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ABSTRACT

ELECTRON SPIN ECHO ENVELOPE MODULATION STUDIES ON

METHYLMALONYL-COA MUTASE

By

Nadia Anjum Shams-Ahmed

Vitamin B”, a cobalt-based cofactor, is involved in many enzymatic

systems, including methylmalonyl-CoA mutase. Methylmalonyl-CoA mutase is an

enzyme that converts L-methylmalonyl-CoA into succinyl-CoA, which is part of

respiratory metabolism. The mechanism involved in this reaction is not yet known. The

most popularly accepted mechanism involves a fi’ee radical pathway.

Ruma Baneijee and Rugmini Padmakumar have tried to identify the radical

intermediates of this enzymatic reaction by using electron paramagnetic resonance (EPR)

spectroscopy. They found inhomogeneous broadening in their spectra, and hyperfine

splittings resulting from coupling ofthe unpaired electron with the cobalt nucleus. They

also did a power dependence study on the enzyme in the presence ofthe substrate at two

different temperatures. At 10K they saw two different signals, whereas at 25K they only

saw one. The spectra showed coupling to the cobalt, which indicated that cobalamin, a

cobalt-based radical formed from the B12 cofactor, was one ofthe radicals. It was not

clear, however, what the other radical species was.

Electron spin echo envelope modulation, a pulsed EPR technique, was performed

on their samples in order to continue their study. ESEEM data showed peaks in the low

frequency region ofthe spectrum that are characteristic of coupled nitrogen. Isotopic

substitution of protein bound l“N coupled with further ESEEM studies allowed us to

assign these modulations to a histidyl group, coordinated axially to €001).
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INTRODUCTION

Methylmalonyl-CoA mutase is an enzyme that converts L-methylmalonyl-CoA

into succinyl-CoA, which is part ofthe tricarboxylic acid (TCA) cycle. The TCA cycle is

the component of respiratory metabolism that provides a means for breaking down two

carbon units into carbon dioxide in the presence of oxygen. Succinyl-CoA is also utilized

in the synthesis ofheme in animals.1

Succinyl-CoA is produced during fatty acid metabolism. Fatty acids with an odd

number of carbons are rare in many mammalian tissues, but in animals such as cows and

sheep, the oxidation ofthese fatty acids can account for as much as 25% oftheir energy

requirements. 1

Inside cells, fatty acids are first reacted with coenzyme A and ATP in the cytosol

to yield fatty acyl-CoA, illustrated in Figure 1.1'. This reaction is catalyzed by acyl-CoA

ligase, also known as thiokinase. At the outer mitochondrial membrane, represented in

‘ Figure 1.2‘, acyl-CoA reacts with carnitine to yield acyl-carnitine derivatives in a

reaction described in Figure 1.3', which can then cross the inner membrane ofthe

mitochondrion. Once inside the mitochondrion, the acyl-carnitine derivatives are

converted back to acyl-CoA and carnitine, shown in Figure 12‘.1

Inside the mitochondrion, odd-chain-length saturated fatty acids break down by a

process called B-oxidation, to yield a number of acetyl-CoA’s, shown in Figure 1.4', and

one propionyl-CoA, shown in Figure 1.51. It is propionyl-CoA that begins the series of

enzymatic reactions that produces succinyl-CoA, illustrated in Figure 1.6'. Propionyl-

CoA, with the addition of ATP, CO2, and H20, is converted into D-methylmalonyl-CoA

with the enzyme propionyl-CoA carboxylase. Then D-methylmalonyl-CoA is converted
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RCOO' + ATP + CoA g > RCO-CoA+ PPi + AMP

14%;“ Acyl-CoA

Figlre 1.1 : The chemical equation for the production ofAcyl—CoA.
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Figure 1.2: The migration of acyvaoA into the mitochondrion

(a) At the outer mitochondrial membrane, acyl-CoA react with carnitine to

form acyl-carnitine derivatives, which can cross the inner mitochondrial

membrane.

(b) At the inner mitochondrial membrane, the acyl-carnitine derivatives are

converted back to acyl-CoA and carnitine.
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Figure 1.3: The production of acyl-carnitine derivatives.

O
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CH3C-COA

Figure 1.4: Acetyl-CoA, which is a two carbon subunit produced during fatty acid metabolism,

or B-oxidation.

O

I

CH3CH2CJ3-COA

Figure 1.5: Propionyl-CoA, which is produced during B-oxidation of odd-chain-length saturated

fatty acids.
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Figure 1.6: The production of succinyl-CoA from propionyl-CoA.



into its optical isomer by methylmalonyl-CoA racemase. Finally, methylmalonyl-CoA

mutase converts L-methylmalonyl-CoA into succinyl-CoA.l

The conversion ofL-methylmalonyl-CoA into succinyl-CoA is an intramolecular

rearrangement reaction on adjacent carbon atoms (refer to Figure 1.6'). The thioester

group on the or-carbon migrates to the B-carbon in exchange for a hydrogen atom. This

isomerization is catalyzed by methylmalonyl-CoA mutase. The dysfunction ofthis

enzyme leads to a condition called methylmalonic acidemia, which is an inborn error of

amino acid metabolism. The symptoms and effects ofthis disease are vomiting,

convulsions, mental retardation, and eventually death.l

MmCoA mutase is a vitamin B12-dependent enzyme. There are a variety of

enzymes that are dependent on the 812 cofactor, such as diol dehydratase, glutamate

mutase, L-B-Lysine aminomutase, ethanolamine ammonia lyase, ribonucleotide

reductase, and methionine synthase.2 The vitamin Br2 coenzymes consist of a cobalt

atom bonded to four pyrrole nitrogens forming a “corrin” ring, as can be seen in Figure

1.7'. The upper axial position on the cobalt can be a methyl, a hydroxide, or a 5’-

deoxyadenosyl group, which is the principle coenzymatic form. In the case of

methylmalonyl-CoA mutase, the 812 cofactor is adenosylcobalamin, where the upper

axial position is a 5’-deoxyadenosine. The lower axial position is occupied by a

dimethylbenzimidazole group.1 However, studies have been done on the methionine

synthase system showing that when the Bu cofactor is bound to the enzyme, the lower

axial position is no longer coordinated to the dimethylbenzimidazole group, but rather to

the side chain ofa histidine residue.3 This mode ofbonding was also found for

methylmalonyl-CoA mutase, as shown in Figure 1.8.4



 

 
 

 

 
Figure 1.7: The structure of 5’-deoxyadenosylcobalamin coenzyme Bu (vitamin Bu).
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Figure 1.8: Adenosylcobalamin when recombined with methylmalonyl-CoA mutase.



The Bl2-dependent enzymes are all involved in rearrangement reactions, but there

has been a lot of ambiguity about the mechanism ofthe rearrangements. The most

popularly accepted reaction mechanism involves a free radical pathway, which begins at

the metal center ofthe cofactor.2 This is not a phenomenon that is unique to the Bu-

dependent enzymes. In fact, the B12-dependent enzymes are one ofthe three families of

the larger metallo-radical class of enzymes, which share similar structural and functional

principles. The three families are the glycyl/thiyl radical enzymes, the B12-dependent

enzymes, and the 02-dependent radical enzymes. Basically, the metal centers ofthese

enzymes consist of either copper, cobalt, iron, or manganese and act to generate an amino

acid radical. This radical then initiates catalysis by abstracting a hydrogen atom from the

substrate.5 However, it is the actual details of how this mechanism occurs in each system

that is of current interest.

It is believed that the mechanism involved in the production of succinyl-CoA

from methylmalonyl-CoA mutase is comprised ofthree main steps, illustrated in Figure

1.96. The first step is the homolytic bond cleavage ofthe cobalt-carbon bond ofthe B12

cofactor to produce a cobalamin free radical and an adenosyl free radical.6 Upon binding

to the substrate, the 00an ring undergoes conformational changes that lengthens and

weakens the cobalt-carbon bond, allowing for ease of dissociation ofthe bond. However,

it has not been determined whether the steric interactions alone provide enough energy to

break the bond.2 The second step is hydrogen abstraction fi’om the substrate. After the

cobalt-carbon bond dissociates, the adenosyl radical, either directly or via a protein

radical, abstracts a hydrogen atom from the methyl group ofL-methylmalonyl-CoA,

generating a reactive primary radical on the substrate. The third step is the 1,2
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Figure 1.9: The postulated reaction mechanism ofmmCoA mutase. The two possible

radicals are either the deoxyadenosyl radical or a secondarily generated

protein radical.

     
 



rearrangement reaction. This is the least understood ofthe three steps. The substrate

rearranges to a more stable secondary radical on the product. Somehow, either via a free

radical, a carbonium ion, a carbanion, or an organocobalt intermediate, the a-carbon

thioester group is switched to the B-carbon. After the substrate leaves, the cobalt atom of

the cobalamin radical and the carbon atom ofthe adenosyl radical reform their bond.6 A

major question pertaining to this mechanism is whether the adenosyl radical abstracts the

hydrogen atom alone, or if there is a secondary protein radical involved.

Electron paramagnetic spectroscopy provides an ideal tool for characterization of

paramagnetic centers in complex chemical systems. In biological systems containing

large molecules such as proteins, it can become difficult to obtain information about the

paramagnetic center within the molecule. EPR spectroscopy removes this obstacle

because it is only sensitive to the structure directly around the paramagnetic center.

Ruma Banerjee and Rugmini Padmakumar have characterized the EPR properties of

mmCoA mutase under several conditions. No EPR signal was detected for the

apoenzyme, which is the form ofthe enzyme without the 812 cofactor, nor was an EPR

signal detected for the holoenzyme, which is the form ofthe enzyme reconstituted with

the 812 cofactor. However, when either the substrate, L-methylmalonyl-CoA, or the

product, succinyl-CoA was added to the holoenzyme and rapidly frozen in liquid

nitrogen, an EPR signal was detected.6 Figure 1.10‘5 illustrates Banerjee’s and

Padmakumar’s spectrum ofthe holoenzyme rapidly mixed with deuterated substrate,

[CDflmethylmalonyl-CoA. The eight small peaks in the spectrum indicate hyperfine

splittings resulting from coupling ofthe unpaired electron with the cobalt(II) nucleus,

which has a spin of I = 7/2. This coupling between the unpaired electron and the
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Figure 1.10: Banerjee and Padmakumar’s EPR spectrum ofthe holoenzyme with

deuterated substrate, [CD3]mmCoA. The eight small peaks are due to the

hyperfine interaction between the unpaired electron and the cobalt(II)

nucleus.
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cobalt(II) nucleus is the result of hyperfine interaction, which is the interaction between

the magnetic moment ofthe unpaired electron and the magnetic moment ofthe cobalt(II)

nucleus. Other than the cobalt nucleus, it was not possible to determine any ofthe other

species present since they were weakly coupled to the unpaired electron.

The purpose ofthis project was to determine what species were weakly coupled to

the unpaired electron, and then to identify the radicals present in the sample ofthe

enzyme with the substrate. One way to study weak couplings between an unpaired

electron and surrounding nuclei with nuclear magnetic spins is by the electron spin echo

envelope modulation (ESEEM) technique of pulsed EPR. Once the nuclei have been

identified by ESEEM, they can be assigned by means of isotope labelling. Using both of

these techniques, ESEEM and isotope labelling, more information regarding the identity

of the radical species ofmmCoA mutase can be obtained.

12
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Chapter 2: Electron Paramagnetic Resonance Methods

The proposed reaction mechanism ofthe rearrangement reaction ofL-mmCoA to

succinyl-CoA involves radical species. One way to investigate radical systems is by EPR

spectroscopy, or electron paramagnetic resonance spectroscopy. EPR is a spectroscopic

technique allowing the study of molecules containing unpaired electrons by observing the

magnetic fields at which the electron spin energy levels come into resonance with

microwave radiation. An EPR spectrum is obtained by monitoring the microwave

absorption at a fixed frequency as the magnetic field is swept.

In EPR the interaction between the unpaired electron spin moment and the

applied magnetic field is called the Zeeman effect. For the simplest paramagnetic

system, which has a single unpaired electron such that the electronic spin quantum

number S = ‘/2, the isotropic electronic Zeeman harniltonian is

H = 8/3 Bi (1)

where g is the electron g factor, B is the electron Bohr magneton, B is the applied field

strength, and the operator of S; is the electron spin operator in the direction ofthe field.

