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ABSTRACT 

ENERGY HARVESTING FROM LOCALIZED DYNAMIC TRANSITIONS IN POST-

BUCKLED ELASTIC BEAMS UNDER QUASI-STATIC LOADING 

 

By 

Wassim Borchani 

The deployability of structural health monitoring self-powered sensors relies on their 

capability to harvest energy from signals being monitored. Many of the signals required to assess 

the structure condition are quasi-static events which limits the levels of power that can be extracted. 

Several vibration-based techniques have been proposed to increase the transferred level of power 

and broaden the harvester operating bandwidth. However, these techniques require vibration input 

excitations at frequencies higher than dominant structural response frequencies which makes them 

inefficient and not suitable for ambient quasi-static excitations.  

This research proposes a novel sensing and energy harvesting technique at low frequencies 

using mechanical energy concentrators and triggers. These mechanisms consist of axially-loaded 

bilaterally-constrained beams with attached piezoelectric energy harvesters. When the quasi-static 

axial load reaches a certain mechanical threshold, a sudden snap-through mode-switching occurs. 

These transitions excite the attached piezoelectric scavengers with high-rate input accelerations, 

generating then electric power. The main objectives are to understand and model the post-buckling 

behavior of bilaterally-constrained beams, control it by tailoring geometry and material properties 

of the buckled elements or stacking them into system assemblies, and finally characterize the 

energy harvesting and sensing capability of the system under quasi-static excitations. 

The fundamental principle relies on the following concept. Under axial load, a straight 

slender beam buckles in the first buckling mode. The increased transverse deformations from a 

buckled shape lead to contact interaction with the lateral boundaries. The contact interaction 



 
 

generates transverse forces that induce the development of higher order buckling configurations. 

Transitions between the buckled configurations occur not only during loading, but also unloading.  

In this work, the post-buckling response of the bilaterally constrained beam subjected to 

axial loading is investigated experimentally, numerically, and theoretically. The capability of the 

system to generate electric energy under quasi-static excitation is also assessed experimentally. 

The post-buckling behavior is reproducible under cyclic loadings and independent of the input 

loading frequency. The static and dynamic response of the beam is theoretically studied using an 

energy method. The model adequately predicts the beam geometry at every loading stage, 

including the flattening behavior just before the snap buckling transitions, the mode transition 

events and the released kinetic energy as well as accelerations of the beam during transitions. The 

buckling transitions generate high kinetic energy and acceleration spikes. However, the location 

of the maximum acceleration differs from one transition to another.  

Tuning the parameters of the system affects dramatically the accelerations generated during 

snap-through transitions. However, it does not affect the number and spacing between these events. 

To achieve better control of the system, multiple slender beams with different geometric and 

material properties are stacked in parallel configurations. The system allows then to control the 

spacing between energy bursts and reduce the energy leakage in electronic circuits.  

As an application example, the mechanical energy concentrators and triggers were 

integrated with a piezo-floating gate events sensor. This allowed for harvesting and recording of 

bursts and impulses of released energy at very low frequencies. The system can be calibrated to 

determine the number of times the magnitude of the input signal exceeded a mechanical threshold. 

The mechanism allows for frequency up-conversion from the low input frequency (in the order of 

mHz) to the natural frequency of the piezoelectric scavenger. 
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CHAPTER 1: INTRODUCTION 

 

The presented work in this thesis builds on the novel idea of exploiting snap-through 

transitions in post-buckled elastic elements to harvest energy at very low frequencies. The original 

concept is a result of collaboration between Dr. Nizar Lajnef and Dr. Rigoberto Burgueño. The 

developed theoretical model, detailed in Chapter 4, constitute the major contribution of this thesis. 

The sensor related work presented in Chapter 5 was developed in collaboration with Dr. 

Chakrabartty. 

1.1. Motivation and vision 

Development of smart structures capable of monitoring critical events and alerting users 

has been a quest for decades. Different sensors have been developed to monitor the events that a 

structure can be subjected to, such as vibrations, displacements, pressure, temperature, etc. 

Monitoring systems, composed of a network of wireless sensors capable to communicate between 

themselves and with a central computer, can detect the change in the structure response, due to 

crack initiation or failure of one or multiple elements, and alert engineers for maintenance. 

However wireless monitoring systems require a continuous source of power that a battery cannot 

provide due to its limited lifetime. Therefore, self-powered sensors capable of harvesting energy 

from the signal being sensed are needed. 

Although many potential sources of energy are available such as solar, thermal gradient, 

radio frequency, vibrations and strain energies, piezoelectric harvesters are the most promising for 

deployment in structures, given the size limitations and the possibility of being embedded within 

the construction material. One of the major disadvantages of the electro-mechanical energy 
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scavengers available for civil, mechanical and biomechanical applications is their narrow-band 

frequency response, which is concentrated around high frequencies. For instance a vibration-based 

scavengers with an overall volume limited to less than 5 cm3 will exhibit a resonant frequency in 

the range 50-300 Hz (Najafi et al. 2011), while most civil structures have a fundamental vibration 

mode at frequencies less than 5 Hz. Likewise, changes in physical processes like temperature and 

pressure variations between day and night induce a stress/strain response in structures that occur 

at frequencies lower than 1 mHz. In biomedical engineering, changes in in-vivo strain levels during 

bone-healing and spinal fusion processes span from a few days to up to a few months. In all these 

processes monitoring the evolution of quasi-static strain is important and could provide significant 

benefits. For instance, the history of mechanical loading inside different structures could be used 

to predict the life expectancy of the structure. A more challenging prospect is to design battery-

less sensors that can self-power by harvesting energy directly from these quasi-static processes.  

The mismatch between the input excitation frequency and the natural frequency of the 

energy harvester significantly limits the levels of extractable power. Several techniques have been 

proposed to increase the transferred power level, including improvements through the optimization 

of the piezoelectric material, altering of the electrode patterns and system configuration, use of 

matching networks, and tuning of the device’s resonant frequency. However, energy harvesting 

from loads, deformations, or motions within the quasi-static frequency range is beyond the reach 

of current vibration-based energy harvesting methods. The developed energy harvesters to date are 

still inefficient and not suitable for low frequency vibration sources such as human walking motion 

and deformations in large civil structures (Green et al. 2013). 

This research presents a new technique for sensing and energy harvesting at very low 

frequencies (less than 1 Hz) using mechanical energy concentrators and triggers. These systems 
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exploit the sudden snap-through behavior between the multiple buckling modes of an axially-

loaded bilaterally-constrained beam. As the axial loading increases, the strain energy that is stored 

in the buckled element is released as kinetic energy during mode transitions. The approach relies 

on the high-rate motions that are generated during the transitions between the system’s multiple 

potential energy wells. The input is not a vibration motion but a slow quasi-static deformation. 

The vision for the proposed energy harvesting concept is illustrated in Figure 1-1. The presented 

concept is shown packaged into a device for embedment or attachment to structural components 

in a form-factor similar to vibrating wire strain gages. Under quasi-static structural deformations 

(e.g., due to service deformations, temperature fluctuations, or slow degradation in material 

properties), the device capsule is compressed (or tensioned), inducing variations in axial 

deformations to the enclosed beam element. The axial deformations imposed on the internal 

element leads to multiple bifurcation points in its post-buckling response due to the presence of 

bilateral constraining walls. Energy harvesting oscillators, attached to the axially compressed 

element, are excited by the sudden snap-through transitions in the beam. This conversion, from 

low-rate axial deformations to dynamic high-rate lateral accelerations allows the harvesting of 

energy from a global quasi-static input.  

A piezoelectricity driven self-powered sensor contains a piezoelectric transducer that 

powers a minimal set of electronic modules by harvesting energy from ambient strain variations. 

The sensor electronics comprises of a rectification module to extract energy from the transducer, 

a triggering module that detects events of interest and a data-logging module that records events 

either on a non-volatile memory or using remote data transmission. When the piezoelectric 

transducer is excited quasi-statically the load voltage generated by the transducer is approximately 

constant. Unfortunately, the majority of the charge generated by the transducer is lost as leakage 
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through the electronics (for example through diode leakage) and the residual energy is insufficient 

to drive the rest of the sensor modules (triggering and data-logging modules). 

 

Figure 1-1: Schematic illustrating the integration and relevance of the presented concept for 

enhanced energy harvesting capabilities from quasi-static deformations in civil infrastructure. 

This work proposes the use of mechanical energy concentrators and triggers as a front-end 

to circumvent the challenge of quasi-static self-powering. The role of the mechanical energy 

concentrator is to harvest potential energy over a long time-span and release the stored energy as 

bursts and impulses. The impulsive nature of the energy-release not only results in piezoelectric 

output voltage levels that are significantly higher than the triggering but also reduces the effect of 

energy leakage.  Management of the extracted energy for use or storage is an important component 

for implementation of the concept. 

Energy Harvesting
Device

Packaging for Embedding
or Attachment in a Structure

Integration in Structural 
Elements and Systems

Multi-stable
Buckling
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Oscillator



5 
 

1.2. Literature review 

Buckling and post-buckling theories of elastic structures have been studied extensively for 

over 80 years (Euler, 1744; Hutchinson and Koiter, 1970 and Burgess, 1971). Most efforts have 

been focused on preventing global and local instability. However, recent attention has been paid 

to the potential of using post-buckling behavior for deployable and active structures. Buckled 

structures have been used to create bistable and multistable mechanisms that have proven to be 

efficient in many applications such as MEMS and energy harvesting devices (Fang and Wickert, 

1994; Qiu et al., 2004; Jung and Yun, 2010; Masana and Daqaq, 2011; Lajnef et al., 2014b). 

1.2.1. Buckling and post-buckling of elastic structures 

Buckling and post-buckling of an unrestrained beam under compressive axial stress was 

studied by Fang and Wickert (1994). Accounting for beam imperfections and nonlinear 

dependence of the transverse deflection and the compressive load, it was shown that the beam 

deflects only in the first mode and exhibits a continuous increase in the transverse deflection 

amplitude during the post-buckling response. Therefore the beam does not exhibit snap-through 

behavior during its post-buckling responses. 

Bistability of a bow-shaped curved beam subjected to transverse force acting at its midspan 

without axial residual stress was theoretically investigated by Qiu et al. (2004) using energy 

methods. It was shown that the beam snaps under the applied actuation but does not stay in the 

snapped shape if the force is released. Park and Hah (2008) analyzed pre-shaped buckled-beam 

actuators subjected to a transverse distributed force taking into consideration the existence of an 

axial residual stress. It was shown that the stability of the second equilibrium position depends on 

the ratio between the beam’s thickness and initial transverse curvature at midspan as well as 
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residual stresses in the beam. Results also indicate that transitions between the two equilibrium 

configurations do not follow the same equilibrium path. 

Post-buckling behavior of buckled beams subjected to both axial and concentrated 

transverse loading has also been theoretically studied for central and non-central actuations 

(Vangbo, 1998; Cazottes et al., 2009). Equilibrium configurations were determined by 

minimization of the system’s energy taking into consideration bending and compression. It was 

shown that the transverse force that should be applied to snap the beam into the second stable state 

depends on the pre-compression force. In addition, the position of the actuation was shown to 

significantly affect the system’s behavior. 

In an effort to generate higher buckling modes beyond the bistable configurations, several 

studies have been conducted on the post-buckling response of unilaterally constrained beams 

subjected to axial compressive forces. Stein and Wriggers (1984) used Timoshenko beam theory 

with large deformations and rotations to numerically investigate the problem. It was shown that 

the elastica buckles until it touches the lateral constraint. The system then regains stiffness and is 

able to carry higher loading. Chateau and Nguyen (1991) demonstrated that a contact zone 

develops under increased loading leading to localized buckling in that area and thus an upper 

buckling mode. Increasing the input loading will result in multiple contact regions with distributed 

reaction forces (Essenburg, 1975). Soong and Choi (1986) studied the contact problem between a 

beam and its boundary. The contact involves friction. The normal pressures as well as tangential 

forces at the contact zone were determined. It was shown that the axial compression force inside 

the beam is not constant due to friction. Line contacts were simplified into multiple discrete points 

under the condition that none of the contact points has a curvature that cuts into the local boundary. 

Naghdi and Rubin (1989) showed that accounting for normal extensional deformation describes 
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better the contact problem and correctly predicts the conditions under which the beam loses 

contacts.  

Methods based on geometric assumptions have been the most common way to model the 

observed behavior for this class of problems. However, this approach significantly overestimates 

the required force-displacement conditions for the higher modes transitions. Numerical 

simulations are typically used to overcome the mismatch with measured experimental results. In 

the work developed by two research groups (Domokos et al., 1997; Holmes et al., 1999; Chai, 

1998), the post-buckling behavior of an inextensible beam confined between two frictionless rigid 

side-walls and subjected to axial displacement was investigated using analytical-computational 

methods. Large deformations and geometric elliptic integrations were used. It was shown that a 

combination of line and point contacts can exist and that the deflected shape can be asymmetric. 

Therefore friction has to be considered in the study to more accurately describe equilibrium states 

and critical loads and displacements (Domokos et al., 1997; Holmes et al., 1999). Transitions to a 

higher buckling mode were assumed to be always bounded between a lower limit, corresponding 

to a single flattened contact zone, and an upper limit, corresponding to multiple flattened contact 

segments of equal lengths (Chai, 1998). The lateral reactions exerted by the constraints were 

modeled as a set of discrete point forces acting at the ends of the free standing segments of the 

beam. The case of a bilaterally constrained thin plate subjected to height reduction was also 

investigated by Roman and Pocheau (2002) through a combined experimental, theoretical, and 

numerical study. Experimental measurements of the contact zone length were fed back into the 

model to calibrate for the plate reactions. It was shown that even though friction is an important 

parameter, the assumed frictionless symmetric Euler’s model combined with the added corrections 

can represent the considered behavior. Based on the collected literature for this class of problems, 
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it was determined that a theoretical model that is based on the physics of the device is relevant, 

thus the interest in this work for energy methods. 

1.2.2. Limitation of existing energy harvesting techniques at very low frequency 

excitations  

Energy harvesting from loads, deformations, or motions within the quasi-static frequency 

range is beyond the reach of current vibration-based energy harvesting methods. Although many 

research works have focused on vibration energy harvesting (Elfrink et al.. 2008; Elvin et al., 2006; 

Finkel et al., 2009; Park et al., 2008; Rahimi et al., 2003; Sodano et al., 2004), the developed 

energy harvesters to date are still inefficient and not suitable for low frequency vibration sources 

such as human walking motion and deformations in large civil structures (Green et al., 2013). The 

major limitation in vibration energy harvesting revolves around the fact that the energy harvester 

should be excited at, or near, its resonance frequency in order to generate the most energy. Thus 

the vibrator should be tuned to match the most distinct frequency of the vibration source. In 

general, the excitation frequency varies over a large spectrum, which considerably reduces the 

efficiency of the harvester. Different methods to broaden the generator’s operating bandwidth have 

been explored. Twiefel and Westermann (2013) present a survey on broadband techniques for 

vibration energy harvesting and classify the techniques as advanced electronic networks, linear 

generators and nonlinear generators. The latter two methods deal with mechanical systems and are 

the closest related to the work presented here. Thus, their features, advantages and disadvantages 

are summarized next. 

Linear generators, characterized by the harvester’s specific natural frequencies, are well 

suited for narrowband excitations. However, they are less efficient if the excitation frequency is 

distributed over a wide spectrum or if the frequency is very low. One way to increase their 
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operation bandwidth is by using an array of piezoelectric generators (e.g., cantilevered beams) 

with different tuned resonant frequencies (Liu et al., 2008). Another approach is to couple bimorph 

beams with elastically connected masses and tune their response such that they have resonant 

frequencies close to each other, and a wider band can be achieved by connecting more beams 

(Erturk et al., 2009; Yang and Yang, 2009). These methods can be effective and simple. Yet the 

drawbacks are that the setups can become voluminous for a wide frequency band and that mode 

coupling can reduce the overall response. 

A number of research studies have been focused on exploiting response nonlinearities of 

vibration harvesters to improve energy generation and extend bandwidth. Proposed techniques 

include vibroimpact, monostable (Duffing) and bistable/multistable systems. Vibroimpact systems 

use a mechanical stopper to limit the amplitude of the harvester’s vibrations such that if the 

excitation frequency increases the system response remains on a plateau defined by the stopper’s 

positions (Soliman et al, 2008; Moss et al, 2010; Blystad and Halvorsen, 2011). The technique 

provides a wider bandwidth around the harvester’s resonant frequencies but it is not practical since 

a slowly increasing frequency sweep is required to reach a wide plateau. 

Nonlinear monostable harvesters exhibit a wider bandwidth and higher efficiency in a non-

stationary vibratory environment than linear generators. The harvester’s behavior is governed by 

Duffing equations where cubic stiffness nonlinearities can be incorporated into the harvester’s 

design using nonlinear magnetic levitation (Mann and Sims, 2009) or by axially loading the 

harvester in the pre-buckling state (Daqdaq, 2010). The potential energy function of these 

harvesters exhibits monostable characteristics that can broaden the frequency bandwidth. 

However, the nonlinearity in monostable harvesters can reduce the mean output power under 
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colored random excitations (Daqdaq, 2010; Barton et al., 2010), and it has been shown that it has 

no effect on the output under white noise excitation (Langley, 2014). 

Another class of nonlinear harvesters is bistable and multistable generators, which are 

characterized by two or more potential energy wells defining stable equilibrium positions. 

Depending on the excitation level and frequency these devices can exhibit either a periodic or a 

chaotic inter-well vibration. This behavior increases the range of frequency at which energy can 

be harvested (Tang et al., 2010; Zhu et al., 2010). Bistability can be introduced into energy 

harvesters using different techniques such as magnetic repulsion (Tang et al., 2010; Stanton et al., 

2009), magnetic attraction (Erturk et al, 2009; Galchev et al., 2011) and mechanical buckling (Jung 

and Yun, 2010; Sneller et al., 2011). Multistable systems using multiple attracting positions to the 

oscillating magnet have also been investigated and shown to improve efficiency for low frequency 

input (Wickenheiser and Garcia, 2010). Bistable/multistable generators exhibit good performance 

in terms of power conversion and frequency broadband; but for very low-frequency applications 

they should be designed accurately in order to be efficient. 

