GIIN

N

IS
),

1961



This is to certify that the

thesis entitled
On Sign Patterns of Branch Matrices and
R-Graph Realization

presented by

David Paul Brown

has been accepted towards fulfillment
of the requirements for

Ph.D Electrical Engineering

degree in

210 ) (Al

Major professor

o169

LIBRARY

Michigan State
University




PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6001 c/CIRC/DateDue.p65-p.15




e



ABSTRACT

ON SIGN PATTERNS OF BRANCH MATRICES
AND R-GRAPH REALIZATION

by David Paul Brown

This thesis deals with properties of sign patterns of the entries in
the coefficient matrix of the branch (node-pair) equations, branch matrix,
for any graph, and the realization of a given matrix as the branch matrix
of an R-graph.

-In the second section, properties of sign patterns are classified as
to those fixed by: (1) element orientations per se; (2) element orientations
determined by their being contained in subgraphs. The main result in
(1) is that if the branch orientation of a tree of a part is changed, then
there is a row and column sign change of the entries in the corresponding
branch matrix for diagonal element matrix, and conversely. This result
is based on the relationship between the s-orientation of any two f-segs
and the s-orientations of the corresponding common elements. " In (2), a
subgraph consisting of any two branches, bi and bj’ contained in a path-in-
tree is considered. . The fact that the p- and e-orientation of bi and bj
coincide is shown to imply that the s-orientation of the elements common
to the f-segs corresponding to bi and bj are the same, and conversely.

A set of pairs of branches, each pair having coincident p- and e-orientations
is shown to imply that all branches of the set are contained in a path-in-
tree with coincident p- and e-orientations. . The situation when the p- and
e-orientations do not coincide is also considered. The specific character

of a subgraph of the tree corresponding to a branch matrix containing a

principal submatrix with all positive or all negative entries is then
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obtained. The complete tree form is determined for the case of all
positive or all negative entries in the branch matrix.

The necessary and sufficient conditions on a given matrix such that
it is realizable as an R-graph consisting of the union of a complete graph
and Lagrangian tree are determined in the fourth section. Formulas for
corresponding element values and a process to determine the orientation
of the tree are also given. It is found that the conditions for realization
are fixed by the tree form associated with the branch matrix. Using the
tree transformation matrix of the third section, necessary and sufficient
conditions for realization are determined for an arbitrary tree. The
detailed form of the conditions for realization are given for a tree in the
form of a path. For the case of a five vertex complete graph, the

conditions fixed by the three tree forms are given in detail.
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I. INTRODUCTION

The problem of determining restrictions on matrices with constant
entries such that they are coefficient matrices of some system of
equations determined from a graph has been considered by many investi-
gators.

A method of realizing symmetric matrices with constant entries as
R-networks has been given by W. Cauer [1]. Here the requirement that
the given matrix be positive-semidefinite leads to networks containing
ideal transformers. The well-known condition of dominance, discussed
by Burington [2], is sufficient for synthesis of R-networks' without ideal
transformers. For networks without ideal transformers, Cederbaum
[3, 4] has shown that a necessary condition for synthesis of short circuit
admittance matrices is that they are paramount. This result is based on
properties discussed by Talbot [5]. As a method of realizing matrices,
Cederbaum [6, 7] has given a procedure to decompose a matrix into a
triple product of matrices, where the center matrix, which is diagonal,
is pre- and post-multiplied by a unimodular matrix and its transpose
respectively. Slepian and Weinberg [8] have summarized this area of
network synthesis and raised many questions. A recent discussion of
synthesis of networks without ideal transformers has also been given by
Guillemin [9].

The problem of characterizing the patterns of the signs of the entries
of certain types of matrices has recently been considered. In particular,
using matrix algebra, Cederbaum [7] has determined some elementary
sign properties of the entries in a matrix triple product, the center
matrix, which is diagonal, being pre- and post-multiplied by a unimodular
matrix and its transpose respectively. These results have been associ-

ated with the realization of loop-resistance matrices by So [10]. Some






discussion of sign patterns relevant to synthesis has been given by

Slepian and Weinberg [8]. Biorci and Civalleri [11] have recently
developed a procedure to realize a restricted class of short circuit
admittance matrices based on forming the graph from the signs of the
entries in the given matrix.

In this thesis the matrix triple product )&ej /= [Gij] is con-
sidered, where )Jf =[ W )J] is the fundamental f-seg matrix discussed
by Reed [12, 13] and )&e is an element matrix containing constant entries.
Although the properties of the f-seg matrix are the same as the cut set
matrix [14], the definitions of the corresponding subgraphs, i.e. the
seg [15] and the cut set [14], are logically different. Because of the
clarity of the seg concept, it is used in the following discussion.

The objective of Section II is to determine the relationship between
the sign pattern of the branch matrix, )j )& e)j ', and the orientation of
the elements of the corresponding connected graph P(part). It is also
shown that the sign pattern of the branch matrix or principal submatrices
of the branch matrix is fixed by the orientation of elements of specific
types of subgraphs.

In Section IV, the necessary and sufficient conditions on a matrix
such that it is a branch matrix corresponding to an R-graph are determined.
Equations to calculate the element values associated with the graph are
also given. The conditions for realization associated with a branch matrix
are fixed by the possible tree forms of the part. Therefore, the totality
of necessary and sufficient conditions can be obtained by cataloging the
conditions fixed by each tree form. These results are obtained using the
tree transformation matrix of Section III.

A list of symbols, which are used repeatedly, is given in the

Appendix.




II. SIGN PATTERN OF BRANCH MATRIX

2.1 Introduc_t_i‘pr}

The sign pattern of )Jiée)j ' is investigated in terms of its

dependence on the orientation of elements in a graph. The following
theorems, which are based on the seg and f-seg matrix, indicate that the
elements in the cotree of a graph do not effect the sign pattern and that
the branch orientations are the controlling factors. The operation of
cross-sign change, Definition 2.1, is used to describe the general pattern
of signs as a function of branch orientations. Some results not directly
related to the sign patterns have been included as corollaries.

The orientation of any two branches, bi and bj' is shown to fix the
sign of the i, j entry of ’J/&e )3 ' for )&e diagonal with non-negative
entries. This result is used to determine the signs of the entries in the
branch matrix as a function of the orientation of pairs of branches which
are contained in a path-in-tree and conversely. For the case of a path

and Lagrangian tree, the complete sign pattern is determined.

Definition 2.1: A cross-sign change of a matrix a is the operation

of changing the sign of each (non-zero) entry in the i-row and i-column.

