
m
.

.
.

‘

4
.
.

-
s

.
.

.
.
u
n
s
-
.

.
«
u

.
.
.

‘
fi
r
.

"
«
,
3
m
"
'
a
w
‘
r

m
.

.
A
“
-

-
‘
x

.

u
‘

:
9
»
,
-

.
-

.
4
.

m

4
.
.
u
‘
.

 
 

n
.
.
.
A
.

,
.
n
t
h
u

a
n
.
.
.

.
,
.
.
.
.
_

M
3

.
“
A
h

u
.

.
4
.
m

I

‘
.'

“
L
.

.
,

.
V

‘
l

u
.

«
$
5
2
2
.
9
;
3
,
;

’.

 



Tl HESIS

9.

,3 .90 2

This is to certify that the

thesis entitled

ADAPTIVE RELIABLE MULTICAST

IN WIRELESS LOCAL AREA NETWORKS

presented by

Chiping Tang

has been accepted towards fulfillment

of the requirements for

‘MS———‘.. degree mEomputizzrfi‘cience

15%?m/
Major professor

Date 5”19/01-

07639 MSU is an Affirmative Action/Equal Opportunity Institution

_ , —._ .—_..__...__—

 



 

LIBRARY

Michigan State

University 
  

PLACE IN RETURN Box to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

 

 

 

 

 

 

 

 

     
6/01 cJCIRC/DateDuepSS-p. 15

 
 



ADAPTIVE RELIABLE MULTICAST

IN WIRELESS LOCAL AREA NETWORKS

By

Chiping Tang

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science and Engineering

2002



ABSTRACT

ADAPTIVE RELIABLE MULTICAST

IN WIRELESS LOCAL AREA NETWORKS

By

Chiping Tang

Wireless local area networks exhibit substantially different characteristics from their

wired counterparts: limited bandwidth, bursty packet loss, and receiver—specific loss

patterns. In these environments, a network protocol should constantly adapt its algorithms

and parameters in response to the changing channel conditions.

’In this research, we propose and implement a reliable multicast protocol that

adaptively adjusts parameters in response to channel condition changes. The relevant

parameters include the proactive FEC rate, the global NACK suppression flag, and the

sending rate. The protocol derives channel condition factors, such as packet loss rate and

contention degree, based on feedback from receivers. The protocol is implemented at the

application level and it requires no special link layer support. Analysis and simulation

results show that the protocol has good overall performance in most cases, in terms of

transmission throughput. The factors that degrade the performance are pointed out and

discussed.

Our experience of wireless network simulation shows that an accurate channel loss

model is critical to protocol performance evaluation. Based on the collected packet traces,

we developed a novel channel model that takes into account the correlation of losses

among multiple receivers. The model is used for evaluation of our protocol. It could be

applied to other studies that involve wireless group communications.



To my wife Qi, and my son Colin

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Philip K. McKinley,

for his great support, professional advice, and profound understanding. Without these, I

could not have completed this work. I also thank Professors Abdol—Hossein Esfahanian

and Sandeep Kulkarni for serving in my thesis committee.

Many other people helped me during the process of finishing this work. I am grateful

to Arun P. Mani, Udiyan Padmanabhan, Peng Ge, Seyed Masoud Sadjadi, and other

faculty members and graduate students in Software Engineering and Network Systems

Laboratory. I also owe a lot of gratitude to my wife Qi, for her selfless support and love.

iv



TABLE OF CONTENTS

 

 

 

 

 

 

 

 

 

 

LIST OF TABLES VII

LIST OF FIGURES VIII

CHAPTER 1 I

INTRODUCTION 1

I . I MOTIVATION .................................................................................................................... I

I .2 CHALLENGES ................................................................................................................... 3

1.3 CONTRIBUTIONS AND STRUCTURE OF THESIS ................................................................. 5

CHAPTER 2

BACKGROUND

2.1 WIRELESS NETWORKS ..................................................................................................... 9

2.1.1 Wireless Loss Characteristics................................................................................ 10

2. I . 2 CSMA/CA............................................................................................................... 12

2.1.3 The IEEE 802.11 Standard .................................................................................... 15

2.2 RELIABLE MULTICAST ................................................................................................... 18

2. 2.1 Error Recovery ...................................................................................................... 18

2.2.2 Flow Control.......................................................................................................... 23

2.3 FORWARD ERROR CORRECTION .................................................................................... 25

CHAPTER 3 30

ISSUES IN RELIABLE MULTICAST OVER WIRELESS LANS 30

3.1 WLAN CHANNEL CHARACTERISTICS ........................................................................... 31

3. 1. 1 Experimental Environment .................................................................................... 31

3.1.2 Packet Trace Collection ........................................................................................ 32

3. I.3 Packet Trace Analysis............................................................................................ 34

3.2 REVERSE TRAFFIC AND PACKET LOSS .......................................................................... 44

3.2.1 Propagation Loss................................................................................................... 45

3.2.2 Collision Loss ........................................................................................................ 46

3.2.3 Contention and Queueing Loss.............................................................................. 50

3.3 RELIABLE MULTICAST STRATEGIES .............................................................................. 51

3.3. I Retransmissions ..................................................................................................... 52

3.3.2 NACK Suppression ................................................................................................ 52

3.4 SUMMARY ...................................................................................................................... 63

CHAPTER 4 64

AFRM PROTOCOL DESCRIPTION 64

4.1 PROTOCOL OVERVIEW ................................................................................................... 65

4.2 PROTOCOL ALGORITHMS ............................................................................................... 68

. 4. 2.1 Proactive Rate ....................................................................................................... 68

4.2.2 NACK Suppression ................................................................................................ 76

4.2.3 Flow Control.......................................................................................................... 78

4.3 IMPLEMENTATION .......................................................................................................... 80



4.3. 1 A rchitecture ........................................................................................................... 80

 

 

 

 

 

 

4.3.2 AFRM Packet Format............................................................................................ 86

CHAPTER 5 88

PERFORMANCE EVALUATION 88

5.1 EXPERIMENTAL STUDY .................................................................................................. 88

5.1.1 Normal Conditions ................................................................................................ 89

5.1.2 Artificial Loss ........................................................................................................ 92

5.2 SIMULATION STUDY ...................................................................................................... 97

5.2.] Simulation Framework .......................................................................................... 98

5.2.2 Loss Models ......................................................................................................... 100

5.2.3 802.11 MAC Simulation....................................................................................... 105

5.2.4 Simulation Results ............................................................................................... 107

5.3 SUMMARY .................................................................................................................... l 15

CHAPTER 6 116

RELATED WORK 116

6.1 RELIABLE MULTICAST ................................................................................................. 1 16

6.2 FORWARD ERROR CORRECTION .................................................................................. 122

6.3 WIRELESS NETWORK STUDIES .................................................................................... 126

CHAPTER 7 131

CONCLUSIONS 131

BIBLIOGRAPHY 134 

vi



LIST OF TABLES

Table 3.1: Test machine configurations......................................................................................... 39

vii



LIST OF FIGURES

Figure 2.1: Wireless traces in GSM network [33]. ........................................................................ 11

Figure 2.2: Wireless losses vs distance [46]. ................................................................................. 12

Figure 2.3: Hidden terminal problem. ........................................................................................... 14

Figure 2.4: RTS/CTS exchange in IEEE 802.11 WLAN [25] ....................................................... 17

Figure 2.5: Operation of FEC algorithms [56]. ............................................................................. 26

Figure 3.1: Experimental environment. ......................................................................................... 32

Figure 3.2: Experimental evaluation of queueing loss. ................................................................. 35

Figure 3.3: A typical packet trace in WLAN. ................................................................................ 37

Figure 3.4: Receiver locations. ...................................................................................................... 38

Figure 3.5: Packet traces at multiple stations. ............................................................................... 39

Figure 3.6: Packet trace statistics ................................................................................................... 40

Figure 3.7: Loss correlation of multiple traces. ............................................................................. 41

Figure 3.8: The effect of unicasting and multicasting reverse traffic. ........................................... 43

Figure 3.9: The effect of reverse traffic from multiple stations ..................................................... 44

Figure 3.10: Collision rate and transmission rate with asymptotic stations. ................................. 48

Figure 3.11: Collision rate in simulation. ...................................................................................... 49

Figure 3.12: Contentions and queueing losses. ............................................................................. 51

Figure 3.13: The effect of local NACK suppression. .................................................................... 56

Figure 3.14: The effect of local NACK suppression with biased timeout value. .......................... 57

Figure 3.15: The impact of local NACK suppression on collisions and drops.............................. 59

Figure 3.16: Comparing local and global NACK suppressions..................................................... 60

Figure 3.17: Packet drops in local and global suppressions. ......................................................... 61

Figure 3.18: Overall performance of NACK suppression approaches. ......................................... 62

Figure 4.1: AFRM-A1 algorithm................................................................................................... 72

Figure 4.2: AFRM-A2 algorithm................................................................................................... 74

Figure 4.3: AFRM flow control algorithm. ................................................................................... 79

Figure 4.4: The AFRM sender architecture. .................................................................................. 81

Figure 4.5: The AFRM receiver architecture ................................................................................ 84

Figure 4.5: The AFRM packet header format. .............................................................................. 86

Figure 5.1: A loss burst spans several packet groups. ................................................................... 90

Figure 5.2: Experimental throughput under normal conditions..................................................... 91

Figure 5.3: Experimental throughput with artificial loss. .............................................................. 93

Figure 5.4: Throughput, goodput and total NACKs with 20% loss. ............................................. 94

Figure 5.5: Proactive rate adaptation in AFRM algorithms........................................................... 96

Figure 5.6: Experimental throughput with NACK suppressions. .................................................. 97

Figure 5.7: Architecture of the simulation framework .................................................................. 99

Figure 5.8: Porting applications to the simulated network. ......................................................... 100

Figure 5.9: Two-state Markov model for simulating packet losses and channel errors. ............. 102

Figure 5.10: Real trace and trace based on Gilbert model. .......................................................... 104

Figure 5.11: Burst length distribution of packet trace. ................................................................ 105

Figure 5.12: Trace based on revised bursty loss model. .............................................................. 105

Figure 5.13: Implementation of IEEE 802.11 MAC protocol. .................................................... 107

Figure 5.14: Simulation throughput on wireless packet trace. .................................................... 108

Figure 5.15: Proactive rate adaptation of AFRM-Al on wireless packet traces. ........................ 109

Figure 5.16: Simulation throughput on uniform loss model ........................................................ 111

Figure 5.17: Simulation throughput on bursty loss model........................................................... 112

viii



Figure 5.18: Simulation throughput on synthetic loss model. ..................................................... 113

Figure 5.19: Effect of NACK suppression on synthetic loss model. ........................................... 114



Chapter 1

Introduction

1.1 Motivation

Multicasting is an efficient method to disseminate information to multiple recipients.

In this approach, the sender distributes a packet simultaneously to multiple receivers.

Compared to multiple unicasting, in which the sender transmits a separate copy of the

packet to each receiver, multicasting typically requires less bandwidth and exhibits lower

latency. Due to these advantages, many applications use multicasting for mass

information distribution. Examples include multimedia conferencing, video and audio

distribution and so forth. In the global Internet, the MBone has been deployed to support

large scale multicast multimedia applications {36]. The increasing use of multicast has

inspired many research groups to explore efficient approaches to multicast under various

conditions and in different types of networks.

Many multicast applications require reliable data distribution. If any data packet is lost

or corrupted during the transmission, it should be recovered by either retransmission or

other approaches. Example applications include file distribution, distributed simulation

and collaborative computing. A major challenge is to find an effective and efficient way

to perform error recovery. To reduce congestion-related packet losses, flow control is



also a concern. A large amount of research has addressed this problem in wired networks

[3, 9, ll, 17, 19, 21, 23, 30, 32, 38, 42, 49, 53, 60, 61, 66, 67, 69, 74].

In recent years, wireless communication technology has been advancing so rapidly

that it has altered our view of computer networks. Combined with advances in portable

computing devices, a computer network is no longer a static entity. Network installation

has become simpler and faster, since cabling is often not necessary. The network

topology may be ad hoc and rapidly changing. Moreover, the network itself may exist

only on an as-needed basis. Let us consider an example from a single domain: education.

Students may bring their laptop computers to a classroom, or any other meeting location,

and form a temporary network instantly. The instructor can introduce her/his laptop to

this network and distribute electronic course material. After the session, the participants

depart and the network disappears. This flexibility greatly improves the impact of

distributed applications. Reliable multicasting is an important component of many such

applications, including wireless instruction, collaborative conferencing, and field

demonstrations.

However, wireless channels exhibit very different characteristics than their wired

counterparts: They usually have limited bandwidth and relatively high and dynamic

packet loss rates. These characteristics impose new challenges to communication

protocols, and reliable multicast is no exception. A reliable multicast protocol must take

into account the loss characteristics of the wireless network. Moreover, since the

conditions are dynamic, the protocol should also be adaptive. In this work, we explore

efficient algorithms for reliable multicast in one of the most important types of wireless

networks: wireless local area networks (WLANs).



1.2 Challenges

In this section, we briefly discuss the technical issues that must be addressed to

support reliable multicast in WLANs. A more detailed discussion is included in Chapter

2.

In reliable multicast, data packets are to be delivered without error to all receivers. If a

packet is lost or corrupted, and cannot be recovered locally at the receiver, then the

sender or another node must retransmit the packet. Therefore, the first challenge is error

detection. The sender must determine whether or not all receivers have successfully

received a packet. Hence, receivers must send feedback to the sender in the form of either

positive acknowledgements (ACKs) or negative acknowledgements (NACKs). The

overhead of feedback processing could slow down the sender, especially in multicast

group with large number of receivers. This is called the ACK, (or NACK) implosion

problem [15]. Moreover, if uplink and downlink traffic share the same transmission

medium, which is true in most local area networks, then this feedback will reduce the

available bandwidth for data traffic. To increase scalability, the number of feedback

packets should be kept as small as possible.

The second challenge is error recovery. After a packet loss is detected, the sender or

another node retransmits the packet. A simple retransmission method is to maintain a list

of the receivers experiencing the loss and send the lost packet to each of them. However,

in the case where many receivers require retransmission, the resulting overhead (at the

sender and on the channel) could be overwhelming. Since this retransmission traffic is

pure overhead with respect to performance, it should be minimized.



In WLANs, the limited bandwidth, high packet loss rates, and shared transmission

medium exacerbate the error detection and error recovery problems. First, the bandwidth

of a WLAN is typically an order of magnitude lower than that of its wired counterpart.

Combined with the fact that the transmission medium is shared, the feedback and

retransmission traffic must be kept even lower to guarantee acceptable data bandwidth.

Using NACK-based approaches is one way reduce feedback traffic [66]. However, in

WLANs, data packets are propagated in open air, therefore they are vulnerable to various

kind of interference, such as radio signals and other noise. The interference cause bit

errors in the packet. On the other hand, if a receiver is located far away from the sender,

then the received data signals might be too weak and data bits become indiscemible. Both

of these factors will produce a CRC error. The link-level network protocol will drop all

such packets. As a result, the packet loss rate is high, bursty and location dependent. The

high loss rates lead to increased feedback and retransmission traffic.

A number of feedback suppression approaches have been proposed to reduce the

feedback traffic. For example, in a local NACK suppression scheme, a receiver waits for

a random time before sending its NACK, expecting that NACKs from other receivers

have already triggered a retransmission. In the case the retransmitted packet arrives

before the timeout, the pending NACK is canceled. A global NACK suppression scheme

[9] can further improve this effect by having receivers send NACKs by way of multicast

transmission. A receiver that overhears a NACK that subsumes its own pending NACK

can cancel or delay its NACK. These NACK suppression techniques could be adapted to

deal with the increased demand for lower feedback and the simultaneously increased

possibility of higher feedback in WLANS.



Besides reducing feedback, it is also possible to reduce the overhead of

retransmissions. If multiple receivers request the same packet, the sender may choose to

multicast a retransmission, instead of unicasting it. In addition, the sender could take

advantage of a forward error correction (FEC) encoding algorithm [2, 29, 39, 43, 44, 48,

50, 51, 55, 56, 57, 58, 59, 70]. Specifically, such code can be used to generate parity

packets for a given set of data packets. Sending parity packets instead of the original data

packets, in response to NACKs, carries the advantage that parity packets can recover

different losses at multiple receivers. Using FEC in this manner is called reactive FEC.

Of course, an FEC protocol can also be used for feedback suppression. In this case, the

sender proactively sends some FEC parity packets along with data packets. If the

proactive parity packets are sufficient to recover lost data packets, then a receiver does

not need to send a NACK. This approach is called proactive FEC.

In summary, an efficient reliable multicast protocol on a3 WLAN must address

“traditional” issues, such as feedback suppression and retransmission management. In

addition, the protocol should take into account the characteristics of wireless channels,

such as low bandwidth, highly variable and bursty losses, and a shared feedback channel.

Moreover, the algorithm has to be adaptive so that it can perform well under dynamic

conditions.

1.3 Contributions and Structure of Thesis

In this study we focus on the design, implementation and performance evaluation of

an adaptive reliable multicast protocol. We use a reactive FEC algorithm to reduce the



number of repair packets sent in response to NACKs. We also apply a proactive FEC

algorithm in order to suppress feedback traffic. However, sending too many proactive

packets wastes channel bandwidth and reduces throughput. This tradeoff is addressed and

explored. To further improve performance, both global and local NACK suppression

algorithms are investigated and applied.

Thesis Statement: Using a combination ofproactive and reactive FEC algorithms, in

conjunction with local and global NACK suppression, it is possible to develop an efficient

and scalable reliable multicast protocol that works well over wireless local area

networks.

The major contributions of this work can be summarized as follows:

1. Analysis of reliable multicast problems over WLANs. In WLANs, channel

bandwidth is limited and shared, and packet loss is relatively high and bursty.

Conventional techniques for error recovery and flow control do not work well in this

environment. We have collected a large number of packet traces from our wireless

testbed. From these traces, we induce packet loss properties of wireless channels and the

impact of the properties is studied. Several approaches for performance improvement are

proposed and compared.

2. Adaptive FEC-based Reliable Multicast (AFRM) protocol design and

performance evaluation. AFRM is a reliable multicast protocol that combines proactive

and reactive FEC to reduce NACK feedback and repair traffic. The proactive rate is

dynamically determined based on the estimation of channel conditions. In the case of low

packet loss, the protocol sends few or no proactive FEC parity packets in order to save

channel bandwidth. When perceived packet loss turns higher, the sender increases the



proactive rate. The feedback traffic is reduced as a result, and the overall performance

drops only slightly. Efforts are made to improve the accuracy and responsiveness of the

adaptation. Global and local NACK suppression are applied when appropriate. A rate—

based flow control mechanism is included to deal with congestion. We implemented the

protocol at the application layer atop UDP/IP sockets and IP multicast. Experimental and

simulation studies demonstrate that the protocol exhibits good performance over

WLANs.

3. Development of a general-purpose network simulation framework. We

designed and implemented a network simulation framework. In this framework, network

applications built on the socket interface can be ported easily between real and simulated

network environments. The application code requires little or no modification. The

simulation framework offers simplified low-level network protocol components,

including UDP, IP and IEEE 802.11 MAC protocols. Different packet loss patterns can

be plugged in at receivers to simulate the wireless network loss. Besides reliable

multicasting, this framework can be used for performance evaluation of many protocols

in heterogeneous environments.

The remainder of this thesis is organized as follows. In Chapter 2, we present

background information related to this study, including reliable multicast, FEC, and

WLAN technologies. In Chapter 3, we describe the WLAN reliable multicast problem in

detail and evaluate several component methods that might be used in such a protocol,

using packet traces and analysis. In Chapter 4, we give a detailed description of AFRM

protocol. The discussion includes the parameters and how they are determined, as well as



several implementation issues. In Chapter 5, we describe the experimental environment

and simulation framework on which we conducted the performance studies. In Chapter 6,

we present related work on reliable multicast, FEC, and WLAN studies. Finally, in

Chapter 7 we summarize our work, discussing possible shortcomings and possible

directions for future work.



Chapter 2

Background

Three major research areas are directly related to this study: wireless networks,

reliable multicasting and forward error correction. In this chapter we present background

information on each of those areas.

2.1 Wireless Networks

Wireless communication is perhaps the fastest growing area of communication

technology in recent years. The combination of “anytime, anywhere” connectivity and

the rapidly dropping prices are behind this popularity. In short, wireless communication

is fundamentally changing our view of both telecommunications and computer

networking.

The fundamental difference between wired and wireless communication is the way in

which signals are propagated. In wired communication, signals are propagated through

cables, while in wireless communication they are propagated in open air. As a result,

signal losses and distortions are more significant and almost unpredictable in wireless

environments, since signals in open air are vulnerable to interference from many sources.

Overcoming dynamic, high error rates is a major concern of wireless applications.



Wireless networking is an integration of wireless communication and computer

networking. Many wireless networks, especially WLANs, have been installed to provide

communication connectivity for wireless computers. Since low-level network protocols

usually hide the physical difference between wired and wireless channels, higher-level

network protocols and applications usually can execute without modification atop a

wireless network. However, due to the different physical channel characteristics, loss-

sensitive applications often need to adapt their behavior in response to channel condition

changes in order to maintain acceptable performance.

2.1.1 Wireless Loss Characteristics

Packet loss in wireless networks is variable and bursty. Although the loss rate may be

high under poor conditions, the loss rate may also be extremely low under good

conditions. Henceforth we define a loss as a packet that is not successfully received by a

station for any reason. We use the term burst to denote a group of consecutive packets

that are either all received or all lost. In the all-received case, the group is called a loss-

free burst or error-free burst. In the all-lost case, it is called a loss burst or error burst.

Figure 2.1 is reproduced from [33]. It depicts packet traces in a GSM network. In the

figure, the loss and loss-free burst lengths vary from one to one hundred packets.

10



 

  

1m __””+_ ”—E

A 9 Error Burst u u ‘3
m 904

x a Error-Free Burst

8 u

— m. D

m

*

0 70+
D D

2 a

O. 00‘ D

E

3 m El

2 0
v D D

a.

a . .o n 0

C am
0 D

_l

. O

‘65 an ‘3 oh U y D .0“ .

a o o o o o o o

10< O O

m o 1, no 0 ° 0 9 9° 0 o co 0 ° 0

3° ' ‘
. 1.‘ r ..   

