


THESIS

2
400

This is to certify that the

thesis entitled

ADAPTIVE RELIABLE MULTICAST
IN WIRELESS LOCAL AREA NETWORKS

presented by
Chiping Tang

has been accepted towards fulfillment
of the requirements for

—Ms— 9°8ree inegmmuter Science

ﬁfk)\éw/;l_\

Major professor

Date S_'/?/OL

0-7639 MSU is an Affirmative Action/Equal Opportunity Institution



LIBRARY
Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 c/CIRC/DateDue.p65-p.15




ADAPTIVE RELIABLE MULTICAST
IN WIRELESS LOCAL AREA NETWORKS

By

Chiping Tang

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE
Department of Computer Science and Engineering

2002



ABSTRACT

ADAPTIVE RELIABLE MULTICAST
IN WIRELESS LOCAL AREA NETWORKS

By

Chiping Tang

Wireless local area networks exhibit substantially different characteristics from their
wired counterparts: limited bandwidth, bursty packet loss, and receiver-specific loss
patterns. In these environments, a network protocol should constantly adapt its algorithms
and parameters in response to the changing channel conditions.

In this research, we propose and implement a reliable multicast protocol that
adaptively adjusts parameters in response to channel condition changes. The relevant
parameters include the proactive FEC rate, the global NACK suppression flag, and the
sending rate. The protocol derives channel condition factors, such as packet loss rate and
contention degree, based on feedback from receivers. The protocol is implemented at the
application level and it requires no special link layer support. Analysis and simulation
results show that the protocol has good overall performance in most cases, in terms of
transmission throughput. The factors that degrade the performance are pointed out and
discussed.

Our experience of wireless network simulation shows that an accurate channel loss
model is critical to protocol performance evaluation. Based on the collected packet traces,
we developed a novel channel model that takes into account the correlation of losses
among multiple receivers. The model is used for evaluation of our protocol. It could be

applied to other studies that involve wireless group communications.



To my wife Qi, and my son Colin

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Philip K. McKinley,
for his great support, professional advice, and profound understanding. Without these, 1
could not have completed this work. I also thank Professors Abdol-Hossein Esfahanian
and Sandeep Kulkami for serving in my thesis committee.

Many other people helped me during the process of finishing this work. I am grateful
to Arun P. Mani, Udiyan Padmanabhan, Peng Ge, Seyed Masoud Sadjadi, and other
faculty members and graduate students in Software Engineering and Network Systems

Laboratory. I also owe a lot of gratitude to my wife Qi, for her selfless support and love.



TABLE OF CONTENTS

LIST OF TABLES VIl
LIST OF FIGURES VI
CHAPTER 1 1
INTRODUCTION 1
1.1 )Y (0 3 AV7-Ny & (6 TR 1
1.2 CHALLENGES ..ottt e e e e e e e e e e e e e e e e aaaeaseaneaaaeeaanaasesaesaannnsasesanaannnsnssaseaes 3
1.3 CONTRIBUTIONS AND STRUCTURE OF THESIS ...ccoeieiiiiitetteetteeeeeeeeeeeereereeeseeesaeeeeeesaenes 5
CHAPTER 2
BACKGROUND
2.1 WIRELESS NETWORKS ...ttt ettt e e e et e eeeeeeemaaaeeaesenesaeaeeeeaeaaeasessennnnaaaaeeeesenann 9
2.1.1 Wireless LOSS CRATACIEIISIICS..............coceeeeueeeeeeeeeeeeeeeeeeeeeeseeeeeesseeeeessiseneresesseessns 10
2.1.2 CSMA/JCA. ...t eee et s e e e e ssseteessessaseeeeessraaeessssasessasnas 12
2.1.3 The IEEE 802.11 Standard.................coooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeereessesenesesessens 15
2.2 RELIABLE IMULTICAST ettt ettt ettt e e e e e et eaaeeeaasasseeseeasaaaaesseeessannaasassens 18
2.2.1 ETrOr RECOVETY ...ttt ettt et 18
2.2.2 FLOW CORIFOL.........coooooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeesesessssssssssstereeeeesssssssanseenes 23
2.3 FORWARD ERROR CORRECTION ....ccceciuiiiieiiiiieeiciteeececteeeeeeeeasreeeeeessseeeeeesssseeanssseeesennnns 25
CHAPTER 3 30
ISSUES IN RELIABLE MULTICAST OVER WIRELESS LANS 30
3.1 WLAN CHANNEL CHARACTERISTICS ....oeeiitiiiiieeeieeieeeeetteeteeeseeeseeseseeesseeasssesessssssssessenes 31
3.1.1 Experimental Environment .................cccccoueeeieeeueesieeeireseeeseenseesssesssesssessssessenas 31
3.1.2 PaACkE Trace COIlOCHION ..............cooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseneeeeeeeeseesnnes 32
3.1.3 Packet Trace ANQLYSIS...........c..cooueeeeeceeecieesiiesieeeieectae e ssee st esaeesaeesaesssassaesanens 34
3.2 REVERSE TRAFFIC AND PACKET LOSS ...ttt eenes 44
3.2.1 Propagarion LOSS..............cocuiicueeciecieeeeeeieeeeeteeseeeacaeessaessseesssesssesessesssessssssessnnes 45
322 COUISTON LOSS c..ccooooeeneeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeesesesseseeeteeeeessssssesssnareees 46
323 Contention and QUEUEING LOSS.............occcuveuieeeeeeiiieeieeeeeeeeeieeeie e eeeeteesaeeeeeeeneeas 50
33 RELIABLE MULTICAST STRATEGIES ....ccoiiiiiiiiiieieeeeeeeeeeeeeeeeteee et sseeeesaaasssanssanasanas 51
3.3.1 REIFANSIUSSIONS ...t ettt e e e e s s e s e s esssssnaeesesesssnanes 52
332 NACK SUDPTESSION ..ottt ettt svenne 52
34 SUMMARY Lottt ettt e e e eeeee e e eeeseesessess s e asssaeeaeeesssesanessnneaaeeeesasssnsas 63
CHAPTER 4 64
AFRM PROTOCOL DESCRIPTION 64
4.1 PROTOCOL OVERVIEW ... .ottt e eeeeeeteeeeeeeeeesaaeesseemanseesessesanenseesssnnnnsnnsseesensene 65
4.2 PROTOCOL ALGORITHMS .....coiiiiiiiiiieeiiiieeetieeeeeeteeeeeserteeesasansssesesssnsssssassnsssasassssaesnnnns 68
4.2.1 PrOACIIVE RALE ...t a s e e e e e ansasneaas 68
4.2.2 INACK SUDPTESSION ...ttt e e et st e et s e e eseesaeeeenassaeaeaeeeas 76
4.2.3 FUOW CORLIIOL..........oooooeoeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e et e eee e aereaeeeeeeesssssnneeenesesannen 78
4.3 IMPLEMENTATION ..ottt et ettt et e e e e e e et e e e e eesanaaesan s et esasaaeseanesanneseasnnaesennns 80



4.3.1 ATCRITECHUTE ...t ee e naeeaeaaaeeeaens 80

4.3.2 AFRM PACKEE FOIMAQL...............eeeeeeeeeeeeeeeeeieeeeieeeeeeeeeeeeeeeeet e eaeaeneeseaeeeeees 86
CHAPTER S 88
PERFORMANCE EVALUATION 88

5.1 EXPERIMENTAL STUDY cvtttitiiiiiiiiiiittiee e e eeerteeee e e eeettsaetesteeseeessssssassssssesssssssssreeesssssssenes 88
5.1.1 INOITIAI CONAILIONS .........cooooooevieeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeseereeeeeesesessesesanaen 89
5.1.2 ATHICIAL LOSS ...ttt ettt nenenns 92

52 SIMULATION STUDY ettt ettt s e e eeeeesseeesesesessesssaesssanesenennns 97

5.2.1 SIMULALION FIAMEWOTIK ...........oooooeeeneeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeeeeeeeaeeeas 98

522 LOSS MOMELS ...t et e e e e e e e aeaesaseeeeasaee e nneeaaes 100

5.2.3 B02.11 MAC SIimUIGIION. ..........ooveeeeeeeeeeeeeeeeeeeeeeeeeeeee e e eeeeaeeeeaaeeesann 105

5.24 STIMUIATION RESUILS ...ttt et e e e e s e e esaeesssemanseeneeaeaees 107

53 SUMMARY ettt e e et e e e e et e e eee s e e e aeeeeeeeasaaaasaseaaaeeeeeeesasaseaeseesasanaes 115
CHAPTER 6 116
RELATED WORK 116

6.1 RELIABLE MULTICAST - ettt et ee e e et aee e e e e e e eaaaeasaeaeeeanaaaeeseaaeseennnaaeeeennaaaaaes 116

6.2 30003 7::300 2133 :70): 3 00033 23 0 & (0] [ 122

6.3 WIRELESS NETWORK STUDIES . ceneteieee et eeeeeeeeeaeeeeaaaesanaeeseennesesnnsasaeesaenssassens 126
CHAPTER 7 131
CONCLUSIONS 131
BIBLIOGRAPHY 134

vi



LIST OF TABLES

Table 3.1: Test machine configurations

vii



LIST OF FIGURES

Figure 2.1: Wireless traces in GSM network [33].......coooiiiieiiieeeeeeeeeeeeee e 11
Figure 2.2: Wireless losses vs distance [40]............cccccoiiiiiiiiiniiiiiiccceceeeeee 12
Figure 2.3: Hidden terminal problem. ... 14
Figure 2.4: RTS/CTS exchange in IEEE 802.11 WLAN [25].....ccccoiiiiiiiccceeeeeeeee 17
Figure 2.5: Operation of FEC algorithms [56]. ............cccocooiiice 26
Figure 3.1: Experimental environment. ...........cccocooiuiiiiiiiiininie ittt 32
Figure 3.2: Experimental evaluation of queueing loss. ..........ccoccooiiiiiiiiiiiiicceeee 35
Figure 3.3: A typical packet trace in WLAN. ... 37
Figure 3.4: Receiver IoCAtIONS. .........couiiiiiiiiir ettt sttt et 38
Figure 3.5: Packet traces at multiple Stations. ................cccoeiiiiiiiiiinii e 39
Figure 3.6: Packet trace StatiStiCS...........ccociiuiiiiiiiiiiiiiiiicieciee et 40
Figure 3.7: Loss correlation of multiple traces. ...........oooeiiiiriiriieiienienenceeeecceee et 41
Figure 3.8: The effect of unicasting and multicasting reverse traffic. ..........cc.cccoceevivincnncnennen. 43
Figure 3.9: The effect of reverse traffic from multiple stations............ccococooiiiiiiiiininiiinnn. 44
Figure 3.10: Collision rate and transmission rate with asymptotic stations. ..........cc.ccccceeeeeruennen. 48
Figure 3.11: Collision rate in SIMUlation. ............ccccoviiiriiiiniiiineiteececeecre e 49
Figure 3.12: Contentions and qUeUEing lOSSes. ...........cocceuiiiiiiiiiiiiiiiicccc e 51
Figure 3.13: The effect of local NACK Suppression. ............cccccccovinininininiiiccccicececcecenees 56
Figure 3.14: The effect of local NACK suppression with biased timeout value. .......................... 57
Figure 3.15: The impact of local NACK suppression on collisions and drops...............ccccccucuenee. 59
Figure 3.16: Comparing local and global NACK suppressions...........cccccccoeiiiniincniicicnieennnn. 60
Figure 3.17: Packet drops in local and global suppressions. ..o 61
Figure 3.18: Overall performance of NACK suppression approaches. .............ccccccevviiiiiiinnnnnn. 62
Figure 4.1: AFRM-A1 algorithm. ..........ccoooiiiiiiiiiiiic s 72
Figure 4.2: AFRM-A2 algorithm...........cccoiiiiiiiiiiie e 74
Figure 4.3: AFRM flow control algorithm. ..., 79
Figure 4.4: The AFRM sender architecture. ...............cccoviniioieiiiiiniiiccccece e 81
Figure 4.5: The AFRM receiver architeCture ..............cccoceviioiieiiiiieniiii it 84
Figure 4.5: The AFRM packet header format. ... 86
Figure 5.1: A loss burst spans several packet roups. .........c.cccocoviiiiiiiiiiiniiicccecc e 90
Figure 5.2: Experimental throughput under normal conditions...............cccccooiiiiiiiiiininiincnn. 91
Figure 5.3: Experimental throughput with artificial 10Ss...........cccccoooiiiini 93
Figure 5.4: Throughput, goodput and total NACKs with 20% 10ss. .........ccccooriiiiiiiiiniicciiinnens 94
Figure 5.5: Proactive rate adaptation in AFRM algorithms.............cccoooii 96
Figure 5.6: Experimental throughput with NACK suppressions. ..........ccccececovcoicnencnienennencnnen. 97
Figure 5.7: Architecture of the simulation framework ...........c.ccccoociiiiiiiiiiiiiiiieeee 99
Figure 5.8: Porting applications to the simulated network. ........c...cccoevieiiiciniinniniinieicniee 100
Figure 5.9: Two-state Markov model for simulating packet losses and channel errors. ............. 102
Figure 5.10: Real trace and trace based on Gilbert model...............cccooviiiiiiiiiii, 104
Figure 5.11: Burst length distribution of packet trace. ............ccccccoviiiiiiiiiiiiiiiccccccees 105
Figure 5.12: Trace based on revised bursty loss model............ccccooviiiiiiiniiiicns 105
Figure 5.13: Implementation of IEEE 802.11 MAC protocol. ..........c.ccccociviiiiiiiiiiiciiiiiinins 107
Figure 5.14: Simulation throughput on wireless packet trace. ..............cccoceviiiiiiiiiincnicne, 108
Figure 5.15: Proactive rate adaptation of AFRM-A1 on wireless packet traces. ....................... 109
Figure 5.16: Simulation throughput on uniform loss model..............c.cccocoiiiiinn, 111
Figure 5.17: Simulation throughput on bursty loss model..............c.cccooiiiiiniinniiincnees 112

viii



Figure 5.18: Simulation throughput on synthetic loss model. ............ccccoceoiiiiniiiiniinininninn. 113
Figure 5.19: Effect of NACK suppression on synthetic loss model. ............ccccociiiniiinne. 114



Chapter 1

Introduction

1.1 Motivation

Multicasting is an efficient method to disseminate information to multiple recipients.
In this approach, the sender distributes a packet simultaneously to multiple receivers.
Compared to multiple unicasting, in which the sender transmits a separate copy of the
packet to each receiver, multicasting typically requires less bandwidth and exhibits lower
latency. Due to these advantages, many applications use multicasting for mass
information distribution. Examples include multimedia conferencing, video and audio
distribution and so forth. In the global Internet, the MBone has been deployed to support
large scale multicast multimedia applications {36]. The increasing use of multicast has
inspired many research groups to explore efficient approaches to multicast under various
conditions and in different types of networks.

Many multicast applications require reliable data distribution. If any data packet is lost
or corrupted during the transmission, it should be recovered by either retransmission or
other approaches. Example applications include file distribution, distributed simulation
and collaborative computing. A major challenge is to find an effective and efficient way

to perform error recovery. To reduce congestion-related packet losses, flow control is



also a concemn. A large amount of research has addressed this problem in wired networks
[3,9,11, 17,19, 21, 23, 30, 32, 38, 42, 49, 53, 60, 61, 66, 67, 69, 74].

In recent years, wireless communication technology has been advancing so rapidly
that it has altered our view of computer networks. Combined with advances in portable
computing devices, a computer network is no longer a static entity. Network installation
has become simpler and faster, since cabling is often not necessary. The network
topology may be ad hoc and rapidly changing. Moreover, the network itself may exist
only on an as-needed basis. Let us consider an example from a single domain: education.
Students may bring their laptop computers to a classroom, or any other meeting location,
and form a temporary network instantly. The instructor can introduce her/his laptop to
this network and distribute electronic course material. After the session, the participants
depart and the network disappears. This flexibility greatly improves the impact of
distributed applications. Reliable multicasting is an important component of many such
applications, including wireless instruction, collaborative conferencing, and field
demonstrations.

However, wireless channels exhibit very different characteristics than their wired
counterparts: They usually have limited bandwidth and relatively high and dynamic
packet loss rates. These characteristics impose new challenges to communication
protocols, and reliable multicast is no exception. A reliable multicast protocol must take
into account the loss characteristics of the wireless network. Moreover, since the
conditions are dynamic, the protocol should also be adaptive. In this work, we explore
efficient algorithms for reliable multicast in one of the most important types of wireless

networks: wireless local area networks (WLANSs).



1.2 Challenges

In this section, we briefly discuss the technical issues that must be addressed to
support reliable multicast in WLANs. A more detailed discussion is included in Chapter
2.

In reliable multicast, data packets are to be delivered without error to all receivers. If a
packet is lost or corrupted, and cannot be recovered locally at the receiver, then the
sender or another node must retransmit the packet. Therefore, the first challenge is error
detection. The sender must determine whether or not all receivers have successfully
received a packet. Hence, receivers must send feedback to the sender in the form of either
positive acknowledgements (ACKs) or negative acknowledgements (NACKs). The
overhead of feedback processing could slow down the sender, especially in multicast
group with large number of receivers. This is called the ACK (or NACK) implosion
problem [15]. Moreover, if uplink and downlink traffic share the same transmission
medium, which is true in most local area networks, then this feedback will reduce the
available bandwidth for data traffic. To increase scalability, the number of feedback
packets should be kept as small as possible.

The second challenge is error recovery. After a packet loss is detected, the sender or
another node retransmits the packet. A simple retransmission method is to maintain a list
of the receivers experiencing the loss and send the lost packet to each of them. However,
in the case where many receivers require retransmission, the resulting overhead (at the
sender and on the channel) could be overwhelming. Since this retransmission traffic is

pure overhead with respect to performance, it should be minimized.



In WLANS, the limited bandwidth, high packet loss rates, and shared transmission
medium exacerbate the error detection and error recovery problems. First, the bandwidth
of a WLAN is typically an order of magnitude lower than that of its wired counterpart.
Combined with the fact that the transmission medium is shared, the feedback and
retransmission traffic must be kept even lower to guarantee acceptable data bandwidth.
Using NACK-based approaches is one way reduce feedback traffic [66]. However, in
WLAN:S, data packets are propagated in open air, therefore they are vulnerable to various
kind of interference, such as radio signals and other noise. The interference cause bit
errors in the packet. On the other hand, if a receiver is located far away from the sender,
then the received data signals might be too weak and data bits become indiscernible. Both
of these factors will produce a CRC error. The link-level network protocol will drop all
such packets. As a result, the packet loss rate is high, bursty and location dependent. The
high loss rates lead to increased feedback and retransmission traffic.

A number of feedback suppression approaches have been proposed to reduce the
feedback traffic. For example, in a local NACK suppression scheme, a receiver waits for
a random time before sending its NACK, expecting that NACKs from other receivers
have already triggered a retransmission. In the case the retransmitted packet arrives
before the timeout, the pending NACK is canceled. A global NACK suppression scheme
[9] can further improve this effect by having receivers send NACKs by way of multicast
transmission. A receiver that overhears a NACK that subsumes its own pending NACK
can cancel or delay its NACK. These NACK suppression techniques could be adapted to
deal with the increased demand for lower feedback and the simultaneously increased

possibility of higher feedback in WLANSs.



Besides reducing feedback, it is also possible to reduce the overhead of
retransmissions. If multiple receivers request the same packet, the sender may choose to
multicast a retransmission, instead of unicasting it. In addition, the sender could take
advantage of a forward error correction (FEC) encoding algorithm [2, 29, 39, 43, 44, 48,
50, 51, 55, 56, 57, 58, 59, 70]. Specifically, such code can be used to generate parity
packets for a given set of data packets. Sending parity packets instead of the original data
packets, in response to NACKs, carries the advantage that parity packets can recover
different losses at multiple receivers. Using FEC in this manner is called reactive FEC.
Of course, an FEC protocol can also be used for feedback suppression. In this case, the
sender proactively sends some FEC parity packets along with data packets. If the
proactive parity packets are sufficient to recover lost data packets, then a receiver does
not need to send a NACK. This approach is called proactive FEC.

In summary, an efficient reliable multicast protocol on a WLAN must address
“traditional” issues, such as feedback suppression and retransmission management. In
addition, the protocol should take into account the characteristics of wireless channels,
such as low bandwidth, highly variable and bursty losses, and a shared feedback channel.
Moreover, the algorithm has to be adaptive so that it can perform well under dynamic

conditions.

1.3 Contributions and Structure of Thesis

In this study we focus on the design, implementation and performance evaluation of

an adaptive reliable multicast protocol. We use a reactive FEC algorithm to reduce the



number of repair packets sent in response to NACKs. We also apply a proactive FEC
algorithm in order to suppress feedback traffic. However, sending too many proactive
packets wastes channel bandwidth and reduces throughput. This tradeoff is addressed and
explored. To further improve performance, both global and local NACK suppression
algorithms are investigated and applied.

Thesis Statement: Using a combination of proactive and reactive FEC algorithms, in
conjunction with local and global NACK suppression, it is possible to develop an efficient
and scalable reliable multicast protocol that works well over wireless local area
networks.

The major contributions of this work can be summarized as follows:

1. Analysis of reliable multicast problems over WLANs. In WLANSs, channel
bandwidth is limited and shared, and packet loss is relatively high and bursty.
Conventional techniques for error recovery and flow control do not work well in this
environment. We have collected a large number of packet traces from our wireless
testbed. From these traces, we induce packet loss properties of wireless channels and the
impact of the properties is studied. Several approaches for performance improvement are
proposed and compared.

2. Adaptive FEC-based Reliable Multicast (AFRM) protocol design and
performance evaluation. AFRM is a reliable multicast protocol that combines proactive
and reactive FEC to reduce NACK feedback and repair traffic. The proactive rate is
dynamically determined based on the estimation of channel conditions. In the case of low
packet loss, the protocol sends few or no proactive FEC parity packets in order to save

channel bandwidth. When perceived packet loss turns higher, the sender increases the



proactive rate. The feedback traffic is reduced as a result, and the overall performance
drops only slightly. Efforts are made to improve the accuracy and responsiveness of the
adaptation. Global and local NACK suppression are applied when appropriate. A rate-
based flow control mechanism is included to deal with congestion. We implemented the
protocol at the application layer atop UDP/IP sockets and IP multicast. Experimental and
simulation studies demonstrate that the protocol exhibits good performance over
WLANS.

3. Development of a general-purpose network simulation framework. We
designed and implemented a network simulation framework. In this framework, network
applications built on the socket interface can be ported easily between real and simulated
network environments. The application code requires little or no modification. The
simulation framework offers simplified low-level network protocol components,
including UDP, IP and IEEE 802.11 MAC protocols. Different packet loss patterns can
be plugged in at receivers to simulate the wireless network loss. Besides reliable
multicasting, this framework can be used for performance evaluation of many protocols

in heterogeneous environments.

The remainder of this thesis is organized as follows. In Chapter 2, we present
background information related to this study, including reliable multicast, FEC, and
WLAN technologies. In Chapter 3, we describe the WLAN reliable multicast problem in
detail and evaluate several component methods that might be used in such a protocol,
using packet traces and analysis. In Chapter 4, we give a detailed description of AFRM

protocol. The discussion includes the parameters and how they are determined, as well as



several implementation issues. In Chapter 5, we describe the experimental environment
and simulation framework on which we conducted the performance studies. In Chapter 6,
we present related work on reliable multicast, FEC, and WLAN studies. Finally, in
Chapter 7 we summarize our work, discussing possible shortcomings and possible

directions for future work.



Chapter 2

Background

Three major research areas are directly related to this study: wireless networks,
reliable multicasting and forward error correction. In this chapter we present background

information on each of those areas.

2.1 Wireless Networks

Wireless communication is perhaps the fastest growing area of communication
technology in recent years. The combination of “anytime, anywhere” connectivity and
the rapidly dropping prices are behind this popularity. In short, wireless communication
is fundamentally changing our view of both telecommunications and computer
networking.

