defines 16 channels

from 2.410 to 2.480 GHz, which results in a large overlap between the channels of 802.11 and

802.15.4. When operating in overlapping channels, 802.11 and 802.15.4 radios can interfere with

each other [55]. Using a built-in register called the Received Signal Strength Indicator (RSSI),

ZigBee radios can sense the power of signals emitted by nearby WiFi devices although they cannot

demodulate WiFi signals. However, there exists a significant gap between the bandwidths of Zig-

Bee and WiFi radios, which are 3 MHz and 22 MHz, respectively. As a result, the RSSI of ZigBee

can only sense the signal power distributed in a fraction of WiFi bandwidth.

5.2.2 Design Objectives

Our goal is to use ZigBee radios as sensors to measure the SNR of 802.11 transmissions, estimate

the channel utilization rate, collect client statistics at a set of designated locations, and detect rogue

APs. SNR indicates the quality of wireless coverage at a location and has been widely adopted as

a metric to characterize the spatial performance of WiFi deployments [77][59]. Channel utilization

rate describes how busy the wireless channel is. SNR and channel utilization can be used to infer

other important WiFi network performance metrics like throughput. WizNet can also discover
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rogue APs that are deployed without the authorization of network administrators. Rogue APs

may lead to security breach since they can be exploited by third parties to access the secured

networks. WiFi user statistics such as the number of potential users and 802.11 device models

provide important information for future network upgrades.

Powered by small batteries, WizNet sensors are inexpensive and easy to install. These features

make WizNet ideal for monitoring WiFi performance at large spatiotemporal scales. However, as

a signal-level monitoring tool, WizNet is not designed to diagnose packet-level performance and

security issues between AP and WiFi clients. Therefore, WizNet is mainly targeted to complement,

instead of competing with, existing performance assessment tools based on 802.11 radios. In

particular, WizNet sensors can be deployed densely in an ad hoc manner to assist network operators

in rapidly locating performance issues of large-scale enterprise WiFi networks, and then integrating

with 802.11-based network analysis tools for further packet-level diagnosis.

5.2.3 System Architecture

Sink

WizNetManager Access Points WizNetSensor ClusterUSB

Beacon LogFrom APsRSS AssociationAP 1RSS samplesSNR & Utilization Estimation AP NRSS samplesManager
RSS MeasurementsBeacon LogsEthernet

wirelessSensor FusionCluster HeadComm. w/ SinkHop SamplingFolding AP ScanMonitoringSensor ZigBee Radio

wireless
SNR & Uitilization EstimationRogue AP Det.Throughput Est. Rogue AP Det.Throughput Est.

RSS measurementsFrom Sensors

Figure 5.2: System Architecture of WizNet.

Fig. 5.2 shows the architecture of WizNet. WizNet consists of a manager computer and a

number of ZigBee node clusters, referred to as sensor clusters, which are scattered around the

WiFi deployment region. Each cluster is composed of 2 or more closely placed sensor nodes. Wiz-
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Net sensors form a possibly multi-hop wireless network whose sink is connected to the manager

computer through USB. A set of locations are preselected as monitoring spots at which the per-

formance of WiFi networks and user statistics are monitored. The network operators may choose

monitoring spots based on user traffic and building floor plans.

WizNet sensors periodically sample the RSS from their radios. To cope with the bandwidth

difference between WiFi signal and ZigBee receivers, instead of sampling at a fixed frequency,

WizNet introduces a novel technique called hop sampling, which samples the signal at different

frequency bands and combines the results. Since the resulted signal strengths are derived from

a wide bandwidth, the effect of frequency-selective fading is greatly alleviated. Then the RSS

measurements are processed through a digital signal processing (DSP) algorithm called folding

which we describe in Chapter 2. Folding identifies the periodic 802.11 beacon frames from RSS

measurements, which are then transmitted to sensor cluster head through wireless links.

The cluster head jointly processes sensor readings through the sensor fusion module. By fusing

the RSS measurements, WizNet exploits the spatial diversity of different sensors and reduces the

impact of multipath fading. Hop sampling, folding, and sensor fusion together enable WizNet to

reconstruct the WiFi signal energy distribution based on ZigBee RSS measurements. WizNet also

monitors the number of active AP scans from 802.11 client devices and classifies the device models

in the areas without WiFi coverage, based on the unique signatures of AP scans of different 802.11

clients.

The WizNet manager implements RSS and AP association, SNR and channel utilization esti-

mation, and performance estimation. First, the manager collects a small amount of information

about beacon frames logged by WiFi APs, and then jointly processes them with the beacon RSS

measured by sensors through a cross-correlation algorithm. The algorithm associates each AP

with the RSS measurements of its beacons, without incurring the high overhead of precise time

synchronization between APs and WizNet sensors. After associating RSS samples with APs, Wiz-

Net manager estimates the SNR of each AP and the channel utilization rates at monitoring spots.

WizNet employs a simple yet accurate linear estimator derived from a signal propagation and re-
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ception model to estimate the WiFi SNR. The manager computes channel utilization rate according

to the logged channel activities in the RSS series. Finally, the manager estimates the throughput

between local WiFi clients and the monitored APs, and detects rogue APs.

5.3 Design of WizNet Sensor

5.3.1 RSS Hop Sampling

To achieve high monitoring fidelity, WizNet should ensure that ZigBee RSS measurements accu-

rately reflect the signal quality of 802.11 transmissions. However, RSS only measures the power

of the portion of signal that lies in the receiving bandwidth. Due to the narrow bandwidth, ZigBee

RSS measurements are usually highly susceptible to prevalent frequency-selective fading caused

by the heavy indoor multipath effect.

To address this issue, we employ a novel technique called hop sampling. Hop sampling pe-

riodically changes the center frequency of ZigBee receivers when measuring RSS, which enables

ZigBee receiver to sample RSS from a much wider bandwidth. WiFi beacon signal is always

modulated at the lowest bit rate by the DSSS scheme which spreads the baseband signals to a 22

MHz bandwidth. WizNet divides the 22 MHz 802.11 channel into 7 adjacent non-overlapping 3

MHz sub-channels. During hop sampling, sensors sweep through these sub-channels in order and

stay at each sub-channel for one 802.11 beacon period (typically 102.4 ms). During the dwell

time on each sub-channel, the sensor samples its RSSI register at 8.192 kHz which is sufficient for

capturing WiFi beacon frames[36][94]. This process takes less than one second during which the

wireless channel is usually stable. Since these sub-channels are non-overlapping and adjacent, the

RSS of the WiFi signal can be calculated by summing up the group of RSS values measured from

these sub-channels.
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5.3.2 RSS Folding

The RSS samples may contain signals of other 2.4 GHz wireless devices such as ZigBee, Blue-

tooth, or cordless phones. WizNet needs to not only distinguish WiFi signals from other signals,

but also identify signals transmitted by different WiFi APs as each AP may offer different network

performance. Fig. 5.4(a) shows the RSS samples taken by a ZigBee radio, which contain signals

of 2 WiFi APs and 2 ZigBee nodes.

In Chapter 2 we show the periodicity of 802.11 beacons can be used as a distinctive feature to

identify WiFi signals. Specifically, the folding algorithm can find the existence of a periodic signal

in the original RSS samples. WizNet also applies folding to search for periodic 802.11 beacons in

sensor RSS samples. To differentiate individual APs in RSS samples, WizNet uses folding phase

as the signature of each AP[52]. Due to the contention-based nature of 802.11 MAC, different APs

likely transmit their beacons at different times, resulting in different folding phases. Fig. 5.4(a)

shows the RSS samples collected by a ZigBee radio. Fig. 5.4(b) shows the result after folding RSS

samples. There are total two peaks in the result. It can be seen that the two peaks have a phase

difference, which allows us to distinguish beacons transmitted from different APs.
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5.3.3 Sensor Fusion

Hop sampling deals with the frequency-selective fading caused by multipath fading by aggregating

the RSS samples collected in multiple ZigBee bandwidths. However, it is only able to handle up
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to to 6 dB fading while our experiments show that multipath effect sometimes can vary the RSS

for as much as 20 dB at some locations and cause significant spatial variations.

Rician fading [64] is the most commonly adopted stochastic model to characterize the in-door

multipath fading. The total power in the dominant paths, denoted as Ω in the Rician distribution,

is the RSS value WizNet aims to measure. WizNet adopts a maximum likelihood Ω estimation

method proposed by [86]. Specifically, Ω can be estimated by:

Ω̂ =
1
N

N
∑
i=1

R2
i (5.1)

where N is the number of samples measured at different locations, and, Ri is the signal amplitude

(in mW). We can see from Eqn. 5.1, the maximum likelihood estimate of Ω is essentially the

spatial averaging of all the powers of the samples. Fig. 5.3 shows the power density spectrum

of an 802.11b node measured by two closely located sensors, and the average RSS computed

according to Eqn. 5.1. It can be seen that, the multipath fading can lead to increased (at Position

2) or decreased (at Position 1) signal power depending on the phases of radio waves propagated

through different paths, while the sensor fusion effectively mitigates multipath fading by exploiting

the spatial diversity of different sensors.

5.3.4 Monitoring AP Scans

User statistics are crucial for WiFi network operators to assess current network usage and plan for

future upgrades. The statistics of interest may include the number of users that carry active 802.11

devices and the models of devices in different areas of an enterprise campus. A widely adopted

method of collecting user statistics is to log AP data traces. However, this method cannot obtain

statistics of potential WiFi users in the areas with little or no WiFi coverage.

A WiFi client discovers APs through either passive or active scanning. Our analysis of various

WiFi drivers shows that active scanning is triggered by the actions including: powering on the

WiFi NIC, booting up OS, and refreshing the status of available APs. However, 802.11 does not
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specify how a client should implement the scanning mode. As a result, different 802.11 drivers

may behave significantly different in terms of how the scanning probes are transmitted.

Without being able to decode 802.11 frames, WizNet identifies 802.11 AP scans by searching

for the distinctive fingerprints in RSS measurements. Fig. 5.6(a) shows the RSS measurements

of AP scanning probes transmitted by two different WiFi clients. One client is an ASUS EeePC

netbook running Ubuntu Linux and the other one is Sony TZ27 laptop running Windows Vista.

The RSS samples are taken on a TelosB mote listening on 802.11 channel 6. Total 11 peaks

can be seen in the RSS measurements of Linux client, which correspond to 11 scanning probes

transmitted on 11 different 802.11 channels. Due to channel overlapping and out-of-band emission

of 802.11 signals, all probes are captured by the sensor listening on channel 6, although their power

magnitudes drop with the increase of channel separation[87]. Although similar phenomenon is

observed for the Windows client, a key difference is that two probes instead of one are transmitted

on each channel.

Algorithm 2 AP Scan Detection
1: Retrieve an RSS series (denoted as trace0) through a sliding window of 1,200 ms from the RSS mea-

surement.
2: Remove samples whose duration does not fall within [366, 732 us], and pass the rest through a binary

filter, using TH as the threshold. The output binary array is trace1.
3: Auto-correlate trace1, and examine whether it is a periodic signal with a period within [50, 100 ms]. If

true, store trace1 as a valid AP scan signature. Repeat from step 1.

We measured the scanning probes of 7 WiFi drivers implemented by 5 different systems: Win-

dows (Vista, XP, 7), Ubuntu Linux 9.1, Symbian 9.3, iOS 4.3.3, and Android 2.2. Our results show

that, although the scanning patterns of different WiFi drivers are substantially different, they share

the following common characteristics: 1) Probes are sent on all 11 802.11 channels using the same

transmission power, although the scanning order might differ; 2) The delay between two probes

is constant, resulting in a periodic pattern. Moreover, the period falls within [50, 100 ms]. As

expected, the period is always shorter than the default 802.11 beacon period (102.4 ms) in order to

discover APs faster than the passive mode. As a result, the total delay of an active scan procedure

lasts shorter than 1,200 ms. 3) The duration of a probe frame is short and typically lasts 366 to
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732 us. Based on these characteristics, we have developed an algorithm, as shown in Algorithm 1,

to identify AP scans from sensor RSS samples.
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Figure 5.5: The process of RSS and AP
association.
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Figure 5.6: ZigBee RSS measurements of AP
scanning probes transmitted by two different WiFi
clients.

At step 2, the RSS samples are converted to a binary array by thresholding their magnitude. The

auto-correlation operation at step 3 can find the possible period of RSS series, which can accurately

identify the model of WiFi client. It requires dot production of RSS samples and incurs high

overhead on sensors. In our implementation, the binary RSS array output at step 2 is compressed

and transmitted to the sink, which then executes the auto-correlation.

