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ABSTRACT

ON SIGN PATTERNS OF BRANCH MATRICES

AND R-GRAPH REALIZATION

by David Paul Brown

This thesis deals with prOperties of sign patterns of the entries in

the coefficient matrix of the branchinode-pair‘) equations, branch smatrix,

for any graph, and the realization of a given matrix as the branch matrix

of an R-graph.

- In the second section, properties of sign patterns are classified as

to those fixed by: (1) element orientations per se; (2) element orientations

determined by their being contained in subgraphs. The main result in

(l) is that if the branch orientation of a tree of a part is changed, then

there is a row and column sign change of the entries in the correSponding

branch matrix for diagonal element matrix, and conversely. This result

is based on the relationship between the s-orientation of any two f—segs

and the s-orientations of the corresponding common elements. ‘In (2), a

subgraph consisting of any two branches, b1 and bj' contained in a path-in-

tree is considered. . The fact that the p- and e-orientation of bi and bj

coincide is shown to imply that the s-orientation of the elements common

to the f-segs corresponding to b1 and bj are the same, and conversely.

A set of pairs of branches, each pair having coincident p- and e-orientations

is shown to imply that all branches of the set are contained in a path-in-

tree with coincident p- and e-orientations. . The situation when the p- and

e-orientations do not coincide is also considered. The Specific character

of a subgraph of the tree corresponding to a branch matrix containing a

principal submatrix with all positive or all negative entries is then
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obtained. The complete tree form is determined for the case of all

positive or all negative entries in the branch matrix.

The necessary and sufficient conditions on a given matrix such that

it is realizable as an R-graph consisting of the union of a complete graph

and Lagrangian tree are determined in the fourth section. Formulas for

corresponding element values and a process to determine the orientation

of the tree are also given. ‘It is found that the conditions for realization

are fixed by the tree form associated with the branch matrix. A Using the

tree transformation matrix of the third section, necessary and sufficient

conditions for realization are determined for an arbitrary tree. The

detailed form of the conditions for realization are given for a tree in the

form of a path. vFor the case of a five vertex complete graph, the

conditions fixed by the three tree forms are given in detail.
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I . INTRODUCTION
 

The problem of determining restrictions on matrices with constant

entries such that they are coefficient matrices of some system of

equations determined from a graph has been considered by many investi-

gators.

A method of realizing symmetric matrices with constant entries as

R-networks has been given by W..Cauer [1]. Here the requirement that

the given matrix be positive-semidefinite leads to networks containing

ideal transformers. The well-known condition of dominance, discussed

by Burington [Z], is sufficient for synthesis of R-networkS' without ideal

transformers. For networks without ideal transformers, Cederbaum

[3, 4] has shown that a necessary condition for synthesis of short circuit

admittance matrices is that they are paramount. This result is based on

properties discussed by Talbot [5]. 'As a method of realizing matrices,

Cederbaum [6, 7] has given a procedure to decompose a matrix into a

triple product of matrices, where the center matrix, which is diagonal,

is pre- and po st-multiplied by a unimodular matrix and its transpose

reSpectively. Slepian and Weinberg [8] have summarized this area of

network synthesis and raised many questions. ‘A recent discussion of

synthesis of networks without ideal transformers has also been given by

Guillemin [9].

The problem of characterizing the patterns of the signs of the entries

Of certain types of matrices has recently been considered. In particular,

using matrix algebra, Cederbaum [7] has determined some elementary

sign properties of the entries in a matrix triple product, the center

matrix, which is diagonal, being pre- and post-multiplied by a unimodular

matrix and its transpose respectively. These results have been associ-

ate-d with the realization of IOOp-resistance matrices by So [10]. Some

 



 



 
 

discussion Of Sign patterns relevant to synthesis has been given by

Slepian and Weinberg [8]. Biorci and Civalleri [11] have recently

develOped a procedure to realize a restricted class of short circuit

admittance matrices based on forming the graph from the signs Of the

entries in the given matrix.

In this thesis the matrix triple productflflej /: [Gij] is con-

sidered, where )j f = [7A ] is the fundamental f-seg matrix discussed

by Reed [12, 13] and. fie is an element matrix containing constant entries.

Although the properties of the f-seg matrix are the same as the cut set

matrix [14], the definitions Of the correSponding 'subgraphs, i. e. the

seg [15] and the cut set [14], are logically different. Because Of the

clarity of the seg concept, it is used in the following discussion.

The Objective of Section II is to determine the relationship between

the sign pattern Of the branch matrix, J )Zj (2)3 ', and the orientation of

the elements of the corresponding connected graph P(part). It is also

shown that the sign pattern of the branch matrix or principal submatrices

of the branch matrix is fixed by the orientation of elements of specific

types of subgraphs.

In Section IV, the necessary and sufficient conditions on a matrix

such that it is a branch matrix correSponding to an R-graph are determined.

Equations to calculate the element values associated with the graph are

also given. The conditions for realization associated with a branch matrix

are fixed by the possible tree forms of the part. Therefore, the totality

of necessary and sufficient conditions can be obtained by cataloging the

conditions fixed by each tree form. These results are Obtained using the

tree transformation matrix of Section III.

A list of symbols, which are used repeatedly, is given in the

Appendix.

 

 



 

 

II. SIGN PATTERN OF BRANCH MATRIX
 

2. 1 Introduction

The sign pattern of Med ' is investigated in terms Of its

dependence on the orientation of elements in a graph. The following

 

theorems, which are based on the seg and f-seg matrix, indicate that the

elements in the cotree of a graph do not effect the sign pattern and that

the branch orientations are the controlling factors. The Operation of

cross-sign change, Definition 2. l, is used to describe the general pattern

Of signs as a function of branch orientations. Some results not directly

related to the sign patterns have been included as corollaries.

The orientation of any two branches, bi and bj' is shown to fix the

Sign of the i, j entry of ”Jfie )3 ' for ”e diagonal with non-negative

entries. This result is used to determine the signs of the entries in the

branch matrix as a function of the orientation of pairs of branches which

are contained in a path-in-tree and conversely. For the case of a path

and Lagrangian tree, the complete sign pattern is determined.

Definition 2. 1: A cross-sign change of a matrix a is the Operation
  

of changing the sign Of each (non-zero) entry in the i-row and i-column.

Theorem 2.1: For any matrix a = [aij] , consider a sequence

n
 

of K different cross-sign changes. If a ij 7! 0, i 7! j, then the number of

entries in “which change Sign as a result of the K cross-sign changes is

ZK(n-K).

Proof: Each cross-sign change changes the sign of 2(n-l) entries

Of a . Entries common to two cross-sign changes are changed in sign

twice, i. e. they do not change Sign. The number of entries in imrow and

 

 



 

 

i-column common to K cross—sign changes is x14.» x2 + . . . +

xK—I

where xi, i: 1, Z, . . . , K-l, is the number of entries in i-row and

i—column common to one cross-sign change. Since x, = 2,

1

K-1

2 x. = 2(K-1).