The fundamental difference between wired and wireless communication is the way in
which signals are propagated. In wired communication, signals are propagated through
cables, while in wireless communication they are propagated in open air. As a result,
signal losses and distortions are more significant and almost unpredictable in wireless
environments, since signals in open air are vulnerable to interference from many sources.

Overcoming dynamic, high error rates is a major concern of wireless applications.



Wireless networking is an integration of wireless communication and computer
networking. Many wireless networks, especially WLANSs, have been installed to provide
communication connectivity for wireless computers. Since low-level network protocols
usually hide the physical difference between wired and wireless channels, higher-level
network protocols and applications usually can execute without modification atop a
wireless network. However, due to the different physical channel characteristics, loss-
sensitive applications often need to adapt their behavior in response to channel condition

changes in order to maintain acceptable performance.

2.1.1 Wireless Loss Characteristics

Packet loss in wireless networks is variable and bursty. Although the loss rate may be
high under poor conditions, the loss rate may also be extremely low under good
conditions. Henceforth we define a loss as a packet that is not successfully received by a
station for any reason. We use the term burst to denote a group of consecutive packets
that are either all received or all lost. In the all-received case, the group is called a loss-
free burst or error-free burst. In the all-lost case, it is called a loss burst or error burst.
Figure 2.1 is reproduced from [33]. It depicts packet traces in a GSM network. In the

figure, the loss and loss-free burst lengths vary from one to one hundred packets.

10



1w - e —————— Ag
e Error Burst a o o

o Error-Free Burst
o

Burst Length (Multiple of Blocks)
8

Burst Translition

Figure 2.1: Wireless traces in GSM network [33].

The distance between a receiving station and the data source significantly affects the
packet loss rate at the station. A wireless propagation error is defined as a loss that is
caused by signal fading or shadowing during propagation in the air. Since the signal
power continues to drop as the packet propagates in air, receivers that are farther away
from the data source are more likely to experience propagation errors. The low level
protocol will interpret any packet that contains indiscernible bits as a loss. Figure 2.2,
reproduced from [46], illustrates the correlation between packet loss rate and distance.

The data was collected in an IEEE 802.11 LAN with 2Mbps bandwidth.

11



Distance (feel)

ty

000 T
‘ S0 100 1;0

lfgcket %mr Pr%)abil
o -t
= 8

<

o

by
1

0.000

Figure 2.2: Wireless losses vs distance [46].

2.1.2 CSMA/CA

Unlike cellular networks with allocated channels (frequencies), stations in a WLAN
share frequency and bandwidth. MAC protocols are needed in such environments to
manage contention and collisions. While CSMA/CD [31] is widely used in wired LANs,
many wireless MAC protocols are based on the CSMA/CA protocol [31]. The main
difference between CSMA/CA and CSMA/CD is the way in which collisions are
handled. In CSMA/CD, a station is required to detect immediately whether or not a
transmitted frame has collided with another frame. If a collision occurs, the station can
promptly schedule a retransmission. The CSMA/CD scheme is not feasible for WLANS,
however, since a wireless station is unable to transmit and receive simultaneously on a

single radio transceiver. Therefore it is hard for the station to detect if a frame is

12



successfully transmitted. Instead, a wireless transmitter depends on acknowledgements
(ACKSs) from other station(s) to determine if a retransmission is needed

The basic CSMA/CA protocol works as follows:

1. When a station is ready to transmit a data frame, it senses the channel.

2. If the channel is idle, the station transmits the frame immediately.

3. Otherwise, it invokes the backoff algorithm. In this algorithm, the station chooses a
random number uniformly distributed between O and the contention window size. It uses
this value as the number of slots it has to wait before next try.

3.1 The station listens on the channel while it is waiting. The slot is counted in
only when there is no transmission detected in the slot.
3.2 When the number reaches zero, the station transmits the frame.

4. When a station receives a data frame, it returns an ACK frame to the transmitter
after a short and fixed time interval. If the transmitter receives the ACK, the transmission
is successfully completed.

5. Otherwise, the transmitter assumes the data frame has been lost and schedules a

retransmission.

This basic protocol suffers from the hidden terminal problem. As shown in Figure 2.3,
station A and station C cannot hear from each other since A is not within C’s
transmission range and vice versa. When A is transmitting a frame to station B, C cannot
detect the signal. Therefore, C could also send a frame to B since it believes the channel
is idle. As a consequence, a collision occurs. To solve this problem, an RTS/CTS

extension [6, 28] is proposed. In this scheme, a station transmits a short RTS (Request-

13



To-Send) frame to receiver station before sending a data frame. If the receiver is ready to
receive, it returns a CTS (Clear-To-Send) frame. After receiving the CTS, the transmitter
starts sending the data frame. Other stations overhearing any of these RTS/CTS frames
will wait until the transmission is completed. As a result, the collision rate drops
significantly. Although RTS and CTS frame could also collide with others, the chance is
much lower since the sizes of these frames are usually far smaller than those of data

frames.

Figure 2.3: Hidden terminal problem.

When a data frame is small, however, the collision probability is unlikely to be higher
than that of a RTS frame. In this case, the RTS/CTS control frames become pure
overhead. To improve performance, the protocol sets a threshold value. Only those data
frames whose size is above the threshold value will be preceded by an RTS/CTS
exchanges.

Both the RTS/CTS and ACK/retransmission mechanisms apply only to wunicast
transmissions. In the case of multicast, since there are multiple recipient stations, both
approaches become complicated. As a result, multicast packets will experience higher

loss in WLANSs than unicast packets. Although a number of MAC level protocols have

14



been proposed to address this problem [37, 63, 64, 65], commercial systems do not yet

support them, and all appear to have shortcomings.

2.1.3 The IEEE 802.11 Standard

Presently, there exist two main WLAN standards: IEEE 802.11 [25] and
HiperLAN/HiperLAN2 [34, 68]. We discuss only IEEE 802.11, since the wireless
devices in the experimental environment used in this study are 802.11 compatible. The
IEEE 802.11 standard defines protocols that are necessary to support wireless networking
in a local area. Like other IEEE 802 standards, such as 802.3 and 802.5, the primary
service of 802.11 is to deliver MSDUs (MAC Service Data Units) between peer LLCs
(Logical Link Control). The functions of the 802.11 standard are implemented in network
interface cards, their software drivers and wireless access points.

The 802.11 standard provides MAC and physical layer functions for wireless
connectivity of fixed and mobile stations. It supports asynchronous and time-bounded
delivery services, multicast services, network management services, registration and
authentication services, etc. The protocol takes into account the significant differences
between wireless and wired LANs in power management, bandwidth, security and
addressing. The standard is extensive in its coverage. Only those parts that are directly
relevant to this study are discussed here. Please refer to [25] for additional details of the
IEEE 802.11 standard.

The 802.11 target environments include indoor buildings and outdoor areas. The
standard supports two network topologies: ad hoc (IBSS) and infrastructure (ESS). In ad
hoc mode, stations communicate with each other without setting an infrastructure. It is

possible that some stations are outside the radio coverage area of a particular station. In

15



this case a transmitting station needs to dynamically find an intermediate station to relay
a packet to the stations that are not directly reachable. In infrastructure mode, an access
point is located between wireless stations and the wired network (also referred to as the
Distributed System (DS)). Any communication between two wireless stations or between
one wireless station and another station in DS is relayed at the access point. Compared
with ad hoc mode, the infrastructure mode is a centralized scheme, with the access point
running as a bridge between networks. Clearly, the access point is a potential bottleneck
in this system. When multiple wireless stations transmit packets simultaneously to
stations in the DS, all the packets are delivered to the access point as the first step and
forwarded to the DS thereafter. The resource contention at the access point will likely
slow down the transmission. Worse yet, in the case of multicast, the access point
transmits all packets back to wireless stations while it is forwarding them to DS, even if
there is no multicast group member in the wireless network. The presence of this
inefficient multicast scheme in the standard is probably due to the fact that the access
point does not maintain any multicast group membership information. Despite these
disadvantages, we used infrastructure mode in both the experiments and the simulations
in this study, since it provides connectivity between wireless stations and wired LAN
stations. Furthermore, it is generally more robust than ad hoc mode, in which the
movement or crash of a particular wireless station might disconnect other stations and
partition the network.

The 802.11 Distributed Coordination Function (DCF) MAC protocol is a CSMA/CA
protocol with minor modifications. In this protocol, a node wishing to transmit should

always guarantee the channel has been idle for a time equal to DCF Inter-Frame Space

16



(DIFS) since the last transmission, or a time equal to Extended Inter-Frame Space (EIFS)
since the last collision, whichever occurs last. The RTS/CTS exchanges are optional. The
time interval between RTS and CTS, CTS and data packet, and between data packet and
ACK, is equal to Short Inter-Frame Space (SIFS). The interaction is depicted in Figure
2.4. The protocol uses a binary exponential backoff algorithm for retransmissions. A
retransmitting node first doubles the size of the contention window unless it has already
reached a maximum value. It then invokes the backoff algorithm before retransmission. It

aborts the transmission and discards the packet after several unsuccessful tries.

DIFS
Souroo| RTS Data
P ) L—D
) SIFS SIFS SIFE
Destination cTS ACK
N . ’ . ]
DIFS | - ¢ s d
Other NAV (RTS) A (__:ontanllon Window
NAY (CTS)
e —
Defer Access Bacioff After Defer

Figure 2.4: RTS/CTS exchange in IEEE 802.11 WLAN [25].

The original 802.11 standard supports two transmission rates: 1Mbps and 2Mbps.
More recently, two extensions have been developed that support higher rates, up to
11Mbps in 802.11b and 54Mbps in 802.11a. The protocols differ in physical layer

properties, such as signal modulation and operational frequency band. However they

17



have the same MAC layer protocols and functions. Our experimental devices are 802.11b
compatible with 11Mbps maximum transmission rate. We also set our simulation

framework to be 802.11b compatible.

2.2 Reliable Multicast

Some multicast applications tolerate a certain degree of data loss. For example, in
video distribution, occasional loss or distortion of a video frame imposes little
disturbance to human eyes. Hence, it may be unnecessary (even counterproductive) for
receivers to attempt to recover the loss. However, in many other applications, any data
loss or distortion is absolutely unacceptable. Considering distribution of executable files,
the program might be unable to correctly execute, even if a single bit is reversed. An
error recovery mechanism is needed in this case. Since applications have different
requirements for when and how to do error recovery, reliability is usually provided in
high-level protocols. Many protocols are built atop UDP/IP Multicast, which provides

unreliable, or best effort, service.

2.2.1 Error Recovery

To guarantee reliability, two mechanisms are needed: error recovery and flow control.
Error recovery deals with loss detection and repair packet transmission. Two basic
schemes are used for loss detection: sender initiated or receiver initiated [66]. In the
former case, the sender pauses after a data packet is transmitted, waiting for all receivers

to send back positive acknowledgements (ACKs). This is also called an ACK-based

18



protocol. If the number of received ACK packets is less than the number of receivers, the
sender concludes that the packet has been lost at some receivers and schedules a
retransmission.

There are several problems in this approach. First, it is difficult for the sender to
determine how long to wait before retransmitting data. Usually the timeout value is based
on the round trip time (RTT) between the sender and the slowest receiver. If the RTT is
dynamic, however, the timeout value could become too large or too small. If the sender
waits too long, transmission is delayed. If the sender times out prematurely, then it may
send a repair packet unnecessarily. Second, the sender needs to know the exact number of
receivers and needs to maintain status information for each of them. It must handle every
join and leave message to track explicit group membership information. In a large
multicast group, this overhead could be overwhelming. Third, since every receiver
returns one ACK packet for each data packet, the sender may spend a large amount of
time processing these ACK packets. This situation is called the ACK implosion problem
[15]). Furthermore, if the reverse traffic shares the communication channel with data
traffic, the available data bandwidth will drop rapidly. In summary, an ACK-based
protocol simply does not scale well.

In a receiver-initiated scheme, the sender has no responsibility for loss detection. Its
only duty is to assign a unique sequence number to each data packet. Each receiver
maintains the sequence number of the last packet received in correct order. When a new
packet arrives, the receiver checks the sequence number and compares it with the last
one. If there is a gap between these two numbers, the receiver assumes that the

intermediate packets have been lost and sends a negative acknowledgement (NACK) to

19



the sender. Upon receiving a NACK packet, the sender retransmits the requested packets.
This NACK-based approach has many advantages over an ACK-based scheme. First,
only receivers that have lost packets send NACKs. In many network environments,
especially in wired networks, the packet loss rate is fairly low. Therefore, the sender will
not need to devote many resources to feedback processing, and more channel bandwidth
is available for forward data transmission. Second, the sender need not maintain status
information for receivers, but rather adopts a passive ‘“come-and-serve” policy. If a
NACK arrives, the requested packets are retransmitted. In the absence of NACKSs, the
sender assumes that all receivers have successfully received the packet, and no further
processing is needed. In short, group membership information is not necessary for the
sake of retransmission. Third, there is no need for per-data timeouts, since the sender is
told exactly when to retransmit packets.

On the other hand, NACK based protocols have undesirable properties that must be
addressed. First, if the last packet in a chain of packets is lost, then the receiver will be
delayed in detecting the loss until the next packet arrives sometime in the future. To solve
this problem, most NACK-based protocols send periodic “keepalive” or “heartbeat”
packets when the sender is in idle [23, 69]. These packets include the sequence number of
last data packet having been sent. Receivers detect packet loss by comparing the
sequence number in the heartbeat packet with that of the last received data packet.
However, if a receiver experiences such poor channel conditions that all packets are lost
for a period of time, then neither the receiver nor the sender will be aware of the losses
until conditions improve. Second, in this approach, a receiver might request the

retransmission of data packets that were sent long before. Indeed, a purely NACK based

20



protocol requires an infinitely large send buffer to overcome this problem [54]. To solve
this problem, many NACK-based protocols adopt a hybrid algorithm in which receivers
send periodic ACKs. This approach is a tradeoff between communication efficiency and
providing full reliability with finite buffers. Overall, the NACK-based approach is more
scalable than the ACK-based approach, and it is adopted in most reliable multicast
protocols [17, 23, 32, 69].

After a loss is detected, the sender (or possibly another station [17, 23]) should
schedule a retransmission as soon as possible. The repair packets could be sent out either
by unicast or multicast. Whether to use unicast or multicast is a tradeoff. The advantage
of multicast is that in case other receivers have lost the same packets, one copy of the
repair packets is enough to recover from losses at all those receivers. In this manner, the
retransmission overhead is reduced. The disadvantage is that, the multicast overhead can
be higher than that of unicast. In a local area network with a shared medium, a unicast
transmission is in fact a broadcast in terms of channel bandwidth. In this case, unicast and
multicast require the same channel capacity, although multicast requires more collective
receiver processing because it is delivered to all the receivers (which may be only a
subset of the nodes within range of the source). This is called the exposure problem [52].
In the case losses are highly correlated among receivers, it is likely that the gain in
bandwidth reduction outweighs the overhead of exposure. Therefore, a multicast strategy
should be adopted. In other cases a unicast retransmission approach is probably more
efficient.

An enhancement to handle the exposure problem is to divide the receivers into

multiple multicast groups. Each group has a unique multicast address. When a repair

21



packet is ready to be sent, the sender chooses a set of multicast groups as the destination,
so that the gain in retransmission reduction is greater than the exposure overhead in each
of these groups. Since the groups in which no, or very few, receivers require
retransmission are excluded from the list, the exposure problem is reduced. This scheme
is similar to subcast (subtree multicast [53]), in which packets can be delivered to a
subset of receivers in a multicast group. It is more efficient than pure unicast or ordinary
multicast. To optimize the algorithm, the receivers are grouped according to their loss
tendencies. In the Internet, losses are location dependent. Therefore grouping receivers
based on their physical locations or logical network sections is a reasonable approach.
Another enhancement called local recovery [17] aims to reduce the feedback-
processing load at the sender by allowing stations other than the sender to send repair
packets [17, 23]. In a hierarchical network, it is possible to choose a retransmission
station that is closer to the requesting receiver than the sender. In this case, the loss
recovery time can also be reduced. There are two classes of local recovery approaches:
structured and unstructured. In a structured scheme, receivers are organized into a
hierarchy so that each group of several receivers has a dedicated node that is responsible
for recovering losses at those receivers. This method can be applied to both ACK-based
and NACK-based protocols. The unstructured approach is only applicable to NACK-
based protocols. In this case, receivers multicast NACK packets; any node overhearing
the request and capable of supplying the missing data can send repair packets.
NACK-based local recovery is often coupled with NACK suppression [74]. Since a
receiver can overhear NACK packets from other receivers, it has the choice of not

sending its own NACK packet that request is subsumed by a NACK from another

22



receiver. In this case, the receiver sets a timer and waits the repair packets. If the repaired
packets arrive before the timer expires, the lost data is recovered and one NACK
transmission is saved. Otherwise the receiver goes ahead and sends the pending NACK.
In this approach, both the NACKs and repair packets are transmitted by way of multicast.
As mentioned above, while multicast is more efficient, it usually incurs additional
overhead compared to unicast. This tradeoff should be addressed in either NACK-based
local recovery or NACK suppression. In some cases, the subcast approach can be applied
to solve this problem.

In summary, the main challenges related to error recovery are feedback implosion and
feedback/retransmission exposure. Solutions include NACK suppression, subcast and
local recovery. The latter two approaches often require receivers to be organized in
hierarchy. In an inter-network, it is natural to group the receivers based on their physical
proximity to one another. In a local area network with a shared medium, however, a
receiver hierarchy makes little sense. Therefore, NACK suppression is the primary

solution in this case.

2.2.2 Flow Control

The second major issue in reliable multicasting is flow control. A sender that transmits
too fast might overrun the packet buffer at a receiver or at some intermediate node.
Packets that arrive after buffer is full will be dropped and will need to be retransmitted.
Flow control regulates the data transmission rate at the sender and avoids data loss caused

by buffer overflow.

23



Flow control approaches in reliable multicast are based on their unicast cousins. As in
unicast, multicast flow control methods are classified as window-based or rate-based. In
window-based flow control, the sender maintains a send window, and only those packets
that fall within the window are permitted to be sent. The sender advances the window
when all packets in the window are successfully transmitted. To control transmission rate,
the sender adjusts the size of the send window based on congestion conditions. The
sender assumes that there is no congestion unless a NACK arrives or an ACK is missing.
If feedback indicates packet loss, the sender assumes that a packet buffer at receiver or
intermediate node is full and decreases the send window size in order to slow the
transmission rate and prevent further loss. In rate-based flow control, the sender uses a
timer to control the transmission rate. When the timer fires, the next packet is transmitted.
The sender periodically adjusts the timer value based on feedback information. If packet
loss is reported, the timer value is incremented to slow down transmission. Otherwise the
sender decreases the timer value to accelerate transmission.

It is natural to use window-based flow control with an ACK-based reliable multicast
protocol, since the sender regularly receives feedback. On the contrary, rate-based flow
control is more appropriate for a NACK-based protocol. One advantage of rate-based
flow control is that the traffic is smoother than that under window-based flow control.
Specifically, the inter-packet delay in rate-based approach is usually evenly distributed,
while in a window-based approach the delay can be close to zero between packets in the
same window and large between packets in different windows. However, a rate-based
scheme with a NACK-based protocol may suffer from the infrequency of feedback. In

particular, it might take a long time for a receiver to detect packet loss when a large

24



number of consecutive packets are lost due to congestion. Feedback from the receiver is
delayed, leading to even more lost packets. Both window-based and rate-based flow
control can integrate algorithms such as random early detection (RED) [26] to slow down
transmission before severe congestion occurs. The router adopting the RED algorithm
drops packets when the buffer consumption exceeds a threshold value, rendering a
feedback of packet loss before the buffer is full. Moreover, receivers can send explicit
rate requests to the sender to adjust the transmission rate in a more accurate way, as in the
RAMP [32] and RMC [69] protocols.

Most flow control approaches use data loss as the primary, or sole, indication of
congestion. This assumption is valid in a traditional wired network, where packets are
rarely lost during propagation. The situation is very different, however, in a wireless
network. Packets frequently are lost or corrupted due to signal fading and shadowing. In
this case, slowing down transmission is counterproductive since the packet loss is not
caused by congestion. Many strategies have been proposed to differentiate transmission

losses from congestion losses. We discuss several approaches in Chapter 6.

2.3 Forward Error Correction

Forward Error Correction (FEC) is an approach to communication error recovery that
uses redundant information in the data stream to enable receivers to correct losses
without contacting the sender. Two classes of FEC algorithms are bit-level and packet
level. In a bit-level method [18], redundant bits are appended to a frame. When some data

bits are corrupted during propagation, receivers detect and repair the corruption using the

25



redundant bits. In a packet-level approach [24], parity packets are generated and sent
together with data packets. When some data packets are lost or corrupted during
transmission, the parity packets can replace the same number of any lost data packets. In
both cases, if the redundant information is sufficient, the lost or corrupted information
can be regenerated locally at the receiver without retransmission. Use of FEC can greatly
improve performance for loss-sensitive applications when the feedback channel is

unavailable or expensive to use.

sownrce datc

£ 1T TTTTTTT]

/ Frncoder \

e [T T TTITITTTITITTITT T

[ | 1 encodpd dalta J l il

(

received da ta

£ [T TTTETE T E2T B3

\ Decoder /

S B I

reconstructed data

Figure 2.5: Operation of FEC algorithms [56].

FEC algorithms generally work as shown in Figure 2.5. The transmitter applies an
encoding algorithm to a set of data bits or packets, transforming them into a larger set of
bits or packets. The larger set includes all information in the original set. The
transformation guarantees that any subset of the larger set with the same number of
elements in the original set is sufficient to regenerate all the original data. After receiving

any of such subset, a receiver applies a decoding algorithm to it in order to produce the

26



original data. Both encoding and decoding algorithms are usually computationally
intensive.

FEC has been used for many years in wireless communication, where the error rate is
relatively high. Most of this usage is at the bit level, and is supported by hardware. The
encoding and decoding algorithms are implemented in special circuits to provide fast
processing. On the other hand, packet-level usage is usually integrated in computer
network protocols. Since there is unlikely any special hardware support for such
applications, its usage is limited by the speed of software encoding at the transmitter and
the software decoding at receiver.

Rizzo [56] proposed a software solution for FEC encoding and decoding at packet
level. The approach is based on the fact that, in terms of errors, many data
communication protocols need to deal only with erasures, that is, missing packets in a
stream caused by MAC-level CRC errors. Since erasure recovery is much simpler than
arbitrary bit error recovery, it is possible to implement such an algorithm in software with
reasonable processing speed. In the proposed erasure code, k data sources items are
interpreted as coefficients of a polynomial with degree k-1. Obviously such polynomial is
completely specified given the values of k different points. If we construct a set with n
different points of the polynomial, any subset of k such points are sufficient to reconstruct
the polynomial. If we replace “point” by “bit” or a *“set of bits”, then the algorithm is
applicable to FEC encoding and decoding. Experiments in [56] show this scheme exhibits
reasonable performance on typical computer hardware. As with many other studies of

FEC for wireless communication, we use Rizzo’s erasure code in this study.

27



At the packet level, a single FEC parity packet can recover any lost packet in the k-
packet group. Similarly it can recover any single packet loss at other receivers. This
property is ideal for multicast environments where the loss correlation among different
receivers is often low. WLANSs are one such environment. For example, suppose that
three receivers are sent 10 packets and that receiverl misses packets 1 and 2, receiver2
misses packets 3, and 4, and receiver3 misses packet S. In an ordinary ARQ approach, the
transmitter would need to retransmit five packets: 1, 2, 3, 4, and 5. However, using an
FEC protocol, only two parity packets are required to recover all the losses. Furthermore,
the reduction in the number of packets transmitted produces no other communication
overhead. It requires only some additional computation for encoding and decoding. Since
Rizzo showed that this computation is affordable on ordinary processors, FEC is widely
used in multicast communication protocols.