 

Burst Transltlon

Figure 2.1: Wireless traces in GSM network [33].

The distance between a receiving station and the data source significantly affects the

packet loss rate at the station. A wireless propagation error is defined as a loss that is

caused by signal fading or shadowing during propagation in the air. Since the signal

power continues to drop as the packet propagates in air, receivers that are farther away

from the data source are more likely to experience propagation errors. The low level

protocol will interpret any packet that contains indiscemible bits as a loss. Figure 2.2,

reproduced from [46}, illustrates the correlation between packet loss rate and distance.

The data was collected in an IEEE 802.11 LAN with 2Mbps bandwidth.

11



 

Distance (feet)

  
 

3‘1 .000 I

E Ii 50 100 110

80100 ~

E

|g0.010 T

32 i

@001 -

0.000

Figure 2.2: Wireless losses vs distance [46].

2.1.2 CSMA/CA

Unlike cellular networks with allocated channels (frequencies), stations in a WLAN

share frequency and bandwidth. MAC protocols are needed in such environments to

manage contention and collisions. While CSMA/CD [31] is widely used in wired LANS,

many wireless MAC protocols are based on the CSMA/CA protocol [31]. The main

difference between CSMA/CA and CSMA/CD is the way in which collisions are

handled. In CSMA/CD, a station is required to detect immediately whether or not a

transmitted frame has collided with another frame. If a collision occurs, the station can

promptly schedule a retransmission. The CSMA/CD scheme is not feasible for WLANs,

however, since a wireless station is unable to transmit and receive simultaneously on a

single radio transceiver. Therefore it is hard for the station to detect if a frame is

12



successfully transmitted. Instead, a wireless transmitter depends on acknowledgements

(ACKs) from other station(s) to determine if a retransmission is needed

The basic CSMA/CA protocol works as follows:

1. When a station is ready to transmit a data frame, it senses the channel.

2. If the channel is idle, the station transmits the frame immediately.

3. Otherwise, it invokes the backoff algorithm. In this algorithm, the station chooses a

random number uniformly distributed between 0 and the contention window size. It uses

this value as the number of slots it has to wait before next try.

3.1 The station listens on the channel while it is waiting. The slot is counted in

only when there is no transmission detected in the slot.

3.2 When the number reaches zero, the station transmits the frame.

4. When a station receives a data frame, it returns an ACK frame to the transmitter

after a short and fixed time interval. If the transmitter receives the ACK, the transmission

is successfully completed.

5. Otherwise, the transmitter assumes the data frame has been lost and schedules a

retransmission.

This basic protocol suffers from the hidden terminal problem. As shown in Figure 2.3,

station A and station C cannot hear from each other since A is not within C’s

transmission range and vice versa. When A is transmitting a frame to station B, C cannot

detect the signal. Therefore, C could also send a frame to B since it believes the channel

is idle. As a consequence, a collision occurs. To solve this problem, an RTS/CTS

extension [6, 28] is proposed. In this scheme, a station transmits a short RTS (Request—

13



To-Send) frame to receiver station before sending a data frame. If the receiver is ready to

receive, it returns a CTS (Clear-To-Send) frame. After receiving the CTS, the transmitter

starts sending the data frame. Other stations overhearing any of these RTS/CTS frames

will wait until the transmission is completed. As a result, the collision rate drops

significantly. Although RTS and CTS frame could also collide with others, the chance is

much lower since the sizes of these frames are usually far smaller than those of data

frames.

 

 

      

 

Figure 2.3: Hidden terminal problem.

When a data frame is small, however, the collision probability is unlikely to be higher

than that of 3 RTS frame. In this case, the RTS/CTS control frames become pure

overhead. To improve performance, the protocol sets a threshold value. Only those data

frames whose size is above the threshold value will be preceded by an RTS/CTS

exchanges.

Both the RTS/CTS and ACK/retransmission mechanisms apply only to unicast

transmissions. In the case of multicast, since there are multiple recipient stations, both

approaches become complicated. As a result, multicast packets will experience higher

loss in WLANs than unicast packets. Although a number of MAC level protocols have

14



been proposed to address this problem [37, 63, 64, 65], commercial systems do not yet

support them, and all appear to have shortcomings.

2.1.3 The IEEE 802.11 Standard

Presently, there exist two main WLAN standards: IEEE 802.11 [25] and

HiperLAN/HiperLAN2 [34, 68]. We discuss only IEEE 802.11, since the wireless

devices in the experimental environment used in this study are 802.11 compatible. The

IEEE 802.11 standard defines protocols that are necessary to support wireless networking

in a local area. Like other IEEE 802 standards, such as 802.3 and 802.5, the primary

service of 802.11 is to deliver MSDUs (MAC Service Data Units) between peer LLCs

(Logical Link Control). The functions of the 802.11 standard are implemented in network

interface cards, their software drivers and wireless access points.

The 802.11 standard provides MAC and physical layer functions for wireless

connectivity of fixed and mobile stations. It supports asynchronous and time-bounded

delivery services, multicast services, network management services, registration and

authentication services, etc. The protocol takes into account the significant differences

between wireless and wired LANS in power management, bandwidth, security and

addressing. The standard is extensive in its coverage. Only those parts that are directly

relevant to this study are discussed here. Please refer to [25] for additional details of the

IEEE 802.11 standard.

The 802.11 target environments include indoor buildings and outdoor areas. The

standard supports two network topologies: ad hoc (IBSS) and infrastructure (ESS). In ad

hoc mode, stations communicate with each other without setting an infrastructure. It is

possible that some stations are outside the radio coverage area of a particular station. In

15



this case a transmitting station needs to dynamically find an intermediate station to relay

a packet to the stations that are not directly reachable. In infrastructure mode, an access

point is located between wireless stations and the wired network (also referred to as the

Distributed System (DS)). Any communication between two wireless stations or between

one wireless station and another station in DS is relayed at the access point. Compared

with ad hoc mode, the infrastructure mode is a centralized scheme, with the access point

running as a bridge between networks. Clearly, the access point is a potential bottleneck

in this system. When multiple wireless stations transmit packets simultaneously to

stations in the DS, all the packets are delivered to the access point as the first step and

forwarded to the DS thereafter. The resource contention at the access point will likely

slow down the transmission. Worse yet, in the case of multicast, the access point

transmits all packets back to wireless stations while it is forwarding them to DS, even if

there is no multicast group member in the wireless network. The presence of this

inefficient multicast scheme in the standard is probably due to the fact that the access

point does not maintain any multicast group membership information. Despite these

disadvantages, we used infrastructure mode in both the experiments and the simulations

in this study, since it provides connectivity between wireless stations and wired LAN

stations. Furthermore, it is generally more robust than ad hoc mode, in which the

movement or crash of a particular wireless station might disconnect other stations and

partition the network.

The 802.11 Distributed Coordination Function (DCF) MAC protocol is a CSMA/CA

protocol with minor modifications. In this protocol, a node wishing to transmit should

always guarantee the channel has been idle for a time equal to DCF Inter-Frame Space

16



(DIFS) since the last transmission, or a time equal to Extended Inter-Frame Space (EIFS)

since the last collision, whichever occurs last. The RTS/CTS exchanges are optional. The

time interval between RTS and CTS, CTS and data packet, and between data packet and

ACK, is equal to Short Inter-Frame Space (SIFS). The interaction is depicted in Figure

2.4. The protocol uses a binary exponential backoff algorithm for retransmissions. A

retransmitting node first doubles the size of the contention window unless it has already

reached a maximum value. It then invokes the backoff algorithm before retransmission. It

aborts the transmission and discards the packet after several unsuccessful tries.

 

  

 

   

 

 

   
 
 

DIFS

Scum-l RTS i I Data |

suEs SIFS SIFS

WWW" crs ACK I

, DIFS .-’ ;' ,-'

Other my (RTS) I common Wlndow

NAV (are) I

u: an

DeferAcoess smarter Defer 

Figure 2.4: RTS/CTS exchange in IEEE 802.11 WLAN [25].

The original 802.11 standard supports two transmission rates: leps and 2Mbps.

More recently, two extensions have been developed that support higher rates, up to

lleps in 802.11b and 54Mbps in 802.11a. The protocols differ in physical layer

properties, such as signal modulation and operational frequency band. However they

17



have the same MAC layer protocols and functions. Our experimental devices are 802.11b

compatible with lleps maximum transmission rate. We also set our simulation

framework to be 802.1 lb compatible.

2.2 Reliable Multicast

Some multicast applications tolerate a certain degree of data loss. For example, in

video distribution, occasional loss or distortion of a video frame imposes little

disturbance to human eyes. Hence, it may be unnecessary (even counterproductive) for

receivers to attempt to recover the loss. However, in many other applications, any data

loss or distortion is absolutely unacceptable. Considering distribution of executable files,

the program might be unable to correctly execute, even if a single bit is reversed. An

error recovery mechanism is needed in this case. Since applications have different

requirements for when and how to do error recovery, reliability is usually provided in

high-level protocols. Many protocols are built atop UDP/IP Multicast, which provides

unreliable, or best effort, service.

2.2.1 Error Recovery

To guarantee reliability, two mechanisms are needed: error recovery and flow control.

Error recovery deals with loss detection and repair packet transmission. Two basic

schemes are used for loss detection: sender initiated or receiver initiated [66]. In the

former case, the sender pauses after a data packet is transmitted, waiting for all receivers

to send back positive acknowledgements (ACKs). This is also called an ACK-based

18



protocol. If the number of received ACK packets is less than the number of receivers, the

sender concludes that the packet has been lost at some receivers and schedules a

retransmission.

There are several problems in this approach. First, it is difficult for the sender to

determine how long to wait before retransmitting data. Usually the timeout value is based

on the round trip time (RTT) between the sender and the slowest receiver. If the RTT is

dynamic, however, the timeout value could become too large or too small. If the sender

waits too long, transmission is delayed. If the sender times out prematurely, then it may

send a repair packet unnecessarily. Second, the sender needs to know the exact number of

receivers and needs to maintain status information for each of them. It must handle every

join and leave message to track explicit group membership information. In a large

multicast group, this overhead could be overwhelming. Third, since every receiver

returns one ACK packet for each data packet, the sender may spend a large amount of

time processing these ACK packets. This situation is called the ACK implosion problem

[15]. Furthermore, if the reverse traffic shares the communication channel with data

traffic, the available data bandwidth will drop rapidly. In summary, an ACK-based

protocol simply does not scale well.

In a receiver-initiated scheme, the sender has no responsibility for loss detection. Its

only duty is to assign a unique sequence number to each data packet. Each receiver

maintains the sequence number of the last packet received in correct order. When a new

packet arrives, the receiver checks the sequence number and compares it with the last

one. If there is a gap between these two numbers, the receiver assumes that the

intermediate packets have been lost and sends a negative acknowledgement (NACK) to

19



the sender. Upon receiving a NACK packet, the sender retransmits the requested packets.

This NACK-based approach has many advantages over an ACK—based scheme. First,

only receivers that have lost packets send NACKs. In many network environments,

especially in wired networks, the packet loss rate is fairly low. Therefore, the sender will

not need to devote many resources to feedback processing, and more channel bandwidth

is available for forward data transmission. Second, the sender need not maintain status

information for receivers, but rather adopts a passive “come—and-serve” policy. If a

NACK arrives, the requested packets are retransrrritted. In the absence of NACKs, the

sender assumes that all receivers have successfully received the packet, and no further

processing is needed. In short, group membership information is not necessary for the

sake of retransmission. Third, there is no need for per-data timeouts, since the sender is

told exactly when to retransmit packets.

On the other hand, NACK based protocols have undesirable properties that must be

addressed. First, if the last packet in a chain of packets is lost, then the receiver will be

delayed in detecting the loss until the next packet arrives sometime in the future. To solve

this problem, most NACK-based protocols send periodic “keepalive” or “heartbeat”

packets when the sender is in idle [23, 69]. These packets include the sequence number of

last data packet having been sent. Receivers detect packet loss by comparing the

sequence number in the heartbeat packet with that of the last received data packet.

However, if a receiver experiences such poor channel conditions that all packets are lost

for a period of time, then neither the receiver nor the sender will be aware of the losses

until conditions improve. Second, in this approach, a receiver might request the

retransmission of data packets that were sent long before. Indeed, a purely NACK based

20



protocol requires an infinitely large send buffer to overcome this problem [54]. To solve

this problem, many NACK-based protocols adopt a hybrid algorithm in which receivers

send periodic ACKs. This approach is a tradeoff between communication efficiency and

providing full reliability with finite buffers. Overall, the NACK-based approach is more

scalable than the ACK-based approach, and it is adopted in most reliable multicast

protocols [17, 23, 32, 69].

After a loss is detected, the sender (or possibly another station [17, 23]) should

schedule a retransmission as soon as possible. The repair packets could be sent out either

by unicast or multicast. Whether to use unicast or multicast is a tradeoff. The advantage

of multicast is that in case other receivers have lost the same packets, one copy of the

repair packets is enough to recover from losses at all those receivers. In this manner, the

retransmission overhead is reduced. The disadvantage is that, the multicast overhead can

be higher than that of unicast. In a local area network with a shared medium, a unicast

transmission is in fact a broadcast in terms of channel bandwidth. In this case, unicast and

multicast require the same channel capacity, although multicast requires more collective

receiver processing because it is delivered to all the receivers (which may be only a

subset of the nodes within range of the source). This is called the exposure problem [52].

In the case losses are highly correlated among receivers, it is likely that the gain in

bandwidth reduction outweighs the overhead of exposure. Therefore, a multicast strategy

should be adopted. In other cases a unicast retransmission approach is probably more

efficient.

An enhancement to handle the exposure problem is to divide the receivers into

multiple multicast groups. Each group has a unique multicast address. When a repair

21



packet is ready to be sent, the sender chooses a set of multicast groups as the destination,

so that the gain in retransmission reduction is greater than the exposure overhead in each

of these groups. Since the groups in which no, or very few, receivers require

retransmission are excluded from the list, the exposure problem is reduced. This scheme

is similar to subcast (subtree multicast [53]), in which packets can be delivered to a

subset of receivers in a multicast group. It is more efficient than pure unicast or ordinary

multicast. To optimize the algorithm, the receivers are grouped according to their loss

tendencies. In the Internet, losses are location dependent. Therefore grouping receivers

based on their physical locations or logical network sections is a reasonable approach.

Another enhancement called local recovery [17] aims to reduce the feedback-

processing load at the sender by allowing stations other than the sender to send repair

packets [17, 23]. In a hierarchical network, it is possible to choose a retransmission

station that is closer to the requesting receiver than the sender. In this case, the loss

recovery time can also be reduced. There are two classes of local recovery approaches:

structured and unstructured. In a structured scheme, receivers are organized into a

hierarchy so that each group of several receivers has a dedicated node that is responsible

for recovering losses at those receivers. This method can be applied to both ACK-based

and NACK-based protocols. The unstructured approach is only applicable to NACK-

based protocols. In this case, receivers multicast NACK packets; any node overhearing

the request and capable of supplying the missing data can send repair packets.

NACK-based local recovery is often coupled with NACK suppression [74]. Since a

receiver can overhear NACK packets from other receivers, it has the choice of not

sending its own NACK packet that request is subsumed by a NACK from another

22



receiver. In this case, the receiver sets a timer and waits the repair packets. If the repaired

packets arrive before the timer expires, the lost data is recovered and one NACK

transmission is saved. Otherwise the receiver goes ahead and sends the pending NACK.

In this approach, both the NACKs and repair packets are transmitted by way of multicast.

As mentioned above, while multicast is more efficient, it usually incurs additional

overhead compared to unicast. This tradeoff should be addressed in either NACK-based

local recovery or NACK suppression. In some cases, the subcast approach can be applied

to solve this problem.

In summary, the main challenges related to error recovery are feedback implosion and

feedback/retransmission exposure. Solutions include NACK suppression, subcast and

local recovery. The latter two approaches often require receivers to be organized in

hierarchy. In an inter-network, it is natural to group the receivers based on their physical

proximity to one another. In a local area network with a shared medium, however, a

receiver hierarchy makes little sense. Therefore, NACK suppression is the primary

solution in this case.

2.2.2 Flow Control

The second major issue in reliable multicasting is flow control. A sender that transmits

too fast might overrun the packet buffer at a receiver or at some intermediate node.

Packets that arrive after buffer is full will be dropped and will need to be retransmitted.

Flow control regulates the data transmission rate at the sender and avoids data loss caused

by buffer overflow.

23



Flow control approaches in reliable multicast are based on their unicast cousins. As in

unicast, multicast flow control methods are classified as window-based or rate-based. In

window-based flow control, the sender maintains a send window, and only those packets

that fall within the window are permitted to be sent. The sender advances the window

when all packets in the window are successfully transmitted. To control transmission rate,

the sender adjusts the size of the send window based on congestion conditions. The

sender assumes that there is no congestion unless a NACK arrives or an ACK is missing.

If feedback indicates packet loss, the sender assumes that a packet buffer at receiver or

intermediate node is full and decreases the send window size in order to slow the

transmission rate and prevent further loss. In rate-based flow control, the sender uses a

timer to control the transmission rate. When the timer fires, the next packet is transmitted.

The sender periodically adjusts the timer value based on feedback information. If packet

loss is reported, the timer value is incremented to slow down transmission. Otherwise the

sender decreases the timer value to accelerate transmission.

It is natural to use window-based flow control with an ACK-based reliable multicast

protocol, since the sender regularly receives feedback. On the contrary, rate-based flow

control is more appropriate for a NACK-based protocol. One advantage of rate-based

flow control is that the traffic is smoother than that under window-based flow control.

Specifically, the inter-packet delay in rate-based approach is usually evenly distributed,

while in a window-based approach the delay can be close to zero between packets in the

same window and large between packets in different windows. However, a rate-based

scheme with a NACK-based protocol may suffer from the infrequency of feedback. In

particular, it might take a long time for a receiver to detect packet loss when a large

24



number of consecutive packets are lost due to congestion. Feedback from the receiver is

delayed, leading to even more lost packets. Both window-based and rate-based flow

control can integrate algorithms such as random early detection (RED) [26] to slow down

transmission before severe congestion occurs. The router adopting the RED algorithm

drops packets when the buffer consumption exceeds a threshold value, rendering a

feedback of packet loss before the buffer is full. Moreover, receivers can send explicit

rate requests to the sender to adjust the transmission rate in a more accurate way, as in the

RAMP [32] and RMC [69] protocols.

Most flow control approaches use data loss as the primary, or sole, indication of

congestion. This assumption is valid in a traditional wired network, where packets are

rarely lost during propagation. The situation is very different, however, in a wireless

network. Packets frequently are lost or corrupted due to signal fading and shadowing. In

this case, slowing down transmission is counterproductive sinCe the packet loss is not

caused by congestion. Many strategies have been proposed to differentiate transmission

losses from congestion losses. We discuss several approaches in Chapter 6.

2.3 Forward Error Correction

Forward Error Correction (FEC) is an approach to communication error recovery that

uses redundant information in the data stream to enable receivers to correct losses

without contacting the sender. Two classes of FEC algorithms are bit-level and packet

level. In a bit-level method [18], redundant bits are appended to a frame. When some data

bits are corrupted during propagation, receivers detect and repair the corruption using the

25



redundant bits. In a packet-level approach [24], parity packets are generated and sent

together with data packets. When some data packets are lost or corrupted during

transmission, the parity packets can replace the same number of any lost data packets. In

both cases, if the redundant information is sufficient, the lost or corrupted information

can be regenerated locally at the receiver without retransmission. Use of FEC can greatly

improve performance for loss-sensitive applications when the feedback channel is

unavailable or expensive to use.

source data

’3 llllIlIllIJ

/ Encoder \

'1 lllTIIlIllllllIllI]

] j | encodred dalta J l l

'i J» :1

 

 

 

received data

 

 

 

 

Dec
ode

r
/

 

k lllllllllll

reconstructed data

Figure 2.5: Operation of FEC algorithms [56].

FEC algorithms generally work as shown in Figure 2.5. The transmitter applies an

encoding algorithm to a set of data bits or packets, transforming them into a larger set of

bits or packets. The larger set includes all information in the original set. The

transformation guarantees that any subset of the larger set with the same number of

elements in the original set is sufficient to regenerate all the original data. After receiving

any of such subset, a receiver applies a decoding algorithm to it in order to produce the

26



original data. Both encoding and decoding algorithms are usually computationally

intensive.

FEC has been used for many years in wireless communication, where the error rate is

relatively high. Most of this usage is at the bit level, and is supported by hardware. The

encoding and decoding algorithms are implemented in special circuits to provide fast

processing. On the other hand, packet-level usage is usually integrated in computer

network protocols. Since there is unlikely any special hardware support for such

applications, its usage is limited by the speed of software encoding at the transmitter and

the software decoding at receiver.

Rizzo [56] proposed a software solution for FEC encoding and decoding at packet

level. The approach is based on the fact that, in terms of errors, many data

communication protocols need to deal only with erasures, that is, missing packets in a

stream caused by MAC—level CRC errors. Since erasure recovery is much simpler than

arbitrary bit error recovery, it is possible to implement such an algorithm in software with

reasonable processing speed. In the proposed erasure code, k data sources items are

interpreted as coefficients of a polynomial with degree k-l. Obviously such polynomial is

completely specified given the values of k different points. If we construct a set with it

different points of the polynomial, any subset of k such points are sufficient to reconstruct

the polynomial. If we replace “point” by “bit” or a “set of bits”, then the algorithm is

applicable to FEC encoding and decoding. Experiments in [56] show this scheme exhibits

reasonable performance on typical computer hardware. As with many other studies of

FEC for wireless communication, we use Rizzo’s erasure code in this study.