Theorem 2.1: For any matrix ({_ = [aij] , consider a sequence
n

of K different cross-sign changes. If a ij # 0, i # j, then the number of

entries in awhich change sign as a result of the K cross-sign changes is

2K(n-K).

Proof: Each cross-sign change changes the sign of 2(n-1) entries

of ({ . Entries common to two cross-sign changes are changed in sign

twice, i.e. they do not change sign. The number of entries in i-row and




i-colurnn common to K cross-sign changes is x; + x, + .

.+ xK_1
where xi, i=1, 2, ..., K-1, is the number of entries in i-row and
i-column common to one cross-sign change. Since x, = 2,
1
K-1
Z x, = 2(K-1).
1 1

i=

Therefore, the number of entries in the i-row and i-column which change
sign as a result of K cross-sign changes is 2(n-1) - 2(K-1) = 2(n-K).
Since there are K similar patterns, the total number of entries which

change sign is the sum of 2(n-K) for each row and column, that is 2K(n-K).

Corollary 2.1: Consider any matrix a: [a..] . Ifa, >0 (a, <0),
—_— ij'n ij ij
i #j, then the maximum possible number of negative (positive) off-diagonal

entries as a result of cross-sign changes is

n?

2

if n is even

if n is odd.

Proof: It is only necessary to find the maximum of 2K(n-K), since
this is the number of off-diagonal entries which are negative (positive)

as a result of K cross-sign changes. Since %(ZK[n-K]) = 2n-4K = 0,

1
K =2 if nis even and ol if n is odd. Substituting these values of
max. 2 s

K in 2K(n-K) gives the conclusion.

2.2 Sign Pattern Fixed by Certain Elements

For any tree T, Si and S, are any two f-segs defined by branches

bi and bj respectively, and )J i [ )j ] where = [Sij]'

Theorem 2.2.1: If and only if S, and Sj contain common elements
Lokl L Ll i
(chords) C, then the X-vertex set of C when C is in Si is the X- or

NX-vertex set of C when C is in Sj.






Proof: Sufficiency: Suppose C contains only one chord c;, then c,

is an X-NX element in Si and also in S, and the theorem applies.
Suppose C contains two or more chords €. By Theorem 15 [15],

bi is in the f-circuit defined by ¢, and so is bj.

k

Consider the vertex segregation defined by bj. By Theorem 14 [15],
there is a path-in-tree in the X-vertex set (NX-vertex set) between any
two X-vertices (any two NX-vertices) which contains only X-vertices
(NX-vertices)., Because Si is an f-seg, bj is an X-element (NX-element),
hence there is a path-in-tree containing only NX-vertices (X-vertices)
and does not contain bj°

Suppose the X-vertex set of C in'Si is neither the X- nor NX-vertex
set of C in Sj' Then there is a path-in-tree between a vertex in the X-set
of Si and a vertex in the NX-set of Sj and this path does not contain both
bi and b, By the initial argument in the proof of this theorem, there is
a path-iix-tree between the same pair of vertices which contains bi and b,.
This implies a circuit in tree and contradicts the hypothesis.

Necessity: Assume one element of C, ¢, , is not common to Si and

k’
S, i.e., if ck is in Si, it is not in Sj' Hence ck is not an X-NX-element
in Sj. Since this conclusion is independent of the X or NX labeling of

vertices, the theorem follows.

Corollary 2.2.1: All elements of C have the same (opposite) bi and

b, defined S-orientation.

Proof: The X-vertices corresponding to bi are all X- or all NX-

vertices corresponding to bj. Therefore the conclusion follows from the

definition of S-orientation.

Theorem 2.2.2: If and only if the S, and S, orientations of all
i

elements of C are the same (opposite), then

s. s, =+1 (s, s, =-1)
ip Jp ip Jp

where p corresponds to elements of C and i # j.



Proof: There are four and only four cases for elements in C as

shown in Figure 1.

e e
S S. S
i J 1 J

s. s, = +1 s, s, =
1p )P 1p Jp
e e
p - P

S S S, S
i ] 1 J

Fig. 1--Possible orientation patterns.

Hence, the theorem follows.

Corollary 2.2.2.1: Suppose Si and Sj have at least two common

elements. - If

(1) s. s. =+1(=-1), thens, s, =+1 (=-1
) 1p Jq ( ) 1q Jp ( )
(2) s. s, =+1(=-1), thens, s, =+1 (=-1
ip iq JP J4 )

where p and q correspond to elements of C and i # j.

Proof: By Theorem 2.2.2, either s, s, =+l ands, s, =+1 or
- ip Jp 1q

Jq
s, s, =-lands, s, = -1, However, in either case s, 5. 8, s,
1p Jp 1q J)q ip Jp 19 Jq
Grouping the terms as (s. s, s. s, ) =+1, (1) of corollary follows.
ping (1pJq)(1qu) (1) y
The second part of the corollary follows from the following:

(

)l ) = +1.

S. S, S, s,
ip 19 JP J4

Corollary 2.2.2.2: The determinant of any submatrix of )3 of

the form

=+1






0
]
a|
)]

ip iq ip jp
or is +1, -1 or O.

S, S, S. S,
JP Jq Jq 1q

L -

Proof: Either Si and S, have common elements or not. If they have

common elements, all entries in the submatrices of hypothesis could be
non-zero. Since each entry in the submatrices is +1 or -1, each product

s. s, -s, s, ands, s, -s_ s  can have a value of +1 or -1, By
ip Jq 19 Jp 1p 1q JP Jq
Corollary 2.2.2.1, the products associated with either submatrix are

is

equal. Hence, for this case, the value of the determinants is 0,
For all other cases one or more of the entries in the submatrices
is zero. Since the remaining entries can only have the value +1 or -1,

the conclusion follows.

Corollary 2.2.2.3: Let )&e of///ﬁe J ' = [G,.] be diagonal
ij

with positive entries,

(1) If and only if the Si and Sj orientations of all elements of C are

the same (opposite), then
Gij >0 (<0), i #j

(2) G.. > 0.
11

Proof: Since G, = s, s, g , the corollary follows from Theorem
1) P 1P JP pP

Theorem 2.2.3: If bi is a branch of any tree T of P, then corres-

ponding to a change in the orientation of b, there is a cross-sign change
= ]
of )&T JJ&e J(j) :

Proof: If the orientation of b, is changed, then every entry in the
i

i-row of )j changes sign. Therefore, every non-zero entry in the i-row






of ’J’&e also changes sign. Hence, in the product (J)& e)/J ' every

non-zero entry in the i-row and i-column changes sign.