. 1

1:1

Therefore, the number of entries in the i—row and i-column which change

sign as a result of K cross—sign changes is 2(n-l) - 2(K—1)= 2(n~K).

Since there are K similar patterns, the total number of entries which

change sign is the sum of 2(n—K) for each row and column, that is ZK(n-K).

Corollary 2.1: Consider any matrix a: [a,

Ij]n'

Ifa,,>0 (a,.<0),

13 1_]

i 7? j, then the maximum possible number of negative (positive) off-diagonal

entries as a result of cross-sign changes is

-—- if n is even

 2 if n is odd.

Proof: It is only necessary to find the maximum of ZK(n-K), since

this is the number of off—diagonal entries which are negative (positive)

 

 

d

as a result of K cross—sign changes. Since dK (ZK[n-K]) = 2n—4K = 0,

Kmax = 121' if n is even and nil if n is odd. Substituting these values of

K in 2K(n-K) gives the conclusion.

2. 2 Sign Pattern Fixed by Certain Elements

For any tree T, Si and S_ are any two f-segs defined by branches

bi and bj respectively, and )3 f = [ I/L j ] where = [Sij]'

Theorem 2. 2. 1: If and only if Si and Sj contain common elements

(ChOI‘dS) C, then the X-vertex set of C when C is in Si is the X- or

NX—vertex set of C when C is in Si.



 



 

 

Proof: Sufficiency: Suppose C contains only one chord c1, then c1
 

is an X-NX element in Si and also in Sj and the theorem applies.

1 Suppose C contains two or more chords ck. By Theorem 15 [15],

bi is in the f-circuit defined by ck and so is bj.

Consider the vertex segregation defined by bj. By Theorem 14 [15],

there is a path-in-tree in the X-vertex set (NX-vertex set) between any

two X-vertices (any two NX-vertices) which contains only X-vertices

(NX-vertices). Because Si is an f-seg, bj is an X-element (NX-element),

hence there is a path-in-tree containing only NX-vertices (X-vertices)

and does not contain bj.

Suppose the X-vertex set of C in‘Si is neither the X- nor NX-vertex

set of C in Sj. Then there is a path-in-tree between a vertex in the X-set

Of Si and a vertex in the NX-set of S, and this path does not contain both

bi and b,. By the initial argument If} the proof of this theorem, there is

a path-iiI-tree between the same pair of vertices which contains bi and bj.

This implies a circuit in tree and contradicts the hypothesis.

Necessity: Assume one element of C, is not common to Si andck,

S_, i. e. , if Ck is in Si’ it is not in Sj. Hence ck is not an X-NX-element

in 8,. Since this conclusion is independent of the X or NX labeling of

J

vertices, the theorem follows.

 
Corollary 2. 2. 1: All elements of C have the same (opposite) bi and

b, defined 8- orientation.

 

Proof: The X-vertices corresponding to bi are all X- or all NX-

vertices corresponding to bj. Therefore the conclusion follows from the

definition of S- orientation.

Theorem 2. 2. 2: If and only if the S, and S. orientations of all

1
 

elements of C are the same (Opposite), then

S, s, =+1 (S. .-

1PJP 1PJP

where p corresponds to elements Of C and i 7’ j.



 

 

Proof: There are four and only four cases for elements in C as

shown in Figure 1.

  

 
 

e e

a \P x \ J 1

S. S. S. S.

1 j 1 J

s, s, = +1 3, s, = -l

1P JP 1P JP

6 e

S S. S "S.

1 J 1 J

Fig. l--Possible orientation patterns.

Hence, the theorem follows.

Corollary 2. 2. 2.1: Suppose Si and S, have at least two common
 

elements . ~ If

(1 s, s, =+1 2-1, then s, s, =+1 3-1

) 1P Jq ( ) 1q JP ( )

(Z) s, s. = +1 (2-1), then s, s, = +1 (2-1)

1P 1‘1 JP Jq

where p and q correspond to elements of C and i 7’ j.

Proof: By Theorem 2. 2. 2, either 5, s, = +1 and s, s, = +1 or

—'—' 1P JP 1‘1 Jq

S. S. = -1 and S. S. = -1. However, in either case s, s. s. s, = +1

1P JP 1‘1 Jq 1P JP 1‘1 Jq

Grou in the terms as s. s. s, s, = +1, 1 of corollar follows.pg (lpJququ) () Y

The second part of the corollary follows from the following:

( )( +1.5. s. s. s. )=

1P 1‘1 JP Jq

Corollary 2. 2.. 2. 2.: The determinant of any submatrix of )3 Of

the form



 

 



 

 

?, s, “T FE. 5.1

1P 1C1 1P JP

or is +1, -1 or O.

S, s, s, s.

LJP Jq LJq lq     

Proof: Either Si and S, have common elements or not. If they have
 

common elements, all entries in the submatrices of hypothesis could be

non-zero. Since each entry in the submatrices is +1 or -1, each product

ndis can have a value of +1 or -1. By5.5. ’S.S. a S. S. -S. S.

1P Jq 1C1 JP 1P 1‘1 JP Jq

Corollary 2. 2. 2. 1, the products associated with either submatrix are

equal. Hence, for this case, the value of the determinants is O.

For all other cases one or more of the entries in the submatrices

is zero. Since the remaining entries can only have the value +1 or -1,

the conclusion follows .

Corollary 2. 2.2. 3: Let fie Of/j/ge J v = [G] be diagonal

U

with positive entries.

(1) If and only if the Si and Sj orientations of all elements of C are

the same (Opposite), then

C3ij > 0 (<0), i #j

(2) G,, > O.

11

. 1' 28. s, g , the corollary follows from Theorem

J P 1P JP PP
 

Proof: Since G.

1

Theorem 2. 2. 3: If bi is a branch of any tree T of P, then corres-

ponding to a change in the orientation of b, there is a cross-sign change

: i

Of flT Jfie Ad? °

Proof: If the orientation of b. is changed, then every entry in the

1

 

i~row of )j changes sign. Therefore, every non—zero entry in the i-row



 

  

 

 



 

 

of Ajfie also changes Sign. Hence, in the product (jfl 6))! ' every

non-zero entry in the i-row and i—column changes Sign.

Corollary 2., Z. 3: 1G,.) is invariant through changes in orientation. l}
 

Of branches of T.

Proof: Direct consequence of Theorem 2. 2. 3 and Definition 2.1.
 

 

Theorem 2. 2. 4: If bi is a branch of any tree of P, then correspond-

ing to a change in the orientation of bi there is a cross-sign change of

fi : Jfl Xi ', fl diagonal, and conversely.