27



At the packet level, a single FEC parity packet can recover any lost packet in the k-

packet group. Similarly it can recover any single packet loss at other receivers. This

property is ideal for multicast environments where the loss correlation among different

receivers is often low. WLANS are one such environment. For example, suppose that

three receivers are sent 10 packets and that receiverl misses packets l and 2, receiver2

misses packets 3, and 4, and receiver3 misses packet 5. In an ordinary ARQ approach, the

transmitter would need to retransmit five packets: 1, 2, 3, 4, and 5. However, using an

FEC protocol, only two parity packets are required to recover all the losses. Furthermore,

the reduction in the number of packets transmitted produces no other communication

overhead. It requires only some additional computation for encoding and decoding. Since

Rizzo showed that this computation is affordable on ordinary processors, FEC is widely

used in multicast communication protocols.

Parity packets can be sent proactively with data packets, or reactively upon reception

of a retransmission request. Both methods possess the aforementioned retransmission-

reduction property. In the proactive scheme, no retransmission is needed if the number of

proactive parity packets is large enough to recover losses. This property is desirable for

communication environment with expensive feedback channel, such as satellite network.

However, sending too many unneeded parity packets with the data will waste channel

bandwidth and eventually degrade performance. On the other hand, the (proactive or

reactive) parity packets themselves can be lost. Therefore, a transmitter usually needs to

send more parity packets than are actually needed. It is an open research problem to

determine the proper balance between proactive and reactive methods. We address this

28



problem, along with several other issues on reliable multicasting in WLANs, in this

study.

29



Chapter 3

Issues in Reliable Multicast over

Wireless LANS

The goal of this research is to find efficient reliable multicast algorithms for WLANs.

To do so, it is first necessary to understand the characteristics and behavior of wireless

channels. Thus we began by collecting a large number of packet traces from our

experimental environment. Based on these traces, we characterize properties of typical

wireless loss patterns and point out factors that affect protocol performance. Next, we

studied several component algorithms used in existing reliable multicast protocols by

evaluating their behavior and performance in WLAN environments. Based on this

experimentation and analysis, we developed a new protocol (see Chapter 4).

In this study, we assume that the primary performance metric is throughput. We

further assume there is little other traffic in the WLAN, which is common in many

application environments. Therefore, the task is to find an algorithm that maximizes

throughput for a given network bandwidth, number of receivers, wireless propagation

loss rate and access point buffer size. To enhance scalability, we consider only NACK-

based approaches and, because the protocol is intended for local area networks, we

assume there is no receiver hierarchy. Finally, we focus mostly on the scenarios where

30



the sender is located in the wired network, while the receivers are in the wireless

network. We believe that this is a typical working environment for reliable multicast

protocols in heterogeneous networks. In this study, all the concerns, analyses and

protocol optimizations are based on these assumptions.

3.1 WLAN Channel Characteristics

3. 1.1 Experimental Environment

The experimental environment, depicted in Figure 3.1, consists of a wired LAN and a

wireless LAN. The wired LAN is a lOOMbps Fast Ethernet that connects several high-

end workstations. It is extended by a Cisco Aironet WLAN through a Cisco Aironet 340

Series Base Station [12]. The wireless stations include desktop computers and Dell laptop

computers, each configured with a Cisco Aironet 340 or 350 Series Wireless Card. The

Aironet network is IEEE 802.11b compatible with CSMA/CA access control, operating

at 2.4GHz. It is a DSSS (Direct Sequence Spread Spectrum) system that supports raw bit

rates of leps, 2Mbps, 5.5Mbps and lleps. The coverage area is larger for lower bit

rates and smaller for higher bit rates. For example, the typical range is 300 feet indoors

and 1500 feet outdoors at leps. At lleps, these distances are 100 feet and 400 feet,

respectively. We focus on the highest lleps rate in the experiments since our primary

performance metric is throughput.

The high-end workstations are mainly Dell desktop computers with a lGHz Pentium

111 CPU and 512MB memory. The laptop computers have either lGHz Pentium 111 CPU,

or 300MHz CPU, both with 256MB memory. Both the desktop and laptop computers are

31



configured with either Windows NT or Windows 2000. As mentioned above, in the

experiments we located the sender on a wired workstation, while the receivers were

located on laptop computers or to desktop computers with wireless network interface

cards.

Cisco Aironet 340 Series

Access Point High-End Workstations

33"747’7. 1 (“.5 I I

-‘ E

4 ' I

. - - _ t

' _ .:- ‘ 71:1,, r'~_, §_§.¢_+_.

, . r

. JP E

-. .

 

  

 

   Cisco Switch

(Fast Ethernet) 
Dell Laptop

Corrrputer

To Camus Network

Figure 3.1: Experimental environment.

3.1.2 Packet Trace Collection

We conducted a series of data transmissions under various scenarios and collected

packet traces. We built two programs using the Windows socket interface. The sender

program transmits data packets at a specified rate to one receiver or to a set of receivers.

Each data packet is assigned a unique sequence number. The receiver program checks the

sequence numbers of the received packets to detect packet loss. It records the sequence

numbers of lost packets, and saves these numbers into packet trace files together with

information on corresponding loss burst lengths. From a saved trace, we can calculate the

32



average error burst length, average error free burst length, standard deviations and burst

length distributions. These values reflect the basic characteristics of packet loss patterns.

It is possible that the detected losses are caused by reasons other than wireless

propagation errors, since the programs are running at the application level, and the

packets are transmitted from a wired sender to wireless receivers via an access point. For .

example, congestion can cause buffer overflow and packet loss. Congestion can happen

at the access point when the data rate of the wired network is greater than the bandwidth

of the wireless network. Congestion also happens at receivers if the receiver program is

not running fast enough to process packets and empty kernel buffers before new packets

arrive. We observed very high packet losses when packets are transmitted without flow

control. Such losses are very likely caused by buffer overflow. To reveal wireless channel

loss patterns, these “non-propagation” losses should be excluded from the trace files.

Applying flow control is an effective approach to reduce congestion and packet dr0ps.

Taking into account the theoretical saturation throughput of approximately 7Mbps in an

IEEE 802.11b network, we insert inter-packet delays to limit sending rate at 6Mbps. In

case no other traffic exists on the wireless channel, this action should produce very few if

any drops due to congestion. To test this hypothesis, we collected packet traces at much

lower sending rates, such as 2Mbps. It turns out the traces in this case are very similar to

those with 6Mbps sending rate. We conclude that transmission at 6Mbps is almost

congestion-free in our environment. Therefore we set sending the rate to 6Mbps in the

following experiments since it is close to the optimal throughput of the protocol.

We believe that our receiver programs are able to keep up with such a sending rate. By

calculation, the receiver program may take as long as 1.9 milliseconds to process one

33



received packet with a typical size of 1400 bytes, without delaying the processing of the

next packet. This interval is long enough for a 300MHz plus processor to carry out very

complex per-packet processing. In fact, very few losses were observed in the experiments

when transmitting small files (e.g., 20KB) at 6Mbps, since the error free burst length is

usually much greater than 20KB. We observed substantial losses only when the inserted

delay between processing of consecutive packets exceeded 2 milliseconds. The result is

in accordance with our calculation.

In WLANs, the RTS/CTS/ACK mechanism is utilized to reduce collisions as well as

to conduct fast link layer retransmissions. Although the mechanism helps improve the

quality of wireless transmissions, it compromises the accuracy of raw propagation loss

estimation. Since this mechanism is not adopted for multicast transmissions, we use

multicasting to transmit data packets in our experiments. Specifically, we use UDP

sockets on top of the IP multicast services. After all these considerations and revisions,

we believe it is possible to obtain reasonably accurate wireless loss estimation, even if the

trace-collecting programs are running at the application level.

3.1.3 Packet Trace Analysis

Queueing Loss. Although we observed a large amount of packet loss in transmissions

without flow control, we could not conclude that the losses were caused by buffer

overflow at the access point, without further experimentation. For example, it is possible

that the higher sending rate caused more propagation errors. To verify that the losses are

congestion-related, we set up two wireless receivers in the following test. One receiver is

close to the access point (within 2 meters) while another is farther way (about 10 meters).

34



The sender is a wired station. The data packets are transmitted first at 6Mbps, then

without flow control. Transmissions are grouped in 20 packets. Upon detecting a packet

loss, the receiver sends a NACK to request a retransmission. The sender responds by

sending enough parity packets to cover the loss, plus additional parity packets to

compensate for any losses in the retransmission (see Chapter 4). The number of needed

and received parity packets for each group is depicted in Figure 3.2.

 

 

 

 

     

 

   

 

        

 

 

 

 

    

   

 

   

 

Far Node with Flow Control Close Node with Flow Control

25 25

o .

E 20 * Received g —x—Fbcelved

3 H—i—Needed g 20 ‘ +Ne°°°d

°' 8

E >.
'5 15 .0:- 15 .

e a:
‘5 .-

5 10 a
O 10 i

3 i
E E
:3 3

2 5 a z 5 .

O ’ 0 ,. ..

czaassasss§§§§§§ *2aa:sr:sss:asss

Mrmber oi Groups (20 PacketsIGroup) Nun ber 0' Groups (20 98011918101009)

Far Node without Flow Control Close Node without Flow Control

35 35

30 ’at— Received 30 +Received

0 Q .

3 l I—I—Needed E. r—l—Needed .

g 25« p 25. i IIL

> >. : .

E . E , .f, . . .

g 20 I1 p . £ 20 1l 1' C] ‘

‘6 . l «ii I l . '5 5 "l 4 “1‘3

.15 l" l g... I; H

g 10 ~ I - l l": S 10* l".

2 a '1' z .1

5 4 5'3? ' l 5 p. y b

0 J . J o 1‘ 3. .1

mksa§g§§§§ ":assaasas§;§§§§

Mimber of Groups (20 Packets/Goup) Mrmber of Groups (20 Packets/Group)

Figure 3.2: Experimental evaluation of queueing loss.

35



The plots show that stations farther away from the access point experience higher

packet losses. This is expected since the signal energy degrades with distance. The poor

signal quality at a remote receiver causes more data bits to be indiscemible, and the

corresponding packets are dropped. Moreover, it is shown that the packet losses are

mostly uncorrelated at two receivers when flow control is applied. Since propagation

error is location dependent, this trace (and other similar traces) implies that most of the

losses in this case are propagation losses. On the other hand, these two receivers share a

large number of packet losses when flow control is not applied, even if they are at

different locations. A reasonable explanation is that the shared losses are caused by buffer

overflow at the access point. Since the packets are dropped at the access point and not

propagated in air at all, receiver locations have no effect on such losses.

Bursty Propagation Loss. We also wanted to understand the nature of packet loss

bursts. In the following test, the sender transmits data packets to a wireless receiver close

to the access point. The sending rate is set to 6Mbps. We expect that there should be few

packet losses since signal degradation is not a major concern in this case. We collected

several ZO-minute packet traces. The loss patterns are similar. We plot one typical trace in

Figure 3.3.

36



500 a 50 
 

    

450 . ‘ A f 45 r

400 - 4o «
8 ' .C

a, 350~ l a ssl

§ 300* ; § 301
E 250 . ‘ l E 25 .

3 200 ~ I 3 20 «

g 150 ~ J g 15 .

-' 100~ -' 1o« ‘ A

50 « A ’ 5 9 A I

O 0 T A A , A T r A

0 100000 200000 300000 400000 500000 600000 0 1000 2000 3000 4000 5000

Mmber of Packets number of Packets

(a) A broad view (b) A detailed view

Figure 3.3: A typical packet trace in WLAN.

As shown in the figure, wireless propagation loss is very bursty. In good states, there

are very few packet losses. In a bad state, however, most packets are lost. In Figure 3.3,

although the average loss rate is fairly low, the receiver experiences severe losses at

certain points in time. The burst could be as long as several hundred packets. However,

most bursts are only several packets long and there are many single-packet losses. On the

other hand, the error free burst, or the packet distance between two consecutive loss

bursts, is usually several hundred packets long. Many error free bursts were even longer

than ten thousand packets. Therefore, applications running over wireless networks may

experience no packet loss at all during a long time period. But it is also possible that they

lose many packets in a loss burst. This dynamic behavior poses a major challenge to

many applications, including reliable multicast protocols.

Loss Correlation. A multicast transmission involves multiple stations. Besides studying

loss distribution at a single station, it is also meaningful to examine the relationship

among losses at multiple stations. In a multicast group, loss patterns vary at different

37



wireless stations because some losses are location-dependent. On the other hand, all

receivers share the data source. Packets are transmitted from a wired station to the

wireless network through an access point. Variations such as transmit power level

changes at the access point may affect the packet loss probability at all the receivers.

Those losses are likely to be correlated. To study the degree of the loss correlation, we set

up ten wireless stations as receivers, including laptops and desktops with installed

wireless cards, in the following test. The nodes are located at various locations in the

range of the access point, from within 2 meters to about 30 meters away. Figure 3.4

shows the receiver locations relative to the SENS Laboratory at Michigan State

University. The receiver configurations and the distances to the access point are

summarized in Table 3.1. We combine packet traces from different systems and depict

them in Figure 3.5. (Only 5 traces are shown for simplicity.)

 

     

SENS EAST SENS WEST

AP

Cl

(I),

D 4g 0

5

O l

9 7 Corridor 10

 

Figure 3.4: Receiver locations.

38



 

nodel node2 node3 node4 node5 node6 node7 node8 node9 nodelO

 

Type D L D D L L L D L L

 

CPU(MHz) 2*400 1000 1000 1000 300 1000 1000 2*800 1000 1000

 

Memory(MB) 256 256 512 512 256 256 256 256 256 256

 

 Distance(m) 2 2 4 5 5 10 10 10 20 30            
D: Desktop, LzLaptop

Table 3.1: Test machine configurations.

 

 

   

 

  

 

500 1

x

450 *" ”'5 ”‘ A nodeZ

4 .

g 00 o node3

5 350 A x nodeG

g 300 ~ x . +

E 250 . )x _
xnodeQ

a 200 d 52. —nod910

g 150 ~ x .5:

-' 100 ~ 5%:

50 a ‘u"

.r. J 4 {.5 +4., 4 _ + .4. +

0WA“ ‘ .___.__.J

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Number or Packets

Figure 3.5: Packet traces at multiple stations.

The traces exhibit different packet loss patterns. Basically, the distance from the

access point determines the average packet loss rate at a receiver. In Figure 3.5, the

receivers that are more than 20 meters away from the access point exhibit poor

performance. On the other hand, there is not much difference among receivers that are

located within 10 meters from the access point. We plot the average loss rate, average

loss burst length and average loss-free burst length in Figure 3.6.

39

I
a
n
-
T
n
.
“

I
A
:

'
_
1



0.1 

  
 

 

 
 

 

 

 

 

0.08 ‘

3
u 0.06 4

a:

8 0.04~
o

..r

0.02 -

O 3* T V T 4 V fifi fl r r

node1 node2 node3 node4 nodes nodeG node7 node8 nodeQ node10

Statlons

6

5 5*
a

8 4*
.r

.- 3 «

5
in 2 ‘

3 1 1
o

_I O
.

nodel nodeZ node3 node4 nodes node6 node7 node8 node9 nodelO

Statlons

500

5 F 3 ‘
u

4 .
5 00

=1 300a ‘l

a

g 200 -

u. 100 .

s
3 0 r fl *f f V

nodel nodeZ nodeB node4 node5 nodeS node7 node8 nodeQ node1 0

Statlons

Figure 3.6: Packet trace statistics.

The figures show that loss rate, as well as loss-free burst length, is mainly determined

by the receiver distance from the access point. However, loss burst length is affected only

by factors in the local environment around a station. It is clear that the average loss rate is

basically dependent on loss burst frequency instead of loss burst length.

Next we studied the loss correlation among packet traces. We built a program that

compares packet status (received or lost) packet by packet in two traces. Based on the

results, we calculated the correlation coefficient of each trace pair and plotted them in

40

 

 

 



Figure 3.7. For comparison, the correlation coefficient between traces in different test

runs is also calculated and shown. This coefficient is near zero (as expected) since the

losses are certainly uncorrelated among different tests.

Loss Correlation In the Same Run

 

 

-<>— node1

-o— nodez

+ node3

” —x— node4

+ 00095

—0— node6

—+-— node7

0,2 - —-— nodeB

—— node9

$
3
9
3

m
o
o

C
o
r
r
e
l
a
t
i
o
n
C
o
e
f
f
i
c
i
e
n
t

S
3

b

   
  o I I T— T T ‘1 T T r  

nodei nodeZ node3 node4 nodeS nodeG node7 node8 node9 node10

Stations

Loss Correlation ln afferent Runs

 

 

C
o
r
r
e
l
a
t
i
o
n
C
o
e
f
f
i
c
i
e
n
t

 

 

-<>— nodel

—O— nodeZ

—a— nodeS

+node4

+nodes

-0— nodeG

-—+— node7

—— node8

-— nodeQ

-<>— nodel O  

   

nodel node2 nodeS node4 nodes nodeS node7 nodeB nodeQ node10

Stations

Figure 3.7: Loss correlation of multiple traces.

As shown in the figure, receivers within 10 meters of the access point exhibit high loss

correlation. On the other hand, receivers farther away from the access point show lower

loss correlation. This is probably due to the fact that signals with higher energy, such as

those within short ranges around the access point, are less vulnerable to random

interferences than those with lower energy at remote receivers. However, the remote

receivers still share a certain amount of loss. In Figure 3.7, the minimum value of the

41



correlation coefficient is approximately 0.13 for traces in the same run. It is still much

higher than the maximum coefficient of 0.03 between traces from different runs.

Effect of Reverse Traffic. In reliable multicast protocols, receivers send feedback (either

ACKs or NACKs) to the sender. In WLANs, the reverse traffic shares the communication

channel with the forward data traffic. Although the CSMA/CA algorithm is used in

WLANs to reduce collisions, collisions are unavoidable especially for a large number of

receivers. On the other hand, contention for the wireless channel reduces the data

transmission rate and decreases the service rate at the access point. Incoming packets will

eventually use up the buffer space and cause queueing losses, if the sending rate is fixed.

We verified this effect through experimentation. In the following test, we set up a wired

sender and a wireless receiver. The sender transmits data packets of 1400 bytes to the

wireless network at a rate of 6Mbps. At the same time, another wireless station sends

packets of 64 bytes to the sender. The sending rate is approximately 0.3Mbps. Hence,

there are roughly as many reverse packets as data packets. In the first 5 minutes, no

reverse packets are sent. Then, the wireless station starts to transmit packets by

multicasting for 15 minutes. After that, the wireless station stops for 5 minutes, and then

transmits packets by unicasting for another 15 minutes. The wired sender keeps sending

data packets and terminates 5 minutes later. The wireless receiver records the packet

trace, which is depicted in Figure 3.8.

42



 

L
o
s
s
B
u
r
s
t
L
e
n
g
t
h

N

  0{W

0 10 20 30 40 50 60

Minutes

 

Figure 3.8: The effect of unicasting and multicasting reverse traffic.

In the figure, the packet loss rate clearly increases when the wireless sender starts

sending reverse packets. The loss rate drops during the interval when the wireless sender

stops sending. As the wireless sender begins transmitting reverse packets by unicasting,

the loss rate increases again. However, this time it is much lower than that in the case of

multicast reverse traffic. The result is in accordance with the following analysis. In

802.11 WLANs, an access point relays all uplink multicast traffic by forwarding the

packets both uplink and downlink. It adopts this strategy because it maintains no

multicast group membership information. On the contrary, unicast reverse packet is

forwarded either uplink or downlink according to its destination. As a result, data traffic

is further slowed down in the case of multicast reverse traffic, and more queueing losses

are generated. Therefore, in WLANs multicast feedback produces greater overhead than

does unicast feedback. This overhead can directly affect the performance of some

optimization approaches like global NACK suppression.

Taking into account the impact of channel contention on the access point service time,

it is obvious that there will be more queueing losses generated at the access point if

43



multiple wireless stations transmit reverse packets simultaneously. In the following test,

we set up 3 wireless receivers. A wired sender transmits data packets of 1400 bytes at

6Mbps. After 5 minutes, a wireless station sends reverse packets by unicasting. Then it

stops and waits for a while, followed by sending multicast reverse packets. Four more

wireless stations join the transmission ensemble after a while. They all send packets by

unicasting followed by multicasting, stopping for a while in between. The time unit for

both waiting and transmitting is 5 minutes. The sending rate of reverse traffic is

approximately 0.1Mbps. As expected, we see in Figure 3.9 that the packet loss rate

further increases when more wireless stations start transmitting packets.

 

L
o
s
s
B
u
r
s
t
L
e
n
g
t
h

1
0

8

   
Minutes

Figure 3.9: The effect of reverse traffic from multiple stations.

3.2 Reverse Traffic and Packet Loss

How to handle reverse traffic is critical for reliable multicast protocols. Reverse traffic

is caused by packet loss, but at the same time it also introduces additional packet loss, as



we saw in Section 3.1. In this section, we present a further analysis on reverse traffic as

well as its effect on both packet loss and overall protocol performance.

There are several possible causes of packet loss. First, packets can be dropped at a

receiver due to buffer overflow. Second, propagation errors such as signal degradation or

interference can cause packet corruption. Third, collisions between data traffic and

reverse traffic can lead to packet loss. Lastly, a packet can be dropped at the access point

if the sending rate is too high or if the service rate (the rate at which an access point

forwards data packets into the wireless network) is too low due to contention. In the

previous section we show that, considering current computer processing speeds and

network bandwidth, a receiver is usually fast enough to complete processing a packet

before the next packet arrives. Therefore we only consider the last three cases.

3.2.1 Propagation Loss

Let us consider a multicast group with R receivers. The data are organized in (FEC)

groups, each of which contains k packets. Again assume the propagation loss rate is p(r,

g) at a particular receiver r, and in an arbitrary packet group g. Then the probability of the

receiver transmitting a NACK rs l — (l - p(r,g)) , Since a receiver transmits a NACK

whenever a packet loss is detected in the group. The expected total number of NACK

packets at group g could be expressed as:

R k

Nn(g) == Em (1 — (1 -p(r,g)) )

The total number of NACK packets during the transmission of the current resource is:

N" = 2g (Nn(g))

45



Apparently, Nn(g) depends on R, p and k. To reduce the number of NACK packets in a

packet group, a protocol should choose smaller data group size k. (It is unlikely that the

protocol can control the other two parameters: multicast group size R and propagation

loss rate p) However, as far as Nn is concerned, using a larger data group is more

effective to reduce the total number of NACK packets. On the other hand, using larger

data group demands more buffer space at both the sender and the receivers. Doing so also

lengthens per-packet recovery time, and probably increases total transmission latency.