Green et al. (2013) numerically investigated the effectiveness of current nonlinear energy 

harvesting solutions for real ambient low frequency vibration sources. It was concluded that the 

efficiency of nonlinear harvesters is sensitive to the nature and type of the excitation and that the 

development of new devices capable of harvesting energy at very low frequency is needed. The 

dominant frequencies of human motions and large civil structure vibrations are less than 10 Hz 

(Najafi et al., 2011). Furthermore, under service loading, civil structures typically exhibit small 

amplitude low-rate deformations and significantly small vibration motions. Hence, the vibration 

energy harvesting devices mentioned above are inefficient and not suitable for this kind of 

application.  
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1.3. Research hypothesis and objectives 

1.3.1. Hypothesis 

The main hypothesis behind this research is that energy can be harvested under quasi-static 

excitations using sudden transitions between equilibrium positions of bilaterally constrained 

beams. Instabilities of buckled elements can be exploited to transform the low-amplitude and low-

rate service and ambient deformations into an amplified input to the piezoelectric transducer. Post-

buckling response of elastic elements can be modeled and controlled for enhanced power 

management. 

1.3.2. Objectives 

The main objective of this research is to develop a sensing and energy harvesting technique 

that is efficient at very low frequency and quasi-static excitations. The technique uses the snap-

through behavior between the multiple buckling modes of a bilaterally constrained axially loaded 

beam to convert the low-amplitude and low-rate excitations into an amplified input to the 

piezoelectric scavenger. This work aims to model and control the post-buckling response of 

bilaterally constrained beams to maximize the levels of the extractable energy by optimizing 

system’s parameters. To provide better understanding of the behavior and control it, theoretical 

modeling, finite element simulations and experiments were carried out. 

A theoretical model of the post-buckling behavior of bilaterally constrained beams was 

developed based on an energy approach. The method minimizes the energy stored in the system 

to determine the deflected shapes for different load values as well as the transition states. The 

model detects the loads at which mode transitions occur. It also computes velocities, accelerations 

and energies during transitions. 
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Finite element simulations were performed in order to study the effect of the system’s 

parameters on the post-buckling response of the bilaterally constrained beam. The parameters’ 

effect on the maximum accelerations during transitions was investigated to maximize the levels of 

the extractable energy. The finite element method was also used to investigate the effect of 

combining multiple slender elastic beams, in parallel configurations, on the number and magnitude 

of mode branch switching events during the post-buckling response of the system. 

To validate the theoretical and numerical models, an experimental apparatus was built and 

the post-buckling response of the beam was experimentally investigated. Piezoelectric scavengers 

with different natural frequencies were used to convert the high-rate motion of the beam, at 

transitions, into electric power. The effect of the excitation frequency as well as the natural 

frequency of the piezoelectric transducer on the levels of the extractable energy was 

experimentally investigated. The sensing ability of the developed system to low-frequency and 

quasi-static events was experimentally investigated by combining the mechanical energy 

concentrators and triggers with piezo-floating-gate sensors. 

1.4. Outline 

This dissertation is organized as follows: Chapter 2 presents a background review on 

energy harvesting techniques using bistable mechanisms, buckling eigenvalue analysis and the 

study of post-buckling behavior of bilaterally constrained beams. Chapter 3 provides experimental 

and numerical investigations of the post-buckling response of one and multiple parallel bilaterally 

constrained beams. This chapter assesses the repeatability and the reproducibility of the behavior 

and its dependency to the input frequency and the parameters of the system such as thickness, 

length and Young’s modulus of the beam and the gap between the lateral rigid walls. Chapter 4 
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presents a theoretical study of the post-buckling behavior of the system under consideration. The 

study is based on an energy method. Static and dynamic models are developed to determine the 

response of the beam as well as energy balance and conversion during buckling mode transitions. 

Chapter 5 provides a novel technique for energy harvesting and self-powered sensing at very low 

frequency environments. The technique consists in using mechanical energy concentrators 

(composed of axially-loaded bilaterally-constrained beams) to convert a quasi-static strain input 

into a high-rate acceleration that transfers the input into a piezoelectric scavenger. The technique 

combines the physics of mechanical buckling in bilaterally constrained elastic beams with the 

physics of piezoelectricity driven hot-electron injection, thus creating a novel sensing mechanism 

able to self-power at milli- and micro-Hertz frequencies. 
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CHAPTER 2: BACKGROUND 

 

2.1. Overview 

This chapter presents some experimental and theoretical background related to buckling 

and post-buckling of elastic structures and energy harvesting using bistability of buckled elements. 

The theoretical background presented in this chapter was used in the development of the theoretical 

model established in the current work. The chapter is divided into 4 separate sections. Section 2.2 

presents a broadband energy harvesting technique that exploits bistability of buckled elements to 

up-convert low input frequencies into the energy harvester’s resonant frequency. Section 2.3 

presents a buckling eigenvalue analysis developed by Nayfeh and Emam (2004) to determine the 

buckling critical loads and modes. Section 2.4 summarizes a theoretical model on the post-

buckling behavior of a bilaterally constrained beam under axial loads developed by Chai (1998). 

The results of this model will be compared to our theoretical model’s in the following chapters. 

Section 2.5 presents a study of the contact between an elastica and its boundary involving friction. 

The formulation was used to investigate the effect of friction on the post-buckling behavior of the 

bilaterally constrained beam under study. 

2.2. Broadband energy harvesting using bistable buckled elements 

Jung and Yun (2010) presented an energy-harvesting device that employs both mechanical 

frequency up-conversion and bistable behavior of buckled bridges for wide-bandwidth operations 

at an ambient vibration frequency. The proposed device enables energy harvesting at slow and 

time-varying mechanical vibrations. The schematic of the proposed energy harvester is shown in 
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Figure 2-1 (a), and a photograph of the experimental setup of the fabricated device is shown in 

Figure 2-1 (b). The device consists of two pre-buckled slender bridges and cantilever beams 

attached to the bridges. A proof mass is mounted on top of the bridge at the center to provide 

sufficient inertial force at a given acceleration. A piezoelectric polymer polyvinylidene fluoride 

(PVDF) layer is attached on top of each cantilever beam to convert the induced strain into electrical 

signal. A small mass is mounted at the end of each beam in order to maximize the swing. 

When the threshold acceleration is exceeded, the buckled bridge snaps through to the other 

equilibrium state. The transition between the two equilibrium positions generates an impulse-like 

excitation of the cantilever beams that vibrate freely at their resonant frequency independently of 

the input frequency. 

 

Figure 2-1: (a) Schematic view of proposed energy-harvesting device. (b) Photograph of device 

and experimental setup (Jung and Yun, 2010). 
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Figure 2-1 (cont’d) 

 

 

Figure 2-2: Resonance test results of the fabricated device (Jung and Yun 2010). 
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Figure 2-2 displays the frequency up-conversion characteristic of the device. The red line 

indicates the applied acceleration and the blue line represents the generated output voltage. Low 

frequency input vibration is converted into free and high-frequency output vibration. The input 

frequency is 12 Hz and the output frequency is 143 Hz. Transitions between the equilibrium 

positions occur at the positive and negative peaks of the input accelerations.  

The proposed device exhibits a wide operational-frequency range. The snap-through 

motion of the buckled bridge structure occurs at various vibration input frequencies. However, the 

input acceleration should be high enough to obtain a snap-through motion. Figure 2-3 displays the 

frequency response determined experimentally by subjecting the device to harmonic excitations 

with different frequencies. The (acceleration2/frequency) ratio was kept constant for all 

frequencies in order to apply same input power for all experiments. The frequency for maximum 

power output was approximately 30 Hz, which was much lower than the resonant frequency of the 

cantilever. 

 

Figure 2-3: Frequency response for constant input power (Jung and Yun 2010). 
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Table 2-1 summarizes the experimental results for the device and a simple cantilever beam 

without the buckled bridge structure. The maximum output power generated by a single cantilever 

was 131 µW for the device at 30 Hz excitation. The average power was measured as 2.9 µW, 

which is significantly larger than the output power of 0.57 µW generated by a simple cantilever 

beam without buckled bridges. Output power amplification is due to the increase in the deflection 

magnitude of the cantilever beams caused by the snap-through accelerations of the bridge in 

addition to the base acceleration. The power generated by one of the device’s cantilever beams is 

shown in Figure 2-4.  

Table 2-1: Effect of the device on the output power. 

Parameter 

Cantilever with 

buckled bridge 

Simple cantilever without 

buckled bridge 

Cantilever size (mm3) 8.0 × 4.0 × 0.2 8.0 × 4.0 × 0.2 

Resonant frequency (Hz) 143  124  

Maximum voltage (V) 27.1 (at 30 Hz) 4.13 (at 124 Hz) 

Maximum power (µW) 131 (at 30 Hz) 2.37 (at 124 Hz) 

Average power (µW) 2.9 (at 30 Hz) 0.57 (at 124 Hz) 
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Figure 2-4: Power output generated by a single cantilever beam (Jung and Yun 2010). 

2.3. Buckling analysis 

The buckling problem of a fixed-fixed beam subjected to axial load was studied by Nayfeh 

and Emam (2004). The governing equation of a fixed-fixed straight beam subjected to axial load 

P accounting for midplane stretching is given by 

𝜓𝑖𝑣 + 𝑃𝜓′′ −
1

2
𝜓′′ ∫ 𝜓′2𝑑𝑥

1

0

= 0 (2-1) 

𝜓 = 0    and    𝜓′ = 0    at   𝑥 = 0  and    𝑥 = 1 (2-2) 

where 𝜓(𝑥) denotes the static buckled configuration associated with the load P and the prime 

denotes differentiation with respect to x. Since the integral in Equation (2-1) is a constant for a 

given 𝜓(𝑥), the buckling equation can be reduced into  
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𝜓𝑖𝑣 + 𝜆2𝜓′′ = 0 (2-3) 

where 𝜆2 = 𝑃 − 1/2∫ 𝜓′2𝑑𝑥
1

0
 is a constant that represents the critical buckling load. 

Equation (2-3) is a fourth order ordinary differential equation with constant coefficients. Its general 

solution is given by 

𝜓(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3 cos(𝜆𝑥) + 𝑐4 sin(𝜆𝑥) (2-4) 

where the ci are constants. Applying the boundary conditions (2-2) yields the following four 

algebraic equations 

𝑐1 + 𝑐3 = 0 (2-5) 

𝑐2 + 𝜆𝑐4 = 0 (2-6) 

𝑐1 + 𝑐2 + 𝑐3 cos 𝜆 + 𝑐4 sin λ = 0 (2-7) 

𝑐2 − 𝜆𝑐3 sin 𝜆 + 𝑐4𝜆 cos 𝜆 = 0 (2-8) 

This system of equations represents an eigenvalue problem for λ. Computing the 

determinant of the coefficient matrix and equating it to zero, the characteristic equation for 𝜆 is 

given by 

2 − 2 cos 𝜆 − 𝜆 sin 𝜆 = 0 (2-9) 

Manipulating Equation (2-9) using trigonometric identities, the characteristic equation is 

simplified into 
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sin
𝜆

2
(sin

𝜆

2
−

𝜆

2
cos

𝜆

2
) = 0 (2-10) 

Solving the characteristic Equation (2-10) results in two kinds of buckling modes: 

symmetric and antisymmetric. Symmetric modes are extracted by solving sin 𝜆/2 = 0 . They can 

be expressed by 

𝜓(𝑥) = 1 − cos 𝜆 𝑥 (2-11) 

where 𝜆 = 2𝑚𝜋, 𝑚 = 1,2, … and antisymmetric modes are extracted by solving tan 𝜆/2 = 𝜆/2. 

Their expression is given by 

𝜓(𝑥) = 1 − 2𝑥 − cos 𝜆 𝑥 +
2

𝜆
sin 𝜆 𝑥 (2-12) 

where 𝜆 = 2.86𝜋, 4.92𝜋, 6.94𝜋, 8.95𝜋,… 

2.4. Post-buckling response of a bilaterally constrained beam 

The post-buckling response of a straight prismatic bilaterally constrained beam has been 

theoretically studied by Chai (1998) using small and large deformation assumptions. The beam is 

placed between two flat rigid walls separated by a distance h0 such that it lies along the surface of 

one of the walls. Both of its ends are clamped. The elastica has a length L0, thickness t, width b 

and Young’s modulus E. The net gap between the beam and the lateral constraints is denoted h 

and is defined as ℎ = ℎ0 − 𝑡. Under axial end shortening Δ, the beam buckles. The fourth-order 

linearized differential equation for an Euler beam under axial compression is given by 

𝑦′′′′ + 𝑘2𝑦′′ = 0,     𝑘2 =
𝑃

𝐸𝐼
 (2-13) 
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where a prime denotes differentiation with respect to x, y is the transverse deflection, P is the 

compression force and I is the moment of inertia of the beam. 

2.4.1. Pre-contact 

After buckling the beam separates from the adjacent constraint. The mid-span rise, A, 

increases with Δ until touching the opposite wall. Subjected to the following boundary conditions  

𝑦(0) = 𝑦′(0) = 𝑦(𝐿0) = 𝑦′(𝐿0) = 0,  (2-14) 

the solution to Equation (2-13) is given by 

𝑦(𝑥) =
𝐴

2
(1 − cos 𝑘𝑥) (2-15) 

Note that the first critical buckling load for the Euler buckling problem of fixed-fixed beams is 

defined as 

𝑃𝑐𝑟 =
4𝜋2𝐸𝐼

𝐿0
2  (2-16) 

A normalized square-root axial force parameter 𝜁 is introduced as follows 

𝜁 ≡ √
𝑃

𝑃𝑐𝑟
 =

𝑘𝐿0

2𝜋
 (2-17) 

In the Pre-contact configuration the post-buckling load is defined by 𝜁 = 1. Therefore the 

deflected shape of Equation (2-15) becomes 

𝑦(𝑥) =
𝐴

2
(1 − cos

2𝜋𝑥

𝐿0
 ) (2-18) 

The total end shortening is given by  
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Δ =
𝑃

𝐸𝑏𝑡
𝐿0 + ∫ (𝑦′)2𝑑𝑥

𝐿0/2

0

 (2-19) 

Using Equations (2-13) and (2-16)-(2-19) the midspan rise A can be expressed as  

𝐴 =
2𝑡

√3
√𝜂 − 1,       1 ≤ 𝜂 ≤ 1 + 0.75ℎ̃2 (2-20) 

where  

ℎ̃ ≡
ℎ

𝑡
       and    𝜂 ≡

3𝐿0Δ

(πt)2
 (2-21) 

2.4.2. Point contact 

Subjected to an increased axial displacement the beam touches the opposite wall at its 

midspan. The boundary conditions for the free standing segment are  

𝑦(0) = 𝑦′(0) = 𝑦′(𝐿0/2) = 0,     𝑦(𝐿0/2) = ℎ (2-22) 

Applying these boundary conditions to Equation (2-13) and using Equations (2-19) and (2-21), 

transverse displacement and normalized end shortening are expressed, respectively, as 

𝑦

ℎ
=

sin (
𝜋𝜁�̅�
𝑛 ) −

𝜋𝜁�̅�
𝑛 + (1 − cos (

𝜋𝜁�̅�
𝑛 )) tan (

𝜋𝜁
2𝑛)

2 (tan (
𝜋𝜁
2𝑛) −

𝜋𝜁
2𝑛)

 (2-23) 

𝜂 = 𝜁2 + 0.75ℎ̃2

(𝜁2 (2 +
1

cos2 (
𝜋𝜁
2𝑛)

) −
6𝑛𝜁
𝜋 tan (

𝜋𝜁
2𝑛))

(tan (
𝜋𝜁
2𝑛) −

𝜋𝜁
2𝑛)

2  (2-24) 

where n denotes the number of buckles in the beam and �̅� ≡ 𝑥/(𝐿0/2). 
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2.4.3. Line contact 

It was assumed that a line contact develops over three segments situated at the ends and 

the midspan of the beam. Taking into account the vanishing of the bending moment along the 

contact zones, the independent boundary conditions for the free standing segment of length H are  

𝑦(0) = 𝑦′(0) = 𝑦′′(0) = 𝑦′(𝐻) = 0,     𝑦(𝐻) = ℎ (2-25) 

The solution to Equations (2-13) and (2-25) is 

𝑦

ℎ
=

2𝜋�̅� − sin (2𝜋�̅�)

2𝜋
 ,      0 ≤ �̅� ≡ 𝑥/𝐻 ≤ 1 (2-26) 

with 𝐻/𝐿0 = 1/𝜁.  

Using Equations (2-19) and (2-26) the relationship between the normalized axial load, 𝜁, and end 

shortening, 𝜂, is given by 

𝜂 = 𝜁2 +
9𝑛ℎ̃2

2𝜋2
𝜁 (2-27) 

2.4.4. Mode transition 

Further increase of the axial end shortening, Δ, results in increasing the contact zones 

lengths until the longer flat segment buckles. Let a and b denote the lengths of the flat segments at 

the ends of the beam and c denote the length at its midspan. From geometric compatibility 

𝑎 + 𝑏 + 𝑐 + 2𝐻 = 𝐿0 (2-28) 

Substituting 𝐻/𝐿0 by 1/𝜁 in Equation (2-28) yields 
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𝑎 + 𝑏 + 𝑐

𝐿0
 = 1 −

2

𝜁
 (2-29) 

The load at which mode transition occurs was assumed to be bounded between a lower 

limit corresponding to a single contact zone and an upper limit corresponding to equi-length 

contact zones. The lower load limit is determined by eliminating the lengths a and b in Equation 

(2-29) and using Equation (2-17) as 

𝑘𝑐

2𝜋
 = 𝜁 − 2 (2-30) 

The upper limit corresponds to the case where 𝑎 = 𝑏 = 𝑐. Therefore Equation (2-29) is reduced 

into 

𝑘𝑐

2𝜋
 =

𝜁 − 2

3
 (2-31) 

Guided by experimental observations, and due to the absence of friction, it was assumed that the 

most probable configuration corresponds to the symmetric configuration with 2𝑎 = 2𝑏 = 𝑐. In 

this case Equation (2-29) reduces to  

𝑘𝑐

2𝜋
 =

𝜁 − 2

2
 (2-32) 

The flat segment of length c can be considered as Euler beam with fixed ends. Therefore, similar 

to Equation (2-17), the buckling critical load is such that 𝑘𝑐/2𝜋 = 1. From Equations (2-30) - (2-

32), the transition to the second mode is bounded in the range 3 ≤ 𝜁 ≤ 5. The symmetric buckling 

occurs at 𝜁 = 4. 
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2.4.5. Multiple buckles 

When the beam has multiple buckles, the buckling configuration can be either a point or a 

line contact. The length and the end-to-end shortening of each free standing segment of the beam, 

denoted, respectively, by H and Δ𝐻, are given by 

𝐻 =
𝐿0

2𝑛
   and   Δ𝐻 =

Δ

2𝑛
 (2-33) 

where n denotes the total number of buckles in the buckled configuration. The deflection of each 

segment and the total end shortening for the point contact configuration are given, respectively, by 

Equations (2-23) and (2-24). The transition from a point to a line contact takes place at  𝜁 = 2𝑛.  

The results for the symmetric line contact configuration are given by Equations (2-26) and (2-27). 