T e e

Proof: The first part of the theorem follows from Theorem 2. 2. 3
 

for the case of diagonal fle'

~ For i 3! j, entries gpp which appear in Gij = gsipsjpgpp correspond

to elements which are common to Si and Sj' and therefore by Corollary

2. 2. 1 all these elements have S-Orientations which are the same or

Opposite. In addition, from Theorem 2. 2. 2, sipsjp = +1 for all p or -1

for all p. Therefore, if Gij is changed in sign, then each Sipsjp in the

defining sum must change sign. For this to be the case, the orientation

Of either bi or b. must have been changed. A change in the Sign of the

entries in the i-row and i-column of W implies a change in the orien-

T

tation of bi since sip' for all p, are the only entries of J common to

all terms.

2. 3 Sign Pattern Fixed by Certain Subgraphs
 

Theorem 2. 3. 1: Any two branches bi and bj Of a tree are contained
 

in some path-in-tree PT.

Proof: Let the vertices of b, and b, be v, , v, and v, , v.

1 j 11 12 jl jZ

respectively. Since the tree is connected there is a path between any

 

pair of vertices. In particular, there is a path p with end vertices vi1



m.)Fa]_

 

 

 

 



 

 

and VjZ' Either p contains both branches, one branch or neither branch.

In the first case the theorem is true. Hence assume both branches are

not contained in p. Since an element is a path, there is a path with end

vertices vi1 and vi2 and a path with end vertices vjl and VjZ' .These

paths do not form a circuit. Therefore from properties of a path there

is a path-in-tree containing both branches.

Theorem 2. 3. 2: If and only if for some path-in-tree the p- and
 

e-orientations of bi and bj coincide, then the Si and Sj orientations of

all elements of C are the same.

~ Proof: Sufficiency: By the definition of f-seg orientation and
 

hypothesis, bi and bj have e-, p- and s-orientations which coincide.

Let Ki be the compliment of bi in tree which contains the X-vertex of bi'

By definition of f-seg, the vertices of K1 are X-vertices of Si. There

is one and only one path-in-tree, P', between the X-vertex of bj and the

NX-vertex of bi' This implies that every vertex of P' is an X-vertex of

Sj° Therefore every X-vertex of Si is an X-vertex of Si. This implies

the conclusion.

-Necessity: By hypothesis b1 and bj are e-oriented from X- to NX-

vertex sets of Si and Sj respectively. By Theorem 15 [15] b1 and bj are

in the f-circuit defined by any element of C. .Therefore bi and bj are

contained in a path-in-tree P'. »Let the elements of P' be p-oriented

Opposite the f- circuit orientation. .Therefore bi and bj are p-oriented

from the X- to NX-vertex sets of Si and S, respectively. Hence the con-

J

clusion follows.

Corollary 2. 3. 2: With the same hypothesis,

8. s, = +1

1P JP

where p corresponds to elements Of C and i 51 j.
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Proof: Direct consequence of Theorem 2. 2. 2 and Theorem 2. 3. 2.
 

 

Theorem 2. 3. 3: If bi and bj have coincident p- and e-orientations

in some PT’ then b1 and b, have coincident p- and e-orientations in every

PT.

Proof: By hypothesis, bi and bj are contained in some path-in-

tree PT. .From prOperties of a path, there is a subpath of PT’ PTI’

which contains bi and bj as end elements. Every path-in-tree which

contains b1 and bj contains PTl' . The theorem follows from the method

of p-orienting the elements.

 

Theorem 2. 3.4: Consider a set of r branches Br. If and only if

each pair bi and b, of Br have coincident p- and e-orientations for some

J

path-in-tree, then the branches B1. are contained in a path-in-tree with

coincident p- and e-orientations.

Proof: Sufficiency: ' It is only necessary to Show that the branches
  

Br are contained in a path-in-tree since then the hypothesis fixes the

p- and e-orientation of the conclusion.

By induction on r. For r = 2, the hypothesis and conclusion are

the same. Therefore consider r = 3, where the branches of B1. are bl,

b2 and b3. Suppose b1, b2 and b3 are not contained in a path-in-tree.

Therefore by hypothesis and properties of paths, each branch is con-

tained in a path-in-tree and these paths form a star with common vertex

vx. Also by hypothesis, e-orienting any branch, b1, fixes the p- and

e—orientations of the other branches. Thus the p- and e-orientation

arrows of b; and b3 are pointing toward or away from vx. By Theorem

2. 3. 3, this is true for every path containing b1 and b2 and for every path

containing b1 and b3. This implies that the p- and e-orientations of b;

and b3, for any path-in-tree containing b2 and b3 do not coincide. The

conclusion follows for r = 3.



 

11

Suppose the theorem is true for r = k, and the branches of B are

k

b1, b2, . . . , bk' If the theorem is not true for r = k+ 1, bk+ 1 is

contained in a path-in-tree which has a terminal vertex vX that is one of

the non-terminal vertices of every path-in-tree containing b1, b2, . . . , bk.

By hypothesis, e-orienting any branch, b1, fixes the p- and e-orientations

of all branches. The p- and e-orientation of the branches, b and bi'

k l

bi + 1, . . . , bk are pointing toward or away from vX for b1 Elk + 1.

This implies a contradiction of hypothesis for the p- and e-orientation of

the branches bk + 1 and bj’ j = i, i+ 1, . . . , k, do not coincide for any

path-in-tree.

The necessity follows from the fact that a path-in-tree which con-

tains the branches b1, b2, . . . , br’ . has subpaths containing any pair of

branches bi and bj.

Corollary 2. 3. 4: ' Consider any v-vertex part and tree T. With the
 

same hypothesis and r = v - 1, T is a path whose branches have coinci-

dent p- and e-orientations.

, Proof: Direct consequence of Theorem 2. 3.4.
 

 

Theorem 2. 3. 5: Consider fie diagonal with non-negative entries.

If and only if fiT = [Gij] contains a principal submatrix of order r with

positive entries, then r branches of T define f—segs with common

elements and are contained in a path-in-tree with coincident p- and e-

orientations .

Proof: Sufficiency: Any entry in the submatrix of hypothesis is of
  

the form ES 5 g Terms in this sum correspond to elements common

p ip 110 1313'

to S, and 5,, i 7! j, and therefore, all non-zero products Sipsjp are +1 or

1 J

s, s, = +1 for at least

1P JP

one p. In addition, Corollary 2. 3. 2 implies that the branches bi and bj

all are -1. Since the sum is positive and gpp Z O,
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defining Si and Sj respectively, are contained in some path-in-tree with

coincident p- and e-orientations. This statement is true for all pairs of

branches associated with off-diagonal entries of the submatrix of hypothe-

sis, i.e. b1 and bj for Iii < j _<_ 2, 3, . . . , r. Therefore by Theorem

2, 3.4, the conclusion follows.

Necessity: All entries in fl associated with the r branches of

T

hypothesis have the form ES, 3, g . Since all f-segs defined by the

P 1P JP PP

branches have common elements, each entry is non-zero. By hypothesis

 

and Corollary 2. 3. 2, all non-zero sipsjpz +1. .Thus the conclusion

follows since g > 0.