The optimal value of k is application dependent.

3.2.2 Collision Loss

Collision loss is caused by collisions between reverse traffic and data traffic.

Intuitively, collision loss rate is proportional to NACK density. In other words, the more

NACK packets transmitted in a given time interval, the more collisions there might be.

On the other hand, a collision does not necessarily result in a packet loss at high layers.

The RTS/CTS approach and link-layer retransmission mechanism can recover most

collision losses without requiring the intervention of higher layer protocols. However,

these mechanisms are helpful only to unicast or uplink multicast traffic (In 802.11

WLANs, the uplink multicast transmission is implemented as a unicast transmission from

the wireless sender to the access point, followed by a multicast transmission from the

access point). The downlink multicast data traffic, therefore, is more vulnerable to

collisions than feedback traffic. In our system, the access point regularly transmits data

packets with a particular rate, while receivers irregularly send NACK packets. It is

difficult to build an accurate analytical model of this kind of system. To provide a rough

46



estimate of the collision rate, we adopt the simple model proposed in [8]. The model

assumes that all stations are in asymptotic condition, that is, each station always has a

packet ready to transmit. All transmissions are conducted by unicasting, which is

protected by link layer retransmissions. Although this assumption is not true in our

system, the model does take into account the basic collision and contention interaction in

an 802.11 WLAN. We describe the model below.

Let us assume that the probability that a station transmits in a randomly chosen slot

time is 2', the minimum backoff window size is W, the maximum backoff stage is m, and

the collision rate is pc. Then in [8] it is shown that Tcan be expressed as:

2': 2 / (1 + w + pcwzizom’lapcf)

On the other hand, assume that n (equivalent to Nn(g) in section 3.2.1) is the number

of other stations that transmit at the same time. The collision rate pc experienced by this

station can be expressed as:

n

1% = 1 - (l - T)

We can solve pc and Tby using numerical techniques. From TWC get the conditional

probability p5 that a transmission from a particular station in a slot is successful, and the

probability pm"y that any transmission in a slot is successful.

n+1

ps=r*(1-27"/(1-(1—n >

Psany = (n '1' 1) * PS

47



P
r
o
b
a
b
i
l
i
t
y

We set W to 31 and m to 4, as they are in the 802.1 lb standard. We plot the values of

1; pc, p3 and p50,,y in Figure 3.10, with varying number of stations. The X-axis shows the

value of n, i.e., the total number of stations minus 1.

 

 

     
  

—B— r

+DC

+ 06

+psany

30 4O 50 60 70 80 90 1 00

Mimber oi Stations

Figure 3.10: Collision rate and transmission rate with asymptotic stations.

The figure shows that the collision rate increases with the number of transmitting

stations. On the other hand, the rate of successful transmissions for a particular station

drops rapidly as the network becomes moderately large. The drop of the transmission rate

is due more to contention rather than to collisions. The collision rate as well as the

transmission rate are likely different in our system, however, where the access point has a

special role in that it transmits data packets from the wired network to the wireless

network. Other wireless stations irregularly send NACK packets. The nodes are not in

asymptotic conditions and the NACK packet size is far smaller than the data packet size.

Moreover, the maximum backoff stage m for downlink multicast data traffic is 1 instead

of the value 4 for unicast data traffic [25]. Thus, we studied the collision rate by using

simulation. In the following simulation, a wired sender transmits 1000 packets to the

48

.
1
5
3
7
}
:



wireless network. After receiving every 20 packets, each wireless station sends a NACK

packet. The data packet size is 1400 bytes and the NACK packet size is 36 bytes. The

sending rate is fixed at 6Mbps. The number of collision losses for data packets is depicted

in Figure 3.11. The number of total collisions is also shown.

 
 

       

Mrmber oi Collision Losses in 1000 Packets Number of Total Collisions

60

F

140 .

a a
.2 2

.2 2 100 .

'6 3

O o 30 «

‘6 '6 60

s 2
E E 40 «
3 3

z z

20 .

O “I: - -

0 20 40 60 80 00 O 20 40 60 80 00

Mimber of Stations Mimber of Stations

Figure 3.11: Collision rate in simulation.

The figures show that the collision rate in our system is much lower than the rate in an

asymptotic system. The collision loss rate, i.e., the rate of data packet losses due to

collisions, is even lower. Among 1000 data packets, fewer than two packets on average

are lost due to collision, even in a network with 100 NACK-transmitting stations.

However, we will see later in this chapter that the collision rate is considerably higher

when a NACK suppression approach is adopted.

49

I
t
:
7
'
!
“



3.2.3 Contention and Queueing Loss

Incoming packets will be dropped at the access point in case that the buffer is full. The

degree of buffer utilization depends on the arriving rate and the service rate. In steady

state, there are no packet losses, and the average arrival rate is equal to the service rate.

As packets get lost in propagation and receivers send NACKs, this balance is broken. In

this section we study the effect of reverse traffic on queueing losses.

Reverse traffic contends for the channel with the data traffic. When a larger number of

receivers try to access the channel, the chances that the access point can seize the channel

become small. Therefore the data transmission is slowed down. As a consequence, the

arriving rate becomes higher than the service rate. Eventually it will lead to buffer

overflow and packet drop. We study contention and queueing loss though simulation. In

the following test, we assume that the buffer capacity is 50 packets, data packet size is

1400 bytes, NACK packet size is 36 bytes, and the sending rate‘is fixed at 6Mbps. Each

receiver transmits a NACK packet after receiving every 20 data packets. We plot the

average service time at the access point as well as the number of queueing losses in

 

 

 
  

   

 

 

Figure 3.12.

Average Service Time of Packets + 1 station

20000 +3stations

18000 ~
—G—1OStations

A 16000 ‘ ~-a:—25 stations

§ 14000 «

9 +508tations

3% 1 J —+—1003tationsl

v 10000 -

E 8000‘

’5 6000‘

i 4000

2000

o iVIVYYITYYT—YYTWrY—YYY—TrtiIII!!!YIII‘IIIYYYYIYVIIIVIYYIIIIIIIIIIIYYYY’YYIITYYYVVYITIIIIITIIIYII

0 10 20 30 40 50 60 70 80 90

Packet Sequence Number

50

'.
A
‘



Queueing Losses in 1000 Packets

 

800 ~

700 . /x_”_/.

600 . f/

500 - /

400 ~

200«

1004

N
u
m
b
e
r
o
f
Q
u
e
u
i
n
g

L
o
s
s
e
s

\

  
0 10 20 30 40 50 60 70 80 90 1 00

Number of Stations

Figure 3.12: Contentions and queueing losses.

In the first figure, the per-packet service time (the time needed for channel access and

packet transmission) increases drastically when receivers start transmitting NACKs. It

reflects the degree of channel contention. When more stations transmit, the service time

becomes longer. This slowing down at the access point causes many packet drops. The

second figure shows that more than 50% of packets are dropped due to buffer overflow in

a moderately large network. These severe losses will lead to a significant drop in

performance. Therefore, NACK suppression as well as flow control is critical to the

performance of a reliable multicast protocol.

3.3 Reliable Multicast Strategies

Based on our understanding of packet losses and traffic interactions, we describe and

evaluate a number of well-known reliable multicast protocol components in this section.

We design our protocol by combining the most efficient algorithms in retransmission and

NACK suppression.

51

 



3.3.1 Retransmissions

There are two major approaches for loss recovery. One approach is ARQ, and the

other is FEC. Upon receiving a NACK packet, the sender either retransrrrits the requested

data packets as in ARQ, or transmits some parity packets as in FEC. We refer to as

retransmission approaches. In ARQ, the repair packets are retransmitted data packets,

while in FEC they are parity packets. Repair packets can be sent either by unicasting or

by multicasting. Although the lack of link layer retransmission is a non-trivial

shortcoming of the multicast approach, multicasting is still far more efficient than

multiple unicasting in WLAN environments, where all stations share the channel.

Compared to ARQ, the FEC approach is computationally intensive and

communication efficient. It incurs larger computational overhead because this approach

requires extra computational effort to encode packets at the sender and decode packets at

the receiver. It entails smaller communicational overhead because multiple receivers can

use the same parity packet to recover different packet losses, which leads to less

retransmission traffic. Considering that the computing capability increases faster than

network bandwidth does, we favor a communication efficient approach and adopt the

FEC approach in our protocol.

3.3.2 NACK Suppression

In previous sections we show that reverse traffic can cause data losses or slow down

transmissions. To improve the protocol performance, it is desirable to keep reverse traffic

as light as possible. We describe three approaches that can reduce NACK packets:

52

.
.
fl

 

“
‘
1
‘
1
-

I



proactively sending FEC parity packets, local NACK suppression and global NACK

suppression.

Proactive FEC. In this approach, the sender proactively sends a certain number of FEC

parity packets along with the data packets. In case that some data packets are lost, a

receiver can recover the losses without sending retransmission request if enough FEC

parity packets have been received.

To determine the maximum gain of the proactive FEC approach, we first assume that

the channel prediction is perfect, that is, we know exactly how many packets will be lost

in a group. Let k be the number of data packets in a group, and abe the proactive rate,

then 0k is the number of proactive parity packets in the group. Let p(r) be the average

packet loss rate at receiver r. The number of packets received by receiver r is:

Sr(P) = (k + 010* (1 -P(r))

If s, is less than k, that is, the number of received packets is less than required, then

the receiver sends a NACK. Thus the total number of NACK packets in the group is:

R

Nn(P) = 2:21 (l — B(k + 04,170). 040).

where B(n, p, k) is the cumulative binomial probability.

Let F(x) be the overhead of simultaneously sending x NACK packets, Nl(x) be the

number of downlink packet drops due to collision and contention caused by x NACK

packets, T(x) be the overhead of sending x downlink packets, and 0r(x,y) be the total

overhead of x NACK packets when requesting y retransmissions. Assume that both aand

p are fixed, we can express 0r(x,y) as:

53



0r(X,Y) = F(X) + T(y + 0W) + 01(Nn(P’). maX(k - Sr(P’)) * (1 + 01))

wherep’ =p+NI(x) * (1 -p)/(k+ 0*)

Repair packets can also be lost, of course, and such losses will produce more NACKs.

Therefore the real overhead is larger. Assume that the additional overhead is a function of

the receiver number R, proactive rate aand average loss rate p. The total reverse traffic

overhead can be expressed as:

0r 2 0r(Nn(p), ma.x(k - s,(p)) + h(R, a, p)

On the other hand, the overhead of proactively sending packets is straightforward:

0p 2 T( 01')

Therefore the total overhead is 0 = 0r + Up. When we send fewer proactive parity

packets, Up is lower, but Or is likely higher. An optimal algorithm should minimize the

total overhead 0, specifically, find:

at, = argmin(0) = argmin(0r(Nn(p), max(k - sr(p)) + h(R, a, p) + T( 0%)) .

Let 0(x) be the total overhead when the proactive rate aequals to x, we can express

the maximum performance gain of the proactive approach over non—proactive or pure-

reactive approach as:

G = 0(0) - 0(0’0)

As shown in section 3.2, it is possible to obtain an approximation for function F and

NI. On the other hand, Tdepends only on the packet size and the sending rate. Given p(r),

k, and h, we can find the optimal aand maximum gain G through calculation. However,

loss rate p is not fixed in WLAN, and the computation is too complicated for an on-the-

54

.
3
1



fly adaptation. We adopt a simpler approach in our protocol, which dynamically adjusts

the proactive rate. This mechanism will be described in the next chapter.

Local NACK Suppression. Local suppression reduces the impact of reverse traffic in

two ways. First, it reduces the total number of NACK packets. Second, it reduces the

NACK density, that is, the number of NACK packets transmitted during a certain time

interval. In this approach, a receiver that requires retransmissions does not transmit

NACK packets immediately. Instead, it waits for a random time before sending NACKs.

If some repair packets it needs arrive during the waiting time, the receiver adjusts the

number of required packets. It cancels the NACK if enough repair packets have been

received and no more retransmissions are needed. Otherwise, it transmits the NACK as

scheduled. This approach works because the waiting time is random. While a receiver is

in waiting, another receiver might have reached its timeout and transmitted a NACK,

triggering the sender to transmit the corresponding repair packets. Those repair packets

could reach the waiting receiver before its timeout. If the number of received repair

packets is large enough to recover the lost packets, the waiting receiver does not need to

transmit its NACK. In this case, a NACK transmission is saved. If there are many

NACK-sending receivers, the savings could be substantial provided that the waiting time

at each receiver is appropriately set. Moreover, even if most receivers still need to send

NACKs after waiting, the reverse traffic is spread out into a larger time window.

Therefore the NACK density and the related losses are reduced.

We use simulation to study the effect of local NACK suppression. In the following

test, we assume that the number of lost packets is uniformly distributed among NACK-

55



transmitting receivers from 1 to the group size k. The suppression window is set to 100

milliseconds. The data packet size is 1400 bytes, the NACK packet size is 36 bytes, the

group size k is 20 and the sending rate is fixed at 6Mbps. The sender transmits 1000

packets. We plot the average number of NACKs sent by each station in Figuire 3.13.

 

  

 

 

      

60

g 50«
-ffiwmfi Am! 4 _‘

‘5

(75 4o .

8
n.

0

5 30 i ——)K~—— non suppression

<

i 20 « -—ar—— local suppression

a

E 10 4 —+-— local suppression

< w ith aggregation

0 , . . . , . . . ,

0 10 20 30 40 50 60 70 80 90 100

Mmber of Stations

Figure 3.13: The effect of local NACK suppression.

As shown in the figure, the average number of NACKs is indeed reduced by local

suppression. However, the suppression does not work well in larger networks. The reason

is the contention. Repair packets usually arrive long after sending the corresponding

NACK was sent, due to severe channel contention in large networks. Therefore most

receivers are still in need of repair packets after waiting, which leads to suppression

failures. In some cases, receivers can aggregate retransmission requests in multiple

groups and put them into one NACK packet. This usually happens after a long wait. As

shown in the figure, the aggregation approach exhibits a little bit better performance. To

increase the chance of NACK suppression, we can also set a biased timeout value for

each receiver, so that the more demanding receivers (those needing more repair packets)

will send their NACKs earlier. The number of corresponding parity packets triggered by

56

 



the first NACK is likely to be large enough to recover losses at all receivers. If they are

received in time, most NACK transmissions could be suppressed. Based on this strategy,

we set the suppression window size at a receiver to

Wb=(k—L)/k*2W

where L is the number of required parity packets, and W is the original suppression

window size. Obviously, the expected value of W}, equals W, given L is uniformly

distributed. We plot the result of this enhanced approach in Figure 3.14, which shows that

the biased timeout approach can further reduce the number of NACKs.

 

 

 

 

      

60

g 50 « A

a //7

a .

5 30 k\//// —+—— local suppression

< w ith a r ationg 20 q \ v 99 eg

a + biased

g 10 « suppression w ith

< aggregation

O V r f r r r r r fl

0 1 0 20 3O 40 50 60 70 80 90 100

Mmber of Stations

Figure 3.14: The effect of local NACK suppression with biased timeout value.

Simulation results indicate that larger suppression window leads to better suppression

performance. We can expect that the average number of NACKs will further drop if the

suppression window is set to larger than 100 milliseconds in the above test. However, a

long recovery delay is unacceptable for real—time applications. Even for time-insensitive

applications such as file distribution, the postponed NACKs could affect the subsequent

data transmission. Moreover, a large window demands larger buffer space at the sender,

57

 



and increases the total transmission latency if the delay is too long when the transmission

is near the end of the resource. Therefore, how to set the suppression window size is a

trade-off. It is possible to design an adaptive approach.

To demonstrate the NACK-spread effect, we programmed all the receivers to send

NACKs after a random delay without suppression. We compare the number of collisions

and drops in this approach with a non-delay approach, using the same number of NACK-

transmitting receivers. From Figure 3.15 we see that local NACK suppression can reduce

packet drops even if no NACK is actually suppressed, due to the spread effect. However,

the collision rate is substantially increased. In non-delay approach, all receivers send

NACKs simultaneously, which leads to severe contention and queueing losses. On the

other hand, it is likely that the NACK packets will only collide with a small number of

data packets at the beginning of the next group, which makes the collision rate low. In

local NACK suppression, the NACKs are spread out. The contention degree and the

queueing losses are reduced. However, the spread-out NACK packets will collide with

more data packets. As a result, the collision rate becomes higher. Overall, the gain in

queueing loss reduction is usually larger than the overhead due to collision loss, at least

in a moderately large network. Therefore in most cases NACK-spread with no

suppression is also beneficial to a reliable multicast protocol.

58



Number of Collision Losses in 1000 Packets Number of Queuing Losses in 1000 Packets

 

 

  

  

 

           

 

30
900

p 300 /l

25 < // f,/

0 / 700 .

5 u

2 2° // 3 600

3 I 0 500 . z__

2 -+ no MCK 3 400 + no NACK

° su ression ‘ -

I pp 3 suppressnn

.o —6— local NACK g 300 « "9— local NACK

:E: suppression Z 200 « suppression

z

1x /'7*\’*“—r-4K 100

' ‘ ‘ o . . . .

4O 60 80 100 o 20 40 so so no

Nimber of Stations Mlmber 01 Stations

Figure 3.15: The impact of local NACK suppression on collisions and drops.

Global NACK Suppression. Global suppression is more aggressive than local

suppression. In this approach, a receiver multicasts NACK packets, so that other

receivers as well as the sender can receive it. If a NACK-sending receiver receives a

NACK packet from another station, it checks the NACK packet to see whether its own

NACK is subsumed. If it is, the receiver postpones sending its NACK, expecting that the

sender will respond to the other NACK by multicasting the needed repair packets. In case

that the repair packets arrive before the new timeout, the receiver cancels its NACK so

that one NACK transmission is saved. Otherwise, it transmits the NACK as usual. The

advantage of this approach over the local suppression approach is that a receiver knows

sooner whether it should suppress its NACK. In large networks the repair packets might

anive long after the NACK is sent due to heavy contention. As a result, local suppression

approach does not work well in this case. On the other hand, multicast NACK packets

will certainly arrive earlier than the repair packets. Therefore receivers can further

59

 



A
v
e
r
a
g
e
N
A
C
K
s

p
e
r
S
t
a
t
i
o
n

postpone sending the NACKs, and the probability of NACK suppression is higher than

that in a local suppression approach.

   

 

 

 

      

60

50 . A . _- _ I 4“

40 ~ /////(,,/—~—

///

30 , // / —+— local suppression

/// / //

.. /-/ / —e— biased local suppression

20 < R] __L. ,_H ////

,/ / —x— iobal su ression

10 \3 J 9 PP
‘ ~———~ ——A—— biased global suppression

O f ‘ . T 7 r r r

0 10 20 3O 40 50 60 70 8O 90 100

number of Stations

Figure 3.16: Comparing local and global NACK suppressions.

Figure 3.16 shows that global NACK suppression can further reduce the number of

NACKs, compared to local suppression. The biased timeout approach is also applicable

to global NACK suppression. However, this advantage is not without cost. As shown in

Section 3.1, multicast reverse traffic has a more adverse effect on the data traffic in

WLANs than does unicast feedback traffic, since the access point has to forward uplink

multicast packets both uplink to the wired network and downlink back to the wireless

network. Those backward transmissions occupy buffer space and slow down service rate

of data packet processing, causing more packet drops due to buffer overflow. We

compare the number of packet drops in local and global suppression approaches through

simulation. In the following test, receivers transmit NACKs by either unicasting or

multicasting after a random delay, regardless of whether or not the NACKs are actually

needed. The suppression window size is 100 milliseconds. The sender transmits 1000

60



data packets. We plot the number of data packet drops of each approach in Figure 3.17.

The performance of a non-suppression approach is also shown.

Number of Queuing Losses in 1000 Packets

900

800 ”l

/’//_,—

4 -l, __,,,.,_, .,/700 - ’ //,.

 

Tale— no NACK

suppression

~o— local NACK

suppression

—+— global NACK

suppression

N
u
m
b
e
r
o
f
D
r
o
p
s

 
      

40 60 80 ()0

Number of Stations

Figure 3.17: Packet drops in local and global suppressions.

The figure illustrates that global suppression causes more queueing losses than local

suppression does. However, even without considering NACK reduction, the global

suppression approach still outperforms the non-suppression approach due to the NACK-

spread effect. Taking into consideration that more NACKs will be suppressed in this

approach, it is likely that the gain of suppression is larger than the overhead of extra

drops. To compare the overall performance of the NACK suppression approaches, we

plot the average loss rate at the access point in Figure 3.18. Both collisions and queueing

losses are taken into consideration. Parity packets are counted in as well as data packets.

61

1
.
.
.

‘
.



0.9 

   

  

  

 

   

 

  

 

o e 1 1- 4:— no NACK

' I suppression

0.7 . , —0—— local NACK

' suppression

0.6 < ——+—— global NACK

3 suppression

3 °~5 * — -A- — biased local

g 0.4 . suppression

...l

0.3 4

0.2 r

0.1 4  

 

 

0 20 40 60 80 00

Mmber 01 Stations

Figure 3.18: Overall performance of NACK suppression approaches.

It is clear that the NACK suppression approaches are capable of reducing packet

losses at the access point. The biased local suppression approach exhibits the best

performance when the multicast group size is not very large. In larger networks, its

performance drops, probably due to the increased collision loss as a result of larger

suppression window size variance. On the other hand, the global suppression approach

has good overall performance. We point out that, in real situations, it is possible that this

approach is not as effective for NACK suppression as in the simulations, especially in

medium-sized networks where the simulated suppression has the best effect. In that case,

the gain might be unable to offset the overhead of extra drops. Therefore, it might be

better to adopt the biased local suppression approach in small or medium-sized networks,

while using global NACK suppression in larger networks. In general, both local and

global suppression approaches are not sufficient to limit the number of NACKs in large

multicast groups in WLANs. The rates of collisions and queueing losses are still too high

in that case. A proactive FEC approach is more flexible and effective for NACK

suppression in such an environment.