Origin ofthe Zeeman Effect

Atoms have magnetic dipole moments due to the motion oftheir electrons, and

each electron has its own intrinsic magnetic dipole moment associated with its spin. In

paramagnetic materials, each atom has a permanent magnetic moment, which can be

related to the angular momentum ofthe atom.1 In order to understand this relationship, it

is necessary to derive the equation for the spherical harmonics, beginning with the

classical model ofthe rigid rotor. Using the equation for the spherical harmonics, the

14



quantum mechanical operators for angular momentum, L and L2, and spin angular

momentum, S and 82, are obtained.

Derivation Ofthe Spherical Harmonics

When a particle rotates around a fixed axis as illustrated in Figure 2.12, the

particle has both angular momentum and rotational kinetic energy.2 The kinetic energy is

given by

KE = V; mv2 = p2/2m (2)

where m is the mass ofthe particle, the momentum p = mv, and v is the linear velocity.

The angular velocity is

v = 27trv = r03 (3)

where v is the fiequency of rotations, r is the radius ofthe circle of orbit, and the angular

velocity (0 = d0/dt = 27w. Therefore, the kinetic energy of a particle in circular motion

about a fixed point in terms of angular velocity and angular momentum is

KE=‘/2mr’2c02=‘/2Ic02 (4)

where the moment of inertia I = mrz. The angular momentum L is defined as

L = 10). (5)

Thus, the kinetic energy of rotational motion in terms of angular momentum is

K13,m = ‘/210)2 = 13/21. (6)

When two particles rotate about their center of mass, as illustrated in Figure 2.22, they

satisfy the condition

mm = mm (7)

where r; is the distance of m; from the center of mass, and r2 is the distance ofm2 fi'om

the center of mass. Since the equilibrium distance R between the particles is
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Figure 2.1: Therotationofamassmaboutafixedpoint. Themass isrotatingatadistancer

from the center with a velocity v, and has an angular momentum L perpendicular

to the plane of rotation.

 
 

 

  
 

Figure 2.2: The rotation of a two particle system, m1 and m2, about its center of mass.

The particle mt rotates at a distance r; from the center of mass, while the

particle m2 rotates at a distance r2 from the center of mass. The two particle

system has an angular momentum L perpendicular to the plane of rotation.
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R = r; + r2, (3)

then fi'om Equations (7) and (8) the following relationships for the radii can be obtained:

rt = [mz/(mr + m2)] R (9)

and

f2 = [ml/(m1 + m2)] R- (10)

The rotational kinetic energy for this two particle system is

KEN: = ‘/2 mtrlzco2 + ‘/2 m2r22c02 (11)

= 1/2 (mm2 + m2r22) (02

KB... = 1/2 1o2 (12)

where I = [m1m2/(m1 + m2)]R2 after elimination of r1 and r2 by Equations (9) and (10). If

we let m1m2/(m1 + m2) = u, then the moment of inertia can be rewritten as

I = uR2 (13)

where 11, called the reduced mass, is defined as

Up = l/ml + 1/m2 =(m1 + m2)/ m1m2. (14)

By using the reduced mass, the two body problem has been reduced to a one body

problem. Therefore, the rotational kinetic energy ofthe two body system written in terms

of angular momentum L becomes

K13.m = 1,2/(21) = 1,2/(2.11192).2 (15)

The system ofthe rigid rotor has kinetic energy but no potential energy. In

quantum chemistry, classical mechanical observables are represented as quantum

mechanical operators. Therefore, the classical kinetic energy corresponds to the

following quantum mechanical harniltonian operator for rotational energy:

17



Ii! .—_ -_’2_‘_v- (16)

2x1

where the Laplacian operator v2 is defined as

2 2 2

V2=;2+;2+:2. (17)

As the energy of the rigid rotor is rotational, it is more convenient to use spherical polar

 

coordinates, which are defined in Figure 2.32. The Laplacian operator in spherical polar

coordinates is

2

V2=—1-2——i(R23-)+ 1 6 + 21 —(sin61—). (18)

R 612 GR R‘sin 05¢ R smear)

In the model ofthe rigid rotor, R15 constant because the two particles are at fixed

 

distances from the origin. Therefore, all the derivative terms ofR can be ignored, since

the derivative of a constant is zero. Keeping this in mind, when Equation (18) is

substituted into Equation ( 16), the harniltonian operator for the rigid rotor becomes

2 r22 1 a 1 62
H=-——— a — 19

21[sin6166(sn ae)+s219 are] ( )

where I = 11R2 . Since the rigid rotor wavefunction is a firnction ofthe angles 0 and d), the

eigenvalue problem to be solved is

’12 l a a l 62

21[stn95‘5 (“ST—“9W1“,2pw2—2]Y<6’ ¢>=wer» (20)

The solutions Y(0,¢) to this standard differential equation are called spherical harmonics.

 

Since the two quantum numbers 8 (angular momentum quantum number) and m

(magnetic quantum number) arise in the solution ofthis eigenvalue equation, the

wavefunctions are represented as

Y!” (97 ¢)
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In general, it is found that

RY,"(6,¢)=“—‘§1”—Yr(e,¢) (21)

where I? is the angular momentum quantum number (or azimuthal quantum number).

Therefore, the energies ofthe rigid rotor are given by

2

E = €(€ + l)h

21

where the angular momentum quantum number (I = 0,1,2,.. .etc.2

(22)

Derivation Ofthe Angular Momentum Operators

Angular momentum is a vector that has components in the x, y, and 2 directions.

Thus, in order to develop the quantum mechanical operators for angular momentum in

the x, y, and 2 directions, it is necessary to begin with the classical expressions for

angular momentum in all three dimensions.2

As illustrated in Figures 2.12 and 2.22, the angular momentum ofa particle or

particles rotating about a fixed point is represented by the vector L in the direction

perpendicular to the plane ofthe circular motion. Ifa mass m rotates about a fixed point

with linear velocity v, the angular momentum L is given by the cross product ofthe

radius r and the linear momentum vector p,

L=rxmv=rxp (23)

where the cross product ofthe vectors r and p is a vector of magnitude lrllplsinO, and 0 is

the angle between r and p. The vectors r and p can be expressed in terms oftheir

components with the unit vectors

i, j, and k
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pointing along the x, y, and z axes respectively as follows:

r=xi+yj+zk (24)

and

p=pxi+pyi+pzll (25)

Thus, a determinant can be set up in order to find the cross product of r and p, which

gives the angular momentum L as

A R A

i j k

L=r><p= x y z =(ypz—zp,)i+(zp. -xp.)1'+(xp_v -yp,.)k. (26)

Pa Py Pr

Therefore, the three components ofthe classical angular momentum of a particle rotating

about a fixed point are

Lx = W2 ‘Zpy (27)

L) = pr — XP2 (28)

and

L; = XPy " YPX- (29)

The square ofthe angular momentum, L2, is found by taking the scalar product ofL with

itself:

LoL = |L||L|cos9 = L’(oos 0) = L2(1) =L2 = If + 1,,2 + L} (30)

where L2 is a scalar quantity.

In order to convert the classical angular momentum into its quantum mechanical

operators, the quantities ofL2, Ly, and L2 must be replaced with their corresponding

quantum mechanical operators, namely
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~_h6_.6 (M)
Px—T~--lh—

16x 0x

~ It 6 6
p =.——=-ih— (32)

y 15y 6y

and

13, =33=4h3 (33)

162 62

Therefore, the angular momentum operators for the x, y, and 2 components are

12, =-ih(y%—z—§l—) (34)

‘ .- 2.- 2.Ly—-lh(zax x62) (35)

and

* --- i- 31
L2— ”1(an yax). (36)

The quantum mechanical operator for the square ofthe angular momentum is

if =|12|2 4.12:1“; +122y +121. (37)

As mentioned earlier, since the system is rotational it is more convenient to write the

angular momentum operators in spherical polar coordinates (see Figure 2.32), which are

  

~ . . a 6
L = h —+ t0 — 38x 1(s1n¢ 66 co cos¢ 6¢) ( )

L =ih(-cos¢i+cot9 sin¢—a—) (39)

y 66 a¢

~ . a
L =- h— 40

and

2 1 a a 1 62
L2=-}‘t2 —— ' 6— + . 41

[sinfl 66(Sm 66) sin20 5252)] ( )



It is important to note here that the operators for L, and Ly, Ly and Lz, and L" and L2 do

not commute with each other. However, the operators for Lx, Ly, and L2 each commute

with the operator for L2. This implies that one can measure precisely the square ofthe

total angular momentum and only one of the components ofthe angular momentum. For

example, if the magnitude ofthe total angular momentum, which is defined as

 

|L| = J? =2 J1}, +L3y + L2, (42)

is measured, and L2 is also measured, then it is not possible to measure L,( and Le

precisely. Thus, the eigenfilnction of L2 is an eigenfunction ofL2, but not an

eigenfunction ofL" or Ly as they do not commute with L2. This is a major difference

between classical and quantum mechanical systems.2

Since the operators for L2 and Lz commute, a firnction can be constructed that is

an eigenfunction ofboth operators. These wavefunctions are called the spherical

harmonics, and were seen in Equation (21) for the energy ofa rigid rotor. For the

classical rigid rotor,

L2 = 21(KE) (43)

while for the quantum mechanical operator

if = 21(r‘1). (44)

Therefore, the eigenvalue equation for the square ofthe angular momentum becomes

1:2 Y:(9,¢) =m +1W Y2"(0,¢) (45)

where the angular momentum quantum number 13 = 0,1,2,. . .etc. According to Equation

(45), the total angular momentum squared for a rigid rotor can only have the following

values:
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I.2 = ((2 +1)h2 (46)

where E = 0,1,2,. . .etc. Similarly, when operating on the spherical harmonics with the 2-

component ofthe angular momentum operator ofL, using the equation

£2Y9”(62¢)=th2"(0,¢) (47)

where the magnetic quantum number m = -£, - £+1,. . ., [-11, the corresponding

eigenvalues for L, are

L, = mi: (48)

where m = -€, - €+1,..., €-1,€.

Thus, since the spherical harmonics are eigenfunctions for the two commuting

operators ofL2 and 1,, they can be used to find the corresponding angular momentum

eigenvalues. The spherical harmonics were in terms ofthe two coordinates 9 and d), 50

only two quantum numbers were seen in the eigenvalues. The eigenvalue ofthe operator

ofL2 was in terms ofthe angular momentum quantum number If, and the eigenvalue of

the operator for L, was in terms ofthe magnetic quantum number m. These two quantum

numbers are related in that an angular momentum vector has a value for E, and for each

value of f, the quantum number m has the values -€,. . .,O,. . . ,+€. Therefore, in the absence

of an electric or magnetic field, there is a degeneracy of2! + 1 orientations for the

angular momentum vector.2

Deriving the Zeeman Energy From A Hydrogen-Like Atom (S = ‘/2)

As seen in Equation (45) ofthe rigid rotor, the square ofthe magnitude ofthe

angular momentum is found by operating on the hydrogenlike wavefimction with the

operator of L2. Since the wavefunction is

24



R(r)Yr"' ((9, 4‘)

and the operator ofL2 only operates on 9 and (b, the eigenvalue ofL2 was found and

given in Equation (46). Thus, for a hydrogenlike atom, the only values for angular

momentum are

L = e(e +1)h (49)

where I? = 0,1,2,. . .,etc. It was also shown in Equation (48) fiom the rigid rotor that the 2-

component ofangular momentum L, is in terms ofthe magnetic quantum number m,

which describes the orientation ofthe angular momentum vector. In the absence ofa

magnetic field and not including the spin ofthe electron (which is also a kind ofangular

momentum), the energy ofthe hydrogenlike atom is independent ofm. However, in the

presence ofa magnetic field, the energy does depend on m.