PP —

Corollary 2. 3. 5: Consider fie diagonal with non-negative entries.

If and only if for fiT =‘ [Gij]. Gij > 0, then

(1) T is a path

 

(2) all branches of T define f-segs with common elements and have

coincident p- and e-orientations.

Proof: This follows from Theorem 2. 3. 5.
 

Theorem 2. 3. 6: If and only if for some path-in-tree the p- and
 

e-orientations of bi and bj are not coincident, then the S, and‘SJ. orien-

1

tations of all elements of C are opposite.

Proof: This is the contrapositive form of Theorem 2. 3. 2.
 

Corollary 2. 3. 6: With the same hypothesis,
 

ss -1

ip jp—

where p corresponds to elements of C and i 7! j.

Proof: Direct consequence of Theorem 2. 2. 2 and Theorem 2. 3. 6.
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Theorem 2. 3. 7: If bi and b, do not have coincident p- and e-orien-
 

tations in some PT’ then bi and bj do not have coincident p» and e-orien-

tations for every PT.

 

Proof: Similar to Theorem 2. 3. 3, for PT contains a subpath PT1

which has b, and bj as end elements. Since every path-in—tree which

1

contains bi and bj contains PTl’ the conclusion follows.

Theorem 2. 3. 8: If and only if each pair bi and bj of B do not have

r 

coincident p- and e-orientations for some path-in-tree, then there exist

paths-in-tree, pi, such that

(1) each pi contains one and only one branch of Br

(2) some one vertex vx is a terminal vertex of each pi

(3) the e-orientation of the bi are all toward or all away from vX.

Proof: Sufficiency: It is only necessary to show that (1) and (2) of
 

the conclusion are satisfied for then the hypothesis fixes the e-orientations

of the conclusion.

By induction on r. For r = 2, the hypothesis and conclusion are the

same. Therefore consider r = 3 where the branches of Br are b1, b2 and

b3. Suppose the branches b1, b2 and b3 do not satisfy (1) and (2) of the

conclusion. The only situation that can exi‘st is that bl, b2, and b3 are

contained in a path-in-tree. By hypothesis, arbitrarily e-orienting any

branch, b1, fixes the p- and e-orientation of b2 and b3. Since b2 and b3

have the same p- and therefore e-orientations, the hypothesis is contra-

dicted. Therefore the conclusion follows for r = 3.

Suppose the theorem is true for r = k and that the branches of B

k

are b1, b2, . . . , bk' If the theorem is not true for r = k + l, bk + 1

is contained in one of the pi. By hypothesis, e-orienting any branch, b1,

fixes the p- and e-orientations of all branches. The p- and e-orientation

of bi and bk + are the same for b1 not bi or b . This fact contra-

1 k + l

dicts the hypothesis. Hence the conclusion follows.
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Necessity: By hypothesis, any pair of branches bi and bj is contained
 

in a path-in-tree containing vx. The e-orientation of b1 and bj are both

toward or both away from vx. Therefore from the method of p-orienting

the elements Of a path the conclusion follows.

Corollary 2. 3. 8: Consider any v-vertex part and tree T. With the
 

same hypothesis and r = v - 1, T is a Lagrangian tree whose branches are

e-oriented toward or away from the common vertex.

Proof: Direct consequence Of Theorem 2. 3. 8.
 

Theorem 2. 3. 9: Consider >86 diagonal with non-negative entries.
 

If and only if 6 T = [Gij] contains a principal submatrix or order r with

negative entries, then r branches of T define f-segs with common elements

and satisfy (1), (2) and (3) of Theorem 2. 3. 8.

. Proof: Sufficiency: Similar to Theorem 2. 3. 5 for any entry of the
  

submatrix of hypothesis, gsipsjpg p' has terms which correspond to

P

elements common to S1 and Sj' i a! j. By hypothesis and the fact that all

non-zero products 3, s_ equal +1 or all equal -1, s, s, = -1 for at

1P JP 1P JP

least one p. - Corollary 2. 3.6 implies that the branches b1 and bj defining

Si and Sj respectively, are contained in some path-in-tree with p- and

e-orientations that do not coincide. This is true for all pairs of branches

b1 and b_ where 1_<_i < j :2, 3, . . . , r, i.e. all branches associated

J

with Off-diagonal entries Of the submatrix of hypothesis. Therefore by

Theorem 2. 3. 8, the conclusion follows.

~Necessity: All entries in fiT associated with the r branches of
 

hypothesis, Es. s, g , are non-zero since the f-segs defined by these

P 1P JP PP

branches have common elements. By Corollary 2. 3. 6 and hypothesis all

non-zero s. s, = -1. Since g > O, the conclusion follows.

1P JP P—
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Corollary 2. 3. 9: Consider fie diagonal with nonwnegative entries.
 

T ij

whose branches define f—segs with common elements and are e-oriented

If and only if for g = [G .], Gij < 0, i 3! j, then T is a Lagrangian tree

toward or away from the common vertex.

» Proof: This follows from Theorem 2. 3. 9.
 

 



III. TREE TRANSFORMATION MATRIX
 

3.1 Basic Properties
 

A v-vertex connected graph, a part, is the union Of a tree, T, and

the complement of T, a cotree, G. Any part will be designated as

P = GUT or P. = GUTi when reference is made to a specific tree.

Definition 3. 1: Consider a v-vertex part P = TiUT, where Ti and

J
 

T are any two v--vertex trees, and consider Tj the tree and Ti the

cotree of P. Let the corresponding f- seg matrix be [u jijl] where

the columns of u correspond to T and the columns of jij correspond

to Ti' The submatrix )J ij is called the tree transformation matrix from
 

T1 to Tj.

For any part P = GUT, let Q = [ Q T a G] be the incidence

matrix where the columns Of QT correspond to the tree T and the

columns Of a G correspond to the cotree of P.

Lemma 3.1.1: ForP= Tij’UT

jij: QJTj-Il aTi

Proof: Since the f-seg matrix Jf and the incidence matrix

 

 

satisfy the relation [12]:

infoH (2TH CZT 61G]: QT’la,

the conclusion follows.

Lemma 3. 1. Z: The tree transformation matrix, jij’ is non-

det )1“ =_t 1-

1.1

l6

 

singular, and
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j“ correspond to a tree, )3 ,,

ij
1.1

'1

Proof: Since the columns of

 

exists [14].

For any tree T, a T is square, therefore by Lemma 3.1

-1

det jij = det a,” det aTi'

The conclusion follows since det a T _+_ l [14].