5.4 Design of WizNet Manager

5.4.1 RSS and AP Association

As discussed in Section 5.3.2, WizNet can distinguish the beacon frames sent by different APs

based on the folding phases of RSS samples. However, it still cannot obtain the identities of the

APs associated with the beacon frames. The correct association of each AP with the RSS samples it

generated is essential to keep track the performance of individual APs. A straightforward solution

is to compare the timestamps of RSS samples recorded by WizNet sensors and those of 802.11
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beacons recorded by APs. However, this approach would require millisecond-level precision of

time synchronization between different APs and sensors, which incurs high overhead.

To associate APs with their RSS samples, WizNet applies a signal processing technique called

cross-correlation which does not require high-accuracy time synchronization between APs and

sensors. The basic idea is illustrated in Fig.5.5. First, each AP periodically logs beacon frame

headers and sends to WizNet manager. The WizNet manager then merges all AP logs into a single

log and converts it to an RSS time series through a re-sampling process in which an RSS series

is generated based on the timestamps and data rates contained in beacon headers. This process

essentially simulates the sampling operation of sensors based on the native time of AP. The RSS

magnitude is set to either a fixed value when the sampling time falls within a beacon duration

or zero otherwise. Both the generated RSS series and the folded RSS series from a sensor are

then fed into a cross-correlator that computes the dot product of two series with different offsets.

The maximum dot production corresponds to the most likely alignment offset between the two

series. This offset is essentially the error between the system times of AP and sensor. Finally, the

sensor RSS samples are shifted according to the offset found and then labeled by the BSSID of the

matched AP.

We note that WizNet is not a standalone system due to the need of AP logs. However, AP

logs are typically easy to obtain on most off-the-shelf production APs. For example, many APs

run Linux systems that provide various tools for extracting system logs. Moreover, as AP logs are

usually very short (several KB per second), collecting them does not incur much overhead over the

network infrastructure. If the system needs to be strictly standalone, WizNet can also obtain AP

logs from dedicated 802.11 sniffers which capture beacons from nearby APs.

5.4.2 SNR and Channel Utilization Estimation

After associating RSS samples with APs, WizNet manager first calculates the sensor SNR by

subtracting the base noise of the ZigBee sensors from the RSS samples. The base noise is computed

by applying exponential moving average over the minimum values in the RSS series. Then the
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manager infers the SNR of APs that a WiFi client would receive at every monitoring spot.

Suppose a WiFi client and a WizNet cluster are located at the same location. The signal strength

of an 802.11 frame is ww and wz at the virtual antennas of WiFi and WizNet receivers, respectively.

As WizNet fuses the RSS from multiple sensors, the virtual antenna comprises all the antenna

of sensors in a cluster. Gw and Gz are the virtual antenna gains of WiFi and WizNet receivers,

respectively. Then the signal to noise ratios of the receivers, denoted as SNRw and SNRz, can be

expressed as:

SNRw = 10log(wwGw pw/Nw) (5.2)

SNRz = 10log(wzGz pz/Nz) (5.3)

where pw and pz are the ratio between the signal power measured by receiver RSSI and the total

signal power, Nw and Nz are the receiver noise floors. The sensor fusion of WizNet mitigates

the multipath fading in each cluster. As a result, if the virtual antennas of WiFi and ZigBee are

sufficiently close, ww ≈ wz. Gw and Gz are functions of the incoming signal bearing which can be

considered same for closely located virtual receivers. Subtracting Eqn. 5.3 from Eqn. 5.2 gives

the difference between SNRw and SNRz:

SNRw = SNRz +C (5.4)

where C can be estimated from a simple and short training phase. A different model is estimated

for each monitored AP because C is a function of signal bearing which varies with the location of

source.

A key advantage of our SNR estimation approach is that the model training usually only needs

to be performed once before deployment, because of two reasons. First, the noise, multipath and

frequency-selective fading that can significantly affect the mapping between ZigBee and WiFi

SNRs are effectively dealt with at run time by hop sampling, folding and sensor fusion of WizNet.

Second, the SNR mapping model in Eqn. 5.4 only characterizes the difference between ZigBee

and WiFi measurements after the impact of these dynamics is accounted for. As a result, this model
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does not need to be retrained frequently at run time. Our experiments that last more than six days

show that WizNet can achieve satisfactory monitoring fidelity after a single offline training phase

(see Section 5.5).

WizNet manager then estimates the utilization rates of the APs’ working channels. Due to the

sharing nature of wireless channels, only non-occupied time slots on a channel can be utilized by

clients. WizNet manager computes the channel utilization rate as the ratio between the number of

RSS samples whose signal strengths are above the noise threshold, and the total number of RSS

samples.

5.4.3 Throughput Estimation and Rogue AP Detection

The SNR and channel utilization rate can be used to infer the throughput of WiFi. We now outline

the basic idea and leave the detailed design for future work. We build the empirical model in an

offline training phase in which the throughput of a reference 802.11 client is measured under dif-

ferent SNR and channel utilization rate combinations. Due to the rate adaptation of WiFi receivers,

the throughput experienced by the reference client is a range of values. WizNet manager then esti-

mates the current throughput by searching the best match of the measured {SNR, Utilization Rate}

pair in the training data set.

WizNet is able to discover rogue APs that are deployed without the authorization of network

administrators. Rogue APs may lead to security breach since they can be exploited by third parties

to access the secured networks. As discussed in Section 5.4.1, the RSS measured by sensors are

associated with the APs using cross-correlation between the two RSS traces obtained by sensors

and APs, respectively. WizNet manager labels each identified RSS in the series obtained by sensors

with BSSIDs of the APs. As a result, any AP that cannot be identified is potentially a rogue AP.

In this approach, each AP is identified by the temporal phases of its beacon transmissions. By

leveraging such PHY layer information, WizNet can reliably detect rogue APs even if they can

forge their SSIDs and MAC addresses.
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5.5 Experimentation
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Figure 5.7: The network dynamics observed in a large conference room.

5.5.1 System Deployment and Experimental Settings

We have implemented the sensor components of WizNet in TinyOS 2.x on Crossbow TelosB motes.

The sensor code has a footprint of 16 KB and uses 550 bytes of RAM. We are able to achieve a

sampling rate as high as 32.768 kHz on TelosB motes. However we deliberately decreased the

rate to 8.192 kHz to conserve energy. The WizNet manager is written in C and Python. We

implemented a single clustering protocol that can synchronize the sensors in a cluster and allow the

cluster head to communicate with the base station. WizNet manager learns the working channels

of monitored APs from AP logs, and instructs the WizNet sensors to sample these channels.

We deploy WizNet on the 3rd floor of the engineering building of Michigan State University.

A production 802.11b/g/n WiFi network containing 115 APs is currently available in the building.

Over 50 physical APs can be detected on each floor, which are almost evenly distributed on channel

1, 6 and 11. Our deployment consists of 20 TelosB sensors and 6 802.11 laptops, as well as one

desktop computer as manager. We divide the 20 sensors into 5 clusters, and deploy them to five

rooms on the third floor. To compare the monitoring accuracy of WizNet against 802.11 based

tools, we also collect measurement results from 802.11 laptops which sniff WiFi traffic. These

laptops are deployed close to WizNet clusters. To account for sufficient environmental diversities,

we deploy cluster 1 and 3 in two small offices, cluster 2 and cluster 5 in two conference rooms,

and cluster 4 in a medium size mail room. The small offices have very few people traffic, while the

two conference rooms are frequently occupied by meetings and seminars. The mail room not only
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has many people visiting, but also has a few fixed tall metal cabinets which substantially block

signals. Our deployment covers a floor area of approximately 46,000 square feet that is serviced

by 11 production APs, as shown in Fig 5.8.

Our experiment lasts for a period of 140 hours, during which 40 GB data is collected. As we

cannot deploy code to the monitored production WiFi network, we extracted AP logs (required

by the AP association component) from the traces logged by our own laptops. In order to capture

fine-grained WiFi performance variability, the sensors measure and report the data to sink every 10

seconds. During this period, each sensor keeps active for 2 seconds. Our measurement shows that

the TelosB motes in our deployment consume 22 mA and 10 uA in active and sleep states, respec-

tively. If the motes are powered by 2 2500 mAh AA batteries, the system can last over 150 days

with 3% duty cycle (i.e., the monitoring data is reported to the manager every one minute). An

initial training process is conducted to train the SNR estimator of each cluster using the measure-

ments from both WiFi client and sensors. After training, the absolute estimation error is computed

between the SNR estimated by WizNet and the ground truth SNR measured by the WiFi client at

each monitoring spot.

Figure 5.8: Locations of production WiFi APs and monitoring WizNet clusters on the third-floor of
engineering building of a university. The total deployment area is about 46,000 square feet.
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5.5.2 Network Dynamics

Over 25 APs were observed during the period of 140 hours. However, some distant APs have

consistently weak signals throughout our experiment and clients normally do not associate with

these APs. We focus on the results of 11 APs shown on Fig 5.8. The 140-hour trace logged by

WiFi clients shows that the network yields significant dynamics. Fig 5.7 (a) and (b) also show

strong correlation between the SNR and the PRR of 802.11 beacons. This indicates that SNR is a

good metric to evaluate WiFi performance. We notice that there were several service breakdowns

during which the signals from some APs were not observed. Moreover, the network usage also

fluctuates significantly during the experiment. Fig 5.7 (c) shows that the aggregated traffic rates

on all channels at one conference room vary between near zero to 25 Mbps, while the mean traffic

rate is only 36 Kbps. The traffic yields large bursts, which is occurred during normal office hours.

WizNet observed 4 APs that cannot be identified by the beacon logs from the monitored 802.11

network. After a careful analysis of the data traces logged by laptops, we found these APs are not

a part of the production network hence they are considered as rogue APs.

5.5.3 Monitoring Accuracy
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Figure 5.9: Estimation error vs time.

We have extensively evaluated each component of WizNet. The results are summarized here

while the details are omitted and can be found in a technical report [98]. (1) Hop sampling is able
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to reduce the RSS estimation variation by about 5 dB, and sensor fusion can further reduce the

variation by another 4 to 6 dB. (2) Fusion of two sensors can already substantially improve the

SNR estimation accuracy by exploiting the higher degree of spatial diversity, while the benefit of

fusing more than three sensors is insignificant.

We now evaluate the impact of training time on the accuracy of SNR estimator. The absolute

estimation error is computed between the SNR estimated by WizNet and the real SNR measured

by the laptop. Each CDF in Fig. 5.12 includes the errors of all four APs monitored at spot 2. We

can see that the error decreases when a longer training period is used. However, even when the

system is only trained for 200 seconds, 90% of errors over the period of 140 hours fall below 3 dB.

When the training time is prolonged to 500 seconds, only slight performance gain is achieved. We

adopted a training period of 200 seconds in the following experiments.

Next we evaluate the impact of sensor fusion on estimation accuracy at monitoring spot 2

by varying the number of sensors. Fig. 5.10 shows that the absolute estimation errors of all

4 monitored APs become smaller when the number of sensor increases. When the number of

sensors is sufficiently large (> 3), the error decrease becomes insignificant. Fig 5.11 shows the

RSS estimation of all clusters over the 140-hour period. We can see that clusters 2 and 4 perform

slightly worse than other clusters. This is because they are placed in the two conference rooms

where passing pedestrians are constantly present during normal work hours. Nevertheless, 80% of

errors fall below 2.5 dB.

5.5.4 Spatiotemporal Performance Analysis

The results in the previous section show that WizNet yields satisfactory monitoring accuracy dur-

ing the 140-hour evaluation period. We now analyze the micro-scale spatiotemporal performance

of the system. We focus on the analysis on 2 APs that experienced the highest dynamics in our ex-

periment. Fig 5.9 shows the ground truth and estimated SNR of the two APs (monitored by cluster

1 and cluster 5, respectively). It can be seen that both APs yield significant performance variability.

However, both clusters are able to accurately track the dynamics of the APs and maintain SNR es-
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timation errors within 4 dB. This result indicates that the SNR variation caused by environmental

factors has little impact on WizNet monitoring fidelity. Instead, we observe that the estimation

errors gradually increased over time after the initial training. We suspect that the increased inaccu-

racy is largely attributed to the radio hardware drifts caused by temperature and humidity changes.

However, the overall error increase is within 1 dB during the period of 6 days. As shown in Fig

5.12, a longer training length (2 to 3 minutes) would give more consistent estimation accuracy.