62

‘
w
m
fi

'
.
-
—
-



3.4 Summary

In this chapter we studied the characteristics of wireless channels. We confirmed that

the wireless propagation loss is bursty and dynamic. The distance between a wireless

station and the access point has significant impact on the loss rate, and losses at multiple

stations are somehow correlated. Experimental and simulation results indicate that the

reverse traffic will cause packet loss due to collisions and contention. Moreover,

multicast reverse traffic affects transmission performance more adversely than does

unicast reverse traffic.

Several reliable multicast component methods were presented and evaluated in this

chapter. We illustrated that a NACK-based protocol with multicast retransmission and

FEC encoding should exhibit reasonable performance in WLANs. NACK suppression

approaches such as proactive FEC, local NACK suppression and global NACK

suppression could further improve performance.

63



Chapter 4

AFRM Protocol Description

The Adaptive FEC-based Reliable Multicast (AFRM) protocol is designed to be

scalable and adaptive. It is well suited to, though not limited to, WLAN environments,

where packet losses are relatively high and dynamic. AFRM uses NACK-based error

control in order to improve scalability. The responsibility of loss detection is distributed

to all stations in the multicast group. Moreover, the sender maintains no membership

information. The group is open to any station that is capable of receiving the multicast

data packets. Further, the data packets are organized into groups at the sender, and an

FEC encoding algorithm is used to generate parity packets. In the case of packet loss, one

or more receivers will send retransmission requests. The sender responds to the requests

by multicasting a number of parity packets that satisfy the most demanding receiver.

Other receivers can utilize those parity packets as well to recover all their data losses.

Therefore the total number of retransmissions is reduced.

Although a NACK-based approach produces far fewer feedback packets than does an

ACK-based approach, the reverse traffic could still be heavy and significantly affect

performance, in cases where the loss rate is high and the multicast group is large. To

reduce reverse traffic, AFRM adopts a proactive FEC approach. Since sending excessive

proactive parity packets wastes channel bandwidth, the sender adapts the proactive rate

 



according to the perceived channel conditions. AFRM also adaptively applies the local

and global NACK suppression approaches to further improve performance.

In this chapter, we describe the AFRM protocol in detail. First we give an overview of

the protocol in Section 4.1. In Section 4.2, we present the protocol strategies and tradeoff

considerations. Lastly, we address some implementation issues in Section 4.3.

4.1 Protocol Overview

The AFRM protocol consists of two components: a sender and a receiver. The sender

component is required for transmitting packets, while the receiver component is

responsible for receiving. Both components are needed at each participating host to

support duplex communication. In the following description, we do not distinguish a

sender station from the AFRM sender component; neither do We distinguish a receiver

station from the AFRM receiver component, unless the omission will cause confusion.

Both the sender and receiver components run on top of a best effort multicast service,

such as UDP/1P multicast.

In a reliable multicast transmission, a sending application makes a call to the interface

function of the AFRM sender, passing down a data block. The sender then fragments the

block into packets, prefixing each packet with an AFRM header. In the header, every

packet is assigned a sequence number. Those packets are then organized as groups, with

group ID and group sequence number added in the header. Next, the sender applies the

FEC encoding algorithm to each group, generating FEC parity packets and storing them

in a retransmission queue. The sender then multicasts the data packets group by group to

65

'
3
"
“
m
m



all receivers. After all data packets in a group having been transmitted, the sender checks

the current channel condition, based on feedback from earlier transmissions. If the

channel is in bad or lossy state, the sender retrieves some parity packets from the

retransmission queue and transmits them to the multicast group. If the channel is in a

good state, the sender sends fewer or no parity packets. Subsequently, the sender starts

processing data packets from the next group and continues transmitting until all data

packets are sent.

At a receiver station, the receiving application calls the interface function of the

AFRM receiver to receive data. The application will be blocked until the specified

number of bytes is received, or the end of a resource is reached. The AFRM receiver

listens on a service port that corresponds to a multicast group. When a packet arrives, the

receiver checks if the packet has already been received. If so, the packet is discarded.

Otherwise, if it is a data packet or a parity packet in the current group, it is inserted into

the Data Queue. After all data packets in a group are received, the receiver strips off the

packet headers, concatenating the packets into a memory block, and delivering a

specified number of bytes in the block to the receiving application. If some data packets

are missing, but sufficient parity packets have been received, the receiver applies the FEC

decoding algorithm to the packets and generates all the data packets in the group. If the

received parity packets are not enough to recover the losses, the receiver schedules a

NACK transmission, specifying the group ID and the number of parity packets required.

Unless cancelled by one of the NACK suppression methods, the NACK packet is sent out

eventually. The receiver continues executing in this manner.

66



Upon receiving a NACK packet, the sender searches the retransmission queue for

parity packets in the specified packet group. Before transmitting those packets, it updates

the estimate of the channel condition according to the number of required parity packets

in the NACK. The more packet losses, the worse the channel condition is assumed to be.

The sender then transmits those parity packets by multicasting. In the case that multiple

NACKs for the same group are received within a short time interval, the sender computes

a minimum number that is greater than or equal to the number of required parity packets

in any NACK. This number is then taken as the number of parity packets needed to be

sent. Since some of these parity packets could also be lost, the sender actually schedules

more parity packets for transmission. The number of the extra parity packets is calculated

according to the current channel condition. After processing the NACK, the sender

resumes its normal operation.

Since a NACK packet can also be lost on its way to the sender, a receiver always

prepares to retransmit a NACK. It stores each NACK packet in a NACK queue. After a

NACK is transmitted, the receiver sets a timer and places the NACK back in the queue.

After a timeout, the receiver retrieves the NACK from the queue, checking whether or

not any parity packet in that group has recently arrived. If so, and the parity packets are

enough to recover the losses, the NACK packet is destroyed since it is no longer needed.

If some parity packets have arrived, but the number is insufficient to correct the losses,

then the receiver updates the information in the NACK, resets the timer using the same

timeout value, and places the NACK back into the queue. If no packet in that group has

arrived, the receiver simply increases the timeout value and puts the NACK packet back.

67



Receivers do not explicitly know whether or not the transmission of the current group

is completed, until they receive a packet from a subsequent group. If some packets in the

last group are lost, receivers might keep waiting for more packets without sending

NACKs. To prevent this situation from occurring, the sender periodically transmits short

“keepalive” packets after all data packets have been transmitted. A “keepalive” packet

contains the ID of the last group. Upon receiving a “keepalive” packet, receivers compare

the ID in the packet with the ID of the last group they have received. In this way they can

determine whether or not a packet loss has occurred.

The sender needs to set an appropriate sending rate. To maximize throughput, the

sending rate should be set as high as possible. However, as we saw in Chapter 3, a high

sending rate will lead to congestion and queueing losses. Therefore, the sender

periodically adjusts the rate according to the feedback information it has received.

Several parameters in the AFRM protocol significantly affect the performance of the

protocol. Examples include proactive rate, NACK suppression timeout value, sending

rate, etc. We evaluate these parameters in the next section.

4.2 Protocol Algorithms

4.2.1 Proactive Rate

How to adapt the proactive rate is a key part of the AFRM protocol. The basic idea is

to send more proactive parity packets when the channel is in a poor condition, and fewer

when it is in a good condition. The extra packets are expected to compensate for the

respective loss rate, so that most receivers will be able to correct their losses without

68



contacting the sender. However, sending excessive proactive parity packets will waste

channel bandwidth and hinder performance. The optimal value of the proactive rate is

dependent on the loss rate and the multicast group size. Since the loss rate is dynamic and

hard to predict in WLANs, it is almost impossible to always find the optimal value. In the

AFRM protocol we use an approximation that is close to the optimal value.

We are aware that the wireless loss locality depends on the packet group size and the

error burst length distribution. According to the collected traces, most loss bursts are very

short, only 1 or 2 packets long. On the contrary, the error-free bursts are usually longer

than several hundred packets. Therefore, the next group is more likely to be error free if

there is a loss in the current group. In a large network, however, the random variations in

packet loss tend to complement with each other. Hence, the overall packet loss in the

multicast group becomes less bursty and more predictable. Therefore it is necessary to

consider both the burst length distribution and the network when dynamically setting the

proactive rate.

Since it is difficult to make accurate predictions, we need to examine the consequence

of an incorrect prediction. For an over-prediction, the gain of the proactive FEC approach

is negative due to wasted bandwidth. On the other hand, an under-prediction introduces

no extra overhead, but also offers little performance improvement, since many receivers

will send NACKs to correct losses. In a large network or in a high loss environment, the

overhead of an over-prediction is likely to be less than the penalty of an under-prediction.

Therefore, we should be conservative in setting the proactive rate in a low-loss or small-

scale network, and we should be more aggressive otherwise.

69



To appropriately set the proactive rate, the sender needs to estimate the channel

condition and the multicast group size. However, an AFRM sender has no direct

knowledge of the multicast group size since it does not maintain the group membership

information. On the other hand, the sender might be located in a wired network, where it

cannot directly measure the wireless channel conditions. The only way to obtain this

information is to deduce it from receiver feedback.

For example, the sender can check the source of the NACK packets to estimate the

multicast group size. In the case of the channel condition, a natural is to have each

receiver calculate the loss rate that it perceives, and periodically send this information to

the sender. This approach can lead to accurate channel estimation, but it imposes extra

computational load on receivers as well as extra communication load on the network.

Since both the computational power of a mobile station and the channel bandwidth of a

wireless network are limited resources, this approach might be inappropriate. A revision

is to trade the estimation accuracy with the computational and communication overhead.

The receivers control what, when and how to send information to the sender. A simple

and straightforward implementation is to directly utilize NACKs. From received NACKs,

the sender can determine how many packets were lost and which nodes lost packets.

Based on this information the sender can make a reasonable estimation of the multicast

group size and the current loss rate.

Sometimes a receiver sends no NACK at all, even the channel is in lossy condition,

provided that it has received enough proactive parity packets to correct losses. In this

case the sender will assume that the channel is in a good state and decrease the proactive

rate. The decreasing process is “blind” since there is no feedback. If the proactive rate is

70



 
 

_
.
-

 
 



decreased too fast, the receivers will soon receive fewer parity packets than they need and

start sending NACKs. If it is too slow, on the other hand, the channel bandwidth will be

wasted since many proactive packets are actually unneeded. McKinley and Mani [39]

explored different functions for increasing and decreasing the proactive rate, but in

separate instances of an adaptive FEC protocol. In the AFRM protocol, we take into

account the history of the average loss rate and the multicast group size, enabling us to

adapt the rate of change accordingly. If the loss rate is high and the group size is large,

we decrease the proactive rate slowly. Otherwise, we decrease the rate faster.

There is one major potential problem in this approach, however. We know that packet

losses are not necessarily caused by propagation errors -- congestion and collisions also

contribute to packet losses. In this case, sending more proactive packets will only

exacerbate the problem. Instead, the sender should reduce its rate of How. We address

this problem in detail in Section 4.2.3, which describes AFRM flow control.

Using NACKs to estimate the channel conditions and adapt the proactive rate involves

very little overhead. We designed two algorithms, A1 and A2, which differ in how the

proactive rate is adapted. Algorithm Al aims to suppress as many NACKs as possible by

aggressively setting the proactive rate -- it adjusts the proactive rate whenever a NACK is

received. On the other hand, algorithm A2 is based on the average loss rate and is more

conservative. We provide pseudo—code for these two algorithms in Figure 4.1 and Figure

4.2, respectively.

71



 

Algorithm A1

a = a_ini // a is proactive rate

w = 0 // w is the number of group processed after last proactive rate adaptation

[NACK_Receiver]

for each received NACK packet p

for each group g in p

m = (number of requested parity packets in g of p)

n = m — (number of recently retransmitted parity packet in group g)

if m = k

a = a_max

else

a = min(a__max, max(a, (k*a(g)+m)/(k-m))) // k is the number of

data packet in a group, a(g) is the proactive rate used to transmit data packets in g, a_max is

maximum proactive rate

send n*( 1+a) parity packets

[Data_transmitter]

for each data group g

send k data packets

send k*a proactive parity packets

a[g]=a;w=w+1

[Update_thread]

do

if w = W // W is a threshold for proactive rate decrease

if no NACK packets received

a = max(a_min, a/2) // a_min is minimum proactive rate

w = 0

sleep 1 seconds

repeat  
 

Figure 4.1: AFRM-Al algorithm.

In algorithm Al, the proactive rate is calculated based on the recent loss rate. If only

(k - m) packets are received among k * (l + a(g)) packets transmitted, the success rate is

(k - In) / (k * (l + a(g)»

72



Let us assume that the channel condition does not change during the time of the

retransmission. To guarantee that the reactive parity packets are enough to recover the

losses, the following inequality must hold:

(k-m)/(k *(l +a(g)))*(l +a)21

Therefore the proactive rate is set to (k * a(g) + m) / (k - m) to avoid feedback traffic.

This is a fairly aggressive algorithm that aims to minimize the reverse traffic. The

algorithm should exhibit good performance in high loss environments or in large

multicast groups, where the overall loss rate is more stable and a lack of parity packets

results in a higher penalty. When the loss rate is low and the multicast group is small,

however, it is likely that this algorithm will produce too many useless parity packets, due

to the burstiness of wireless losses, the short error burst length, and the large error-free

burst length in those environments.

73



 

 

Algorithm A2

a = a_r'm' // a is proactive rate

w = 0 // w is the revised average error burst length

m = 0 // m is the revised average loss rate in an error burst

lb[] = 0 // Ibis an array of packet loss bitmap in recent groups

na = O; // na is number of NACK packet received in recent groups

[NACK_receiver]

for each received NACK packet p

na = na + l;

for each group g in p

update lb[g]

n = [number of requested parity packet in g of p] — [number of recently

retransmitted parity packet in group g] ;

if currentgroup - g < w

a = m

else

a = 0 // do not send proactive packets

a = max(a__min, min(a__max, (1)

send n*(l+a) parity packets

[Data_transmitter]

for each data group

send k data packets

if currentgroup - lastnackgroup < w

a = m

else

a = 0 // do not send proactive packets

a = max(a_min, min(a_ma.x, (1)

send k*a proactive parity packets

[Update_thread]

do

calculate w and m from lb[] and na

na = 0

sleep I seconds

repeat

 

Figure 4.2: AFRM-A2 algorithm.

74

 



Algorithm A2 is more conservative than Al. It uses a conditional adaptation, whereby

a receiver aggregates loss information in the current group and several previous groups

into a loss bitmap. Only unreported losses in previous groups are included. (They were

not reported in earlier NACKs because the proactive parity packets received in those

groups were sufficient to recover the losses locally, or because the NACKs were

suppressed.) The receiver attaches the loss bitmap to the current NACK. By combining

all the loss bitmaps from multiple receivers, the sender estimates the average of overall

error burst length and the average loss rate. If the packet distance between the loss group

and the current group is less than the average error burst length, the sender transmits

some proactive parity packets with high probability according to the loss rate. Otherwise

the sender transmits proactive parity packets with lower probability. To account for the

effect of the number of receivers and the actual number of NACK packets, we add a

factor to the proactive rate (Empirically the factor is set to 2 * N / R, where N is the

number of NACKs and R is the estimated number of receivers). The underlying

observation is, when there are more NACK packets, the chance of an incorrect prediction

becomes smaller. In this case, we are able to afford sending more proactive packets.

Algorithm A2 is conservative in the sense that it does not aim to suppress all NACKs,

but just some of them. Since the overall error burst is likely to be short in small multicast

groups or when the loss rate is low, this algorithm will generate fewer proactive packets

than does Al in those environments. In larger groups or when the loss rate is high, more

proactive parity packets will be sent. However, the proactive rate in this case should still

be smaller than that of algorithm Al.

75



_
-
.
L

 

 
 



4.2.2 NACK Suppression

In chapter 3 we demonstrated how reverse traffic could adversely affect the

performance of data transmissions. NACK suppression approaches are intended to reduce

the intensity of reverse traffic. Besides proactive FEC approach, we also studied the

performance of local and global NACK suppressions in a simulation environment.

Although neither is very effective in large-scale networks, they incur lower average

overhead than does the proactive FEC approach, whose performance largely depends on

the accuracy of channel estimation. We use both local and global NACK suppressions in

AFRM to improve performance.

As described in Chapter 3, local NACK suppression can reduce reverse traffic and

improve performance. The biased timer approach exhibits better performance provided

that the multicast group is not too large. We set up a heuristic threshold value for the

multicast group size. In case the estimated size is below the threshold, the biased local

suppression approach is utilized. Empirically the threshold is set to 30.

Global NACK suppression also improves performance. However, it also increases the

chance of queueing losses. The overall performance depends on the suppression

efficiency. It is likely that the gain will offset the overhead in large multicast groups. We

activate the global NACK suppression approach when the estimated group size surpasses

the threshold value. The sender sets a flag in the AFRM header of each data or parity

packet. Receivers check the flag to choose which NACK suppression approach to use.

One shortcoming of both local and global NACK suppression approaches is the

resulting long latency between the sending of a packet group and the receiving of

feedback packets for that group. This delay will affect the accuracy of channel estimation

76



at the sender. In large multicast groups, however, packet losses are less bursty. Therefore

channel estimation is mainly determined by the average loss rate, which is affected little

by the promptness of feedback. Moreover, the expected waiting time for the earliest

NACK is shorter in larger multicast groups (This is reflected in the formula E(T) = W/ (n

+ 1), where T is the waiting time of the earliest NACK, W is the suppression window

size, n is the number of NACK-sending stations). Furthermore, the suppression gain is

likely to be substantial in these environments. On the other hand, those approaches are

unlikely to be beneficial to the overall performance in small groups. To solve this

problem, we set another threshold value for group size. If the estimated group size is

below this threshold, both NACK suppression approaches are disabled. We set the

threshold value to 10 empirically.

Another related problem is the long completion time for each packet group. The repair

packets might anive long after the reception of the data packets in the same group, due to

the random delay in sending NACKs, as well as round trip latency. In most cases the

waiting overlaps with the receiving of the data packets in the next group, so it is not a

large problem. However, the waiting in the last packet group of a resource will increase

the transmission latency. Since there is no more data traffic, NACK suppression becomes

less meaningful. Our solution is to disable NACK suppression in the last one or n. packet

groups. The value of n depends on the suppression window size and the per-group

transmission latency.

77



4.2.3 Flow Control

Flow control in wireless networks is a challenge. A major problem is how to

differentiate queueing losses from wireless propagation losses. Several approaches have

been proposed for TCP flow control in wireless environments, including ECN (Explicit

Congestion Notification) [4] at the link/network layer and slow start threshold

comparison at the transport layer [5]. The ECN approach is also applicable to the AFRM

protocol, if a standard cross layer interface is provided. We can also design algorithms

such as the slow start threshold comparison approach to differentiate losses. For example,

if NACK packets continue to arrive at the sender even if the sending rate has been

significantly reduced for a while, those losses are more likely the result of wireless

propagation errors. On the other hand, all receivers will experience the same loss if it is

caused by congestion at the access point, since the packet is not propagated in the air at

all. Such common losses are unlikely for propagation losses. Our approach is to have the

receivers include an explicit packet loss bitmap in NACK packets. For small packet

groups, the bitmap only requires one 32-bit word per group, an affordable overhead. By

comparing the bitmap words in NACKs from different receivers, the sender can

differentiate propagation losses from other losses. If the bitmap words indicate that a

packet is lost at all the receivers, it is likely that the packet was dropped at the access

point due to a collision or congestion. Otherwise, it is likely to be a propagation loss.

As mentioned in Chapter 3, we do not consider buffer overrun at the receivers.

Therefore receivers send no explicit rate control requests to the sender [69]. In the AFRM

protocol, flow control is applied mainly for congestion avoidance at the access point. We

use a rate based flow control approach in this protocol. We set up three threshold values

78



to separate four phases. Similar to TCP’s slow start and congestion avoidance phase, the

rate increasing/decreasing speed varies in different phases. The sending rate increases if

no NACK is received. Otherwise, the sending rate will decrease if the number of NACKs

reaches a threshold, relative to the number of transmitted packets. The pseudo code of the

flow control algorithm is provided in Figure 4.3.

 

Flow Control Algorithm

if packetsSent > 2 and nacksReceived > I then

if nacksReceived < packetsSent / thresholdO then

// no decreasing

else if nacksReceived < packetsSent / threshold] then

delay = delay * (l + nacksReceived / packetsSent)

else if nacksReceived < packetsSent / threshold2 then

delay = delay * 1.75

else

if delay * 2 < maxdelay then

thresh = delay * 2

else

thresh = maxdelay

delay = maxdelay

cdec = (thresh - mindelay) / 25.0

else if delay >= thresh then

delay = (delay * ( l-multi))

else

delay = (delay - cdec)

if delay < mindelay then

delay = mindelay

if delay > maxdelay then

delay 2 maxdelay

// insert delay between transmissions  
Figure 4.3: AFRM flow control algorithm.

In the pseudo code, the values of thresholdO, threshold] and threshole are

empirically set to 10, 5, and 2 respectively. For preliminary differentiation, we apply the

79

 



aforementioned bitmap approach to eliminate packet losses that are definitely caused by

wireless propagation errors from the flow control algorithm. Further optimizations are

under consideration.

4.3 Implementation

We implemented the AFRM protocol at the application level. The protocol is built on

top of the socket interface, specifically, UDP sockets and IP multicast services. Multicast

groups are identified by multicast addresses. Membership management is taken care of

by underlying IP multicast services.

Although an application level implementation is perhaps less efficient than a kernel

level implementation, the application level approach is more flexible and easier to adapt

to varying requirements of upper layer applications. At the application level, a protocol

can adopt relatively complicated algorithms and use a large amount of memory without

causing problems. In a previous work, we implemented a Java version protocol as a

component of the Pavilion middleware framework [40]. Recently an extended C version

of this protocol has been developed. We use the C version protocol in our experimental

and simulation studies, and the following description is based on this version.

4.3.1 Architecture

Sender. An AFRM sender consists of five major components: Application_lnterface,

encoder, data_transmitter, feedback__processor and update_thread. Their relationship is

depicted in Figure 4.4.