For each value of (3, there are 26 + 1 different values ofm, each corresponding to a

different value of energy. In the presence of a magnetic field the 2K + 1 degeneracy with

respect to m is removed, because when an atom has angular momentum L, the atom acts

like a small magnet. In other words, the atom has a magnetic dipole moment )1, given by

it = 72L (50)

where the gyromagnetic ratio 7, is defined as

72 = -e/(2me) (51)

where me is the mass ofthe electron and e is the charge ofthe electron. The z-component

ofthe dipole moment is

112 = -[e/(2me)] 12. (52)

Substituting the value ofL, from Equation (48), Equation (52) becomes

112 = {eh/(21112)] m = 413m (53)
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where the Bohr magneton 113 (also known as B.) is defined as

#3 = eh/(Zme) (54)

and is the natural unit of magnetic dipole moment for electronic states.2

When a magnetic dipole is placed in a magnetic field oriented along a given

direction, the potential energy is given by

E = 41 e B (55)

where B is the magnetic flux density. Ifthe z direction is chosen to be along B so that

B, = B, then the energy becomes

E = ~112B = [eB/(2m2)1 L2. (56)

The harniltonian operator for a hydrogenlike atom in a magnetic field is found by adding

the potential energy ofEquation (56) to the harniltonian in the absence ofthe magnetic

field:

H2H0+ CB 1“,. (57)
Z

 

2m
C

When the harniltonian ofEquation (57) is applied to the eigenfirnctions ofa hydrogenlike

atom (the eigenfunctions ofthe harniltonian in the absence of a magnetic field), it is

found that these functions are also eigenfunctions ofthe above complete harniltonian with

the following eigenvalues:

m e"z2
= - ° + mB 58

"l" 2(47re:,)2n2h2 ’18 ( )

where z is the atomic number ofthe atom, 80 is the permittivity ofvaccum, the principle

 

quantum number n = 1,2,3,. . .,etc., the angular momentum quantum number I? =

0,1,2,. ..,etc., and the magnetic quantum number m = €,€-1,...,-€. The second term ofthe

energy in Equation (58) implies that in the presence of a magnetic field, the energy levels
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have been split into 2! + 1 levels. When spectral lines are split due to a magnetic field, it

is called the Zeeman effect.2

Deriving the Two Spin Energy States For An Electron

It was proposed in 1925 that an electron has an intrinsic angular momentum S.

Since the spin angular momentum of an electron has no analog in classical mechanics,

the spin angular momentum operators cannot be constructed by first writing the classical

hamiltonian. However, the treatment of spin angular momentum is very similar to the

treatment of orbital angular momentum.2

The magnitude ofthe spin angular momentum S is

J3
S: s(s+1)h=—§—h (59)

where the spin quantum number s (also referred to as the spin) ofthe electron has the

single value of 1/2. The z-component ofthe spin angular momentum S, is

S, = msh (60)

where the quantum number m, for the z-component has two possible eigenvalues, +‘/2 and

-‘/2 (also referred to as “spin-up” and “spin-down” respectively). This implies that the

electron spin angular momentum has only two orientations.2

The corresponding spin angular momentum operators of S and S, can be applied

to spin firnctions to yield eigenvalues. However, since the spin eigenfirnctions do not

involve spatial coordinates, the two possible spin functions are represented by or and [3.

Thus, the eigenfunction equations for the spin angular momentum are

Szla)=%(%+l)h2|a)=%h2|a) (61)
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ézlfl)=%(%+l)h2|fi)=%h2|fl) (62)

Sz|a)=+-;—h|a) (63)

and

. l

S.lfl)=--2—rzlfl). (64)

It should be noted that under the same argument given for the components ofthe orbital

angular momentum, the components SK and S3, cannot be determined simultaneously with

S, since SK and Sy do not commute with 8,.2

Due to its charge and intrinsic spin angular momentum, an electron has a

magnetic dipole moment 11,, which is proportional to its spin angular momentum 8:

us = {gee/(21112)] S (65)

where the electron g factor ge = 2.002322 for a free electron. The component ofthe

magnetic moment ofthe electron in the direction ofthe applied magnetic field is

112 = -[ gee/(2%)] Sz (66)

where S, is the component ofthe spin angular momentum in the direction ofthe field.

Substituting Equation (60) into Equation (66), the magnetic moment in the direction of

the field becomes

112 = -[ geek/(21112)] ms- (67)

From Equation (56) where the potential energy is given as E = -u,B, the energy ofthe

spin magnetic moment in a magnetic field B is found to be

E = seuamrB. (68)

Since the quantum number m, has the two values +'/2 and -'/2, the electron spin has the

following two energy states in a magnetic field:
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E = +1682191123 (69)

and

E = -Vzge1taB. (70)

It is the transition between these two levels that is studied in electron spin resonance.2

Figure 2.4 illustrates that as the external magnetic field of the system is increased,

the splitting ofthe two energy levels (m, = +‘/2, -‘/2) ofthe unpaired electron increases.

As the microwave radiation is applied at a constant frequency, the resonance condition is

achieved at only one field value at a time. The magnitude ofthe transition shown in

Figure 2.4 is the energy that must be absorbed from the oscillating magnetic field B to

move from the lower to the upper state.3

The Nuclear Zeeman Interaction

Just as an electron has a spin associated with it, the nucleus ofan atom also has a

spin associated with it due to its protons and neutrons. Thenuclear spin interacts with the

magnetic field for the same reasons that the electron spin does, and this interaction is the

nuclear Zeeman effect. The nuclear spin harniltonian is

i1=-g,,6,Bi, (71)

where gn is the nuclear g factor, B, is the nuclear magneton, B is the applied magnetic

field, and the operator of I, is the nuclear spin operator. The nuclear Zeeman energy term

is opposite in sign and smaller in magnitude than the electron Zeeman energy term.

For a nucleus, the total spin angular momentum is I, the spin quantum number is

I, and the component ofnuclear spin in the z direction is 1,. Just like S for electrons, I is

an angular momentum, and thus the eigenvalue of I2 is given by 10 + 1)h2. It follows that

the magnitude of I is
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Figure 2.4: For an S = ‘/2 system, the two degenerate electronic energy levels split firrther

and filrther apart as the applied magnetic field is increased.
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|1| = 1(1+ l) h. (72)

Similarly, the eigenvalues of I, are mth, where m; = -1,-I+1,. . .,O,. . .,I-1,1. Therefore, there

are 21 + 1 values of m, each associated with an eigenstate of I2 and 1,.2

As with the case ofthe electron, the magnetic dipole moment ofthe nucleus is

proportional to the spin angular momentum, where

Plane/(2121911 (73)

where g, is the nuclear g factor, rnp is the mass ofthe proton, and e is the elementary

charge. Depending on the sign ofthe nuclear g factor, 1.1. and I can either be parallel or

antiparallel. Ifgn is positive, then u and I are parallel, while a negative g, implies the two

are antiparallel.

Since I is in units of h, the basic unit of nuclear dipole moment, which is the

nuclear magneton me (also known as 13,), can be defined as

it»: = eh/(Zmp) (74)

Using Equation (74), the z-component ofthe nuclear dipole moment is

112 = [are/(2%)] mth = gnunmr. (75)

Equation (55) defines the energy of a magnetic dipole in an external magnetic

field B as -uoB. Ifthe z direction is chosen to be along the field, then

B = 1123 = '8n14leB (76)

where m; = -I,-I+1,. . .,0,...,I-1,I. Thus a nucleus with spin I has 21 + 1 nondegenerate

energy states in a magnetic field. Transitions among these levels are induced by applying

electromagnetic radiation, with the frequency equal to the energy level spacings. The
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selection rule for these transitions is Amt =0, and the frequency v ofthe transitions is

given by

v = AE/h = gnunB/h (77)

which is called the Larmor frequency. There is only one Larmor frequency because the

energy levels are equally spaced. Figure 2.5 illustrates the energy levels ofa single

proton in a magnetic field, which is the simplest case of I = V2. Unlike the case ofthe

electron, the proton has the lower energy when it is parallel to the field (m1 = +‘/::), and

has the higher energy when it is antiparallel to the field (m1: .1/2).2

Electron Nuclear Hyperfine Interaction: Isotropic and Anisotropic

The electron nuclear hyperfine interaction is an interaction between the magnetic

moments ofthe unpaired electron and the nuclei. The electron spin not only interacts

with the applied magnetic field, but also with the weak local magnetic fields arising fiom

the magnetic moments of nearby nuclei, as illustrated in Figure 2.6. The result ofthis

interaction on an EPR spectrum is hyperfine structure, which is the splitting of individual

resonance lines into components.4 There are two contributions to the hyperfine

interaction. The first is a Fermi contact interaction, which is isotropic, meaning that the

density ofthe electron is at the nucleus. Since this component ofthe hyperfine is

isotropic, changing the sample orientation relative to the magnetic field B does not alter

the EPR spectrum. The second contribution to the hyperfine is a dipole-dipole

interaction, which is anisotropic, meaning that the energy level separations are strongly

dependent on the orientation ofthe molecule in the applied magnetic field.3

Ifthe electron and nuclear dipoles in Figure 2.6 were to behave classically with

the applied magnetic field B in the z direction, then the classical energy ofthe dipole-
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Figure 2.5: The energy levels of a proton with I = ‘/2 in a magnetic field.
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Figure 2.6: The vector for the electron magnetic dipole moment u, will feel a local field

from the vector for the nuclear magnetic dipole moment 11,. B is the applied

magnetic field and 0 is the angle between the applied field and the axis ofthe

two magnetic moments. The distance between the two dipoles is r. (The

vector lle represents the state m, = - V2 , and the vector 11,, represents the state

m; = + 1/:z.
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dipole interaction between them is given by

3c05261 -1

Emu = - Zia—Ii- r3 flay“ = - Blow/In
(78)

where 110 is the permeability ofvaccum, and 1,1,, and 1.1,, are the components ofthe

electron and nuclear dipole moments along the direction ofthe applied magnetic field.

The two dipoles are separated by a distance r, and 6 is the angle between B and the line

joining the two dipoles. BM, the local field at the electron caused by the nucleus, can

either enhance or diminish the externally applied magnetic field depending on the values

1'
!-
"
m

of9 and r3

The electron is not localized at one position in space since it is in an orbital.

Therefore, the interaction energy must be averaged over the electron probability

distribution function. Ifall values of9 are possible, such as the case of an electron in an

s orbital, then the average local field at each r can be obtained by first averaging c0529

over a sphere by the following multivariable integration:

<a222>=m°°5295mw=1 (79)
f‘L‘ sin611t9d¢ 3

where sin0d9d¢ is the element of surface area on a sphere in spherical polar coordinates.

 

When the result ofEquation (79) is substituted into Equation (78), it can be seen that the

local field Bloc... becomes zero. This is the case ofthe isotropic hyperfine interaction.3

The harniltonian for the electron nuclear hyperfine interaction is

lit = 5 . A . i (80)

where A is the hyperfine coupling matrix. In an axial system, Axx = A” = A, and A,, =

A“. In an isotropic system such as the case ofa hydrogen nucleus interacting with an
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electron, A, = A", and thus A, = Ay = A, Therefore, the harniltonian ofEquation (80)

for an isotropic system becomes

~
)

A 0

1745,85,) o A y. (81)

0 0 A z

where A is a scalar. Ifthe electron spin is directed along B in the z direction, then

0 X

0

H
)
“
D

D

Ii=A(oos,)(1) iy . (82)

i
2

Therefore, the hamiltonian for the isotropic hyperfine interaction is

151,, = A s, i, (83)

where A is the isotropic hyperfine coupling constant. This constant measures the

magnetic interaction energy between the electron and nucleus, and is often expressed as

A/h in units of frequency (MHz). It can also be expressed in magnetic field units (mT) as

a = A/(g.B.), which is called the hyperfine splitting constant. For the present system of S

= V2 and I = V2, two peaks would be expected in the absorption spectrum because a spin 1

nucleus splits the spectrum into 2n] + 1 hyperfine lines of equal intensity. Figure 2.7

illustrates what the derivative spectrum would look like for a hydrogen nucleus

interacting with an electron.

In the case of isotropic hyperfine, all values of6 were equally probable in

Equation (78) for the dipolar energy. However, in systems where the molecule is not flee

to tumble such as in solid samples, all values of0 are not equally probable, and Bloc.)

does not vanish. In such cases, there is anisotropy in the hyperfine caused by the dipolar

interaction between the electron and nucleus.3 In a system with S = V2 and I = V2, the
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Figure 2.7: The derivative spectrum of a nucleus with I = V2 interacting with an electron

in an isotropic system. The constant a is the hyperfine splitting constant, and

the resonant field value Emma, = hv/(gB) i- a/2.
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derivative spectrum for an anisotropic system is shown in Figure 2.8. The figure

illustrates that unlike an isotropic system, A, ¢ A“.