We also notice that, once WizNet is properly trained, its performance is resilient to dynamic

obstacles in the environment. This is confirmed partially by the fact that people traffic is regularly

present in our testing areas. Moreover, we deliberately rearranged some furniture, including chairs

and tall metal shelves near cluster 5 after training during the experiment, and the time period is

marked on 5.9 (a) by a rectangle. Although substantial variation was observed from SNR measure-

ments, WizNet still maintains a small estimation error compared with the measurement of 802.11

laptop. This is due to the fact that the hop sampling and sensor fusion components effectively

mitigated the dynamics of multipath fading in the environment.

5.5.5 Client Classification
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We evaluate the accuracy of monitoring AP scans using a WizNet senor placed in an office

without WiFi coverage1. Users carrying different 802.11 client devices listed in Table 5.1 roam

about the testing area. In the first experiment, only one user appears in the area at a time. The

1WizNet obtains the user statistics directly from AP logs in the areas with WiFi coverage
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Table 5.1: False Positive and Negative Rates of 802.11 Client Classification.

Client FN Rate FP Rate
(single-/multi-client)

Nokia E52-Symbian 9.3 6% / 9% 3% / 5%
Apple iPhone-iOS 4.3.3 6% / 11% 8% / 15%
Lenovo X200-Win 7 10% / 19% 2% / 2%
Sony S26C-Win XP 2% / 4% 7% / 13%
ASUS EeePC-Ubuntu 9.1 2% 10%
HTC Desire-Android 2.2 5% 5%

results evaluate the performance of AP scan recognition algorithm presented in Section 5.3.4.

Each client device performs 100 active scans. A Ubuntu Linux laptop is used to record the sniffed

AP scans as ground truth. The WizNet sensor starts with no knowledge of any scan patterns. The

overall accuracy of the system is shown in Table 5.1 (columns labeled as “single-client"). It can be

seen that the classification accuracy varies for different clients, due to the fact that AP scans of some

systems have more evident features than others. However, all the classification errors fall below

10%. In the second experiment, four users carrying different client devices appear in the testing

area at the same time, and each client issues 100 scans. Table 5.1 (columns labeled as “multi-

client") shows that the AP scan probes transmitted by 802.11 driver of Windows 7 are substantially

shorter than other systems, making them easier to be missed in RSS sampling. Moreover, the

features of iOS AP scans are less distinctive. As a result, 15% of these scans are mistakenly

classified as from other systems.
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CHAPTER 6

CLOCK SYNCHRONIZATION IN WIRELESS SENSOR NETWORKS

6.1 Introduction

Time synchronization is a fundamental service for Wireless Sensor Networks (WSNs). Many ap-

plications of WSNs require the nodes to maintain a common notion of time. Samples from different

nodes often need to be temporally correlated in order to infer the information of interest. Accurate

and precise timestamping is thus essential for correct data ordering and processing. Moreover,

a common time representation is critical for the energy efficiency of battery-powered nodes that

must coordinate their sleep schedules and communication activities.

We propose a new time synchronization approach for WSNs, which exploits the existing WiFi

infrastructure. Our approach is motivated by two recent trends in wireless technologies. First,

WiFi networks have enjoyed a phenomenal penetration rate in our society in the past decade. One

of the key reasons attributed to the popularity of WiFi is the adoption of unlicensed radio spectrum,

which enables the proliferation of inexpensive off-the-shelf 802.11 devices. Second, recent WSN

platforms have embraced low-power wireless standards such as Bluetooth and 802.15.4, which

also adopt the 2.4 GHz unlicensed spectrum. As a result, WSNs and WiFi networks often occupy

same radio frequency bands. Such wireless co-existence is often deemed as a “curse" as it may

cause significant interference between different platforms [55].

In this chapter, we exploit the co-existence of WiFi and 802.15.4-based WSNs as a “blessing".

The 802.11 standards require all WiFi access points (APs) to broadcast periodic beacon frames for

the purpose of network management. Working on the same radio frequencies, 802.15.4 sensors

can detect the transmissions of such beacons and use them as a clock signal to synchronize their

clocks. This approach has several key advantages. First, it does not require any modifications to

802.11 APs, and thus can leverage the ubiquitous WiFi deployments. Second, our measurements
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show that many production WiFi APs have a communication range of hundreds of feet even in

complex indoor environments, which is about an order of magnitude longer than that of 802.15.4

nodes. In addition, the distribution of 802.15.4 networks are typically "denser" than AP. As a result,

a large number of sensors within a connected WSN cluster can synchronize to the same beacons

to achieve network-wide global time with very infrequent message exchanges. Despite the afore-

mentioned advantages, several challenges need to addressed before this approach becomes viable

in practice. First, as 802.15.4 radio cannot decode any 802.11 frames, they must rely on sensing the

Radio Signal Strength (RSS) of in-air signals to identify 802.11 beacons. This is not trivial as RSS

samples also contain non-beacon signals such as 802.11 data frames and transmissions of other

2.4 GHz devices such as cordless phones. Second, since 802.11 adopts a CSMA (Carrier Sense

Multiple Access) MAC, a beacon transmission may be delayed due to channel contention, mak-

ing it challenging to achieve sub-millisecond synchronization accuracy required by many WSN

applications.

This chapter makes the following contributions. First, we conduct a large-scale measurement

study of 802.11 beacons in an enterprise WiFi network consisting of over 50 APs deployed in a

300,000 square foot office building. We experimentally characterize the spatial coverage of WiFi

APs and the temporal characteristics of beacons. We show that the periodicity of 802.11 beacons

is highly stable despite the existence of small jitters caused by heavy data traffic.

Second, we implement WizSync in TinyOS 2.1.1 and conduct extensive evaluation on a testbed

consisting of 19 TelosB motes. Our results show that WizSync can achieve an average synchro-

nization error of 0.12 milliseconds over a period of 10 days with power consumption of 50.9

microwatts/node.
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6.2 Problem Statement

6.2.1 Background on 802.11 Beacons

802.11 requires all APs to broadcast periodic beacon frames that carry important management

information (e.g., supported rates and security settings). The default beacon period is 102.4 ms,

which is rarely changed on production APs. Since 802.11 adopts CSMA (Carrier Sense Multiple

Access), the transmission of beacon frame may be delayed due to channel contention caused by

pending or ongoing data transmissions. However, as defined in 802.11, whether a beacon frame is

delayed or not, the subsequent beacon frame shall always be scheduled at the undelayed nominal

beacon interval.

6.2.2 Clock Synchronization via 802.11 Beacons

Many WSN platforms generate on-board clock signal from low-power CMOS crystal oscillators,

which often suffer significant drifts. The crystal oscillator of TelosB mote has a drift rate of 30−50

ppm [74]. As a result, the clocks of nodes need to be frequently calibrated and synchronized to

achieve accurate timekeeping across the network. In this chapter, we propose a new approach that

employs the periodic 802.11 beacons broadcasted by WiFi APs as a global timekeeping signal to

synchronize the clocks of 802.15.4-based sensor nodes. In contrast to other external clock based

approaches, our approach requires no additional hardware as off-the-shelf 802.15.4 radio is capable

of sensing 802.11 transmissions.

Our approach is designed to meet two objectives: 1) Accuracy. Specifically, clock synchro-

nization errors across different nodes should not exceed 1 ms. Such an accuracy requirement can

satisfy the need of timekeeping in many WSN applications. Several WSN time synchronization

systems such as Syntonistor [79] are also designed to achieve similar level of accuracy. 2) Energy-

efficiency. Due to the tight energy budget, nodes should minimize radio transmission and idle time

during clock synchronization.
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6.3 A Measurement Study of 802.11 Beacon

We conducted two experiments to study the spatial and temporal characteristics of 802.11 beacons

in an enterprise production WiFi network deployed in the engineering building of Michigan State

University. The building is a four-story complex with a floor area of approximately 300,000 square

feet. A production WiFi network containing 115 APs is currently available in the building. Over

50 physical APs can be detected on each floor, which are almost evenly distributed on channel 1,

6 and 11. These APs are manufactured by several different vendors.
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Figure 6.2: Temporal stability of 802.11 beacon period.

6.3.1 Spatial Coverage of 802.11 APs

In the first experiment, we carried out a WiFi coverage site survey on the third floor of the building.

A laptop is carried by a user who roamed about the corridors on the third floor. The user stops for

10 seconds for every 10 seconds he walked. When he stops, the carried laptop begins to passively

scan for nearby APs on channel 1, 6 and 11. For clarify of presentation, we only shows the

coverage map of 5 APs on channel 11 in Fig. 6.1. It can be seen that each of these APs covers

a very large area. For example, AP1 fully covers the vertical corridor which is about 510 feet

long. This distance is about an order of magnitude longer than the typical indoor communication

range of 802.15.4 radio. This result clearly demonstrates a key advantage of WizSync, i.e., nodes

distributed in a large region may synchronize their clocks without any message exchange.
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6.3.2 Temporal Stability of 802.11 Beacon Period

In the second experiment, we deployed four laptops at different locations of the building to measure

the timing accuracy of beacon transmissions. During a period of 2 days, the four laptops record

all overheard beacon frames, reception timestamps, signal strength, etc. To evaluate the impact of

traffic load, the laptops also record the headers of 802.11 data packets and periodically compute the

average traffic rate. We measure the interval between the reception timestamps of two consecutive

beacons of the same AP. The relative errors between the measurements and the standard beacon

interval (102.4 ms) are then computed.
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Figure 6.3: The temporal characteristics of 802.11 beacons.

Fig. 6.2(a) shows the beacon period jitters during the experiment of 2,000 minutes. It can

be seen that most of the jitters fall below 5 ms. However, we observed that only a small number

of beacons yield jitters higher than 1 ms. Fig. 6.2(b) shows the “zoomed in" results taken from

the rectangle of Fig. 6.2(a), which contains measurements of 600 seconds. We can see that most

of the jitters are nearly zero and high jitter only appears occasionally. This observation implies

that a simple outlier removal process can effectively eliminate the high jitter. After removing 15%

outliers, the resulted maximum jitter is only 200 us.

An interesting observation from Fig. 6.2(b) is that high jitter typically occurs in burst. Our

analysis of the data trace indicates that such bursts were caused by heavy traffic on the channel.

Fig. 6.3(a) shows the CDF of beacon period jitters (10% outlier removed) under different channel

traffic loads. It can be seen that the error increases with the traffic load, which is consistent with
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the expectation. Nevertheless, even when the traffic load is as high as 2 Mbps, 90% of the beacons

are transmitted with an error smaller than 200 us. The average beacon period jitter during the

2000-minute experiment is 80 us. We also note that the high traffic load is rare in the network.

For instance, 2 Mbps is reached only in 0.4% of the time. This observation is consistent with the

results several empirical studies based on production WiFi deployments [49]. We also measure

the difference between the timestamps carried by the beacons sent from different APs, which

indicates the time synchronization errors of APs. We observed that the clocks of different APs are

not synchronized. Fig. 6.3(b) shows the time difference between two APs over a period of 250

minutes. The difference increases linearly over time, which conforms to the results in Fig. 6.3(a)

that the frequency of each clock is highly stable. This result suggests that, when two sensors are

synchronized to different APs, their clocks will yield a linear frequency difference. We will leave

the synchronization in multiple AP scenario as our future work.

6.4 Experiment

We designed a novel time synchronization protocol called WizSync, which employs advanced sig-

nal processing techniques to detect periodic WiFi beacons and use them to calibrate the frequency

of native clocks. The details of our design can be found in [52]. We implement WizSync in TinyOS

2.1x on the TelosB platform. Our implementation has a code size of 4 Kbytes and memory usage of

1 Kbytes. We conducted a 10-day experiment on our testbed consisting of 22 nodes to extensively

evaluate the long-term performance of WizSync. In this section, we first present our experimental

methodology, followed by the experiment results and the in-depth analysis.

6.4.1 Experimental methodology

Our testbed is composed of 3 WizSync node clusters deployed in the Engineering building. Three

rooms on the third floor are selected to host the nodes. These rooms lie on a straight line of 300

feet with roughly equal spacing. Located at different sections of the building, they are separated
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by many offices and labs between them. As a result, no single AP can cover any two of these

rooms. Each cluster consists of one laptop and several TelosB motes running WizSync which are

connected to the laptop with USB cables. The positions of nodes are randomly chosen within the

room. The laptop collects the data from the WizSync nodes, as well as logs the overheard 802.11

frame headers, which provides traffic information for analysis. We manually choose a node as

cluster head in each cluster.