80



The Application_Interface accepts function calls from the upper level applications. An

application passes down a data block or resource name that is to be reliably transmitted.

The Application_Interface obtains the data block, fragmenting it into packets that are

prefixed with AFRM data packet headers, assigning to each a sequence number, group [D

and group sequence number. The Application_Interface then places them into the Data

Queue and invokes both the encoder and the Data_Transmitter.

 

 

 

 

Data from

Application Network

i1 Interface

Application- Data or Parity Packets

Interface r >

 

   
|___’l Data_Transmitter

l_'TData Queue 4 L T

 

   
     

 

 

 

Keepalive

I Flow Control

Update_Thread

Encoder    

     l l

Retrans. Queue Feedback__Processor '1

NACKs 

 

     

     
 

Figure 4.4: The AFRM sender architecture.

The Encoder retrieves data packets from the Data Queue, applying FEC encoding

algorithm to each packet group in order to generate parity packets. Each group has the

same size n, consisting of k data packets and n-k parity packets. The parity packets are

81



stored in the Retransmission Queue. To ensure enough packets for decoding, the data

packets are also appended to the Retransmission Queue after the parity packets. After

encoding one group, the Encoder inserts a special packet into the Data Queue, denoting

the end of the group. The Data Queue is implemented as a heap so that all the packets in

the queue are sorted according to the group ID and the group sequence number.

The Data_Transmitter retrieves packets from the Data Queue and transmits the packets

by multicasting. If it finds a special packet, it searches in the retransmission queue for

proactive parity packets. In case the parity packets of the group are not available yet, it

suspends until the encoder completes generating those packets. Then it fetches parity

packets from the queue and transmits them. The number of those proactive packets

depends on the current proactive rate. If a NACK packet is received, the number of

requested packets is increased by a times, where a is the current proactive rate. The

Data_Transmitter fetches that amount of parity packets from the retransmission queue

and transmits them. When a parity packet is pulled out from the head of the

Retransmission Queue and transmitted, it is also inserted at the end of the queue. After a

data packet is transmitted, it is removed from the Data Queue. The Data_Transmitter

always takes the first packet in the Data Queue to transmit. Since packets in Data Queue

are sorted in the group II) and the group sequence number, those with smaller group IDs

and smaller group sequence numbers will be transmitted earlier. If the Data Queue

becomes empty, the Data_Transmitter keeps sending “keepalive” packets, following a

binary exponential backoff. The group ID of the last sent group is assigned to those

“keepalive” packets. Between transmitting two packets, the Data_Transmitter always

inserts a delay according to the current sending rate.

82



The Feedback_Processor keeps listening on the feedback port. If a NACK packet

arrives, the Feedback_Processor updates the loss statistics, searching in the Suppression

Queue to see whether or not any NACKs have already received in the same group. If

such NACKs are found, it checks the timestamps of those packets and removes those

NACK packets considered to be obsolete. Then it subtracts the total number of requested

packets in those NACKs from the number in the new NACK. If the number in the new

NACK becomes zero or negative, the NACK is dropped. Otherwise, it is timestamped

and inserted into both the Data Queue and the Suppression Queue.

The Update_Thread periodically updates some statistics and calculates the values like

the average loss rate. It also calculates the new sending rate from the statistics such as the

number of received NACKs and the number of transmitted data or parity packets.

Receiver. An AFRM receiver consists of four major components: Data_Receiver,

NACK_Sender, Decoder and Application_Interface. Their relationship is depicted in

Figure 4.5.

The Data_Receiver loops, receiving packets from a port corresponding to the multicast

group. If the received packet is a parity packet, it is inserted into a Recovery Queue. If the

received packet is a data packet, it is inserted into both the Recovery Queue and the Data

Queue. If the received packet is a keepalive packet, it is discarded. In all above cases the

Data_Receiver checks the group ID in the received packet. If the ID is greater than that of

the last received group, or if the packet is a “keepalive” packet, the Data_Receiver will

count the data and the parity packets in the last received group. If the total number is less

than k, then the Data_Receiver will generate a NACK packet, assigning the number of

83



needed parity packets. The expected dispatch time of that NACK is also set according to

the current NACK suppression algorithm. Next, the NACK is inserted into the NACK

Queue, and the NACK_Sender is invoked. If the number of the received data packets in

the group is equal to k, the Application_Interface is invoked and the data packets are

delivered. Otherwise, if the total number of the data and parity packets in the group is

greater than or equal to k, then the Decoder is invoked.

 

Data, Parity or Keepalive Packets
 

l

Data_Receiver l

 

NACKs

 

 

   

NACK_Sender
 

  
     

—fi NACK Queue
 

 

 

 

     

  
 

 

  
    
 

 

—-h
——u Recovery Queue

Decoder

'—> Data Queue

Network
. . Interface

Application

_Interface

   

ll
Data to Application     

Figure 4.5: The AFRM receiver architecture

The NACK_Sender extracts NACK packets one by one from the NACK Queue. The

NACKs in the NACK Queue are sorted according to dispatch time. If the dispatch time of

the current NACK is later than the current time, the NACK_Sender suspends itself until

84



the specified time point is reached. Then the NACK_Sender checks the Data Queue and

the Recovery Queue to see whether or not it still needs additional parity packets. If no

parity packets are needed now, the current NACK is removed from the NACK Queue and

destroyed. If the number of needed parity packets has decreased, the NACK_Sender

updates the dispatch time using a linear backoff algorithm and places the updated NACK

packet in the NACK queue. Otherwise it transmits the NACK. After transmission, the

NACK_Sender updates the dispatch time of the current NACK using exponential backoff

and places the new NACK packet in the NACK Queue.

The Decoder fetches packets from the Recovery Queue. If there are at least k packets

available in one group, the Decoder applies the FEC decoding algorithm to those packets

and generates k data packets. Then the generated data packets are inserted into the Data

Queue. If some of those data packets are already in the Data Queue, the new copies are

discarded. After decoding, packets in the group are removed from the Recovery Queue

and destroyed. The Decoder then invokes the Application_Interface and moves on to the

next group.

The Application_Interface accepts function calls from the application. If the

application requests a resource or a data block, the Application_Interface removes

received data packets from the Data Queue, stripping off the AFRM protocol header and

concatenating them into one data block. If the data block is not large enough to satisfy the

request, the Application_Interface suspends itself until new data packets are received or

generated (by the FEC Decoder). After all the requested data are available, the

Application_Interface notifies the application and delivers the data block.

85



4.3.2 AFRM Packet Format

AFRM stores both packet headers and data bits in the UDP packet payload. There are

four kinds of packets: data packet, parity packet, keepalive packet and NACK packet. All

those packets share a common header format, although some fields have different

meanings in different packets and some packets have extra header fields.

The common header format is shown in Figure 4.6:

0 16 31

Type I Resource II)

Flag

Total Number of Packets

Sequence Number

Group ID

Group Sequence Number I Number of Receiver

Timestamp

Round Trip Time

Payload Length

 

 

 

 

 

 

 

 

   
 

Figure 4.5: The AFRM packet header format.

Type. The l6-bit type field is used to identify the packet type. The possible values are:

DATA, PARITY, KEEPALIVE, and NACK.

Resource ID. The resource II) field is a l6-bit unsigned integer that is used to identify

the resources transmitted by a particular sender.

Flag. This 32-bit field is used to hold special values, for example, the size of the last

packet in a resource in data packets, the NACK suppression switch in data or parity

packets, and the packet loss bitmap of the specified group in NACK packets.

Total Number of Packets. This 32-bit field is used to specify the total number of packets

in the resource.

86



Sequence Number. The sequence number field is a 32-bit unsigned integer that is used

to identify data packets in the resource. It is assigned —1 for parity packets. In NACK

packet, it is the sequence number of the requested packet. If requesting any parity

packets, this field is set to —1. In keepalive packets, this field holds the sequence

number of the last sent data packet.

Group ID. This is a 32-bit field that is used to identify packet groups in the resource.

Group Sequence Number. This field is a 16-bit unsigned integer. In data and parity

packets, it is the packet sequence number in the specified group. In keepalive packets

it is set to —1. In NACK packets, it is the number of parity packets required if the

sequence number field of the NACK is set to —1.

Number of Receiver. Sender uses this l6-bit field to inform receivers with the estimated

multicast group size. Receivers can adapt their NACK-sending behaviors according to

this field.

Timestamp. This 32-bit field is used by the sender to timestamp each data or keepalive

packet. Receivers will put the timestamp value of the last received data or keepalive

packet in NACK packets. This helps the sender to estimate round trip time and set the

retransmission suppression window.

Round Trip Time. The sender puts the estimated round trip time in this 32-bit field of

each data, parity or keepalive packet. Receivers use this estimation to set NACK

retransmission waiting time.

Payload Length. This 32-bit field is used to specify the payload data length in bytes.

87



Chapter 5

Performance Evaluation

In this chapter we evaluate the performance of the AFRM protocol and compare it

with several other reliable multicast protocols. We first study the behavior of the protocol

in our experiment environment, where results show it has good performance. Next, we

evaluate the protocol in our simulation framework. The framework enables us to vary

environment parameters such as the loss characteristics and the number of stations. We

test the protocol over a simulated network characterized by various loss patterns,

including a uniform model, a bursty model, a synthetic model and real packet traces. The

simulated network contains up to 100 wireless stations. In all tests we use throughput as

the major performance metric. The results show that the AFRM protocol has better

overall performance, in most situations, than other non-proactive and non-adaptive

protocols, especially in large multicast groups and in high loss environments.

5 .1 Experimental Study

We conducted experimental studies using the testbed described in Chapter 3. The

testbed consists of a lOOMbps Ethernet and an lleps Aironet wireless network. The

Ethernet is connected to the campus network. The wireless network is set to infrastructure

88



mode and connected to the Ethernet through an access point. The testbed includes several

high-end workstations, each with a lGHz Pentium HI processor and 512MB memory.

Some of these workstations are equipped with lleps Aironet 340 Series PCI Wireless

Cards and connected to the wireless network, while others are connected to the wired

Ethernet. We also use several laptop computers, each with a lGHz Pentium III processor

and 256MB memory. The laptops are connected to the wireless network. All machines in

the testbed run Windows 2000 professional version as the operating system. We

conducted all our tests during nridnights or early mornings when there were no other

wireless stations associated with the access point. Therefore in all tests there is minimal

other traffic in the wireless network.

5.1.1 Normal Conditions

In this experiment, we study the protocol behavior in “normal” indoor environments.

We set up a wired workstation that transmits a 4MB file to a multicast address, on which

1 to 3 wireless receivers are listening. The distance between the wireless stations and the

access point varies. For comparison, we implement a non-FEC protocol, a pure-reactive-

FEC protocol, and a fixed-proactive-rate-FEC protocol with 5%, 10% and 20% proactive

rate. All those protocols are NACK based. In the non-FEC protocol, the sender

retransmits the requested data packet upon receiving a NACK. In the pure-reactive

protocol, the sender does not send any proactive parity packets and sends only as many

parity packets as requested in NACKs. In the fixed-proactive protocol, the proactive rate

is specified a priori and applies to both data and (parity packet) retransmissions. In all

tests, the data packet size is set to 1400 bytes, including the AFRM header. The group

89



size parameter k is set to 20, and N is set to 60. The initial sending rate is set to 6Mbps. In

the case of NACK suppression, the receiver suppression window size is set to 100

milliseconds. Where applicable, we collected the following data: NACK count,

retransmission count, packet loss count, required parity packets count, received parity

packets count and proactive rate. We also recorded the total transmission time in order to

calculate the throughput.

We noticed that the average loss rate is very low in our indoor environment. From

Chapter 3 we see that the loss rate is below 1% in most cases. For the worst station the

loss rate is around 8%. In good states there are very few losses. In bad states, however, a

station can experience a long burst of losses, which will significantly affect the

throughput. We depict such a loss burst from a typical trace in Figure 5.1. The burst is

longer than 200 packets.

 N 0
'
!

N O

 

_
A

0
1

_
A

O

 

N
u
m
b
e
r
o
f
L
o
s
t
P
a
c
k
e
t
s

U
l

   ILA [\A
TIFTTTTTTITYYYYTTTYiVTTTYTTY TTTYTTl'lIi-.1.ilYYiIVYITTTTTTYIWTIII YTiTYTTT—TTTIYYTTilYIIITIIT'TTTTWTWI'I lIIYiTYlYITYY.IYITTITIIYYTTTTTITTT

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

GroupNumber

o l 

Figure 5.1: A loss burst spans several packet groups.

We compare the throughput of the aforementioned five protocols with the AFRM

protocol using two different adaptation algorithms. Since the non-FEC protocol benefits

little from NACK suppressions, we turned the suppression flag off in all protocols to

90



make fair comparison. We conducted each test five times. In calculating throughput, the

maximum and minimum values are dropped, and the results are the averages of the

remaining values. The throughput is depicted in Figure 5.2.

 
7000

6000 ~

5000«

 

4000 ~

3000.

 

T
h
r
o
u
g
h
p
u
t
(
K
b
/
s
)

2000 ‘ ——e——1 Receiver

1000~ —-x—-3Fieceiver

 
  
 
 

nofec riec fecOS iec10 fec20 iecai ieca2

Algorithms

Figure 5.2: Experimental throughput under normal conditions.

In the above figure, “rfec” denotes the pure-reactive-FEC protocol. “fecal” and

“feca2” denote the AFRM-A1 and the AFRM-A2 algorithms respectively. The figure

shows that in low loss environments all these protocols exhibit fairly good performance.

The throughput is as high as 6Mbps, close to the effective limit. When examining the

individual protocols, we noticed that the fixed-rate proactive protocols suffer from

sending too many unneeded parity packets. On the other hand, the performances of all the

protocols drop slightly in the case of 3 receivers, apparently due to the increased reverse

traffic.

Wireless losses are dynamic and random, which make it difficult to conduct

performance comparisons. This is one of the major reasons that we need a simulation

framework. We will describe the simulation approach in section 5.2. On the other hand,

the loss rate is significantly higher when a wireless station is farther away from the access

91



point. If we simulate the higher loss by dropping received packets at a closer station, the

perceived loss (simulated loss + real loss) is likely more stationary and suitable for

comparisons. Therefore, it makes sense to simulate such losses by using an artificial loss

model.

5.1.2 Artificial Loss

In this approach, we modify the receiver code so that it randomly received packets

according to a predefined loss rate. Therefore, the loss comprises the controllable

artificial loss plus the unpredictable actual loss. For simplicity, the distribution of the

artificial loss is initially set to uniform. This is not a particularly accurate model since the

real channel loss is not included. However, when we set the artificial loss rate to a large

value, say 10%, it is safe to omit the transmission losses, whose rate is usually around

1%. Compared to simulation, the advantage of this approach is that everything except the

loss rate is real, including the overheads for communication and computation, as well as

congestion and collisions. We use this approach to study the protocol performance in the

following tests.

We set the artificial loss rate to 1%, 5%, 10%, 20% respectively and repeat the tests-

from the previous section. We plot the throughput in Figure 5.3. As shown in the figure,

the protocols generate similar throughput when the loss rate is low. The fixed-rate

proactive protocols suffer from transmitting excessive proactive packets. When the loss

rate is higher, the throughput drops substantially. The proactive FEC protocols become

better than the other protocols due to the reduction in NACK packets. The 20% fixed-rate

proactive protocol has the best performance in the case of 5% and 10% losses. We can

expect that a 30% fixed-rate protocol will achieve higher throughput than the others in

92



the case of 20% loss. However, a fix-rate protocol is unlikely optimal in all cases in a real

wireless LAN since the wireless loss is bursty and dynamic.

The AFRM-Al protocol has the best overall performance. The AFRM-A2 is the best

for low loss conditions, but not as good as some other protocols for heavy losses, due to

its conservative policy in sending proactive parity packets. Anyway, both the AFRM

protocols outperform others in the case of 20% loss. In multicast groups with 3 receivers,

the average performance is generally 5% lower than that for the l-receiver groups. The

performance ranking is basically the same.

 

 

              

 

 

     

 

   

   

   

 

 

 

   

 

 

 

 

   

Throughput with 1 Receiver 0 0 Loss

7000 D 1% Loss

5000 . _ _ B 5% Loss

.3 _ -1 '7" —— " e 10% Loss

3 5000 «

x a 20% Loss

3 332;; 4. :2

° 300° 4
t9 :gé-gég "—7

E ”
4: 200° ‘ 1:2 -

'- 2; —: ~Ei:-

1000 . """ i ~

0 J . iii u _. 7

riec fec05 iec10 iec20 iecai ieca2

Algorithms

Throughput with 3 Receivers D 0 Loss

7000 U 1°/o LOSS

a 5% Loss

6000 . —

g; l" e 10% Loss

g 5000 ‘ — I 20% Loss

‘5 4000 4 -

2 3000g .

g 2000 «

.-

1000 4

0 .              

 

      

 

      

 

   

 

19005 iec1 0

Algorithms

nofec

Figure 5.3: Experimental throughput with artificial loss.

93

19020

 

ieca2



Next we study the relationship between the throughput and the number of NACKs, as

well as between the throughput and the goodput value. The number of NACKs is a metric

of reverse traffic. The goodput is calculated by dividing the number of transmitted data

packets by the number of total downlink packets. As such, goodput is a measure of the

channel efficiency, since sending more parity packets leads to lower goodput. In many

application environments, channel bandwidth can be exclusively utilized by a protocol

such as AFRM, so the goodput itself is not a major concern. However, goodput reflects

the behavior of the protocols and can be used to understand throughput results. We

 

selected the packet traces that produce medium throughput for each protocol, under 20%

loss conditions, and calculate the throughput, the number of NACKs and the goodput.

The results are depicted in Figure 5.4.

 

—e——Throughput (Kb/s)

9000 .. .o. - NACK * 10

80004 11 V --A-—Goodput'10000

7000 .

6000 .

5000 .

4000 l

3000 ~

2000 ~

1000 l

 

   

 

 

  
nofec riec iec05 ieciO iec20 fecal ieca2

Algorithms

Figure 5.4: Throughput, goodput and total NACKs with 20% loss.

It is clear that the throughput is inversely proportional to the number of NACKs. On

the other hand, the goodput has less impact on the throughput and is relatively constant

for all the FEC-based approaches. This result implies that aggressively sending proactive

parity packets is likely to be beneficial to the throughput in the test environment. Some of

94



the proactive packets might be useless, but the bandwidth waste could be offset by the

reduction of reverse traffic (which in turn reduces retransmissions). The AFRM protocols

exhibit higher throughput than the others mainly because they generate fewer NACKs.

The AFRM-Al protocol is better than the AFRM-A2 in this case, since A1 sends

proactive packets more aggressively.

Next we examine the proactive rate adaptation of the AFRM protocols. We plot the

number of proactive packets, the number of required parity packets and the number of

reactive parity packets for every group from a typical run of AFRM-Al and AFRM-A2.

In AFRM-Al, the sender adapts the proactive rate whenever a NACK is received. The

algorithm aims to suppress as many NACKs as possible even at the risk of sending too

many proactive parity packets. In the test environment, aggressively sending proactive

packets is justified since the reverse traffic is more harmful to the performance than is the

bandwidth waste. However, this conclusion depends on the implementation of the

wireless network MAC protocol and the channel loss pattern. In networks where the

reverse traffic has less adverse impact on the performance, or the channel loss is not

uniformly distributed, the proactive rate adaptation algorithm should change its

parameters. Figure 5.5 shows that the AFRM-Al algorithm behaves well on the uniform

artificial loss model. The number of proactive parity packets being sent is just hovering

above the number of parity packets needed. However, we will show later that the

performance is not so good on bursty losses. In AFRM—A2, the sender determines

whether or not it needs to send proactive packets, according to the loss burst length

distribution. In the case that it needs to send, the proactive rate is calculated based on the

average loss rate. In this study we do not address further how to find the optimal

95

 



parameters for a specific implementation of a wireless LAN. We defer that issue to future

investigations.

Proactive Rate Adaptation in AFRM-A1

1 6  
———o— Proactive Parity Packets‘

14 “ +Reactive Parity Packets

    12] """"Wa w_
5 :

E1o_.. . ;,‘4‘,,,.

'8‘

‘

2
':. '.36*

~. .2‘

g :.:'..:

24“
':..

0    
Packet Group

Proactive Rte Adaptation in AFRM-A2

 

 

18 , , . , L

l —6— Reactive Parity Packets‘ l

16 l—t— Reactive Parity Packets ‘ g ‘

14 ....... Needed Parity Packets 5

a ' ' ' ' ’ ,' . l

a 12 ,

“ l
E 10 l

"6
E 8

E 6

3

z 4

2

0 _

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Packet Group

Figure 5.5: Proactive rate adaptation in AFRM algorithms.

To evaluate the performance of the NACK suppression approaches, we tested both

local and global suppression for the FEC algorithms in multicast groups with 3 receivers.

The suppression window size is set to 100 milliseconds. In Figure 5.6, we plot the

average throughput of each protocol under 20% loss conditions.

The figure shows that local NACK suppression improve the performance slightly in

cases where the reverse traffic is relatively heavy (rfec, fecOS and feclO) and where the

96



proactive rate is low. For fec20, fecal and feca2, however, since most NACKs are

already suppressed by proactive packets, local NACK suppression cannot produce

enough gains to offset the overhead. Therefore the throughput is lower for those

algorithms. Moreover, global NACK suppression will definitely hurt performance in this

environment, because the group size is too small. We turn the global NACK suppression

flag off until the multicast group becomes larger.

 

 

 

      

3500

3000 «

E 2500 .
.o

E.
.. 2000 «
:3

o.

g. 1500 .

2 I o I . . . ~ ' - 0’ 'g 1000 4 ' , . K .5 —e— No Suppressnn

l- A" I
- —x— - Local Suppression

500 «
— - A - — Global Suppressbn

0 T T v r r

riec iec05 iec10 fec20 feca1 ieca2

Algorithms

Figure 5.6: Experimental throughput with NACK suppressions.