Theorem 3.1. 1: For any part Pi GUTi and Pj = GUTj with f-seg

matrices [ u Ii] and [% jj] reSpectively,

‘MJ9j : >A?ij.)<f'i

Proof: By Lemma 3. l. 1, it must be Shown that

-1 -1 _l

aTj anzlaTj aTiHaTi dot)

Employing the associative law,

02 Tj-l 0. Gj = 62 Tj_la Gi

which reduces to

am: QGi

That this is the case follows from the fact that the cotree of Pi and Pj

are identical. ‘Since the above process is reversible, the conclusion

follows .

1

Corollary 3.1.1.1: ForfiTizjifie—lj i and’gTj:

I

j if ' g "j j AXj erj’ Tj‘ ij Ti ij'
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Proof: By hypothesis

fiszjij(Ji)&e)ji)inj

therefore

fl TJ'ZUJU Ji)}&e()jij JRV

Hence, by Theorem 3.1.1,

Tj _ 3' e 3'

Corollary 3.1.1. 2: det}8Tj = detfiTi.

Proof: Since

d t = d o o . O . j 0 Ie Tj et lJ det T1 det 13

the conclusion follows from Lemma 3.1. 2.

 

 

Theorem 3.1. 2'. The branches of any tree Ti can be e-oriented
 

such that the tree transformation matrix from a Lagrangian tree with

all elements oriented from or toward the common vertex to Ti’fi Li’

has non-negative (non-positive) entries.

 

. Proof: Let P = TLUTi where T1 is the tree and TL is the cotree

of P. .Consider any f-seg Si defined by a branch bi of Ti' Suppose the

common vertex of the Lagrangian tree of hypothesis, TL’ is an X-

(or NX-) vertex of Si. Then by hypothesis all X-NX elements of Si’

branches of TL, have e-orientation either (1) from the X- to NX-vertex

sets, or (2) from the NX- to X-vertex sets. By e-orienting bi from the

X- to NX-v’ertex sets, the signs of all non-zero entries in the i-row of

jLi are fixed. For case (1) all non-zero entries are +1, and for



rel r

m

 



  

1‘?

T

An...- «L. _

 

case (2) all non-zero entries are -1. Since this is true for each f-Seg,

the conclusion follows .

Theorem 3.1. 3: The tree transformation matrix from a Lagrangian
 

tree to any other tree Ti’ )j Li’ can be formed so that submatrices

Obtained by deleting rows 1, 2, . . . , iand columns 1, 2, . . . , i,

i: 1, 2, . . . , v - 2, are nonsingular.

-Proof: Consider P = T UTi where Ti is the tree and T is the co-

L L

tree of P. Since any tree Ti has at least two end elements and all the

elements of TL are end elements, only one branch b1 of Ti and only one

chord c1, branch of T are incident to one end vertex of Ti' Let the
L,

first row of the f-seg matrix Of P and therefore [if correspond to b1.

Li

Since the complement of an end element of a v-vertex tree is a tree of

v - 1 vertices [13], the complement of b1 in Ti is a tree on v - 1 vertices

and the complement of CI in TL is a Lagrangian tree on v - 1 vertices.

Therefore the complement of blUCl in P, P1, is the union of a Lagrangian

tree and some other tree on v - 1 vertices. Form the second row of

the f-seg matrix of P by applying the argument used to form the first row

on the subgraph P1. The remaining rows of the f-seg matrix of P are to

be formed by applying the complementing procedure to P1 and the result-

ing subgraphs of P1. By the above construction process, deleting rows

1, 2, ...,iandcolumnsl, 2, ...,i,i=1, 2, .. .,v-2,

results in a matrix which is a tree transformation matrix from a Lagran-

gian tree to some tree of v - i vertices. Therefore this matrix is non-

singular by Lemma 3. 1. 2.

3. 2 Tree Forms
 

Definition 3. 2: Consider a v-vertex tree T1 = T1 with vertices

a
 

labeled v., i = l, 2, . . . , v. Let Ti be any tree formed from Tie by

1 i3

relabeling its vertices. The two trees, Ti and TiB' are said to be of

a

the same form - - - form -i.
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Lemma 3. 2: Consider P = T_ UT'P where the branches of Ti

—— 10. 1 u

and Tm are oriented from or toward the corresponding common vertices.

The tree transformation matrix from T. to T. , )J _ , is either

In 1(3 IQB

  

[T o 0 TI] _1 o o o o T]

o 1 o o o 1 o o o o

o o 1 o o o 1 o o o

(21) or (il)—l -1 -1 . . . -1 -1 -1

o o o 1 o o

o o o . . . o 1 o

J0 o o . . . J L) o o . . . o o 1  
Proof: This follows by forming the tree transformation matrix of

hypothesis for the case that the common vertex of Ti and the common

a.

vertex of T.6 coincide, and the case that they do not coincide.

1

Theorem 3. 2.1: For v-vertex trees Ti , T and Tj (= T. ),
______ 0

JG.iii

there is a v-vertex tree of the same form as T,, T, , such that

J JB

jinn: )j 1536

where the rows correspond to the same branches.

Proof: Let P1 and P2 be TiUT_. The tree transformation matrices

of P1 and P2 are identical if they are formed using the same sequence of

branches. Label T1 of P1 and Ti of P2 so that Tia. and T15 of hypothesis

6'result. The conclusion follows if TJP is the complement of Ti
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Theorem 3.2.2: For P. = T. UT. and P, = P, UT.

-—-—-— 1 1o. 18 j 10. j

)1in = j 151 jiaifi

Proof: This follows from Theorem 3. 1. 1 for the case of the parts

,

of hypothesis .



IV. SYNTHESIS OF R-GRAPHS
 

4. 1 Introduction
 

The necessary and sufficient conditions on a given matrix such that

it is realizable as an R-graph are determined. This result is based on

the properties of the branch matrix of a part consisting of the union of a

complete graph and Lagrangian tree. The complete graph has the

character of a "canonical configuration" discussed by Darlington [16]

which is contrary to some procedures of R-graph synthesis [3]. The con-

ditions associated with a Lagrangian tree are extended to trees of the

same form and results are given for trees of different forms. It is shown

that trees of the same form impose the same realizability conditions on

a given matrix.

  

Definition 4. 1. 1: A complete graph, Gv’ is a v-vertex graph such

that there is one and only one element between every pair of vertices--

Figure 2a.

  

Definition 4. 1. 2: The canonical form of a square matrixfi =

[o,,] is the matrix )[7 = [G .,] which contains entries o .. = C,, and
Ij c C1J cm 11

= _ G" f . ..
Gcij I 1]) or 1 #3

 

4. 2 Some properties of ”L

Theorem 4. 2.1: Let [ M if ] be the f-seg matrix for P = GVUT ,
L L

. . . ' ___

where TL 13 defined by Figure 2b. .For/fi e $13))! [Gij(gij)]’

d. > :)& e Iagonal and gij _ 0

(1) Gijf- 0, i 7! j, for branches of TL oriented from (or toward)

the common vertex; all other Gij Sign patterns are deducible from

alterations in orientation of branches of TL.