During initialization, the cluster head finds the AP with the strongest signal and notify other

nodes in a broadcast message, as discussed in Section V.C. The broadcast message also sets the

same initial clock values of all nodes in the cluster. In order to compare the local times of cluster

members, the cluster head broadcasts a message every 30 seconds after initialization. The cluster

members report their local times to the laptop when the packet is received. Our evaluation last 10

days continuously during which over 40 GBytes data is gathered from 19 WizSync nodes and 3

laptops.
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6.4.2 Intra-cluster synchronization

We first analyze the synchronization errors between the nodes within the same cluster. Fig.6.4(a)

depicts the mean and maximum pairwise errors of all 19 WizSync nodes in a period of 14,000

minutes. The pairwise error between any two nodes is computed every 30 seconds. Each data point

in Fig. 6.4(a) is the maximum value of the mean or maximum pairwise errors of all node pairs in a

30-minute window. It can be seen that the mean error falls below 400 us in most of the time while
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Figure 6.6: CDFs of inter-cluster synchronization errors of 10 nodes over a period of 7000 minutes.

the maximum error typically ranges from 500 to 1,300 us. Moreover, although the average error

remains stable over time, the maximum error yields significant fluctuations. Our analysis indicates

that most of the spikes are the result of beacon backoffs caused by sporadic heavy traffic. Fig.

6.4(b) shows the CDF of mean and maximum errors of all the experimental data. It can be seen

that 90% of the mean and maximum error are below 200 us and 450 us, respectively. The mean

values are 121 us and 277 us, respectively. Our results indicate that WizSync not only achieves

high synchronization accuracy but also has low power consumption. Fig.6.5 shows the sleep time

distribution of all 19 nodes during the 10-day experiment. Nodes remain awake longer than 20

minutes in 79% of the total experiment time. Short sleep intervals (less than 2 minutes) only

occurred in less than 1% of the total experiment time. In such a case, sensor clocks experience

significant transient drifts and WizSync have to wake up nodes frequently for calibration. The

average power consumption of a WizSync node during the 10-day experiment is 50.9 uW.

6.4.3 Inter-cluster synchronization

We also evaluated the accuracy of WizSync across different clusters that synchronize to different

APs. However, different sensor clusters in our deployment cannot communicate with each other

due to the long distance between them. We conducted a trace-driven simulation as follows. We

implemented the calibration and offset correction algorithms of WizSync in Matlab and fed them
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with data traces collected from two 5-node clusters over a continuous period of 7,000 minutes. We

adjust the interval of message exchanges for offset correction and measure the resulted synchro-

nization errors.

Fig.6.6(a) and Fig.6.6(b) show the mean and maximum synchronization errors, respectively. As

expected, the errors increase with the duration of message exchange interval. However, even with

the interval of 120 minutes, 90% of the maximum and mean pairwise errors still fall below 1,500

us and 600 us, respectively. When the interval is 30 minutes, the average value of the maximum

and mean pairwise errors are 250 us and 754 us, respectively, which are well below the preset error

1 ms error bound.

66



CHAPTER 7

PRESERVING NFC PHYSICAL SECURITY

7.1 Introduction

In recent years, the Near Field Communication (NFC) technology is increasingly available on

the new generation of smartphones, tablets, and smart accessories. It is estimated that more than

200 million NFC-enabled smartphones will be shipped in 2013 [16]. And over 50% of the smart

devices to be shipped in 2015 will have NFC support [11]. The growing popularity of NFC has

enabled a range of applications, from contactless payment [15] and ticketing [28] to device pairing

[27] for ad hoc data exchange.

A major trait of NFC is its short communication range (usually within 10 cm), which is the

result of the fast decaying magnetic induction between the antennas of NFC transmitter and re-

ceiver. The short communication range is favored by many security-sensitive applications, such as

contactless payment, since it provides a natural, physical protection against various attacks, par-

ticularly malicious eavesdropping. Unfortunately, as NFC is still a relatively new and developing

technology, its implementation on mobile devices often have design flaws, which may be exploit-

ed to compromise application security [68]. In particular, our experimental study described in this

work shows that, current NFC radios emit significantly more RF energy than intended. With a

specially designed portable NFC sniffer, we are able to eavesdrop NFC transmissions from up to

240 cm away, which is at least an order of magnitude further than the intended NFC communica-

tion distance. These findings raise major concerns on the physical security of NFC. Moreover, this

issue is aggravated by the fact that current NFC chipsets adopt fixed transmission power, which

cannot be adjusted to mitigate the potential risks of eavesdropping.

Existing efforts on NFC security can be classified into two basic categories. Several solutions

improve the security of NFC by adding more security elements, such as additional secret keys, to
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the native OS of mobile devices [53]. However, the mobile device would become vulnerable if

the integrity of the OS is compromised (e.g., after being rooted). The second category employs

additional hardware devices to secure NFC [76][22]. However, these hardware systems are bulky

and power-hungry, which are ill-suited for mobile devices. In a recent work [50], a hardware secu-

rity device is developed to harvest energy from NFC transmissions and jam malicious interactions.

However, due to the low energy harvesting efficiency, the system may not provide uninterrupted

protection. The above approaches are designed to prevent content-based malicious attacks, and

none of them can protect NFC from eavesdropping attacks.

In this chapter, we propose a novel, noninvasive NFC security system called nShield to protect

NFC against passive eavesdropping. nShield is a credit card-sized thin pad that can be easily stuck

on the back of mobile devices (see Fig. 7.6). nShield implements a novel adaptive RF attenua-

tion scheme, in which the extra RF energy of NFC transmissions is determined and absorbed by

nShield. At the same time, nShield scavenges the extra RF energy to sustain the perpetual opera-

tion. A key contribution of this work is the analysis of the factors affecting the energy harvesting

efficiency, and the design of a highly effective energy harvesting system. nSheild is capable of har-

vesting significant amount of power (55 mW) from commodity mobile devices, which is at least

a 1.8X improvement over the state-of-the-art NFC-based energy harvesting systems. Together

with the extremely lo-power design, it enables nShield to provide the host uninterrupted protection

against malicious eavesdropping. Lastly, the small form factor, self-sustainability, and transparen-

cy to OS, makes nShield an attractive solution to retrofit existing mobile devices with protection

against passive eavesdropping.

In summary, we make the following key contributions in this chapter.

1. We conduct an experimental study on the feasibility of passive NFC eavesdropping, with a

specially designed inexpensive NFC sniffer. We show that commodity NFC-enabled devices

can be eavesdropped from up to 240 cm away, which is at least an order of magnitude

further than the intended NFC communication distance. Moreover, although external signal

attenuation is effective in reducing NFC transmission power, the desired attenuation level
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that can still sustain data communication is highly dependent on the NFC hardware, tags

sensitivity, and the physical distance. To our best knowledge, this is the first empirical study

on passive NFC eavesdropping in practical settings.

2. We design an NFC security system called nShield to protect NFC from passive eavesdrop-

ping attacks. As a key novelty, nShield absorbs the excessive RF energy of NFC to attenuate

the signal strength against passive eavesdropping, while the absorbed RF energy is scav-

enged for its perpetual operation. By exploiting the NFC target discovery process, nShield

intelligently determines the right attenuation level that is just enough to sustain reliable data

communication. As a result, it can promptly and precisely control the signal strength of NFC

transmissions, mitigating the risk of passive eavesdropping.

3. We carefully analyze the factors that affect the NFC energy harvesting efficiency, and apply

several design techniques to the antenna and hardware of nShield to maximize the amount

of harvested energy, which include quality factor optimization, voltage matching, and tag

emulation. As a result, nShield can harvest significantly more power (1.8X and 3.1X) than

the two state-of-the-art NFC energy harvesting systems. This capability enables nShield to

provide the host uninterrupted protections against passive eavesdropping attacks.

4. We implement a prototype of nShield, and evaluate its performance via extensive experi-

ments. Our results show that nShield has extremely low power consumption, high energy

harvesting efficiency, and can adaptively attenuate the signal strength of NFC transmissions

in a variety of realistic settings, while only introducing insignificant delay.

7.2 Background

NFC employs the fast decaying magnetic induction between the antennas of transmitter and re-

ceiver for communication in close distance. The typical working distance of NFC using compact

antenna coils (with the size of a credit card) is a few centimeters. An NFC communication process
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involves an initiator and a target. Initiator devices are usually smartphones, tablets, and POS termi-

nals, which initiate the NFC communication with the target. The target devices can either be those

devices or proximity cards. NFC has two working modes, i.e., passive mode and active mode. The

passive mode employs the same communication techniques as those used by the proximity card, in

which the target device is powered by the RF field emitted by the initiator, and transmits by mod-

ulating the RF field. In the active mode, both initiator and target are powered by their own energy

sources. The ASK and PSK modulation schemes are employed by NFC to support a number of

data rates (106 kpbs, 212 kbps and 424 kbps).

An NFC communication process always begins with target discovery, in which the NFC ini-

tiator discovers the nearby NFC targets and learns the capability of the discovered targets. The

initial phase of discovery process is probing, in which the initiator broadcasts discovery messages

periodically to find nearby target devices. An NFC target device responds after it hears the probe.

The initiator and the target then exchange a few parameters back and forth to learn the capabili-

ties of each other before the start of the real data communication. On an NFC-enabled Android

phone, when the screen of the phone is unlocked, the NFC radio is activated and the discovery

process starts automatically and continues until a target device is discovered. During this process,

the discovery probes are broadcast at a frequency of about 1.4 Hz. Using NFC antennas, a device

can harvest energy from the RF field generated by NFC initiators within close proximity (a few

centimeters). However, the amount of energy that can be harvested during the probing is usually

very limited, as NFC radios have a low duty-cycle (10%) during the probing phase.

Passive eavesdropping attacks are harmful to wireless communications in several ways. They

could not only compromise the privacy/security of the system, but also serve as the early steps

of other more damaging attacks [89], e.g., the man-in-the-middle attacks [89]. Another reason

that makes passive eavesdropping attacks especially harmful is that they are hard to detect, as

they do not actively transmit any signal and are usually launched from distance. NFC is generally

considered to be a secure wireless technology against eavesdropping, due to its short communica-

tion range. However, current NFC implementations often emit significantly more RF power than
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intended. Our study shows that, with specially designed NFC sniffers, NFC signals can be eaves-

dropped from as far as 2.4 m away, which is much further than the intended NFC working distance.

This poses a serious concern for security/privacy-sensitive NFC applications such as contactless

payment.

7.3 A Measurement Study

In this section we experimentally study the passive eavesdropping distance of NFC transmissions.

Specifically, we measure the physical distance at which the signals from initiators and targets can

be successfully decoded, i.e., eavesdropped. Moreover, we study the impact of transmission power

attenuation on the passive eavesdropping distance of different NFC devices. The results provide

important motivation for the design of nShield.

We note that the actual eavesdropping distance depends on many factors, such as initiator im-

plementation, initiator position, NFC working mode (active or passive), and environmental factors

(e.g., background noise). Our measurements are conducted in typical settings, and an exhaustive

evaluation of all these factors is beyond the scope of this chapter. Nevertheless, our results raise

serious concerns about the physical security of NFC due to the significant discrepancies between

the actual and intended working distances, and shed lights on possible defense mechanisms.

7.3.1 Experimental Setup

Our experiment is conducted using NFC initiators, tags, and a sniffer. Commercial off-the-shelf

NFC transceivers do not make good sniffers for two reasons. First, they typically have a small an-

tenna size due to the form factor constraints of mobile devices, which greatly limits the receiving

sensitivity. Second, the commercial NFC transceivers are specially optimized for working in close

distance with the target. We have designed an NFC sniffer for our experiments. Fig. 7.4 shows

the block diagram of the sniffer, which consists of a 30 cm by 23 cm antenna, a pre-amplifier,

and an ADC that is connected to a PC via USB to upload the collected samples. The NFC signal
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overheard by the antenna is amplified and demodulated by the pre-amplifier and the AM demod-

ulator, respectively. The signal is then digitalized by ADC and transmitted to PC for decoding.

Our sniffer has a size of a tablet and average power consumption of 120 mW. Therefore, it can

be easily connected to a mobile device via the micro USB interface to form a mobile sniffer. The

NFC initiator devices used in this study include a Google Nexus 7 tablet, two smartphones (Google

Galaxy Nexus and Samsung Galaxy Note 2), and an Adafruit PN532 NFC breakboard [2]. The

NXP PN532 NFC chipset is adopted by the NFC breakboard, while all the other devices employ

the NXP PN544 NFC chipset. These two chipsets are currently the most popular NFC chipset-

s used on commercial off-the-shelf mobile devices. Both chipsets use fixed transmission power

which cannot be configured by software [20]. We use an NXP Mifare Classic tag as target.
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7.3.2 Results

In the first experiment, we measure the passive eavesdropping distances of both initiator and tag,

without attenuating the RF field radiated by the initiator. We place the initiators on a desk, with

the antennas of the devices facing forward. We activate one initiator at a time. The Mifare tag is

placed in parallel and 1 cm from the antenna of the activated initiator. We place the sniffer near the

initiator, and gradually move it away from the initiator.