Parity packets can be sent proactively with data packets, or reactively upon reception
of a retransmission request. Both methods possess the aforementioned retransmission-
reduction property. In the proactive scheme, no retransmission is needed if the number of
proactive parity packets is large enough to recover losses. This property is desirable for
communication environment with expensive feedback channel, such as satellite network.
However, sending too many unneeded parity packets with the data will waste channel
bandwidth and eventually degrade performance. On the other hand, the (proactive or
reactive) parity packets themselves can be lost. Therefore, a transmitter usually needs to
send more parity packets than are actually needed. It is an open research problem to

determine the proper balance between proactive and reactive methods. We address this

28



problem, along with several other issues on reliable multicasting in WLANSs, in this

study.

29



Chapter 3
Issues in Reliable Multicast over

Wireless LANSs

The goal of this research is to find efficient reliable multicast algorithms for WLANSs.
To do so, it is first necessary to understand the characteristics and behavior of wireless
channels. Thus we began by collecting a large number of packet traces from our
experimental environment. Based on these traces, we characterize properties of typical
wireless loss patterns and point out factors that affect protocol performance. Next, we
studied several component algorithms used in existing reliable multicast protocols by
evaluating their behavior and performance in WLAN environments. Based on this
experimentation and analysis, we developed a new protocol (see Chapter 4).

In this study, we assume that the primary performance metric is throughput. We
further assume there is little other traffic in the WLAN, which is common in many
application environments. Therefore, the task is to find an algorithm that maximizes
throughput for a given network bandwidth, number of receivers, wireless propagation
loss rate and access point buffer size. To enhance scalability, we consider only NACK-
based approaches and, because the protocol is intended for local area networks, we

assume there is no receiver hierarchy. Finally, we focus mostly on the scenarios where

30



the sender is located in the wired network, while the receivers are in the wireless
network. We believe that this is a typical working environment for reliable multicast
protocols in heterogeneous networks. In this study, all the concems, analyses and

protocol optimizations are based on these assumptions.

3.1 WLAN Channel Characteristics

3.1.1 Experimental Environment

The experimental environment, depicted in Figure 3.1, consists of a wired LAN and a
wireless LAN. The wired LAN is a 100Mbps Fast Ethernet that connects several high-
end workstations. It is extended by a Cisco Aironet WLAN through a Cisco Aironet 340
Series Base Station [12]. The wireless stations include desktop computers and Dell laptop
computers, each configured with a Cisco Aironet 340 or 350 Series Wireless Card. The
Aironet network is IEEE 802.11b compatible with CSMA/CA access control, operating
at 2.4GHz. It is a DSSS (Direct Sequence Spread Spectrum) system that supports raw bit
rates of 1Mbps, 2Mbps, 5.5Mbps and 11Mbps. The coverage area is larger for lower bit
rates and smaller for higher bit rates. For example, the typical range is 300 feet indoors
and 1500 feet outdoors at IMbps. At 11Mbps, these distances are 100 feet and 400 feet,
respectively. We focus on the highest 11Mbps rate in the experiments since our primary
performance metric is throughput.

The high-end workstations are mainly Dell desktop computers with a 1IGHz Pentium
III CPU and 512MB memory. The laptop computers have either IGHz Pentium III CPU,

or 300MHz CPU, both with 256MB memory. Both the desktop and laptop computers are

31



configured with either Windows NT or Windows 2000. As mentioned above, in the
experiments we located the sender on a wired workstation, while the receivers were
located on laptop computers or to desktop computers with wireless network interface

cards.

Cisco Aironet 340 Series
Access Point High-End Workstations

Cisco Switch
(Fast Ethernet)

Dell Laptop
Computer

To Campus Network

Figure 3.1: Experimental environment.

3.1.2 Packet Trace Collection

We conducted a series of data transmissions under various scenarios and collected
packet traces. We built two programs using the Windows socket interface. The sender
program transmits data packets at a specified rate to one receiver or to a set of receivers.
Each data packet is assigned a unique sequence number. The receiver program checks the
sequence numbers of the received packets to detect packet loss. It records the sequence
numbers of lost packets, and saves these numbers into packet trace files together with

information on corresponding loss burst lengths. From a saved trace, we can calculate the

32



average error burst length, average error free burst length, standard deviations and burst
length distributions. These values reflect the basic characteristics of packet loss patterns.

It is possible that the detected losses are caused by reasons other than wireless
propagation errors, since the programs are running at the application level, and the
packets are transmitted from a wired sender to wireless receivers via an access point. For
example, congestion can cause buffer overflow and packet loss. Congestion can happen
at the access point when the data rate of the wired network is greater than the bandwidth
of the wireless network. Congestion also happens at receivers if the receiver program is
not running fast enough to process packets and empty kernel buffers before new packets
arrive. We observed very high packet losses when packets are transmitted without flow
control. Such losses are very likely caused by buffer overflow. To reveal wireless channel
loss patterns, these “non-propagation” losses should be excluded from the trace files.

Applying flow control is an effective approach to reduce congestion and packet drops.
Taking into account the theoretical saturation throughput of approximately 7Mbps in an
IEEE 802.11b network, we insert inter-packet delays to limit sending rate at 6Mbps. In
case no other traffic exists on the wireless channel, this action should produce very few if
any drops due to congestion. To test this hypothesis, we collected packet traces at much
lower sending rates, such as 2Mbps. It turns out the traces in this case are very similar to
those with 6Mbps sending rate. We conclude that transmission at 6Mbps is almost
congestion-free in our environment. Therefore we set sending the rate to 6Mbps in the
following experiments since it is close to the optimal throughput of the protocol.

We believe that our receiver programs are able to keep up with such a sending rate. By

calculation, the receiver program may take as long as 1.9 milliseconds to process one

33



received packet with a typical size of 1400 bytes, without delaying the processing of the
next packet. This interval is long enough for a 300MHz plus processor to carry out very
complex per-packet processing. In fact, very few losses were observed in the experiments
when transmitting small files (e.g., 20KB) at 6Mbps, since the error free burst length is
usually much greater than 20KB. We observed substantial losses only when the inserted
delay between processing of consecutive packets exceeded 2 milliseconds. The result is
in accordance with our calculation.

In WLAN:Ss, the RTS/CTS/ACK mechanism is utilized to reduce collisions as well as
to conduct fast link layer retransmissions. Although the mechanism helps improve the
quality of wireless transmissions, it compromises the accuracy of raw propagation loss
estimation. Since this mechanism is not adopted for multicast transmissions, we use
multicasting to transmit data packets in our experiments. Specifically, we use UDP
sockets on top of the IP multicast services. After all these considerations and revisions,
we believe it is possible to obtain reasonably accurate wireless loss estimation, even if the

trace-collecting programs are running at the application level.

3.1.3 Packet Trace Analysis

Queueing Loss. Although we observed a large amount of packet loss in transmissions
without flow control, we could not conclude that the losses were caused by buffer
overflow at the access point, without further experimentation. For example, it is possible
that the higher sending rate caused more propagation errors. To verify that the losses are
congestion-related, we set up two wireless receivers in the following test. One receiver is

close to the access point (within 2 meters) while another is farther way (about 10 meters).

34



The sender is a wired station. The data packets are transmitted first at 6Mbps, then
without flow control. Transmissions are grouped in 20 packets. Upon detecting a packet
loss, the receiver sends a NACK to request a retransmission. The sender responds by
sending enough parity packets to cover the loss, plus additional parity packets to
compensate for any losses in the retransmission (see Chapter 4). The number of needed

and received parity packets for each group is depicted in Figure 3.2.

Far Node with Flow Control Close Node with Flow Control
25 25
[ "
® —>— Receved " —%— Received
8201 2 Needed
s |—— Needed % —+
z ¢
. 15 4 £ 151
a 4
® -
w 10 1 N 10 1
] 3
3 E
S H
2 51 z ;|
TrNOIbOROOO-NDTD TS YbhORDAO-NDED
Number of Groups (20 Packets/Group) Number of Groups (20 Packets/Group)
Far Node without Flow Control Close Node without Flow Control
35 35
—»— Receive —— Received
g 30 2 %01 —+— Needed
£
82 825
£ £
20 20 -
4 &
S 45 ] 5
5 3 5
2
;E; 10 | :E‘ 10
H 3
5 5
0 R i o

- o -
- NMTWHLWONDOOO
-

- -
o <
- - -

N
Number of Groups (20 Packets/Group)

151

Figure 3.2: Experimental evaluation of queueing loss.

35



The plots show that stations farther away from the access point experience higher
packet losses. This is expected since the signal energy degrades with distance. The poor
signal quality at a remote receiver causes more data bits to be indiscernible, and the
corresponding packets are dropped. Moreover, it is shown that the packet losses are
mostly uncorrelated at two receivers when flow control is applied. Since propagation
error is location dependent, this trace (and other similar traces) implies that most of the
losses in this case are propagation losses. On the other hand, these two receivers share a
large number of packet losses when flow control is not applied, even if they are at
different locations. A reasonable explanation is that the shared losses are caused by buffer
overflow at the access point. Since the packets are dropped at the access point and not

propagated in air at all, receiver locations have no effect on such losses.

Bursty Propagation Loss. We also wanted to understand the nature of packet loss
bursts. In the following test, the sender transmits data packets to a wireless receiver close
to the access point. The sending rate is set to 6Mbps. We expect that there should be few
packet losses since signal degradation is not a major concemn in this case. We collected
several 20-minute packet traces. The loss patterns are similar. We plot one typical trace in

Figure 3.3.

36



500 50
450 | 4a i 45
400 5 40
% 350 f & 35
& 00 &y
‘g’ 250 | . ! ‘g 25
@ 200 : @ 20
g 150 l § 15
- 100 < 10 . a
50 - | a 51 . 2
0 0 4 a a _ , a
0 100000 200000 300000 400000 500000 600000 0 1000 2000 3000 4000 5000
Number of Packets Number of Packets
(a) A broad view (b) A detailed view

Figure 3.3: A typical packet trace in WLAN.

As shown in the figure, wireless propagation loss is very bursty. In good states, there
are very few packet losses. In a bad state, however, most packets are lost. In Figure 3.3,
although the average loss rate is fairly low, the receiver experiences severe losses at
certain points in time. The burst could be as long as several hundred packets. However,
most bursts are only several packets long and there are many single-packet losses. On the
other hand, the error free burst, or the packet distance between two consecutive loss
bursts, is usually several hundred packets long. Many error free bursts were even longer
than ten thousand packets. Therefore, applications running over wireless networks may
experience no packet loss at all during a long time period. But it is also possible that they
lose many packets in a loss burst. This dynamic behavior poses a major challenge to

many applications, including reliable multicast protocols.

Loss Correlation. A multicast transmission involves multiple stations. Besides studying
loss distribution at a single station, it is also meaningful to examine the relationship

among losses at multiple stations. In a multicast group, loss patterns vary at different

37



wireless stations because some losses are location-dependent. On the other hand, all
receivers share the data source. Packets are transmitted from a wired station to the
wireless network through an access point. Variations such as transmit power level
changes at the access point may affect the packet loss probability at all the receivers.
Those losses are likely to be correlated. To study the degree of the loss correlation, we set
up ten wireless stations as receivers, including laptops and desktops with installed
wireless cards, in the following test. The nodes are located at various locations in the
range of the access point, from within 2 meters to about 30 meters away. Figure 3.4
shows the receiver locations relative to the SENS Laboratory at Michigan State
University. The receiver configurations and the distances to the access point are
summarized in Table 3.1. We combine packet traces from different systems and depict

them in Figure 3.5. (Only 5 traces are shown for simplicity.)

SENS EAST SENS WEST
AP
6 3 1 8
D 4 O
5
9 7 Corridor 10

Figure 3.4: Receiver locations.

38



nodel | node2 | node3 | node4 | nodeS | node6 | node7 | node8 | node9 | nodel0
Type D L D D L L L D L L
CPU(MHz) 2*400 | 1000 1000 1000 300 1000 1000 2*800 | 1000 1000
Memory(MB) | 256 256 512 512 256 256 256 256 256 256
Distance(m) 2 2 4 5 5 10 10 10 20 30
D: Desktop, L:Laptop
Table 3.1: Test machine configurations.
500 |
450 »e x o ”t a node2
= 400 - < node3
5 3501 X node6
§ 300 - x . |7 o
X node
g 2% X = - node10
& 200 | X
8 150 - X X
3 100 | s'fﬁ_-
50 [}
‘4. . P e Tk, R LR O O -
0 i ¢
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Figure 3.5: Packet traces at multiple stations.

Number of Packets

The traces exhibit different packet loss patterns. Basically, the distance from the

access point determines the average packet loss rate at a receiver. In Figure 3.5, the

receivers that are more than 20 meters away from the access point exhibit poor

performance. On the other hand, there is not much difference among receivers that are

located within 10 meters from the access point. We plot the average loss rate, average

loss burst length and average loss-free burst length in Figure 3.6.

39

P



0.1

0.08
0.06 -
0.04 1

Loss Rate

0.02 1

&
0 L ° —

L 3

—

node1 node2 node3 noded4 node5 node6 node7 node8 node9 node10
Stations

Loss Burst Length

o - N W s»& 0O

node1 node2 node3 node4 node5 node6 node7 node8 node9 node10

Stations

500

400 -
300 1
200 |
100

0 - — ‘ v T
nodel node2 node3 noded node5 node6 node7 node8 node9 node10

Stations

Loss-Free Burst Length

Figure 3.6: Packet trace statistics.

The figures show that loss rate, as well as loss-free burst length, is mainly determined
by the receiver distance from the access point. However, loss burst length is affected only
by factors in the local environment around a station. It is clear that the average loss rate is
basically dependent on loss burst frequency instead of loss burst length.

Next we studied the loss correlation among packet traces. We built a program that
compares packet status (received or lost) packet by packet in two traces. Based on the

results, we calculated the correlation coefficient of each trace pair and plotted them in

40




Figure 3.7. For comparison, the correlation coefficient between traces in different test

runs is also calculated and shown. This coefficient is near zero (as expected) since the

losses are certainly uncorrelated among different tests.

Correlation Coefficient

Loss Correlation in the Same Run

+ || —o—nodel
g 081 o node2
06 —t&— node3
§ Y 1| = node4
9 —»— node5
9 0.4 {/ —o—nodeb
] —+— node7
E 0.2 {| ——node8
3 ——node9
0 T T T T T - + T r
nodel node2 node3 noded nodeS5 node6 node7 node8 node9 nodeld
Stations
Loss Correlation in Different Runs —o— nodet
—0— node?2
0.03 —a— node3
—— node4
0.02 1 —»%— node5
0.01 —o— nodeb
' —— node7
0 1 ——node8
—— node9
-0.01 1 —0—node10
-0.02
-0.03 1
-0.04 .

nodel node2 node3 node4 node5 node6 node7 node8 node9 nodel0

Stations

Figure 3.7: Loss correlation of multiple traces.

As shown in the figure, receivers within 10 meters of the access point exhibit high loss

correlation. On the other hand, receivers farther away from the access point show lower

loss correlation. This is probably due to the fact that signals with higher energy, such as

those within short ranges around the access point, are less vulnerable to random

interferences than those with lower energy at remote receivers. However, the remote

receivers still share a certain amount of loss. In Figure 3.7, the minimum value of the

41



correlation coefficient is approximately 0.13 for traces in the same run. It is still much

higher than the maximum coefficient of 0.03 between traces from different runs.

Effect of Reverse Traffic. In reliable multicast protocols, receivers send feedback (either
ACKs or NACK5s) to the sender. In WLAN:S, the reverse traffic shares the communication
channel with the forward data traffic. Although the CSMA/CA algorithm is used in
WLAN:Ss to reduce collisions, collisions are unavoidable especially for a large number of
receivers. On the other hand, contention for the wireless channel reduces the data
transmission rate and decreases the service rate at the access point. Incoming packets will
eventually use up the buffer space and cause queueing losses, if the sending rate is fixed.
We verified this effect through experimentation. In the following test, we set up a wired
sender and a wireless receiver. The sender transmits data packets of 1400 bytes to the
wireless network at a rate of 6Mbps. At the same time, another wireless station sends
packets of 64 bytes to the sender. The sending rate is approximately 0.3Mbps. Hence,
there are roughly as many reverse packets as data packets. In the first 5 minutes, no
reverse packets are sent. Then, the wireless station starts to transmit packets by
multicasting for 15 minutes. After that, the wireless station stops for 5 minutes, and then
transmits packets by unicasting for another 15 minutes. The wired sender keeps sending
data packets and terminates 5 minutes later. The wireless receiver records the packet

trace, which is depicted in Figure 3.8.

42



A
g AN Ml 4 ‘ ‘

Loss Burst Length
g

0 emessessmtued s eSS e S— |
0 10 20 30 40 50 60

Minutes

Figure 3.8: The effect of unicasting and multicasting reverse traffic.

In the figure, the packet loss rate clearly increases when the wireless sender starts
sending reverse packets. The loss rate drops during the interval when the wireless sender
stops sending. As the wireless sender begins transmitting reverse packets by unicasting,
the loss rate increases again. However, this time it is much lower than that in the case of
multicast reverse traffic. The result is in accordance with the following analysis. In
802.11 WLANSs, an access point relays all uplink multicast traffic by forwarding the
packets both uplink and downlink. It adopts this strategy because it maintains no
multicast group membership information. On the contrary, unicast reverse packet is
forwarded either uplink or downlink according to its destination. As a result, data traffic
is further slowed down in the case of multicast reverse traffic, and more queueing losses
are generated. Therefore, in WLANs multicast feedback produces greater overhead than
does unicast feedback. This overhead can directly affect the performance of some
optimization approaches like global NACK suppression.

Taking into account the impact of channel contention on the access point service time,

it is obvious that there will be more queueing losses generated at the access point if

43



multiple wireless stations transmit reverse packets simultaneously. In the following test,
we set up 3 wireless receivers. A wired sender transmits data packets of 1400 bytes at
6Mbps. After 5 minutes, a wireless station sends reverse packets by unicasting. Then it
stops and waits for a while, followed by sending multicast reverse packets. Four more
wireless stations join the transmission ensemble after a while. They all send packets by
unicasting followed by multicasting, stopping for a while in between. The time unit for
both waiting and transmitting is 5 minutes. The sending rate of reverse traffic is
approximately 0.1Mbps. As expected, we see in Figure 3.9 that the packet loss rate

further increases when more wireless stations start transmitting packets.

Loss Burst Length
N
(2}

0 5 10 15 20 25 30 35 40 45 50
Minutes

Figure 3.9: The effect of reverse traffic from multiple stations.

3.2 Reverse Traffic and Packet Loss

How to handle reverse traffic is critical for reliable multicast protocols. Reverse traffic

is caused by packet loss, but at the same time it also introduces additional packet loss, as



we saw in Section 3.1. In this section, we present a further analysis on reverse traffic as
well as its effect on both packet loss and overall protocol performance.

There are several possible causes of packet loss. First, packets can be dropped at a
receiver due to buffer overflow. Second, propagation errors such as signal degradation or
interference can cause packet corruption. Third, collisions between data traffic and
reverse traffic can lead to packet loss. Lastly, a packet can be dropped at the access point
if the sending rate is too high or if the service rate (the rate at which an access point
forwards data packets into the wireless network) is too low due to contention. In the
previous section we show that, considering current computer processing speeds and
network bandwidth, a receiver is usually fast enough to complete processing a packet

before the next packet arrives. Therefore we only consider the last three cases.

3.2.1 Propagation Loss

Let us consider a multicast group with R receivers. The data are organized in (FEC)
groups, each of which contains k packets. Again assume the propagation loss rate is p(r,

g) at a particular receiver r, and in an arbitrary packet group g. Then the probability of the

receiver transmitting a NACK is 1 — (1 — p(r,g)) , since a receiver transmits a NACK

whenever a packet loss is detected in the group. The expected total number of NACK

packets at group g could be expressed as:
R k
Nn(g)=Zr=1 (1-(1-p(r.g)))
The total number of NACK packets during the transmission of the current resource is:

Nn =%, (Nn(g))

45



Apparently, Nn(g) depends on R, p and k. To reduce the number of NACK packets in a
packet group, a protocol should choose smaller data group size k. (It is unlikely that the
protocol can control the other two parameters: multicast group size R and propagation
loss rate p) However, as far as Nn is concerned, using a larger data group is more
effective to reduce the total number of NACK packets. On the other hand, using larger
data group demands more buffer space at both the sender and the receivers. Doing so also
lengthens per-packet recovery time, and probably increases total transmission latency.

The optimal value of k is application dependent.

3.2.2 Collision Loss

Collision loss is caused by collisions between reverse traffic and data traffic.
Intuitively, collision loss rate is proportional to NACK density. In other words, the more
NACK packets transmitted in a given time interval, the more collisions there might be.
On the other hand, a collision does not necessarily result in a packet loss at high layers.
The RTS/CTS approach and link-layer retransmission mechanism can recover most
collision losses without requiring the intervention of higher layer protocols. However,
these mechanisms are helpful only to unicast or uplink multicast traffic (In 802.11
WLANS, the uplink multicast transmission is implemented as a unicast transmission from
the wireless sender to the access point, followed by a multicast transmission from the
access point). The downlink multicast data traffic, therefore, is more vulnerable to
collisions than feedback traffic. In our system, the access point regularly transmits data
packets with a particular rate, while receivers irregularly send NACK packets. It is

difficult to build an accurate analytical model of this kind of system. To provide a rough

46



estimate of the collision rate, we adopt the simple model proposed in [8]. The model
assumes that all stations are in asymptotic condition, that is, each station always has a
packet ready to transmit. All transmissions are conducted by unicasting, which is
protected by link layer retransmissions. Although this assumption is not true in our
system, the model does take into account the basic collision and contention interaction in
an 802.11 WLAN. We describe the model below.

Let us assume that the probability that a station transmits in a randomly chosen slot

time is 7, the minimum backoff window size is W, the maximum backoff stage is m, and

the collision rate is p.. Then in [8] it is shown that 7can be expressed as:

r=2/(1+W+pWEieo™ (2p))
On the other hand, assume that n (equivalent to Nn(g) in section 3.2.1) is the number

of other stations that transmit at the same time. The collision rate p. experienced by this

station can be expressed as:
pe=1-(1-7"

We can solve p. and 7 by using numerical techniques. From 7 we get the conditional
probability p, that a transmission from a particular station in a slot is successful, and the
probability psapy that any transmission in a slot is successful.

n+/

ps=t*(1-9"1(1-(-9""")

Psany =(n+ 1) * ps

47



Probability

We set Wto 31 and m to 4, as they are in the 802.11b standard. We plot the values of

T, Pc» Ps and pgqpy in Figure 3.10, with varying number of stations. The X-axis shows the

value of n, i.e., the total number of stations minus 1.

-

©o oo
~N ®©® ©
|
|
]
B

06 | — —_
05 " — %
81
04
03 Bl
02 P
01 —3%— psany
04 - ; —fR= - R
0 10 20 30 40 50 60 70 80 9 100

Number of Stations

Figure 3.10: Collision rate and transmission rate with asymptotic stations.

The figure shows that the collision rate increases with the number of transmitting
stations. On the other hand, the rate of successful transmissions for a particular station
drops rapidly as the network becomes moderately large. The drop of the transmission rate
is due more to contention rather than to collisions. The collision rate as well as the
transmission rate are likely different in our system, however, where the access point has a
special role in that it transmits data packets from the wired network to the wireless
network. Other wireless stations irregularly send NACK packets. The nodes are not in
asymptotic conditions and the NACK packet size is far smaller than the data packet size.
Moreover, the maximum backoff stage m for downlink multicast data traffic is 1 instead
of the value 4 for unicast data traffic [25]. Thus, we studied the collision rate by using

simulation. In the following simulation, a wired sender transmits 1000 packets to the

48

ry



wireless network. After receiving every 20 packets, each wireless station sends a NACK
packet. The data packet size is 1400 bytes and the NACK packet size is 36 bytes. The
sending rate is fixed at 6Mbps. The number of collision losses for data packets is depicted

in Figure 3.11. The number of total collisions is also shown.