Loads at transitions to higher buckling modes are bounded by 1 + 2𝑛 ≤ 𝜁 ≤ 1 + 4𝑛. Symmetric 

buckling transitions occur at 𝜁 = 4𝑛. In this case, Equation (2-28) is reduced to 

2𝑛(𝑐 + 𝐻) = 𝐿0 (2-34) 

The relationship between the contact zone and the load is determined by multiplying both 

side of Equation (2-34) by  𝑘/2𝜋 and is given by 

2𝑛
𝑐

𝐿0
= 1 −

2𝑛

𝜁
. (2-35) 



27 
 

 

Figure 2-5: The normalized square root axial load, ζ, vs the normalized end shortening, η (Chai 

1998). 

Figure 2-5 shows the variation of the normalized load, 𝜁, with respect to the normalized 

end shortening, 𝜂. The results shown in the figure were constructed for ℎ̃ = 3. The dashed and the 

solid lines correspond to the point contact and the line contact configurations, respectively. 

Following buckling, 𝜁 remains fixed until the beam touches the opposite constraint. The point 

contact holds up to 𝜁 =  2. Then a line contact develops and increases until the beam snaps into 

two buckles at 𝜁 =  4. During transition the force drops and the end shortening remains fixed. The 

next mode transition (i.e. to n = 3) occurs at 𝜁 =  8, and so forth. The response of the beam depends 
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on the loading direction. If the beam is unloaded rather than loaded, it returns to a lower buckling 

mode through a different path. 

2.5. Contact between an elastica and its boundary involving friction 

 

 

Figure 2-6: Equilibrium of a beam element subjected to lateral pressure with friction. 

Soong and Choi (1986) presented a theoretical formulation of the friction force generated 

by the dry contact between the buckled beam and the lateral rigid walls. The beam is modeled 

using Euler Bernoulli beam theory and Coulomb model is used for friction.  Figure 2-6 displays 

the force equilibrium of a buckled beam element subjected to normal pressure and tangential 

friction force where M̂ is the bending moment, N̂ is the axial compressive force, V̂ is the transverse 

shear force, F̂n is the normal pressure force, μk is the coefficient of friction, 𝑑𝑠 is the arc length of 

the element, and 𝑅 is the local radius of curvature for the deformed beam.  
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The beam under consideration is homogeneous, uniform and elastic with constant bending 

stiffness EI. The Euler–Bernoulli equation describes the dependence of the local radius of 

curvature, bending moment and transverse shear to the beam's deflection �̂� as 

1

𝑅
=

𝑑2�̂�

𝑑𝑠2
 (2-36 a) 

�̂� = 𝐸𝐼
𝑑2�̂�

𝑑𝑠2
 (2-36 b) 

�̂� = 𝐸𝐼
𝑑3�̂�

𝑑𝑠3
 (2-36 c) 

From the equilibrium of tangential and normal forces the normal and tangential pressure at the 

contact zone are expressed as follows 

�̂�𝑘 =
�̂�

𝑅
+

𝑑�̂�

𝑑𝑠
 (2-37) 

𝜇𝑘�̂�𝑘 =
�̂�

𝑅
−

𝑑�̂�

𝑑𝑠
 (2-38) 

Substituting Equations (2-36) into (2-37) and (2-38) yields 

�̂�𝑘 = �̂�
𝑑2�̂�

𝑑𝑠2
+ 𝐸𝐼

𝑑4�̂�

𝑑𝑠4
 (2-39) 

𝜇𝑘�̂�𝑘 = 𝐸𝐼
𝑑3�̂�

𝑑𝑠3
 
𝑑2�̂�

𝑑𝑠2
−

𝑑�̂�

𝑑𝑠
 (2-40) 

Combining Equations (2-39) and (2-40), the variation of the axial compression force is governed 

by the following ordinary differential equation 



30 
 

𝑑�̂�

𝑑𝑠
+ 𝜇𝑘𝑁

𝑑2�̂�

𝑑𝑠2
= 𝐸𝐼 (

𝑑3�̂�

𝑑𝑠3
 
𝑑2�̂�

𝑑𝑠2
− 𝜇𝑘

𝑑4�̂�

𝑑𝑠4
) (2-41) 

The solution �̂� to Equation (2-41) can be expressed as 

�̂� = 𝑒
−∫ 𝑓(𝜏) 𝑑𝜏

𝑠
𝑠0

 
(�̂�𝑠=𝑠0

+ ∫ 𝑔(𝜉) 𝑒
∫ 𝑓(𝜏) 𝑑𝜏

𝜉
𝜉0

 
𝑑𝜉 

𝑠

𝑠0

) (2-42) 

where  

𝑓(𝑠) = 𝜇𝑘

𝑑2�̂�

𝑑𝑠2
 (2-43) 

𝑔(𝑠) = 𝐸𝐼 (
𝑑3�̂�

𝑑𝑠3
 
𝑑2�̂�

𝑑𝑠2
− 𝜇𝑘

𝑑4�̂�

𝑑𝑠4
) (2-44) 

Substituting Equation (2-42) into (2-40), the tangential friction force is expressed by 

𝜇𝑘�̂�𝑛 = 𝜇𝑘 [𝑒
−∫ 𝑓(𝜏) 𝑑𝜏

𝑠
𝑠0

 
(�̂�𝑠=𝑠0

+ ∫ 𝑔(𝜉) 𝑒
∫ 𝑓(𝜏) 𝑑𝜏

𝜉
𝜉0

 
𝑑𝜉 

𝑠

𝑠0

)
𝑑2�̂�

𝑑𝑠2
+ 𝐸𝐼

𝑑4�̂�

𝑑𝑠4
] (2-45) 

2.6. Summary 

Energy harvesting using snap-through buckling for mechanical frequency up-conversion 

has been proposed by Jung and Yun (2010). The proposed device consists of buckled slender 

bridges with a proof mass to provide inertial excitation force and cantilever beams to harvest free 

vibration energy. Snap-through transitions between the equilibrium positions of the buckled 

bridges allows for frequency up-conversion. It was shown that the device harvests power over a 

wide frequency range. However, the input excitation has to be a vibration with accelerations high 

enough to activate snap-through motion. 
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The eigenvalue buckling analysis of a uniform fixed-fixed straight beam subjected to axial 

loading results in two kinds of solutions: symmetric and antisymmetric modes. Therefore, for the 

post-buckling analysis, if the contact between the beam and the lateral constraints involves friction, 

all the modes have to be included in the analysis. However, antisymmetric modes can be neglected 

if the contact is frictionless and the load distribution is symmetric. 

The post-buckling behavior of a bilaterally constrained beam under axial loading was 

investigated by Chai (1998). The contact was assumed frictionless and the transitions to a higher 

buckling mode were assumed to be always bounded between a lower limit, corresponding to a 

single flattened contact zone, and an upper limit, corresponding to multiple flattened contact 

segments of equal lengths. The force-displacement response of the beam was investigated 

assuming that the buckling configuration is always symmetric. 

A study of the contact problem between a beam and its boundary was carried out by Soong 

and Choi (1986). The contact formulation involves friction. The normal pressure as well as 

tangential force at the contact zones were determined. It was shown that, due to friction, the axial 

compression force inside the beam is not constant. 
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CHAPTER 3: EXPERIMENTAL AND NUMERICAL STUDIES 

OF THE POST-BUCKLING RESPONSE OF BILATERALLY 

CONSTRAINED BEAMS UNDER AXIAL LOADING 1 

 

3.1. Overview 

This chapter presents experimental and numerical studies of the post-buckling response of 

one and multiple parallel bilaterally-constrained beams. Section 3.1 deals with the response of one 

beam. An experimental apparatus was built and tested to provide better understanding of the post-

buckling behavior of the beam and to assess its repeatability under cyclic loading events with 

different input frequencies. A finite element (FE) model was developed to extract information on 

the transverse accelerations generated during mode jumping and investigate the effect of the 

system’s parameters on the beam’s response. In order to control the number and the spacing 

between the snap-through events, multiple slender beams can be stacked, in parallel or series 

configurations, into a system. Section 3.3 explores the post-buckling response of multiple 

bilaterally constrained beams combined in a parallel configuration. The experimental setup and 

the FE model developed for one beam were extended to accommodate three parallel equi-length 

beams with fixed end supports. The effect of the system’s parameters on the post-buckling 

response of the beams and the generated accelerations was studied. The impact of changing the 

thicknesses of the beams is investigated numerically and experimentally. However, other 

                                                           
1 The presented results in this chapter were published in Lajnef et al. (2012 and 2014a) and 

Borchani et al. (2013) 
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parameters, such as Young’s modulus and gaps between the walls, are only investigated 

numerically.  

3.2. Post-buckling response of one bilaterally constrained beam 

The multistable post-buckling response of an axially loaded elastic element can be obtained 

and controlled by providing appropriate lateral constraints to the buckling element so as to allow 

multiple stable equilibrium configurations. In such conditions, the increased transverse 

deformations from a buckled shape under axial compressive demands lead to contact interaction 

with discrete or continuous boundaries. The contact interaction generates secondary restraining 

forces that induce the development of a higher order buckling configuration. Increased transverse 

deformations of the second post-buckled configuration lead to new transverse forces from the 

lateral constraints, thus inducing a third post-buckled stable configuration, and so forth. 

3.2.1. Experimental study 

The snap buckling, or mode jumping, characteristics of the post-buckling response of a 

bilaterally constrained beam was experimentally investigated. A polycarbonate beam with fixed 

end supports was placed between rigid continuous bilateral plexiglass frame as shown in Figure 

3-1. The optically clear plexiglass acrylic frame was chosen to be 1 inch thick and was designed 

to have a gap, h0, of 4 mm for transverse deformations. The walls were constrained at the bottom 

and top to avoid opening of the wall gap during testing. The beam was placed inside the gap, 

adjacent to one of the constraining walls. The net gap, h, for traverse deformations of the beam is 

the difference between the wall gap, h0, and the beam thickness, t. The geometry and material 

properties of the used polycarbonate beam are detailed in Table 3-1.The testing procedure 

consisted in applying a gradually increasing compressive load under displacement control to the 
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top of the beam using a mechanical test system (MTS model Flextest 40 with series 370 load unit) 

as shown in Figure 3-1. 

 

 

Figure 3-1: Schematic and diagrams of the test setup.  
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(a) Mode 1 -Φ1 (b) Mode 3 - Φ3 (c) Mode 5 - Φ5  (d) Mode 7 - Φ7 

Figure 3-2: Views of the loaded beam showing the obtained multiple stable post-buckled 

configurations. 

The applied axial load induces multistable post-buckling configurations, as shown by the 

experimental mode shapes in Figure 3-2. The post-buckling branch switching effect can be seen 

by the discontinuities (load drops) in the force-deformation response (applied force versus the top 

vertical displacement) plotted in Figure 3-3. The figure labels (Φ3, Φ5, etc.) indicate the buckling 

mode shape to which the beam transitions after the snap-through event. Each of the mode 

transitions represents the switch between a stable equilibrium branch to another that reduces the 

total potential energy in the system. The stable branches are associated with an eigenvector or 

buckling mode, and a branch switch constitutes a global unstable transition or a snap-through 

event. 



36 
 

 

Figure 3-3: Force-displacement response for 10-cycle compression test. 

 

To evaluate the repeatability of the post-buckling behavior and to assess its cyclic response, 

the bilaterally constrained beam setup was subjected to a series of displacement-controlled 

unidirectional compression tests. For all runs, the beam was compressed past its 7th buckling mode 

then unloaded until a zero stress state was reached. The force-displacement responses for 10 

different loading cycles are displayed in Figure 3-3. The total duration of the loading/unloading 

cycles was set at 20 seconds, which represents a displacement rate of 0.5 mm/s. It can be seen that 

all of the response curves coincide, with small deviations observed at the higher transition points 

for modes 5 and 7. 

The dependency of the beam’s post-buckling response to the frequency of the input axial 
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tests. Tests were conducted at 0.16, 0.05, 0.025 and 0.006 Hz (i.e., 6, 20, 40 and 150 second cycle 

periods). Ten-cycle tests were performed for each input frequency. Figure 3-4 displays the mean 

force-displacement response of the beam for each frequency. It can be noticed that the input 

frequency had little influence on the beam post-buckling response. The post-buckling response 

curves are superposed and the transition points are very close. The distribution of all the transition 

points is presented in Figure 3-5. The transition points for each individual mode are within a 

relatively small range of displacement and force values. Table 3-2 summarizes the mean and 

standard deviation values for the force and displacement at each mode transition. The displacement 

and force standard deviations at the transition points were lower than 3% and 5%, respectively. 

Therefore, it can be concluded that the beam post-buckling response is reproducible and 

independent of the load rate under the considered test conditions. 

 

Figure 3-4: Post-buckling behavior for displacement control cyclic loading tests at 0.16 Hz, 0.05 

Hz, 0.025 Hz and 0.006 Hz. 
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Figure 3-5: Transition points distribution. 
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Table 3-1: Mode transitions mean points and standard deviations. 

Mode 

Transition 

Mean points Standard deviations 

Displacement (mm), Force (N) Displacement (mm), Force (N) 

1 to 3  0.97, 477.4 0.02, 13.3 

3 to 5  2.23 , 1145.3 0.02, 20.4 

5 to 7  3.33 , 1716.7 0.10, 59.8 

7 to 5  1.79 , 730.8 0.01, 16.0 

5 to 3  1.11 , 455.2 0.01 , 24.8 

3 to 1  0.46 , 177.1 0.01 , 8.4 

 

 

The effect of the interaction between the lateral constraints and the beam was 

experimentally investigated. The lateral rigid walls were replaced by two soft silicone blocks and 

the net gap between them remains the same. As the axial load increases, the pressure that the 

column applies on the walls increases forcing them to open the gap wider. The overall stiffness of 

the system drops as the loading increases. Figure 3-6 displays a comparison between the post-

buckling response of the system with rigid and flexible walls. These results show that the shape of 

the force-displacement response curve as well as the dynamic response of the energy concentrators 

can be controlled. 
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Figure 3-6: Comparison between the post-buckling response of the system with rigid and flexible 

walls. 
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beam’s post-buckling behavior and extract information on the transverse acceleration generated 

during mode jumping, which determine the input to the piezoelectric energy harvester.  

The numerical study was conducted using the general purpose finite element program 

ABAQUS. Large-strain nonlinear dynamic analyses were conducted using four-node 

isoparametric shell elements to model the beam and rigid no-penetration contact behavior with 

friction was defined for the interaction between the beam and the rigid side walls. Consideration 

of friction is important because this force creates a pseudo-softening effect on the load-deformation 

response since it acts against the direction of loading. Because shell elements have no physical 

thickness, the model of the test setup was such that the distance between the rigid walls was the 

net gap h = h0 – t. To accommodate the seeding of initial imperfections for the large deformation 

analysis and to avoid interaction with the no-penetration rigid wall boundary, the location of the 

beam in the model was offset from the near wall by 5% of the net gap. Thus, the beam in the FE 

model had a gap of 0.05h to one side and 0.95h on the other. The element size was approximately 

4 mm square and was chosen based on a sensitivity study. The friction coefficient between the 

wall and the beam surfaces was 0.2, chosen by calibration of the model with data from the noted 

test setup. Geometric imperfection was introduced to the beam by the superposition of buckling 

eigen modes. An implicit dynamic analysis procedure was used whereby a displacement amplitude 

history was prescribed to the top edge of the beam with a rate of 0.5 mm/sec. 



42 
 

 

Figure 3-7: Comparison of experimental and simulated force-displacement responses of the 

bilaterally constrained beam. 

The numerically simulated force-displacement response from the FE model is shown in 
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force/deformation location and in the amount of energy loss, interpreted by the magnitude of the 

load drop), the loading and unloading stiffness, and the hysteretic nature of the response (induced 

by the friction between the beam and the walls). A comparison of the simulation and experimental 

post-buckling results is provided in Table 3-3. The finite element solution is considered acceptable 

given that parameters such as the actual values for the beam imperfection, friction coefficient and 

boundary conditions are unknown. 

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

End Shortening (mm)

A
x
ia

l 
F

o
rc

e
 (

N
)

 

 

Experiment

FE Model

Loading

Unloading

Loading

Unloading



43 
 

Table 3-2: Comparison of simulation post-buckling results with experimental data. 

 

Mode 

Transition 

Experimental FEA 

Disp. Force Disp. Force 

(mm) (N) (mm) % Diff. (N) % Diff. 

1 to 3 0.97 477.4 0.734 -25 397.8 -17 

3 to 5 2.23 1145.3 2.785 25 1551.4 36 

5 to 7 3.33 1716.7 4.346 30 2436.9 42 

7 to 5 1.79 730.8 1.702 -5 767.5 5 

5 to 3 1.11 455.2 0.934 -16 416.7 -9 

3 to 1 0.46 177.1 0.404 -13 177.5 0 

 

The buckled shapes obtained from the FE analysis are shown in Figure 3-8 with superposed 

contour maps for the transverse deformations. It can be seen that the modes correspond well with 

the experimentally observed buckling shapes shown in Figure 3-2. The asymmetric nature of the 

buckling shapes from the FE analysis, which follows from the friction between the beam and the 

wall, can be discerned by the nodal lines (lightest contour color). The post-buckling branch 

switching events of the beam during loading and unloading can also be seen in the trace of axial 

force vs. transverse mid-height displacement captured from the finite element solution for the 

experimentally evaluated system and shown in Figure 3-9. The horizontal lines in the trace 

represent the instantaneous transverse movements during branch switching or snap-through 

between post-buckled configurations. The labels note the buckled mode at the end of the unstable 
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branch and the annotations L and U denote if they correspond to the loading or unloading path, 

respectively. 

 

    

Φ1 Φ3 Φ5 Φ7 

Figure 3-8: Buckled shapes from the finite element analysis of the experimentally evaluated 

system. The color contours represent transverse deformations with the yellow (lightest color) 

defining nodal lines. 
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Figure 3-9: Trace of axial force vs. transverse mid-height displacement during a loading cycle 

indicating the post-buckling branch switching events. 

Of more interest is the acceleration created by the impact of the beam on the rigid side 

walls as evidenced by the step-function-type response in Figure 3-10 where each vertical line is 

the result of a mode jump. Experimental measurements are shown in Figure 3-10 (a) while the 

values from the FE simulation are shown in Figure 3-10 (b). The acceleration created during the 

impact of the beam with the side wall creates an input to the energy harvester analogous to a step 

function. This effect dominates the input to the energy harvester and allows for the efficient 

frequency conversion of the quasi-static external input to the dynamic input for the harvester. 
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(a) 

 

(b) 

Figure 3-10: Acceleration generated from the multiple mode-jumping response of the axially 

loaded bilaterally constrained beam at mid-height of the beam during one loading cycle: (a) 

experiment, (b) finite element analysis. The labels Φ3 to Φ7 indicate the mode transition events. 
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The results from Figure 3-10 show that the side acceleration from the FE model for mode 

7 during loading is only about 6% higher than the experimentally measured value. Discrepancies 

with the other mode jumps are attributed to the fact that the damping from the beam and the side 

wall in the experiment are not considered in the FE model. 