Corollarv 2.2, 3: IG | is invariant through changes in orientation

of branches of T.

Proof: Direct consequence of Theorem 2.2, 3 and Definition 2. 1.

Theorem 2.2.4: If bi is a branch of any tree of P, then correspond-

ing to a change in the orientation of bi there is a cross-sign change of
/&T = J/&EJ ', )&e diagonal, and conversely.

Proof: The first part of the theorem follows from Theorem 2.2.3

for the case of diagonal )& .

"For i # j, entries gpp which appear in G1_) p 1p Jpgpp correspond
to elements which are common to Si and Sj’ and therefore by Corollary
2.2.1 all these elements have S-orientations which are the same or
opposite. In addition, from Theorem 2.2.2, Sipsjp = +1 for all p or -1
for all p. Therefore, if Gij is changed in sign, then each sipsjp in the
defining sum must change sign. For this to be the case, the orientation
of e1ther b1 or b. must have been changed. A change in the sign of the
entries in the i-row and i-column of /& implies a change in the orien-

tation of bi since Sip’ for all p, are the only entries of )J common to

all terms.

2.3 Sign Pattern Fixed by Certain Subgraphs

Theorem 2.3.1: Any two branches bi and bj of a tree are contained

in some path-in-tree PT.

Proof: Let the vertices of bi and b, be v-l, v.._.andv. , Vv
j i

i2 jlv 2
respectively. Since the tree is connected there is a path between any

peir of vertices. In particular, there is a path p with end vertices Vi






and ij' Either p contains both branches, one branch or neither branch,

In the first case the theorem is true. Hence assume both branches are

not contained in p. Since an element is a path, there is a path with end
vertices v, and v._ and a path with end vertices v,, and v.,_. These

il i2 )l j2
paths do not form a circuit. Therefore from properties of a path there

is a path-in-tree containing both branches.

Theorem 2.3.2: If and only if for some path-in-tree the p- and

e-orientations of bi and bj coincide, then the S, and Sj orientations of
i

all elements of C are the same.

Proof: Sufficiency: By the definition of f-seg orientation and

hypothesis, bi and bj have e-, p- and s-orientations which coincide.
Let Ki be the compliment of bi in tree which contains the X-vertex of bi'
By definition of f-seg, the vertices of Ki are X-vertices of Si' There
is one and only one path-in-tree, P', between the X-vertex of bj and the
NX-vertex of bi' This implies that every vertex of P' is an X-vertex of
Sj. Therefore every X-vertex of Si is an X-vertex of Sj. This implies
the conclusion.

Necessity: By hypothesis bi and bj are e-oriented from X- to NX-
vertex sets of Si and Sj respectively. By Theorem 15 [15] bi and bj are
in the f-circuit defined by any element of C. Therefore bi and bj are
contained in a path-in-tree P'. Let the elements of P' be p-oriented
opposite the f-circuit orientation. Therefore bi and bj are p-oriented

from the X- to NX-vertex sets of Si and Sj respectively. Hence the con-

clusion follows.

Corollary 2.3.2: With the same hypothesis,

s. s, =+1
1p JpP

where p corresponds to elements of C and i ¥ j.
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Proof: Direct consequence of Theorem 2.2.2 and Theorem 2. 3. 2.

Theorem 2.3.3: If bi and bj have coincident p- and e-orientations
in some P

P

T then bi and bj have coincident p- and e-orientations in every

T

Proof: By hypothesis, bi and bj are contained in some path-in-
tree PT. From properties of a path, there is a subpath of PT’ PTl’
which contains bi and bj as end elements. Every path-in-tree which

The theorem follows from the method

contains b. and b, contains P___.
i j Tl

of p-orienting the elements,

Theorem 2.3.4: Consider a set of r branches Br. If and only if

each pair bi and b, of Br have coincident p- and e-orientations for some
J
path-in-tree, then the branches Br are contained in a path-in-tree with

coincident p- and e-orientations.

Proof: Sufficiency: It is only necessary to show that the branches

}3r are contained in a path-in-tree since then the hypothesis fixes the
p- and e-orientation of the conclusion.

By induction on r. For r = 2, the hypothesis and conclusion are
the same. Therefore consider r = 3, where the branches of Br are b,,
b, and b;. Suppose b;, b, and b; are not contained in a path-in-tree.
Therefore by hypothesis and properties of paths, each branch is con-
tained in a path-in-tree and these paths form a star with common vertex
v Also by hypothesis, e-orienting any branch, b,, fixes the p- and
e-orientations of the other branches. Thus the p- and e-orientation
arrows of b, and b; are pointing toward or away from Ve By Theorem
2.3.3, this is true for every path containing b, and b, and for every path
containing b; and b;. This implies that the p- and e-orientations of b,
and bs, for any path-in-tree containing b, and b; do not coincide. The

conclusion follows for r = 3.
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Suppose the theorem is true for r = k, and the branches of Bk are

by, b, . . ., bk. -If the theorem is not true for r = k+ 1, bk+ 1 is

contained in a path-in-tree which has a terminal vertex v, that is one of

the non-terminal vertices of every path-in-tree containing by, b,, . . . , b

"
By hypothesis, e-orienting any branch, b,, fixes the p- and e-orientations

of all branches. The p- and e-orientation of the branches, b and bi’

k+1
bi FETIRII b, are pointing toward or away from v, for b 7(+].Dk 1
This implies a contradiction of hypothesis for the p- and e-orientation of
the branches bk £ and bj’ j=1i,i+1, . . ., k, do not coincide for any
path-in-tree.

The necessity follows from the fact that a path-in-tree which con-
tains the branches by, b,, . . ., br’ has subpaths containing any pair of

branches bi and bj.

Corollary 2.3.4: Consider any v-vertex part and tree T. With the

same hypothesis and r = v - 1, T is a path whose branches have coinci-

dent p- and e-orientations.

-Proof: Direct consequence of Theorem 2. 3. 4.

Theorem 2.3.5: Consider )&e diagonal with non-negative entries.

If and only if )&T = [Gij] contains a principal submatrix of order r with
positive entries, then r branches of T define f-segs with common
elements and are contained in a path-in-tree with coincident p- and e-

orientations.

Proof: Sufficiency: Any entry in the submatrix of hypothesis is of

the form s, s, g .