The classical expression for the dipolar interaction energy between an electron

and nucleus separated by a distance r is

[11511.9 _§LI'rSX-il°r)] (84)

r

3Edipolar (r) =h r
47r

where r represents the vector joining the magnetic dipoles ofthe unpaired electron and

the nucleus, illustrated in Figure 2.6. The vectors u. and 1.1.. are the classical electron and

nuclear magnetic moments, and the superscript T is to indicate the transpose. For the

corresponding quantum mechanical system, the magnetic moment vectors in Equation

(84) must be replaced by their operators. The harniltonian can thus be written as

ST 0 I - 3(ST o rXIT or)] (85)

fidipolnr (r)=--:7;-gflegnfln|: 1'3 r5

By expanding the vectors in Equation (85), the dipolar hanriltonian becomes

  

 

r‘-3x2 ~ - r -3y2~ ~ r‘--32 ~ .
r5 lex+ r5 Syly+ r5 S21,-

“ o 3 A “ " " 3 A A A A

”dipolar (r)=-:—”'gflegnfln rfy( ny +Sny)--rT( sz+SzIx)' (86)

3yz ~ ~ .. f‘

'r—5( 3' z+szy)

J  
where g is assumed to be isotropic.3 (For an anisotropic g, g, :1: g", where g, and g"

correspond to A, and All respectively.) Since the hamiltonian is applied to an electron in

an orbital, the quantities in brackets must be averaged over the electron spatial

distribution. The following spin harniltonian in matrix notation becomes
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Figure 2.8: The derivative spectrum of a nucleus I = V2 interacting with an electron in an

anisotropic system. It can be seen that A, is not equal to A".
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which is abbreviated as

rim, = 8‘ . T oi (88)

where T is the dipolar interaction tensor (in units ofHz) that gauges the anisotropic

nuclear hyperfine interaction.5 Incorporating the isotropic hyperfine term into Equation

(88) gives the complete hamiltonian for the hyperfine interaction as

HM“ =STeAeil (89)

where A, the hyperfine parameter (3x3) matrix, is defined as

A = A13 + T (90)

where A is the isotropic hyperfine coupling constant and 13 is the 3x3 unit matrix.3

Orientation Ofthe Lab Axes With Respect To the Hyperfine Axes

In an anisotropic system, there are designated hyperfine axes that are separate

from the laboratory axes. Figure 2.9 illustrates the axis system in terms ofthe hyperfine,

and Figure 2.10 illustrates the laboratory axis system in terms ofthe lab field B. In order

to establish a common axis system, one set ofaxes must be rotated with respect to the

other. One way to do this is to hold the hyperfine axes fixed and rotate the laboratory

field about the hyperfine axes.

The complete spin harniltonian is given by
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Figure 2.9: The axis system in terms ofthe hyperfine. B is the applied magnetic field and

S is the electron spin in the direction ofthe applied field.
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Figure 2.10: The axis system in terms of the laboratory field B. The electron is at the

origin interacting with the nearby nucleus.
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fizflBogOS+S0AOI-flngnB0I (91)

where g is assumed to be isotropic, the applied field B = Bo(l,,ly,1,), and the operator for

the electron spin, which is directed along the field, is S = S,(l,,ly,1,). The coordinates 1,,

ly, and 12 describe the laboratory field orientation in terms ofBo,and are defined as

, = sinGcosd) (92)

ly = sin0sin¢ (93)

and

l, = cosG. (94)

Writing out the matrices in the harniltonian, Equation (91) becomes

_
)

A O O

fi:gflB,Sz+Sz(lx,ly,lz 0 AW 0 iy -p,g,B.(l,i,+l,i,+l,i,). (95)

0 0 A i
22 2

Substitutingm for the operator of S,, performing the matrix operations, and regrouping

terms yields

fl = gflB.m,h +(mj1A,x - gnflnB.,)l,Ix + (mjzAyy - gnflnB°)ny +

(m,iiA,, - g,8,13,),i, (96)

Iquuation (96) is divided by h, then using Equation (77) it can be written as

I“! = gleam, +(m,A,, -v,)l,i, +(m,A,, -v,),iy + (m,A,, -v,)l,i, (97)

where the factor of (27:)1 in the electron Zeeman and the hyperfine terms is incorporated

into the constants. For the case of S = V2 and I = V2, a (4x4) matrix can be constructed

with the z-components along the diagonal. In order to solve for the operators ofI, and 1,,

the equations
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1, =1, +ii, (98)

and

i =i,-ti, (99)

are used to find that

i, =-;-(i. +11.) (100)

and

i . .

Iy --§(I, -I_). (101)

Using the following two equations,

A 1

I, m, m,)=[I(I+1)-m,(mI +1)]'2' lms mI +1) (102)

and

.. l

1_|m, m,)=[1(1+1)-m,(rnI -1)]2 |m, rnI —1) (103)

the x and y components ofthe matrix can be calculated. Using only the top block

diagonal ofthe full (4x4) matrix, the harniltonian can be rewritten as

IA] =8fl3°ms(l) +

  

  

o A ll
853° +(A71 -Vn)l—z' 8w +(é_£__vn).l_.’£._(__y_y._yn)._y-

2 2 A 2 ‘1 2 2 2 2 2 (104)

I c

“an“ —v.)'—*+(—’-’--v.>—’- 8” _(A22_,,n,12
2 2 2 2 2 2 2 2

where (1) is the unit matrix indicating that the electron Zeeman energy is a diagonal term.

By letting A, = V2(A,,m,-vn), Ay = V2(Ayyms-vn), and A, = V2(A,,rn,-v,.), the (2x2) matrix

in Equation (104) can be simplified to represent the nuclear part. The resulting matrix is

1 Azl, A,1,—iA,ly

'2'A,l,+iA,ly -Azlz '
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In order to put the nuclear part ofthe harniltonian in the same axis system as the

electronic part, the above matrix is diagonalized. For the case of a point dipole-point

dipole model, as illustrated in Figure 2.6, with an axial A tensor so that A,, = Ayy =

A, and A,, = A",

 

21(m,)=i%,/(A,ms —V,)2sin26+(A.m, —-v, )2 cos2 0. (105)

From Equation (105), it can be noted that the rotation ofthe laboratory axes about the

hyperfine axes is independent ofthe angle (I). This result is useful for measuring

1"
"
T
H
E
-
i

hyperfine splittings by using the following similar equation:

 

v(m,,e)=/1* (m,)-/1'(m,)=\/(A,m, —v,)2sin 26+(A,m, --v,)2 cos2 19 . (106)

Data OfEnzyme With Substrate and Product

Ruma Banerjee and Rugmini Padmakumar wanted to “test” the radical pathway

mechanism by proving, and possibly identifying, the involvement ofradicals in the

rearrangement reaction catalyzed by mmCoA mutase. They took recombinant mmCoA

mutase from propionibacterium shermanii and purified it 20-fold to near homogeneity in

a highly active form.6 Then they tested various samples using electron paramagnetic

spectroscopy ofthe enzyme to see if they would get EPR signals or not. What they found

was that for the apoenzyme, the form ofthe isolated enzyme, and for the holoenzyme,

which is the enzyme reconstituted with the 812 cofactor, no EPR signal was detected.

However, when either the substrate, L-mmCoA, or the product, succinyl-CoA, was added

to the holoenzyme and rapidly frozen in liquid nitrogen, an EPR signal was detected.6

The EPR signal detected for the sample ofthe mmCoA mutase with the substrate,

L-mmCoA, is shown in Figure 2.11“. In the high field region, the spectrum shows
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Figure 2.11: The EPR spectrum ofmmCoA mutase with the substrate L-mmCoA.
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hyperfine splittings resulting from coupling ofthe unpaired electron with the cobalt

nucleus, which has a nuclear spin of I = 7/2. The g, and 81 values are typical for that of

the cobalamin radical, where g, = 2.26, and g" = 2.00.6 Therefore, it is certain that there

is cobalamin in the sample. No other features are resolved due to inhomogeneous

broadening ofthe lineshape, which is a distribution ofresonance frequencies over an

unresolved band caused by many resonance frequencies very close together.3

In the attempt to reduce the inhomogeneous broadening ofthe lineshape, Banerjee

and Padmakumar substituted the hydrogen atoms of the methyl group on the L-mmCoA

with deuterium atoms. Hydrogen has a nuclear g value of 5.586, while the nuclear g

value for deuterium is only 0.857. The hyperfine coupling constant A, which is a

measure ofthe magnetic interaction energy between the electron and nucleus, is

proportional to the nuclear g value.3 Therefore, a smaller nuclear g value will be

associated with smaller hyperfine couplings. By this reasoning, a reduction in the

inhomogeneous linewidth should be detected for the deuterated sample ifthe substrate is

coupled to the unpaired electron. Figure 2.126 shows the spectrum ofthe holoenzyme

with deuterated substrate. This spectrum is very similar to the spectrum ofthe

holoenzyme with protonated substrate shown in Figure 2116, the only difference being

that there is an increase in the signal-to-noise in the spectrum with deuterated substrate.

Banerjee and Padmakumar also tested a sample ofthe holoenzyme with the

product, succinyl-CoA.6 The EPR spectrum for this sample is shown in Figure 2.136.

The spectrum shows features that are identical to those observed in the spectra ofthe

holoenzyme with both protonated and deuterated substrate, namely the coupling ofthe

unpaired electron to the cobalt nucleus in the high field region, and inhomogeneous
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Figure 2.12: The EPR spectrum ofmmCoA mutase with [CD3]mmCoA.
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Figure 2.13: The EPR spectrum ofmmCoA mutase with the product succinyl-CoA.
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broadening ofthe lineshape.

Principles OfTransition Rates and Power Saturation

For a two level system with a ground state [3 and an excited state or, illustrated in

Figure 2.14, there are two different phenomenon going on. There are the microwave-

induced transitions up and down, and there is also a relaxation rate down. The

microwave-induced rates up and down are always equal, but when the relaxation rate

down is added to the microwave-induced rate down at low power, the downward

transitions become greater than the one upward transition. Physically then, the excited

state is being depopulated faster than it can be populated. A technique is needed to

suppress the relaxation rate down in order to restore the equilibrium ofthe upward and

downward transition rates. This can be done by increasing the microwave power.

Therefore, at high power, the upward and downward transition rates are restored to

equilibrium, and theoretically then, the populations of both the ground state and the

excited state are equal. This condition is known as power saturation.3 This concept can

be useful for distinguishing multiple species in EPR, if the different species have unique

saturation properties.

For a macroscopic sample in which a resonance is observed, a two level system

for an electron with S = V2 is represented in Figure 2.157. The number of spins in the

lower and upper states is represented by N- and N, respectively, and the total number of

spins is given by

Nrot = N+ + N.. (107)

When a magnetic field is applied to the system, the number of spins in each level changes

due to induced transitions, but the total number of spins Nu, remains unchanged. The
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   —L_._Y__|[3>

(a) At low power:

qu = de

mwu < mwd + R

(b) At high power:

mwu as mwd +K

2 Saturation

Figure 2.14: For a two level system, with ground state [3 and excited state or, the

microwave-induced upward transition rate mwu equals the microwave-

induced downward transition rate mwd at low power.

(a) When the relaxation rate down is added to the microwave-induced rate

down, they become greater than the upward transition rate.

(b) The microwave power can be increased to overcome the relaxation rate

down, leading to a condition called power saturation.
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N++mS=+1/2

AB = yhB

 
N_+mS=-1/2

Figure 2.15: The two level system ofan electron with S = 1/2. The transition energy AB =

yhB. The number of spins in the two states are represented by N + and N,.
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probability per second of inducing a transition ofa spin from the lower state to the upper

state can be represented by W-..+, while the reverse transition can be represented by We.»

Thus, the change of population in terms ofN- can be written as the following differential

equation:

%=N,W,+ -N,W__,,. (108)

From time-dependent perturbation theory, the formula for the probability per second

(Pa—.6) that an interaction V(t) induces a transition from a state (a) with energy E, to a

state (b) with energy E1, is

8-9
p b = .2711 (h|v|a]2 6(E, — E, —hw) (109)

Since I (a | V | b) |2 = | (b | V | a) I2, it follows that (P._.b) = (Pim). Therefore, W...+=

We..- 5 W, meaning that the probability per second of inducing a transition of a spin from

the lower state to the upper state is the same as that ofthe upper state to the lower state.