Number of Collision Losses in 1000 Packets Number of Total Collisions
2 %0
18 ~_ 10
] 16 \\\\\ f p
5 —x B
2. i~
[} [+
[$] 1 O 80
S °
: 08 2 60
2 o6
g g 40
2 04 2
02 20
0 ‘ 0 u/‘/

0 20 40 60 80 00 0 20 40 60 80 00

Number of Stations Number of Stations

Figure 3.11: Collision rate in simulation.

The figures show that the collision rate in our system is much lower than the rate in an
asymptotic system. The collision loss rate, i.e., the rate of data packet losses due to
collisions, is even lower. Among 1000 data packets, fewer than two packets on average
are lost due to collision, even in a network with 100 NACK-transmitting stations.
However, we will see later in this chapter that the collision rate is considerably higher

when a NACK suppression approach is adopted.

49

v



3.2.3 Contention and Queueing Loss

Incoming packets will be dropped at the access point in case that the buffer is full. The
degree of buffer utilization depends on the arriving rate and the service rate. In steady
state, there are no packet losses, and the average arrival rate is equal to the service rate.
As packets get lost in propagation and receivers send NACKSs, this balance is broken. In
this section we study the effect of reverse traffic on queueing losses.

Reverse traffic contends for the channel with the data traffic. When a larger number of
receivers try to access the channel, the chances that the access point can seize the channel
become small. Therefore the data transmission is slowed down. As a consequence, the
arriving rate becomes higher than the service rate. Eventually it will lead to buffer
overflow and packet drop. We study contention and queueing loss though simulation. In
the following test, we assume that the buffer capacity is 50 packets, data packet size is
1400 bytes, NACK packet size is 36 bytes, and the sending rate is fixed at 6Mbps. Each
receiver transmits a NACK packet after receiving every 20 data packets. We plot the

average service time at the access point as well as the number of queueing losses in

Service Time (microsec)

Figure 3.12.
Average Service Time of Packets —%— 1 station

20000 —o— 3 stations
18000 —— 10 stations
16000 1 —a— 25 stations
14000 1 —>— 50 stations
12000 4 —+— 100 station
10000 -

8000

6000

4000

2000

0

0 10 20 30 40 50 60 70 80 90
Packet Sequence Number

50

A



Queueing Losses in 1000 Packets

800 -
700 X

500 - —
400 - '

200 1
100

Number of Queuing
Losses
\

0 He==—— . . - i, . .
0 10 20 30 40 50 60 70
Number of Stations

Figure 3.12: Contentions and queueing losses.

90

100

In the first figure, the per-packet service time (the time needed for channel access and

packet transmission) increases drastically when receivers start transmitting NACKSs. It

reflects the degree of channel contention. When more stations transmit, the service time

becomes longer. This slowing down at the access point causes many packet drops. The

second figure shows that more than 50% of packets are dropped due to buffer overflow in

a moderately large network. These severe losses will lead to a significant drop in

performance. Therefore, NACK suppression as well as flow control is critical to the

performance of a reliable multicast protocol.

3.3 Reliable Multicast Strategies

Based on our understanding of packet losses and traffic interactions, we describe and

evaluate a number of well-known reliable multicast protocol components in this section.

We design our protocol by combining the most efficient algorithms in retransmission and

NACK suppression.

51

P



3.3.1 Retransmissions

There are two major approaches for loss recovery. One approach is ARQ, and the
other is FEC. Upon receiving a NACK packet, the sender either retransmits the requested
data packets as in ARQ, or transmits some parity packets as in FEC. We refer to as
retransmission approaches. In ARQ, the repair packets are retransmitted data packets,
while in FEC they are parity packets. Repair packets can be sent either by unicasting or
by multicasting. Although the lack of link layer retransmission is a non-trivial
shortcoming of the multicast approach, multicasting is still far more efficient than
multiple unicasting in WLAN environments, where all stations share the channel.

Compared to ARQ, the FEC approach is computationally intensive and
communication efficient. It incurs larger computational overhead because this approach
requires extra computational effort to encode packets at the sender and decode packets at
the receiver. It entails smaller communicational overhead because multiple receivers can
use the same parity packet to recover different packet losses, which leads to less
retransmission traffic. Considering that the computing capability increases faster than
network bandwidth does, we favor a communication efficient approach and adopt the

FEC approach in our protocol.

3.3.2 NACK Suppression

In previous sections we show that reverse traffic can cause data losses or slow down
transmissions. To improve the protocol performance, it is desirable to keep reverse traffic

as light as possible. We describe three approaches that can reduce NACK packets:

52

—_— e



proactively sending FEC parity packets, local NACK suppression and global NACK

suppression.

Proactive FEC. In this approach, the sender proactively sends a certain number of FEC
parity packets along with the data packets. In case that some data packets are lost, a
receiver can recover the losses without sending retransmission request if enough FEC
parity packets have been received.

To determine the maximum gain of the proactive FEC approach, we first assume that
the channel prediction is perfect, that is, we know exactly how many packets will be lost
in a group. Let k be the number of data packets in a group, and « be the proactive rate,
then ok is the number of proactive parity packets in the group. Let p(r) be the average

packet loss rate at receiver r. The number of packets received by receiver r is:
sAp) = (k+ ax) * (1 - p(r))
If s, is less than &, that is, the number of received packets is less than required, then

the receiver sends a NACK. Thus the total number of NACK packets in the group is:
Nn(p) = Zrei (1 = B(k + ok, p(r), ak),

where B(n, p, k) is the cumulative binomial probability.

Let F(x) be the overhead of simultaneously sending x NACK packets, Nl(x) be the
number of downlink packet drops due to collision and contention caused by x NACK
packets, T(x) be the overhead of sending x downlink packets, and Or(x,y) be the total
overhead of x NACK packets when requesting y retransmissions. Assume that both & and

p are fixed, we can express Or(x,y) as:

53




Or(x,y) = F(x) + T(y + ay) + Or(Nn(p’), max(k - s,(p*)) * (1 + )

where p'=p + Nl(x) * (1 - p) / (k + &)

Repair packets can also be lost, of course, and such losses will produce more NACKs.
Therefore the real overhead is larger. Assume that the additional overhead is a function of
the receiver number R, proactive rate ¢ and average loss rate p. The total reverse traffic

overhead can be expressed as:
Or = Or(Nn(p), max(k - s (p)) + h(R, , p)

On the other hand, the overhead of proactively sending packets is straightforward:
Op =T(ok)
Therefore the total overhead is O = Or + Op. When we send fewer proactive parity
packets, Op is lower, but Or is likely higher. An optimal algorithm should minimize the

total overhead O, specifically, find:
& = argmin(0) = argmin(Or(Nn(p), max(k - s (p)) + h(R, &, p) + T(ok)) .

Let O(x) be the total overhead when the proactive rate & equals to x, we can express
the maximum performance gain of the proactive approach over non-proactive or pure-
reactive approach as:

G =0(00) - O()

As shown in section 3.2, it is possible to obtain an approximation for function F and
NI. On the other hand, T depends only on the packet size and the sending rate. Given p(r),
k, and h, we can find the optimal & and maximum gain G through calculation. However,

loss rate p is not fixed in WLAN, and the computation is too complicated for an on-the-

54

4

T



fly adaptation. We adopt a simpler approach in our protocol, which dynamically adjusts

the proactive rate. This mechanism will be described in the next chapter.

Local NACK Suppression. Local suppression reduces the impact of reverse traffic in
two ways. First, it reduces the total number of NACK packets. Second, it reduces the
NACK density, that is, the number of NACK packets transmitted during a certain time
interval. In this approach, a receiver that requires retransmissions does not transmit
NACK packets immediately. Instead, it waits for a random time before sending NACKs.
If some repair packets it needs arrive during the waiting time, the receiver adjusts the
number of required packets. It cancels the NACK if enough repair packets have been
received and no more retransmissions are needed. Otherwise, it transmits the NACK as
scheduled. This approach works because the waiting time is random. While a receiver is
in waiting, another receiver might have reached its timeout and transmitted a NACK,
triggering the sender to transmit the corresponding repair packets. Those repair packets
could reach the waiting receiver before its timeout. If the number of received repair
packets is large enough to recover the lost packets, the waiting receiver does not need to
transmit its NACK. In this case, a NACK transmission is saved. If there are many
NACK-sending receivers, the savings could be substantial provided that the waiting time
at each receiver is appropriately set. Moreover, even if most receivers still need to send
NACKs after waiting, the reverse traffic is spread out into a larger time window.
Therefore the NACK density and the related losses are reduced.

We use simulation to study the effect of local NACK suppression. In the following

test, we assume that the number of lost packets is uniformly distributed among NACK-

55



transmitting receivers from 1 to the group size k. The suppression window is set to 100
milliseconds. The data packet size is 1400 bytes, the NACK packet size is 36 bytes, the
group size k is 20 and the sending rate is fixed at 6Mbps. The sender transmits 1000

packets. We plot the average number of NACKs sent by each station in Figuire 3.13.

Average NACKs per Station

60
501 e — —._ﬁ——__,“
40 1
30 % non suppression
20 1 —aA— local suppression
10 | —-+— local suppression
w ith aggregation
0 - - -
0 10 20 30 40 50 60 70 80 90 100

Number of Stations

Figure 3.13: The effect of local NACK suppression.

As shown in the figure, the average number of NACKs is indeed reduced by local
suppression. However, the suppression does not work well in larger networks. The reason
is the contention. Repair packets usually arrive long after sending the corresponding
NACK was sent, due to severe channel contention in large networks. Therefore most
receivers are still in need of repair packets after waiting, which leads to suppression
failures. In some cases, receivers can aggregate retransmission requests in multiple
groups and put them into one NACK packet. This usually happens after a long wait. As
shown in the figure, the aggregation approach exhibits a little bit better performance. To
increase the chance of NACK suppression, we can also set a biased timeout value for
each receiver, so that the more demanding receivers (those needing more repair packets)

will send their NACKSs earlier. The number of corresponding parity packets triggered by

56




the first NACK is likely to be large enough to recover losses at all receivers. If they are
received in time, most NACK transmissions could be suppressed. Based on this strategy,

we set the suppression window size at a receiver to
Wp=(k-L)!k*2W
where L is the number of required parity packets, and W is the original suppression
window size. Obviously, the expected value of Wp equals W, given L is uniformly

distributed. We plot the result of this enhanced approach in Figure 3.14, which shows that

the biased timeout approach can further reduce the number of NACKs.

Average NACKs per Station

60

50 - "

40 _—

<] _—

30 1 X //./ —+— local suppression
w ith aggregation

20 | \_____ g0reg

—o— biased

10 suppression w ith

aggregation
0 10 20 30 40 50 60 70 80 90 100

Number of Stations

Figure 3.14: The effect of local NACK suppression with biased timeout value.

Simulation results indicate that larger suppression window leads to better suppression
performance. We can expect that the average number of NACKs will further drop if the
suppression window is set to larger than 100 milliseconds in the above test. However, a
long recovery delay is unacceptable for real-time applications. Even for time-insensitive
applications such as file distribution, the postponed NACKSs could affect the subsequent

data transmission. Moreover, a large window demands larger buffer space at the sender,

57



and increases the total transmission latency if the delay is too long when the transmission
is near the end of the resource. Therefore, how to set the suppression window size is a
trade-off. It is possible to design an adaptive approach.

To demonstrate the NACK-spread effect, we programmed all the receivers to send
NACKSs after a random delay without suppression. We compare the number of collisions
and drops in this approach with a non-delay approach, using the same number of NACK-
transmitting receivers. From Figure 3.15 we see that local NACK suppression can reduce
packet drops even if no NACK is actually suppressed, due to the spread effect. However,
the collision rate is substantially increased. In non-delay approach, all receivers send
NACKSs simultaneously, which leads to severe contention and queueing losses. On the
other hand, it is likely that the NACK packets will only collide with a small number of
data packets at the beginning of the next group, which makes the collision rate low. In
local NACK suppression, the NACKs are spread out. The contention degree and the
queueing losses are reduced. However, the spread-out NACK packets will collide with
more data packets. As a result, the collision rate becomes higher. Overall, the gain in
queueing loss reduction is usually larger than the overhead due to collision loss, at least
in a moderately large network. Therefore in most cases NACK-spread with no

suppression is also beneficial to a reliable multicast protocol.

58



Number of Collision Losses in 1000 Packets Number of Queuing Losses in 1000 Packets

30 900

- /4; 800
o — 700
5 "
2 201 g- 600
3 ~ ——— O s
O 15 —%— no NACK 5
° suppression g 400
%10 —o— local NACK E 300 --0— local NACK
5 5 | suppression 2 suppression

0 X 0o

= . . . o
0 20 40 60 80 100 0 20 40 60 80 100
Number of Stations Number of Stations

Figure 3.15: The impact of local NACK suppression on collisions and drops.

Global NACK Suppression. Global suppression is more aggressive than local
suppression. In this approach, a receiver multicasts NACK packets, so that other
receivers as well as the sender can receive it. If a NACK-sending receiver receives a
NACK packet from another station, it checks the NACK packet to see whether its own
NACK is subsumed. If it is, the receiver postpones sending its NACK, expecting that the
sender will respond to the other NACK by multicasting the needed repair packets. In case
that the repair packets arrive before the new timeout, the receiver cancels its NACK so
that one NACK transmission is saved. Otherwise, it transmits the NACK as usual. The
advantage of this approach over the local suppression approach is that a receiver knows
sooner whether it should suppress its NACK. In large networks the repair packets might
arrive long after the NACK is sent due to heavy contention. As a result, local suppression
approach does not work well in this case. On the other hand, multicast NACK packets

will certainly arrive earlier than the repair packets. Therefore receivers can further

59



Average NACKs per Station

postpone sending the NACKs, and the probability of NACK suppression is higher than

that in a local suppression approach.

60
50
R Si———— |
_/,fr S ———
40 // ////f——
30 //0//// // ! —+— local suppression
(// P /-
— / —o— biased local suppression
20 o p
\ x// 4 —— global suppression
10 “*\—/ L—A— biased global suppression
0 - . . .
0 10 20 30 40 50 60 70 80 90 100

Number of Stations

Figure 3.16: Comparing local and global NACK suppressions.

Figure 3.16 shows that global NACK suppression can further reduce the number of
NACKSs, compared to local suppression. The biased timeout approach is also applicable
to global NACK suppression. However, this advantage is not without cost. As shown in
Section 3.1, multicast reverse traffic has a more adverse effect on the data traffic in
WLANSs than does unicast feedback traffic, since the access point has to forward uplink
multicast packets both uplink to the wired network and downlink back to the wireless
network. Those backward transmissions occupy buffer space and slow down service rate
of data packet processing, causing more packet drops due to buffer overflow. We
compare the number of packet drops in local and global suppression approaches through
simulation. In the following test, receivers transmit NACKs by either unicasting or
multicasting after a random delay, regardless of whether or not the NACKSs are actually

needed. The suppression window size is 100 milliseconds. The sender transmits 1000

60

oy e



data packets. We plot the number of data packet drops of each approach in Figure 3.17.

The performance of a non-suppression approach is also shown.

Number of Queuing Losses in 1000 Packets

900
800 /i

i e

Fﬁg NACK

suppression
i —o— local NACK
| suppression

—+— global NACK
suppression

Number of Drops

40 60 80 00
Number of Stations

Figure 3.17: Packet drops in local and global suppressions.

The figure illustrates that global suppression causes more queueing losses than local
suppression does. However, even without considering NACK reduction, the global
suppression approach still outperforms the non-suppression approach due to the NACK-
spread effect. Taking into consideration that more NACKs will be suppressed in this
approach, it is likely that the gain of suppression is larger than the overhead of extra
drops. To compare the overall performance of the NACK suppression approaches, we
plot the average loss rate at the access point in Figure 3.18. Both collisions and queueing

losses are taken into consideration. Parity packets are counted in as well as data packets.

61

ol

-



09

08 —¥%— no NACK
' suppression
07] | —©—local NACK
suppression
06 { | —<—— global NACK
2 suppression
& %%1|- - —Dbiased local
@ 04 suppression
o
|

03

0.2

0.1

0 20 40 60 80 100
Number of Stations

Figure 3.18: Overall performance of NACK suppression approaches.

It is clear that the NACK suppression approaches are capable of reducing packet
losses at the access point. The biased local suppression approach exhibits the best
performance when the multicast group size is not very large. In larger networks, its
performance drops, probably due to the increased collision loss as a result of larger
suppression window size variance. On the other hand, the global suppression approach
has good overall performance. We point out that, in real situations, it is possible that this
approach is not as effective for NACK suppression as in the simulations, especially in
medium-sized networks where the simulated suppression has the best effect. In that case,
the gain might be unable to offset the overhead of extra drops. Therefore, it might be
better to adopt the biased local suppression approach in small or medium-sized networks,
while using global NACK suppression in larger networks. In general, both local and
global suppression approaches are not sufficient to limit the number of NACKSs in large
multicast groups in WLANSs. The rates of collisions and queueing losses are still too high
in that case. A proactive FEC approach is more flexible and effective for NACK

suppression in such an environment.

62

A ety <~V SR



3.4 Summary

In this chapter we studied the characteristics of wireless channels. We confirmed that
the wireless propagation loss is bursty and dynamic. The distance between a wireless
station and the access point has significant impact on the loss rate, and losses at multiple
stations are somehow correlated. Experimental and simulation results indicate that the
reverse traffic will cause packet loss due to collisions and contention. Moreover,
multicast reverse traffic affects transmission performance more adversely than does
unicast reverse traffic.

Several reliable multicast component methods were presented and evaluated in this
chapter. We illustrated that a NACK-based protocol with multicast retransmission and
FEC encoding should exhibit reasonable performance in WLANs. NACK suppression
approaches such as proactive FEC, local NACK suppression and global NACK

suppression could further improve performance.

63



Chapter 4

AFRM Protocol Description

The Adaptive FEC-based Reliable Multicast (AFRM) protocol is designed to be
scalable and adaptive. It is well suited to, though not limited to, WLAN environments,
where packet losses are relatively high and dynamic. AFRM uses NACK-based error
control in order to improve scalability. The responsibility of loss detection is distributed
to all stations in the multicast group. Moreover, the sender maintains no membership
information. The group is open to any station that is capable of receiving the multicast
data packets. Further, the data packets are organized into groups at the sender, and an
FEC encoding algorithm is used to generate parity packets. In the case of packet loss, one
or more receivers will send retransmission requests. The sender responds to the requests
by multicasting a number of parity packets that satisfy the most demanding receiver.
Other receivers can utilize those parity packets as well to recover all their data losses.
Therefore the total number of retransmissions is reduced.

Although a NACK-based approach produces far fewer feedback packets than does an
ACK-based approach, the reverse traffic could still be heavy and significantly affect
performance, in cases where the loss rate is high and the multicast group is large. To
reduce reverse traffic, AFRM adopts a proactive FEC approach. Since sending excessive

proactive parity packets wastes channel bandwidth, the sender adapts the proactive rate




according to the perceived channel conditions. AFRM also adaptively applies the local
and global NACK suppression approaches to further improve performance.

In this chapter, we describe the AFRM protocol in detail. First we give an overview of
the protocol in Section 4.1. In Section 4.2, we present the protocol strategies and tradeoff

considerations. Lastly, we address some implementation issues in Section 4.3.

4.1 Protocol Overview

The AFRM protocol consists of two components: a sender and a receiver. The sender
component is required for transmitting packets, while the receiver component is
responsible for receiving. Both components are needed at each participating host to
support duplex communication. In the following description, we do not distinguish a
sender station from the AFRM sender component; neither do we distinguish a receiver
station from the AFRM receiver component, unless the omission will cause confusion.
Both the sender and receiver components run on top of a best effort multicast service,
such as UDP/IP multicast.

In a reliable multicast transmission, a sending application makes a call to the interface
function of the AFRM sender, passing down a data block. The sender then fragments the
block into packets, prefixing each packet with an AFRM header. In the header, every
packet is assigned a sequence number. Those packets are then organized as groups, with
group ID and group sequence number added in the header. Next, the sender applies the
FEC encoding algorithm to each group, generating FEC parity packets and storing them

in a retransmission queue. The sender then multicasts the data packets group by group to

65

S T e cyem g



all receivers. After all data packets in a group having been transmitted, the sender checks
the current channel condition, based on feedback from earlier transmissions. If the
channel is in bad or lossy state, the sender retrieves some parity packets from the
retransmission queue and transmits them to the multicast group. If the channel is in a
good state, the sender sends fewer or no parity packets. Subsequently, the sender starts
processing data packets from the next group and continues transmitting until all data
packets are sent.

At a receiver station, the receiving application calls the interface function of the
AFRM receiver to receive data. The application will be blocked until the specified
number of bytes is received, or the end of a resource is reached. The AFRM receiver
listens on a service port that corresponds to a multicast group. When a packet arrives, the
receiver checks if the packet has already been received. If so, the packet is discarded.
Otherwise, if it is a data packet or a parity packet in the current group, it is inserted into
the Data Queue. After all data packets in a group are received, the receiver strips off the
packet headers, concatenating the packets into a memory block, and delivering a
specified number of bytes in the block to the receiving application. If some data packets
are missing, but sufficient parity packets have been received, the receiver applies the FEC
decoding algorithm to the packets and generates all the data packets in the group. If the
received parity packets are not enough to recover the losses, the receiver schedules a
NACK transmission, specifying the group ID and the number of parity packets required.
Unless cancelled by one of the NACK suppression methods, the NACK packet is sent out

eventually. The receiver continues executing in this manner.

66



Upon receiving a NACK packet, the sender searches the retransmission queue for
parity packets in the specified packet group. Before transmitting those packets, it updates
the estimate of the channel condition according to the number of required parity packets
in the NACK. The more packet losses, the worse the channel condition is assumed to be.
The sender then transmits those parity packets by multicasting. In the case that multiple
NACK:s for the same group are received within a short time interval, the sender computes
a minimum number that is greater than or equal to the number of required parity packets
in any NACK. This number is then taken as the number of parity packets needed to be
sent. Since some of these parity packets could also be lost, the sender actually schedules
more parity packets for transmission. The number of the extra parity packets is calculated
according to the current channel condition. After processing the NACK, the sender
resumes its normal operation.

Since a NACK packet can also be lost on its way to the sender, a receiver always
prepares to retransmit a NACK. It stores each NACK packet in a NACK queue. After a
NACK is transmitted, the receiver sets a timer and places the NACK back in the queue.
After a timeout, the receiver retrieves the NACK from the queue, checking whether or
not any parity packet in that group has recently arrived. If so, and the parity packets are
enough to recover the losses, the NACK packet is destroyed since it is no longer needed.
If some parity packets have arrived, but the number is insufficient to correct the losses,
then the receiver updates the information in the NACK, resets the timer using the same
timeout value, and places the NACK back into the queue. If no packet in that group has

arrived, the receiver simply increases the timeout value and puts the NACK packet back.

67



Receivers do not explicitly know whether or not the transmission of the current group
is completed, until they receive a packet from a subsequent group. If some packets in the
last group are lost, receivers might keep waiting for more packets without sending
NACKSs. To prevent this situation from occurring, the sender periodically transmits short
“keepalive” packets after all data packets have been transmitted. A “keepalive” packet
contains the ID of the last group. Upon receiving a “keepalive” packet, receivers compare
the ID in the packet with the ID of the last group they have received. In this way they can
determine whether or not a packet loss has occurred.

The sender needs to set an appropriate sending rate. To maximize throughput, the
sending rate should be set as high as possible. However, as we saw in Chapter 3, a high
sending rate will lead to congestion and queueing losses. Therefore, the sender
periodically adjusts the rate according to the feedback information it has received.

Several parameters in the AFRM protocol significantly affect the performance of the
protocol. Examples include proactive rate, NACK suppression timeout value, sending

rate, etc. We evaluate these parameters in the next section.