As previously noted, the snap-through response between the equilibrium positions induces 

accelerations in the transverse direction of the beam upon its impact with the side walls. It has 

been stated that these accelerations define the input to the piezoelectric energy harvester. The 

ability of the FE modeling approach to capture the post-buckling response of the bilaterally 

constrained beam provides confidence that it can be used to evaluate the effect of system 

parameters (e.g., beam length, stiffness, thickness, etc.). Their effect on the energy harvesting 

capabilities is thus related to their effect on the generated accelerations during snap-through. A 

parametric study was thus performed based on the calibrated finite element model to study the 

effect of system parameters on the generated lateral acceleration from mode transitions. The 

considered parameters are the boundary conditions, position of the beam, elastic modulus, E, beam 

length, L, beam thickness, t, and gap between the constraining walls, h0. 

Table A.1 summarizes the cases considered in the study, where Case 1 is the base case 

previously presented in the experimental study. The remaining cases varied one or two parameters 

at a time as shown in bold text in table A.1. The beam width, b, and the coefficient of friction were, 

respectively, 30 mm and 0.2 for all cases. 
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(a) Effect of Young’s modulus. 

 

(b) Effect of the gap between the walls. 

Figure 3-11: Effect of (a) Young’s modulus, (b) walls gap and (c) beam’s thickness on axial 

forces and displacements at snap-through transitions. 
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Figure 3-11 (cont’d) 

 

(c) Effect of beam’s thickness. 

Axial displacements and forces at which the transitions occur are determined by the 

aforementioned parameters. Their dependency to the system parameters was numerically 

investigated. Figure 3-11 displays the effect of Young’s modulus, thickness and gap between the 

lateral constraints on the loading branch of the post-buckling response of the beam. This figure 

shows that by increasing the young’s modulus the forces increase, but the axial displacements at 

transitions are invariant. In contrast, increasing the gap between the walls increases the axial 

displacements but the forces at transitions are the same. It also shows that the variation of the beam 

thickness affects both forces and displacements at mode transitions. However, the spacing between 

the events is proportional. 
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(a) 

 

 (b) 

Figure 3-12: Results from the numerical parametric study showing the effect of (a) beam 

thickness, (b) elastic modulus, (c) wall gap, (d) beam length, and (e) boundary conditions on the 

maximum acceleration generated by snap-through behavior. 

0.5 1 1.5 2 2.5
0

20

40

60

80

100

Thickness (mm)

V
a
ri

a
ti

o
n

 o
f 

th
e
 A

c
c
e
le

ra
ti

o
n

 (
%

)

 

 

Position= side

Position= center

2 3 4 5 6 7
0

200

400

600

800

Youngs Modulus (GPa)

V
a
ri

a
ti

o
n

 o
f 

th
e
 A

c
c
e
le

ra
ti

o
n

 (
%

)

 

 

Position= side

Position= center



51 
 

Figure 3-12 (cont’d) 
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Figure 3-12 (cont’d) 

 

(e) 

 

The maximum generated accelerations along the beam's height from the snap-through 

events for each of the first thirty five cases are compared in Figure 3-12 for each of the evaluated 

parameters. Each of the five plots corresponds to one of the parameters in the study and the result 

from Case 1 is presented in all plots. For all cases the data points correspond to the snap-through 

transition to the 7th buckling mode. Thus, the total vertical end shortening was varied to ensure 

that the 7th mode transition was achieved in all cases. Effect of the boundary conditions on the 

snap-through accelerations was investigated by gradually releasing the end rotations. Partial 

restraints were simulated by considering rotation springs at each end.  
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The results show that acceleration from snap-through will increase with: (a) an increase in 

beam thickness, (b) an increase in the beam elastic modulus, (c) an increase in the wall gap and 

(d) a decrease in the beam length. The noted trends are considered to be reasonable because the 

beam is stiffer if its thickness or Young’s modulus increases or if its length is reduced. Also, an 

increase in the gap between the walls allows higher rotations of the beam in its buckled shape, 

which results in higher potential energy due to bending. Therefore the beam is able to store higher 

strain energy that is then released during the snap-through transitions. Results also show that the 

generated accelerations during transitions increase by placing the beam adjacent to one of the 

lateral walls (figures 3-12 (a) - (d)) and by adopting fixed-end configuration (Figure 3-12 (e)). 

Therefore for the remaining analyses the beam was placed adjacent to one of the lateral walls with 

fixed-end supports. 

The results shown indicate the possibilities for optimizing the system performance and 

support the feasibility of down-scaling the system into sizes adequate for a device that can be 

embedded inside a structure as shown in figure 1-1 for the concept integration. For that purpose, a 

second set of simulations was carried out to investigate the combined effect of reducing the length 

and varying one of the other parameters. 

Figure 3-13 displays the variation of the maximum acceleration with respect to the beam’s 

length for different thickness values. The gap between the walls and the young’s modulus remain 

constant. It should be noted that for case 16 (L = 76.2 mm and t = 2.34 mm) and case 45 (L = 76.2 

mm and t = 1.56 mm) the beam fails to reach the seventh buckling mode. It was shown in Figure 

3-12 (a) that, for the original length (L = 250 mm), the thicker is the beam, the higher are the snap-

through accelerations. However, the results shown in Figure 3-13 indicate that for shorter beams 
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(L = 76.2 mm) the thickness should be reduced in order to reach the seventh mode and generate 

higher accelerations.  

 

Figure 3-13: Effect of beam thickness and length on the maximum acceleration. 
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Figure 3-14: Effect of gap and length on the maximum acceleration. 

 

Figure 3-15: Effect of Young’s modulus and length on the maximum acceleration. 
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Figure 3-15 displays the effect of the young’s modulus and the length on the maximum 

acceleration generated during transitions. Similar to the gap, increasing the young’s modulus 

amplify the levels of the accelerations. However, higher modes risk to be blocked for shorter beams 

(L = 76.2 mm, E = 6.75 GPa). Therefore the young’s modulus should be bounded. 

3.3. Post-buckling response of multiple bilaterally constrained beams in parallel 

configuration 

Although tuning the parameters of the system affects dramatically the accelerations 

generated in snap-through transitions, the number and the spacing between these events was shown 

non-sensitive to the studied parameters. In order to tailor the number and spacing of the mode 

branch switching during the post-buckling response, the experimental setup described above for 

one bilaterally constrained beam was extended to accommodate for three parallel beams with fixed 

end supports. The constraining walls were kept separated by a 4 mm gap and three equi-length 

beams were placed inside the gap, adjacent to one of the constraining walls as shown in Figure 3-

16. 

 

Figure 3-16: Test setup with three parallel constrained beams. 
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Two sets of experiments were conducted to demonstrate the system’s ability to increase 

the number and force drop magnitude in the buckling mode transitions without exceeding the 

seventh mode in each beam. In the first experiment three similar beams with the same geometry 

and material properties as presented in Table 3-1 were used. The beams were axially loaded in 

compression under displacement control to a total end shortening of 5 mm and then unloaded. The 

top extremities of the beams exhibit the same loading displacement. In the second experiment one 

of the beams was substituted with a thinner polycarbonate beam (1.47 mm thickness) and the same 

experiment procedure was applied. Only one parameter changed between the two experiments, 

which is the thickness of one beam. The net gap between the walls was kept constant. 

Figure 3-17 and Figure 3-18, successively, display the resulting force-displacement 

response of the system in the first and second experiment. Comparing the two plots it can be 

concluded that by changing one parameter, which in this case was the thickness of one beam, the 

number and force drop magnitude of the transitions change. Furthermore the location of the 

transitions and the overall stiffness of the system are affected by any modification in the major 

parameters. The finite element model described above was modified to investigate the effect of the 

beams thicknesses, young’s modulus and the gap between the rigid walls on the number, positions 

and drop force magnitude of mode branch switchings during the post-buckling response, and to 

extract information on the transverse acceleration generated during mode jumping as well, which 

define the input to the piezoelectric energy harvester. 
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Figure 3-17: Force-displacement response of three similar parallel bilaterally constrained beams. 

 

Figure 3-18: Force-displacement response of three parallel bilaterally constrained beams: two of 

them are similar and the third is thinner. 
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Table 3-3: Modified Parameter at each simulated case. 

Case 

Young's modulus (MPa) Beams thickness (mm) Gap (mm) 

beam1 beam2 beam3 beam1 beam2 beam3 beam1 beam2 beam3 

1 2250 2250 2250 2.34 2.34 2.34 4 4 4 

2 2250 3375 4500 2.34 2.34 2.34 4 4 4 

3 2250 2250 2250 2.34 1.47 0.78 4 4 4 

4 2250 2250 2250 2.34 2.34 2.34 4 5 6 

 

The overall force-displacement response of the three parallel constrained beam system is 

sensitive to the beams' geometry, material properties and gap between the constraining walls. To 

evaluate the impact of each parameter, four cases were numerically simulated. The first case 

consists of three beams with the same geometry and material properties as presented in Table 3-1 

and the other cases change one of the pre-mentioned parameters at a time. Table 3-4 highlights the 

modified property of the beams at each case. In all cases the top edges of the beams were subjected 

to a total end shortening of 5 mm. The loading branches of the force displacement responses as 

well as transverse accelerations in the beams were extracted from the FE analyses database and 

are displayed in Figure 3-19 to Figure 3-22. Each acceleration spike is resulted from one or 

multiple beams movement or transitions between modes. The force drop magnitude and the 

acceleration levels can reflect the level of the released energy when the system transitions from 

one position to another. The number and spacing between the mode switching events can be tuned 

by modifying one or multiple parameters. Although the number and the locations of the transitions 

are very sensitive to the investigated parameters, the levels of the maximum acceleration are of the 
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same order. Hence the system transitions can be controlled such that the snap-through happens at 

certain predetermined axial forces or displacements without sacrificing acceleration levels. 

 

 

Figure 3-19: Loading branch of the force-displacement response and accelerations generated 

during transitions for Case 1 in Table 3-4 (same geometry and material properties for all beams). 
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Figure 3-20: Loading branch of the force-displacement response and accelerations generated 

during transitions for Case 2 in Table 3-4 (variation of Young’s moduli). 
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Figure 3-21: Loading branch of the force-displacement response and accelerations generated 

during transitions for Case 3 in Table 3-4 (variation of beams thicknesses). 
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Figure 3-22: Loading branch of the force-displacement response and accelerations generated 

during transitions for Case 4 in Table 3-4 (variation of gaps between the lateral walls). 
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3.4. Summary 

The post-buckling response of the axially loaded bilaterally constrained beams was 

investigated experimentally and numerically to provide better understanding of its behavior. It was 

shown that the beam can achieve higher buckling modes by providing the appropriate lateral 

constraints. Furthermore, the transitions between modes are sudden and generate high-rate 

transverse accelerations.  

Experimental results show that the post-buckling behavior is reproducible under cyclic 

loadings and independent of the input loading frequency. An FE model that accounts for the 

friction between the beam and the lateral walls was developed to extract information on the 

transverse accelerations and to investigate the effect of system parameters on the accelerations as 

well as axial forces and displacements at mode transitions. It was shown that placing the beam 

adjacent to one of the lateral walls with fixed-end supports generates higher accelerations. 

Furthermore, the accelerations amplify by increasing the thickness, Young’s modulus or gap 

between the walls, or by decreasing the length of the beam. However, the combination between 

length and one of the other parameters may have opposite effect. Results show that for short beams 

the thickness, young’s modulus and gap should be upper-bounded in order to allow for the 

development of higher modes and hence the generation of high accelerations. 

Although tuning the parameters of the system affects dramatically the accelerations 

generated in snap-through transitions, the number and the spacing between these events was shown 

to be insensitive to the studied parameters. In order to control the number and the spacing between 

mode transitions, multiple slender beams were stacked in parallel configurations. Experiments and 

numerical studies were conducted to investigate the global response of the system and the 

accelerations generated from each beam. It was shown that the global force-displacement response 
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is sensitive to the beams thicknesses, Young’s moduli and gaps between the walls. Any 

modification of these parameters affects the locations of the transitions and the overall stiffness of 

the system. More important is that the number and the spacing between these events can be 

controlled by tuning the aforementioned parameters without sacrificing the levels of generated 

accelerations. 
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CHAPTER 4: THEORETICAL STUDY OF THE POST-

BUCKLING RESPONSE OF A BILATERALLY CONSTRAINED 

BEAM UNDER AXIAL LOADING 2 

 

4.1. Overview 

This chapter presents a theoretical study of the post-buckling snap-through behavior of a bilaterally 

constrained beam subjected to axial loading using energy methods. In Section 4.2 the nonlinear 

relationship between strain and displacement is determined. Section 4.3 provides an eigenvalue 

buckling analysis that accounts for longitudinal deformations to determine the buckling modes. 

Using the Galerkin discretization method, the transverse deflection is expressed as a linear 

combination of buckling modes multiplied by weight coefficients that define the contribution of 

each mode to the deflection. The normalized kinetic, potential and friction-induced energies are 

expressed in terms of the unknown weight coefficients in Section 4.4. Section 4.5 presents a 

frictionless static analysis of the beam’s response based on minimization of the potential energy 

under the confinement constraints. The potential energy is composed of bending and compression 

energies and the work of the external load. Both displacement- and force- control formulations are 

presented. The dynamic snap-through transitions under axial force loading are investigated in 

Section 4.6. The released kinetic energy as well as accelerations of the beam during buckling mode 

switching are determined by minimizing the total energy which is the sum of kinetic and potential 

energies.  

                                                           
2 Results presented in this chapter were published in Borchani et al. (2014a and 2014b). 



67 
 

4.2. Strain-displacement Relationship 

The problem under consideration consists of a straight beam subjected to increasing axial 

load, p̂. The loaded end is allowed to slide axially and the other end is fixed as shown in Figure 4-

1. The beam has a length L, a uniform cross section area A, a moment of inertia I and a modulus 

of elasticity E. The beam is confined between two rigid surfaces spaced by a distance h. û(x) and 

ŵ(x) denote the axial displacement and transverse deflection, respectively.  

 

Figure 4-1: Geometry of the beam buckled in the first mode. 

 

Figure 4-2: Deformation of beam element. 
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the undeformed beam is dx. The beam under study is slender and therefore it can be modeled using 

nonlinear Euler-Bernoulli beam theory. 

The length of the element in the deformed configuration can be related to the longitudinal and 

transversal displacements by: 

𝑑𝑠 = √(𝑑𝑥 + 𝑑�̂�)2 + 𝑑�̂�2. (4-1) 

The total elongation of the differential element is given by:  

𝑒 = 𝑑𝑠 − 𝑑𝑥 

        = √(𝑑𝑥 + 𝑑�̂�)2 + 𝑑�̂�2 − 𝑑𝑥. (4-2) 

The resulting strain 𝑒/𝑑𝑥 is then expressed as: 

𝜀 = √(1 + �̂�′)2 + �̂�′2 − 1 

          =  √1 + 2�̂�′ + �̂�′2 + �̂�′2 − 1 (4-3) 

where the over primes denote the derivative with respect to 𝑥. Using a binomial series expansion 

for the quadratic terms and neglecting higher order terms in the displacement gradient, the resulting 

strain can be expressed as: 

𝜀 = �̂�′ +
�̂�′2

2
. (4-4) 

By integrating the strain over the beam’s span, the variation in length due to the buckled 

configuration can be expressed as: 
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𝛥 = 𝛥𝑐 + ∫
�̂�′2

2
 𝑑𝑥

𝐿

0

. (4-5) 

The first term, Δc = û(L) − û(0), is due to axial compression and the second term, ∫ ŵ′2/2 dx
L

0
, 

is induced by the midplane rotation due to buckling. The midplane stretching induces an axial 

compressive force that can be expressed by: 

𝑆 =
𝐸𝐴

𝐿
𝛥𝑐 

                            = EA(𝜀 −
1

2𝐿
∫ �̂�′2 𝑑𝑥

𝐿

0

). (4-6) 

4.3. Buckling analysis 

The governing equations that account for longitudinal deformations in a fixed-fixed 

straight beam subjected to axial load �̂� are: 

𝐸𝐼
𝑑4�̂�(𝑥)

𝑑𝑥4
+ (�̂� −

𝐸𝐴

2𝐿
∫ �̂�′2 𝑑𝑥

𝐿

0

)
𝑑2�̂�(𝑥)

𝑑𝑥2
= 0  

�̂�(0) = �̂�(𝐿) = 0,        
𝑑�̂�(𝑥)

𝑑𝑥
|
𝑥=0

=
𝑑�̂�(𝑥)

𝑑𝑥
|
𝑥=𝐿

= 0. 
(4-7) 

For convenience, the following non-dimensional variables are used: 

𝑋 =
𝑥

𝐿
, 𝑊(𝑋) =

�̂�(𝑋 𝐿)

ℎ
, 𝑁2 =

�̂�𝐿2

𝐸𝐼
−

𝐴ℎ2

2𝐼
∫ (

𝑑𝑊

𝑑𝑋
)

2

𝑑𝑋
1

0

. 
(4-8) 

Substituting Equation (4-8) into (4-7), the non-dimensional buckling equation is then expressed 

as: 
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𝑑4𝑊(𝑋)

𝑑𝑋4
+ 𝑁2

𝑑2𝑊(𝑋)

𝑑𝑋2
= 0  

𝑊(0) = 𝑊(1) = 0,       
𝑑𝑊(𝑋)

𝑑𝑋
|
𝑋=0

=
𝑑𝑊(𝑋)

𝑑𝑋
|
𝑋=1

= 0. 
(4-9) 

The general solution of Equation (4-9) is given by Equation (2-4). The buckling analysis 

was presented in details in Section 2.3. The symmetric and antisymmetric mode shapes are 

expressed, respectively, by: 

𝑊𝑗(𝑋) = 1 − 𝑐𝑜𝑠(𝑁𝑗𝑋)

𝑁𝑗 = (𝑗 + 1)𝜋
}   𝑗 = 1, 3, 5, … (4-10) 

𝑊𝑗(𝑋) = 1 − 2𝑋 − 𝑐𝑜𝑠(𝑁𝑗𝑋) +
2𝑠𝑖𝑛(𝑁𝑗𝑋)

𝑁𝑗

𝑁𝑗 = 2.86𝜋, 4.92𝜋, 6.94𝜋, 8.95𝜋, , …

} 𝑗 = 2, 4, 6, …  . (4-11) 

The Buckling modes given in Equations (4-10) and (4-11) form an orthogonal basis. Hence mode 

superposition method can be used to express the beam deflection as a linear combination of 

buckling modes, written as: 

𝑊(𝑋) = ∑𝐴𝑗 𝑊𝑗(𝑋)

∞

𝑗=1

, 
(4-12) 

where 𝐴𝑗  are weight coefficients that determine the contribution of each mode to the transverse 

deflection. 
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4.4. Derivation of kinetic, potential and dissipation energies 

Every stable equilibrium configuration corresponds to an energy minimum. If the loading 

is static with no dissipation of energy, the equilibrium corresponds to a potential energy well. As 

the axial force increases the equilibrium at a certain configuration becomes unstable, thus the beam 

snaps into a different stable configuration with lower energy. The total energy is the sum of the 

potential energy, kinetic energy and dissipated energy. Since the axial loading is quasi-static, 

kinetic energy in the axial direction can be neglected. Therefore the kinetic energy, K̂, can be 

expressed by:  

�̂�(�̂�) =
1

2
∫ 𝑚(𝑥) (

𝜕�̂�(𝑥, �̂�)

𝜕�̂�
)

𝐿

0

2

𝑑𝑥, (4-13) 

where 𝑚(𝑥) is a constant representing the mass per unit length of the undeformed beam and �̂� is 

the time variable. The total potential energy is the sum of the bending and axial compression strain 

energies stored in the deformed elastic element and the potential energy due to external force.  