Thus, Equation (108) can be rewritten as

%=W(N, —N,) (110)

By letting

n = N- - N+ (111)

then from addition and subtraction ofEquations (107) and (111) the populations of each

ofthe two levels can be written as

N-=V2(N+n) (112)

and

N+=V2(N—n). (113)

Substituting Equations (112) and (113) into Equation (110) simplifies the equation to
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92=-2Wn. (114)

dt

The solution to Equation (114) is

n = n(0)e'2w‘ (115)

where n(0) is the value of n at t = 0. This solution suggests that if there is an initial

population difference it will disappear with time due to the induced transitions.7

The rate of absorption of energy, dE/dt, is obtained by finding the number of spins

per second that go fi'om the lower energy level to the higher energy level, minus the

number that drop back down emitting energy. Thus

5%: Nwrtro - N,th=thn (116)

where to is the frequency ofthe transition. From Equation (116), it can be seen that in

order for a net absorption of energy, there must be a population difference between the

two energy levels.7

If a magnetic field is applied to an unmagnetized sample, then in order for the

system to be in its most stable configuration, the electron magnetic moments prefer to be

aligned antiparallel to the applied magnetic field. This would require that N. be greater

than N+, which corresponds to a net number oftransitions from the upper to the lower

energy state. As this occurs, the spins give up energy, implying that there is a heat

transfer to some other system that is accepting the energy being released. This heat

transfer will continue until the relative populations NJN. correspond to the temperature T

ofthe reservoir which is receiving the energy. The final equilibrium populations N.° and

N+° are given by

53



——:-=e'kT zen .7 (117)

It can be said then that there exists a mechanism for inducing transitions between

N- and N which is due to the coupling of the spins to some other system, namely the

reservoir. Ifthe probability per second that this coupling induces a spin transition from

the lower to the upper energy level is represented by WT, and the reverse transition is

represented by W1, then the rate equation can be written as

%=+N+W~L-N_WT. (118)

It is important to note here that the upward and downward transition probabilities are no

longer equal. As stated earlier, when magnetizing an unmagnetized sample, a net

downward transition is expected. However, since in the steady-state dNJdt is zero, then

from Equation (118) it is found that

N: _ w T

N: w i '

Using the relationships given in Equations (117) and (119), the ratio ofWT to W1 is

 (119)

given by

WT 13,2
m—e (120)

which illustrates that in this case the transition probabilities are not equal.7

In order to understand the reason why the transition probabilities are unequal for

this case, it is important to realize that the reservoir imposes limitations to the transition

probabilities. Not only does the thermal transition require that the spins couple to some

other system, but this system must also be in an energy state that will allow a transition.

Suppose that the reservoir has two energy levels that are separated by a distance equal to

the two levels ofthe electron system, illustrated in Figure 2.167. Figure 2.16(a)7
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Electron Reservoir Electron Reservoir

 

(a) (b)

Figure 2.16: The two level systems ofboth the electron system, labelled 1 and 2, and the

reservoir, labelled a and b. The diagram in (a) represents an allowed

transition, while the diagram in (b) represents a forbidden transition. The

x’s represent initial states. The populations ofthe two levels in the electron

system are given by N; and N2, and the populations ofthe two levels in the

reservoir system are given by N. and N5.
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represents an allowed transition, where the initial state ofthe electron system is at the

upper level and the initial state ofthe reservoir is at the lower level. Therefore, as the

downward transition ofthe electron releases energy to the reservoir (or lattice), the

reservoir can simultaneously absorb the energy to allow an upward transition, which

satisfies conservation of energy. However, if both the electron system and reservoir have

their initial states in the upper level, shown in Figure 2.16(b)7, a simultaneous transition

is forbidden because energy is not conserved. In other words, both systems will be

simultaneously releasing energy. Thus, this argument illustrates that for the case where

the spins couple to some other system (called the reservoir), the rate oftransition ofthe

electron is dependent on the probability that the reservoir will be in a state that will allow

the transition to occur. Due to this constraint, the transition probabilities W._.+ and W+..-

are not equal.7

According to Figure 2.167, the electron states have populations N1 and N2, and the

lattice states have populations N. and Nb. Thus, the number of transitions per second is

found as

#/s = NleWIbaza (121)

where Wn,_.2. is the probability per second ofthe transition where the electron is initially

in state 1 and the lattice is initially in state b. By equating the rate ofthe transition shown

in Figure 2.16(a)7 to its reverse transition, the steady-state condition is represented as

Nlewlb-v2a = NZNaw2a-olb- (122)

According to the quantum theory, W1b_.2, = W232", so that in thermal equilibrium,

  

Equation (122) becomes

N N

‘= i. (123)

N2 Nb
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That implies that at thermal equilibrium, the electron levels will have the same relative

populations as those ofthe lattice (the two populations will be in thermal equilibrium). It

is also possible now to solve for WT and W1 (the probabilities per second that coupling

ofthe electron spins to the lattice will induce upward or downward transitions):

WT = N,W2,_.u, (124)

and

Wl = walh-iza = wa2a-olb (125)

where it can be seen that WT and WJ are unequal.7

Referring back to Equation (118), N. and N2 can be substituted by Equations

(112) and (113)to give

i—‘t‘z N(w 9 -w T)-n(w l +w T) (126)

Equation (126) can be rewritten as

 9’1 = “° ' n (127)
dt Tl

where

w t -w T
no : N ——

I

[W Jr +W T] ( 28)

and

l

-_E—=N(wt+w T) (129)

l

The solution ofthe differential equation given in Equation (127) is

n=no+Ae17 (130)
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where A is a constant of integration. In the above equations, 110 represents the thermal

equilibrium population difference, and T1 is the characteristic time associated with the

approach to thermal equilibrium, called the “spin-lattice relaxation time”. In other words,

T1 characterizes the time needed to magnetize an unmagnetized sample (where the spins

try to achieve the more stable configuration of aligning with the field). For instance, if a

sample is initially unmagnetized, the magnetization process is described by the following

exponential rise to equilibrium:

1

n=n°+(1—eT‘ (131)

which physically describes a relaxation process.

Ifthe two rate equations for det given in Equations (114) and (127) are

combined, the complete rate equation becomes

(in n - n

—— = —2Wn + ° . 132

The first term in Equation (132) represents the transitions induced by the applied

 

alternating field, while the second term represents the transitions due to thermal

processes. From the steady state condition ofEquation (132), it is found that

no

n =—.

1 + 2WT,

From Equation (133) it can be seen that if2WT;<1, then 11 3 no. That would imply that

(133)

the absorption of energy from the alternating field would not affect the populations much

from their thermal equilibrium values.7

The rate of absorption of energy dE/dt is given by
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flufznhww = noha) (134)
1+ 2WT '

From Equation (134), it can be seen lthat the power absorbed can be increased by the

electron by increasing the amplitude ofthe alternating field, as long as 2WT1«1. If,

however, the transition rate W becomes large enough so that W ~ V2 T1, then the power

absorbed levels off even ifW is increased. This effect is known as “power saturation”.

In general, systems with long T1 values saturate faster than those with short T; values.7

Power and Temperature Dependence Study

Banerjee and Pamakumar performed a microwave power dependence study on the

sample ofthe mmCoA mutase with L-mmCoA at both 10K, shown in Figure 2.176, and at

25K, shown in Figure 2186, where the power ranged from 100 to 0.05 mW.6 At 10K, the

g value shifted fiom 2.14 to 2.11. At 25K, there was only one g value at 2.11. One way

to interpret these spectra is by the concept ofpower saturation.

Looking at the power dependence spectrum at 10K in Figure 2.17", Banerjee and

Padmakumar believed that there were contributions from two different species with

different relaxation properties, one being a fast relaxing species at g = 2.14, and the other

being a slow relaxing species at g = 2.11.6 The species with fast relaxing properties

would be at the higher power, 100 mW, because it would require more power to drive

one-halfthe population to the excited energy level. The species with slow relaxing

properties would therefore be at the lower power, 0.05 mW. In comparing the two

spectra at 10K and 25K shown in Figures 2.176 and 2.186 respectively, it could be seen

that by increasing the temperature by 15K, the fast relaxing species was lost. Thus, from

their power and temperature dependence study, Banerjee and Padmakumar believed they
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Figure 2.17: The EPR spectrum of the power dependence study ofmmCoA mutase with

L-mmCoA at 10 K. There is a shift in the g value as the power is varied

from 100 mW to 0.05 mW. At 100 mW, the g value is 2.14. At .05 mW,

the g value is 2.11.
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Figure 2.18: The EPR spectrum ofthe power dependence study ofmmCoA mutase with

L—mmCoA at 25 K. As the power is varied fi'om 100 mW to 0.05 mW,

there is no shift in the g value. The g value ofthe lineshape is 2.11.
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had distinguished two radicals which had different relaxation properties. Based on their

EPR studies, Banerjee and Padmakumar concluded that either there were two radical

pairs in the sample, or they had detected two different states ofthe same radical pair.6
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Chapter 3: Electron Spin Echo Envelope Modulation

Banerjee and Padmakumar's EPR spectra for the samples containing mmCoA

mutase with L-mmCoA showed inhomogeneous broadening ofthe lineshape.l

Inhomogeneous line broadening can be caused by an inhomogeneous external magnetic

field, by anisotropic interactions in randomly oriented systems, meaning a distribution of

local magnetic fields, or by unresolved hyperfine structure, where many lines are very

close together. Unresolved hyperfine structure occurs when the number of hyperfine

components from nearby nuclei are so large that no structure is observed. What is

detected then is a broad peak, or an "envelope", of a multitude oflines.2 A technique

other than continuous wave EPR spectroscopy must be used to measure hyperfine

couplings.

The conventional EPR spectroscopy is the continuous ane technique, where

monochromatic, continuous microwave radiation is applied to the spin system. A

variation ofthis technique is a method by which a sequence of short microwave pulses

are applied to the system. This technique is a method ofpulsed EPR spectroscopy known

as electron spin echo envelope modulation, or ESEEM. The main advantage ofthis

technique is that it allows for the measurement of small electron-nuclear hyperfine

couplings that are often masked by inhomogeneous broadening ofthe EPR lineshape in

continuous wave spectra. The two most common sequences of pulses that can be used

are a two pulse scheme and a three pulse scheme.3



Two Pulse ESEEM

In a two-pulse ESEEM experiment, a 90° microwave pulse is applied to the

sample, as shown in Figure 3.1. After a time t, a 180° microwave pulse is applied to the

sample. After time 1: again, an electron spin echo results. When the time between the

two pulses in the sequence, t, is increased, the spin echo decays exponentially. This

decay is determined by the spin-spin relaxation time. By plotting the integrated intensity

ofthese echoes as a firnction ofthe time between the two pulses t, the electron spin echo

decay envelope can be measured. The result is an overall decay ofthe electron spin

magnetization, which usually shows modulations caused by weak interactions with nuclei

surrounding the paramagnetic centers3, as illustrated in Figure 3.23 .

It is much easier to understand the production ofthe spin echo fiom the classical

point ofview, which is in terms ofthe bulk magnetization vector M. In the classical

picture, shown in Figure 3.33, initially the bulk magnetization ofthe sample is directed

along the z-axis (Figure 3.3a3). The laboratory magnetic field, B0, is also directed along

the z-axis. The magnetic field associated with the microwave pulses, B1, is along the

y-axis, perpendicular to the lab field. The first 90° microwave pulse, applied along the

y-axis, rotates the bulk magnetization 900 until it is aligned with the x-axis. During the

time 1 between the first and second pulses, each individual spin packet within the bulk

magnetization vector begins to precess at different angular frequencies because each spin

packet experiences different local magnetic environments. The 180° pulse torques each

spin packet magnetization vector through a 180° angle about the y-axis. This allows

refocusing ofthe spin packets since some ofthe packets are rotating with larger angular

frequencies than others. After a time t, the individual magnetization vectors are in phase

65



90O 180° Echo

 

Figure 3.1: The microwave pulse sequence ofa two—pulse ESEEM experiment.
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Figure 3.2: The modulated electron spin echo decay plot ofNi(III)(CN)4(I-I2O)2'

complex.
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(a)

C2190

  N

 

 
(c) Free precession period (t) (d) After 1800 pulse

(e) Refocusing of magnetization (21:)

to form spin echo at Zr

 

Figure 3.3: The classical picture of a two-pulse ESEEM experiment. Bo is the lab field,

BI is the magnetic field associated with the microwave pulses, M is the bulk

magnetization, and on is the microwave pulse frequency.
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along the x-axis, and a primary echo is observed at time 21: after the beginning ofthe

pulse sequence.3’4’5

Two-Pulse ESEEM For A Spin System With S = V2 and I = V2

For a system with one nucleus with nuclear spin I = V2 coupled to an electron spin

S = V2, the hamiltonian for the case of an isotropic electron g matrix and an axial

hyperfine interaction is

A

H
—-=ru,s, +Anézi, +A,,8,ix -—w,i (135)
h

2.