Fig. 7.1 shows the signal strength of the initiators that is measured by the sniffer at different

distances. As expected, the received signal strength decreases over distance. We can see that the

signal is capped when the initiator-sniffer distance is short, as the output voltage of the sniffer can-
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not exceed the voltage of its battery. We implemented a Miller decoder in Matlab to decode these

samples. We find that the signal can be decoded if its strength is above 100 mV. When the strength

is lower, the signal to noise ratio (SNR) is too low for successful decoding. As shown in Fig. 7.1,

the 100 mV signal strength corresponds to physical distances of 152 cm, 131 cm, 116 cm, and 244

cm, respectively, when Nexus 7, Note 2, Galaxy Nexus, and Adafruit NFC breakboard are used

as initiators. We are also able to decode the signal transmitted by the tag at maximum distances

of 91 cm with Nexus 7, 85 cm with Note 2, 67 cm with Galaxy Nexus, and 121 cm with Adafruit

NFC breakboard. Compared to the initiator transmissions, the eavesdropping distance of tag trans-

missions is significantly shorter, due to the much weaker signal strength of the tag response. We

acknowledge that better hardware design and more advanced signal processing techniques could

achieve even longer eavesdropping distances. Nevertheless, our results are already sufficient to

demonstrate that the current NFC implementations on smartphone and tablet platforms are subject

to passive eavesdropping from a distance at least an order of magnitude longer than the intended

NFC communication range.

Pre-Amplifier

AM

Demodulator

Pre-Amplifier

ADC

To PC
Antenna

Figure 7.4: Block diagram of the NFC sniffer used in the measurement study.

A promising approach to defending against passive eavesdropping is to reduce the transmis-

sion power of the initiator. However, the current NFC chipsets adopt fixed transmission power,

which leaves attenuating the signal externally the only choice. We need to answer the following

two questions in order to design an external signal attenuator: 1) what is the maximum attenuation

level that could be applied without sacrificing the reliability of data communication, and 2) what
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is the resulted passive eavesdropping distance. We investigate these questions in the second exper-

iment. We adopt the same experimental setting as in the first experiment, except that we cover the

initiators with thin aluminum foils to attenuate the emitted RF field. The thickness and the area of

the aluminum foil are adjusted to create different RF field strength, while the maximum passive

eavesdropping distances are measured with our sniffer. We use a loop antenna connecting with an

Agilent oscilloscope to measure the RF field strength after attenuation.

Fig. 7.2 shows that, as expected, for all the 4 tested initiators, the passive eavesdropping dis-

tances decrease when the attenuation level increases. When the strength of the NFC RF field is

just enough to support reliable communication, our sniffer can achieve a maximum passive eaves-

dropping distance of around 80 cm, which is 67% (NFC Breakboard), 48% (Neuxs 7), 39% (Note

2), and 31% (Galaxy Nexus) shorter than those without attenuation. With such a short sniffin-

g distance, the eavesdropping attack becomes significantly more difficult. However, the optimal

attenuation level varies significantly for different initiators. Specifically, Fig. 7.2 shows that, to

reduce the signal power to an undecodable level for sniffers, the NFC signal needs to be attenuated

by 9.8 dB (NFC Breakboard), 5.9 dB (Neuxs 7), 4.2 dB (Note 2), and 2.2 dB (Galaxy Nexus),

respectively. Such significant diversity is caused by the differences in initiator implementations,

such as the size of antenna.

We now show that, for a given initiator, the maximum allowed attenuation level also varies

significantly across targets. We measure the maximum communication distances between the NFC

breakboard and two passive tags, Mifare Classic and Mifare Ultralight, with different attenuation

levels applied to the RF field. Fig. 7.3 shows that the communication distances decrease when the

attenuation level increases. However, the Mifare Classic can tolerate a maximum attenuation level

of about 9 dB, while Mifare Ultralight can only tolerate about 3 dB. This huge difference is the

result of the diverse receiving sensitivities of tags.
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7.3.3 Discussion

We now summarize the results of our experimental study. First, current NFC implementations

emit significantly more RF power than intended. As a result, the passive eavesdropping distance

is at least an order of magnitude of the intended NFC communication range. This issue greatly

increases NFC users’ risk of being eavesdropped. Second, the NFC RF field strength can be effec-

tively attenuated externally to enhance the security of NFC without sacrificing the communication

reliability. However, the desired attenuation level varies significantly with the specific working

conditions, including initiator transmission power, target reception sensitivity, initiator-target dis-

tance, and etc. Therefore, simple solutions such as an external signal attenuator with fixed amount

of power reduction would not work for all scenarios.

These results have several important implications for the security of NFC systems. Properly

implemented cryptosystems can offer strong security assurance even when the communication

could be eavesdropped. However, as NFC is usually considered “physically secure", many upper-

layer protocols of NFC applications do not implement encryption or only adopt short keys in

encryption algorithms (such as DES [8]). With an passive eavesdropping distance up to 244 cm as

shown in our study, these systems hence are exposed to malicious attacks. For instance, the leakage

of pairing code during NFC-based Bluetooth paring could lead to possible passive eavesdropping

or even man-in-the-middle attack on the following data communications. This issue is aggravated

in active NFC communication scenarios, where both NFC devices actively transmits using high

transmission power, and eavesdropping attacks on both of the devices could be launched over

distance. Moreover, the feasibility of NFC eavesdropping attack renders encryption the last line

of defense against attacks. Unfortunately, with the rapid advance of decryption techniques, many

once considered “safe" encryption protocols, including WEP [30], DES [8], and RSA [24], have

been demonstrated vulnerable when sufficient encrypted data is observed through eavesdropping.
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7.4 Overview of nShield

7.4.1 Design Objectives and Challenges

It is shown in Section 7.3 that current NFC initiator implementations emit significantly more RF

power than intended, which greatly increases the user’s risk of being eavesdropped. This result

motivates us to develop an NFC security protection device called nShield that dynamically reg-

ulates the strength of the RF field radiated by NFC initiators. nShield regulates the RF strength

by absorbing the excessive RF power with its own antenna. nShield can be easily stuck on the

back of mobile devices, and is solely powered by the absorbed RF energy, thus eliminating offline

charging. Specifically, we have the following design objectives.

Adaptive RF field strength regulation. Today’s NFC devices exhibit significant diversity in terms

of initiator transmission power and the receiver sensitivity. nShield must be able to dynamically ad-

just the amount of absorbed power to ensure that the remaining RF power is just enough to sustain

successful NFC communications. As nShield has no prior knowledge about the receiving sensitiv-

ity of the target, a “trial and error" approach is needed to determine whether NFC communications

can be sustained at a particular power level. However, trying all possible attenuation levels incurs

high delay due to the wide attenuation range and the low frequency of NFC transmissions.

Noninvasive operation. The operation of nShield should not rely on either initiator nor target.

In other words, it should work in a standalone manner with no physical connections to neither

initiator nor target. This requires nShield to be a self-sustained, self-powered device which has its

own CPU and power source. Moreover, it should be transparent to the host, without the need to

communicate with the host or modify the NFC protocols. The noninvasive and transparent nature

of nShield enables it to easily retrofit the existing NFC devices with security protection. However,

a key challenge presented by this design is that, as nShield cannot interact with either initiator or

target, it has to determine the right transmission power solely based on the overheard transmissions.

Unintermittent protection. nShield should provide the host devices unintermittent protection

against passive eavesdropping. In particular, the down time of protection caused by battery de-
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pletion should be minimized. As discussed in Section 7.2, nShield scavenges energy from the

NFC RF field, which is available only when the host device is active (e.g., when the screen of a

smartphone is unlocked). When energy harvesting is not possible, nShield has to survive using the

energy scavenged previously. Moreover, to keep the small form factor, nShield cannot adopt bulky

high capacity batteries. Due to these challenges, nShield must minimize its power consumption as

well as maximize the amount of power harvested from the host device. However, wireless charging

is inherently inefficient [62], especially for peripherals like nShield that has tight cost budget and

form factor constraints.

7.4.2 System Overview

nShield is composed of two major components, a software-defined passive NFC radio platform

and an adaptive RF field attenuation algorithm. The software-defined platform is capable of re-

ceiving data from and transmitting data to NFC initiators, attenuating the NFC RF field using its

antenna, and harvesting energy from the RF field. The adaptive attenuation algorithm dynamically

determines the highest attenuation level that can still ensure communication reliability, according

to the overheard NFC traffic. Fig. 7.5 shows the system architecture of nShield. An on-board M-

CU runs signal processing tasks such as encoding/decoding. nShield has two tuned loop antennas.

The larger antenna is used for harvesting energy from the NFC initiator, as well as transmitting

data to the initiator. The smaller antenna is responsible for overhearing data from the initiator. We

show in Section 7.5 that, this dual antenna configuration is essential for maximizing the energy

harvesting efficiency without sacrificing the receiving performance, as the receiving antenna and

the harvesting antenna require fundamentally different design methods.

The harvesting antenna is connected with an RF bridge rectifier, which rectifies the RF signal

to a DC voltage. The DC voltage is then regulated to provide power to the system and charge a 20

mAh on-board battery. In Section 7.5 we show that the voltage matching between the harvesting

antenna and the battery plays a critical role in maximizing the amount of power harvested by the

system. The load modulator is connected with the rectifier, which alters the load of the harvesting
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Figure 7.5: Block Diagram of nShield.

antenna to transmit data to the NFC initiator. Since the load modulation-based communication

scheme adopted by NFC standard requires strict timing, nShield employs a hardware TX control

circuit to accurately generate the clock used by the load modulation and precisely synchronize the

data to be transmitted. The TX control circuit can generate different clock frequencies according to

the data rates of the modulation schemes. nShield reduces the risk of eavesdropping by absorbing

the excessive RF power radiated by the initiator with an adjustable attenuator, which is multiplexed

with the load modulator.

The receiving antenna is connected to a peak detector, which removes the AM carrier from the

RF signal. The hardware-based demodulator on the MCU demodulates the baseband signal, from

which the raw data is retrieved. A key novelty in the design of nShield is to exploit the hand-shake

mechanism in the target discovery process to determine the optimal transmission power of the

initiator. Specifically, nShield infers whether the previous messages are successfully received by

examining the logical relationship between consecutive initiator messages. To reduce the delay of

determining the optimal attenuation level, nShield adopts a binary search algorithm to accelerate

the search. nShield falls asleep to conserve energy when no NFC signal is present. A low-power

wakeup circuit connected with the peak detector generates an interrupt signal to wake up the system

once NFC RF field is present.
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Fig. 7.6 shows a prototype system of nShield. The size of the circuit board and the antenna is

5.5 cm by 5.3 cm and 9.6 cm by 9.6 cm, respectively. We note that this antenna is specially designed

for Nexus 7 tablet. The size of antenna can be reduced for smartphones, without sacrificing the

energy harvesting efficiency and attenuation performance. The size of the prototype circuit board

can be shrunk significantly by removing unnecessary components like debug port, buttons and

LEDs. As a result, nShield can be easily fit on diminutive thin-film circuit boards, which could

be stuck to the back of small-size mobile devices. The total component cost of our prototype

implementation is under $20, and could be further reduced when nShield is mass-manufactured.
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Figure 7.6: Antenna and circuit of nShield mounted on the back of a Google Nexus 7 tablet.

7.5 Maximizing Harvested Energy

nShield is powered solely by the energy harvested from NFC transmissions. The capability of

harvesting a large amount of power not only enables the uninterrupted protection of nShield, but

also helps increase the attenuation range of the host’s NFC transmission power. Fig. 7.7 shows

the block diagram of the energy harvesting subsystem of nShield, which comprises a harvesting

antenna and an energy management circuit. These two components work together to determine

the amount of power that could be harvested. We show that they must be carefully designed to
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maximize the harvested power. We define the following two terms to characterize the performance

of energy harvesting. Energy (power) transfer efficiency is defined as the ratio of the amount of

energy (power) transferred to the harvesting antenna, to the amount of energy (power) transmitted

by the NFC initiator. Energy (power) harvesting efficiency is defined as the ratio of the amount of

energy (power) transferred to the receiving system after rectifying and regulation, to the amount of

energy (power) transmitted by the NFC initiator. Obviously, for any wireless power transfer sys-

tem, energy (power) harvesting efficiency is always lower than energy (power) transfer efficiency.
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Figure 7.7: Block Diagram of energy management circuit on nShield.