P 1P JP PP

toS. and §, i # j, and therefore, all non-zero products Sipsjp are +1 or
1 J

Terms in this sum correspond to elements common

all are -1. Since the sum is positive and g >0, s. s, =+1 for at least
PP — ip Jp
one p. In addition, Corollary 2.3.2 implies that the branches bi and bj
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defining Si and Sj respectively, are contained in some path-in-tree with
coincident p- and e-orientations. This statement is true for all pairs of
branches associated with off-diagonal entries of the submatrix of hypothe-
sis, i.e. bi and bj for l_<_i <j< 2, 3, ..., r. Therefore by Theorem
2,3.4, the conclusion follows.

Necessity: All entries in ,& associated with the r branches of

T

hypothesis have the form s, s, g . Since all f-segs defined by the
P 1p JP PP
branches have common elements, each entry is non-zero. By hypothesis

and Corollary 2. 3.2, all non-zero Sipsjp= +1., Thus the conclusion

follows since g > 0.
PP —

Corollary 2.3.5: Consider )&e diagonal with non-negative entries.
If and only if for )&T-‘— [Gij]’ Gij > 0, then

(1) T is a path

(2) all branches of T define f-segs with common elements and have

coincident p- and e-orientations.

Proof: This follows from Theorem 2.3.5.

Theorem 2.3.6: If and only if for some path-in-tree the p- and

e-orientations of bi and bj are not coincident, then the Si and Sj orien-

tations of all elements of C are opposite.

Proof: This is the contrapositive form of Theorem 2. 3. 2.

Corollary 2.3.6: With the same hypothesis,

s, s.= -1
ip JpP

where p corresponds to elements of C and i # j.

Proof: Direct consequence of Theorem 2.2.2 and Theorem 2.3.6.
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Theorem 2.3.7: If bi and bj do not have coincident p- and e-orien-
tations in some PT' then bi and b, do not have coincident p- and e-orien-

tations for every PT.

Proof: Similar to Theorem 2.3.3, for PT contains a subpath PTl

which has b, and bj as end elements. Since every path-in-tree which
i

contains bi and bj contains PTl’ the conclusion follows,

Theorem 2.3.8: If and only if each pair bi and bj of Br do not have
coincident p- and e-orientations for some path-in-tree, then there exist
paths-in-tree, P such that

(1) each P; contains one and only one branch of Br

(2) some one vertex v, is a terminal vertex of each P,

(3) the e-orientation of the bi are all toward or all away from v

Proof: Sufficiency: It is only necessary to show that (1) and (2) of

the conclusion are satisfied for then the hypothesis fixes the e-orientations
of the conclusion.

By induction on r. For r = 2, the hypothesis and conclusion are the
same. Therefore consider r = 3 where the branches of Br are b;, b, and
bs. Suppose the branches b;, b, and b; do not satisfy (1) and (2) of the
conclusion. The only situation that can exist is that b;, b,, and b; are
contained in a path-in-tree. By hypothesis, arbitrarily e-orienting any
branch, b,, fixes the p- and e-orientation of b, and b;. Since b, and b,
have the same p- and therefore e-orientations, the hypothesis is contra-
dicted. Therefore the conclusion follows for r = 3,

Suppose the theorem is true for r = k and that the branches of B

k

are by, b, . . ., bk' If the theorem is not true forr = k + 1, bk +1

is contained in one of the P, By hypothesis, e-orienting any branch, b,
fixes the p- and e-orientations of all branches. The p- and e-orientation

of b, and b are the same for b, not b, or b . This fact contra-
i k + i k

1 +1
dicts the hypothesis. Hence the conclusion follows.
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Necessity: By hypothesis, any pair of branches bi and bj is contained
in a path-in-tree containing v The e-orientation of bi and bj are both
toward or both away from Vo Therefore from the method of p-orienting

the elements of a path the conclusion follows,

Corollary 2.3.8: Consider any v-vertex part and tree T. With the

same hypothesis and r = v - 1, T is a Lagrangian tree whose branches are

e-oriented toward or away from the common vertex.

Proof: Direct consequence of Theorem 2.3.8.

Theorem 2.3.9: Consider )&e diagonal with non-negative entries.

If and only if }& T = [Gij] contains a principal submatrix or order r with
negative entries, then r branches of T define f-segs with common elements

and satisfy (1), (2) and (3) of Theorem 2. 3. 8.

Proof: Sufficiency: Similar to Theorem 2.3.5 for any entry of the

submatrix of hypothesis, £s, s, g , has terms which correspond to
P 1P JP PP
elements common to Si and Sj’ i # j. By hypothesis and the fact that all
non-zero products s, s, equal +1 or all equal -1, s, s, = -1 for at
1p )P 1p JP

least one p. Corollary 2.3.6 implies that the branches bi and bj defining
Si and Sj respectively, are contained in some path-in-tree with p- and
e-orientations that do not coincide. This is true for all pairs of branches
bi and bj where 1 <_i <j <_Z, 3, ..., r, i, e. all branches associated
with off-diagonal entries of the submatrix of hypothesis., Therefore by
Theorem 2.3.8, the conclusion follows,

Necessity: All entries in )&T associated with the r branches of
hypothesis, £s, s, g , are non-zero since the f-segs defined by these

P 1P )P PP

branches have common elements. By Corollary 2. 3.6 and hypothesis all

non-zero s, s, = -1, Sinceg > 0, the conclusion follows.
1p Jp P~
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Corollary 2.3.9: Consider )&e diagonal with non-negative entries.

If and only if for )& T [Gij]’ Gij < 0, i#j, then T is a Lagrangian tree
whose branches define f-segs with common elements and are e-oriented

toward or away from the common vertex.

Proof: This follows from Theorem 2.3.9.




III. TREE TRANSFORMATION MATRIX

3.1 Basic Properties

A v-vertex connected graph, a part, is the union of a tree, T, and
the complement of T, a cotree, G. Any part will be designated as

P=GUTor P = GU'I‘i when reference is made to a specific tree.
i

Definition 3. 1: Consider a v-vertex part P = TiUT, where Ti and
J

TJ are any two v-vertex trees, and consider T, the tree and T the
cotree of P. Let the corresponding f-seg matrix be [ UL j ] where

the columns of U correspond to T, and the columns of J correspond

to Ti' The submatrix )J i is called the tree transformatwn matrix from
T.to T,.
1 J
For any part P = GUT, let a = [ a T a G] be the incidence
matrix where the columns of QT correspond to the tree T and the

columns of a G correspond to the cotree of P.

Lemma 3.1.1: For P = TUT
J QTJ aTl

Proof: Since the f-seg matrix Jf and the incidence matrix

satisfy the relation [12]:

J-wd-a.ta,aqn- A a.

the conclusion follows.