In general, if a force is applied to a prismatic beam in a gradual manner, i.e. the magnitude 

of the force increases from 0 to 𝑝, and the bar stretches by Δ, when the material behaves in a linear-

elastic manner 𝐹 = 𝑝𝑥/𝛥   then the work of the external force is given by: 

𝑢𝑒 = ∫
𝑝

𝛥
𝑥 𝑑𝑥

𝛥

0

=
1

2
𝑝 𝛥. (4-14) 

Since the force is gradually increasing, the potential energies ub ,uc and up due to bending, 

compression and external applied force, respectively, are given by: 
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𝑢𝑏 =
1

2
𝐸𝐼 ∫ (

𝑑2�̂�(𝑥)

𝑑𝑥2
)

2

𝑑𝑥
𝐿

0

 (4-15) 

𝑢𝑐 =
1

2
𝑆𝛥𝑐 (4-16) 

𝑢𝑝 = −
1

2
�̂�𝛥. 

(4-17) 

The following non-dimensional variables are introduced: 

𝑑 =
𝛥𝐿

ℎ2
, 𝑈(𝑋) =

�̂�(𝑋𝐿)𝐿

ℎ2
, 𝑄 =

𝑡

ℎ
, 𝛿 =

𝛥𝑐𝐿

ℎ2
, 𝑃 =

�̂�𝐿2

𝐸𝐼
  

 

𝑉𝑏 =
𝑢𝑏𝐿

3

𝐸𝐼ℎ2 
, 𝑉𝑐 =

𝑢𝑐𝐿
3

𝐸𝐼ℎ2 
, 𝑉𝑃 =

𝑢𝑝𝐿3

𝐸𝐼ℎ2 
, 𝐾 =

�̂�𝐿3

𝐸𝐼ℎ2 
, 𝑡 = �̂�√

𝐸𝐼

𝑚𝐿4
 (4-18) 

The normalized transverse displacement is expressed in Equation (4-12) as a linear 

combination of all the buckling modes expressed in Equations (4-10) and (4-11). Substituting their 

expressions and differentiating the normalized transverse displacement up to four times gives 

𝑊(𝑋) = ∑ 𝐴𝑗 (1 − 𝑐𝑜𝑠(𝑁𝑗𝑋))

∞

𝑗=1,3,5,…

+ ∑ 𝐴𝑗 (1 − 2𝑋 − 𝑐𝑜𝑠(𝑁𝑗𝑋) +
2 𝑠𝑖𝑛(𝑁𝑗𝑋)

𝑁𝑗
)

∞

𝑗=2,4,6,…

 (4-19 a) 

𝑊′(𝑋) = ∑ 𝐴𝑗 𝑁𝑗𝑠𝑖𝑛(𝑁𝑗𝑋)

∞

𝑗=1,3,5,…

+ ∑ 𝐴𝑗 (−2 + 𝑁𝑗  𝑠𝑖𝑛(𝑁𝑗𝑋) + 2 𝑐𝑜𝑠(𝑁𝑗𝑋))

∞

𝑗=2,4,6,…

 (4-19 b) 

𝑊′′(𝑋) = ∑ 𝐴𝑗 𝑁𝑗
2 𝑐𝑜𝑠(𝑁𝑗𝑋)

∞

𝑗=1,3,5,…

+ ∑ 𝐴𝑗 (𝑁𝑗
2 𝑐𝑜𝑠(𝑁𝑗𝑋) − 2𝑁𝑗 𝑠𝑖𝑛(𝑁𝑗𝑋))

∞

𝑗=2,4,6,…

 (4-19 c) 
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4.4.1. Normalized kinetic energy 

Substituting the non-dimensional variables expressed in Equation (4-18) into the expression 

of the kinetic energy (Equation (4-13)), the normalized kinetic energy can be expressed by 

𝐾 =
1

2
∫(

𝜕𝑊(𝑋, 𝑡)

𝜕𝑡
)
2

𝑑𝑋

1

0

 (4-20) 

Time and space coordinates can be separated using Galerkin discretization method. The transverse 

displacement can be expressed as a linear combination of admissible functions multiplied by 

unknown temporal coordinate: 

𝑊(𝑋, 𝑡) =  ∑𝐴𝑖(𝑡)𝑊𝑖(𝑋)

∞

𝑖=1

 (4-21) 

where 𝐴𝑖(𝑡) are the generalized temporal coordinate and 𝑊𝑖(𝑋) are the buckling mode shapes 

which constitute a set of orthonormal admissible functions. Substituting the buckling mode shape 

expressions in Equations (4-10) and (4-11) into Equation (4-20), the normalized kinetic energy is 

then expressed by: 

𝑊′′′(𝑋) = − ∑ 𝐴𝑗 𝑁𝑗
3 𝑠𝑖𝑛(𝑁𝑗𝑋)

∞

𝑗=1,3,5,…

− ∑ 𝐴𝑗 (𝑁𝑗
3 𝑠𝑖𝑛(𝑁𝑗𝑋) + 2𝑁𝑗

2 𝑐𝑜𝑠(𝑁𝑗𝑋))

∞

𝑗=2,4,6,…

 (4-19 d) 

𝑊(4)(𝑋) = − ∑ 𝐴𝑗 𝑁𝑗
4 𝑐𝑜𝑠(𝑁𝑗𝑋)

∞

𝑗=1,3,5,…

− ∑ 𝐴𝑗 (𝑁𝑗
4 𝑐𝑜𝑠(𝑁𝑗𝑋) − 2𝑁𝑗

3 𝑠𝑖𝑛(𝑁𝑗𝑋))

∞

𝑗=2,4,6,…

 (4-19 e) 
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𝐾 =
1

2
∫ (∑

𝜕𝐴𝑖(𝑡)

𝜕𝑡
𝑊𝑖(𝑋)

∞

𝑖=1

)

2

𝑑𝑋
1

0

  

      =
1

2
( ∑

3

2
(
𝜕𝐴𝑖(𝑡)

𝜕𝑡
)

2

+

∞

𝑖=1,3,5,…

2 ∑ ∑
𝜕𝐴𝑖(𝑡)

𝜕𝑡

𝜕𝐴𝑗(𝑡)

𝜕𝑡

∞

𝑗=3,5,…>𝑖

∞

𝑖=1,3,5,…

+ ∑ (
𝜕𝐴𝑖(𝑡)

𝜕𝑡
)

2
1

12 Ni
3
(2 Ni (6 + 5 Ni

2) + 96 Ni cos(Ni) + 12 Ni cos(2 Ni)

∞

𝑖=2,4,6,…

+ 24 (−4 + Ni
2) sin(Ni) + 3 (−4 + Ni

2) sin(2 Ni))  

+ 2 ∑ ∑
𝜕𝐴𝑖(𝑡)

𝜕𝑡

𝜕𝐴𝑗(𝑡)

𝜕𝑡

∞

𝑗=4,6,…>𝑖

∞

𝑖=2,4,6,…

1

3 Ni
3 (Ni − Nj)Nj

3
(Ni + Nj)

 (3 Ni
2Nj cos(Nj) (4 Ni(Ni

2

− Nj
2) + (4 + Ni

2) Nj
2 sin(Ni)) − 3NiNj

2 cos(Ni)  (−4 Ni
2Nj + 4 Nj

3 + Ni
2(4 + Nj

2) sin(Nj))

+ (Ni
2 − Nj

2)  (3 Nj
2 sin(Ni)  ((−4 + Ni

2) Nj − 2Ni
2 sin(Nj))

+ Ni
3 (Nj

3 + 3 (−4 + Nj
2) sin(Nj))))

+ 2 ∑ ∑
𝜕𝐴𝑖(𝑡)

𝜕𝑡

𝜕𝐴𝑗(𝑡)

𝜕𝑡

∞

𝑗=2,4,6,…

∞

𝑖=1,3,5,…

 
1

Ni
2 (Ni − Nj) Nj

2 (Ni + Nj)
 (2 Ni

4 − 2 Ni
2N

j

2
+ 2 Nj

4

+ Ni
3N

j

2
sin(Ni) − NiNj

4 sin(Ni) + Ni
2 cos(Nj)  (−2 Ni

2 + 2 Nj
2 + NiNj

2 sin(Ni))

− Ni
4 Nj sin(Nj) + Ni

2N
j

3
sin(Nj) − 2 Ni

3Nj sin(Ni) sin(Nj)

− Nj
2 cos(Ni)  (−2 Ni

2 + 2 Nj
2 + 2Ni

2 cos(Nj) + Ni
2Nj sin(Nj)))). (4-22) 

4.4.2. Normalized potential energy 

The normalized midplane stretching and potential energies are expressed by substituting 

Equations (4-8) and (4-18) into Equations (4-5) and (4-15)-(4-17) as: 
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𝑑 =
 𝐿

ℎ2
[𝛥𝑐 + ∫

𝑤′2

2
 𝑑𝑥

𝐿

0

]  

   = 𝛿 +
1

2
∫ (

𝑑𝑊

𝑑𝑋
)
2

𝑑𝑋
1

0

, (4-23) 

𝑉𝑏 =
1

2
 ∫ (

𝑑2𝑊(𝑋)

𝑑𝑋2
)

2

𝑑𝑋
1

0

, (4-24) 

𝑉𝑃 = −
1

2

𝐿3

𝐸𝐼ℎ2 
 
𝐸𝐼𝑃

𝐿2
 
ℎ2𝑑

𝐿
     

                                                             = −
𝑃𝑑

2
 , (4-25) 

        𝑉𝑐 =
1

2
(

𝐿3

𝐸𝐼ℎ2 
) (

𝐸𝐴

𝐿

ℎ2𝛿

𝐿
)

ℎ2𝛿

𝐿
  

                                                             =
6

𝑄2 
𝛿2. (4-26) 

Substituting Equation (4-19) into Equations (4-23) and (4-24), the normalized end shortening and 

bending strain energy are expressed, respectively, as  

 

𝑑 =  𝛿 +
1

2
∫ (

𝑑𝑊

𝑑𝑋
)
2

𝑑𝑋
1

0

  

    =
𝑃𝑄2

12
+

1

2
∫ ( ∑ 𝐴𝑗 𝑁𝑗𝑠𝑖𝑛(𝑁𝑗𝑋)

∞

𝑗=1,3,5,…

1

0

+ ∑ 𝐴𝑗 (−2 + 𝑁𝑗  𝑠𝑖𝑛(𝑁𝑗𝑋) + 2 𝑐𝑜𝑠(𝑁𝑗𝑋))

∞

𝑗=2,4,6,…

)

2

𝑑𝑋 

 



76 
 

   =
𝑃𝑄2

12
+

1

2

[
 
 
 
 

∑
𝑁𝑗

2

2

∞

𝑗=1,3,5,…

𝐴𝑗
2 + ∑

𝐴𝑗
2

2𝑁𝑗
(6𝑁𝑗 + 𝑁𝑗

3 − 2𝑁𝑗 cos (2𝑁𝑗) − 16 sin(𝑁𝑗)

∞

𝑗=2,4,6,…

+ cos(𝑁𝑗) sin(𝑁𝑗) (8𝑁𝑗 − (𝑁𝑗
2 − 4))) + 2 ∑ ∑

(

 
 

−2

∞

𝑗=4,6,8,…>𝑖

∞

𝑖=2,4,6,…

−
1

4𝑁𝑖𝑁𝑗(𝑁𝑖 − 𝑁𝑗)(𝑁𝑖 + 𝑁𝑗) (−2 + 𝑁𝑖 cot (
𝑁𝑖

2 )) (−2 + 𝑁𝑗 cot (
𝑁𝑗

2 ))

× (csc (
𝑁𝑖

2
)
2

csc (
𝑁𝑗

2
)
2

(−2 + 2 cos(𝑁𝑖) + 𝑁𝑖 sin(𝑁𝑖))

× (−2 + 2 cos(𝑁𝑗) + 𝑁𝑗 sin(𝑁𝑗)) (−𝑁𝑖𝑁𝑗 cos(𝑁𝑗) (2 (𝑁𝑖
2 − 𝑁𝑗

2)

+ 𝑁𝑖(4 + 𝑁𝑗
2) sin(𝑁𝑖) ) + 𝑁𝑖𝑁𝑗 cos(𝑁𝑖) (−2𝑁𝑖

2 + 2𝑁𝑗
2 + 2(𝑁𝑖

2 − 𝑁𝑗
2) cos(𝑁𝑗)

+ (4 + 𝑁𝑖
2)𝑁𝑗 sin(𝑁𝑗) + 4(𝑁𝑖

2 − 𝑁𝑗
2) (𝑁𝑗 sin(𝑁𝑖) + 𝑁𝑖(−𝑁𝑗 + sin(𝑁𝑗)))))

)

 
 

𝐴𝑖𝐴𝑗

+ 2 ∑ ∑
2𝑁𝑖

2 − 2𝑁𝑖
2 cos(𝑁𝑗) − 𝑁𝑖

2𝑁𝑗 sin(𝑁𝑗)

𝑁𝑖
2 − 𝑁𝑗

2

∞

𝑗=2,4,6,…

𝐴𝑖𝐴𝑗

∞

𝑖=1,3,5,…

]
 
 
 
 

, (4-27) 
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𝑉𝑏 =
1

2
 ∫ ( ∑ 𝐴𝑗 𝑁𝑗

2 𝑐𝑜𝑠(𝑁𝑗𝑋)

∞

𝑗=1,3,...

1

0

+ ∑ 𝐴𝑗 (𝑁𝑗
2 𝑐𝑜𝑠(𝑁𝑗𝑋) − 2𝑁𝑗 𝑠𝑖𝑛(𝑁𝑗𝑋))

∞

𝑗=2,4,…

)

2

𝑑𝑋 

 

    =
1

2
[ ∑

𝑁𝑗
4

2

∞

𝑗=1,3,5,…

𝐴𝑗
2

+ ∑
𝑁𝑗

4
(2𝑁𝑖(2 + 𝑁𝑖

2) + 4𝑁𝑖 𝑐𝑜𝑠(2𝑁𝑖) + (−4 + 𝑁𝑖
2) 𝑠𝑖𝑛(2𝑁𝑖))𝐴𝑖

2

∞

𝑖=2,4,6,…

+ 2 ∑ ∑
𝑁𝑖

2𝑁𝑗 (2𝑁𝑗 − 𝑁𝑗(2 𝑐𝑜𝑠(𝑁𝑗) + 𝑁𝑗 𝑠𝑖𝑛(𝑁𝑗)))

𝑁𝑖
2 − 𝑁𝑗

2

∞

𝑗=2,4,6,…

∞

𝑖=1,3,5,…

 𝐴𝑖𝐴𝑗

+ 2 ∑ ∑
𝑁𝑖𝑁𝑗

𝑁𝑖
2 − 𝑁𝑗

2 (𝑁𝑗(4 + 𝑁𝑖
2) 𝑐𝑜𝑠(𝑁𝑗) 𝑠𝑖𝑛(𝑁𝑖)

∞

𝑗=4,6,8,…>𝑖

∞

𝑖=2,4,6,…

− 𝑁𝑖(4 + 𝑁𝑗
2) 𝑐𝑜𝑠(𝑁𝑖) 𝑠𝑖𝑛(𝑁𝑗) − 2(𝑁𝑖 − 𝑁𝑗)(𝑁𝑖 + 𝑁𝑗) 𝑠𝑖𝑛(𝑁𝑖) 𝑠𝑖𝑛(𝑁𝑗)) 𝐴𝑖𝐴𝑗]. (4-28) 

4.4.3. Normalized energy dissipated due to friction 

The dry friction between the beam and the walls is modeled using Coulomb model. The 

friction force is considered distributed over the contact surface. The energy dissipated due to 

friction depends on the developed normal pressure as well as contact length and displacement of 

the contact points. Dissipation of energy occurs only when the beam is in contact with the lateral 

walls (i.e. �̂�(𝑥) = 0 or �̂�(𝑥) = ℎ). Hence, the dissipated energy can be expressed as: 
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𝑤𝑓 = ∫ 𝜇𝑘�̂�𝑛(𝑥) �̂�(𝑥) (𝐻(−�̂�(𝑥)) + 𝐻(�̂�(𝑥) − ℎ)) 𝑑𝑥
𝐿

0

, (4-29) 

where 𝐻(𝑥) is the Heaviside function and 𝜇𝑘is the kinetic coefficient of friction. The normalized 

expression of the dissipated energy is expressed as: 

𝑊𝑓 = ∫ 𝜇𝑘𝐹𝑛(𝑋) 𝑈(𝑋) (𝐻(−𝑊(𝑋)) + 𝐻(𝑊(𝑋) − 1))𝑑𝑋 
1

0

 (4-30) 

where 

𝑊𝑓 =
𝑤𝑓𝐿

3

𝐸𝐼ℎ2 
      and     𝐹𝑛(𝑋) =

�̂�𝑛(𝑋𝐿) 𝐿3

𝐸𝐼
. (4-31) 

 

Due to friction, the axial compression force inside the beam was shown to fluctuate in 

Section 2.5. Its expression is given by Equation (2-42) where s0 = 0 and N̂s=s0
 is the compression 

force applied at the end which is equal to p̂. Figure 4-3 displays the variation of the axial force 

inside the beam under different axial forces and corresponding buckling modes. In all cases the 

force variation is less than 1% of the applied load. The relative force variation was computed 

by  𝑅𝑉% = 100 × (N̂ − N̂s=s0
)/N̂s=s0

. Therefore, for simplification of the computation, the axial 

force inside the beam, N̂, will be considered constant and equal to the applied force, p̂. 