5.2 Simulation Study

To ensure that a network protocol has a good overall performance, it is necessary to

conduct sound and extensive performance evaluations. In wireless LANS, packet losses

are bursty and almost unpredictable. Therefore, it is hard to guarantee the fairness in a

performance comparison since the channel condition is constantly changing. Moreover,

the expense of organizing a large-scale wireless LAN testbed is prohibiting. On the other

97



hand, the study of the protocol behavior under various loss patterns and network scales is

indispensable. To solve this problem, we designed and implemented a network

simulation framework that enables us to scrutinize the protocol performance under

various conditions.

5.2.1 Simulation Framework

We built a general-purpose network simulation framework atop the CSIMlS

simulation package [41]. The framework generates and manages communication objects

such as virtual networks, links, packet loss patterns, virtual stations, and virtual

processes. It supports the inter-networking concept and provides the basic routing

service. The wireless access point is simulated as an object instance of the virtual router,

while the wireless channel is simulated as a set of link objects, each of which connects

two virtual stations with an associated loss pattern object. Currently four loss models are

supported: packet trace, uniform model, bursty model and synthetic model. On each

virtual station, a mini operating system is running, which maintains a protocol stack.

Simple implementations of network protocols such as UDP, TCP, IP, IEEE 802.3 MAC

and IEEE 802.11 MAC are included. They are used to simulate the network traffic

processing between the network interface card and the application code. The architecture

of the framework is depicted in Figure 5.7.

The framework supports the socket API by over-riding the real socket library. Any

network applications built on the socket interface can be easily ported to this simulation

platform. For example, let us imagine two application programs that run on different

stations and which communicate with each other through a network channel. One

application behaves as a client, and the other acts as a server. The server application

98

 



listens on a particular socket, waiting for any requests from the clients. When a client

application starts, it creates a socket and connects to the server socket by specifying the

appropriate address and the port. Subsequently, these two programs transmit data to each

other by using send() and receive() socket call on the socket pair.

 

  

 

 

 

 

      

 

 
 

           

Application

Code
Socket Interface

Virtual OS
.

Simulated

Network
   

 

  

 

 

    

  

  
 

Figure 5.7: Architecture of the simulation framework

To port these two programs to our simulation framework, we first generate a simulated

network, which includes at least two virtual stations and a link object that denoting the

network channel between these two stations. Next, we relink the client and server

application code with the new socket library provided by the framework. When the new

code is loaded, a virtual process is created on each of the virtual stations. The client as

well as the server code is invoked from one of the virtual processes. Now the client

application and the server application begin running on the simulated network.

99



 

I I I I l I I l I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

  

 

 

   

       

Virtual Socket Library

Simulated Network

   

I I

' lI

l _ l . .

Application : Socket O—l Socket Library F. Socket : Spgllcatron

C090 :lntcrface__ Interface : ' c

l l
I I

I I

I I

' l

- 1
Client : Server

1
I

I

I

I

I

I

-
-
-
-
-
—
-
(
p

   
Figure 5.8: Porting applications to the simulated network.

After porting applications to a simulated network, we can study their performance by

varying the network configuration and the object parameters. The network scale can be

changed by simply adding or deleting virtual stations in the network. To change loss

patterns between a wireless station and the access point, we simply change the link object

between the two stations by updating the corresponding loss pattern object by specifying

new parameters. In next section we describe the loss models in detail.

5.2.2 Loss Models

Packet Trace. This model replays packet losses from the real wireless channel. We

collected a large amount of packet traces to study the characteristics of a wireless

channel. The procedures and analyses are described in Section 3.1. These traces can be

also used to configure loss pattern objects in a simulated network. When generating such

networks, we provide a configuration file specifying how many stations are included in

the network, the bandwidth and loss patterns for each link, and so forth. The type of a

100

 



loss pattern is specified in the file. If the type is a packet trace, the trace file name is

given. When a packet is transmitted over a link with a packet trace loss pattern, the

simulator looks up the packet trace in the file. The packet will be dropped if the trace

indicates a packet loss at the current location. Otherwise it is passed over the channel.

After this processing, the simulator updates the current location by moving the pointer to

the next packet in the trace file.

Uniform Loss. For each uniform pattern, the loss rate is specified in the configuration

file. When a packet is transmitted over a link with this model, the simulator generates a

random number between 0 and 1, comparing it with the loss rate of the model. If the

random number is smaller than the loss rate, the packet will be dropped, else it will be

passed successfully. This model is very simple to implement. However, it does not reflect

the real loss distribution in a wireless channel.

Bursty Loss. As we saw in Section 3.1, wireless loss is very bursty. In a loss burst, most

of the packets in the channel are lost. In a loss-free burst, few or no packets will be lost. It

is natural to use a two-state Markov chain to model the channel behavior. The Gilbert-

Elliot model [20] is widely used in the research community. For each channel the model

maintains two states. At a specific moment, a channel can be in either the good or the bad

state. If the channel is in the good state, the loss rate is very low. If the channel is in the

bad state, however, the loss rate is relatively high. A simplified version the model

assumes that there is no packet loss at all in the good state and that all packets are lost in

the bad state. If a packet loss occurs in the good state, the model immediately switches

101

 

 



the channel to the bad state. Similarly, whenever a packet is successfully transmitted, the

model switches the channel to the good state. Assume that the probability of staying in

the good state is or, and the probability of staying in the bad state is B. The probability

that any packet loss occurs in the good state is (l-or), and the probability that any

successful packet delivery occurs in the bad state is (l-fi). The model is depicted in

Figure 5.9. Due to the simplicity for implementation, a number of research works use this

version of the model. We also adopt this simplified version in our simulation framework.

l-0i

a C0 0.
1-B

Figure 5.9: Two-state Markov model for simulating packet losses and channel errors.

 

For each bursty pattern, the transition probabilities between good state and bad state

are given in a configuration file. When a packet is transmitted over a link with this model,

the simulator generates a random number between 0 and 1, and checks the channel state.

If the channel is in the good state, and the random number is smaller than the good-to-bad

transition probability, the packet is dropped and the channel switches to the bad state. If

the channel is in the bad state, the packet is dropped unless the random number is smaller

than the bad-to-good transition probability. The channel switches back to the good state

whenever a packet is not dropped.

Synthetic Loss. When generating a simulated network, we need to set a loss model for

each link. For a set of links, three approaches can be taken. First, we can set different loss

102

—
‘
}
"
*
m
"
m
—
r
f

 



models for each link. Second, we can use the same loss model, but different instances.

Third, we use the same instance for all links. In the first approach, the links will certainly

experience independent packet losses. In the second approach, the links share the same

loss model. However, the instances are different. Since each instance maintains a separate

random number stream as well as unique random number seeds, the links will get

different and independent random numbers, which lead to independent packet losses. In

the third approach, the links will experience identical packet losses.

In Section 3.1 we saw that packet losses are somehow correlated at different wireless

stations. They are neither identical nor totally independent. We will be unable to maintain

this relationship when setting loss patterns by using any of the three approaches described

above. To solve this problem, we added a synthetic loss model to the simulation

framework. In this model, a trace is selected as the base error model. Multiple stations

share the base trace with a certain probability. In other cases they generate independent

packet losses from the bursty model. Therefore, the correlation feature mentioned above

is maintained. We can change the sharing probability to adjust the correlation

coefficients.

The synthetic model can be implemented either statically or dynamically. In static

implementations, packet losses at each station are calculated a priori. The resulting losses

are written to a trace file, whose name is provided in the configuration file. In dynamic

implementations, each loss pattern is set to the synthetic model and associated with a

base trace file, a sharing probability, and a bursty loss pattern instance. Packet losses at

each station are dynamically. For simplicity, we use the synthetic model statically in the

framework.

103



Revised Bursty Loss Model. After analyzing the packet traces we collected in section

3.1, we realized that the simple Gilbert model is probably not a good approximation to

the traces. We generate a packet trace based on the simple Gilbert model and compare it

with a real trace in Figure 5.10. The good-to-bad transition probability is set to 0.0006,

and the bad-to-good transition probability is set to 0.16. Both probabilities are calculated

from the real trace.

 

 

  
 

 

L
o
s
s
B
u
r
s
t
L
e
n
g
t
h

  

50

45‘ IIRealTrace

40 +GilbertTrace

35 +
+ + + + +

25 4+ + + + + +++ + *

201++ ++ + +.,:£+ ;++++++ +t+1+1=l~ +
15‘ I+:+# +++ +4tal++ +¢++++ +++n 1.... + +9.]: 4,-9- «P

+++ it ++=l=++-l.. ++ . zip- : .. +_ fil- 35+ + + J" .. 4»

10« u-l-‘Fll' a; +51 .- + 43"? 4- . + “H II

5 .fisf:§iz..' .. +.1”.3?"?1.1.1..“ Vii". ':.; 1. ' Was: .+-':";. . :r’..'r.:. *L-‘WI I.

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Mini ber 01 Packets

Figure 5.10: Real trace and trace based on Gilbert model.

In the simple Gilbert model, the loss burst length as well as the loss-free burst length

follows a geometric distribution. When we look at the packet traces statistics in Figure

5.11, however, it turns out that the exponential distribution is a good approximation to the

loss-free burst length. Moreover, the loss burst length distribution is more spread out, like

bimodal or Pareto distribution. Therefore we revise the bursty loss model so that the loss-

free burst length is exponentially distributed and the loss burst length distribution is in

pareto. We use this revised model to generate the synthetic traces as described above. In

Figure 5.12, the Pareto parameter a is set to 0.3 and k is set to 100000.

104

 



 

 

 

 

 

        
   

 

 

   

  

120% W 120%

i

l°°°/°‘ 5 alro< xmzy x x x xi XX 100% 1 la la a

80% 1 +4.?“ BOO/o ‘

+

u. + u.

o 60% . + o 60% -
O + U

+ . l

4W" ' + u Real Trace 40/° ‘ //

20°/ j + + Gilbert Trace 20% Hill a Real Trace

° J, x Pareto Trace {if + Gilbert Trace

01% § r . ' 00/0 1 . r r

1 10 100 1000 0 2000 4000 6000 8000 10000 12000

Loss Burst Length Loss-Free airst Length

Figure 5.11: Burst length distribution of packet trace.

50

45 J a Real Trace

40 ~
.: + Revised Trace

‘6 35 1

S 30 ~

i 25

3 20

m 15 A D a. +
‘ + +

‘3’ 10 q+ + B

-J +

5 ‘ + + ‘11- e

0W

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Mini ber 01 Packets

Figure 5.12: Trace based on revised bursty loss model.

5.2.3 802.11 MAC Simulation

Our network simulation framework supports IEEE 802.11 MAC protocols. In IEEE

802.11 Standard [25], there are two versions of MAC protocols: a station version and an

access point version. Both are relatively complex. We ignore those parts that are

unrelated to the packet transmission in typical scenarios and simplify the MAC protocol

105

'
1
4
-

 



as described in Figure 5.13. The simulation study in Chapter 3 is also based on this

 

implementation.

sender() {

while (true) {

pkt = fetch(); // fetch packet from data queue

if ( lchecka()) // check if the channel has been idle for DIFS or EIFS

backoff(); // backoff if a transmission within the last DIFS or

EIFS is detected

while (ltransmit(pkt)) {

if (lbackoff()) { // backoff between retransmissions

break; // too many retranmissions, transmission failed

}

}

transmit(pkt) {

if (is_multicast(pkt) && is_access_point()) {

dispatch(pkt); // pkt propagation

CW = CWMin; shortRetryCount = longRetryCount = 0; // reset

return true;

}

if (size(pkt) > RTSThreshold) {

dispatch(RTS);

wait(SIFS); // wait for CTS

if (lCTS_arrived()) { // no CTS

shortRetryCount ++; incW(); // increase window size

return false;

1

shortRetryCount = 0;

wait(SIFS);

l

dispatch(pkt);

wait(SIFS); // wait for ACK

if (lACK_arrived()) { // no ACK

if (size(pkt) > RTSThreshold) longRetryCount ++;

else shortRetryCount ++;

incW();

return false;

}

CW 2 CWMin; shortRetryCount = longRetryCount = 0;// reset

return true; 
 

 
 

106



 

 

receiver() {

while (true) {

pkt = receive_pkt(); // block if no packet detected

if (type(pkt) == RTS) {

if (ready_to_receive()) {

wait(SIFS);

dispatch(CTS);

l

} else if (type(pkt) == CTS) {

CTS_arrived() = true;

} else if (type(pkt) :2 DATA) {

if (!is_multicast(pkt) || is_access_point()) {

wait(SIFS);

dispatch(ACK); // send ACK

1

} else if (type(pkt) == ACK) {

ACK_anived() = true;

}

 
 

Figure 5.13: Implementation of IEEE 802.11 MAC protocol.

5.2.4 Simulation Results

To evaluate and compare the protocol performances in large multicast groups, and

study their behavior over various loss scenarios, we executed simulations similar to the

experiments in Section 5.1, but we modeled the wireless channel with different loss

patterns and varied the group size. The multicast group size is set to l, 3, 10, 25, 50 and

100 respectively.

Packet Trace. We collected several packet traces in the experiments described in

Chapter 3. We used these traces to simulate packet losses. The throughput is depicted in

107

.
(
«
L
e
a
fl
e
t
s
i



Figure 14. The traces from nodeS in Table 3.1 are taken in the case of l-receiver

multicast group. The traces from node2, node5 and node 8 are chosen for the case of 3

receivers. All 10 traces are included for tests in a lO-receiver multicast group.

 

 

   

 
                     

 

 

 

      

U 1 Receiver

7000

FT _ —- D 3 Receivers

6000 « _ — r .__ __ __ __ r— a 10 Receivers

1; I 1'" fl

:: 4000« ii-iiiiéiéi as; ‘1‘

3' 300°:g

.....
I

.. 2000. 22322 33321? E22251; """
1::::: {Elf
r ‘

100° 1 i

0 :r:r:r:~; Y {vi-Tr} T -:~t-:~:~‘ f -.-:-:-:-f I :‘Z'Z-I: '

noiec riec 19005 19010 19020 iecai ieca2

Algorithms

Figure 5.14: Simulation throughput on wireless packet trace.

Figure 5.14 shows that the throughput drops rapidly when the multicast group

becomes larger. Among the protocols, pure-reactive FEC and AFRM-A2 have the best

performance. Surprisingly AFRM-Al becomes the worst. Other proactive protocols also

suffer. To determine why AFRM-A1 performs so poorly, we plot in Figure 5.15 the

number of proactive packets, number of required parity packets and number of reactive

parity packets for every group from a typical run of AFRM-Al.

108

 



N
u
m
b
e
r
o
f
P
a
c
k
e
t
s

 

 

 
 

  
   

35 _-

—-e-— Ptoactive Parity Packets]

30 « +Reactive Parity Packets 1 (

------- Needed Parity Packets A

25

20 ~

15 ~

10 «
-

: l i

r:-. w -. \I). u ‘:. ‘ ’ 3' ‘5'." ' 3 "' ‘ ' o.

0 .'.-.;...3.‘ r':._.:';.r‘.y.:IVM-,M\ MN; :y-a". A A0.\ 0.0“. 05‘ § ”S '.\A 0" 0.0.“. t-':’" s

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Packet Group

Figure 5.15: Proactive rate adaptation of AFRM-A1 on wireless packet traces.

As shown in Figure 5.15, the packet losses are bursty in the collected traces. In this

case, the AFRM-A1 approach is slow to reduce the proactive rate, resulting in the

sending of many unnecessary proactive packets following a long error burst. On the other

hand, AFRM-A2 checks the average loss burst length and the average loss rate to

calculate the proactive rate. In these tests, an AFRM-A2 sender sends few proactive

packets. Therefore it exhibits similar performance to that of the pure-reactive FEC

protocol.

We want to emphasize the fact that the reverse traffic overhead is lower in the

simulation framework than it is in the real test environment. This is because a real access

point needs to periodically transmit some management frames besides relaying data

packets. This transmission will likely cause more packet drops at the access point. As a

result, all protocols have higher throughput in the simulation than they have in the test

environment. However, the performance of the proactive protocols does not increase as

fast as that of the others due to their redundancy and the overhead of NACK suppression.

We expect them to exhibit performance in a real network. On the other hand, excluding

109

 



T
h
r
o
u
g
h
p
u
t
(
K
b
/
s
)

the long loss bursts from the calculation of the proactive rate might be a good idea. We

will explore the ideas in our future work.

Uniform Loss. Random loss under a uniform distribution is probably the simplest loss

model. We use an independent loss approach. In this approach, each wireless station is

assigned a unique random stream. Propagation loss perceived by a station is totally

determined by the random stream. It would appear that this model is not very realistic.

First, as we showed in Chapter 3, wireless propagation loss is bursty rather than uniform.

Second, losses at different stations are somehow correlated rather than independent. On

 

the other hand, packet losses do include congestion losses and collision losses, as well as

propagation losses. This model affects only the propagation losses, which are only a

portion of packet losses. Given that congestion losses and collision losses are well

simulated, this model is perhaps still useful due to its simplicity. We plot the throughput

of each protocol in Figure 5.16, for different loss rates.

        

 

                 

 

 

1% Loss

7000 HM 77—4#~A 7*”; -._L —- _—

_ _ _ 2. . _ 2

6000 ._ _ n...— in 1 Receiver 1

5000 7 l D 3 Receivers l

’ l . l

40007
31:110Recelversi

1 Cl 25 Receivers l

3000 ‘ l

l D 50 Receivers l

2000 , l I 100 Receiversl

1000

0 . .

nofec r190 19005 19010 19020 ieca1 19032

Algorithms

110



20% Loss

 

 

T
h
r
o
u
g
h
p
u
t
(
K
b
/
s
)

  
             

 

               

 

  
     

5000

4500 1
_

4000 . '— D 1 Receiver

3500 ~ _ —_ —_ D 3 Receivers

3000 ‘ _ — " a 10 Receivers

2500 4
a 25 Receivers

2000 4 r»

- I 50 Receivers

1500 i 3:

:45 I 100 Receivers

1000 l 3.4 ‘3

500 l 3

0 . ~ . -

noiec r190 19005 19010 19020

Algorithms

Figure 5.16: Simulation throughput on uniform loss model.

Figure 5.16 shows that the throughput drops rapidly when the multicast group

becomes larger or the loss rate becomes higher. Among the protocols, the non-FEC

approach drops the fastest. Both AFRM—A1 and AFRM-A2 protocol outperform almost

all other protocols at 100 receivers or 20% loss rate. The fixed-rate proactive protocols

also demonstrate good performance on the uniform loss model. In the case that the

proactive packets are sufficient to recover lost packets, the performance of these

approaches is comparable to that of the AFRM protocols. When comparing the

simulation throughput with the corresponding results on artificial losses, we noticed that

the absolute throughput value is higher in the simulation. The explanation is that the loss

rate in the simulation covers all propagation losses in the channel, including even the

RTS/CTS/ACK control packets. On the contrary, the artificial losses apply only to the

packets that are successfully received at the receiver. Therefore, the actual loss rate is

higher in the experiments. On the other hand, the reverse traffic incurs smaller overhead

lll

 

 



in the simulation, which implies that the AFRM-Al protocol may further outperform the

other protocols in a real network with a large number of receivers.

Bursty Loss. We use the two-state Markov model to simulate the bursty wireless losses.

Similar to the approach in [46], we use the reciprocal of the average burst length as the

transition probability between states. For example, if the average error burst length is 10

and the average error-free burst length is 1000, then the bad-to-good transition

probability is 0.1 and the good-to-bad transition probability is 0.001. The actual transition

probabilities used in our tests are calculated from the average burst length in the packet

traces we collected. In Figure 5.17, the good-to—bad transition probability is set to 0.01,

while the bad-to—good transition probability is set to 0.2.

 

 
 

 

  
                                       

7000

6000- _ _ '— —__ -— I

— '_ H
+: ..

" D 1 Fbceiver

1; 5000 « “” f???
5 D 3 Receivers

E 4
-, a 10 Receivers

n
;—.':i'

.5 3000 ‘ 322:; :53 25 Receivers

:

9 ;:f n so Receivers

'5 200° ‘ fig:- a .
I 100 Receivers

~
0 j 3—1 3232‘:

iec10 fecZO feca1

Algorithms

Figure 5.17: Simulation throughput on bursty loss model

The relative protocol performance on bursty losses is similar to that under uniform

losses. One exception is that the performance of the AFRM-A1 is slightly lower than that

of the AFRM-A2 as well as many other protocols, apparently due to a high proactive rate,

112

 



until the multicast group size becomes fairly large. On the other hand, AFRM-A2

outperforms most other protocols by a small amount in large groups.

This model is a better approximation to the real wireless losses than is the uniform loss

model. Since we adopt the independent loss approach here again, however, it also does

not consider loss correlation among receivers.

Synthetic Loss. As described earlier, the synthetic loss model is based on a combination

of the packet traces and the bursty loss model and therefore possesses the advantages of

both models. Thus, it may be more realistic than the uniform loss model. Moreover, this

model takes into account of the loss correlation at multiple wireless stations. In this test,

we generated the synthetic trace using a real trace with a moderate loss rate (around 5%).

We plot the throughput for the various protocols in Figure 5.18.

  

                    
 

7000 _ .
2

6000 < ‘1 — _

_ ‘- 1301 Receiver 1

3'; 5000 1

a —-1 , . D 3 Receivers 1

i i

E 4000 ‘D 10 Receivers ‘

o.

'5: 3000 : 1D 25 Receivers

:

9 1 n 50 Receivers

.‘E 2000 1 , 1

1I 100 Receivers

1000 if 7777 7 #7.

0 .

noiec rfec 19005 19010 iecZO iecai

Algorithms

Figure 5.18: Simulation throughput on synthetic loss model.

On the synthetic model, the performance difference among protocols becomes smaller.

Since the loss correlation makes the overall loss less “flat," the proactive FEC protocols

113



are less effective in the NACK suppression approaches as they are on other models. The

AFRM protocols have no significantly better performance than others, but neither worse.

Once again AFRM-A2 outperforms AFRM-Al. However, if taking into account more

reverse traffic overhead, the AFRM-Al protocol should have better performance in a real

network.

Since the packet losses are condensed, the number of receivers that simultaneously

send NACKs becomes larger. As a result, the NACK suppression approach should be

more effective on this model. To verify this hypothesis, we turn on the NACK

suppression flag and compare the performance in Figure 5.19. The number of receivers is

25. The result shows that the NACK suppression approach moderately improves the

performance in this case.