22



 

 
 v0 ' Q1

v-lO .2

o

j+1

L
a
.

(b)

Fig. 2-«(a) V-vertex complete graph. (b) Lagrangian tree, TL.
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= = . > .
(Z) [Gji‘ IGijl gi,j-i for j 1

v—i

Gii: j}; gij+ g1,i-1+ g2,i-2+' ' ' I gi.1,1

fori=1, 2,. . . , v-l.

Proof: The elements of PL are to be oriented as follows: all ele-

ments incident to vertex No. 1 are to be oriented toward vertex 1; all

elements incident to vertex No. 2 not already considered are to be oriented

toward vertex 2; etc.

  

For this arrangement, the f—seg matrix, f’ has the following form:

1 [I o o . o 1 1 l 1 1 o o o o 0 .j

2 0 l O . . . 0 -1 0 0 . . . 0 0 1 1 l . . . 1 l .

3 0 0 1 0 0 -1 O 0 0 -1 0 0 O 0 0

v-1 0 0 0 1 0 O O -1 0 0 O 0 -1 0 ...l

where the columns of )j correspond to elements 11, 12, . . . , 1 v-l;

__ _ . . . ,.
21, 22, . . . , 2v 2, . . . v11. Since fie Is d1agona1,)/)&e>/ 1s

symmetric and has entries shown by (gijE 0 for i E 0 or j_<_ 0)

G . = - . . .2 h > .

ij gi,j-1 J 1

v-i (4.2.1)

C'ii: j_i;gij+ g1,i.1 + g2,1.2+ ' ' ' + gi.1,1

for i = l, 2, . . . , v-l. This result proves (2).

For the assumed orientation pattern all off-diagonal entries are

non—positive. By Theorem 2. 2.4, the signs of these entries are affected

0/? by changing branch orientations by way of cross-sign changes of

' which proves (1).



Ex??? 6"__ I
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Theorem 4. 2. 2: Let [u j ] be the fmseg matrix for PL = G UTL

v

. . , = .
of Figure 2. For the matrix J fiegijhf [Gij(gij)] written as

xcwfsrg

 

h ' =

W ere 7CC. [611612 G1,v—1622 C'23 GZ,v-1 G33 G3,v--l

. d '=
Gv-l,v-1] an 1g [gllglz g1,v—1g.21g22 gz, v-2 g3,1

g3,v_3 . . . gv_1,1], is non-SIngular.

Proof: Orient the elements of P as in the proof of Theorem 4.2.1.

L

The form of the entries in Jfle (gi9% ' is given in (4. 2.1) and there»

fore for this orientation pattern the deJtailed form of Ms is given in

 

  

(4.2.2).

[— _

a
11

QZI a22

Q31 a 32 Q33

“ aiz an . . . ii

Qv-I,IOv-l,20v-l,3 a v-1,i . . .QV-1,V-l

(4.2.2)

The square submatrices, __

I—1 1 l l

-l O . . . O 0

a .= 0 -1 . . . 0 0 , iylv-l,
i1
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are of order v-i and a = [1]. The submatrices a ij’ i) j.
-l -l

are of the order v-i x v-jfandvcontain all zero entries except for +1 in

the (1, i-j) position.

By the‘Laplace Expansion [17] with the first v-l columns, the

determinant of (4. 2. 2) is given by the product of the determinants of the

square diagonal submatrices each of which is non-singular. Therefore,

for the assumed orientation pattern, )j s is non- singular.

The form of jfie (gijU/ ' for any other orientation pattern of

elements of P can be Obtained through the use of cross-sign changes.

L

The Operation of cross- sign change changes only the sign of off-diagonal

entries in Jfle (gij“)! Therefore if ’X’G 1corresponds to

e(gij) )J ' after any number of cross- sign changes, then

I] JAG

where U is diagonal with +1 and -1 entries. .The transformation matrix

U [17] is necessarily non- singular. Since 7C0 :J/s xg’ XGI:

Ujs xg’ The matrix st is non- singular since it isgthe product

of two non- singular matrices which proves the theorem.

 

Corollary 4. 2.2: Let [Gij(gij)] be a matrix obtained from

)6; (gij))f'= Gij (gij)] by interchanging rows 1 and j and columns

° I

1 and j. Writing [Gij I:(gij)] as

1 : )fsl kg

— l l I I l I

Where ’X'Gl [G11G1['2 ' Gl,v-1C’22C'23" ‘ Gz, v—1G33" G3, v-l

l

Gv-1,v-l]and ’X'g:['g11g12 ' g1,v-1g21g.22 g2,v-2g31 g3,v-3

. gV_1 1], $1 is non-singular.

Proof: The Operation of interchanging rows 1 and j and columns i
 

andj of [G] interchanges G . and G .forp= 1, 2, . . . , i-l, i+l, . . .

1.1 P1 PJ

j-l, j+1, . . . , v-l, j > i, and Gii and ij. ‘All other entries of [Gij]
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remain fixed. Thus fX’Gl

Theorem 4. 2. 2, by interchanging certain rows, that is

316

where I] is a non-singular transformation [17]. By Theorem 4. 2. 2,

1G1: :7 J5 ’X'g and M51 = 3% s is non-singular since it is

the product of non-singular matrices.

can be Obtained from fit/G, defined in

4. 3 Necessary and Sufficient Conditions for R-Graph Synthesis
 

In the following theorems, it is assumed that fiL’ of order v-l,

is the coefficient matrix of the branch equations, branch matrix, for PL ==

GVUTL as shown in Figure 2 for diagonal fie. Branch matrices for

other parts Pi =GVUTi are designated as ”i and for the parts Pia:

GVUTio. and P1"ifi- GVUlTiP, as fiio and am respectively.

 

Theorem 4. 3. 1: Consider any fill = [Gij]v 1 and the branches of

TL oriented from (or toward) the common vertex. If and only if

(1) Gij_<_0 foriyfj

(2) Gfi_>_0

fori=:1, 2, . . . , v-l,

v-l

ZG,,>0

i=1 1""

then gij 2. 0.

Proof: Sufficiency: The )fi L(Gij) of hypothesis is in terms of G1j

and jge(gij))j ' of Theorem 4.12.11Jis in terms of gi, Furthermore

(I) of Theorem 4.2.1 permits by cross- sign changes alteJring’Jj&'(giJ)x

)j ' into MLfle(gij))JL' in correlation with TL oriented as the

TL t h h d - ' )5; J].L” )JL'0 w 1c fiL correSpon 5 Since and e(gij)

correspond to identical TL(Orientation and form), these matrices are

  

equal. Therefore
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fiLKhj) : XL 27 4&1?)ij

This last equation can be written as

10:11ng

h I - .
...