4.2 Protocol Algorithms

4.2.1 Proactive Rate

How to adapt the proactive rate is a key part of the AFRM protocol. The basic idea is
to send more proactive parity packets when the channel is in a poor condition, and fewer
when it is in a good condition. The extra packets are expected to compensate for the

respective loss rate, so that most receivers will be able to correct their losses without

68



contacting the sender. However, sending excessive proactive parity packets will waste
channel bandwidth and hinder performance. The optimal value of the proactive rate is
dependent on the loss rate and the multicast group size. Since the loss rate is dynamic and
hard to predict in WLANS, it is almost impossible to always find the optimal value. In the
AFRM protocol we use an approximation that is close to the optimal value.

We are aware that the wireless loss locality depends on the packet group size and the
error burst length distribution. According to the collected traces, most loss bursts are very
short, only 1 or 2 packets long. On the contrary, the error-free bursts are usually longer
than several hundred packets. Therefore, the next group is more likely to be error free if
there is a loss in the current group. In a large network, however, the random variations in
packet loss tend to complement with each other. Hence, the overall packet loss in the
multicast group becomes less bursty and more predictable. Therefore it is necessary to
consider both the burst length distribution and the network when dynamically setting the
proactive rate.

Since it is difficult to make accurate predictions, we need to examine the consequence
of an incorrect prediction. For an over-prediction, the gain of the proactive FEC approach
is negative due to wasted bandwidth. On the other hand, an under-prediction introduces
no extra overhead, but also offers little performance improvement, since many receivers
will send NACKSs to correct losses. In a large network or in a high loss environment, the
overhead of an over-prediction is likely to be less than the penalty of an under-prediction.
Therefore, we should be conservative in setting the proactive rate in a low-loss or small-

scale network, and we should be more aggressive otherwise.

69



To appropriately set the proactive rate, the sender needs to estimate the channel
condition and the multicast group size. However, an AFRM sender has no direct
knowledge of the multicast group size since it does not maintain the group membership
information. On the other hand, the sender might be located in a wired network, where it
cannot directly measure the wireless channel conditions. The only way to obtain this
information is to deduce it from receiver feedback.

For example, the sender can check the source of the NACK packets to estimate the
multicast group size. In the case of the channel condition, a natural is to have each
receiver calculate the loss rate that it perceives, and periodically send this information to
the sender. This approach can lead to accurate channel estimation, but it imposes extra
computational load on receivers as well as extra communication load on the network.
Since both the computational power of a mobile station and the channel bandwidth of a
wireless network are limited resources, this approach might be inappropriate. A revision
is to trade the estimation accuracy with the computational and communication overhead.
The receivers control what, when and how to send information to the sender. A simple
and straightforward implementation is to directly utilize NACKSs. From received NACKSs,
the sender can determine how many packets were lost and which nodes lost packets.
Based on this information the sender can make a reasonable estimation of the multicast
group size and the current loss rate.

Sometimes a receiver sends no NACK at all, even the channel is in lossy condition,
provided that it has received enough proactive parity packets to correct losses. In this
case the sender will assume that the channel is in a good state and decrease the proactive

rate. The decreasing process is “blind” since there is no feedback. If the proactive rate is

70






decreased too fast, the receivers will soon receive fewer parity packets than they need and
start sending NACKs. If it is too slow, on the other hand, the channel bandwidth will be
wasted since many proactive packets are actually unneeded. McKinley and Mani [39]
explored different functions for increasing and decreasing the proactive rate, but in
separate instances of an adaptive FEC protocol. In the AFRM protocol, we take into
account the history of the average loss rate and the multicast group size, enabling us to
adapt the rate of change accordingly. If the loss rate is high and the group size is large,
we decrease the proactive rate slowly. Otherwise, we decrease the rate faster.

There is one major potential problem in this approach, however. We know that packet
losses are not necessarily caused by propagation errors -- congestion and collisions also
contribute to packet losses. In this case, sending more proactive packets will only
exacerbate the problem. Instead, the sender should reduce its rate of flow. We address
this problem in detail in Section 4.2.3, which describes AFRM flow control.

Using NACKSs to estimate the channel conditions and adapt the proactive rate involves
very little overhead. We designed two algorithms, Al and A2, which differ in how the
proactive rate is adapted. Algorithm Al aims to suppress as many NACKSs as possible by
aggressively setting the proactive rate -- it adjusts the proactive rate whenever a NACK is
received. On the other hand, algorithm A2 is based on the average loss rate and is more

conservative. We provide pseudo-code for these two algorithms in Figure 4.1 and Figure

4.2, respectively.

71



Algorithm Al

a=a_ini // a is proactive rate
w=0 //'w 1s the number of group processed after last proactive rate adaptation

[NACK_Receiver]
for each received NACK packet p
for each group g in p
m = (number of requested parity packets in g of p)
n = m — (number of recently retransmitted parity packet in group g)

ifm=k
a=a_max
else
a = min(a_max, max(a, (k*a(g)+m)/(k-m))) /1 k is the number of

data packet in a group, a(g) is the proactive rate used to transmit data packets in g, a_max is
maximum proactive rate
send n*(1+a) parity packets

[Data_transmitter]

for each data group g
send k data packets
send k*a proactive parity packets
algl=a;w=w+1

[Update_thread]

do
ifw=W /] W is a threshold for proactive rate decrease
if no NACK packets received
a = max(a_min, al2) /I a_min is minimum proactive rate
w=0
sleep t seconds
repeat

Figure 4.1: AFRM-A1 algorithm.

In algorithm Al, the proactive rate is calculated based on the recent loss rate. If only
(k - m) packets are received among k * (1 + a(g)) packets transmitted, the success rate is

(k-m)/ (k*(1 +a(g))

72



Let us assume that the channel condition does not change during the time of the
retransmission. To guarantee that the reactive parity packets are enough to recover the
losses, the following inequality must hold:

k-my/k*(1 +a(gh))*(1+a)21

Therefore the proactive rate is set to (k * a(g) + m) / (k - m) to avoid feedback traffic.
This is a fairly aggressive algorithm that aims to minimize the reverse traffic. The
algorithm should exhibit good performance in high loss environments or in large
multicast groups, where the overall loss rate is more stable and a lack of parity packets
results in a higher penalty. When the loss rate is low and the multicast group is small,
however, it is likely that this algorithm will produce too many useless parity packets, due
to the burstiness of wireless losses, the short error burst length, and the large error-free

burst length in those environments.

73



Algorithm A2

a=a_ini /l a is proactive rate

w=0 /I w is the revised average error burst length

m=0 /I m is the revised average loss rate in an error burst
b[(1=0 /1 1b is an array of packet loss bitmap in recent groups

na =0; // na is number of NACK packet received in recent groups

[NACK _receiver]
for each received NACK packet p

na=na+ 1,
for each group ginp
update Ib[g]

n = [number of requested parity packet in g of p] — [number of recently
retransmitted parity packet in group g] ;
if currentgroup - g <w
a=m
else
a=0 // do not send proactive packets
a = max(a_min, min(a_max, a)
send n*(1+a) parity packets

[Data_transmitter]
for each data group
send k data packets
if currentgroup - lastnackgroup < w
a=m
else
a=0 // do not send proactive packets
a = max(a_min, min(a_max, a)
send k*a proactive parity packets

[Update_thread]

do
calculate w and m from [b[] and na
na=0
sleep ¢ seconds

repeat

Figure 4.2: AFRM-A2 algorithm.

74




Algorithm A2 is more conservative than Al. It uses a conditional adaptation, whereby
a receiver aggregates loss information in the current group and several previous groups
into a loss bitmap. Only unreported losses in previous groups are included. (They were
not reported in earlier NACKs because the proactive parity packets received in those
groups were sufficient to recover the losses locally, or because the NACKs were
suppressed.) The receiver attaches the loss bitmap to the current NACK. By combining
all the loss bitmaps from multiple receivers, the sender estimates the average of overall
error burst length and the average loss rate. If the packet distance between the loss group
and the current group is less than the average error burst length, the sender transmits
some proactive parity packets with high probability according to the loss rate. Otherwise
the sender transmits proactive parity packets with lower probability. To account for the
effect of the number of receivers and the actual number of NACK packets, we add a
factor to the proactive rate (Empirically the factor is set to 2 * N/ R, where N is the
number of NACKs and R is the estimated number of receivers). The underlying
observation is, when there are more NACK packets, the chance of an incorrect prediction
becomes smaller. In this case, we are able to afford sending more proactive packets.

Algorithm A2 is conservative in the sense that it does not aim to suppress all NACKs,
but just some of them. Since the overall error burst is likely to be short in small multicast
groups or when the loss rate is low, this algorithm will generate fewer proactive packets
than does Al in those environments. In larger groups or when the loss rate is high, more
proactive parity packets will be sent. However, the proactive rate in this case should still

be smaller than that of algorithm Al.

75






4.2.2 NACK Suppression

In chapter 3 we demonstrated how reverse traffic could adversely affect the
performance of data transmissions. NACK suppression approaches are intended to reduce
the intensity of reverse traffic. Besides proactive FEC approach, we also studied the
performance of local and global NACK suppressions in a simulation environment.
Although neither is very effective in large-scale networks, they incur lower average
overhead than does the proactive FEC approach, whose performance largely depends on
the accuracy of channel estimation. We use both local and global NACK suppressions in
AFRM to improve performance.

As described in Chapter 3, local NACK suppression can reduce reverse traffic and
improve performance. The biased timer approach exhibits better performance provided
that the multicast group is not too large. We set up a heuristic threshold value for the
multicast group size. In case the estimated size is below the threshold, the biased local
suppression approach is utilized. Empirically the threshold is set to 30.

Global NACK suppression also improves performance. However, it also increases the
chance of queueing losses. The overall performance depends on the suppression
efficiency. It is likely that the gain will offset the overhead in large multicast groups. We
activate the global NACK suppression approach when the estimated group size surpasses
the threshold value. The sender sets a flag in the AFRM header of each data or parity
packet. Receivers check the flag to choose which NACK suppression approach to use.

One shortcoming of both local and global NACK suppression approaches is the
resulting long latency between the sending of a packet group and the receiving of

feedback packets for that group. This delay will affect the accuracy of channel estimation

76



at the sender. In large multicast groups, however, packet losses are less bursty. Therefore
channel estimation is mainly determined by the average loss rate, which is affected little
by the promptness of feedback. Moreover, the expected waiting time for the earliest
NACK is shorter in larger multicast groups (This is reflected in the formula E(T) = W/ (n
+ 1), where T is the waiting time of the earliest NACK, W is the suppression window
size, n is the number of NACK-sending stations). Furthermore, the suppression gain is
likely to be substantial in these environments. On the other hand, those approaches are
unlikely to be beneficial to the overall performance in small groups. To solve this
problem, we set another threshold value for group size. If the estimated group size is
below this threshold, both NACK suppression approaches are disabled. We set the
threshold value to 10 empirically.

Another related problem is the long completion time for each packet group. The repair
packets might arrive long after the reception of the data packets in the same group, due to
the random delay in sending NACKs, as well as round trip latency. In most cases the
waiting overlaps with the receiving of the data packets in the next group, so it is not a
large problem. However, the waiting in the last packet group of a resource will increase
the transmission latency. Since there is no more data traffic, NACK suppression becomes
less meaningful. Our solution is to disable NACK suppression in the last one or n packet
groups. The value of n depends on the suppression window size and the per-group

transmission latency.

77



4.2.3 Flow Control

Flow control in wireless networks is a challenge. A major problem is how to
differentiate queueing losses from wireless propagation losses. Several approaches have
been proposed for TCP flow control in wireless environments, including ECN (Explicit
Congestion Notification) [4] at the link/network layer and slow start threshold
comparison at the transport layer [5]. The ECN approach is also applicable to the AFRM
protocol, if a standard cross layer interface is provided. We can also design algorithms
such as the slow start threshold comparison approach to differentiate losses. For example,
if NACK packets continue to arrive at the sender even if the sending rate has been
significantly reduced for a while, those losses are more likely the result of wireless
propagation errors. On the other hand, all receivers will experience the same loss if it is
caused by congestion at the access point, since the packet is not propagated in the air at
all. Such common losses are unlikely for propagation losses. Our approach is to have the
receivers include an explicit packet loss bitmap in NACK packets. For small packet
groups, the bitmap only requires one 32-bit word per group, an affordable overhead. By
comparing the bitmap words in NACKs from different receivers, the sender can
differentiate propagation losses from other losses. If the bitmap words indicate that a
packet is lost at all the receivers, it is likely that the packet was dropped at the access
point due to a collision or congestion. Otherwise, it is likely to be a propagation loss.

As mentioned in Chapter 3, we do not consider buffer overrun at the receivers.
Therefore receivers send no explicit rate control requests to the sender [69]. In the AFRM
protocol, flow control is applied mainly for congestion avoidance at the access point. We

use a rate based flow control approach in this protocol. We set up three threshold values

78



to separate four phases. Similar to TCP’s slow start and congestion avoidance phase, the
rate increasing/decreasing speed varies in different phases. The sending rate increases if
no NACK is received. Otherwise, the sending rate will decrease if the number of NACKs
reaches a threshold, relative to the number of transmitted packets. The pseudo code of the

flow control algorithm is provided in Figure 4.3.

Flow Control Algorithm

if packetsSent > 2 and nacksReceived > I then
if nacksReceived < packetsSent | threshold0 then
/I no decreasing
else if nacksReceived < packetsSent | thresholdl then
delay = delay * (1 + nacksReceived | packetsSent)
else if nacksReceived < packetsSent / threshold2 then
delay = delay * 1.75
else
if delay * 2 < maxdelay then
thresh = delay * 2
else
thresh = maxdelay
delay = maxdelay
cdec = (thresh - mindelay) / 25.0
else if delay >= thresh then
delay = (delay * (1-multi))
else
delay = (delay - cdec)

if delay < mindelay then
delay = mindelay

if delay > maxdelay then
delay = maxdelay

// insert delay between transmissions

Figure 4.3: AFRM flow control algorithm.

In the pseudo code, the values of threshold0, thresholdl and threshold2 are

empirically set to 10, 5, and 2 respectively. For preliminary differentiation, we apply the

79




aforementioned bitmap approach to eliminate packet losses that are definitely caused by

wireless propagation errors from the flow control algorithm. Further optimizations are

under consideration.

4.3 Implementation

We implemented the AFRM protocol at the application level. The protocol is built on
top of the socket interface, specifically, UDP sockets and IP multicast services. Multicast
groups are identified by multicast addresses. Membership management is taken care of
by underlying IP multicast services.

Although an application level implementation is perhaps less efficient than a kernel
level implementation, the application level approach is more flexible and easier to adapt
to varying requirements of upper layer applications. At the application level, a protocol
can adopt relatively complicated algorithms and use a large amount of memory without
causing problems. In a previous work, we implemented a Java version protocol as a
component of the Pavilion middleware framework [40]. Recently an extended C version
of this protocol has been developed. We use the C version protocol in our experimental

and simulation studies, and the following description is based on this version.

4.3.1 Architecture

Sender. An AFRM sender consists of five major components: Application_Interface,
encoder, data_transmitter, feedback_processor and update_thread. Their relationship is

depicted in Figure 4.4.

80



The Application_Interface accepts function calls from the upper level applications. An
application passes down a data block or resource name that is to be reliably transmitted.
The Application_Interface obtains the data block, fragmenting it into packets that are
prefixed with AFRM data packet headers, assigning to each a sequence number, group ID
and group sequence number. The Application_Interface then places them into the Data

Queue and invokes both the encoder and the Data_Transmitter.

Data from

Application Network
ﬂ Interface
Application_ Data or Parity Packets
Interface I P

——pt Data_Transmitter

’_fData Queue x l

Keepalive
v Flow Control
Update_Thread
Encoder
A
l NACKs
Retrans. Queue Feedback_Processor ¢

Figure 4.4: The AFRM sender architecture.

The Encoder retrieves data packets from the Data Queue, applying FEC encoding
algorithm to each packet group in order to generate parity packets. Each group has the

same size n, consisting of k data packets and n-k parity packets. The parity packets are

81



stored in the Retransmission Queue. To ensure enough packets for decoding, the data
packets are also appended to the Retransmission Queue after the parity packets. After
encoding one group, the Encoder inserts a special packet into the Data Queue, denoting
the end of the group. The Data Queue is implemented as a heap so that all the packets in
the queue are sorted according to the group ID and the group sequence number.

The Data_Transmitter retrieves packets from the Data Queue and transmits the packets
by multicasting. If it finds a special packet, it searches in the retransmission queue for
proactive parity packets. In case the parity packets of the group are not available yet, it
suspends until the encoder completes generating those packets. Then it fetches parity
packets from the queue and transmits them. The number of those proactive packets
depends on the current proactive rate. If a NACK packet is received, the number of
requested packets is increased by a times, where a is the current proactive rate. The
Data_Transmitter fetches that amount of parity packets from the retransmission queue
and transmits them. When a parity packet is pulled out from the head of the
Retransmission Queue and transmitted, it is also inserted at the end of the queue. After a
data packet is transmitted, it is removed from the Data Queue. The Data_Transmitter
always takes the first packet in the Data Queue to transmit. Since packets in Data Queue
are sorted in the group ID and the group sequence number, those with smaller group IDs
and smaller group sequence numbers will be transmitted earlier. If the Data Queue
becomes empty, the Data_Transmitter keeps sending “keepalive” packets, following a
binary exponential backoff. The group ID of the last sent group is assigned to those
“keepalive” packets. Between transmitting two packets, the Data_Transmitter always

inserts a delay according to the current sending rate.

82



The Feedback_Processor keeps listening on the feedback port. If a NACK packet
arrives, the Feedback_Processor updates the loss statistics, searching in the Suppression
Queue to see whether or not any NACKSs have already received in the same group. If
such NACKs are found, it checks the timestamps of those packets and removes those
NACK packets considered to be obsolete. Then it subtracts the total number of requested
packets in those NACKs from the number in the new NACK. If the number in the new
NACK becomes zero or negative, the NACK is dropped. Otherwise, it is timestamped
and inserted into both the Data Queue and the Suppression Queue.

The Update_Thread periodically updates some statistics and calculates the values like
the average loss rate. It also calculates the new sending rate from the statistics such as the

number of received NACKs and the number of transmitted data or parity packets.

Receiver. An AFRM receiver consists of four major components: Data_Receiver,
NACK_Sender, Decoder and Application_Interface. Their relationship is depicted in
Figure 4.5.

The Data_Receiver loops, receiving packets from a port corresponding to the multicast
group. If the received packet is a parity packet, it is inserted into a Recovery Queue. If the
received packet is a data packet, it is inserted into both the Recovery Queue and the Data
Queue. If the received packet is a keepalive packet, it is discarded. In all above cases the
Data_Receiver checks the group ID in the received packet. If the ID is greater than that of
the last received group, or if the packet is a “keepalive” packet, the Data_Receiver will
count the data and the parity packets in the last received group. If the total number is less

than k, then the Data_Receiver will generate a NACK packet, assigning the number of

83



needed parity packets. The expected dispatch time of that NACK is also set according to
the current NACK suppression algorithm. Next, the NACK is inserted into the NACK
Queue, and the NACK_Sender is invoked. If the number of the received data packets in
the group is equal to k, the Application_Interface is invoked and the data packets are
delivered. Otherwise, if the total number of the data and parity packets in the group is

greater than or equal to k, then the Decoder is invoked.

Data, Parity or Keepalive Packets

NACKs
Data_Receiver l P

NACK_Sender

—» NACK Queue

—{ Recovery Queue »

Decoder
—»| Data Queue Network
.. Interface
Application
_Interface

T

Data to Application

Figure 4.5: The AFRM receiver architecture

The NACK_Sender extracts NACK packets one by one from the NACK Queue. The
NACKSs in the NACK Queue are sorted according to dispatch time. If the dispatch time of

the current NACK is later than the current time, the NACK_Sender suspends itself until

84




the specified time point is reached. Then the NACK_Sender checks the Data Queue and
the Recovery Queue to see whether or not it still needs additional parity packets. If no
parity packets are needed now, the current NACK is removed from the NACK Queue and
destroyed. If the number of needed parity packets has decreased, the NACK_Sender
updates the dispatch time using a linear backoff algorithm and places the updated NACK
packet in the NACK queue. Otherwise it transmits the NACK. After transmission, the
NACK_Sender updates the dispatch time of the current NACK using exponential backoff
and places the new NACK packet in the NACK Queue.

The Decoder fetches packets from the Recovery Queue. If there are at least k packets
available in one group, the Decoder applies the FEC decoding algorithm to those packets
and generates k data packets. Then the generated data packets are inserted into the Data
Queue. If some of those data packets are already in the Data Queue, the new copies are
discarded. After decoding, packets in the group are removed from the Recovery Queue
and destroyed. The Decoder then invokes the Application_Interface and moves on to the
next group.

The Application_Interface accepts function calls from the application. If the
application requests a resource or a data block, the Application_Interface removes
received data packets from the Data Queue, stripping off the AFRM protocol header and
concatenating them into one data block. If the data block is not large enough to satisfy the
request, the Application_Interface suspends itself until new data packets are received or
generated (by the FEC Decoder). After all the requested data are available, the

Application_Interface notifies the application and delivers the data block.

85



4.3.2 AFRM Packet Format

AFRM stores both packet headers and data bits in the UDP packet payload. There are
four kinds of packets: data packet, parity packet, keepalive packet and NACK packet. All
those packets share a common header format, although some fields have different
meanings in different packets and some packets have extra header fields.

The common header format is shown in Figure 4.6:

0 16 31
Type [ Resource ID
Flag
Total Number of Packets
Sequence Number
Group ID
Group Sequence Number | Number of Receiver
Timestamp
Round Trip Time
Payload Length

Figure 4.5: The AFRM packet header format.

Type. The 16-bit type field is used to identify the packet type. The possible values are:
DATA, PARITY, KEEPALIVE, and NACK.

Resource ID. The resource ID field is a 16-bit unsigned integer that is used to identify
the resources transmitted by a particular sender.

Flag. This 32-bit field is used to hold special values, for example, the size of the last
packet in a resource in data packets, the NACK suppression switch in data or parity
packets, and the packet loss bitmap of the specified group in NACK packets.

Total Number of Packets. This 32-bit field is used to specify the total number of packets

in the resource.

86



Sequence Number. The sequence number field is a 32-bit unsigned integer that is used
to identify data packets in the resource. It is assigned —1 for parity packets. In NACK
packet, it is the sequence number of the requested packet. If requesting any parity
packets, this field is set to —1. In keepalive packets, this field holds the sequence
number of the last sent data packet.

Group ID. This is a 32-bit field that is used to identify packet groups in the resource.

Group Sequence Number. This field is a 16-bit unsigned integer. In data and parity
packets, it is the packet sequence number in the specified group. In keepalive packets
it is set to —1. In NACK packets, it is the number of parity packets required if the
sequence number field of the NACK is set to —1.

Number of Receiver. Sender uses this 16-bit field to inform receivers with the estimated
multicast group size. Receivers can adapt their NACK-sending behaviors according to
this field.

Timestamp. This 32-bit field is used by the sender to timestamp each data or keepalive
packet. Receivers will put the timestamp value of the last received data or keepalive
packet in NACK packets. This helps the sender to estimate round trip time and set the
retransmission suppression window.

Round Trip Time. The sender puts the estimated round trip time in this 32-bit field of
each data, parity or keepalive packet. Receivers use this estimation to set NACK
retransmission waiting time.

Payload Length. This 32-bit field is used to specify the payload data length in bytes.

87



Chapter 5

Performance Evaluation

In this chapter we evaluate the performance of the AFRM protocol and compare it
with several other reliable multicast protocols. We first study the behavior of the protocol
in our experiment environment, where results show it has good performance. Next, we
evaluate the protocol in our simulation framework. The framework enables us to vary
environment parameters such as the loss characteristics and the number of stations. We
test the protocol over a simulated network characterized by various loss patterns,
including a uniform model, a bursty model, a synthetic model and real packet traces. The
simulated network contains up to 100 wireless stations. In all tests we use throughput as
the major performance metric. The results show that the AFRM protocol has better
overall performance, in most situations, than other non-proactive and non-adaptive

protocols, especially in large multicast groups and in high loss environments.