7.5.1 Harvesting Antenna

When the communication between an NFC initiator and a target device commences, energy trans-

fers from the transmitting antenna to the harvesting antenna via resonant inductive coupling [58]

through air. The NFC antennas are essentially inductors, which have inductance as well as series

resistance. The radiation efficiency of NFC antennas can be quantified using quality factor (or

Q-factor), which is the ratio of the inductive reactance to the series resistance of the antenna at

13.56 MHz:

Q =
ωL
R

=
27.12πL

R
106 (7.1)
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where ω is the working frequency of the antenna, and L and R are the inductance and the series

resistance of the antenna, respectively. The Q-factors of the transmitter antenna and the harvesting

antenna largely determine the power harvesting efficiency between antennas. Given the Q-factors

of transmitter antenna, Qt , and the harvesting antenna, Qh, the maximum power transfer efficiency

of the NFC antenna pairs can be expressed as [58]:

Πmax =
U2

(1+
√

1+U2)2
(7.2)

U = k
√

QtQh (7.3)

where k is the coupling coefficient, with 0 being completely uncoupled and 1 being perfectly cou-

pled. k depends on many factors such as the distance between the two antennas, antenna alignment,

and etc. For NFC, since the communication pairs are always placed in proximity, k is usually above

0.1 [17]. For each nShield installation, k is largely a constant value, as nShield is fixed on the back

of the mobile device. Due to the NFC communication bandwidth requirement (about 1.8 MHz

[17]), the Q-factor of the transmitting antennas, Qt , is about 15 for most NFC devices [29]. As

a result, the maximum power transfer efficiency of nShield is largely determined by the Q-factor

of the harvesting antenna, Qh. A high power transfer efficiency can thus be achieved by using

harvesting antennas with high Q-factors (above 50). For example, if k, Qt , and Qh of an NFC

energy harvesting system are 0.2, 15, and 100 respectively, a maximum power transfer efficiency

of 77% could be achieved. A key insight of this analysis is that, the harvesting antenna cannot

be reused by the NFC transceiver, due to the conflicting requirements of the Q-factors. Therefore,

to support efficient energy harvesting and reliable NFC communication at the same time, a dual

antenna configuration (one high Q-factor antenna and one low Q-factor antenna) must be adopted.

According to (7.1), to improve Q-factor of an NFC antenna, we can either increase its induc-

tance or decrease its series resistance. In our harvesting antenna design shown in Fig. 7.6, we

use wide antenna tracks to decrease the series resistance, and closely couple the antenna tracks to

increase the inductance. The parasitic capacitance also contributes to the series resistance of the
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antenna. We adopt a single layer antenna to decease the parasitic capacitance. The resulted high

Q-factor ensures that, when the transmitter antenna and the harvesting antenna are closely coupled,

the harvesting antenna can receive most of the radiated energy. The implementation details of the

harvesting antenna are given in Section 7.7.

7.5.2 Energy Management Circuit

Another major factor that affects the amount of power harvested to the system is the design of the

energy management circuit. The energy received by the harvesting antenna has to be transferred

to the energy storage components in the system, e.g., batteries or super capacitors. A common

practice for maximizing power transfer is to match the output impedance of the antenna with the

input impedance of the load [57]. The maximum power that can be transferred, Pload , can be

expressed as:

Pload =

(
Uant−open

Rant +Rload

)2
Rload =

U2
ant

4Rant
= 0.25Pmax (7.4)

where Uant−open is the open-circuit root-mean-square voltage inducted on the harvesting anten-

na, Rant and Rload are the impedances of the antenna and the load, respectively, and Pmax is the

maximum power that the harvesting antenna can receive. We can see that Pload equals a quarter of

Pmax, when and only when Rload = Rant .

However, the perfect impedance matching is impossible for energy harvesting systems, since

the input impedance of the energy management circuit, Rload , varies significantly with the system

load. To solve this problem, instead of matching impedance, nShield employs voltage matching.

Since Rant and Rload are in series, when Rant = Rload , the voltage across Rant and Rload , denoted

as Uant and Uload , respectively, are also identical, i.e., Uant =Uload = 0.5Uant−open. Therefore, an

alternative way to achieve the maximum power transfer is to match Uload to 0.5Uant−open. Since

Uant−open is a constant value when the harvesting antenna is attached to the initiator, the maximum

power transfer can be achieved by letting Uload = 0.5Uant−open. A key question is how to stabilize

Uload when system load varies. nShield connects the battery directly to the output of the rectifier,
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which makes Uload stay equal to the voltage of the battery, Ubat . Since most batteries have stable

output voltage regardless the discharging level and the output current (system load), the optimal

energy transfer rate can be always maintained.

However, 0.5Uant−open could be difficult to match with Ubat in practice, as the harvesting an-

tenna and the energy management circuit are usually separately designed to meet different require-

ments (e.g., Q-factor, system power consumption, system voltage, etc.). An impedance transfor-

mation block, such as L-section circuit or RF transformer [12], can be employed to shift Uant−open

to a given voltage. Although an impedance transformation block is not required by our current

implementation of nShield, it would be required if nShield employs a Lithium battery (3.6 V). It

is also worth noting that, super capacitors are ill-suited for nShield, as their output voltages vary

significantly with the discharging levels. To protect the batteries, we use a linear regulator and

MOSFET switches to manage the charging. We do not use a switching regulator since it tends

to alter the voltage matching point thus reduces the energy harvesting efficiency. Fig. 7.7 shows

the design of energy management circuit of nShield. Our experiment in Section 7.8.1 shows that

nShield can harvest 55 mW power constantly from the NFC initiators on typical smartphones.

7.5.3 Tag Emulation

As discussed in Section 7.2, the initiator adopts a low probing rate [50] when no target device is

nearby, which only allows limited amount of energy to be harvested. Nevertheless, we show in

Section 7.8.2 that, as long as the host device is active for more than 429 seconds/day, the energy

harvested during the probing phase is sufficient for keeping the battery charged. In the rare case

when the mobile device is only infrequently unlocked for a long period, nShield may deplete its

battery. To address this issue, we adopt a technique called tag emulation to have the initiator

significantly increase its duty-cycle. Specifically, nShield emulates itself as a passive ISO14443A

tag and responds to the probing messages sent by the initiator. As a result, it triggers the initiator

to stay active. This leads to a 10X increase of the initiator output energy, allowing nShield to be

rapidly charged. However, this process may interfere with NFC transactions, as the initiator cannot
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communicate with other target devices when the tag emulation is active. We adopt the following

adaptive mechanism to address this issue. First, nShield pauses the tag emulation for 1 second

every 2 seconds, allowing the initiator to discover other target devices during the pause. Second,

nShield only activates tag emulation when the discharging level of the onboard battery is lower

than 30%.

7.6 Adaptive RF Field Attenuation

7.6.1 Attenuator

nShield reduces the risk of being eavesdropped by attenuating the NFC RF field strength using

the harvesting antenna. The level of attenuation to the RF field is adjusted by the load of the

harvesting antenna. nShield adopts a MOSFET as the variable load, i.e., attenuator to the antenna.

The resistance of the MOSFET is controlled by its gate terminal voltage, which is dynamically

set by the adaptive RF field attenuation algorithm described in Section 7.6.2, using an onboard

DAC. A novel design of nShield is that the attenuator is multiplexed with the load modulator of

the NFC transmitter. This design reduces the cost and size of nShield. Our experiment in Section

7.8.4 shows that nShield can achieve an attenuation range of 10.86 dB, which is sufficient for the

purpose of regulating NFC RF field strength.

7.6.2 Adaptive RF Field Attenuation Algorithm

nShield adapts the signal attenuation level dynamically to ensure reliable communication between

the initiator and the target device. nShield equally divides the whole attenuation range into N

discrete levels. The goal of adaptive RF field attenuation is to find the optimal attenuation level in

the N levels, with which the attenuated field strength is just enough to support reliable bi-directional

communications between the initiator and the target. Fig. 7.8 illustrates the relationship between

Packet Reception Ratio (PRR) and the attenuation levels (AL). nShield tries to use an attenuation
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level as high as possible, while ensuring the resulted PRR to be close to 1, i.e., high communication

reliability. Aopt shown on Fig. 7.8 is the optimal attenuation level.
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Figure 7.8: An illustration of the attenuation level vs Packet Reception Ratio relationship.

However, a key challenge in the design of nShield is that, without prior knowledge about the

target device, such as reception sensitivity and initiator-target distance, nShield cannot know what

RF field strength would support reliable communications. NFC work in a poll-response fashion, in

which the target only transmits after it was polled by a message from initiator. We refer to the pro-

cess of a polling and its subsequent response as a polling round. To find out wether an attenuated

field strength can support bi-directional communication, the initiator has to attempt a polling round

with the attenuation level in question. nShield learns if a polling round is successfully complete,

by examining the logic of the polling messages of consecutive polling rounds. In particular, some

polling messages, such as the Single Device Detection Request and the Select Request defined in

the NFC-A standard, can only be transmitted if the previous polling round succeeds. When over-

hearing such polling messages, nShield infers that the previous polling round ends successfully.

As shown in Section 7.8.3, for the passive communication mode, the field strength required

for completing the first polling round is lower than that for completing later polling rounds. This

phenomenon is caused by insufficient energy left on the tag after the first polling round. Passive

tags rely on the energy from the NFC RF field to operate. After activating the RF field, the initiator

pauses for certain time to charge the tag before starting the first polling round. The length of

this charging period is usually much longer than the interval between consecutive polling rounds.
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Even if the RF field strength was not sufficient to sustain the successive polling, the first polling

round may still succeed due to the energy harvested from the initial charging period. As a result,

for passive communication mode, the success of the first polling round after the activation of the

RF field is not a good indicator if the field strength is strong enough for sustaining bi-directional

communication. In our design, we deem a field strength sufficient only if it can support the first

three consecutive polling rounds.

Algorithm 3 Adaptive RF Field Attenuation
Input: N: number of attenuation levels.
Output: nopt : optimal attenuation level.
Used sub-function: Comm(ni): attempt communication with attenuation level ni. This sub-function
returns “success" only if the first three polling rounds are completed successfully with the attenuation level
ni

1: Nupper = N
2: Nlower = 1
3: nopt = N/2
4: while Nupper −Nlower > 2 do
5: if Comm(nopt) = success then
6: Nupper = round((Nupper +nopt)/2)
7: else
8: Nlower = nopt
9: end if

10: nopt = round((Nupper +Nlower)/2)
11: end while
12: return nopt

An interesting question is that, with N different attenuation levels, in what order should nShield

attempt communications. A naive solution is to attempt with all N levels from a high-to-low or

low-to-high order, until an attenuation level for supporting reliable bidirectional communication is

found. However, this approach incurs high delay (at least several seconds). We adopt the Binary

Search Algorithm (BSA) to accelerate the search process. With BSA, the search starts from the

middle of all attenuation levels. Depending on whether the following polling rounds are successful

or not, BSA discards the lower or higher half of the levels that unlikely contain the optimal level.

For example, if any of the three following polling round fails, BSA discards all the levels that

are higher than the currently attempted level. BSA repeats this process with the remaining levels
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until there is only one level left. However, due to the transition region on the PRR-AL curves (see

Section 7.8.3), BSA may fail to locate the optimal attenuation level. This is because whether an

attenuation level in the transition region, such as Atrans on Fig. 7.8, can support a successful polling

round is probabilistic. When the polling rounds attempted with Atrans succeed, all the attenuation

levels higher than Atrans, including the optimal level Aopt , would be discarded. To address this

issue, we adopt a modified BSA in nShield. It works in the same way as the original BSA, except

that it only discards half of the higher levels after three successful polling rounds. As the transition

region of the PRR-AL curve is very narrow (see Section 7.8.3), this ensures that the optimal level

would not be accidentally discarded. Algorithm. 3 shows the pseudo-code of the adaptive RF field

attenuation algorithm.

nShield exploits the target discovery process, which is always performed by the initiator in the

initial phase of the communication, to perform adaptive RF field attenuation. The NFC initiator

periodically performs this process by broadcasting NFC discovering probes (at a rate about 3Hz on

Android smartphones). If a target NFC device (which can be a tag or another NFC initiator working

in active mode) hears this probe, it will send an acknowledgement message back to the initiator.