For spin systems with nuclear spin I 21, there would be a fifth term due to a nuclear

quadrupole interaction, which is more complicated and will thus be discussed later. For

this more simpler case, the first term ofthe harniltonian given in Equation (135), which is

the electron Zeeman term, describes the interaction ofthe electron spin with the external

magnetic field B0. The second and third terms ofEquation (135) are the electron-nuclear

hyperfine interaction terms, where A,, = A = Ancosze + A,sin20, and A,, = B =

(A”~ ,)cos0sin0. The angle 9 is the angle between the principal axis ofthe hyperfine

tensor and the laboratory field B0. A" and A, represent the principal values ofthe axially

symmetric hyperfine tensor, which can be described using two different types of

coupling. The first is a Fermi contact coupling, denoted Aim, as it is isotropic and at the

nucleus, and the second is a dipole-dipole coupling, D = ggnBBn/rs, which depends on the

orientation ofthe nucleus with respect to the unpaired electron. Using these two coupling

terms, A,l and A, can be defined as

A, = A2,, + 2D (136)

and

A, = Ate - D.3 (137)
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The fourth term in Equation (135) is the nuclear Zeeman term. The nuclear

Zeeman term describes the interaction ofthe nuclear spin with the external magnetic field

Bo.

The harniltonian matrix, which is constructed in an uncoupled basis set consisting

of electron and nuclear spin product states Ims,m1>, can be diagonalized for each ofthe

two electron spin manifolds to give the eigenvalues and eigenvectors ofEquation (135).

The only term in the operator that gives rise to off-diagonal elements is the Ix term. The

results can be summarized using an energy level diagram, as shown in Figure 3.43. For

the EPR transitions marked lul and Ivl in Figure 3.43, the normalized probability

amplitudes are

<2|§|3> _ sin[(¢“ ’ Ad] (138)

  

WEE-3' ‘T‘

and

1S3 _

M = _<__>_ : cos[M]. (139)

0.5gflBl 2

The angles on and M3 define the axes of quantization for the or and B spin manifolds.

They are defined as sin¢a = B/Zcoa and sindm = B/2w3.3

When combining these quantum mechanical results summarized in Figure 3.43

with the classical picture ofecho formation shown in Figure 3.33, the origin ofESEEM

can be understood as the semiclassical picture shown in Figure 3.53. In Figure 3.53, the

microwave frequency coo is equal to a), ofFigure 3.43. The focus is on the response ofthe

packet of spins that makes a transition from l3> to |2> after the first 900 pulse. After the
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(a) (b)

 
 

Figure 3.5: The combination of quantum mechanical results with classical results of an

ESEEM experiment.



first precession period t, the spin packet falls behind the precessional frequency ofthe

frame, so that it develops a phase ((023 - coo)t with respect to the x-axis. After the 1800

pulse, the spin packet is torqued 1800 about the y-axis, and part of it splits into a smaller

packet that will precess at (1)24, as it has made the transition from |2> to l4>. Since 0324 is

larger than (no, this packet will precess opposite that with the 0123 frequency, and will

interfere with the echo formation at time t after the second pulse. This phenomenon is

known as "branching”. The interference is modulated as the time between the 900 and

1800 pulses is varied with a frequency of |ng - and = (013.3

Two-Pulse ESEEM For A Spin System With S = V2 and I=1

For a system with electron spin S = V2 and nuclear spin I = 1, such as IN, the

energy level diagram becomes more complicated than the S = V2 and I = V2 system shown

in Figure 3.43. Figure 3.66 illustrates the energy level diagram showing the microwave

transitions between the upper and lower electron manifolds. At the beginning ofthe

two-pulse ESEEM experiment, the electron spin is in state l6>. After the first 900

microwave pulse, the allowed transition |6> to l3>, as well as the semiforbidden

transitions l6> to |2> and l6> to ll> to a lesser degree, are induced. Therefore, after the

first pulse, the wave function for this system represents a superposition ofwave functions

corresponding to the three states l1>, |2>, and l3>, but with l3> having the largest

contribution to the sum.‘5

During the time t between the first and second pulses, the states l1>, |2>, and l3>

(-iE1‘l'./h) e(oiE2‘t/n) and e(~iE3'c/A)

evolve with the phase factors e respectively. The second 180°

microwave pulse induces the allowed transitions |1> to l4>, |2> to |5>, and l3> to l6>, as

well as the semiforbidden transitions |l> to |5>, |l> to l6>, |2> to l4>, |2> to l6>, l3> to
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Figure 3.6: The energy level diagram for an S

allowed and six semiforbidden transitions.

V2 , I = 1 spin system, showing the three
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l4>, and l3> to |5>. During the time t between the second pulse and the echo, the

additional phase factors WEN”, coma/n), and €456") become part ofthe wave function.

Thus, the echo is generated mostly by the allowed transitions, but also in part by the

semiforbidden transitions, and changes in echo amplitude are a result of interference

between the components ofthe wave fiinction.6

Modulations OfTwo-Pulse ESEEM

For a two-pulse ESEEM experiment with S = V2 and I = V2, the modulation

function is given by

Emod (r): |u|4 + Ivl4 + |u|2|v|2 [coswar + 2coscoflr - cos(a)a -w,,)t -cos(a)a + a),3 )r]. (140)

From Equation (140), it can be seen that modulations ofthe two-pulse echo amplitude

occur not only at the fundamental hyperfine frequencies, but also at their sum and

difference frequencies, (coo + cop) and (com - cup). The product ofthe transition

probabilities ofthe two individual transitions associated with “branching”, lul2 lvlz,

describes the amplitude ofthe modulations. The product ofthe transition probabilities

for the “non-branching” spins, lul4 or Ivl“, describes the non-modulated part ofthe echo

envelope.3

In an ESEEM experiment, what is experimentally observed is the product ofthe

modulation function and an exponential decay function, describing the loss of

magnetization as a result of spin relaxation. In a two-pulse experiment, spin-spin

relaxation is generally on the order ofone usec. This rapid background decay reduces

the frequency resolution in two-pulse experiments.3

When multiple nuclei contribute to the modulation of a single paramagnetic

center, the modulation function becomes the product of each individual modulation
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function, given by

1=.(2)=v.,,,,y I]:IE;,,(2) (141)

where N is the number of coupled nuclei. From Equation (141), it can be seen how

complex a two-pulse ESEEM experiment can become ifjust a few nuclei contribute,

because for each nucleus, there will be fiindamental Am; = i1 frequencies and

combination frequencies, and also there will be new frequencies representing

combinations ofthe frequencies from different nuclei as well.3

Three-Pulse ESEEM

Reduction ofresolution and increase in complexity are two problems with

two-pulse ESEEM that may be avoided by using three-pulse ESEEM. In a three-pulse

ESEEM experiment, the microwave pulse sequence is 90°-t-90°-T-90°, as shown in

Figure 3.7. The first 900 pulse transfers the bulk magnetization vector M along the

y-axis, shown in Figure 3.85 . During the first time t, the bulk magnetization dephases

and the individual spin packets precess with their characteristic angular frequencies. The

second 900 pulse rotates the individual magnetization vectors into the xz plane. During

time T, the transverse magnetization decays, meaning that the individual spin packets

relax back to the z-axis. The third 900 pulse restores the transverse magnetization by

transferring the spin packets along the z-axis onto the y-axis. After time I again, the

individual spin packets dephase about the y-axis, such that the tips of their vectors form

the locus of a circle. At time T+2t from the beginning ofthe experiment a stimulated

echo is formed along the y-axis.5 In a three-pulse sequence, the background decay is

dependent on electron spin-lattice relaxation, T1, which is much longer than spin-spin

relaxation. This allows for better frequency resolution as compared to the two-pulse

76



90° 900 9o0 Echo

 

Figure 3.7: The microwave pulse sequence of a three-pulse ESEEM experiment.
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Figure 3.8: The classical picture of a three-pulse ESEEM experiment describing the

formation of a stimulated echo.
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experiment.3

Modulations OfThree-Pulse ESEEM

For a three-pulse ESEEM experiment, the modulation function for an S = V2 and

I = V2 system is

2
 

Emod (T, T): lul4 + [v]4 +
   

V
 

u 2{coswar + coswflr + 25in 2(w31)608[wp(7 + T)]} +

(051'

2sin2{—§—]cos[wa(r +T)]. (142)

As shown in Equation (142), the modulations observed in three-pulse ESEEM are those

ofthe firndamental hyperfine frequencies, and not the combination frequencies.3

In a three-pulse ESEEM experiment with multiple nuclei coupled to a single

paramagnetic center, the overall modulation firnction is

E(r,T)= [Egg—m]: 13;,(2, T)+ I]; E;(2,T)+]. (143)

It is evident from Equation (143) that the products are taken between frequencies ofthe

same electron manifold, and not combinations ofthe frequencies between the manifolds,

as is the case in two-pulse ESEEM. Therefore, three-pulse ESEEM removes much ofthe

complexities that arise in two-pulse ESEEM.3

The t-Suppression Effect

It can be seen from Equation (142) that the 1: values chosen in a three-pulse

experiment will affect the amplitudes ofthe modulations. Therefore, the value oft can

be varied over a range ofvalues to either enhance or suppress the contribution from one

ofthe electron spin manifolds. This is known as the "t-suppression effect", and is a

useful technique to use for making spectral assignments. The condition for suppression

of a particular nucleus is that the time t be equal to the inverse ofthe resonant frequency
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v ofthe nucleus. Using 1 to suppress a known nucleus in an experimental sample is

useful in analyzing ESEEM data because it isolates the other peaks, which makes it easier

to assign them.3

Fourier Transformation

The resulting signal of an ESEEM experiment is preceded by a fi'ee induction

decay spectrum, or an FID spectrum, such as the one shown in Figure 3.9(a)2. Once the

spectrum is obtained, the resonant fiequencies present in the F11) spectrum must be

recovered in some way. The FID curve is a sum of oscillating functions, and so the

frequencies can be recovered in terms ofthe harmonic components ofthe curve. The FID

curve is analysed using a mathematical technique called Fourier transformation. The

signal, S(t), is originally in the time domain. The total FID curve is the sum over all

possible contributing frequencies, represented by the integral

S(t) = j I(v)e('m>dv. (144)

In Equation (144), I(v) is the intensity ofthe contribution ofthe frequency v, and the

exponential part, cam”, is the signal oscillating with frequency v. In order to convert the

spectrum into the frequency domain, I(v) must be determined, which can be evaluated by

the integral

1(v) = 2re]28(t)e(2“)dt (145)

where “re” specifies real Csolutions. This integration is carried out over a series of

designated fiequencies v on a computer that is a component ofthe spectrometer.7 When

the FID signal is transformed by this method, a frequency-domain spectrum results, as

the one shown in Figure 3.9(b)2. The fiequency-domain spectrum is much more useful

for analysis than the time-domain spectrum because it is easier to assign peaks based on
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Figure 3.9: (a) The free induction decay (FID) spectrum for an S = V2 , I = V2 spin

system.