°-° °°°
W ere 1G $611612 G1 v-1622623 GZ,V-IG33 (33,le

G
v-1.v-1] and [Xg' =[gg1112 “g1,v-1gz1g22 g2,v~2g31 g3,174

. gv 1 1]. By Theorem 4. 2. 2, s is non- singular and therefore

the solution is:

H— __ K -

g11 G1.2

g12 '613

gl,v-2 "G1,v~1

v-l

gl,v-l 2 GI.

i=1 3

g21 "G23

gzz : 'Gz4 (4.3.1)

gZ,v-3 -GZ,V-1

V-l

g G .

2,v 2 j=1 21

Val

gv-l,l ,2 Gv-1,J

L J .351     
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That all entries on the right side of (4. 3. 1) which are not sums

are non-negative follows from (1) of hypothesis. All entries which are

sums are non—negative by (2) of hypothesis.

Necessity: Since the equation

KG = )J s ”)L g

as defined in the sufficiency part of the proof is independent of the values

of Gij and gij’ (4. 3.1) applies to‘this proof. From (4. 3.1) for gij>0,

(1) and (2) of hypothesis follow.

Corollary 4. 3. 1: Consider anyfi L = [Gij]v 1. If and only if

(1) )5 L can be chanted to the canonical form, c = [Gcij]’ by a

finite number of cross-sign changes,

>(2) Gii _ 0

v-l fori=l,2,...,v-1.

Gci' _>_ 0

i=1 J

then gij _>_ 0.

Proof: Sufficiency: By (1) of hypothesis change fl L to canonical

form )2] c' By Theorem 2. 2.4 and (1) of Theorem 4.2.1, We .corres-

ponds to T with all branches oriented from (or toward) the common

L

vertex. Therefore Theorem 4. 3. 1 implies the conclusion.

Necessity: Change orientation of the branches of TL and apply

corresponding finite set of cross-sign changes to )ZTL until all branches

are oriented from common vertex. This process produces a matrix

satisfying Theorem 4. 3. 1. Therefore hypothesis of corollary follows.

Definition 4. 3. l: A symmetric matrix fl: [Gij]n is an R-matrix

if

(1)” can be changed to the canonical form, fie = [Gcij]’ by a

finite number of cross-sign changes,



 

 
 

 

3O

2 >

()Gii—O

fori=1, 2, . . . ,n.

v—l

G i.__>_0

i=1 CJ

Theorem 4. 3. 2: Consider any fiLa: [G ] and the branches of
 

ij v-l

TL oriented from (or toward) the common vertex. If and only if

a.

(l)Gij:0 foriafj

(2) G.. _>_ O

n fori=l,2,...,v-1,

v-1

2 G.. _>_ O

i=1 ‘3

then gij _>_ 0.

Proof: Sufficiency: Let )1 L 6 be the tree transformation matrix

0.

of Figure 2b with branches oriented from

  

from TLa of hypothe81s to TLB

or toward the common vertex. The branch matrix for the part of Figure l

is j LQB fl La )1 'LaB by Corollary 3. 1.1.1. The possible forms of

Lafi are g1ven in Lemma 3. 2. If )1 LaB: :l: u , the theorem follows

from Theorem 4. 3.1. For all other cases,

jLafijLaJILQB =

 

<-— v_1 ———.-—I

G11 012 G1,m-1 {-213 Glj C"1,m+1 G1,v-1

V-l

G12 G2.2 G.2,m-1 j-_Z1G2j GZ,m+l G2,v-l

v-l v-l v-l v-lv-l v-l v-l

~261. -ZG2. -ZJG . Z Z Gm. -ZG. m+1 -ZG. v-l

j=1 J j=1 J j=1 m" m=lj=1 3:1 3’ j=1 3'

v-l

coo - . 0.0 G

G1,v-1 G2,v-1 Gm-l,v-1 j_ZIG_],V-1 Clm+1,v-1 v-1,v-1
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From (1) and (2) of hypothesis, off-diagonal entries of this last

matrix are non-positive and diagonal entries are non-negative. 'lI'he sum

v—

of the entries in any row n 7! m is -G and in row n = m, is ,§ G ,

nm J: m3

and by hypothesis, these terms are non-negative. Therefore by

Theorem 4. 3. 1, the conclusion follows.

Necessity: Let be any branch matrix for the part of Figure 2

LB

with the branches of TLB oriented from or toward the common vertex.

By hypothesis, fl satisfies the properties of Theorem 4. 3. 1.

L I

By Corollary 3.1.1.1, J Lfia ”L5 jLBa is the branch matrix for

TLC: of hypothesis. Since MLaB of Lemma 3. 2 satisfied

)jLaB )Jiagf u

’1 1:043 : M14311

and in general

it follows that

j LGB : j Lsa'

The conclusion follows then by the same argument as used above.

11 4. 3. 2: 'd fl . ' j 'Coro ary Cons1 er any Lo. If and only if Lu is an

R-matrix, then gij : 0.

Proof: Any possible )6“ Lu can be obtained from a canonical [L

— o.

by cross-sign changes which correlate with altering the orientations of a

TLa which has all orientations from or toward the common vertex, to a

TLu with some other pattern of orientation. Therefore, a set of cross-

sign changes exists which alters flL into a canonical form and also

a

alters the orientations of TLa into orientation pattern of TL of Theorem

(1

4. 3. 2. Therefore from Theorem 4. 3. 2, the conclusion follows.
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Theorem 4. 3. 3: Consider any)&i and )flL(1’ the tree trans-

formation matrix from T1 to TLa' If and only if; iLo. fli J!iLa

is an R-matrix, then gi, >_ 0.

-:Proof Since fii is the branch matrix for Pi’ Corollary 3.1.1.1

implies that jiLa fli jiLa is the branch matrix for PLO. . Hence

 

by Corollary 4. 3. 2 the conclusion follows.

Corollary 4. 3. 3: Consider any/1&1: Gij]v landjiLa’th

tree transformation matrix from T. to T with branches oriented from

o.
I

or toward the common vertex. If and only if, for ’diLa fli J] iLa :

[f (G..)]
mn 13 v-1’

1 f < O f1 ) mn(Gij) _ or m a! n

>(2) fmnmij) _ o

 

form: 1, 2, ..., v-l,

v--1f

Jrli(GJ.)_>_0

n=1f

then gij _>_ 0.

* Proof: The conclusion follows from Theorem 4. 3. 3.
 

Theorem 4.3.4: Consider anyflL and jL i’ the tree transform-

a a
 

ation matrix from TLa to Ti. If and only if La is an R-matrix, then

all gi,ij associated withaj Laifi La)! Lai are non- negative.

Proof: Since fiLa is the branch matrix for PLo,’ Corollary 3. 1. 1. 1

implies that J Lai fiLLQ )jLai_=fii is the branch matrix for Pi'

-1

Lai iaL

conclusion.