The tangential force at contact zones is given by Equation (2-45). Assuming that the axial 

compression force inside the beam is constant and using non-dimensional variables expressed in 

Equations (4-8), (4-18) and (4-31), the friction induced tangential force can be simplified into 

𝜇𝑘𝐹𝑛(𝑋) =
ℎ

𝐿
𝜇𝑘 [

𝑑4𝑊(𝑋)

𝑑𝑋4
+ 𝑃

𝑑2𝑊(𝑋)

𝑑𝑋2
]. (4-32) 
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     (a) 1st buckling mode, �̂�=300 N           (b) 3rd buckling mode, �̂�=1000 N   

     

     (c) 5th buckling mode, �̂�=2000 N           (d) 7th buckling mode, �̂�=2700 N   

Figure 4-3: Variation of the axial force in the beam under different loading forces and 

corresponding buckling shapes. 

Substituting Equations (4-19) in Equation (4-32) the tangential force is expressed in terms of the 

unknown coefficients, 𝐴𝑗 , as: 

𝜇𝑘𝐹𝑛(𝑋) =
ℎ

𝐿
𝜇𝑘 ( ∑ (𝑃 − 𝑁𝑗

2) 𝐴𝑗  𝑁𝑗
2 𝑐𝑜𝑠(𝑁𝑗𝑋)

∞

𝑗=1,3,5,…

+ ∑ (𝑃 − 𝑁𝑗
2) 𝐴𝑗 (𝑁𝑗

2 𝑐𝑜𝑠(𝑁𝑗𝑋) − 2𝑁𝑗 𝑠𝑖𝑛(𝑁𝑗𝑋))

∞

𝑗=2,4,6,…

). (4-33) 
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On the other hand, from Equation (4-4) the displacement gradient over the beam is 

expressed as  

�̂�′(𝑥) = 𝜀 −
1

2
(
𝑑�̂�(𝑥)

𝑑𝑥
)

2

 
(4-34) 

Integrating Equation (4-34) between 0 and the 𝑥 coordinate yields the axial displacement field as 

�̂�(𝑥) = ∫ (
�̂�

𝐸𝐴
−

1

2
(
𝑑�̂�(𝑥)

𝑑𝑥
)

2

)𝑑𝑥
𝑥

0

 
(4-35) 

Using the non-dimensional variables expressed in Equations (4-8) and (4-18), the normalized axial 

displacement field is expressed by: 

𝑈(𝑋) =
𝑃

12
𝑄2𝑋 −

1

2
∫ (∑𝐴𝑗 

𝜕𝑊𝑗(𝑋)

𝜕𝑋

∞

𝑗=1

)

2

𝑑𝑥
𝑋

0

 
 

            =
𝑃

12
𝑄2𝑋 −

1

2
∫ ( ∑ 𝐴𝑗 𝑁𝑗𝑠𝑖𝑛(𝑁𝑗𝑋)

∞

𝑗=1,3,5,…

𝑋

0

+ ∑ 𝐴𝑗 (−2 + 𝑁𝑗  𝑠𝑖𝑛(𝑁𝑗𝑋) + 2 𝑐𝑜𝑠(𝑁𝑗𝑋))

∞

𝑗=2,4,6,…

)

2

𝑑𝑥 
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=
𝑃

12
𝑄2𝑋 −

1

2

[
 
 
 
 

∑
𝑁𝑗

4
(2 𝑁𝑗  𝑋 − sin(2 𝑁𝑗  𝑋)) 𝐴𝑗 

2 +

∞

𝑗=1,3,5,…

∑ (−3 + 4 cos(𝑁𝑖 𝑋)

∞

𝑖=2,4,6,…

−
−2Ni(12 + Ni

2) 𝑋 + 4 Ni cos(2Ni 𝑋) + 32 sin(Ni𝑋) + (−4 + Ni
2) sin(2Ni 𝑋)

4Ni
) 𝐴𝑖 

2

+ 2 ∑ ∑
Ni N𝑗  (Nj cos(Nj X) sin(Ni X) − Ni cos(Ni 𝑋) sin(Nj 𝑋))

Ni
2 − Nj

2 𝐴𝑖𝐴𝑗

∞

𝑗=3,5,7,…>𝑖

∞

𝑖=1,3,5,…

+ 2 ∑ ∑
1

Ni
2 − Nj

2 (− cos(Ni 𝑋) (−2Ni
2 + 2Nj

2 + 2Ni
2 cos(Nj 𝑋)

∞

𝑗=2,4,6,…

∞

𝑖=1,3,5,…

+ Ni
2Nj sin(Nj 𝑋)) + Nj (2Nj + Ni Nj cos(Nj 𝑋) sin(Ni 𝑋)

− 2Ni sin(N𝑖 𝑋) sin(Nj 𝑋)))𝐴𝑖𝐴𝑗 + 2 ∑ ∑

(

 
 

−2

∞

𝑗=4,6,8,…>𝑖

∞

𝑖=2,4,6,…

−
1

4Ni(Ni − Nj)Nj(Ni + Nj) (−2 + Ni cot (
Ni 𝑋
2 )) (−2 + Nj cot (

Nj 𝑋
2 ))

 (csc (
Ni 𝑋

2
)

2

× csc (
Nj 𝑋

2
)

2

(−2 + 2 cos(𝑁𝑖 𝑋) + Ni sin(𝑁𝑖 𝑋))(−2 + 2 cos(𝑁𝑗  𝑋)

+ Nj sin(𝑁𝑗  𝑋)) (−NiNj cos(Nj 𝑋) (2(Ni
2 − Nj

2) + Ni(4 + Nj
2) sin(𝑁𝑖 𝑋))

+ NiNj cos(Ni 𝑋)(−2Ni
2 + 2Nj

2 + 2(Ni
2 − Nj

2) cos(𝑁𝑗  𝑋) + (4 + Ni
2)Nj sin(𝑁𝑗𝑋))

+ 4(Ni
2 − Nj

2) (Nj sin(Ni𝑋) + Ni (−Nj 𝑋 + sin (Nj 𝑋)))))

)

 
 

𝐴𝑖𝐴𝑗

]
 
 
 
 

. (4-36) 
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Similarly to the compression force inside the beam, the axial displacement field can be 

reduced to the first linear term,  P Q2 X/12, and the displacements due to mid-plane rotation can 

be neglected. Therefore the energy dissipated due to friction is expressed as 

𝑊𝑓 = 𝜇𝑘

ℎ

𝐿
 
𝑃𝑄2

12
∫ 𝑋 ( ∑ (𝑃 − 𝑁𝑗

2) 𝐴𝑗  𝑁𝑗
2 𝑐𝑜𝑠(𝑁𝑗𝑋)

∞

𝑗=1,3,5,…

+ ∑ (𝑃 − 𝑁𝑗
2) 𝐴𝑗 

∞

𝑗=2,4,6,…

1

0

× (𝑁𝑗
2 𝑐𝑜𝑠(𝑁𝑗𝑋) − 2𝑁𝑗 𝑠𝑖𝑛(𝑁𝑗𝑋))) (𝐻(−𝑊(𝑋)) + 𝐻(𝑊(𝑋) − 1)) 𝑑𝑋  (4-37) 

Due to the existence of the Heaviside function that ensures that the dissipation of energy 

occurs only at the contact zones, the integral in Equation (4-37) is computed numerically to 

approximate the energy 𝑊𝑓.  

4.5. Frictionless static model 

In this study, the beam is placed adjacent to one of the lateral walls. Hence, it deflects only 

in the direction of the other constraint when it buckles in the first mode. Moreover, in this section, 

the contact between the beam and the lateral constraints is considered frictionless. Therefore, the 

transverse deflection can be expressed as a linear combination of only symmetric modes as 

𝑊(𝑋) = ∑𝐴𝑗 (1 − 𝑐𝑜𝑠(𝑁𝑗𝑋))

∞

𝑗=1

 (4-38) 

where Nj = 2jπ. 

The normalized end shortening, work of external force, bending strain energy and 

compression strain energy are reduced, respectively, to  
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𝑑 = 𝛿 +
1

4
∑Aj

2Nj
2

∞

j=1

 (4-39) 

𝑉𝑃 = −
𝑃

2
[𝛿 +

1

4
∑Aj

2Nj
2

∞

j=1

] (4-40) 

𝑉𝑏 =
1

4
∑Aj

2Nj
4

∞

j=1

 (4-41) 

𝑉𝑐 =
6

𝑄2 
𝛿2 (4-42) 

In order to determine the deflected shape of the beam under axial loading, the potential 

energy is minimized with respect to Aj. Lateral constraints allow the beam to undergo higher 

modes, rather than buckle in the first mode only. The presence of the lateral walls can be modeled 

mathematically as a constraint imposed on the transverse deflection. Therefore, the deflection is 

always bounded by the distance between the walls. The constrained minimization problem of the 

potential energy can be expressed as  

{
𝑀𝑖𝑛 Π(𝐴𝑗)

0 ≤ 𝑊(𝑋) ≤ 1
 (4-43) 

where Π = Vb + 𝑉𝑐 + 𝑉𝑝 is the normalized total potential energy. 

The problem is then solved for the coefficients Aj that will simultaneously generate an 

accurate representation of the deformations at each loading state, determine the balance of 

energies, and the exact mode transition points. Figure 4-4 displays the normalized deflected shapes 

of the beam determined by the presented model under increasing axial load up to the fifth mode. 

The dimensions and the material properties of the beam used for all the theoretical results are 

summarized in Table 3-1. Under increasing load the beam deflects until it touches the opposite 

constraint at a single point (𝑃 = 89), it flattens (𝑃 = 390) and then snaps into the third mode (𝑃 = 
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410). Flattening of the contact zones can be also seen before the transition to the fifth mode (𝑃 

=1020). 

 

Figure 4-4: Deflected shape for increasing axial load. 

4.5.1. Force-control formulation 

In this section the beam shown in Figure 4-1 is subjected to a gradually-increased axial 

force p̂. Axial shortening Δc due to the axial load can be expressed as 

𝛥𝑐 =
�̂�𝐿

𝐸𝐴
 (4-44) 

Substituting Equation (4-18) into Equation (4-44) yields  
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𝛿 =
𝑃

12
𝑄2 (4-45) 

Inserting Equation (4-45) into Equations (4-39) - (4-42), the non-dimensional midplane stretching 

and potential energies are expressed as 

𝑑 =
𝑃

12
𝑄2 +

1

4
∑Aj

2Nj
2

∞

j=1

 (4-46) 

𝑉𝑃 = −
𝑃2

24
𝑄2 −

𝑃

8
∑ Aj

2Nj
2

∞

j=1

 (4-47) 

𝑉𝑏 =
1

4
∑Aj

2Nj
4

∞

j=1

 (4-48) 

𝑉𝑐 =
𝑃2

24
𝑄2 (4-49) 

Therefore, the total potential energy can be expressed in terms of P and Aj as 

Π =
1

4
∑Aj

2Nj
4

∞

j=1

−
𝑃

8
∑Aj

2Nj
2

∞

j=1

 (4-50) 

Figure 4-5 displays the model predictions and experimental measurements, from the setup 

shown in Figure 3-1, of the force-displacement response of the beam under incremental quasi-

static axial force loading. A comparison with the study developed by Chai (1998) is presented in 

Figure 4-6. The study was summarized in section 2-4. Chai’s model can adequately capture the 

system stiffness but the mode transitions are incrementally overestimated and the model becomes 

increasingly inaccurate as the number of buckled waves increases. The developed static model, 

which is based on the minimization of the potential energy, predicts better the loading forces and 

displacements at which transitions occur and has a better agreement with the experimental results.  



86 
 

  

Figure 4-5: Theoretical and experimental Force-displacement response under force-control 

loading. 

 

Figure 4-6: Comparison between the presented static model and Chai’s model (Chai 1998). 
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4.5.2. Displacement-control formulation 

In this section the beam shown in Figure 4-1 is subjected to a gradually-increasing axial 

displacement 𝛥. The axial force �̂� due to the prescribed axial displacement can be expressed as 

�̂� =
𝐸𝐴

𝐿
(𝛥 −

1

2
∫ (

𝑑𝑤

𝑑𝑥
)
2

𝑑𝑥
𝐿

0

) (4-51) 

Substituting Equation (4-18) into Equation (4-51), the non-dimensional axial force is expressed by 

𝑃 =
12

𝑄2
(𝑑 −

1

4
∑Aj

2Nj
2

∞

j=1

)  (4-52) 

Substituting Equation (4-52) into Equations (4-39) - (4-42), the non-dimensional midplane 

stretching and potential energies are expressed as 

𝛿 = 𝑑 −
1

4
∑Aj

2Nj
2

∞

j=1

 (4-53) 

𝑉𝑃 = −
6

𝑄2
(𝑑2 −

𝑑

4
∑Aj

2Nj
2

∞

j=1

) (4-54) 

𝑉𝑏 =
1

4
∑Aj

2Nj
4

∞

j=1

 (4-55) 

𝑉𝑐 =
6

𝑄2 
(𝑑2 −

𝑑

2
∑Aj

2Nj
2

∞

j=1

) (4-56) 

Therefore the total potential energy can be expressed in terms of d and Aj as 

Π =
1

4
∑Aj

2Nj
4

∞

j=1

−
3

2

𝑑

𝑄2
∑Aj

2Nj
2

∞

j=1

 (4-57) 
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Theoretical and experimental force-displacement responses of the beam subjected to 

incremental quasi-static axial displacement loading are displayed in Figure 4-7. The response 

predictions from the developed model correlate with the actual observed experimental behavior.  

 

Figure 4-7: Theoretical and experimental force-displacement response under displacement-

control loading. 

4.6. Dynamic analysis 

Snap-through buckling from one mode into a higher or lower mode configuration is 

induced when the total energy transitions through an unstable path to a lower value represented by 

a different stable geometric configuration. The difference in energies is released as kinetic energy. 

A dynamic model was then developed to investigate the released kinetic energy as well as 

accelerations of the beam during transitions. The presented model was developed based on the 

force-control formulation presented in Section 3.5.1, but displacement-control can also be used for 

this study.  
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In this analysis friction is neglected. Therefore, the total energy at any equilibrium state is 

the sum of the kinetic and the potential energies. The normalized kinetic energy, K, is expressed 

in Equation (4-22) and the total potential energy, Π, is the sum of the potential energy due to 

external force and the axial compression and bending strain energies expressed, respectively, in 

Equations (4-25), (4-26) and (4-28). The constrained minimization problem of the total energy can 

be expressed as 

{
𝑀𝑖𝑛 K + Π

0 ≤ 𝑊(𝑥) ≤ 1
 (4-58) 

The beam is subjected to a linearly increasing and decreasing load, �̂�, such that  

�̂�  = |
|
�̂�𝑚𝑎𝑥

�̂�

𝑇/2
                    𝑖𝑓  0 ≤ �̂� ≤ 𝑇/2

�̂�𝑚𝑎𝑥 (2 −
�̂�

𝑇/2
)         𝑖𝑓  𝑇/2 ≤ �̂� ≤ 𝑇

   (4-59) 

where T is the loading period, �̂�𝑚𝑎𝑥 is the maximum applied load and �̂� is the time coordinate. The 

variation of the axial loading force, �̂�, with respect to time, �̂� is displayed in Figure 4-8. 

 

Figure 4-8: Variation of axial loading force, �̂�. 

0 T/2 T
0
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Figure 4-9: Dynamic force-displacement response under force-controlled cyclic loading. 

Figure 4-9 displays the simulated dynamic force-displacement response of the beam under 

cyclic force loading. The loading period, T, is 10 s and the maximum applied force,  �̂�𝑚𝑎𝑥, is 3500 

N. Results show that, during unloading, the beam returns to a lower buckling mode through a 

different equilibrium path. The symbols I-III, III-V, V-VII, VII-V, V-III and III-I denote the 

transitions between the buckling modes; for example I-III denotes the transition from the first into 

the third mode. The normalized axial displacement, 𝑑, kinetic energy, 𝐾,  and accelerations, 𝐴, 

over a loading cycle are presented in Figure 4-10. The normalized acceleration is given by 

𝐴 =
𝑚 𝐿4

ℎ𝐸𝐼
 �̂� =

𝜕2𝑊(𝑋, 𝑡)

𝜕𝑡2
 (4-60) 

where �̂� =  𝜕2�̂�(𝑥, �̂�)/𝜕�̂�2 is the transverse acceleration. Snap-through transitions are witnessed 

by the jumps in the axial displacement response and the spikes in the kinetic energy and 

accelerations. 
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(a) 

  

(b) 

Figure 4-10: (a) Displacement response, (b) released kinetic energy and (c) generated 

accelerations during one loading cycle. 
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Figure 4-10 (cont’d) 

 

(c) 

The deflected shapes of the beam before and after each transition are shown in Figure 4-

11. It can be noticed that the deflected beam is not symmetric and the snap does not always occur 

at the same location. Figure 4-12 displays the distance, 𝑊𝑅 = 𝑊𝑓−𝑊𝑖, that the beam travels at 

each transition where  𝑊𝑖 and 𝑊𝑓 represent, respectively, the deflected shapes before and after 

transitions. The normalized values and locations of the maximum relative displacement at 

transitions are presented in Table 4-1. Opposite transitions occur at the same location with opposite 

maximum displacement sign except for I-III and III-I. For example, in transitions V-VII and VII-

V, maximum displacements are located at 0.37 X-coordinate, but with opposite sign. Similarly, 

transitions III-V and V-III have maximum displacements located approximately at 0.68 X-

coordinate. However, transitions I-III and III-I occur at different locations (0.21 and 0.5, 

respectively) with the same maximum displacement sign. 
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  (a) before transition I-III.         (b) after transition I-III. 

  

  (c) before transition III-V.         (d) after transition III-V. 

 

  (e) before transition V-VII.         (f) after transition V-VII. 

Figure 4-11: Deflected shapes before and after each mode transition. 
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Figure 4-11 (cont’d) 

 

  (g) before transition VII-V.         (h) after transition VII-V. 

  

  (i) before transition V-III.         (j) after transition V-III. 

 

  (k) before transition III-I.         (l) after transition III-I. 
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(a) Relative displacement, WR, at transition I-III. 

 

(b) Relative displacement, WR, at transition III-V. 

 

(c) Relative displacement, WR, at transition V-VII. 

Figure 4-12: Relative displacement, 𝑾𝑹 = 𝑾𝒇 − 𝑾𝒊, at mode transitions where 𝑾𝒊 and 𝑾𝒇 

represent, respectively, the deflected shapes before and after transitions. 
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Figure 4-12 (cont’d) 

 

(d) Relative displacement, WR, at transition VII-V. 

 

(e) Relative displacement, WR, at transition V-III. 