5.1 Experimental Study

We conducted experimental studies using the testbed described in Chapter 3. The
testbed consists of a 100Mbps Ethernet and an 11Mbps Aironet wireless network. The

Ethernet is connected to the campus network. The wireless network is set to infrastructure

88



mode and connected to the Ethernet through an access point. The testbed includes several
high-end workstations, each with a 1GHz Pentium III processor and 512MB memory.
Some of these workstations are equipped with 11Mbps Aironet 340 Series PCI Wireless
Cards and connected to the wireless network, while others are connected to the wired
Ethernet. We also use several laptop computers, each with a 1GHz Pentium III processor
and 256MB memory. The laptops are connected to the wireless network. All machines in
the testbed run Windows 2000 professional version as the operating system. We
conducted all our tests during midnights or early mornings when there were no other
wireless stations associated with the access point. Therefore in all tests there is minimal

other traffic in the wireless network.

5.1.1 Normal Conditions

In this experiment, we study the protocol behavior in “normal” indoor environments.
We set up a wired workstation that transmits a 4MB file to a multicast address, on which
1 to 3 wireless receivers are listening. The distance between the wireless stations and the
access point varies. For comparison, we implement a non-FEC protocol, a pure-reactive-
FEC protocol, and a fixed-proactive-rate-FEC protocol with 5%, 10% and 20% proactive
rate. All those protocols are NACK based. In the non-FEC protocol, the sender
retransmits the requested data packet upon receiving a NACK. In the pure-reactive
protocol, the sender does not send any proactive parity packets and sends only as many
parity packets as requested in NACKs. In the fixed-proactive protocol, the proactive rate
is specified a priori and applies to both data and (parity packet) retransmissions. In all

tests, the data packet size is set to 1400 bytes, including the AFRM header. The group

89



size parameter k is set to 20, and N is set to 60. The initial sending rate is set to 6Mbps. In
the case of NACK suppression, the receiver suppression window size is set to 100
milliseconds. Where applicable, we collected the following data: NACK count,
retransmission count, packet loss count, required parity packets count, received parity
packets count and proactive rate. We also recorded the total transmission time in order to
calculate the throughput.

We noticed that the average loss rate is very low in our indoor environment. From
Chapter 3 we see that the loss rate is below 1% in most cases. For the worst station the
loss rate is around 8%. In good states there are very few losses. In bad states, however, a
station can experience a long burst of losses, which will significantly affect the

throughput. We depict such a loss burst from a typical trace in Figure 5.1. The burst is

longer than 200 packets.

25
[}

20
g
[*]
€ 15 |
]
o
-l
s 10 1
z
E 57
3
=

1 11 2t 31 4 5 6 71 8 91 101 111 121 131 141 151
Group Number

Figure 5.1: A loss burst spans several packet groups.

We compare the throughput of the aforementioned five protocols with the AFRM
protocol using two different adaptation algorithms. Since the non-FEC protocol benefits

little from NACK suppressions, we turned the suppression flag off in all protocols to

90



make fair comparison. We conducted each test five times. In calculating throughput, the
maximum and minimum values are dropped, and the results are the averages of the

remaining values. The throughput is depicted in Figure 5.2.

7000

6000 -

5000

4000

Throughput (Kb/s)

2000 1 —o— 1 Receiver
1000 - — - — 3 Receiver:

0 - . . .
nofec rfec fec05 fec10 fec20 fecal feca2
Algorithms

Figure 5.2: Experimental throughput under normal conditions.

In the above figure, “rfec” denotes the pure-reactive-FEC protocol. “fecal” and
“feca2” denote the AFRM-Al and the AFRM-A2 algorithms respectively. The figure
shows that in low loss environments all these protocols exhibit fairly good performance.
The throughput is as high as 6Mbps, close to the effective limit. When examining the
individual protocols, we noticed that the fixed-rate proactive protocols suffer from
sending too many unneeded parity packets. On the other hand, the performances of all the
protocols drop slightly in the case of 3 receivers, apparently due to the increased reverse
traffic.

Wireless losses are dynamic and random, which make it difficult to conduct
performance comparisons. This is one of the major reasons that we need a simulation
framework. We will describe the simulation approach in section 5.2. On the other hand,

the loss rate is significantly higher when a wireless station is farther away from the access

91



point. If we simulate the higher loss by dropping received packets at a closer station, the
perceived loss (simulated loss + real loss) is likely more stationary and suitable for
comparisons. Therefore, it makes sense to simulate such losses by using an artificial loss

model.

5.1.2 Artificial Loss

In this approach, we modify the receiver code so that it randomly received packets
according to a predefined loss rate. Therefore, the loss comprises the controllable
artificial loss plus the unpredictable actual loss. For simplicity, the distribution of the
artificial loss is initially set to uniform. This is not a particularly accurate model since the
real channel loss is not included. However, when we set the artificial loss rate to a large
value, say 10%, it is safe to omit the transmission losses, whose rate is usually around
1%. Compared to simulation, the advantage of this approach is that everything except the
loss rate is real, including the overheads for communication and computation, as well as
congestion and collisions. We use this approach to study the protocol performance in the
following tests.

We set the artificial loss rate to 1%, 5%, 10%, 20% respectively and repeat the tests
from the previous section. We plot the throughput in Figure 5.3. As shown in the figure,
the protocols generate similar throughput when the loss rate is low. The fixed-rate
proactive protocols suffer from transmitting excessive proactive packets. When the loss
rate is higher, the throughput drops substantially. The proactive FEC protocols become
better than the other protocols due to the reduction in NACK packets. The 20% fixed-rate
proactive protocol has the best performance in the case of 5% and 10% losses. We can

expect that a 30% fixed-rate protocol will achieve higher throughput than the others in

92



the case of 20% loss. However, a fix-rate protocol is unlikely optimal in all cases in a real
wireless LAN since the wireless loss is bursty and dynamic.

The AFRM-AL1 protocol has the best overall performance. The AFRM-A2 is the best
for low loss conditions, but not as good as some other protocols for heavy losses, due to
its conservative policy in sending proactive parity packets. Anyway, both the AFRM
protocols outperform others in the case of 20% loss. In multicast groups with 3 receivers,
the average performance is generally 5% lower than that for the 1-receiver groups. The

performance ranking is basically the same.

Throughput with 1 Receiver 0 O0Loss

7000 D 1% Loss

6000 { — __ _ ___ |85%Loss
- - — — @ 10% Loss
g 50001 ® 20% Loss
< 4000 -
2
o 3000
2
£ 2000 |
-

1000

nofec fec05 fec10 fec20 fecal feca2
Algorithms
Throughput with 3 Receivers DO0Loss
7000 D 1% Loss
B 5% Loss

6000 - — —
- ] B 10% Loss
8 50001 - ® 20% Loss
5 4000 -
2
& 3000
2
£ 2000 -
.—

1000

fec05 fec10 fec20 fecat feca2
Algorithms

Figure 5.3: Experimental throughput with artificial loss.

93



Next we study the relationship between the throughput and the number of NACKs, as
well as between the throughput and the goodput value. The number of NACKSs is a metric
of reverse traffic. The goodput is calculated by dividing the number of transmitted data
packets by the number of total downlink packets. As such, goodput is a measure of the
channel efficiency, since sending more parity packets leads to lower goodput. In many
application environments, channel bandwidth can be exclusively utilized by a protocol
such as AFRM, so the goodput itself is not a major concern. However, goodput reflects
the behavior of the protocols and can be used to understand throughput results. We
selected the packet traces that produce medium throughput for each protocol, under 20%
loss conditions, and calculate the throughput, the number of NACKs and the goodput.

The results are depicted in Figure 5.4.

——— Throughput (Kb/s)
9000 - -0--NACK* 10
8000 a — - & - = Goodput * 10000

7000
6000 -
5000
4000 -
3000
2000
1000 A

nofec rfec fec05 fec10 fec20 fecal feca2
Algorithms

Figure 5.4: Throughput, goodput and total NACKs with 20% loss.

It is clear that the throughput is inversely proportional to the number of NACKs. On
the other hand, the goodput has less impact on the throughput and is relatively constant
for all the FEC-based approaches. This result implies that aggressively sending proactive

parity packets is likely to be beneficial to the throughput in the test environment. Some of

94



the proactive packets might be useless, but the bandwidth waste could be offset by the
reduction of reverse traffic (which in turn reduces retransmissions). The AFRM protocols
exhibit higher throughput than the others mainly because they generate fewer NACKs.
The AFRM-AI protocol is better than the AFRM-A2 in this case, since Al sends
proactive packets more aggressively.

Next we examine the proactive rate adaptation of the AFRM protocols. We plot the
number of proactive packets, the number of required parity packets and the number of
reactive parity packets for every group from a typical run of AFRM-Al and AFRM-A2.
In AFRM-AL1, the sender adapts the proactive rate whenever a NACK is received. The
algorithm aims to suppress as many NACKs as possible even at the risk of sending too
many proactive parity packets. In the test environment, aggressively sending proactive
packets is justified since the reverse traffic is more harmful to the performance than is the
bandwidth waste. However, this conclusion depends on the implementation of the
wireless network MAC protocol and the channel loss pattern. In networks where the
reverse traffic has less adverse impact on the performance, or the channel loss is not
uniformly distributed, the proactive rate adaptation algorithm should change its
parameters. Figure 5.5 shows that the AFRM-A1 algorithm behaves well on the uniform
artificial loss model. The number of proactive parity packets being sent is just hovering
above the number of parity packets needed. However, we will show later that the
performance is not so good on bursty losses. In AFRM-A2, the sender determines
whether or not it needs to send proactive packets, according to the loss burst length
distribution. In the case that it needs to send, the proactive rate is calculated based on the

average loss rate. In this study we do not address further how to find the optimal

95




parameters for a specific implementation of a wireless LAN. We defer that issue to future

investigations.

Proactive Rate Adaptation in AFRM-A1
16

14
12

—o— Proactive Parity Packets|
—a— Reactive Parity Packets |

10 4

Number of Packets
®

6
4
2
0
111 21 31 41 51 61 71 81 91 101 111 121 131 141
Packet Group
Proactive Rate Adaptation in AFRM-A2
18
—o— Proactive Parity Packels| |
16 1| s Reactive Parity Packets |
14| e Needed Parity Packets i [
g2 {
810 1
S8
fe
H
Z .4
2
04 ; !
11 21 3 a1 s e 71 81 9 101 111 121 131 141 151
Packet Group

Figure 5.5: Proactive rate adaptation in AFRM algorithms.

To evaluate the performance of the NACK suppression approaches, we tested both
local and global suppression for the FEC algorithms in multicast groups with 3 receivers.
The suppression window size is set to 100 milliseconds. In Figure 5.6, we plot the
average throughput of each protocol under 20% loss conditions.

The figure shows that local NACK suppression improve the performance slightly in

cases where the reverse traffic is relatively heavy (rfec, fecOS and fec10) and where the

96



proactive rate is low. For fec20, fecal and feca2, however, since most NACKs are
already suppressed by proactive packets, local NACK suppression cannot produce
enough gains to offset the overhead. Therefore the throughput is lower for those
algorithms. Moreover, global NACK suppression will definitely hurt performance in this
environment, because the group size is too small. We turn the global NACK suppression

flag off until the multicast group becomes larger.

3500
3000 _——
% 2500 X m e e
i~ _——
= 2000 | P
] ’
> 1500 -~ s
2 1000 | P e ‘.' —o—— No Suppression
= o — =% — Local Suppression
500 - — - & - - Global Suppression
0 . r - T T
rfec fec05 fec10 fec20 fecal feca2
Algorithms

Figure 5.6: Experimental throughput with NACK suppressions.

5.2 Simulation Study

To ensure that a network protocol has a good overall performance, it is necessary to
conduct sound and extensive performance evaluations. In wireless LANs, packet losses
are bursty and almost unpredictable. Therefore, it is hard to guarantee the faimess in a
performance comparison since the channel condition is constantly changing. Moreover,

the expense of organizing a large-scale wireless LAN testbed is prohibiting. On the other

97



hand, the study of the protocol behavior under various loss patterns and network scales is
indispensable. To solve this problem, we designed and implemented a network
simulation framework that enables us to scrutinize the protocol performance under

various conditions.

5.2.1 Simulation Framework

We built a general-purpose network simulation framework atop the CSIMI8
simulation package [41]. The framework generates and manages communication objects
such as virtual networks, links, packet loss patterns, virtual stations, and virtual
processes. It supports the inter-networking concept and provides the basic routing
service. The wireless access point is simulated as an object instance of the virtual router,
while the wireless channel is simulated as a set of link objects, each of which connects
two virtual stations with an associated loss pattern object. Currently four loss models are
supported: packet trace, uniform model, bursty model and synthetic model. On each
virtual station, a mini operating system is running, which maintains a protocol stack.
Simple implementations of network protocols such as UDP, TCP, IP, IEEE 802.3 MAC
and IEEE 802.11 MAC are included. They are used to simulate the network traffic
processing between the network interface card and the application code. The architecture
of the framework is depicted in Figure 5.7.

The framework supports the socket API by over-riding the real socket library. Any
network applications built on the socket interface can be easily ported to this simulation
platform. For example, let us imagine two application programs that run on different
stations and which communicate with each other through a network channel. One

application behaves as a client, and the other acts as a server. The server application

98




listens on a particular socket, waiting for any requests from the clients. When a client
application starts, it creates a socket and connects to the server socket by specifying the
appropriate address and the port. Subsequently, these two programs transmit data to each

other by using send() and receive() socket call on the socket pair.

Application

Code Socket Interface
H I i R oottt EE T ~o T =3
] 1
[} ]
H Virtual OS :
! Simulated H

]

; Network :
i s
1
: € ) Q ________ _ :
1 ]
H \/Loss Pattern H
[} ]
1 )

Figure 5.7: Architecture of the simulation framework

To port these two programs to our simulation framework, we first generate a simulated
network, which includes at least two virtual stations and a link object that denoting the
network channel between these two stations. Next, we relink the client and server
application code with the new socket library provided by the framework. When the new
code is loaded, a virtual process is created on each of the virtual stations. The client as
well as the server code is invoked from one of the virtual processes. Now the client

application and the server application begin running on the simulated network.

99




1 T
] ]
: i
' . - B
Application ' Socket @}  Socket Library @ Socket 1 Application
Code ' Interface_] Interface | Code
: — =
[} ]
; '
: H
|} ]
. : ]
Client : Virtual Socket Library ' Server
! Simulated Network :
, '
; i
) i
1) )

Figure 5.8: Porting applications to the simulated network.

After porting applications to a simulated network, we can study their performance by
varying the network configuration and the object parameters. The network scale can be
changed by simply adding or deleting virtual stations in the network. To change loss
patterns between a wireless station and the access point, we simply change the link object
between the two stations by updating the corresponding loss pattern object by specifying

new parameters. In next section we describe the loss models in detail.

5.2.2 Loss Models

Packet Trace. This model replays packet losses from the real wireless channel. We
collected a large amount of packet traces to study the characteristics of a wireless
channel. The procedures and analyses are described in Section 3.1. These traces can be
also used to configure loss pattern objects in a simulated network. When generating such
networks, we provide a configuration file specifying how many stations are included in

the network, the bandwidth and loss patterns for each link, and so forth. The type of a

100

_”‘_xﬁ-.:_-;r.n,tr_'




loss pattern is specified in the file. If the type is a packet trace, the trace file name is
given. When a packet is transmitted over a link with a packet trace loss pattern, the
simulator looks up the packet trace in the file. The packet will be dropped if the trace
indicates a packet loss at the current location. Otherwise it is passed over the channel.
After this processing, the simulator updates the current location by moving the pointer to

the next packet in the trace file.

Uniform Loss. For each uniform pattern, the loss rate is specified in the configuration
file. When a packet is transmitted over a link with this model, the simulator generates a
random number between 0 and 1, comparing it with the loss rate of the model. If the
random number is smaller than the loss rate, the packet will be dropped, else it will be
passed successfully. This model is very simple to implement. However, it does not reflect

the real loss distribution in a wireless channel.

Bursty Loss. As we saw in Section 3.1, wireless loss is very bursty. In a loss burst, most
of the packets in the channel are lost. In a loss-free burst, few or no packets will be lost. It
is natural to use a two-state Markov chain to model the channel behavior. The Gilbert-
Elliot model [20] is widely used in the research community. For each channel the model
maintains two states. At a specific moment, a channel can be in either the good or the bad
state. If the channel is in the good state, the loss rate is very low. If the channel is in the
bad state, however, the loss rate is relatively high. A simplified version the model
assumes that there is no packet loss at all in the good state and that all packets are lost in

the bad state. If a packet loss occurs in the good state, the model immediately switches

101




the channel to the bad state. Similarly, whenever a packet is successfully transmitted, the
model switches the channel to the good state. Assume that the probability of staying in
the good state is o, and the probability of staying in the bad state is . The probability
that any packet loss occurs in the good state is (l1-at), and the probability that any
successful packet delivery occurs in the bad state is (1-B). The model is depicted in
Figure 5.9. Due to the simplicity for implementation, a number of research works use this

version of the model. We also adopt this simplified version in our simulation framework.

-

3€0 ()
1-p

Figure 5.9: Two-state Markov model for simulating packet losses and channel errors.

For each bursty pattern, the transition probabilities between good state and bad state
are given in a configuration file. When a packet is transmitted over a link with this model,
the simulator generates a random number between 0 and 1, and checks the channel state.
If the channel is in the good state, and the random number is smaller than the good-to-bad
transition probability, the packet is dropped and the channel switches to the bad state. If
the channel is in the bad state, the packet is dropped unless the random number is smaller
than the bad-to-good transition probability. The channel switches back to the good state

whenever a packet is not dropped.

Synthetic Loss. When generating a simulated network, we need to set a loss model for

each link. For a set of links, three approaches can be taken. First, we can set different loss

102

SN e mpy—r




models for each link. Second, we can use the same loss model, but different instances.
Third, we use the same instance for all links. In the first approach, the links will certainly
experience independent packet losses. In the second approach, the links share the same
loss model. However, the instances are different. Since each instance maintains a separate
random number stream as well as unique random number seeds, the links will get
different and independent random numbers, which lead to independent packet losses. In
the third approach, the links will experience identical packet losses.

In Section 3.1 we saw that packet losses are somehow correlated at different wireless
stations. They are neither identical nor totally independent. We will be unable to maintain
this relationship when setting loss patterns by using any of the three approaches described
above. To solve this problem, we added a synthetic loss model to the simulation
framework. In this model, a trace is selected as the base error model. Multiple stations
share the base trace with a certain probability. In other cases they generate independent
packet losses from the bursty model. Therefore, the correlation feature mentioned above
is maintained. We can change the sharing probability to adjust the correlation
coefficients.

The synthetic model can be implemented either statically or dynamically. In static
implementations, packet losses at each station are calculated a priori. The resulting losses
are written to a trace file, whose name is provided in the configuration file. In dynamic
implementations, each loss pattern is set to the synthetic model and associated with a
base trace file, a sharing probability, and a bursty loss pattern instance. Packet losses at
each station are dynamically. For simplicity, we use the synthetic model statically in the

framework.

103

——



Revised Bursty Loss Model. After analyzing the packet traces we collected in section
3.1, we realized that the simple Gilbert model is probably not a good approximation to
the traces. We generate a packet trace based on the simple Gilbert model and compare it
with a real trace in Figure 5.10. The good-to-bad transition probability is set to 0.0006,

and the bad-to-good transition probability is set to 0.16. Both probabilities are calculated

from the real trace.

50
43 @ Real Trace
40 1

rt
35 | + Gilbert Trace
30
25

Loss Burst Length

0O 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
Number of Packets

Figure 5.10: Real trace and trace based on Gilbert model.

In the simple Gilbert model, the loss burst length as well as the loss-free burst length
follows a geometric distribution. When we look at the packet traces statistics in Figure
5.11, however, it turns out that the exponential distribution is a good approximation to the
loss-free burst length. Moreover, the loss burst length distribution is more spread out, like
bimodal or Pareto distribution. Therefore we revise the bursty loss model so that the loss-
free burst length is exponentially distributed and the loss burst length distribution is in
pareto. We use this revised model to generate the synthetic traces as described above. In

Figure 5.12, the Pareto parameter a is set to 0.3 and k is set to 100000.

104




120%

100%
80% |

& 60%

o o
40%

20% 1

0% %

50

¥ REXK XWX XX XX 100% |
F 80%
++
'8
+ 3 60%

—  120%

——— 400/
o Real Trace °

o

10 100 1000 0
Loss Burst Length

20% .'/

o Real Trace
+ Gilbert Trace

2000 4000 6000 8000 10000 12000
Loss-Free Burst Length

Figure 5.11: Burst length distribution of packet trace.

B8R ES

20 -
15 1
10

Loss Burst Length

0

& Real Trace
+ Revised Trace

o [ -]
-]
+ g + ¢
+
+ 4+ 4 8
100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
Number of Packets

Figure 5.12: Trace based on revised bursty loss model.

5.2.3 802.11 MAC Simulation

Our network simulation framework supports IEEE 802.11 MAC protocols. In IEEE

802.11 Standard [25], there are two versions of MAC protocols: a station version and an

access point version. Both are relatively complex. We ignore those parts that are

unrelated to the packet transmission in typical scenarios and simplify the MAC protocol

105



as described in Figure 5.13. The simulation study in Chapter 3 is also based on this

implementation.
sender() {
while (true) {
pkt = fetch(); // fetch packet from data queue
if ('checkRx()) // check if the channel has been idle for DIFS or EIFS
backoff(); // backoff if a transmission within the last DIFS or
EIFS is detected

while ('transmit(pkt)) {
if ('backoff()) { // backoff between retransmissions
break; //too many retranmissions, transmission failed

}

}

transmit(pkt) {
if (is_multicast(pkt) && is_access_point()) {

dispatch(pkt); // pkt propagation
CW = CWMin; shortRetryCount = longRetryCount = 0; // reset
return true;

}
if (size(pkt) > RTSThreshold) {

dispatch(RTS);
wait(SIFS), // wait for CTS
if {CTS_arrived()) { //noCTS
shortRetryCount ++; incW();  // increase window size
return false;
}
shortRetryCount = 0;
wait(SIFS);
}
dispatch(pkt);
wait(SIFS); // wait for ACK

if '{ACK _arrived()) { // no ACK
if (size(pkt) > RTSThreshold) longRetryCount ++;
else shortRetryCount ++;
incW();
return false;

}
CW = CWMin; shortRetryCount = longRetryCount = 0; // reset

return true;

106



receiver() {
while (true) {
pkt = receive_pkt(); /1 block if no packet detected
if (type(pkt) == RTS) {
if (ready_to_receive()) {
wait(SIFS);
dispatch(CTS);
}
} else if (type(pkt) == CTS) {
CTS_arrived() = true;
} else if (type(pkt) == DATA) {
if ('is_multicast(pkt) || is_access_point()) {
wait(SIFS);
dispatch(ACK); // send ACK
}
} else if (type(pkt) == ACK) {
ACK _arrived() = true;
}

Figure 5.13: Implementation of IEEE 802.11 MAC protocol.

5.2.4 Simulation Results

To evaluate and compare the protocol performances in large multicast groups, and
study their behavior over various loss scenarios, we executed simulations similar to the
experiments in Section 5.1, but we modeled the wireless channel with different loss
patterns and varied the group size. The multicast group size is set to 1, 3, 10, 25, 50 and

100 respectively.

Packet Trace. We collected several packet traces in the experiments described in

Chapter 3. We used these traces to simulate packet losses. The throughput is depicted in

107

el nhbar a1



Figure 14. The traces from node5 in Table 3.1 are taken in the case of l-receiver
multicast group. The traces from node2, node5 and node 8 are chosen for the case of 3

receivers. All 10 traces are included for tests in a 10-receiver multicast group.