 

Since , Theorem 4. 3. 3 and hypothesis implies the

Corollary 4. 3. 4: Consider any)Z7i andfij. If and only if all g

11

associated with)&i are non——negative, then all gij Jassociated withfij

 

a r e non- negative.
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I

Proof: By Theorem 4.3.3, )J iLo. flij iLu is an'R-matrix.

ByCorollary 3.1.1.1 and Theorem 3.2.2, )3 1L“ $1 j iLa =

JiLa(/fijflj )Ji'j) Jim: Jingug jija' Therefore

the conclusion follows from Theorem 4. 3. 4.

Theorem 4. 3. 5: Iffi in = [Giot] andfi 1‘3 = [G3] with rows

corresponding to same branches, then . , fling iajo. = [fmn(G:j)]

and/J mm 527 113 X? 113113 . [fmn(cfj)].

Proof: This follows from Theorem 3. 2. 1.

4.4 Discussion of Results
 

The sufficiency part of Corollary 4. 3. l is actually a synthesis

procedure. A given matrix muSt satisfy (1) and (2) of Corollary 4. 3. 1,

that is, be an R-matrix, for it to be realized as the R-graph P . To test

a matrix, first simply form, if possible, the canonical form c' The

next step is to apply (2.) to J27 c' If both conditions are satisfied, the

matrix can be realized as PL and the element values can be determined

from (4. 3. 1). The branch orientations can be determined from Theorem

4. 3.1 and Theorem 2. 2.4.

By definition 4.1. 2, Gcij = -IGijl for i 7! j, the second relation in

(2) of Corollary 4. 3. 1 has the following form.

v-l

ZG..> ElG..I,i=1,Z, ...,v-l

11— j=1 1]

This is the well-known condition of dominance discussed by Burington [2].

That the second relation in (2) of Corollary 4. 3. 1 is that of dominance

stems from the fact that the branch equations are identical to the incidence

equations for the Lagrangian tree. ~It is not necessary to consider a

Lagrangian tree to determine the necessary and sufficient conditions as in

TheOrem 4. 3. 1. A procedure similar to that of Theorem 4. 3.1 with a
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different tree form leads to different expressions [18]. In addition the

method implied by Theorem 4. 3. 3 and Corollary 4. 3. 3 can be used to

determine the necessary and sufficient conditions for synthesis. For

example, the tree transformation matrix from TP to TL, where TP is a

path with the e- and pnorientations of all elements coincident and the

elements of TL are all oriented toward or away from the common vertex,

p
—
l

O O O O

O O O —1 H

Therefore, showing only the entries above and including the main diagonal,

)JPLflPJ'PL:

11- 12'G11 13' 12 G1,v-1'Gl,v—2

(G

2,v-1'Gl,v-1' 2,v-2'G1,v-z)

v- 1, v- 1+Gv-Z, v-Z—ZGv-Zv-l

By applying (1) and (Z) of Corollary 4. 3. 3, the following conditions are

obtained.

(1) Gij _>_ 0 for all (i, j)

(2)112“: o

AY'Z - A?“ > o
1 1 —

fori=1, Z, ..., v—1

1 1+1
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whereAij= G_,- G, _fori;{1, Aj= G .andAv 50.
1 13 1-1,_] 1 13 v-1

These conditions are necessary and sufficient for the realization of a given

matrix as PP with the elements of TP oriented so that the e- and p-orien-

tations coincide. For an arbitrary orientation pattern the matrix must

satisfy (1) and (2) after a finite number of corss-sign changes.

If a matrix 127 is to be realized as a v-vertex complete graph by

means of a specified tree form Ti' the necessary and sufficient conditions

which must be satisfied are implied by Theorem 4. 3. 3. Iffi does not

satisfy these conditions, it still may be realized in the required form.

Since the row order has not been specified, different arrangements of the

entries corresponding to different row orders of must be considered.

* Interchanging row i and j and then column i and j of corresponds to

interchanging row i and j ofj . The conditions can then be applied to

the new branch matrix. If all such matrices do not satisfy the conditions,

then the given matrix cannot be realized in the required form.

If only the matrix is given, the necessary and sufficient conditions

for realization corresponding to each different tree form can be determined

and applied to the given matrix or a matrix obtained from the original by

interchanging rows 1 and j and columns 1 and j. If the matrix satisfies the

conditions associated with any tree form, it can be realized with a part

consisting of the union of the particular tree form and a v-vertex complete

graph.

By considering only the sign pattern of the given matrix, the form of

a subgraph of the corresponding tree can be determined by the results of

Section 2. 3. For the case that all off—diagonal entries have the same sign,

the complete tree can be determined: all positive and all negative

correspond to path and Lagrangian trees respectively. By applying cross—

sign changes to a given matrix, if the off—diagonal entries are not all

positive or all not negative, then the matrix cannot be realized as a path

or Lagrangian tree.
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The necessary and sufficient conditions for realization with a com-

plete graph containing five vertices in terms of the three different tree

forms are given in Table 1. A necessary condition which is easily checked

is the sign requirement indicated. Only one form is indicated since all

other sign patterns can be obtained using cross-sign changes.

4. 5 Additional Problems
 

Particular sign patterns of submatrices of a given matrix have been

shown to fix the form of subgraphs of the corresponding tree. An extension

of this result would be to determine the form of the tree (if it exists)

corresponding to an arbitrary arrangement of signs in the given matrix.

The necessary and sufficient conditions for realization of a given

matrix of order v- 1, as a one part, v vertex graph have been determined.

The point of view in the technique used to determine such conditions can

be enlarged by proving Theorem 4. 2. Z for an arbitrary tree. Necessary

and sufficient conditions for graphs of more than v vertices and multiple

part graphs are additional extensions of the above results.



4.9- ..‘3- -
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Table 1. --:Necessary and Sufficient Conditions for CS.

 

Sign Pattern

Tree Form (G.. > 0)

11—

Conditions On [Gij]4

 

 

. > > >

1 C311—(3'12—(313—61430’

>

G44 — G34 3 G24 3- G14 3 0'

 2' G2.2 ' G233 G12 ' C'13: 0’

G33 ’ G343 G.23 " G.243

G13 ‘ G1130'

 

1.0 -G >O,G1-G >0,
11 12— 3 23—

> ..G12_0, and (314 (32430.

all other

, + + > .
G <0 17,3. 2 Cu G23 G24.- (31.7.J'G13Jr

"— ’ > + +

13 G'14—0’ C'33 623 G3430’

 

G44+G34+G24:0.  
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APPENDIX

LIST OF SYMBOLS
 

Desc ription
 

Number of vertices of a graph

Trees of a graph

Cotree of a graph

Connected graphs (Parts)

Elements of a tree (branches)

Elements of a cotree (chords)

f-segs

Elements common to f—segs

f-seg matrix

Unit matrix

Non unit submatrix of f-seg matrix

Element matrix

Branch matrix

Canonical form of branch matrix

Entries of branch matrix

Entries of element matrix
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