Lemma 3.1.2: The tree transformation matrix, )jij’ is non-

det )j =+ 1.
1)

16

singular, and
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)J,, correspond to a tree, )X ..
1j 1)

-1

Proof: Since the columns of

exists [14].
For any tree T, a T is square, therefore by Lemma 3.1

-1
det )Xij = det aTj det aTi'

The conclusion follows since det a =t 1 [14].

GUTi and Pj = GUTj with f-seg

i

Theorem 3.1.1: For any part P,
matrices [ 2L /1] and [ L )JJ] respectively,

N

By Lemma 3.1.1, it must be shown that

Proof:
-1 -1 ' -1
aTj A Gj - ¢ aTj AN Uy A

Employing the associative law,

A Tj-‘ A 6~ U Tj—la Gi

which reduces to

acf e

That this is the case follows from the fact that the cotree of P,1 and Pj

are identical. Since the above process is reversible, the conclusion

follows.

U
Corollary 3.1.1.1: For)&Ti=)ji )&ejj i and)g Tj=
j ' )& )j )& )j'
j)b(e JJ (SRR VR s W N
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Proof: By hypothesis

)&Tj:)jij(Ji)&e)X;)JJ;j

therefore

ﬁTi:UjiJ‘ Jdpi))&e()jij g

Hence, by Theorem 3.1.1,
Tj j e j
J1.1.2: )& .= )& .
Corollary 3 2: det Tj det Ti

Proof: Since

’ 4
det)& T = det)jij det/& Ti det/J ij

the conclusion follows from Lemma 3.1. 2.

Theorem 3.1.2. The branches of any tree Ti can be e-oriented
such that the tree transformation matrix from a Lagrangian tree with
all elements oriented from or toward the common vertex to Ti,)5 Li’
has non-negative (non-positive) entries.

Proof: Let P = TLUTi where Ti is the tree and TL is the cotree

of P. Consider any f-seg Si defined by a branch bi of Ti' Suppose the

common vertex of the Lagrangian tree of hypothesis, TL’ is an X-

(or NX-) vertex of Si. Then by hypothesis all X-NX elements of Si’
branches of TL, have e-orientation either (1) from the X- to NX-vertex
sets, or (2) from the NX- to X-vertex sets. By e-orienting bi from the
X- to NX-vertex sets, the signs of all non-zero entries in the i-row of

)JLi are fixed. For case (1) all non-zero entries are +1, and for
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case (2) all non-zero entries are -1. Since this is true for each f-seg,

the conclusion follows,

Theorem 3.1.3: The tree transformation matrix from a Lagrangian

tree to any other tree Ti’ )J Li’ €an be formed so that submatrices
obtained by deleting rows 1, 2, . . ., iand columns 1, 2, . . ., i,
i=1,2, ..., v-2, are nonsingular,.

Proof: Consider P = TLUTi where Ti is the tree and TL is the co-

tree of P. Since any tree Ti has at least two end elements and all the

elements of TL are end elements, only one branch b, of Ti and only one

chord c,, branch of T are incident to one end vertex of T,. Let the

L’

first row of the f-seg matrix of P and therefore )j correspond to b,.

Li
Since the complement of an end element of a v-vertex tree is a tree of

v - 1 vertices [13], the complement of b, in Ti is a tree on v - 1 vertices
and the complement of c; in TL is a Lagrangian tree on v - 1 vertices,
Therefore the complement of b,UC, in P, P,, is the union of a Lagrangian
tree and some other tree on v - 1 vertices. Form the second row of

the f-seg matrix of P by applying the argument used to form the first row
on the subgraph P,. The remaining rows of the f-seg matrix of P are to
be formed by applying the complementing procedure to P, and the result-
ing subgraphs of P,. By the above construction process, deleting rows

1, 2, ..., iand columnsl, 2, ... ,1i,i=1, 2, ..., v=-2,
results in a matrix which is a tree transformation matrix from a Lagran-

gian tree to some tree of v - i vertices. Therefore this matrix is non-

singular by Lemma 3. 1. 2.

3.2 Tree Forms

Definition 3.2: Consider a v-vertex tree Ti = Ti with vertices
a

labeled vi, i=1,2, ..., v. Let Ti be any tree formed from Tio. by

P

relabeling its vertices. The two trees, T. and Tif" are said to be of
ia

the same form - - - form -1i.
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Lemma 3.2: Consider P= T UT,  where the branches of T,
e e ] ia 1 1a
and Tiﬁ are oriented from or toward the corresponding common vertices.

The tree transformation matrix from T, to T, , )J . ., is either
ia ip iaf

L i i3
F 0 o 0 T 00 s s 0000 D)

0 1 o0 .0 0 1 o 2 Mt 0 S0 0

0 0 1 o a0 0 0 o0 1 .0 0 o0

(£1) SEARINST el sl v 5 Loy R iR ST
0 0 o o oo

0 - 40500 4or e i 0% 5T 0

0 0 o 3 1 0 0 o .. 0 0 1

e sl | S —

Proof: This follows by forming the tree transformation matrix of
hypothesis for the case that the common vertex of Ti and the common
a
vertex of Tiﬁ coincide, and the case that they do not coincide.
Theorem 3.2.1: For v-vertex trees T, , T,
R Gl A Tt e e e 1a

ip

there is a v-vertex tree of the same form as T,, T._, such that

B [
)jiuj; )jmja

where the rows correspond to the same branches.

and T (=T, ),
J Ja

Proof: Let P; and P, be TiUT,. The tree transformation matrices
of P, and P, are identical if they are formed using the same sequence of
branches. Label Ti of P, and Ti of P, so that Tiu and Tila of hypothesis

result. The conclusion follows if ij is the complement of TiB'
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Theorem 3.2.2: For P, = T, UT.  and P. = P, UT,
————— i ia” i j ia )

p

)Jiaj : )/ igi )/iniﬂ

Proof: This follows from Theorem 3.1.1 for the case of the parts

of hypothesis.



IV. SYNTHESIS OF R-GRAPHS

4.1 Introduction

The necessary and sufficient conditions on a given matrix such that
it is realizable as an R-graph are determined., This result is based on
the properties of the branch matrix of a part consisting of the union of a
complete graph and Lagrangian tree. The complete graph has the
character of a "canonical configuration' discussed by Darlington [16]
which is contrary to some procedures of R-graph synthesis [3]. The con-
ditions associated with a Lagrangian tree are extended to trees of the
same form and results are given for trees of different forms. It is shown
that trees of the same form impose the same realizability conditions on

a given matrix.