O 1 Receiver
7000

= — - — D 3 Receivers

- - | _ — | B 10 Receivers

Throughput (Kb/s)

nofec rfec fec05 fec10 fec20 fecat feca2
Algorithms

Figure 5.14: Simulation throughput on wireless packet trace.

Figure 5.14 shows that the throughput drops rapidly when the multicast group
becomes larger. Among the protocols, pure-reactive FEC and AFRM-A2 have the best
performance. Surprisingly AFRM-A1 becomes the worst. Other proactive protocols also
suffer. To determine why AFRM-A1 performs so poorly, we plot in Figure 5.15 the
number of proactive packets, number of required parity packets and number of reactive

parity packets for every group from a typical run of AFRM-AL.

108




Number of Packets

[
(5]

—e— Proactive Parity Packets|

{ | —a&— Reactive Parity Packets 1

....... Needed Parity Packets 4 (

w
o

N
[&]

n
o

-
(4]

-
o

(3]

1 11 21 31 41 51 61 71 81 91 101 11 121 131 141 151
Packet Group

Figure 5.15: Proactive rate adaptation of AFRM-A1 on wireless packet traces.

As shown in Figure 5.15, the packet losses are bursty in the collected traces. In this
case, the AFRM-A1 approach is slow to reduce the proactive rate, resulting in the
sending of many unnecessary proactive packets following a long error burst. On the other
hand, AFRM-A2 checks the average loss burst length and the average loss rate to
calculate the proactive rate. In these tests, an AFRM-A2 sender sends few proactive
packets. Therefore it exhibits similar performance to that of the pure-reactive FEC
protocol.

We want to emphasize the fact that the reverse traffic overhead is lower in the
simulation framework than it is in the real test environment. This is because a real access
point needs to periodically transmit some management frames besides relaying data
packets. This transmission will likely cause more packet drops at the access point. As a
result, all protocols have higher throughput in the simulation than they have in the test
environment. However, the performance of the proactive protocols does not increase as
fast as that of the others due to their redundancy and the overhead of NACK suppression.

We expect them to exhibit performance in a real network. On the other hand, excluding

109



Throughput (Kb/s)

the long loss bursts from the calculation of the proactive rate might be a good idea. We

will explore the ideas in our future work.

Uniform Loss. Random loss under a uniform distribution is probably the simplest loss
model. We use an independent loss approach. In this approach, each wireless station is
assigned a unique random stream. Propagation loss perceived by a station is totally
determined by the random stream. It would appear that this model is not very realistic.
First, as we showed in Chapter 3, wireless propagation loss is bursty rather than uniform.
Second, losses at different stations are somehow correlated rather than independent. On
the other hand, packet losses do include congestion losses and collision losses, as well as
propagation losses. This model affects only the propagation losses, which are only a
portion of packet losses. Given that congestion losses and collision losses are well
simulated, this model is perhaps still useful due to its simplicity. We plot the throughput

of each protocol in Figure 5.16, for different loss rates.

1% Loss
7000 —— ——— — —
6000 T O 1 Receiver
5000 | 03 Receivers
4000 | & 10 Receivers
|| @25 Receivers

3000 |

v B 50 Receivers
2000 | @ 100 Receivers|
1000 3

0
nofec rfec fec0s fec10 fec20 fecat feca2
Algorithms

110



20% Loss

- O 1 Receiver

. . 0 3 Receivers
8 10 Receivers
B 25 Receivers
| 50 Receivers
@ 100 Receivers

Throughput (Kb/s)

rfec fec05 fec10 feca2
Algorithms

Figure 5.16: Simulation throughput on uniform loss model.

Figure 5.16 shows that the throughput drops rapidly when the multicast group
becomes larger or the loss rate becomes higher. Among the protocols, the non-FEC
approach drops the fastest. Both AFRM-A1 and AFRM-A2 protocol outperform almost
all other protocols at 100 receivers or 20% loss rate. The fixed-rate proactive protocols
also demonstrate good performance on the uniform loss model. In the case that the
proactive packets are sufficient to recover lost packets, the performance of these
approaches is comparable to that of the AFRM protocols. When comparing the
simulation throughput with the corresponding results on artificial losses, we noticed that
the absolute throughput value is higher in the simulation. The explanation is that the loss
rate in the simulation covers all propagation losses in the channel, including even the
RTS/CTS/ACK control packets. On the contrary, the artificial losses apply only to the
packets that are successfully received at the receiver. Therefore, the actual loss rate is

higher in the experiments. On the other hand, the reverse traffic incurs smaller overhead

111



in the simulation, which implies that the AFRM-A1 protocol may further outperform the

other protocols in a real network with a large number of receivers.

Bursty Loss. We use the two-state Markov model to simulate the bursty wireless losses.
Similar to the approach in [46], we use the reciprocal of the average burst length as the
transition probability between states. For example, if the average error burst length is 10
and the average error-free burst length is 1000, then the bad-to-good transition
probability is 0.1 and the good-to-bad transition probability is 0.001. The actual transition
probabilities used in our tests are calculated from the average burst length in the packet
traces we collected. In Figure 5.17, the good-to-bad transition probability is set to 0.01,

while the bad-to-good transition probability is set to 0.2.

Throughput (Kb/s)

7000
6000 {[] ] Bs g _ 1.
] 1. 8 . Bz B 2 O 1 Receiver
5000 - ] - B 2
O 3 Receivers
4000 B 10 Receivers
3000 | B 25 Receivers
= ® 50 Receivers
2000 - E
z @ 100 Receivers

1000 1 -

0 - . - =

fec10 fec20
Algorithms

Figure 5.17: Simulation throughput on bursty loss model

The relative protocol performance on bursty losses is similar to that under uniform
losses. One exception is that the performance of the AFRM-AL is slightly lower than that

of the AFRM-A2 as well as many other protocols, apparently due to a high proactive rate,

112



until the multicast group size becomes fairly large. On the other hand, AFRM-A2
outperforms most other protocols by a small amount in large groups.

This model is a better approximation to the real wireless losses than is the uniform loss
model. Since we adopt the independent loss approach here again, however, it also does

not consider loss correlation among receivers.

Synthetic Loss. As described earlier, the synthetic loss model is based on a combination

of the packet traces and the bursty loss model and therefore p the ad ges of

both models. Thus, it may be more realistic than the uniform loss model. Moreover, this
model takes into account of the loss correlation at multiple wireless stations. In this test,
we generated the synthetic trace using a real trace with a moderate loss rate (around 5%).

We plot the throughput for the various protocols in Figure 5.18.

7000 — e e

O1Recever |
03 Receivers
010 Receivers
B25 Receivers
] ] @ 50 Receivers
i | ® 100 Receivers|

TEE S

nofec rfec fec05 fec10 fec20 fecal feca2
Algorithms

Figure 5.18: Simulation throughput on synthetic loss model.

On the synthetic model, the performance difference among protocols becomes smaller.

Since the loss correlation makes the overall loss less “flat,” the proactive FEC protocols

113



are less effective in the NACK suppression approaches as they are on other models. The
AFRM protocols have no significantly better performance than others, but neither worse.
Once again AFRM-A2 outperforms AFRM-A1. However, if taking into account more
reverse traffic overhead, the AFRM-A1 protocol should have better performance in a real
network.

Since the packet losses are condensed, the number of receivers that simultaneously
send NACKs becomes larger. As a result, the NACK suppression approach should be
more effective on this model. To verify this hypothesis, we turn on the NACK
suppression flag and compare the performance in Figure 5.19. The number of receivers is
25. The result shows that the NACK suppression approach moderately improves the

performance in this case.

4000

3500 4
3000 -

2500
2000
1500

Throughput (Kb/s)

- )
——— No Suppression

1000 -
500 [ — =% — Local Suppression

0 r —

nofec rfec fec05 fec10 fec20 fecat feca2
Algorithms

Figure 5.19: Effect of NACK suppression on synthetic loss model.

114



5.3 Summary

In this chapter we presented the results of both experimental and simulation studies on
the performance of the AFRM protocols and other reliable multicast protocols. Although
the result of measurement depends on the channel loss model and the network
implementation, the AFRM protocols exhibit better overall performance than other
protocols, especially when the multicast group is large and the loss rate is high. In the
case of low loss rate and small networks, the gain from NACK suppression is also small.
Therefore it is likely that the AFRM protocols have slightly lower performance than the
others under these conditions. We believe that the protocols can be further optimized so
that they will have better performance when there is less reverse traffic. A possible
approach is to adopt a hybrid scheme in which the sender transmits proactive parity
packets only when both the channel loss rate and the number of receivers are larger than

threshold values.

115



Chapter 6

Related Work

As mentioned in Chapter 2, three major research areas are directly related to this
study: wireless networks, reliable multicasting and forward error correction. A number of
algorithms used in the AFRM protocols, such as proactive FEC and NACK suppression,
are based on previous research contributions in the reliable multicasting and FEC areas.
The wireless channel loss analysis and the error model design are based on recent
research in the area of wireless networks. In this chapter, we discuss the related works in

these areas and their relationship to our study.

6.1 Reliable Multicast

A large number of reliable multicast protocols have been proposed. They can be
classified into several categories based on their strategies in loss detection, loss recovery

and receiver hierarchy.

ACK-based and NACK-based Protocols. The Xpress Transport Protocol (XTP) [61] is
an ACK-based reliable multicast protocol. A XTP sender periodically requests receiver

status by setting a bit in the outgoing packets. Receivers respond to the request by

116



returning an ACK packet. The sender aggregates information from the ACKs and
retransmits data to the entire multicast group. As in XTP, an AFRM sender controls the
receiver behavior by setting flag bits in the outgoing packets.

The Log-Based Receiver-Reliable (LBRM) protocol [23] is a user-level
implementation of NACK-based reliable multicast protocol. In LBRM, a log server is set
up to manage data retransmissions. A sender transmits data by multicasting to the
receivers as well as to the log server. After the log server receives the data, the sender can
safely release the data buffers. When a retransmission is needed, the receiver sends a
request to the log server and the server handles the retransmission. To facilitate loss
detection, LBRM senders periodically transmit heartbeat packets. The heartbeat packets
are sent at variable rates, so that the senders can keep the total number of heartbeat
messages much smaller than that in fixed-rate protocols. Like LBRM, AFRM is also
NACK-based and implemented at the user level. An AFRM sender transmits keepalive
packets with binary exponential backoff, which is similar to the transmission of heartbeat
packets with variable rates in LBRM.

The Reliable Adaptive Multicast Protocol (RAMP) [32] is a transport layer protocol
on top of the IP multicast services. It is NACK-based and is designed to deal with
uncorrelated losses among receivers. In this protocol, a receiver returns a NACK by
unicasting immediately after a packet loss is detected. The sender responds to the NACK
with a unicast retransmission. This approach reduces the cases of unnecessary receiver
exposure to retransmissions since most packet losses are uncorrelated. Immediately
sending NACKs also decreases recovery time. Based on RAMP, we take the recovery

time into consideration when choosing NACK suppression algorithms in AFRM.

117



The Reliable Multicast Protocol (RMC) [69] is another NACK-based protocol. It
supports anonymous group memberships. It uses a combination of window-based and
rate-based flow control algorithms to ensure pure NACK-based reliability with limited
receiver buffer spaces. Although RMC is designed for use in the OS kemel, the code

structure of AFRM sender/receiver is mainly based on that of RMC.

Local Recovery. The Scalable Reliable Multicast (SRM) protocol [17] is an example of
unstructured local recovery with NACK suppressions. SRM defines local loss
neighborhoods based on the number of hops from the requesting host. A receiver with
packet losses transmits a NACK by multicasting, specifying the limit of routing hops or
TTL (Time-To-Live) value. Any other receivers overhearing the NACK can retransmit
the requested packets if the data is available, or cancel their own NACKs if they
experience the same losses. In the cases of retransmission, they send the packets by
multicasting with the same number of hops specified. Since both NACKs and
retransmissions are sent by multicasting, the recovery traffic is reduced. In AFRM, we
borrow from SRM the strategies of global NACK suppression and multicast
retransmission.

The Reliable Multicast Transport Protocol (RMTP) [53] is an ACK-based protocol
using structured local recovery. In this protocol, each receiver is assigned a designated
receiver (DR) to which it periodically sends ACKs. One DR serves multiple receivers and
processes ACKs to determine which packets to retransmit. A DR retransmits a particular
packet either by unicasting or by multicasting, depending on the number of receivers

requesting this packet. RMTP II [67] is an extension of RMTP. It integrates NACK, FEC

118



and other techniques into the RMTP protocol to improve scalability and real-time
performance.

The Tree-based Multicast Transport Protocol (TMTP) [74] is another example of
structured local recovery. In this protocol, receivers are grouped into domains. Each
domain has a domain manager. TMTP adopts an ACK-based approach to ensure
reliability between the sender and any domain manager, as well as between a domain
manager and its domain members. A receiver can aggregate several ACKs into one
packet to reduce feedbacks. It can also use NACKSs to speed up error detection in the case
of ACK aggregation.

Active Reliable Multicast (ARM) [38] is a loss recovery approach in which the routers
in the multicast tree play active roles in loss recovery. It uses a router as a DR in RMTP
or a domain manager in TMTP, integrating routing, feedback aggregation and subcast
retransmission in a natural way. It utilizes soft-state storage techniques to improve
performance and scalability.

A study of the random delay value in feedback suppression is described in [49]. That
study shows that an approach with exponentially distributed random delay leads to lower
feedback latency as well as higher feedback suppression efficiency than does an approach
with uniformly distributed delay. The proposed approach is scalable with respect to the
number of receivers, and it can effectively avoid feedback implosion. Although AFRM

uses uniformly distributed random delay, we do benefit from the analysis of this work.

Multiple Multicast Groups and Adaptive Approaches. Multiple multicast channels are

utilized in a number of research works to improve loss recovery efficiency. In [30], an

119



approach is proposed to reduce receiver processing costs as well as network bandwidth
consumption in a multicast session. It uses one multicast channel for data transmission
and several separate channels for retransmissions. The receivers dynamically join or
leave the retransmission channels. The work shows that this approach is efficient in
bandwidth saving since the chance of unnecessary receiver exposures to retransmission
traffic is reduced. The work also explores the tradeoff between the number of multicast
channels and the exposure cost.

In [75], a simple approach is proposed to adapt the number of multicast groups in
response to the perceived channel conditions. It utilizes both a centralized and a
distributed mechanism to determine the temporal dependence among packet errors. It
uses a predefined threshold value to differentiate bursty losses from other losses. In case
of bursty loss, it increases the number of multicast groups to maintain prompt and
efficient retransmissions.

A similar adaptive approach is proposed in [13]. In that work, an analytical model is
built to explore the tradeoffs between unicast and multicast retransmissions. As
mentioned in Chapter 2, multicast retransmissions have great advantage over unicast
retransmissions in the case of correlated losses. On the other hand, the multic_ast
approaches will waste network bandwidth when losses are less correlated, because in that
case a receiver might receive unneeded retransmission packets. This work studies the
problem and proposes an approach that chooses the best retransmission method based on
the information of the network topology and the number of receivers. An extension of
this work [14] introduces an approach that dynamically switches between multicast and

unicast retransmissions according to the amount of extra load generated in the network.

120




Similar to these approaches, AFRM also adapts retransmission strategies in response to

the channel condition changes.

Performance Analysis and Comparison. Many reliable multicast protocols exhibit
different performance when the underlying environment changes. It is very hard to design
a protocol that is optimal under all conditions. To facilitate making tradeoffs in a specific
environment, it is desirable to have quantitative performance results for various algorithm
candidates. A number of research works focus on the performance analysis and
comparison of reliable multicast protocols. In [66], an analytical evaluation of an ACK-
based and two NACK-based protocols is described. The major evaluation metric is the
host processing time instead of the network bandwidth consumption. The analysis
assumes independent losses. The results show that the NACK-based protocols are
superior to the ACK-based protocol. In [3], the authors evaluate and compare various
reliable multicast protocols such as XTP, MTP [35], SRM, MFTP [42], RMP [l11],
RMTP, PGM [60], and TMTP. The metrics include reliability, scalability, feedback

control, flow control, locus of control, late join/leave and efficiency.

Loss Estimation and Loss Differentiation. A few research works study the problem of
loss estimation in a multicast tree. In [9], the authors propose an approach to estimate loss
probabilities in the interior of a network. The approach is based on end-to-end
measurement. In this approach, a source multicast probes that are recorded at each leaf of
the multicast tree. The proposed Maximum Likelihood Estimator (MLE) exploits the

inherent correlation between loss observations at different receivers. The results infer the

121



performance of paths between branch points in the multicast tree from the probe source to
the receivers. The analytical model is validated by simulations.

As an example of loss differentiation, the work in [21] proposes an epoch-based
approach to differentiate congestion losses from other losses. In this approach, loss
notifications from the receivers are examined. If the notifications are transmitted in the
same epoch (i.e., a short time interval), they are likely to be indications of congestion
losses, and so that they are aggregated. Otherwise they are probably uncorrelated losses,
and hence are reported to the sender individually. The classification is smoothed using a

running average algorithm on the length of epochs.

6.2 Forward Error Correction

Many reliable multicast protocols use FEC mechanisms to increase the efficiency of
error recovery. In [19], the FCAST and ECSRM protocols are proposed. They combine
FEC with multicast retransmissions and exhibit better scalability than non-FEC
approaches. As another example, a protocol combining active repair service (i.e. local
recovery) and FEC is proposed in [58]. That work shows that such an approach improves
bandwidth utilization efficiency over both non-FEC repair services and end-to-end FEC
approaches. In domains with high loss or a large number of receivers, this approach can

reduce bandwidth consumption as well as buffer requirements at repair servers.

FEC+ARQ. FEC approaches are often combined with ARQ in reliable multicast

protocols in order to support complete reliability. In [29], the SHARQFEC approach is

122



proposed. It is a hybrid FEC+ARQ approach that operates in an end-to-end fashion. It
utilizes receiver hierarchy to conduct local recovery. FEC is selectively added to regions
that experience high losses.

The RMDP protocol [57] is another hybrid FEC+ARQ protocol. Several of its
operating parameters are determined based on the conditions of the network. One such
parameter controls the rate of proactive parity packets sent along with the data packets.
The study shows that the appropriate value of the proactive rate depends on the loss rate.
A value between 1.5 and 2.0 makes the probability of NACKSs very low. The protocol
uses global NACK suppression to reduce the feedback traffic.

Like RMDP, the Collaborative Reliable Multicast (CRM) protocol [43] is another
approach using proactive FEC parity packets. It improves the performance at the nodes
that are under emission control or are connected by links with low reverse direction
capacities. Similar to RMDP and CRM, AFRM also uses proactive parity packets and
global NACK suppression to reduce feedback traffic. However, their strategies in

parameter determination are substantially different.

Adaptive FEC. A number of adaptive FEC approaches have been proposed. Some of
those approaches are based on the adaptation of the amount of redundant information in a
frame. Others adapt the FEC encoding parameters n and k at the packet level; examples
include ARAM [2], MA_FEC [48] and ARQ/AFEC [59]. Most of these also utilize
proactive FEC mechanisms. In MA_FEC, as an example, a table of optimal FEC code is

maintained. In response to channel condition changes, the protocol looks up the most

123



appropriate FEC code in the table and starts using this code in the following
transmissions.

In [70], a protocol that adapts FEC proactive rate is proposed. This link layer protocol
additively increases the proactive rate when the perceived channel loss rate is high and
multiplicatively decreases the proactive rate when the perceived channel loss rate is low.
Based on SNR (Signal/Noise Ratio) analysis, the authors claim that an indoor wireless
channel is temporarily stationary only during a short time interval. They also pointed out
that losses are caused either by distance dependent signal degradation or by random
interference, and the number of stations within a cell has little effect on the average loss
rate. Since the protocol works at the link layer, the loss notifications can reach the
transmitter fast enough to ensure that the channel estimation based on past losses is
reasonably accurate for the prediction of future losses. Like this approach, AFRM-Al
also utilizes AIMD mechanisms to adapt the proactive rate. However, AFRM runs at the
user level, which leads to relatively inaccurate channel estimations. As a result, AFRM-
A2 takes the average error burst length into consideration when calculating the proactive
rate.

The W-WBRM protocol [39] is designed as a component of the Pavilion middleware
framework. The protocol is implemented at the application level. It also adopts AIMD
algorithms for FEC proactive rate adaptation. In this work, the channel condition is
estimated using the number of received NACKSs. The proactive rate is applied to both
data packets and retransmission packets, since the retransmission packets could also be
lost. The proactive rate adaptation algorithm in AFRM-A1 is basically the same as that in

the W-WBRM protocol, except for some minor modifications. For example, in W-

124



WBRM the proactive rate is cumulatively increased whenever a NACK packet is
received, while the AFRM-A1l protocol recalculates the proactive rate in a non-
cumulative manner upon receiving a NACK packet. The formulae for proactive rate

calculations are also different.

Performance Analysis and Other Work. A number of research works focus on the
performance analysis of FEC algorithms. In [50] and [51], the authors build analytical
models for hybrid FEC+ARQ approaches. The performances of those approaches are
studied under different loss models, such as spatially or temporally correlated loss
models, homogeneous or heterogeneous loss models. The results show that integrating
FEC with ARQ either at the same layer or at different layers will improve both efficiency
and scalability for multicast transmissions.

The work in [44] studies the group loss probabilities of FEC in shared loss multicast
communications. The CDF (Cumulative Distribution Function) for successful deliveries
in a multicast tree is presented, as well as the expected value of the packet loss length.
Some applications of those formulae are described.

The work in [55] studies the performance of a FEC recovery approach for IP
telephony in a queuing system. Using a M/M/1/K model in the probability analysis, the
work shows that the simple FEC approach is not appropriate for audio streams in this

environment, where packet losses are mainly caused by buffer overflow.

125



6.3 Wireless Network Studies

Among the huge volume of research works in the field of wireless networking, we
select and describe a few that are directly related to our study, including IEEE 802.11
wireless LAN performance analysis, performance of communication protocols over

wireless LANs, wireless packet trace analysis and wireless channel modeling.

IEEE 802.11 Wireless LAN Performance Analysis. In [1] and [27], the authors
measure the actual throughput of a 2.4GHz product of IEEE 802.11 wireless LAN. They
analyze the sources of overhead, categorizing them into the inter-packet gap time,
preamble, header fields for the PHY and MAC layer, and control frames such as ACK or
RTS/CTS. The impact of the overhead is modeled. Comparisons show that the results of
the model closely fit the measurement results. The model indicates that the maximum
theoretical MAC layer throughput for 11Mbps bit rate is about 7.43Mbps. The maximum
theoretical TCP throughput is about 5.2Mbps. The model is also used to predict the
throughput in SGHz 802.11a networks. The TCP throughput in such networks with
54Mbps bit rate can reach 29Mbps. We use these values to validate our simulation
framework.

In [22] and [45], the impacts of the 802.11 MAC protocol parameters on the network
performance are studied through simulation. A simplified model of 802.11 DCF is built
in [22]. The effects of the backoff procedure, the extended interface spaces (EIFS), and
the timing synchronization function (beacon) are studied using this model. Simulation
results show that the bandwidth reduction due to EIFS and beacons is less than 10%. In

[45], the simulation results are used to help determine both the effective throughput and

126



the mean packet delay for an offered load with different values of contention window size
and number of contending stations. The study shows that the proper choice of CW
(Contention Window size) has significant influence on the network performance.

In [7], [8] and [10], the authors derive analytical formulae for 802.11 protocols. In [7]
and [8], the CSMA/CA based 802.11 DCF is studied. An analytical model is built to
compute both the saturation throughput and the collision rate. The analysis is based on
the usage of the discrete-time Markov chain. Both basic access and RTS/CTS access
mechanisms are studied. Simulation results show that the analytic model is very accurate.
In [10], the derived analytical formula is used to calculate the theoretical upper bound of
the 802.11 protocol capacity. The work shows that the protocol could operate far from the
theoretical limit depending on the network conditions, and an appropriate tuning of the

backoff parameters could make the performance closer to the theoretical limit.