(b) The frequency domain spectrum ofthe FID spectrum shown in 9(a).
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characteristic resonant frequencies rather than on the time that separates the microwave

pulses causing the electron spin echo.
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Qhapter 4: Nuclear Quadmmle Integctign Qf l"N

Nitrogen-14 has a nuclear spin of one, and nuclei with I 2 1 have nuclear charge

distributions that are non-spherical. Such nuclei are said to possess an electric

quadrupole moment eQ, where e is the unit of electrostatic charge, and Q is a measure of

the deviation ofthe nuclear charge distribution from spherical symmetry. For a spherical

nucleus, eQ equals zero, illustrated in Figure 4.11. For a positive value ofQ, the charge is

oriented along the direction ofthe principal axis, which is the axis ofthe nonbonded

electron pair. For a negative value ofQ, the charge accumulation is perpendicular to the

principal axis.l

The quadrupole moment is a property ofnuclei with nuclear spin greater than or

equal to one, which arises from a non-spherical charge distribution in the nucleus. At the

same time, there is an electron distribution on the molecule from the valence electrons

which creates an electric field gradient q at the nucleus. When the quadrupole moment

and the field gradient interact at the nucleus, the result is what is called a nuclear

quadrupole interaction. Therefore, the nuclear quadrupole interaction is an electrostatic

interaction between the quadrupole moment ofa nucleus and the electric field gradient at

the nucleus due to the surrounding electronic charges in an atom or molecule.1

Deriving the Nuclear Quadrupole Interaction Energies For An I = 1 Nucleus

The nuclear quadrupole interaction harniltonian for an I = l nucleus is

lilo =5'q—S°—9—)-[3i§-2+n(ii-i§)] (146)

where e is the fiindamental charge, q is the field gradient, eQ is the electric quadrupole

moment, and the operator of 12 is the 2 component ofthe nuclear spin angular momentum



  
(a) (b)

I=O,p=0 I=1/2,u=r=0,cQ=0

 

 

 
(c) (d)

121,u¢0,eQ>0 1219u¢096Q<0

Figure 4.1: Different types of nuclei, varying in charge distributions.
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operator.3 The x and y components ofthe nuclear spin angular momentum operator, the

operators of Ix and Iy respectively, can be used to define the step operators of 1+ and I. by

the two equations

i, = i, Hi, (147)

and

i_ = ix —ii,. (148)

The x and y components can be defined in terms ofthese two step operators as

I = I ' (149)

and

i thL). (150)

y 2i

Squaring both sides ofEquation (149) and Equation (150) will give

i: :51: +211 +12] (151)

and

. 1 . . . .

j 2 7h: —21,1_ +1?]. (152)

Therefore

(i: -i§)= éfi‘f +i3) (153)

and the harniltonian ofEquation (146) becomes

HQ = flgflki: —2+(%)(ii #3)]. (154)

The Schrodinger equations for the operators of 12, 1+, and I. are

.
7
2
5
4
.
.
.
“

_
r
.

E
J
T
C
A



A

1,1 m,)=m,|1 m1) (155)
 

A

I, I m,)=[1(1+1)—m,(mI +1)]i|1 (mI +1)) (156)
 

and

. l

1_|1 m,)=[1(1+1)-m,(m,-1)]2|1 (ml-1)). (157)

When Equations (155), (156), and (157) are applied to the three nuclear spin states of an I

= l nucleus, the eigenvalues for the three nuclear spin operators can be determined, as

summarized in Table 4.1. When applying the harniltonian to the diagonal terms, the

 

 

results are

(-1|1§1Q|-1)=(332—Q)(1) (158)

<0|90|0> {3220](4) (159)

and

<+llfiol+1)=[esz)(1) (160)

In each ofthe solutions for the diagonal terms, the 1') term vanishes. This is due to

orthogonality ofthe eigenfunctions that arise from the step firnction operators, which are

given in Table 4.1. Along with the three diagonal terms, there are two nonzero

off-diagonal terms, which are

 (—1|HQ|+1>=[62:Q](U) (161)

and
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Table 4.1: The solutions ofEquations (156), (157), and (158) for the three nuclear spin

states m1= -1, 0, and +1.

 

 

 

'1 m1> i2 i+ i-

ll -1> -111 -1> 21’211 0> 011 -2>

l1 0> 011 o> 2‘011 +1> 21’211 -1>

l1 +l> +1I1 +1> Oll +2> Zmll 0>
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(+ 1|)?!Q |— 1) = [9:22]“) (162)

The completed matrix in terms ofMP is

IO) H) I“)

W [620% 2) o o

1-1) 0 (+011) [9139111)-

111) 0 [1239111) [+0111

Substituting x for (equ/4), the matrix can be written as

 

-2x 0 O

O x xn .

0 x77 x

This matrix will be used to solve for the energies E4, E0, and E41. The "characteristic

equation”4 ofthis matrix is

-2x-l 0 O

0 A-l A' =0. (163)

0 A' A - ,1

From the above characteristic equation, -2x-7t = 0, and solving for A yields E0 =

-(e2qQ/2). The other two energies, E1 and E1, are found by solving the remaining

determinant within the original characteristic equation, which is

A' A - A.

The two energies are found by solving for A fiom the above determinant. There are two

A-l A'

I [-6 (1641

solutions to the determinant, the first is A. = (equ/4)(1-n), and the second is
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A. = (equ/4)(l+n). Therefore, the two energies for the m1 = +1 and m; = -1 nuclear states

are E11 = (equ/4)(l in).

Resonant Frequencies Ofthe Nuclear Quadrupole Interaction

Now that the three energies for the nuclear quadrupole interaction of 14N have

been determined, it is possible to solve for the corresponding resonant frequencies. There

are three possible energy level transitions, E0 —-> E1, E1 —> E“, and E0 —> E).

Calculating these changes in energies will yield the three characteristic resonant

fi'equencies ofthe nuclear quadrupole interaction.

The first energy transition is Eo —+ EH, which is given by the equation

  15,, —1~:0 = (6220][(1+77)—(‘ 2)]= [6ng

The second transition is E; -—> E+1,

)(3+n)- (165)

 

13,, ‘E-1 = [62%le +n)-(1-n)]= [6ng

The third and final transition is El —2 E0,

J07) (166)

 

c2 Q e2

13-1—15.1 =[ 2 ][(1—n)—(-2)]=[—29](3—n) ‘ (167)

The three changes in energies given in Equations (165), (166), and (167) correspond to

the three characteristic frequencies ofthe nuclear quadrupole interaction of 1“N. The

three fiequencies are given by

 

 

V+ : [e 2Q](3+n) (168)

v- =[°“2Q](3-n) (169)



and

v0 = [ii—QM (170)

where (ezQ/4) = 1.2071110*5 (cmzC MHz)/J.

Solving For the Field Gradient q and the Asymmetry Parameter 11

Using the nuclear quadrupole resonant frequencies for 14N, v4, 12., and v0, it is

possible to determine the value of q, the constant describing the field gradient. The

equation for V+ is given in Equation (168), and that of v- is given in Equation (169).

Subtracting v- from V.» gives

 

4

which is v0. The electric quadrupole moment eQ for 1“N is 2.0x10'26 cm2,5 and the

(V.-v-)=[equ](2n) (m1

fundamental charge e is 1.6x10"9 0’ Thus (e’Q)/4 is 8.0x10' 4? (e1112 C), which 111 terms

ofMHz becomes 1.207x10'6 (cm2 C MI-Iz)/J. Substituting this value into Equation (171)

and solving for qr] gives

cm = Zvo/(ezQ). (172)

Going back to v+, Equation (168) can be rewritten as

2 2

[3.621x10'6[cm gl'flh]]q+[1.207x1o‘[°m Cl“ H6117)“. (173)

by distribution and substitution. From this equation, the field gradient constant q can be

  

calculated. Once q has been determined, it can be substituted into Equation (172) to find

the asymmetry parameter 1').
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Deriving the Energy Level Diagram For An S = V2 and I = 1 System

Knowing the three energies of a nucleus with spin I = 1, the energy level diagram

can be derived for a nucleus such as 1“N coupled to an electron. There are two possible

spin orientations for the unpaired electron, spin up or spin down, are = +V2 and m5 = -V2

respectively. This degenerate electron spin state is first split due to the electron Zeeman

interaction energy, given by

AB = -8eBeB (174)

shown in Figure 4.2(a).‘5'3 For the case where the external magnetic field B is 3060 G, AB

is 5.67S7x10'27 U, or 8.5658x103 MHz.

Each ofthe electron spin states is firrther split by the nuclear Zeeman interaction.3

With a nuclear spin I = 1, each electron energy level is split into three levels because

there are three nuclear spin states, m1 = +1, m1 = 0, and m; = -1. The nuclear Zeeman

energy is related to the nuclear Larmor frequency by the relationship

21113an = v.1.‘5 (175)

At 3060 G, vn is 0.94 MHz. Therefore, at the upper electron manifold, the three nuclear

Zeeman levels will be m = -1,0, and +1 respectively, and the levels will be split by 0.94

MHz, as shown in Figure 4.2(b). Similarly, at the lower electron manifold, the three

nuclear Zeeman levels will be m = -1,0, and +1 respectively, and again each level will be

split 0.94 MHz apart, shown in Figure 4.2(b).

The nuclear Zeeman energy levels are shifted due to the electron-nuclear

hyperfine interaction energy, given by Am;m,,.6'3 Thus, at the upper electron manifold,

m1 = -1 level is decreased by A/2, A being the hyperfine coupling constant of 14N, and the

m1 = +1 level is increased by A/2, as shown in Figure 4.2 (c). At the lower electron
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(a) (b) (c) (d)

Figure 4.2: The energy splitting diagram of 1“N, showing splittings from the (a) electron

Zeeman energy [-g,B.Bm,], (b) nuclear Zeeman interaction [-gnBuB/h =

-vn], (c) the electron-nuclear hyperfine interaction [Amunx], and ((1) nuclear

quadrupole interaction. vn is the Larmor frequency, which is .94 MHz at

3060 G.
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manifold, the m1 = -1 level is increased by A/2 while the m1 = +1 level is decreased by

A/2. In both electron manifolds, the m1 = 0 level is neither raised nor lowered.

Each ofthe electron-nuclear hyperfine levels for 14N is shifted due to the nuclear

quadrupole interaction.3 Solving the nuclear quadrupole interaction harniltonian for l4N,

the quadrupole energy level shifis corresponding to m = 0, :1 are

131.1141= -(equ)/2 (176)

5...-.. = (e2qQ/4)(l+n) (177)

and

12,... = (equ/4)(1-n). (178)

In the upper electron manifold in Figure 4.2, the nuclear Zeeman and

electron-nuclear hyperfine terms almost cancel each other, thereby leaving only the

nuclear quadrupole interaction to determine the energy level splitting. This gives rise to

three transitions corresponding to the three sharp lines in the ESEEM spectra with nuclei

with spin I 2 1, where the frequencies oftwo add to give the third.3

In the second electron manifold in Figure 4.2, the nuclear Zeeman term is almost

doubled by the electron nuclear coupling. This gives rise to a single broad transition peak

at about four times the nuclear Zeeman frequency, leading to a Am; = 2 transition.2

Thus, in a frequency domain ESEEM spectrum of 1“N coupled to an unpaired

electron, one would expect to see three characteristic sharp peaks between zero and about

two MHz, and one broad peak at about four MHz, such as the spectrum shown in Figure

4333
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Figure 4.3: The Fourier transformation spectrum of ]“N.
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Chapter 5: ESEEM OfMethylmalonyl-CoA Mutase With L-Methylmalonyl-CoA

With l“N

ESEEM Data Collection

The ESEEM data were collected on a home built spectrometer. A three-pulse

sequence (900-t-900-T-900) was used. Dead time reconstruction was performed prior to

Fourier transformation. Computer simulations ofthe ESEEM data were performed on a

Sun Sparcstation 2 computer using FORTRAN software, which is based on the density

matrix formalism ofMims.l

Samples OfMethylmalonyl-CoA Mutase

Three-pulse ESEEM experiments were performed on flow samples ofthe

enzyme methylmalonyl-CoA mutase with the substrate L-methylmalonyl-CoA. The

samples were prepared by Rugmini Padmakumar.2 The sample used was prepared with

all the nitrogens being l“N.

ESEEM Of l“N Samples

The first experiment was a two-pulse echo-detected EPR experiment at a 1 value

fixed at 500 us. The result is known as a "field scan”, because the external magnetic field

was varied as the echo amplitude was monitored. The resulting spectrum is shown in

Figure 5.1. This experiment was done in order to recognize at which field value the

greatest echo amplitude would occur. The greatest field value was about 3060 G, and a

shoulder was present at about 3140 G. These are the two field values at which the

ESEEM experiments were to be performed.

The next experiment was a three-pulse ESEEM experiment at 3060 G. The first I
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Figure 5.1: The field scan ofmmCoA mutase with L-mmCoA, with the fiequency at

8.81 GHz and a I value of 500 ns.
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value was set at 300 ns, while the time between the second and third pulses, T, was

varied. The echo amplitude was detected as a function of T. The resulting spectrum,

shown in Figure 5.2, was an electron spin echo decay envelope, which is an overall decay

ofthe magnetization that is modulated by the hyperfine interactions. The spectrum gave

a measure ofthe echo amplitude as a firnction ofthe time (t + T) in 11sec. Fourier

transforming this time domain decay spectrum gave the frequency domain spectrum

shown in Figure 5.3. The Fourier transformation spectrum showed frequency peaks at

which the nuclear spins present came into resonance at the given magnetic field values,

which was usefirl for identifying the nuclei coupled to the paramagnetic center. The

spectrum in Figure 5.3 showed prominent peaks at 1.95 MHz, 2.51 MHz, and 4.0 MHz at

3060 G. Figure 5.4 shows the Fourier transformation spectrum that was taken at 3140 G.

The spectrum in Figure 5.4 showed peaks at 2.0 MHz, 2.5 MHz, and 3.9 MHz, which

was in very good agreement with the spectrum taken at 3060 G shown in Figure 5.3.