 

(f) Relative displacement, WR, at transition III-I. 
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Table 4-1: Value and location of the maximum displacement at transitions. 

Mode transitions 

Maximum displacement 

during transitions 

Normalized X-coordinate of 

the maximum displacement 

I-III 0.997 0.21 

III-V -0.984 0.69 

V-VII 1 0.37 

VII-V -1 0.37 

V-III 0.895 0.67 

III-I 0.942 0.5 

 

The points located at 0.21, 0.37, 0.5 and 0.69 exhibit the maximum displacements during 

mode transitions. Their accelerations over the loading cycle are displayed in Figure 4-13. Results 

show that the accelerations generated during loading are much higher than unloading. Moreover, 

the accelerations generated during the transitions III-V and V-VII are comparable (Figure 4-13 (b) 

and (d)) but higher than I-III. The location X = 0.37 snaps only in the transitions between the fifth 

and seventh mode and the location X = 0.21 provide low accelerations during mode switching. 

Therefore locations X = 0.5 and X = 0.69 are better candidates to attach the energy scavenger to 

the bilaterally constrained beam. 
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(a) Accelerations at X=0.21. 

 

(b) Accelerations at X=0.37. 

Figure 4-13: Non-dimensional accelerations at the locations (a) X = 0.21, (b) X = 0.37, 

(c) X = 0.5 and (d) X = 0.69 during a loading cycle of 10 s. 
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Figure 4-13 (cont’d) 

 

(c) Accelerations at X=0.5. 

 

(d) Accelerations at X=0.69. 
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4.7. Summary 

The post-buckling response of a bilaterally constrained beam subjected to axial force and 

displacement was theoretically investigated using energy methods. In contrast to previous studies 

that are based on geometric elliptic integrations, this study was based on the minimization of 

energy under constraints. The theoretical model presented in this work shows that energy methods, 

based on the physics of the device, significantly improve understanding of the system behavior 

and improve the correlation with respect to experimental measurements. The model accounts for 

longitudinal deformations and friction between the beam and its lateral constraints.  

Using the Galerkin discretization method, the deflection is expressed as a linear 

combination of the buckling eigen modes. The total energy is then minimized under the 

confinement constraint in order to determine the unknown coefficients multiplying the buckling 

modes. The static response of the beam was investigated using force- and displacement-control 

formulations. The force-displacement response as well as the deflected shapes under axial loadings 

were determined. Results show that the model is able to adequately predict the beam geometry at 

every loading stage, including the flattening behavior just before the snap buckling transitions, and 

simultaneously determines the mode transition events. 

A dynamic analysis based on a force-control formulation was carried out to investigate the 

released kinetic energy as well as accelerations of the beam during transitions. The beam was 

subjected to a cyclic triangular axial force and the constrained minimization problem of the total 

energy was solved. It was shown that the beam returns to lower buckling configurations through a 

different equilibrium path. Moreover, the buckling transitions create high kinetic energy and 

acceleration spikes. However, the location of maximum acceleration differs from one transition to 

another. Hence, placement of the piezoelectric energy harvester should be carefully chosen 
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depending on the application. The dissipated energy due to friction was formulated but not 

included in the analysis because the computation becomes very expensive. Future developments 

will address the optimization of the algorithm to investigate friction effects. 
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CHAPTER 5: ENERGY HARVESTING AND SENSING BASED 

ON QUASI-STATIC MECHANICAL ENERGY 

CONCENTRATORS AND TRIGGERS 3 

 

5.1. Introduction 

Many real world-physical processes occur at very low frequencies and acceleration levels. 

Examples of these processes comprise, among others, temperature and pressure variation between 

day and night as well as bone healing and spinal fusion in biomedical engineering. These processes 

induce a stress/strain response that occur at frequencies lower than 1 mHz. Monitoring the 

evolution of quasi-static strain is important and could provide significant benefits. For instance, 

the history of mechanical loading inside different structures could be used to predict the life 

expectancy of the structure.  This chapter presents a battery-less sensor design that can self-power 

by harvesting energy directly from the quasi-static events being sensed.  

The technical challenge is illustrated for a piezoelectricity driven self-powered sensor 

whose generic architecture is shown in Figure 5-1 (a). The sensor comprises of a piezoelectric 

transducer that powers a minimal set of electronic modules by harvesting energy from ambient 

strain variations. Typically the sensor electronics comprises of: (a) a rectification module to extract 

energy from the transducer; (b) a triggering module that detects events of interest; and (c) a data-

logging module that records events either on a non-volatile memory or using remote data 

                                                           
3 Results shown in this chapter were published in Lajnef et al. (2013, 2014a, 2014b, 2014c, 

2014d and 2014e). 
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transmission. When the piezoelectric transducer is excited quasi-statically (as shown in Figure 5-

1 (b) by the triangular wave) the load voltage generated by the transducer is approximately constant 

as shown in Figure 5-1 (b). Assuming a nominal sized piezoelectric transducer, the power levels 

that can be scavenged from mHz strain-signal would be in the order of pico-watts (Sarkar et al. 

2013). Unfortunately, the majority of the charge generated by the transducer is lost as leakage 

through the electronics (for example through diode leakage) and the residual energy is insufficient 

to drive the rest of the sensor modules (triggering and data-logging modules). 

 

Figure 5-1: (a) System architecture of a generic piezoelectricity driven self-powered sensor; and 

(b) adverse effect of electronic leakage on energy scavenging for quasi-static excitation. 

 

Figure 5-2: (a) System architecture of the proposed self-powered sensor comprising of 

mechanical energy concentrators; and (b) reduction of electronic leakage during the impulsive 

energy release of the energy concentrators. 

This chapter presents the use of mechanical energy concentrators and triggers as a front-

end to circumvent the challenge of quasi-static self-powering. The architecture of the proposed 

sensor is shown in Figure 5-2 (a) and its principle of operation is illustrated for a simplified loading 

condition in Figure 5-2 (b). The role of the mechanical energy concentrator is to harvest potential 
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energy over a long time-span and release the stored energy as bursts and impulses as shown in 

Figure 5-2 (b). The impulsive nature of the energy-release not only results in piezoelectric output 

voltage levels that are significantly higher than the triggering but also reduces the effect of energy 

leakage as shown in Figure 5-2 (b). 

This chapter is organized as follows: Section 5.2 presents the principle of operation of the 

proposed self-powered sensor and Section 5.3 describes the design and characterization of the 

front-end mechanical energy concentrator. Section 5.4 briefly describes the sensor electronics used 

for self-powered data-logging and present measurement results obtained from fabricated 

prototypes. 

5.2. Principle of operation 

The physics and principle of operation of the sensor is illustrated in Figure 5-3 (a)-(c) using 

a bilaterally constrained elastic beam which is subjected to a quasi-static force F. Figure 5-3 (d) 

shows an energy diagram schematic that indicates the potential energy stored in the elastic beam 

as the magnitude of the quasi-static force (F) is increased. Note that under quasi-static loading 

conditions no energy is dissipated as kinetic energy or heat except during snap buckling events.  

Assuming that the beam is initially in an energy configuration denoted by state A, increasing the 

magnitude of the input signal shifts the configuration to a higher potential energy state B. The state 

B corresponds to the position of the beam shown in Figure 5-3 (a). Because the beam is bilaterally 

constrained (at point Y), increasing the magnitude of the input signal (F) buckles the beam to 

another state shown in Figure 5-3 (b). On the energy-diagram shown in Figure 5-3 (d), the 

mechanical buckling results in a negative-energy slope at state B, where part of the stored potential 

energy is released instantly as kinetic energy, before the beam buckles to a lower energy state C. 
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If a piezoelectric transducer is attached to the structure, part of the kinetic energy is transferred to 

the transducer which is then scavenged for sensing and computation. The impulsive nature of the 

energy-release not only results in higher piezoelectric output voltage (due to the high frequency 

transition) but also significantly reduces the effect of electronic leakage. 

 

Figure 5-3: Principle of operation of the proposed self-powered sensor: (a)-(c) different buckling 

states of a bilaterally constrained elastic beam; (d) energy diagram illustrating how the released 

potential energy induces hot-electrons in a floating-gate transistor channel. 

The engineering challenge is to achieve an optimal tradeoff between the energy released 

during buckling (which is related to the material properties of the beam, the end boundary 

conditions and the lateral constraints) and the energy required for sensing and computation. One 

possible way to optimize this trade-off is to exploit the physics of mechanical buckling and the 

physics of piezoelectricity driven impact-ionized hot electron injection. This principle is also 

illustrated using the energy-band diagram in Figure 5-3 (d) where the piezoelectric transducer 

converts the released kinetic energy into high-energy electrons (or hot-electrons) in a floating-gate 

transistor (Huang at al. 2010). If the energy of some of these electrons (with the right momentum 

vector) exceeds the energy barrier (3.2eV) of the silicon, silicon-di-oxide interface (as shown in 
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Figure 5-3 (d)), these electrons surmount the barrier and get trapped onto a floating-gate. The 

concentration of the trapped electrons can be measured to estimate the number of times the 

magnitude of the input signal exceeded a mechanical threshold (for instance L1 or L2 in Figure 5-

3(d)). Huang at al. 2010 showed that the piezoelectricity driven impact ionized hot-electron 

injection (p-IHEI) process can be initiated at pico-Joule energy density, which is well matched to 

the energy released during mechanical buckling of a nominally sized elastic beam. The beauty of 

this physics-based sensing approach is that it completely eliminates the need for voltage regulation, 

energy storage, analog-to digital converters (ADCs), micro-controller units (MCUs) and random-

access memories (RAMs) and hence can be used to push the fundamental limits of self-powered 

sensing using sub-Hz signals. 

5.3. Mechanical energy concentrators and triggers 

Mode jumping between stable configurations is related to a partial release of the strain 

energy stored in the compressed beam. The energy drop is converted primarily into kinetic energy 

allowing the beam to move from one buckled configuration to another more stable configuration 

under the increasing axial loading. The snap-through response between the equilibrium positions 

induces an acceleration, which creates an input excitation to an energy harvesting oscillator 

transducer. Thus, the low-rate strain variations in the axial direction of the beam are transferred 

into high-rate transverse acceleration that constitutes the input for the transducer element.  

The design of the mechanical energy concentrator follows the test setup described in 

Section 3.2.1. The capability of the system to harvest energy under quasi-static excitations was 

experimentally investigated. In order to harvest the kinetic energy released during snap-through 

transitions, A PVDF Piezoelectric energy-harvester was attached at the buckled beam’s mid-span 
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perpendicular to its longitudinal axis (see Figure 3.1) using an off-the-shelf 5 minute epoxy (J-B 

weld 5 min epoxy). The harvester was configured in a cantilever configuration and only one 

piezoelectric element was used for the design. However, multiple transducer elements with 

different properties as well as other piezoelectric materials (PZT, Microfiber Composites, etc.) can 

be used for enhancing the energy transfer. The snap-through buckling of the axially loaded beam 

between equilibrium positions induces acceleration at the base of the cantilever, thus transferring 

the low-rate strains in the buckled beam’s axial direction into high-rate accelerations input for the 

harvester. The post-buckling behavior of the axially loaded bilaterally constrained beam was 

described in Chapter 3.The properties of the PVDF film are detailed in Table 5-1. The length and 

tip mass of the oscillator were varied to modify its natural frequency. The polycarbonate beam was 

subjected to displacement-controlled low-frequency cyclic loading tests. The input frequency was 

varied to investigate its effect on the levels of the extractable energy. A 10 MΩ - impedance 

oscilloscope was used to record the output voltage of the piezoelectric harvester.  

Table 5-1: Properties of the piezoelectric vibrator. 

Properties (Piezoelectric PVDF / Substrate ) 

Elastic Modulus 2 GPa / 2.4 GPa 

Density 1780 kg/m3/ 1390 kg/m3 

Thickness 28 µm / 205 µm 

Width 12 mm / 16 mm 

Piezoelectric Constant (d31) 23e-12m/V 

Capacitance 2.8nF 

Electrical permittivity 115 e-12F/m 
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Figure 5-4 displays the variation of the axial force in the compressed beam and the output 

piezoelectric voltage of a full loading/unloading cycle. The first voltage oscillation is caused by 

the first contact between the beam and the rigid constraints, which correspond to the first buckling 

mode. The other successive voltage output events are generated by the snap-through of the beam 

at mode transitions. The high-rate events induce free-vibration in the piezoelectric element. Thus, 

the output frequency is the natural frequency of the piezoelectric energy harvester controlled by 

the PVDF film stiffness and the lumped mass. This figure also shows the frequency up-conversion 

capability of the mechanism where the frequency of the input displacement is 0.05 Hz and the 

output frequency of the generated voltage is 6.667 Hz. 

 

Figure 5-4: Piezoelectric output voltage (output frequency = 6.6667Hz) generated for a full load 

cycle at 0.05 Hz. 
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Figure 5-5 shows the computed energy generated by a cantilever piezoelectric PVDF beam 

measured across a 10 MΩ resistor. The natural frequency of the vibrator was varied from 10 to 90 

Hz by modifying the effective length of the PVDF film and the tip mass. The input deformation 

(axial displacement) rate was varied by increasing the loading/unloading cycle period from 6 s to 

150 s, which corresponds to lowering the frequency of the input deformation from 0.16 Hz to 0.006 

Hz. The obtained results confirm that energy can be transferred at extremely low-rate deformation 

input. The input frequency has little influence on the levels of harvested energy. The energy is 

mainly controlled by the natural frequency and electro-mechanical properties of the scavenger. 

The levels of harvested energy as well as the output signal frequency can be tuned (optimized) by 

controlling the piezoelectric element and the constrained beam properties. It should be restated 

that other piezoelectric materials (PZT, MFC) can be used for enhanced energy transfer. 

 

Figure 5-5: Harvested energy for different piezoelectric elements and input loading frequencies. 
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In a second set of experiments the constrained beam was loaded past its fifth buckling mode 

(Φ5) and the attained equilibrium position was selected as the initial configuration for this set of 

tests. Loading cycles were then applied between a maximum load past the seventh mode (Φ7) 

equilibrium position and a minimum load below the third stable configuration (Φ3). The applied 

axial load and the voltage output from the PVDF oscillator are shown in Figure 5-6 as function of 

time. In the figure, the labels Φ3 to Φ7 indicate the positions of snaps or mode transitions. The 

input axial load was varied at a frequency of 0.11 Hz. At this very slow rate, the voltage response 

is driven by the natural frequency of the piezoelectric beam (free vibration between transitions), 

tuned at 6 Hz for this test. This test clearly shows that the system can be initially centered 

(positioned) so as to harvest energy from compressive as well as from tensile input global loading 

deformations. 

 

Figure 5-6: Frequency up-conversion principle for alternating loading between the third and the 

seventh modes at 0.11 Hz. The fifth mode was used as the initial equilibrium position. 
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5.4. Self-powered piezo-floating-gate sensing and data logging 

The circuit level schematic and the principle of operation of a linear p-IHEI based data 

logger is shown in Figure 5-7. The circuit consists of a floating-gate pMOS transistor Mfg whose 

source is driven by a constant current source Iref that is powered by either a piezoelectric transducer 

or by some other energy source Vdda. Note that both the energy sources are isolated by a diode, 

which allows Vdda to supersede the signal generated by the piezoelectric transducer. Also note that 

a full-bridge rectifier (formed by four diodes) is used for extracting energy from the transducer 

and drive the constant current source Iref. The polysilicon gate of the pMOS transistor is electrically 

insulated by silicon-dioxide (hence the name “floating-gate”); therefore, any electron injected onto 

the gate is retained for a long period of time (8 bits precision for 8 years) (Diorio et al. 1996). 

Electrons are injected onto the floating-gate using an impact-ionized hot-electron injection (IHEI) 

process that involves applying Vsd > 4.2V (in 0.5-μm CMOS process) across the source and the 

drain terminal. The large electric field near the drain of the pMOS transistor creates impact-ionized 

hot-electrons. When the energy of these electrons exceeds the gate-oxide potential barrier 

(≈3.2eV) they can get injected onto the floating-gate. IHEI current, Iinj, in a pMOS transistor is 

dependent on the transistor source current Is, the source to- drain voltage Vsd and the gate-to-drain 

voltage Vgd across the transistor. This dependence can be expressed in functional form as: 

𝐼𝑖𝑛𝑗 =  𝑓(𝐼𝑠, 𝑉𝑠𝑑, 𝑉𝑔𝑑) (5-1) 

where f (.) is an arbitrary function that could be empirically determined (Huang et al. 2011). 

However, the circuit in figure. 5-7 (a) achieves stable and ultra-linear injection using a negative 

feedback loop formed by the opamp A and the floating-gate transistor Mfg. The source current is 

held constant at Iref, which ensures that the source-to-gate voltage Vsg remains constant during 

injection. When switch SP is open, the feedback is enabled and opamp A ensures that the source-



112 
 

to-drain voltage Vsd is held constant to Vref. Thus, according to Equation (5-1) the injection current 

Iinj remains constant. The amount of charge injected onto the floating-gate and hence the decrease 

in floating-gate voltage Vfg is proportional to the duration for which the source current Is is 

activated and SP is open. This can be expressed as: 

Δ𝑉𝑓𝑔 =
1

𝐶𝑇
∫ 𝐼𝑖𝑛𝑗𝑑𝑡

𝑇

0

=
𝐼𝑖𝑛𝑗

𝐶𝑇
𝜏(𝑇) 

(5-2) 

where 𝜏 is the duration of injection and 𝐶𝑇 is the total floating-gate capacitance, which includes 

the capacitance Cfg, tunneling capacitance and other parasitic capacitances associated with the 

floating node. The change in floating-gate voltage Δ𝑉𝑓𝑔 could be measured by closing the switch 

SP, as shown in Figure 5-7 (b), which breaks the feedback loop by shorting the other terminal of 

Cfg to ground. Because the source current Iref is constant, Δ𝑉𝑠 = Δ𝑉𝑓𝑔  which is read-out through a 

unity-gain buffer. Figure 5-8 shows the measured response of a linear injector where the source 

voltage Vs is first initialized to 4.3V (using FN tunneling), Vref = 4.8V and Iref = 30nA. It shows 

that the response follows the linear model almost throughout the range. The piezoelectric 

transducer is emulated by applying a 50ms long pulse signal (amplitude Vdd =6.5V) after which 

the switch SP is turned ON and the source voltage Vs is measured. Figure 5-8 shows that the change 

in Vs is linear with respect to the number of applied pulses. The deviation from the linear injection 

model occurs at the end points of the operating voltage and is due to the finite operating range of 

the amplifier A. This shows that the linear injector has a linear range of almost 4V. The resolution 

of the linear injector was measured to be greater than 13 bits (Huang et al. 2011). 
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Figure 5-7: Schematic of a linear p-IHEI based data logging circuit: (a) when operating in the 

data logging mode; and (b) when operating in a data read-out mode (Lajnef et al. 2014b). 
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Figure 5-8: Measured output range and the linearity for linear injection circuit (Sarkar et al. 