The initiator will then confirm the discovery of the target device by broadcasting a response. The

two devices will then exchange a few messages back and forth to learn a few parameters (such as

IDs and capabilities). There are several advantages of exploiting this process for adaptive RF field

attenuation. First, the NFC target discovery process is mandatory in all NFC communication modes

and NFC standards (NFC-A, NFC-B, and NFC-F) [18]. Second, this process does not involve

the data payload. The communication conducted during adaptive RF field attenuation might be

eavesdropped, due to the possibly high initiator transmission power. However this does not lead

to security breach since there is no data payload exchange. Once adaptive RF field attenuation is

done, the following data communication is protected from passive eavesdropping. If the adaptive

RF field attenuation is not finished yet in the last phase of the target discovery process, nShield

will jam the communication to force the initiator to restart the process.
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7.7 Implementation

We implemented a prototype nShield, which is shown in Fig. 7.6. We use a TI MSP430F2618

as the MCU on nShield. It integrates many low-power components used by nShield, such as

comparator, ADC, DAC, and DMA controller. A 4.8 V 20 mAH NiMh battery is adopted to store

the harvested energy.

We implement the harvesting antenna using layered tapes and aluminum foil. To maximize the

attenuation range, the size of the harvesting antenna should be slightly larger than the antenna on

the NFC initiator, so that all magnetic flux generated by the initiator would undergo the attenuation

before reaching the target. For example, our prototype antenna attached to Nexus 7 has a dimension

of 9.6 cm by 9.6 cm, slightly larger than the NFC antenna in Nexus 7. We build the base of the

antenna using 2mm thick layered tapes. We apply the aluminum foil to one side of the base, and cut

the foils into 7 mm wide tracks to reduce the series resistance. The tightly coupled tracks increase

the inductance of the antenna. The combination of high inductance and low series resistance leads

to a high Q-factor (> 100), which is essential for achieving high energy transfer efficiency. The

NFC signal reception antenna is prototyped using the same materials and techniques, except that it

has much thinner tracks. We use an impedance analyzer to tune the Q-factor of the antenna to the

optimal value of 15 [29]. The harvesting and receiving antennas are then glued together. The two

prototype antennas can be easily mass-manufactured using flexible thin film circuits.

We implement an NFC transceiver on nShield. The reception path is composed of a peak de-

tector, a comparator, and a software decoder. The RF signal from the antenna is first converted to

baseband signal by the peak detector, and then converted to clean logic levels by the comparator.

The decoder is implemented in software on the MCU. To decrease the computational overhead,

hardware components on the MCU are adopted to assist the decoding. Specifically, a hardware

timer is adopted to timestamp the transitions of the logic levels, and a DMA controller is em-

ployed to automatically transfer the timestamps to the RAM. This design automatically collects

samples without software intervention, enabling low power asynchronous decoding. The data is

then verified using CRC and reported to upper layer protocols. For transmission, nShield adopts
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the load modulation communication techniques [18], in which the load of the antenna is modulated

according to the data to be transmitted. We adopt a high speed MOSFET (Fairchild FDV301N)

as the load modulator (multiplexed with attenuator), which can be easily driven by the onboard

DAC due to its very low gate driving voltage (less than 1 V). The bridge rectifier is implemented

by four NXP PMEG600 low forward drop Schottky diodes to minimize the energy loss on recti-

fying. To generate accurate baud rates and subcarrier frequencies, a 13.56 MHz crystal oscillator

and a hardware clock divider are employed. We implemented the ISO14443A (NFC-A) protocol

on nShield, which supports a data rate of 106 kbps. Since the modulation/demodulation tasks are

mainly handled by hardware, higher data rates can also be easily supported by nShield. Moreover,

since many protocols are implemented in software, nShield can be easily customized to meet the

requirements of different applications. As a software-defined radio platform, nShield can also be

configured to provide malicious content protection functions [50].

nShield employs several techniques to optimize its power consumption. For example, at run-

time, unused components are shut down. The clock rate of the MCU is also dynamically adjusted

according to the workload. To further reduce power consumption, nShield enters sleep state when

no NFC RF field is detected. During sleep, all onboard components except the low-power time

keeping timer are shut down.

7.8 Experimentation

this section, we study the performance of nShield using a set of experiments. We adopt two ini-

tiators (Google Nexus 7 tablet and Adafruit PN532 breakboard) and two tags (Mifare Classic and

Mifare Ultralight). We choose these devices not only because they are representative NFC devices

on the market, but also due to their diverse characteristics. For example, the Adafruit PN532 break-

board has a large antenna and can transmit a large amount of power (about 450 mW), while Google

Nexus 7 has a much smaller antenna and much lower transmission power (about 200 mW). The

Mifare Classic tag has an antenna size of a credit card which is very common among passive tags,

while Mifare Ultralight only has an antenna size of a coin, which is considered to be a “weak” tag.
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The testing equipments we use include an Agilent DSOX2024 oscilloscope, an Agilent 34410A

benchtop multimeter, an Extech handheld multimeter, and an SDR-Kits VNWA3 Vector Network

Analyzer.

7.8.1 Amount of Harvested Power

We measure the amount of power that can be harvested by nShield, and the power transfer and

harvesting efficiency with two experiments in this subsection.

In the first experiment, we employ both of the initiators for testing. The harvesting antenna

(shown in Fig. 7.6) is attached to the back of Google Nexus 7, and to the surface of the PCB antenna

on PN532 breakboard. We connect a potentiometer to the antenna as the load. The output voltage

and current of the antenna under different loads are measured with an Agilent 34410A benchtop

multimeter. A linear regression is applied to the results to compute the internal resistances and the

open-circuit output voltages of the harvesting antenna. We then compute the power harvested by

the system and the power transferred to harvesting antenna under different loads.

Fig. 7.9 (a) depicts the harvested power under different antenna output voltages. We can

see that the curves are parabolas, with the maximum power of 55 mW at 5 V, and 90 mW at 12

V, respectively, when Google Nexus 7 and PN532 breakboard are used. The amount of power

that can be harvested from PN532 breakboard nearly doubles that from Google Nexus 7. This is

because PN532 breakboard has a much higher transmission power than Nexus 7, according to our
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measurement. However, as the antenna is optimized for working with Nexus 7, nShield cannot

harvest the maximum amount of power from PN532 breakboard. In particular, the maximum

power is harvested at 12 V output and the battery voltage on nShield is only 4.8 V. This voltage

mismatch limits the maximum harvested power to be only 57 mW. An impedance matching block

is required to shift the open-circuit voltage to around 10 V for PN532 breakboard, as discussed

in Section 7.5.2. On the other hand, nShield can receive the maximum power when working with

Nexus 7, due to the tight voltage matching. These results also confirm that a super capacitor is a

poor choice for energy storage on nShield, since the voltage of super capacitors varies significantly

with its discharging level, resulting a poor voltage matching.

Fig. 7.9 (b) shows the power transferred to the harvesting antenna at different output voltages.

We can see that the transferred power decreases linearly when the output voltage increases. When

the output voltage of the harvesting antenna is zero, the antenna receives the maximum power.

However, it also delivers virtually no power to the system, resulting in an extremely low power

harvesting efficiency, as observed from both Fig. 7.9 (a) and (b). When the output voltage is about

half of the antenna open-circuit voltage, the maximum power is harvested, although the power

transferred to the antenna is significantly lower. These results show that, in order to deliver the

maximum power to the system, the battery and the harvesting antenna must achieve a voltage

matching.

We next evaluate the power harvesting and transfer efficiencies of nShield. We only use

Adafruit PN532 breakboard as initiator in this experiment because the transmission power of Nexus

7 cannot be accurately measured due to its packaging. The transmission power of the PN532 board

can be obtained by measuring the current draw on the TVDD pin of PN532 chip, which supplies

power to its internal coil exciting circuits. The harvesting antenna is connected with a potentiome-

ter which serves as a variable load.

Fig. 7.10 (a) shows the amount of power transmitted, transferred, and harvested, under different

loads to the harvesting antenna. We can see that the transmission power increases when the load

becomes lighter. The change of the transmission power is due to the detuning effect, in which the
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tuning of the initiator’s antenna is varied by the mutual coupling between the harvesting antenna

and the initiator antenna. A heavier (lighter) load to the harvesting antenna creates a slightly

stronger (weaker) mutual coupling, which in turn leads to a stronger (weaker) detuning effect. The

detuning effect changes the impedance of the antenna, resulting in less power transferred. The

highest transmission power is about 440 mW.

Fig. 7.10 (b) shows the computed energy transfer and harvesting efficiencies. We can observe

that the energy transfer efficiency increases linearly with the load to the harvesting antenna, while

the energy harvesting efficiency is a parabola curve which peaks at the voltage matching point (11

V). When the output voltage of the harvesting antenna is below 4 V, the energy transfer efficiency

is close to 1. At this point, most of the transmitted energy is absorbed by the harvesting antenna,

and the strength of the RF field created by the initiator is significantly attenuated. The energy

harvesting efficiency peaks at 24.4% when the output voltage of the harvesting antenna is 11 V.

We discuss the energy harvesting efficiency in Section 7.9.

7.8.2 System Power Consumption and Lifetime

We use an Agilent 34410A benchtop multimeter to measure the power consumption of nShield.

The results are summarized in Tab. 7.1. The most power consuming states are data reception and

transmission. This is because the MCU has to work at a higher system clock rate to meet the strict

timing requirements of the NFC data reception and transmission, and several system components

(e.g., TX control circuit) need to be powered on. Although the idle/RX/TX power consumption

are high, their impact on system lifetime is actually insignificant, since nShield spends most of the

time in the sleep state with a power consumption of only 23 uW. This is due to the fact that, the

NFC initiator is usually inactive most of the time (e.g., when the mobile device is locked), during

which nShield is asleep.

Thanks to the large amount of power harvested from NFC transmissions and low power design,

nShield can sustain its operation solely on the harvested energy. NFC standard requires initiators

to insert long guard time between consecutive polling rounds [18]. As a result, NFC initiators are
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Sleep Idle listening RX TX Attenuation
23 uW 8.7 mW 13.1 mW 18.1 mw 9.8 mW

Table 7.1: System power consumption under different states.

in idle listening most of the time when activated. This causes nShield to be idle during most of its

active period, leading to an average active power consumption of 8.7 mW. As nShield can harvest

55 mW power from an active NFC initiator, it maintains a net power gain of 46.3 mW during its

active state. For typical Android devices, the integrated NFC initiators are duty-cycled at 10%

[50] during probing. With its low sleep power consumption, the battery on nShield can stay fully

charged if the mobile device is unlocked for average 429 seconds per day, which can be met by

smartphones and tablets in most circumstances [46][4]. When the discharging level of the onboard

battery is low, nShield automatically activates tag emulation, which increases the charging rate by

10X to rapidly charge the battery. Moreover, even when energy harvesting is not possible (e.g.,

NFC is disabled), the lifetime of a fully charged nShield still exceeds one month, thanks to its low

sleep power consumption.

The above results show that nShield’s capability of harvesting high amount of power plays a

significant role in achieving the perpetual operation. As nShield can be only charged when the

screen of the device is unlocked, the minimum harvested power for sustaining nShield depends

on how the users interact with mobile devices. A recent survey [65] shows that on average U.S.

users spend 58 minutes on smartphones per day, which is more than enough for nShield to stay

fully charged. However, for light smartphone users, the harvesting power should be sufficiently

high. Compared to EnGarde whose harvested power is only about 30 mW1, nShield decreases the

minimum active time of the phone by more than 50% (7.15 min vs 15.5 min).

1 The exact amount of harvested power is not given in [50]. However, it is expected to be much
lower than 30 mW, due to the load-source mismatch and the loss on rectifying and regulating
components.
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7.8.3 Receiver Characteristics

In this subsection, we study the receiving characteristics of passive NFC tags, by measuring the

PRR-FS (Packet Reception Ratio vs Field Strength) curves. The purpose of this experiment is to

show two key observations based on which the adaptive RF field attenuation algorithm is designed:

1), the transition regions on the PRR-FS curves are very narrow, and 2), the field strength required

for completing the first polling round is higher than the subsequent rounds.

We attach a thin aluminum antenna to the back of each tag to measure the field strength, using

an Agilent DSOX2024A oscilloscope. A Nexus 7 serves as the NFC initiator in this experiment.

We vary the field strength near the tag by changing the distance between the initiator and the tag.

The PRR associated with each field strength value is computed from 100 transmissions. The field

strength measurements are normalized.

Fig. 7.11 (a) and (b) show the PRR-FS curves of Mifare Classic tag and Mifare Ultrlight tag,

respectively. We can see that, all the curves have narrow transition regions (<0.2 dB) in which

the PRR values quickly increase from 0 to 1. We further observe that, Mifare Ultralight tag has

a narrower transition region than the Mifare Classic tag (0.05 dB vs 0.2 dB). This is because the

Mifare Ultralight tag has a much smaller antenna size, making it more sensitive to the field strength.