Definition 4.1.1: A complete graph, Gv’ is a v-vertex graph such

that there is one and only one element between every pair of vertices--

Figure 2a.

Definition 4.1.2: The canonical form of a square matrixﬁ =

[G..] is the matrix /& = [G ..] which contains entries G ., = G,, and
ij c cij cii

ii
- _1Giil forid i
Gcij | Gij| for i # j

4.2 Some properties of JéL

Theorem 4.2.1: Let [ UL )/ ] be the f-seg matrix for PL = GVUT

. . . " =
where TL is defined by Figure 2b. -For/)& o (gij) )/ [Gij(gij)]’
,&f . > 0
o d1agona1 and gij >0

L’

(1) Gijv-<- 0, i # j, for branches of TL oriented from (or toward)
the common vertex; all other Gij sign patterns are deducible from

alterations in orientation of branches of TL.

22



(b)

Fig. 2--(a) V-vertex complete graph. (b) Lagrangian tree, TL.
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(2) IGji‘ & lGijl S ifor_, >i

i, -
v-i
Gn:j_zl ARSI Rk R S SR T |
forst= Ly 25 208 LVl

Proof: The elements of PL are to be oriented as follows: all ele-
ments incident to vertex No. 1 are to be oriented toward vertex 1; all
elements incident to vertex No. 2 not already considered are to be oriented
toward vertex 2; etc.

For this arrangement, the f-seg matrix, has the following form:

£
3k L 00 0. 0 1 S ARSI 1 1 00 108 sagen 0 0% G5
2 0o 1 0 0o -1 0 0 0 1 O D | o Ao

3 0 0 1 0 0o -1 0 0 0 -1 00 0 0

v-1 (0 0 0 ... 1 0 0 -0 wem =10 004107 100t il 10 s 4.
where the columns of )j correspond to elements 11, 12, . . ., 1 v-1;

21, 22, . . ., 2v-2; . . . v-11, " Since )&e is diagonal, )j)je )/v is

symmetric and has entries shown b ..=0fori<0orj<0)
ym! Y SJJ = Jis

2 - j> i
17 By 070
v-i (4.2.1)
b j_zlgij+ SRR G T o R SR T TR
fori=1, 2, ..., v-1. This result proves (2).

For the assumed orientation pattern all off-diagonal entries are
non-positive. By Theorem 2.2.4, the signs of these entries are affected
u/y by changing branch orientations by way of cross-sign changes of

' which proves (1).



—T e
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Theorem 4.2.2: Let [ L )/ ] be the f-seg matrix for PL = GVUT
. . ' - .
of Figure 2. For the matrix )j ﬁe(gij))/ [Gij(gij)] written as

Lo= A, X,

L

L
where  X'=1G) G, Gy, vo1 922 G230 G2, 401 G330 G340
' =
-Gy, yo1] and L (8181, -~ &) 182182 " 8y 2831 "

B3 y.3 00 By, l], ; is non-singular.
Proof: Orient the elements of PL as in the proof of Theorem 4.2.1.
he f f th ies i 'is gi in (4.2.1 d there-
The form of the entries in )J)&e (gij))/ is given in ( ) an ere
fore for this orientation pattern the detailed form of s is given in
(4.2.2).
11
A 21 A 22
2 31 A 32 2 33
n A, A, ii
av-l,lav-l,zav-l,:i a v-1,1 . . .av-l,v-l
(4.2.2)
The square submatrices, .
r1 1 .« e 1 1
-1 o . . . 0 0
Q = o -1 . . . 0 0 , i# v-1,

ii
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are of order v-i and (f [1]. The submatrices (A i3 i>j,

1 1
are of the order v-i x v-j andvcontain all zero entries except for +1 in
the (1, i-j) position,

By the Laplace Expansion [17] with the first v-1 columns, the
determinant of (4. 2.2) is given by the product of the determinants of the
square diagonal submatrices each of which is non-singular. Therefore,
for the assumed orientation pattern, )j S is non-singular.

The form of )j)&e (gijU/ ' for any other orientation pattern of
elements of P, can be obtained through the use of cross-sign changes.

L
The operation of cross-sign change changes only the sign of off-diagonal

entrieés in ,J)& (g ))/ Therefore if % corresponds to

(g13) )d? ' after any number of cross-sign changes, then
N

where U is diagonal with +1 and -1 entries. . The transformation matrix
U [17] is necessarily non-singular. Since X /J X %Gl

U)Js %g' The matrix J)J is non- 51ngu1ar since it is the product

of two non-singular matrices which proves the theorem.

Corollary 4.2.2: Let [G‘J (gij)] be a matrix obtained from
,& (glj)j ij (gij)] by interchanging rows i and j and columns

3 L
iand j. Writing [(}ij (gij)] as
17 )Jsl Xg

_ ' ' 1 ' ' !
where /X‘Gl [G1,%12 -+ G1,v-1922C23 +++ 92, v1%33 0G5 vl o

G, 1, y.1)2nd ’X"g B [311312 By v-1821822 0 By yo2831 000 B3 3

- 8,1 l], ¢] is non-singular.

Proof: The operation of interchanging rows i and j and columns i

and j of [Gij] interchanges Gpi and Gpj forp=1, 2, ..., i-1, i+1, . ..
j=1, j+1, . . ., v-1, j>1i, and Gii and ij. - All other entries of [Gij]
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remain fixed. Thus ’X, can be obtained from %G’ defined in

Gl
Theorem 4.2.2, by interchanging certain rows, that is

/X’Glz :’/k'G

where :] is a non-singular transformation [17]. By Theorem 4. 2.2,

/X'Gl = U )js ’X'g and )jsl = .J/g s is non-singular since it is

the product of non-singular matrices.

4.3 Necessary and Sufficient Conditions for R-Graph Synthesis

In the following theorems, it is assumed that ’&L’ of order v-1,

[

is the coefficient matrix of the branch equations, branch matrix, for PL
GVUTL as shown in Figure 2 for diagonal /&e' Branch matrices for

other parts Pi = GvUTi are designated as )&’ and for the parts Pia=

i
GvUTio. and Piﬁ = GvUTi@’ as /é(ia and &iﬁ respectively.