Discussion

The peaks present in the Fourier transformation spectra ofmmCoA mutase with

L-mmCoA, shown in Figure 5.3 and Figure 5.4, were characteristic ofthe peaks for 1“N.

MN has a nuclear spin of one, and nuclei with I 2 1 have a nuclear quadrupole interaction

associated with them. In the two ESEEM spectra, two sharp peaks were in the region

between zero and two MHz, while one broad peak was at about four MHz. These peaks

could have been assigned to ”N, indicating that “N was interacting with the

paramagnetic center. The one peak absent from the nuclear quadrupole interaction peaks

was at too low of a frequency to be detected.

The two sharp peaks at frequencies of about 2.5 MHz and 2.0 MHz were the
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Figure 5.2: The electron spin echo decay envelope ofmmCoA mutase with L-mmCoA

at 3060 G, with the frequency at 8.81 GHz and a I value of 300 ns.
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Figure 5.3: The Fourier transformation ofthe spectrum shown in Figure 5.2 at 3060 G,

with the frequency at 8.81 GHz and a 1: value of300 ns.
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Figure 5.4: The Fourier transformation ofthe spectrum shown in figure 5.2 at 31406,

with the frequency at 8.81 GHz, and a I value of 300 ns.
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characteristic frequencies w and v., defined in Equations (168) and (169) respectively.

These two frequencies were used to solve for the third characteristic peak, v0. From

Equation (171), v0 was calculated to be about 0.5 MHz. Substituting v0 and the

numerical values ofthe constants into Equation (172), the value of qr] was found to be

2.07 1x105 J/(cm2 C). The result ofEquation (172) was then substituted into Equation

(173) to solve for the field gradient constant q, which was 6.21375x105 V/cmz. The value

of q was then substituted back into Equation (172) to find the value ofthe asymmetry

parameter 11, which was calculated to be 0.333.

Once the values of q and n were known, Equations (176), (177), and (178) could

be solved for the quadrupole energy level shifts, illustrated in Figure 4.2(d). After

substituting the numerical values for the constants, the energy level shifis in MHz were

EmH) = -15000 MHz (179)

Enu=+1 = 0.9975 MHz (180)

and

13.,,,__1 = 0.5002 MHz. (181)

Therefore, in both electron manifolds, the m1= 0 energy level decreased by 1.5 MHz,

while the m1 = +1 and m1 = -1 energy levels increased by 0.9975 MHz and 0.5002 MHz

respectively, shown in Figure 4.2(d).

Since the broad peak at about 4.0 MHz was near “exact cancellation”, it was used

to estimate the isotropic hyperfine coupling constant, A1”, for MN. As illustrated in the

energy level diagram in Figure 4.2(c), 2A1,o a 4.0 MHz. Therefore, the approximate

experimental value for Age for 1“'N was about 2.0 MHz.
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From the ESEEM data, it was evident that the paramagnetic center was

interacting with MN. However, there were three different nitrogens that could couple

with the paramagnetic center, as shown in Figure 5.5. The first possibility was the four

pyrrole nitrogens in the corrin ring. The second possibility was the nitrogen ofthe lower

axial dimethylbenzimidazole group. Lastly, it was also possible that the nitrogen could

have been fi'om a nitrogen-based ligand on the protein ofthe enzyme. An experiment

was needed in order to determine which nitrogen was interacting with the paramagnetic

center.
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\N-based ligand

Protein

Figure 5.5: An illustration of cobalamin showing the three possible nitrogens coupled to

the unpaired electron. The four nitrogens around the cobalt center are the

pyrrole nitrogens. The nitrogen at the lower axial position is the nitrogen

fi'om the dimethylbenzimidazole. The dashed line leads to a nitrogen-based

ligand from the protein ofthe enzyme.
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Charger 6: ESEEM OfMethylmalonyl-CoA Mutase With L-Methylmalonyl-CoA With

1’_N_

A sample was made by Banerjee and Padmakumar ofmmCoA mutase with

15N-labelled protein and deuterium-labelled substrate. From this sample it could be

determined if the substrate was interacting with the enzyme, because there would be

hyperfine interaction from deuterium in the ESEEM spectra. This sample would also

assist in the assignment ofthe nitrogen. Ifthe nitrogen being detected in the ESEEM

data were fiom the Bu cofactor, the pyrrole nitrogens or the nitrogen ofthe

dimethylbenzimidazole, the quadrupole interaction peaks would reappear in the spectra.

If, however, the nitrogen was from a nitrogen-based ligand fi'orn the enzyme, then peaks

characteristic of 1’N would appear on the ESEEM spectra.

ESEEM Data Collection

The ESEEM data were collected on a home built spectrometer. A three-pulse

sequence (90°-t-90°-T-90°) was used. Dead time reconstruction was performed prior to

Fourier transformation. Computer simulations ofthe ESEEM data were performed on a

Sun Sparcstation 2 computer using FORTRAN software, which is based on the density

matrix formalism ofMims.l

Samples OfMethylmalonyl-CoA Mutase

Three-pulse ESEEM experiments were performed on frozen samples ofthe

enzyme methylmalonyl-CoA mutase with the substrate L-methylmalonyl-CoA. The

samples were prepared by Ruma Banerjee and Rugmini Padmakumar.2 The sample used

contained methylmalonyl-CoA mutase with 1’N-labelled protein, deuterated
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L-methylmalonyl-CoA, and D20 buffer. Banerjee and Padmakumar were

able to separate the B12 cofactor from the enzyme, grow bacteria on media that contained

a nitrogen source labelled with 15N, and then reconstitute the protein with the 1312

cofactor. In other words, the B12 cofactor consisted of 1“N, while the rest ofthe protein

was labelled with 15N.

ESEEM or "N Sample

The first experiment done on the 15N-labelled sample was a two-pulse

echo-detected EPR experiment. According to the resulting spectrum, shown in Figure

6.1, the two field values of interest were 3060 G and 3220 G. These were the two field

values at which the ESEEM experiments were to be done.

The next experiments were three-pulse ESEEM experiments at 3060 G and 3220

G, and the Fourier transformation spectra are shown in Figure 6.2 and Figure 6.3

respectively. At 3060 G, the major peaks were at 1.35 MI-Iz,’1.90 MHz, 2.50 MHz, 2.90

MHz, 3.90 MHz, and 13.00 MHz. At 3220 G, the major peaks were at 1.40 MHz, 2.05

MHz, 2.60 MHz, 2.90 MHz, 4.10 MHz, and 13.69 MHz. The two spectra were in close

agreement.

The last ESEEM experiment was a three-pulse ESEEM experiment on the

15N-labelled sample at 4000 G. The Fourier transformation ofthe three-pulse spectrum is

shown in Figure 6.4. The major peaks were 0.60 MHz, 1.78 MHz, 2.90 MHz, and 5.30

MHz.

Discussion

In the spectrum at 3060 G in Figure 6.2, the peak at 13.00 MHz was the hydrogen

larmor frequency, which is the frequency at which hydrogen comes into resonance at
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Figure 6.1: The two-pulse echo-detected EPR experiment of lsN-labelled mmCoA

mutase with L-[CD3]mmCoA at a frequency of9.00 GHz and a ‘1: value of

500 ns.
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Figure 6.2: The Fourier transformation spectrum ofthe three-pulse ESEEM spectrum of

”N-labelled mmCoA mutase with L-[CD3]mmCoA at 30606, with the

frequency at 9.00 GHz and a 1 value of 500 ns.
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Figure 6.3: The Fourier transformation spectrum ofthe three-pulse ESEEM

spectrum of l’N—labelled mmCoA mutase with L-[CD3]mmCoA at

3220 G, with the frequency at 9.00 GHz and a t value of450 ns.
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Figure 6.4: The Fourier transformation spectrum ofthe three-pulse ESEEM spectrum of

”N-labelled mmCoA mutase with L-[CD3]mmCoA at 4000 G, with the

fi'equency at 11.64 GHz and a ‘1: value of 760 ns.
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3060 G. Likewise, the peak at 1.9 MHz was the deuterium larmor fi'equency. The peaks

at 1.35 MHz and 2.5 MHz were both about 0.60 MHz away from the deuterium larmor

frequency. When two peaks are equidistant about the larmor frequency, that is an

indication of hyperfine interaction. Therefore, it was possible that there was hyperfine

interaction from deuterium.

0n the other hand, the peak at 1.35 MHz was also the larmor frequency of 15N,

and the peak at 2.5 MHz, which is 1.15 MHz away from the 15N larmor frequency, may

also have been due to hyperfine from 15N. Ifthis was so, then a peak 1.15 MHz to the

left ofthe 15N larmor frequency should have also existed, which would have been at

about 0.20 MHz. In order to have detected this peak, if it existed, would have required

that the magnetic field be increased. So the question that needed to be answered was if

there was hyperfine interaction from 15N or 2H? 2

When the magnetic field has been varied, a characteristic peak shift results, which

is given by

Av=———(8“'[::AB). (182)

By increasing the magnetic field to 4000 G and estimating where the peaks for 15N and

2H should be, it became possible to determine which nucleus was coupling to the

paramagnetic center. According to Equation (182), varying the field from 3060 G to

4000 G should have shifted the 15N peaks 0.43 MHkaG, and should have shifted the 2H

peaks 0.65 MHz/kG. Applying these characteristic shifts to the peaks at 3060 G, the

peaks at 4000 G were able to be assigned. In Figure 6.4, the peak at 1.78 MHz was the

larmor frequency for l5N at 4000 G, and the peaks at 0.60 MHz and 2.90 MHz were both

1.18 MHz away from the larmor frequency of 15N. This indicated that there was
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hyperfine interaction from ”N. The small peak at about 2.60 MHz may have been the 2H

larmor fi'equency, but there was no indication of hyperfine interaction from 2H.

Therefore, the 15N hyperfine peaks were assigned to the nitrogen belonging to the protein

ofthe enzyme.

Using the data from the ”N experiments, a more accurate hyperfine coupling

constant could be found for 1“N. From the ”N experiments, a hyperfine coupling

constant could be measured for 15N, and then scaled back to find the hyperfine coupling

constant for 1"N. This method would yield a more accurate value for the hyperfine

coupling constant of 1“N because it would not be tainted by the nuclear quadrupole

interaction, as would be the case with the 1“N experiments.

Determining the anisotropy coupling constant of 1“N required scaling back from

the ”N data using the equation

[A] {Sign[A] (183)

2 ("11) 81(611) 2 (”N)

where gn(14N)= 0.403762 and 80(15N)= 0.56638.2 Referring to the experimental ESEEM

spectrum with ”N at 3060 G, shown in Figure 6.2, (A/2)(15N) was measured to be about

1.15 MHz. Substituting these values into Equation (183), (A/2)(14N) was found to be

0.81981 MHz, and thus A0411): 1.63962 MHz. The same procedure was performed on

the ESEEM spectrum at 4000 G, where (A/2)(15N)= 1.18 MHz, shown in Figure 6.4. In

this case, (A/2)(14N) was calculated to be 0.8412 MHz, and thus A(14N)= 1.6824 MHz.

Therefore, the anisotropy coupling constant for 1"N was approximately 1.66 MHz i 0.1

MHz.
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Conclusion

From the ESEEM experiments, some ofthe hyperfine lines were assigned to the

nitrogen at the lower axial position ofthe cobalamin radical, the nitrogen at the lower

axial position being a nitrogen-based ligand from the protein. It was concluded from the

low frequency ESEEM experiments that 15N must be at the lower axial position as

illustrated in Figure 6.5, because the dimethylbenzimidazole group is the only ligand that

was able to exchange with a protein ligand from the enzyme. There was no evidence

from the data that the substrate was part ofthe paramagnetic center giving rise to the

ESEEM, but rather the 2H was from the solvent. From the data, it was strongly believed

that the enzyme was in its “base-off” form, the “base-off” form being when the lower

axial position is occupied by a nitrogen-based ligand, such as a histidyl group, from the

enzyme.4
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Figure 6.5: An illustration showing cobalamin with the cobalt center coordinated at the

lower axial position to a nitrogen-based ligand from the protein ofthe

enzyme.
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