Communication Protocols over Wireless LANSs. In [71], [72] and [73], the performance
of the standard Internet protocols such as TCP and UDP are studied over wireless
networks. In [73], the issues such as the host and interface heterogeneity, TCP bi-
directional traffic, and error modeling are explored in a 2.4GHz DSSS wireless LAN.
Many performance problems of TCP and UDP over wireless LANs are uncovered, such
as the problems of achievable UDP throughput, fast sender and slow receiver, PCMCIA
sender, collisions due to bad synchronization, and timer granularity. In [71] and [72],
more such problems are discussed and approaches for improvement are suggested and

examined. In [72], a mechanism for comprehensive link layer enhancement is proposed.

127



In [4], a number of approaches for TCP performance improvement over wireless links
are described and compared. These approaches are classified into several categories, such
as end-to-end protocols, link-layer protocols and split-connection protocols. For each
approach, the experimental results on throughput and goodput in both LAN and WAN are
presented. The work shows that a reliable TCP-aware link layer protocol will
significantly improve the performance of TCP. The approaches such as selective
acknowledgements and explicit loss notifications are also effective in performance
improvement.

A loss differentiation algorithm for TCP flow control is proposed in [5]. The algorithm
aims to improve TCP performance over wireless links. The approach is a pure transport
layer solution. It examines the relationship between the slow start threshold value and the
number of transmitted packets. A pair of decreased threshold value and an increased
packet number indicates wireless losses. The algorithm distinguishes congestion losses
from wireless losses in this way so that the TCP flow control algorithm can make a
correct decision in sending rate adaptation. In AFRM, we use a different algorithm for
loss differentiation, which is based on the observation of queueing loss correlation.
However, this kind of approaches that are based on the correlation between sending rate
and reported losses could also be integrated into AFRM to improve differentiation

effectiveness.

Wireless Trace Analysis and Channel Modeling. In [62], a twelve-week trace of a

building-wide wireless LAN is collected. The overall user behavior, overall network

traffic, observed throughput, and traffic characteristics from a user point of view are

128



analyzed based on the collected trace. A number of interesting facts are discovered. For
example, the peak throughput is usually caused by a single user/application.

The authors in [46] collect a large number of wireless packet traces in a 2Mbps
WaveLAN. Data analysis shows that the packet error rate is not correlated to the
transmission rate. The error rate increases with both the packet size and the distance
between the sender and the receiver. A two-state Markov model is created for wireless
error modeling. Since the resulting trace of the model dose not match the real trace very
well, an improved two-state model with hybrid burst length distribution is proposed and
evaluated. Results show that the improved model is more accurate than both the uniform
loss model and the original two-state model. We adopt a similar approach to build the
revised bursty loss model in the simulation framework

In [33], an algorithm is designed to model the time-varying effects on wireless
channels. Packet traces in a GSM network are collected. The traces are divided into
several stationary components based on the error distributions. The transitions between
the components are modeled as a high order Markov process. The work shows that the
proposed model is more accurate to represent channel characteristics such as burstiness
and error distributions. Artificial traces based on this model are generated and compared
to both EED (Even Error Distribution) and Gilbert traces. Results show that the traces of
the proposed model are closer to the real traces than those of the other models.

The work in [76] claims that the two-state Markov model might be inadequate to
represent some time-varying channels. However, computational complexity makes the
models with larger number of states hard to use, and the quality of a channel model is not

proportional to the number of states it uses. The work proposes a three-state model to

129



improve modeling accuracy with limited computational overhead. The model consists of
one good state and two bad states. It is applied to the packet delay prediction in an
ARQ/queuing system that operates over a fading channel. Results show that the proposed
model is more accurate than a two-state model in such environment.

In [47], the performance of a FEC multicast approach is studied on a two-state Gilbert-
Elliot model. An analytic model for the FEC protocol is built on the two-state channel
model to evaluate the protocol .performance. Numerical results show that FEC
outperforms ARQ except in the case of very low bit error rates. The analysis also shows
that there is no unique best code so that protocols should adapt the FEC code they use in
response to the channel condition changes.

The work in [16] proposes an adaptive FEC approach in wireless networks. The FEC
approach adapts the ratio of the redundant information in a packet according to the
channel conditions. Several fixed or adaptive adaptation policies are proposed. A large
number of wireless traces are collected and analyzed. The performances of the adaptation

policies are evaluated and compared on the colleted traces.

130




Chapter 7

Conclusions

Summary. In this study we explored algorithms for reliable multicasting over wireless
LANs, and we proposed and evaluated an adaptive FEC-based protocol. First we
collected a number of wireless packet traces on an 11Mbps 802.11b wireless LAN. Based
on those traces and other analytical models, we identified the major factors that affect the
performance of a reliable multicast protocol in such environments. Then we proposed the
AFRM protocol, which integrates several component algorithms to achieve high
throughput WLANSs. The protocol combines proactive FEC and NACK suppression in
order to improve performance and the scalability by reducing the adverse effects of
reverse traffic. In the protocol, the sender transmits packets by multicasting to all
receivers in a multicast group. It also transmits a certain number of proactive FEC parity
packets along with the data packets. Upon receiving a NACK, the sender responds by
sending the requested number of parity packets, plus additional proactive parity packets.
In both cases the number of proactive parity packets is calculated according to the
estimated wireless channel conditions. To reduce congestion at the access point, the
protocol requires the receivers to report packet loss bitmaps to the sender so that the
sender can differentiate wireless propagation losses from queuing losses and apply

appropriate congestion control algorithms. To further improve performance, the protocol

131




adopts both local and global NACK suppression algorithms, activating one of them when
it is more effective than the other.

We evaluated the AFRM protocol and compared it with several other reliable
multicast protocols through both experimentation and simulation. We studied the
protocol behavior in a wireless LAN with up to three receivers. The experiments were
conducted in both “normal” indoor conditions and in environments with artificial losses.
For the simulations, we built a general-purpose network simulation framework that
supports application code reuse. The IEEE 802.11 wireless LAN MAC protocols and
multiple wireless channel loss models are also supported. We implemented a simple
random loss model, a bursty loss model and a synthetic loss model. The framework also
supports packet trace replay. We set up a simulated wireless network with up to 100
receiver stations. The protocol behavior was studied in this environment on all the loss
models. Both experimental and simulation results show that the protocol has acceptable
performance in small-scale network with low loss rate. Moreover, simulation results
indicate that the proposed protocol outperforms the other protocols in large-scale

networks or under situations of relatively high loss rate.

Future Work. A number of problems are open to further investigation. First, the channel
condition estimation in AFRM can be improved. Due to the bursty and dynamic nature of
wireless losses, it is almost impossible to derive a precise formula for loss prediction. A
possible improvement is to take into consideration more history information when
making the estimation, such as the long-term average loss rate and the performance of the
previous proactive rate. Second, depending on the environment, one of the AFRM-Al

and AFRM-A2 algorithms exhibits better performance. A hybrid approach combining

132



these two algorithms might be able to achieve higher overall performance. Third, a more
effective loss differentiation approach will be helpful to improve the flow control
algorithm in AFRM protocols. Fourth, an integrated analytical model is needed to
improve our understanding of the problem and help design a better adaptation algorithm.
Fifth, the effects of other protocol parameters, such as the packet size, the packet group
size and the NACK suppression windows size, on the performance of the protocols are
worth studying. Finally, a more realistic and comprehensive loss model would be helpful

to produce simulation results with higher confidence.

133



Bibliography

[1] G. Aben. "Throughput Performance of Wireless LANs Operating at 2.4 and 5 GHz".
In 11th IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC 2000), pp. 190-195, London, Sep. 2000.

[2] F. Alagoz, D. Walters, A. Alrustamani, B. Vojcic, and R. Pickholtz. "On the Effects
of Adaptive Forward Error Correction Mechanism in Direct Broadcast Satellite
Networks". In Proceedings of the 2" ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, 1999.

[3]1S. V. Appala, and J. R. Austen. "An Evaluation of Reliable Multicast Protocols". In
Proceedings of IEEE Southeastcon '99. pp. 165-168. 1999.

[4] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz. "A Comparison of
Mechanisms for Improving TCP Performance over Wireless Links". In Proceedings of
ACM SIGCOMM '96, pp. 256-269, 1996.

[5] Deepak Bansal, Anurag Chandra and Rajeev Shorey. "An Extension of TCP Flow
Control Algorithm for Wireless Networks". In IEEE International Conference on
Personal Wireless Communication (ICPWC'99), Jaipur, India.

[6] V. Bharghavan et al. "MACAW - A Media Access Protocol for Wireless LAN’s". In
ACM SIGCOMM, pp. 212-225, Aug. 1994.

[7] G. Bianchi. "IEEE 802.11-Saturation Throughput Analysis". In IEEE
Communications Letters, 2, 12, pp. 318 -320, Dec. 1998.

[8] G. Bianchi. "Performance Analysis of the IEEE 802.11 Distributed Coordination
Function". IEEE Journal on Selected Areas in Communications, 18, 3, pp. 535-547,
March 2000.

[9] R. Caceres, N.G.Duffield, J. Horowitz, and F. Towsley. "Multicast-Based Inference
of Network-Internal Characteristics: Accuracy of Packet Loss Estimation". IEEE
Transactions on Information Theory, Vol. 45, No. 7, pp. 2462-2480, Nov. 1999.

[10] F. Cali, M. Conti, and E. Gregori. "IEEE 802.11 Wireless LAN: Capacity Analysis
and Protocol Enhancement"”. In Proceedings of IEEE INFOCOM, 1998.

[11] J. Callahan, and T. Montgomery. "Approaches to Verification and Validation of a

Reliable Multicast Protocol”. In Proceeedings of the 1996 International Symposium on
Software Testing and Analysis, San Diego, CA, January 1996.

134



[12] Cisco Aironet 340 Series Base Station,
http://www .cisco.com/univercd/cc/td/doc/pcat/340base.htm#BABFECDE

[13] Carlos de Morais Cordeiro, Judith Kelner e Djamel Sadok. "Establishing a Trade-off
Between Unicast and Multicast Retransmission Modes for Reliable Multicast Protocols".
Eighth IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems MASCOTS 2000, August 2000, San
Francisco CA, USA.

[14] Carlos de Morais Cordeiro, Judith Kelner, Djamel Sadok e Paulo Cunha. "An
Enhanced Reliable Multicast Protocol for Wireless Environments". In Proceedings of the
IEEE Vehicular Technology Conference (VI C’'2000). pp. 975-982, September, Boston,
USA, 2000.

[15] Peter Danzig. "Flow Control for Limited Buffer Multicast". In I[EEE Transactions on
Software Engineering, 20(1):1-12, January 1994.

[16] David A. Eckhardt, and Peter Steenkiste. "A Trace-based Evaluation of Adaptive
Error Correction for a Wireless Local Area Network". In Mobile Networks and
Applications 4, 4. (Dec 1999) , pp. 273-287.

[17] Sally Floyd, Van Jacobson, Steven McCanne, Ching-Gung Liu, and Lixia Zhang. "A
Reliable Multicast Framework for Light-Weight Sessions and Application Level
Framing". In Proceedings of ACM SIGCOMM'95, pp 342--356. Cambridge, MA, USA,
28 August--1 September 1995.

[18] F. C. Fujiwara, M. Kasahara, K. Yamashita, and T. Namekawa. "Evaluations of
Error-control Techniques in Both Independent and Dependent Error Channles". IEEE
Transaction on Communications, COM-26(6):785-793, 1978.

[19] J. Gemmell, E. Schooler, and R. Kermode. "A Scalable Multicast Architecture for
One-to-many Telepresentations”, IEEFE International Conference on Multimedia
Computing Systems (ICMCS '98), pp. 128-139, 1998.

[20] E. N. Gilbert, "Capacity of a Burst-noise Channel", Bell System Tech. Journal,
39:1253-1265, September 1960.

[21] S. Ha, K. Lee, amd V. Bharghavan. "A Simple Mechanism for Improving the
Throughput of Reliable Multicast". In Proceedings of ICCCN '99 (the Eighth
International Conference on Computer Communications and Networks), Boston, MA,
October 1999.

[22] A. Heindl, and R. German. "The Impact of Backoff, EIFS, and Beacons on the
Performance of IEEE 802.11 Wireless LANs". In Proceeding of 4th IEEE International
Computer Performance and Dependability Symposium, pp. 103-112, Chicago, IL, March
2000.

135



[23] Hugh W. Holbrook, Sandeep K. Singhal, and David R. Cheriton. "Log-Based
Receiver-Reliable Multicast for Distributed Interactive Simulation”. In Proceedings of
SIGCOMM'95, August 1995.

[24] C. Huitema. "The Case for Packet Level FEC". In Proceedings of IFIP 5th
International Workshop on Protocols for High Speed Networks (PfHSN'96), pp. 110--
120, INRIA, Sophia Antipolis, FRANCE, October 1996.

[25] IEEE 802.11, 1999 Edition (ISO/IEC 8802-11: 1999) IEEE Standards for
Information Technology -- Telecommunications and Information Exchange between
Systems -- Local and Metropolitan Area Network -- Specific Requirements -- Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. http://standards.ieee.org/getieee802/802.11.html

[26] R. Jain, and K. Ramakrishnan. "Congestion Avoidance in Computer Networks with
a Connectionless Network Layer: Concepts, Goals, and Methodology". In Proceedings of
IEEE Computer Networking Symposium, Washington, D.C., pp.134-143, April 1988.

[27] A. Kamerman, and G. Aben. "Net Throughput with IEEE 802.11 Wireless LANs".
In IEEE Wireless Communications and Networking Confernce 2000 (WCNC. 2000), Vol
2, pp.747 -752, 2000.

[28] P. Karn. "MACA - A New Channel Access Method for Packet Radio". In
ARRL/CRRL Amateur Radio 9" Computer Networking Conference, pp. 134-140, Apr.
1990.

[29] R. Kermode. "Scoped Hybrid Automatic Repeat Request with Forward Error
Correction (SHARQFEC)". ACM SIGCOMM 98, September 1998, Vancouver, Canada.

[30] S. K. Kesera, G. Hjalmtysson, D. F. Towsley, and J.F. Kurose. "Scalable Reliable
Multicast Using Multiple Multicast Channels". In IEEE/ACM Trans. Networking, vol. 8.
pp 294-309, Jun. 2000.

[31] L. Kleinrock, and F.A. Tobagi. "Packet Switching in Radio Channels: Part I -
Carrier Sense Multiple Access Modes and Their Throughput-Delay Characteristics”. In
IEEE Transactions on Communications, vol. COM-23, no. 12, pp. 1400-1416, 1975.

[32] A. Koifman and S. Zabele. "RAMP: A Reliable Adaptive Multicast Protocol”. In
Proceedings of IEEE INFOCOM, pages 1442--1451, March 1996.

[33] Almudena Konrad, Ben Y. Zhao, Anthony D. Joseph, and Reiner Ludwig. "A
Markov-based Channel Model Algorithm for Wireless Networks". In MSWIM'01, 2001.

[34] J. Korhonen, "HIPERLAN/2", Department of Computer Science and Engineering,

Helsinki University of Technology, Jan. 1999, http://www.tml.hut.fi/Studies/Tik-
110.300/1999/Essays/hiperlan2.html

136



[35] D. R. Kosiur. "IP Multicasting: The Complete Guide to Interactive Corporate
Networks". May 1998, John Wiley & Sons.

[36] V. Kumar. "MBone: Interactive Multimedia on the Internet". Indianapolis, IN: New
Riders, 1996.

[37]J. Kuni, and S. Kasera. "Reliable Multicast in Multi-access Wireless LANs", In IEEE
INFOCOM’99, March 1999.

[38] L. Lehman, S. Garland, and D. Tennenhouse. "Active Reliable Multicast". In IEEE
INFOCOM'98. IEEE, March 1998.

[39] Philip K. McKinley, and Arun P. Mani. "An Experimental Study of Adaptive
Forward Error Correction for Wireless Collaborative Computing”, In Proceedings of the
2001 IEEE Symposium on Applications and the Internet (SAINT-2001), San Diego-
Mission Valley, California, January 2001.

[40] P. K. Mckinley, C. Tang, and A. P. Mani, "A Study of Adaptive Forward Error
Correction for Wireless Collaborative Computing”, IEEE Transactions on Parallel and
Distributed Systems Special Issue on Mobile Computing, 2002.

[41] Mesquite Software Inc., "CSIM 18 -- A Low Cost Development Toolkit for
Simulation and Modeling", http://www.mesquite.com.

[42] K. Miller, K. Robertson, A. Tweedly, and M. White. "StarBurst Multicast File
Transfer Protocol (MFTP) Specification--An Internet Draft". Available from
http://www.ietf.org/internet-drafts/draft-miller-mftp-spec-03.txt.

[43] W. L. Miller, R. M. Ollerton, A. Shum, and C. J. Warmer. "Proactive FEC-Based
Forwarding for the Collaborative Reliable Multicast Protocol". EUROCOMM 2000.
Information Systems for Enhanced Public Safety and Security. pp. 269 -273,
[EEE/AFCEA , 2000.

[44] M. Mosko, and J.J. Garcia-Luna-Aceves. "An Analysis of Packet Loss Correlation in
FEC-Enhanced Multicast Trees". In Proceedings of 8th IEEE International Conference
on Network Protocols (ICNP 2000), Osaka University Convention Center, Osaka, Japan,
November 14 - 17, 2000.

[45] M. Natkaniec and A. Pach. "An Analysis of the Backoff Mechanism Used in IEEE
802.11 Networks". In Proceeding of ISCC, 2000.

[46] Giao T. Nguyen, Randy Katz, and Brian Noble. "A Trace-based Approach for
Modeling Wireless Channel Behavior". In Proceedings of the Winter Simulation
Conference, pages 597--604, December 1996.

[47] Neda Nikaein, and Christian Bonnet. "On the Performance of FEC for Multicast
Communication on a Fading Channel". In proceedings of International Conference on
Telecommunications ICT, Acapulco, Mexico, May 2000.



[48] Neda Nikaein, Houda Labiod, and Christian Bonnet. "MA-FEC: a QoS-Based
Adaptive FEC for Multicast Communication in Wireless Networks". In Proceedings of
International Conference on Communications ICC, New Orleans, USA, June 2000.

[49] J. Nonnemacher, and E. Biersack. "Scalable Feedback for Large Groups”,
IEEE/ACM Transactions on Networking, June 1999.

[50] J. Nonnenmacher, E. Biersack, and D. Towsley. "Parity-Based Loss Recovery for
Reliable Multicast Transmission". Technical Report 97-17, Dept. of Computer Science,
U. Massachusetts, March 1997.

[51] J. Nonnenmacher, M. Lacher, M. Jung, E. Biersack, and G. Carle. "How Bad is
Reliable Multicast without Local Recovery?". In Proceedings of IEEE INFOCOM, San
Francisco, CA, USA, March 1998.

[52] Christos Papadopoulos, Guru Parulkar, and George Varghese. "An Error Control
Scheme for Large-scale Multicast Applications". In Proceedings of IEEE INFOCOM,
1998.

[53] S. Paul, K. Sabnani, J. Lin, and S. Bhattacharyya. "Reliable Multicast Transport
Protocol (RMTP)". IEEE Journal on Selected Areas in Communications, vol. 15, no. 3,
pp- 407--21, Apr. 1997.

[54] S. Ramakrishnan, and B. N. Jain "A Negative Acknowledgement with Periodic
Polling Protocol for Multicast over LAN". In Proceedings of IEEE INFOCOM, April
1997.

[55] Victor M. Ramos, Chadi Barakat and Eitan Altman. "Queueing Analysis of Simple
FEC Schemes for IP Telephony". In Proceedings of IEEE INFOCOM, Anchorage, April,
2001.

[56] L. Rizzo. "On the Feasibility of Software FEC", DEIT Tech Report,
http://www.iet.unipi.it/~luigi/softfec.ps, Jan 1997.

[57] L.Rizzo, and L. Vicisano. "RMDP: an FEC-based Reliable Multicast Protocol for
Wireless Environments". ACM Mobile Computing and Communications Review, 2, 2,
April 1998.

[58] D. Rubenstein, S. Kasera, J. Kurose, and D. Towsley. "Improving Reliable Multicast
Using Active Parity Encoding Services (APES)". In Proceedings of IEEE INFOCOM,
1999.

[59] A. Shiozaki, K. Okuono, K. Suzuki, and T. Segawa. "A Hybrid ARQ Scheme with
Adaptive Forward Error Correction for Satellite Communications”. IEEE Transactions
on Communications, vol. 39, pp. 482-484, April 1991.

138




[60] T. Speakman, R. Edmonstone, D. Farinacci, S. Lin, A. Tweedly, L. Vicisano, and J.
Gemmell. "PGM Reliable Transport Protocol Specification". INTERNET-DRAFT, June
1999.

[61] W. T. Strayer. “Xpress Transport Protocol Specification Revision 4.0". XTP Forum,
March 1995.

[62] Diane Tang, and Mary Baker. "Analysis of a Local-Area Wireless Network". In
Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom 2000), Boston, MA, USA, Aug. 2000.

[63] K. Tang, and M. Gerla. "MAC Layer Broadcast Support in 802.11 Wireless
Networks". In Proceedings of IEEE MILCOM, pp. 544-548, Oct. 2000.

[64] K. Tang, and M. Gerla. "MAC Reliable Broadcast in Ad Hoc Networks". In
Proceedings of IEEE MILCOM, McLean, VA., Oct. 2001.

[65] K. Tang, and M. Gerla. "Random Access MAC for Efficient Broadcast Support in
Ad Hoc Networks". In IEEE WCNC, Chicago, IL., Sep. 2000.

[66] D. Towsley, J. Kurose, and S. Pingali. "A Comparison of Sender-Initiated and
Receiver-Initiated Reliable Multicast Protocols". IEEE Journal on Selected Areas in
Communications, April 1997.

[67] Brian Whetten, and Gursel Taskale. "An Overview of Reliable Multicast Transport
Protocol II". In IEEE Network, pp.37-47, January/February 2000.

[68] T. Wilkinson. "HIPERLAN - An Air Interface Designed for Multi-Media". Hewlett
Packard Laboratories, 1995, http://www.hpl.hp.com/techreports/95/HPL-95-47 .pdf.

[69] Robin Wright. "Design and Implementation of a Reliable Multicast Protocol".
Master’s Thesis, Dept. of Computer Science, Michigan State University, October 1998.

[70] Y. Xu, and T. Zhang. "An Adaptive Redundancy Technique for Wireless Indoor
Multicasting”. In Proceedings of IEEE Symposium on Computers and Communications ,
2000 (1SCC 2000), Antibes-Juan les Pins, France, 4-6 July, 2000.

[71] George Xylomenos and George C. Polyzos. "Internet Protocol Performance over
Network with Wireless Links". In IEEE Network, 13, 4, pp. 55-63, 1999.

[72] G. Xylomenos and G. C. Polyzos. "Internet Wireless Link Performance"”. Technical
Report #9801, Center for Wireless Communications, University of California, San Diego,
La Jolla, CA, USA, January 1998.

[73] G.Xylomenos, and G.Polyzos. "TCP and UDP Performance over a Wireless LAN".
In Proceedings of the IEEE INFOCOM, 1999.

139



[74] Rajendra Yavatkar, James Griffioen, and Madhu Sudan. "A Reliable Dissemination
Protocol for Interactive Collaborative Applications”. In Proceedings of the ACM
Multimedia’95 Conference, November 1995.

[75] S. Yoon. "Reliable Multicast Considering the Temporal Dependence in Packet
Loss". INET 2001, Stockholm, Sweden, 2001.

[76] M. Zorzi, and R.R. Rao. "On Channel Modeling for Delay Analysis of Packet
Communications over Wireless Links". In 36th Annual Allerton Conference, Allerton
House, Monticello, IL, Sep. 1998.

140







i
3 1293 02372 02‘73