Theorem 4.3.1: Consider any ’&L = [Gij]v 1 and the branches of

TL oriented from (or toward) the common vertex, If and only if

(1)Gij§o fori#j
(2) G, >0
! fori=1, 2, ..., v-1,
v-1
ZG.>0
=1 Y
then g..> 0

J
and J’&e(gij))j ' of Theorem 4.2.1 is in terms of g,.. Furthermore

1)
(1) of Theorem 4.2.1 permits by cross-sign changes altering’%(gﬁ)x

)J into L e(gij))J L in correlation with TL oriented as the
TL to which J&L corresponds. Since )&L and JL )&e(gij) /JL'

correspond to identical TL(orientation and form), these matrices are

Proof: Sufficiency: The )& L(G'j) of hypothesis is in terms of Gi
i

equal. Therefore
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)&L(Gij) - JL)(Q/'e(gij) v

This last equation can be written as

K=, X,

h V= .o e co
where %G (G116 -Gy 419,253 Sy v-1933 G3 o1
G o
v-1,v-1] and ’Xg =gy 181, 0 8 181850 0t By o831 0t By L3
- By 1]. By Theorem 4. 2. 2, . is non-singular and therefore
the solution is:
— e [—- —
€11 G2
12 -Gi3
1, v-2 "G v
v-1
81, v-1 Z G
=17
€21 -G3
22 - G4 (4.3.1)
€2, v-3 -Gy v-1
v-1
g _ G,.
2,v-2 j=1 2j
v-1l
gv-l,l ,E C'v~-l,_j
N - =1 -
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That all entries on the right side of (4.3.1) which are not sums
are non-negative follows from (1) of hypothesis. All entries which are
sums are non-negative by (2) of hypothesis.

Necessity: Since the equation
%G = X{ a X p

as defined in the sufficiency part of the proof is independent of the values
of Gij and gij' (4.3.1) applies to this proof. From (4.3.1) for gij>°'
(1) and (2) of hypothesis follow.

Corollary 4.3.1: Consider any)& 02 [Gij]v o If and only if

(1) )27 L can be chanted to the canonical form, . [Gcij]’ by a
finite number of cross-sign changes,
>
(2) G;> 0
v-1 fordis 1 2 bt avs anva Ly
Z G_..>0
1 cl
> 0.
then gij >0

Proof: Sufficiency: By (1) of hypothesis change /& 1 to canonical
form )ch. By Theorem 2.2.4 and (1) of Theorem 4.2.1, J&c corres-

ponds to T with all branches oriented from (or toward) the common

vertex. T;‘ereiore Theorem 4.3.1 implies the conclusion.

Necessity: Change orientation of the branches of TL and apply
corresponding finite set of cross-sign changes to )&(L until all branches
are oriented from common vertex. This process produces a matrix

satisfying Theorem 4.3.1. Therefore hypothesis of corollary follows.

Definition 4.3.1: A symmetric matrix )&: [Gij]n is an R-matrix

(1) )& can be changed to the canonical form, )&c 2 [Gcij]' by a

finite number of cross-sign changes,
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>
(2) Gii—o
fori=1, 2, ..., n.
v-1
G >0

=1 cij—

Theorem 4.3.2: Consider any )&La= [G.] and the branches of

ijov-1
TL oriented from (or toward) the common vertex. If and only if
a
(I)Gijio fori#j
(2) G'i >0
! fori=1,2, ..., v-1,
v-1
Z G.>0
=1 M

then gij > 0.

Proof: Sufficiency: Let )j Lap be the tree transformation matrix
from Tch of hypothesis to TLB
or toward the common vertex. The branch matrix for the part of Figure 1

is )j Lap )& La )j 'Laﬁ by Corollary 3.1.1.1. The possible forms of
are given in Lemma 3.2. If )dp Lo.B= e U , the theorem follows

of Figure 2b with branches oriented from

Lap
from Theorem 4.3.1. For all other cases,

)jLaﬁ)&Lo.)/I:aB -

— v_l ———

Gy G2 Gl,m-l .-_21 Glj Gl,m+l Gl,v-l
v-1

G2 G2 GZ,m-l j'_zleJ' GZ,m+l ) GZ,V-I

v-1 v-1 v-1 v-1lv-1 v-1 v-1

-ZG -=ZG ... =ZG zZZ G . -=G, ... =2G

G.. . 1 s 1 _—

j=1 1j i=1 2j =1 m-1, m=1j=1 m j=1 j, m+ =1 jyv-1
v-1

Gl,v-l GZ,V-I C"m-l,v-l j—_}icj,v-l C'm+1,v—1 v-1l,v-1
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From (1) and (2) of hypothesis, off-diagonal entries of this last
matrix are non-positive and diagonal entries are non-neganve,v_ 'lrhe sum
of the entries in any row n # m is -Gnm and in row n = m, is j=zf ij
and by hypothesis, these terms are non-negative. Therefore by
Theorem 4.3.1, the conclusion follows.

Necessity: Let )&Lﬁ be any branch matrix for the part of Figure 2
with the branches of TL;} oriented from or toward the common vertex.

By hypothesis, L satisfies the properfies of Theorem 4.3.1.
By Corollary 3.1.1.1, )j Lga )&Lﬁ )/Lﬁu is the branch matrix for
i 4 of hypothesis. Since )jLuB of Lemma 3.2 satisfied

La
)/Laﬁ )/;..uﬁ = u
and in general
i sl
Lap LBA
it follows that

)/Lnﬂ g )jLDn'

The conclusion follows then by the same argument as used above.

S i iy
Corollary 4.3 Consider any 1 If and only if Lo i8an
R-matrix, then g,. > 0.
ij —
Proof: Any possible )& Lq €37 be obtained from a canonical)&]_“I
by cross-sign changes which correlate with altering the orientations of a

TLu which has all orientations from or toward the common vertex, to a

TLa with some other pattern of orientation. Therefore, a set of cross-

sign changes exists which alters )& into a canonical form and also
a

L
alters the orientations of TLu into orientation pattern of TL of Theorem
a

4.3.2. Therefore from Theorem 4. 3.2, the conclusion follows.
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Theorem 4.3.3: Consider any)& and )f o’ the tree trans-
formation matrix from T. to TLa' If and only if )j iLa )&’ )f iLa

is an R=-matrix, then g ij >_ 0.

-Proof: Since )&i is the branch matrix for P Corollary 3.1.1.1
implies that j iLa )& j iLa is the branch matrlx for PL . Hence

by Corollary 4. 3.2 the conclusion follows.

- Corollary 4.3.3: Consider any/& = [ v- and)lea

tree transformation matrix from T, to T a w1th branches oriented from
1
or toward the common vertex. If and only if, for ’JiLa /&i )/ iLa =
1) £ G <0 f
()mn( ij)_ orm#n
(2)f_ (G, )>0
mn-1] form=1, 2, ..., v-1,
v-l
m (G ) >0
n-l

then gij > 0.