2013). 

 

Figure 5-9: Micrograph of a fabricated prototype integrating an array of linear floating-gate 

injectors along with digital command-control and programming circuits (Lajnef et al., 2014b). 
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Figure 5-9 shows the micrograph of a p-IHEI based data logging circuit which was 

fabricated in a 0.5 μm CMOS process. The prototype integrates an array of linear floating-gate 

injectors that can be programmed using on-chip high-voltage charge pumps. Programming, 

selection and read-out of the injectors can be controlled using digital command and control, which 

is implemented on-chip by an integrated digital processing module. 

Two sets of experiments were conducted to validate the behavior of the described quasi-

static sensing functionalities. In the first runs, the system was cycled between only two equilibrium 

positions (loading then unloading). The actuator, which applied the external force, was moved at 

a frequency of 0.1 Hz and then 0.5 Hz while the induced oscillations at the PVDF beam were 

measured at 12.82 Hz. Figure 5-10 shows the applied input deformation (for a 0.1 Hz loading) and 

the rectified voltage output generated by the vibrating piezoelectric element. It is noted from the 

levels of generated voltage that the released energy is higher during loading when the applied force 

(added potential) is being increased. The combined piezoelectric-floating-gate event counting 

device was calibrated to detect and record voltages higher than 4V. The impact ionized hot-

electron injection process at the floating gate memory cell is activated only when the voltage 

exceeds the preset threshold. For each event the gate is thus active for about 0.2 seconds. The 

voltage variations at the floating gate was measured periodically and is shown in figures 5-11 and 

5-12. The results in Figure 5-11 were recorded for cyclic input loading events applied at 0.1 Hz 

while the measurements in Figure 5-12 were obtained for an input loading applied at 0.5 Hz. It is 

observed that the system clearly implements a linear injector allowing to directly relate the number 

of applied events to the measured voltage variation at the floating gate output. 
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Figure 5-10: Measured output piezoelectric voltage generated for loading cycles at 0.1 Hz, 

showing the system’s ability for energy generation under quasi-static loading. 

 

Figure 5-11: Recorded variations of the voltage at the analog floating gate for input cyclic 

loading events at 0.1Hz. 
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Figure 5-12: Recorded variations of the voltage at the analog floating gate for input cyclic 

loading events at 0.5 Hz. 

In the next set of experiments the restrained beam was initially loaded past its fifth buckling 

mode which was selected as the starting configuration. Loading cycles were then applied between 

a maximum load past the seventh mode equilibrium position and a minimum load below the third 

stable configuration. The mode shapes are shown in Figure 3-2. The applied axial load, axial 

deformation, and the rectified voltage output from the PVDF transducer are shown in Figure 5-13 

as function of time. The input load varies at a frequency of about 0.1 Hz. At this rate the voltage 

response is driven by the natural frequency of the piezoelectric harvester. For this case the PVDF 

beam was tuned to 6 Hz. The combined piezoelectric-floating- gate event counting device was 

again calibrated to detect and record voltages higher than 4 V. For these specific experimental 

runs, the preset threshold is exceeded only during the snap-buckling from the third to the fifth 
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mode as clearly shown in Figure 5-13. This translates into a calibrated system that records only 

these transitions. The difference in voltage output between transitions is due to the levels of stored 

strain energy in the system before the transition events and can be tuned and calibrated as shown 

experimentally in Chapter 3. Figure 5-14 shows the recorded voltage variations at the linear 

injector. The sensor clearly implements a linear recording of events allowing direct 

correspondence between the number of applied events and the measured sensor output voltage. 

 

 

Figure 5-13: Illustration of the energy conversion principle under cyclic loading at 0.1 Hz for the 

bilaterally constrained beam configuration. 
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Figure 5-14: Recorded variations of the voltage at the analog floating gate for input cyclic 

loading events at 0.1 Hz. 

5.5. Summary 

This chapter presented a novel self-powered sensing mechanism that combines the physics 

of mechanical buckling in bilaterally constrained elastic beams with the physics of piezoelectricity 

driven hot-electron injection. During the snap-through events, part of the stored strain energy is 

released as kinetic energy. The piezoelectric transducer that is attached to the buckling element 

converts the released kinetic energy into high-energy electrons in a floating-gate transistor. The 

concentration of the trapped electrons can be measured to determine the number of times the 

magnitude of the input signal exceeded a mechanical threshold. 

Integrating mechanical energy concentrators and triggers with the piezo-floating gate 

sensor allows for harvesting the released energy as bursts and impulses. The impulsive nature of 
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the energy-release not only results in piezoelectric output voltage levels that are significantly 

higher than the triggering but also reduces the effect of energy leakage. 

The piezo-floating-gate data logging is used as a counting device. The impact ionized hot-

electron injection process at the floating gate memory cell is activated only when the voltage 

exceeds the preset threshold. The levels of the generated voltage differ from one mode transition 

to another. Therefore the system can be calibrated to record some specific events. The system 

implements a linear injector allowing to directly relate the number of applied events to the 

measured voltage variation at the floating gate output.  

 As shown in Chapter 3, the input frequency has little influence on the occurrence of the 

snap-buckling events. Therefore, the generation and levels of energy bursts are independent of the 

input frequency. Results confirm that the energy can be transferred at extremely low-rate 

deformation input. Moreover, the mechanism allows for frequency up-conversion from the low 

input frequency (in the order of mHz) to the natural frequency of the piezoelectric scavenger 

determined by its stiffness and the attached tip mass. 

As a result, the proposed sensor was demonstrated to self-power at mHz frequencies and 

with the potential to scale down to μHz frequencies, a feature that is not possible with other self-

powered sensing approaches. 
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CHAPTER 6: CONCLUSIONS 

 

6.1. Research contributions 

6.1.1. Post-buckling response of bilaterally constrained beams using an energy method 

The models developed based on geometric assumptions and geometric elliptic integrations 

are able to capture the system stiffness. However, they fail to accurately predict the levels of forces 

and displacement at which transitions occur, especially as the number of buckled waves increases. 

The developed static model, which is based on the minimization of the potential energy, is able to 

adequately predict the mode transition events as well as the beam geometry at every loading stage, 

including the flattening behavior just before the snap buckling transitions. 

6.1.2. Dynamic response and transitions in multiple bifurcation points mechanical energy 

concentrators 

This research presented a study of the mechanical energy concentrators’ dynamic response 

under cyclic axial loading. The analysis was based on the minimization of the total energy under 

the prescribed boundary conditions and constraints. The developed model assesses the dynamic 

force-displacement response of the system as well as the released kinetic energy and generated 

transverse accelerations at buckling mode transitions.  

6.1.3. Energy transfer at quasi-static excitations using mechanical energy concentrators 

This research presented a technique to harvest energy at very low frequencies (less than 1 

Hz) using the snap-through behavior between the multiple equilibrium positions of axially-loaded 

bilaterally-constrained beams. The approach relies on the high-rate motions that are generated 
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during the transitions between the system’s multiple potential energy wells. The input is not a 

vibration motion but a slow quasi-static deformation. Unlike the developed vibration-based energy 

harvesters, the proposed mechanism converts the slow-rate input strain into high-rate accelerations 

generated at buckling mode transitions. During these transitions part of the stored potential energy 

is released as kinetic energy. The role of the piezoelectric energy harvester is to convert the 

released kinetic energy into voltage that can be stored or used for computation and sensing. 

6.1.4. Self-powered sensing at micro Hertz 

This research introduced a novel technique for self-powered sensing at very low 

frequencies by integrating mechanical energy concentrators and triggers with piezo-floating gate 

sensors. Piezo-floating-gate data logging is used as a counting device that records the number of 

times the magnitude of the input signal exceeded a mechanical threshold. Since the post-buckling 

response of bilaterally constrained beams is independent of the input frequency, the same levels 

of energy bursts are always generated regardless the input frequency. Therefore the proposed 

sensor is able to self-power at µHz frequencies, a feature that is not possible with other self-

powered sensing approaches.  

6.2. Conducted work 

The post-buckling response of an axially loaded bilaterally constrained beam was 

investigated experimentally, numerically and theoretically. It was shown that due to lateral rigid 

walls, the elastica is able to undergo higher buckling modes as the axial load increases. Under 

variable axial loading the beam transitions between the different equilibrium states of the system. 

The transitions between the buckling modes always occur at the same axial force and displacement 

levels. Furthermore the behavior is independent of the excitation frequency. However, the response 
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of the system is highly dependent of its parameters such as thickness and length of the beam, 

modulus of elasticity, gap between the rigid walls, position of the beam and boundary conditions. 

These parameters affect the axial displacements and forces at which transitions occur and the 

accelerations generated during buckling mode switching. The effect of these parameters was 

numerically investigated using an FE model. It was shown that placing the beam adjacent to one 

of the lateral walls with fixed-end supports generates higher accelerations. Furthermore the 

accelerations amplify by increasing the thickness, Young’s modulus or gap between the walls, or 

by decreasing the beam length. However, the combination between the length and one of the other 

parameters may have the opposite effect. Therefore to reduce the beam length, the thickness, 

Young’s modulus and gap should be upper-bounded in order to allow the development of higher 

modes and hence the generation of high accelerations. 

Although tuning the parameters of the system affects dramatically the accelerations 

generated in snap-through transitions, the number and the spacing between these events was shown 

to be non-sensitive to the studied parameters. In order to control the number and the spacing 

between the mode transitions, multiple slender beams were stacked into a system in a parallel 

configuration. It was shown that any modification of the beams’ thicknesses, Young’s moduli and 

gaps between the walls affects the locations of the transitions and the overall stiffness of the 

system. More important is that the number and the spacing between these events can be controlled 

by tuning the aforementioned parameters without sacrificing the levels of the accelerations. 

A theoretical model using energy methods was developed to investigate the post-buckling 

response of a bilaterally constrained beam subjected to axial force or displacement. The model 

accounts for longitudinal deformations and friction. The total energy was minimized under the 

confinement constraint in order to determine the deflected shape, transitions states and energy 
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balance at transitions.  The static response of the beam was investigated using force- and 

displacement-control formulations. Results show that the model is able to adequately predict the 

beam geometry at every loading stage, including the flattening behavior just before the snap 

buckling transitions, and simultaneously determines the mode transition events. 

The released kinetic energy as well as accelerations of the beam during transitions were 

studied using a dynamic analysis. It was shown that the beam returns to lower buckling 

configurations through a different equilibrium path. Moreover, the buckling transitions generate 

high kinetic energy and acceleration spikes. However, the location of the maximum acceleration 

differs from one transition to another. Hence, placement of the piezoelectric energy harvester 

should be carefully chosen depending on the application.  

During the snap-through events, part of the stored strain energy is released as kinetic 

energy. The piezoelectric transducer that is attached to the buckling element converts the released 

kinetic energy into high-energy electrons in a floating-gate transistor. Integrating mechanical 

energy concentrators and triggers with the piezo-floating gate sensor allows for harvesting the 

released energy as bursts and impulses. The impulsive nature of the energy-release not only results 

in piezoelectric output voltage levels that are significantly higher than the triggering but also 

reduces the effect of energy leakage. 

The piezo-floating-gate data logging was used as a counting device. The impact ionized 

hot-electron injection process at the floating gate memory cell is activated only when the voltage 

exceeds the preset threshold. The levels of the generated voltage differ from one mode transition 

to another. Therefore the system can be calibrated to record specific events. The concentration of 

the trapped electrons can be measured to determine the number of times the magnitude of the input 

signal exceeded a mechanical threshold. Energy can be transferred at extremely low-rate 
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deformation input. The generation and levels of energy bursts are independent of the input 

frequency. The mechanism allows for frequency up-conversion from the low input frequency (in 

the order of mHz and μHz) to the natural frequency of the piezoelectric scavenger determined by 

its stiffness and the attached tip mass. 

6.3. Future research 

6.3.1. Optimization of the piezoelectric energy scavenger 

The levels of the harvestable energy are independent of the input frequency. However, they 

highly depend on the natural frequency and electro-mechanical properties of the scavenger. The 

piezoelectric energy scavenger used in the experiments was made of polymer polyvinylidene 

fluoride (PVDF) for its low cost and ease to install. However, PVDF materials have low 

mechanical-to-electrical conversion coefficients. Other piezoelectric materials such as Lead 

Zirconate Titanate (PZT) and Microfiber Composites can be used to enhance the energy transfer. 

Dimensions of the piezoelectric energy scavenger and the attached lumped mass should be 

optimized in order to maximize the energy harvested during snap-through events. 

6.3.2. Optimization of mechanism’s parameters for different strain ranges 

The parametric analysis performed in this work provides confidence that the mechanism 

can be scalable for embedment within structures. Strains present the input to the mechanical energy 

concentrators and triggers. Therefore, dimensions and material properties of the bilaterally 

constrained beam as well as the gap between the lateral rigid walls should be tuned such that 

transitions occur under the applied level of strain. A design manual or chart can be developed to 

determine the optimized values of the parameters for different strain ranges. It would be of interest 

if the mechanism is installed in a pre-compressed configuration such that it transitions between a 
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higher and lower buckling mode as the global input strain alternates between compression and 

traction. 

6.3.3. Optimization of the algorithm to include friction effects 

The theoretical results shown in this work do not include the effect of friction on the post-

buckling dynamic response of the bilaterally constrained beam. It would be of interest to 

investigate the effect of friction on the post-buckling behavior as well as the levels of the released 

energy and generated accelerations. Even though the formulation of the energy dissipated due to 

friction was presented in section 4.4.3, the computation was very costly due to the coupling 

between numerical constrained minimization and numerical integration. A simplification or 

approximation of the dissipated energy would alleviate the minimization problem resolution. 
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Table A-1: Cases in parametric studies. Case 1 corresponds to the experimentally evaluated 

system. Parameter values in bold text indicate changes from the values in Case 1. 

 BC 1 BC 2 E L t h0 Beam Position 

 

= 0 free; 

=1 fixed 

= 0 free; 

=1 fixed 

(MPa) (mm) (mm) (mm) Side/Center 

Reference 

case 1 

1 1 2250 250 2.34 4 Side 

Case 2 0.75 1 2250 250 2.34 4 Side 

Case 3 0.5 1 2250 250 2.34 4 Side 

Case 4 0 1 2250 250 2.34 4 Side 

Case 5 1 0.75 2250 250 2.34 4 Side 

Case 6 1 0.5 2250 250 2.34 4 Side 

Case 7 1 0 2250 250 2.34 4 Side 

Case 8 0.5 0.5 2250 250 2.34 4 Side 

Case 9 0 0 2250 250 2.34 4 Side 

Case 10 1 1 3375 250 2.34 4 Side 

Case 11 1 1 4500 250 2.34 4 Side 

Case 12 1 1 6750 250 2.34 4 Side 

Case 13 1 1 2250 212.5 2.34 4 Side 

Case 14 1 1 2250 187.5 2.34 4 Side 

Case 15 1 1 2250 125 2.34 4 Side 

Case 16 1 1 2250 76.2 2.34 4 Side 
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Table A-1 (cont’d) 

Case 17 1 1 2250 250 1.56 4 Side 

Case 18 1 1 2250 250 1.17 4 Side 

Case 19 1 1 2250 250 0.78 4 Side 

Case 20 1 1 2250 250 2.34 4.83 Side 

Case 21 1 1 2250 250 2.34 5.66 Side 

Case 22 1 1 2250 250 2.34 7.32 Side 

Case 23 1 1 2250 250 2.34 4 Center 

Case 24 1 1 3375 250 2.34 4 Center 

Case 25 1 1 4500 250 2.34 4 Center 

Case 26 1 1 6750 250 2.34 4 Center 

Case 27 1 1 2250 212.5 2.34 4 Center 

Case 28 1 1 2250 187.5 2.34 4 Center 

Case 29 1 1 2250 125 2.34 4 Center 

Case 30 1 1 2250 250 1.56 4 Center 

Case 31 1 1 2250 250 1.17 4 Center 

Case 32 1 1 2250 250 0.78 4 Center 

case 33 1 1 2250 250 2.34 4.83 Center 

Case 34 1 1 2250 250 2.34 5.66 Center 

Case 35 1 1 2250 250 2.34 7.32 Center 

Length and thickness variation 

Case 36 1 1 2250 212.5 1.56 4 Side 
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Table A-1 (cont’d) 

Case 37 1 1 2250 212.5 1.17 4 Side 

Case 38 1 1 2250 212.5 0.78 4 Side 

Case 39 1 1 2250 187.5 1.56 4 Side 

Case 40 1 1 2250 187.5 1.17 4 Side 

Case 41 1 1 2250 187.5 0.78 4 Side 

Case 42 1 1 2250 125 1.56 4 Side 

Case 43 1 1 2250 125 1.17 4 Side 

Case 44 1 1 2250 125 0.78 4 Side 

Case 45 1 1 2250 76.2 1.56 4 Side 

Case 46 1 1 2250 76.2 1.17 4 Side 

Case 47 1 1 2250 76.2 0.78 4 Side 

Length and gap variation 

Case 48 1 1 2250 212.5 2.34 4.83 Side 

Case 49 1 1 2250 212.5 2.34 5.66 Side 

Case 50 1 1 2250 212.5 2.34 7.32 Side 

Case 51 1 1 2250 187.5 2.34 4.83 Side 

Case 52 1 1 2250 187.5 2.34 5.66 Side 

Case 53 1 1 2250 187.5 2.34 7.32 Side 

Case 54 1 1 2250 125 2.34 4.83 Side 

Case 55 1 1 2250 125 2.34 5.66 Side 

Case 56 1 1 2250 125 2.34 7.32 Side 
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Table A-1 (cont’d) 

Case 57 1 1 2250 76.2 2.34 4.83 Side 

Case 58 1 1 2250 76.2 2.34 5.66 Side 

Case 59 1 1 2250 76.2 2.34 7.32 Side 

Length and Young’s modulus variation 

Case 60 1 1 3375 212.5 2.34 4 Side 

Case 61 1 1 4500 212.5 2.34 4 Side 

Case 62 1 1 6750 212.5 2.34 4 Side 

Case 63 1 1 3375 187.5 2.34 4 Side 

Case 64 1 1 4500 187.5 2.34 4 Side 

Case 65 1 1 6750 187.5 2.34 4 Side 

Case 66 1 1 3375 125 2.34 4 Side 

Case 67 1 1 4500 125 2.34 4 Side 

Case 68 1 1 6750 125 2.34 4 Side 

Case 69 1 1 3375 76.2 2.34 4 Side 

Case 70 1 1 4500 76.2 2.34 4 Side 

Case 71 1 1 6750 76.2 2.34 4 Side 
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