For each tag, we can see that the field strength required for a successful first polling round is lower

than that for the second polling round. As mentioned in Section 7.6.2, this is due to the fact that
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the tag has more time to harvest energy before the first round of polling.

7.8.4 Attenuation Range and Granularity

nShield provides a wide attenuation range and fine attenuation granularity, which allows it to pre-

cisely control the strength of the NFC RF field to the optimal level. This subsection evaluates the

attenuation range and step that can be achieved by nShield. We manually tune the DAC connect-

ed with the attenuator to sweep through its entire voltage output range with a step of 0.05 V. To

measure the attenuated signal strength, we use an Agilent probe to form a small loop antenna, and

connect the probe to an Agilent DSOX2024A oscilloscope. We record the measured peak-to-peak

amplitude (Vpp) of the NFC signal.

Fig. 7.12 (a) depicts the signals that are maximally attenuated and unattenuated. We can

see that nShield can significantly decrease the strength of NFC signals, as the Vpp of the signal

decreases from 2.14 V to only 0.216 V after the maximum attenuation level is applied. Fig. 7.12 (b)

shows the computed attenuation levels with different DAC output. We can observe that the effective

attenuation region roughly takes about a quarter of the full output scale of the DAC, ranging from

0.8 V to 1.4 V. This is due to the characteristic of the attenuator on nShield, which is a high-

speed switching MOSFET. The MOSFET is completely shut down when the gate voltage is below

0.8 V, and is saturated when the gate voltage is above 1.4 V. Therefore, it operates as a variable

attenuator only when the gate voltage is between 0.8 V and 1.4 V. The maximum attenuation,

10.86 dB, is achieved when the MOSFET is saturated. We can also observe that the attenuation is

nonlinear with the DAC output, resulting in a nonconstant attenuation steps. The maximum step

occurs when the MOSFET operates near the middle of the effective attenuation region. For a 16 bit

DAC with 2.3 V reference, the maximum step is 0.0029 dB. The wide attenuation range and fine

attenuation step allows nShield to precisely attenuate the RF field with wide strength range to the

optimal level. This ensures nShield to best protect the security of NFC while maintaining reliable

communication.
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7.8.5 Delay of Adaptive Attenuation

The delay caused by the adaptive attenuation algorithm is a critical performance metric for nShield,

since a long delay would have significant impact on the user’s experience. In this section, we

measure the delay introduced by the adaptive attenuation algorithm, using a Mifare Classic tag

and a Mifare Ultralight tag. We define the delay as the interval from the time instant when the

initiator sends the first probe to the tag to the time instant when the optimal attenuation level is

determined. We use the hardware timer on nShield to timestamp these events and measure the

delay. For each tag, we measure the delay associated with 3 different optimal attenuation levels,

by varying the tag-initiator distances. To illustrate the delay in practical settings, we hold the tags

with hands, which introduces small tag-initiator distance variations during communications. We

repeat the experiment at each distance for 20 times.

Fig. 7.13 shows that, most of the delays fall below 2.2 s, while the mean delay is 2.1 s. An

interesting phenomenon is that the delay of Mifare Classic incurred at a distance of 4 cm is smaller

than those incurred at 2 cm and 0 cm. This is because, the delay is largely proportional to the

number of steps that the adaptive attenuation algorithm has to take to find the optimal attenuation

level, which varies between 6 and 12 in nShield. Thus a longer communication distance could

possibly incur a shorter delay. We also notice that the adaptive attenuation algorithm is resilient

to minor tag-initiator distance variation, as nShield can almost always find the optimal attenuation

level within 2.2 seconds. We did observe some long delays (3s to 4s), although they are rare

(< 5%). Our further investigation indicates that they are caused by occasional initiator halts, in

which the initiator pauses its transmission for 1 to 2 seconds, while the RF field remaining active.

Finding the exact reason of this long initiator halt is left for future work.

7.8.6 Accuracy and Effectiveness of Adaptive Attenuation

We evaluate the accuracy of adaptive attenuation algorithm in estimating the optimal attenuation

level in this subsection. The initiator we use in this experiment is the PN532 breakboard. For each

tag under test, we evaluate the optimal attenuation level with different tag-initiator distances. We
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define the optimal attenuation level as the highest attenuation setting that can support successful

initiator-tag communications for 10 seconds. We manually determine the ground-truth optimal

attenuation level for each tag-initiator distance, by examining all attenuation levels from a high to

low order. We use an Agilent probe to form a small loop antenna, and connect the probe to an

Agilent DSOX2024A oscilloscope to measure the attenuated RF field strength. We then run the

adaptive attenuation algorithm for ten times, and measure the resulted RF field strength of each

run.

Fig. 7.14 shows that, 90% of the estimation errors of the Mifare Classic tag at distances of 0

cm, 2 cm and 4 cm fall below 0.3 dB, 0.34 dB and 0.52 dB, respectively. For the Mifare Ultralight

tag at distances of 0 cm, 1 cm and 2 cm, 90% the errors fall below 0.12 dB, 0.16 dB and 0.35

dB, respectively. The mean errors of the two tags are only 0.29 dB and 0.1 dB, respectively. We

can observe that Mifare Ultralight tag generally incurs smaller error than Mifare Classic tag. This

may be because the Mifare Ultralight tag has a much smaller antenna size, which makes it more

sensitive to the field strength. As a result, it has a narrower transition region, which conforms

the finding in Section 7.8.3. This makes Mifare Ultralight tag more responsive to our adaptive

attenuation algorithm, resulting in a smaller estimation error.

Next we evaluate the eavesdropping distances achieved with our sniffer at different initiator-

tag distances. We record the eavesdropping distances at which the received signal strength of the

initiator falls below 100 mV by following the same procedure of the measurement study in Section

7.3. The results are summarized in Table 7.2. It can be seen that, for each tag, the eavesdropping

distance decreases with the initiator-tag distance. This is because a longer initiator-tag distance

requires a stronger signal strength to ensure reliable communication, which increases the eaves-

dropping distance. We also notice that the Mifare Ultralight tag always incurs longer eavesdrop-

ping distances than Mifare Classic tag. This is because the low-sensitivity receiver of the Mifare

Ultralight tag requires higher transmission power to maintain reliable communication. The short-

est eavesdropping distances for the two tags are 48 cm and 70 cm, respectively. It is worth noting

that, even after significant reduction, the resulted eavesdropping distance may still be further than
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Initiator-tag Distance
0 cm 1 cm 2 cm 4 cm

Classic 48 cm 75 cm 110 cm 140 cm
Ultralight 70 cm 92 cm 122 cm 151 cm

Table 7.2: Eavesdropping distances after attenuation.

the expected NFC working distance. This is largely due to the fundamental design trade-off of

NFC. nShield could apply higher attenuation to decrease the eavesdropping distance to only a few

centimeters, but this would significantly reduce the reliability of the NFC communication.

7.9 Discussion

Although NFC does not support single-initiator-multiple-target communication, the presence of

multiple target devices may lead to collisions in the discovery process. NFC standards require the

initiator to resolve collisions observed in discovery process using anti-collision techniques simi-

lar to RFID standards, and interact with resolved targets one by one after the discovery process.

nShield currently does not consider the multiple tag case. However, nShield can learn if a colli-

sion has occurred by overhearing the traffic from the initiator, and act accordingly. However, this

extension is left for future work.

nShield significantly improves the amount of harvested energy over existing NFC-based energy

harvesting systems [50][26][44][19]. However, compared to specialized wireless power transfer

systems [65] that often achieve power harvesting efficiencies of at least 70%, nShield’s efficiency

is much lower (24.4%). This is mainly because the current NFC initiator is not optimized for

high efficiency wireless power transfer. The antenna on NFC transmitter has low Q-factor, which

significantly limits the power transfer efficiency. Moreover, achieving high efficiency also requires

that the transmitter and receiver must be precisely tuned to the same resonant frequency, which

varies with the transmitter-receiver distance. High efficiency inductive power transfer systems

adopt several techniques including resonant frequency auto-tuning and antenna impedance auto-

tuning to deal with the detuning effects. Unfortunately, these mechanisms are not implemented on
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NFC initiators.

We acknowledge that a complete redesign of the NFC initiator would be a more effective way to

improve physical security. However, such a “clean-slate” approach may prove challenging in prac-

tice due to the need of involving many players (from IC to device manufacturers). Moreover, this

would leave the legacy devices already shipped exposed to malicious attacks. The next-generation

NFC chipsets may have native transmission control capabilities, which allow mobile devices to

configure their NFC transmission power from software. This eliminates the need of accessory se-

curity hardware like nShield. In such a case, the adaptive attenuation algorithm of nShield can be

integrated by the NFC driver to attenuate the transmission power.

Thanks to the high energy harvesting efficiency, the nShield platform is capable of powering

additional hardware components like sensors. Moreover, it can be used as a software-defined radio

platform for studying NFC protocols.
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CHAPTER 8

CONCLUSION

In the last decade, we have witnessed the increasing adoption of wireless technologies like WiFi,

Cellular, Bluetooth, ZigBee, and NFC. However, the fast growth of wireless networks generates

significant interference, which leads to network performance degradation and security issues. In

this dissertation, we utilize novel physical layer techniques to deal with the interference, which

improve the performance and security of sensor networks and NFC systems, respectively.

First, we exploit the WiFi interference as a “blessing" for sensor networks and explore several

approaches to utilize such interference, which are summarized as follows.

1. We propose new WiFi interference detection techniques. A new DSP algorithm called

Common Multiple Folding (CMF) is developed to amplify signals with unknown periods

in WiFi interference samples. We also adopt a constant false alarm rate (CFAR) detector

that can minimize the false negative (FN) rate of WiFi AP detection while satisfying the

user-specified upper bound on false positive (FP) rate.

2. We develop a system called ZiFi that utilizes ZigBee radio to identify the existence of WiFi

networks. We evaluate ZiFi on two platforms, Linux netbook connected to a TelosB mote

through the USB interface, and Nokia N73 smartphone that integrates a ZigBee card through

the miniSD interface. Our results show that ZiFi can detect WiFi APs with high accuracy,

short delay, and little overhead.

3. We propose a ZigBee-based WLAN monitoring system called WizNet. Powered by batter-

ies, WizNet nodes can be deployed in large quantities to monitor the spatial performance of

a WLAN in long periods of time. By adopting digital signal processing techniques, WizNet

automatically identifies 802.11 signals from ZigBee RSS measurements, associates them

with wireless access points, and accurately estimate the SNR and channel utilization rate.
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WizNet can also collect user statistics based on RSS signatures of 802.11 access point scans

and discover rogue APs. WizNet has been implemented in TinyOS 2.x and extensively e-

valuated on a wireless testbed consisting of 26 TelosB motes and 802.11 nodes. Our results

over a period of 140 hours show that WizNet can accurately capture the spatial and temporal

performance variability of a large-scale production WLAN.

4. We proposes a novel WSN time synchronization approach that enables ZigBee node to de-

tect and synchronize to the periodic beacons broadcasted by WiFi APs. We experimentally

characterized the characteristics of WiFi beacons in an enterprise WiFi network consisting

of over 50 APs deployed in a 300,000 square foot office building. We implement a sensor

network time synchronization protocol called WizSync in TinyOS 2.1x, which exploits such

periodic WiFi beacon interference as reference clock. We conduct extensive evaluation on a

testbed consisting of 19 TelosB motes. Our results show that WizSync can achieve similar

synchronization accuracy as FTSP while incurring only a fraction of its power consumption.

In a 10-day experimental evaluation, WizSync achieved an average synchronization error of

0.12 milliseconds with per-node power consumption of 50.9 uW.

Second, we propose a novel, noninvasive NFC security system called nShield to reduce the

amount of interference signals generated by NFC radios, which protects NFC against passive

eavesdropping. nShield is a credit card-sized thin pad that can be easily stuck on the back of

mobile devices (see Fig. 7.6). nShield implements a novel adaptive RF attenuation scheme, in

which the extra RF energy of NFC transmissions is determined and absorbed by nShield. At the

same time, nShield scavenges the extra RF energy to sustain the perpetual operation. A key contri-

bution of this work is the analysis of the factors affecting the energy harvesting efficiency, and the

design of a highly effective energy harvesting system. nSheild is capable of harvesting significant

amount of power (55 mW) from commodity mobile devices, which is at least a 1.8X improve-

ment over the state-of-the-art NFC-based energy harvesting systems. Together with the extremely

lo-power design, it enables nShield to provide the host uninterrupted protection against malicious

101



eavesdropping. Lastly, the small form factor, self-sustainability, and transparency to OS, makes

nShield an attractive solution to retrofit existing mobile devices with protection against passive

eavesdropping.
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