Proof: The conclusion follows from Theorem 4. 3. 3.

Theorem 4.3.4: Consider any/& and )j i’ the tree transform-

ation matrix from TL to T If and only 1f )& is an R-matrix, then

all g, ij associated with J Lai )5’ Lo.)! Lai are non-negative.

Proof: Since )& is the branch matrix for P_ , Corollary 3.1.1.1

La
implies that /J Lai )&La )j Lai_ )&i is the branch matrix for P..
-1
Since Lai iLa’ Theorem 4.3.3 and hypothesis implies the
conclusion.

Corollary 4.3.4: Consider any)& and)& If and only if all g

associated w1th)2f are non-negative, then all g, j assoc1ated w1thﬁ

are non-negative.
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14
P f: Th 4.3, ’ )J )ﬁ . i - ix.
roof: By eorem 4.3.3 iLa 1)! iLa is an’R matrix
By Corollary 3.1.1.1 and Theorem 3. 2.2, )J iLa }&i )/ iLe =

i, (A 54 )ji'j) J " o 0 i )f jLa - Therefore

the conclusion follows from Theorem 4. 3.4.

Theorem 4.3.5: If)& i = [Giaj] and)& 6 = [Giﬁ] with rows
corresponding to same branches, then iaje /&ia)j iaja = [f (G(.l.)]

; j 5 mn' ij
04 1555 < 15 o sp3p = rnnl i)

Proof: This follows from Theorem 3.2.1,

4.4 Discussion of Results

The sufficiency part of Corollary 4.3.1 is actually a synthesis
procedure. A given matrix must satisfy (1) and (2) of Corollary 4.3.1,
that is, be an R-matrix, for it to be realized as the R-graph P_. To test
a matrix, first simply form, if possible, the canonical form i The
next step is to apply (2) to )27 o If both conditions are satisfied, the
matrix can be realized as PL and the element values can be determined

from (4.3.1). The branch orientations can be determined from Theorem

4.3.1 and Theorem 2.2.4.

By definition 4.1. 2, Gcij = -lcijl for i # j, the second relation in
(2) of Corollary 4.3.1 has the following form.
v-1
2G..> Z|G..|,i=1,2, ..., v-1
ii — j=1 ij

This is the well-known condition of dominance discussed by Burington [2].
That the second relation in (2) of Corollary 4.3.1 is that of dominance
stems from the fact that the branch equations are identical to the incidence
equations for the Lagrangian tree. It is not necessary to consider a
Lagrangian tree to determine the necessary and sufficient conditions as in

Theorem 4.3.1. A procedure similar to that of Theorem 4.3.1 with a
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different tree form leads to different expressions [18]. In addition the
method implied by Theorem 4.3.3 and Corollary 4.3.3 can be used to
determine the necessary and sufficient conditions for synthesis. For
example, the tree transformation matrix from TP to 'I’L, where TP is a
path with the e- and p-orientations of all elements coincident and the

elements of TL are all oriented toward or away from the common vertex,

=)
=)
o
o

o
o
=)

-1

—

Therefore, showing only the entries above and including the main diagonal,

)JPL)yP)J.PL=

G, ,-G G, .-G "'Gl,v-l-Gl,v-Z

SITAREE Gz,v-l'Gl,v-l'(Gz,v-z'Gl,v.z)

G 2G

S R A S e e e

By applying (1) and (2) of Corollary 4. 3.3, the following conditions are
obtained.
(1) Giji 0 for all (i, j)

(2) A;"lz 0

. for i =1, 2t o VEL
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where Ag =Gy -G, jfori #1, 4= G, and A:_l =0.

These conditions are necessary and sufficient for the realization of a given
matrix as PP with the elements of TP oriented so that the e- and p-orien-
tations coincide. For an arbitrary orientation pattern the matrix must
satisfy (1) and (2) after a finite number of corss-sign changes.

If a matrix jb is to be realized as a v-vertex complete graph by
means of a specified tree form Ti’ the necessary and sufficient conditions
which must be satisfied are implied by Theorem 4.3.3. If)Zj does not
satisfy these conditions, it still may be realized in the required form.
Since the row order has not been specified, different arrangements of the
entries corresponding to different row orders of must be considered.
Interchanging row i and j and then column i and j of corresponds to
interchanging row i and j of)J . The conditions can then be applied to
the new branch matrix. If all such matrices do not satisfy the conditions,
then the given matrix cannot be realized in the required form.

If only the matrix is given, the necessary and sufficient conditions
for realization corresponding to each different tree form can be determined
and applied to the given matrix or a matrix obtained from the original by
interchanging rows i and j and columns i and j. If the matrix satisfies the
conditions associated with any tree form, it can be realized with a part
consisting of the union of the particular tree form and a v-vertex complete
graph,

By considering only the sign pattern of the given matrix, the form of
a subgraph of the corresponding tree can be determined by the results of
Section 2.3. For the case that all off-diagonal entries have the same sign,
the complete tree can be determined: all positive and all negative
correspond to path and Lagrangian trees respectively. By applying cross-
sign changes to a given matrix, if the off-diagonal entries are not all
positive or all not negative, then the matrix cannot be realized as a path

or Lagrangian tree.
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The necessary and sufficient conditions for realization with a com-
plete graph containing five vertices in terms of the three different tree
forms are given in Table 1. A necessary condition which is easily checked
is the sign requirement indicated. Only one form is indicated since all

other sign patterns can be obtained using cross-sign changes.

4.5 Additional Problems

Particular sign patterns of submatrices of a given matrix have been
shown to fix the form of subgraphs of the corresponding tree. An extension
of this result would be to determine the form of the tree {if it exists)
corresponding to an arbitrary arrangement of signs in the given matrix.

The necessary and sufficient conditions for realization of a given
matrix of order v-1, as a one part, v vertex graph have been determined.
The point of view in the technique used to determine such conditions can
be enlarged by proving Theorem 4.2.2 for an arbitrary tree. Necessary
and sufficient conditions for graphs of more than v vertices and multiple

part graphs are additional extensions of the above results.
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APPENDIX

LIST OF SYMBOLS

Description

Number of vertices of a graph
Trees of a graph

Cotree of a graph

Connected graphs (Parts)
Elements of a tree (branches)
Elements of a cotree (chords)
f-segs

Elements common to f-segs
f-seg matrix

Unit matrix

Non unit submatrix of f-seg matrix
Element matrix

Branch matrix

Canonical form of branch matrix
Entries of branch matrix

Entries of element matrix
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