4000 

3500~

 

3000 «

2500 <

2000 .

1500 «
 

T
h
r
o
u
g
h
p
u
t
(
K
b
/
s
)

1" .

—e— No Suppressron

1000 4

500 1 1 -- -x— - Local Suppression

    O r r I Y I

noiec r190 19005 19010 19020 iecai ieca2

Algorithms

 

Figure 5.19: Effect of NACK suppression on synthetic loss model.

114



5.3 Summary

In this chapter we presented the results of both experimental and simulation studies on

the performance of the AFRM protocols and other reliable multicast protocols. Although

the result of measurement depends on the channel loss model and the network

implementation, the AFRM protocols exhibit better overall performance than other

protocols, especially when the multicast group is large and the loss rate is high. In the

case of low loss rate and small networks, the gain from NACK suppression is also small.

Therefore it is likely that the AFRM protocols have slightly lower performance than the

others under these conditions. We believe that the protocols can be further optimized so

that they will have better performance when there is less reverse traffic. A possible

approach is to adopt a hybrid scheme in which the sender transmits proactive parity

packets only when both the channel loss rate and the number of receivers are larger than

threshold values.

115



Chapter 6

Related Work

As mentioned in Chapter 2, three major research areas are directly related to this

study: wireless networks, reliable multicasting and forward error correction. A number of

algorithms used in the AFRM protocols, such as proactive FEC and NACK suppression,

are based on previous research contributions in the reliable multicasting and FEC areas.

The wireless channel loss analysis and the error model design are based on recent

research in the area of wireless networks. In this chapter, we discuss the related works in

these areas and their relationship to our study.

6.1 Reliable Multicast

A large number of reliable multicast protocols have been proposed. They can be

classified into several categories based on their strategies in loss detection, loss recovery

and receiver hierarchy.

ACK-based and NACK-based Protocols. The Xpress Transport Protocol (XTP) [61] is

an ACK-based reliable multicast protocol. A XTP sender periodically requests receiver

status by setting a bit in the outgoing packets. Receivers respond to the request by

116



returning an ACK packet. The sender aggregates information from the ACKs and

retransmits data to the entire multicast group. As in XTP, an AFRM sender controls the

receiver behavior by setting flag bits in the outgoing packets.

The Log-Based Receiver-Reliable (LBRM) protocol [23] is a user-level

implementation of NACK-based reliable multicast protocol. In LBRM, a log server is set

up to manage data retransmissions. A sender transmits data by multicasting to the

receivers as well as to the log server. After the log server receives the data, the sender can

safely release the data buffers. When a retransmission is needed, the receiver sends a

request to the log server and the server handles the retransmission. To facilitate loss

detection, LBRM senders periodically transmit heartbeat packets. The heartbeat packets

are sent at variable rates, so that the senders can keep the total number of heartbeat

messages much smaller than that in fixed-rate protocols. Like LBRM, AFRM is also

NACK-based and implemented at the user level. An AFRM sender transmits keepalive

packets with binary exponential backoff, which is similar to the transmission of heartbeat

packets with variable rates in LBRM.

The Reliable Adaptive Multicast Protocol (RAMP) [32] is a transport layer protocol

on top of the IP multicast services. It is NACK-based and is designed to deal with

uncorrelated losses among receivers. In this protocol, a receiver returns a NACK by

unicasting immediately after a packet loss is detected. The sender responds to the NACK

with a unicast retransmission. This approach reduces the cases of unnecessary receiver

exposure to retransmissions since most packet losses are uncorrelated. Immediately

sending NACKs also decreases recovery time. Based on RAMP, we take the recovery

time into consideration when choosing NACK suppression algorithms in AFRM.

117



The Reliable Multicast Protocol (RMC) [69] is another NACK-based protocol. It

supports anonymous group memberships. It uses a combination of window-based and

rate-based flow control algorithms to ensure pure NACK-based reliability with limited

receiver buffer spaces. Although RMC is designed for use in the OS kernel, the code

structure of AFRM sender/receiver is mainly based on that of RMC.

Local Recovery. The Scalable Reliable Multicast (SRM) protocol [17] is an example of

unstructured local recovery with NACK suppressions. SRM defines local loss

neighborhoods based on the number of hops from the requesting host. A receiver with

packet losses transmits a NACK by multicasting, specifying the limit of routing hops or

TTL (Time-To-Live) value. Any other receivers overbearing the NACK can retransmit

the requested packets if the data is available, or cancel their own NACKs if they

experience the same losses. In the cases of retransmission, they send the packets by

multicasting with the same number of hops specified. Since both NACKs and

retransmissions are sent by multicasting, the recovery traffic is reduced. In AFRM, we

borrow from SRM the strategies of global NACK suppression and multicast

retransmission.

The Reliable Multicast Transport Protocol (RMTP) [53] is an ACK-based protocol

using structured local recovery. In this protocol, each receiver is assigned a designated

receiver (DR) to which it periodically sends ACKs. One DR serves multiple receivers and

processes ACKs to determine which packets to retransmit. A DR retransmits a particular

packet either by unicasting or by multicasting, depending on the number of receivers

requesting this packet. RMTP H [67] is an extension of RMTP. It integrates NACK, FEC

118



and other techniques into the RMTP protocol to improve scalability and real-time

performance.

The Tree-based Multicast Transport Protocol (TMTP) [74] is another example of

structured local recovery. In this protocol, receivers are grouped into domains. Each

domain has a domain manager. TMTP adopts an ACK-based approach to ensure

reliability between the sender and any domain manager, as well as between a domain

manager and its domain members. A receiver can aggregate several ACKs into one

packet to reduce feedbacks. It can also use NACKs to speed up error detection in the case

of ACK aggregation.

Active Reliable Multicast (ARM) [38] is a loss recovery approach in which the routers

in the multicast tree play active roles in loss recovery. It uses a router as a DR in RMTP

or a domain manager in TMTP, integrating routing, feedback aggregation and subcast

retransmission in a natural way. It utilizes soft-state storage techniques to improve

performance and scalability.

A study of the random delay value in feedback suppression is described in [49]. That

study shows that an approach with exponentially distributed random delay leads to lower

feedback latency as well as higher feedback suppression efficiency than does an approach

with uniformly distributed delay. The proposed approach is scalable with respect to the

number of receivers, and it can effectively avoid feedback implosion. Although AFRM

uses uniformly distributed random delay, we do benefit from the analysis of this work.

Multiple Multicast Groups and Adaptive Approaches. Multiple multicast channels are

utilized in a number of research works to improve loss recovery efficiency. In [30], an

119



approach is proposed to reduce receiver processing costs as well as network bandwidth

consumption in a multicast session. It uses one multicast channel for data transmission

and several separate channels for retransmissions. The receivers dynamically join or

leave the retransmission channels. The work shows that this approach is efficient in

bandwidth saving since the chance of unnecessary receiver exposures to retransmission

traffic is reduced. The work also explores the tradeoff between the number of multicast

channels and the exposure cost.

In [75], a simple approach is proposed to adapt the number of multicast groups in

response to the perceived channel conditions. It utilizes both a centralized and a

distributed mechanism to determine the temporal dependence among packet errors. It

uses a predefined threshold value to differentiate bursty losses from other losses. In case

of bursty loss, it increases the number of multicast groups to maintain prompt and

efficient retransmissions.

A similar adaptive approach is proposed in [13]. In that work, an analytical model is

built to explore the tradeoffs between unicast and multicast retransmissions. As

mentioned in Chapter 2, multicast retransmissions have great advantage over unicast

retransmissions in the case of correlated losses. On the other hand, the multicast

approaches will waste network bandwidth when losses are less correlated, because in that

case a receiver might receive unneeded retransmission packets. This work studies the

problem and proposes an approach that chooses the best retransmission method based on

the information of the network topology and the number of receivers. An extension of

this work [14] introduces an approach that dynamically switches between multicast and

unicast retransmissions according to the amount of extra load generated in the network.

120

 



Similar to these approaches, AFRM also adapts retransmission strategies in response to

the channel condition changes.

Performance Analysis and Comparison. Many reliable multicast protocols exhibit

different performance when the underlying environment changes. It is very hard to design

a protocol that is optimal under all conditions. To facilitate making tradeoffs in a specific

environment, it is desirable to have quantitative performance results for various algorithm

candidates. A number of research works focus on the performance analysis and

comparison of reliable multicast protocols. In [66], an analytical evaluation of an ACK-

based and two NACK-based protocols is described. The major evaluation metric is the

host processing time instead of the network bandwidth consumption. The analysis

assumes independent losses. The results show that the NACK-based protocols are

superior to the ACK-based protocol. In [3], the authors evaluate and compare various

reliable multicast protocols such as XTP, MTP [35], SRM, MFTP [42], RMP [11],

RMTP, PGM [60], and TMTP. The metrics include reliability, scalability, feedback

control, flow control, locus of control, late join/leave and efficiency.

Loss Estimation and Loss Differentiation. A few research works study the problem of

loss estimation in a multicast tree. In [9], the authors propose an approach to estimate loss

probabilities in the interior of a network. The approach is based on end-to-end

measurement. In this approach, a source multicast probes that are recorded at each leaf of

the multicast tree. The proposed Maximum Likelihood Estimator (MLE) exploits the

inherent correlation between loss observations at different receivers. The results infer the

121



performance of paths between branch points in the multicast tree from the probe source to

the receivers. The analytical model is validated by simulations.

As an example of loss differentiation, the work in [21] proposes an epoch-based

approach to differentiate congestion losses from other losses. In this approach, loss

notifications from the receivers are examined. If the notifications are transmitted in the

same epoch (i.e., a short time interval), they are likely to be indications of congestion

losses, and so that they are aggregated. Otherwise they are probably uncorrelated losses,

and hence are reported to the sender individually. The classification is smoothed using a

running average algorithm on the length of epochs.

6.2 Forward Error Correction

Many reliable multicast protocols use FEC mechanisms to increase the efficiency of

error recovery. In [19], the FCAST and ECSRM protocols are proposed. They combine

FEC with multicast retransmissions and exhibit better scalability than non-FEC

approaches. As another example, a protocol combining active repair service (i.e. local

recovery) and FEC is proposed in [58]. That work shows that such an approach improves

bandwidth utilization efficiency over both non-FEC repair services and end-to-end FEC

approaches. In domains with high loss or a large number of receivers, this approach can

reduce bandwidth consumption as well as buffer requirements at repair servers.

FEC+ARQ. FEC approaches are often combined with ARQ in reliable multicast

protocols in order to support complete reliability. In [29], the SHARQFEC approach is

122



proposed. It is a hybrid FEC+ARQ approach that operates in an end-to-end fashion. It

utilizes receiver hierarchy to conduct local recovery. FEC is selectively added to regions

that experience high losses.

The RMDP protocol [57] is another hybrid FEC+ARQ protocol. Several of its

operating parameters are determined based on the conditions of the network. One such

parameter controls the rate of proactive parity packets sent along with the data packets.

The study shows that the appropriate value of the proactive rate depends on the loss rate.

A value between 1.5 and 2.0 makes the probability of NACKs very low. The protocol

uses global NACK suppression to reduce the feedback traffic.

Like RMDP, the Collaborative Reliable Multicast (CRM) protocol [43] is another

approach using proactive FEC parity packets. It improves the performance at the nodes

that are under emission control or are connected by links with low reverse direction

capacities. Similar to RMDP and CRM, AFRM also uses proactive parity packets and

global NACK suppression to reduce feedback traffic. However, their strategies in

parameter determination are substantially different.

Adaptive FEC. A number of adaptive FEC approaches have been proposed. Some of

those approaches are based on the adaptation of the amount of redundant information in a

frame. Others adapt the FEC encoding parameters It and k at the packet level; examples

include ARAM [2], MA_FEC [48] and ARQ/AFEC [59]. Most of these also utilize

proactive FEC mechanisms. In MA_FEC, as an example, a table of optimal FEC code is

maintained. In response to channel condition changes, the protocol looks up the most

123



appropriate FEC code in the table and starts using this code in the following

transmissions.

In [70], a protocol that adapts FEC proactive rate is proposed. This link layer protocol

additively increases the proactive rate when the perceived channel loss rate is high and

multiplicatively decreases the proactive rate when the perceived channel loss rate is low.

Based on SNR (Signal/Noise Ratio) analysis, the authors claim that an indoor wireless

channel is temporarily stationary only during a short time interval. They also pointed out

that losses are caused either by distance dependent signal degradation or by random

interference, and the number of stations within a cell has little effect on the average loss

rate. Since the protocol works at the link layer, the loss notifications can reach the

transmitter fast enough to ensure that the channel estimation based on past losses is

reasonably accurate for the prediction of future losses. Like this approach, AFRM-Al

also utilizes AIMI) mechanisms to adapt the proactive rate. However, AFRM runs at the

user level, which leads to relatively inaccurate channel estimations. As a result, AFRM-

A2 takes the average error burst length into consideration when calculating the proactive

rate.

The W-WBRM protocol [39] is designed as a component of the Pavilion middleware

framework. The protocol is implemented at the application level. It also adopts AIMD

algorithms for FEC proactive rate adaptation. In this work, the channel condition is

estimated using the number of received NACKs. The proactive rate is applied to both

data packets and retransmission packets, since the retransmission packets could also be

lost. The proactive rate adaptation algorithm in AFRM-Al is basically the same as that in

the W-WBRM protocol, except for some minor modifications. For example, in W-

124



WBRM the proactive rate is cumulatively increased whenever a NACK packet is

received, while the AFRM-Al protocol recalculates the proactive rate in a non—

cumulative manner upon receiving a NACK packet. The formulae for proactive rate

calculations are also different.

Performance Analysis and Other Work. A number of research works focus on the

performance analysis of FEC algorithms. In [50] and [51], the authors build analytical

models for hybrid FEC+ARQ approaches. The performances of those approaches are

studied under different loss models, such as spatially or temporally correlated loss

models, homogeneous or heterogeneous loss models. The results show that integrating

FEC with ARQ either at the same layer or at different layers will improve both efficiency

and scalability for multicast transmissions.

The work in [44] studies the group loss probabilities of FEC in shared loss multicast

communications. The CDF (Cumulative Distribution Function) for successful deliveries

in a multicast tree is presented, as well as the expected value of the packet loss length.

Some applications of those formulae are described.

The work in [55] studies the performance of a FEC recovery approach for IP

telephony in a queuing system. Using a M/M/1/K model in the probability analysis, the

work shows that the simple FEC approach is not appropriate for audio streams in this

environment, where packet losses are mainly caused by buffer overflow.

125



6.3 Wireless Network Studies

Among the huge volume of research works in the field of wireless networking, we

select and describe a few that are directly related to our study, including IEEE 802.11

wireless LAN performance analysis, performance of communication protocols over

wireless LANS, wireless packet trace analysis and wireless channel modeling.

IEEE 802.11 Wireless LAN Performance Analysis. In [1] and [27], the authors

measure the actual throughput of a 2.4GHz product of IEEE 802.11 wireless LAN. They

analyze the sources of overhead, categorizing them into the inter-packet gap time,

preamble, header fields for the PHY and MAC layer, and control frames such as ACK or

RTS/CTS. The impact of the overhead is modeled. Comparisons show that the results of

the model closely fit the measurement results. The modelindicates that the maximum

theoretical MAC layer throughput for lleps bit rate is about 7.43Mbps. The maximum

theoretical TCP throughput is about 5.2Mbps. The model is also used to predict the

throughput in SGHz 802.11a networks. The TCP throughput in such networks with

54Mbps bit rate can reach 29Mbps. We use these values to validate our simulation

framework.

In [22] and [45], the impacts of the 802.11 MAC protocol parameters on the network

performance are studied through simulation. A simplified model of 802.11 DCF is built

in [22]. The effects of the backoff procedure, the extended interface spaces (EIFS), and

the timing synchronization function (beacon) are studied using this model. Simulation

results show that the bandwidth reduction due to EIFS and beacons is less than 10%. In

[45], the simulation results are used to help determine both the effective throughput and

126



the mean packet delay for an offered load with different values of contention window size

and number of contending stations. The study shows that the proper choice of CW

(Contention Window size) has significant influence on the network performance.

In [7], [8] and [10], the authors derive analytical formulae for 802.11 protocols. In [7]

and [8], the CSMA/CA based 802.11 DCF is studied. An analytical model is built to

compute both the saturation throughput and the collision rate. The analysis is based on

the usage of the discrete-time Markov chain. Both basic access and RTS/CTS access

mechanisms are studied. Simulation results show that the analytic model is very accurate.

In [10], the derived analytical formula is used to calculate the theoretical upper bound of

the 802.11 protocol capacity. The work shows that the protocol could operate far from the

theoretical limit depending on the network conditions, and an appropriate tuning of the

backoff parameters could make the performance closer to the theoretical limit.

Communication Protocols over Wireless LANS. In [71], [72] and [73], the performance

of the standard Internet protocols such as TCP and UDP are studied over wireless

networks. In [73], the issues such as the host and interface heterogeneity, TCP bi-

directional traffic, and error modeling are explored in a 2.4GHz DSSS wireless LAN.

Many performance problems of TCP and UDP over wireless LANs are uncovered, such

as the problems of achievable UDP throughput, fast sender and slow receiver, PCMCIA

sender, collisions due to bad synchronization, and timer granularity. In [71] and [72],

more such problems are discussed and approaches for improvement are suggested and

examined. In [72], a mechanism for comprehensive link layer enhancement is proposed.

127



In [4], a number of approaches for TCP performance improvement over wireless links

are described and compared. These approaches are classified into several categories, such

as end—to-end protocols, link-layer protocols and split-connection protocols. For each

approach, the experimental results on throughput and goodput in both LAN and WAN are

presented. The work shows that a reliable TCP-aware link layer protocol will

significantly improve the performance of TCP. The approaches such as selective

acknowledgements and explicit loss notifications are also effective in performance

improvement.

A loss differentiation algorithm for TCP flow control is proposed in [5]. The algorithm

aims to improve TCP performance over wireless links. The approach is a pure transport

layer solution. It examines the relationship between the slow start threshold value and the

number of transmitted packets. A pair of decreased threshold value and an increased

packet number indicates wireless losses. The algorithm distinguishes congestion losses

from wireless losses in this way so that the TCP flow control algorithm can make a

correct decision in sending rate adaptation. In AFRM, we use a different algorithm for

loss differentiation, which is based on the observation of queueing loss correlation.

However, this kind of approaches that are based on the correlation between sending rate

and reported losses could also be integrated into AFRM to improve differentiation

effectiveness.

Wireless Trace Analysis and Channel Modeling. In [62], a twelve-week trace of a

building-wide wireless LAN is collected. The overall user behavior, overall network

traffic, observed throughput, and traffic characteristics from a user point of view are

128



analyzed based on the collected trace. A number of interesting facts are discovered. For

example, the peak throughput is usually caused by a single user/application.

The authors in [46] collect a large number of wireless packet traces in a 2Mbps

WaveLAN. Data analysis shows that the packet error rate is not correlated to the

transmission rate. The error rate increases with both the packet size and the distance

between the sender and the receiver. A two-state Markov model is created for wireless

error modeling. Since the resulting trace of the model dose not match the real trace very

well, an improved two-state model with hybrid burst length distribution is proposed and

evaluated. Results show that the improved model is more accurate than both the uniform

loss model and the original two-state model. We adopt a similar approach to build the

revised bursty loss model in the simulation framework

In [33], an algorithm is designed to model the time-varying effects on wireless

channels. Packet traces in a GSM network are collected. The traces are divided into

several stationary components based on the error distributions. The transitions between

the components are modeled as a high order Markov process. The work shows that the

proposed model is more accurate to represent channel characteristics such as burstiness

and error distributions. Artificial traces based on this model are generated and compared

to both EED (Even Error Distribution) and Gilbert traces. Results show that the traces of

the prOposed model are closer to the real traces than those of the other models.

The work in [76] claims that the two-state Markov model might be inadequate to

represent some time-varying channels. However, computational complexity makes the

models with larger number of states hard to use, and the quality of a channel model is not

proportional to the number of states it uses. The work proposes a three-state model to

129



improve modeling accuracy with limited computational overhead. The model consists of

one good state and two bad states. It is applied to the packet delay prediction in an

ARQ/queuing system that operates over a fading channel. Results show that the proposed

model is more accurate than a two-state model in such environment.

In [47], the performance of a FEC multicast approach is studied on a two-state Gilbert-

Elliot model. An analytic model for the FEC protocol is built on the two-state channel

model to evaluate the protocol performance. Numerical results show that FEC

outperforms ARQ except in the case of very low bit error rates. The analysis also shows

that there is no unique best code so that protocols should adapt the FEC code they use in

response to the channel condition changes.

The work in [16] proposes an adaptive FEC approach in wireless networks. The FEC

approach adapts the ratio of the redundant information in a packet according to the

channel conditions. Several fixed or adaptive adaptation policies are proposed. A large

number of wireless traces are collected and analyzed. The performances of the adaptation

policies are evaluated and compared on the colleted traces.

130

 



Chapter 7

Conclusions

Summary. In this study we explored algorithms for reliable multicasting over wireless

LANS, and we proposed and evaluated an adaptive FEC-based protocol. First we

collected a number of wireless packet traces on an lleps 802.11b wireless LAN. Based

on those traces and other analytical models, we identified the major factors that affect the

performance of a reliable multicast protocol in such environments. Then we proposed the

AFRM protocol, which integrates several component algorithms to achieve high

throughput WLANs. The protocol combines proactive FEC and NACK suppression in

order to improve performance and the scalability by reducing the adverse effects of

reverse traffic. In the protocol, the sender transmits packets by multicasting to all

receivers in a multicast group. It also transmits a certain number of proactive FEC parity

packets along with the data packets. Upon receiving a NACK, the sender responds by

sending the requested number of parity packets, plus additional proactive parity packets.

In both cases the number of proactive parity packets is calculated according to the

estimated wireless channel conditions. To reduce congestion at the access point, the

protocol requires the receivers to report packet loss bitmaps to the sender so that the

sender can differentiate wireless propagation losses from queuing losses and apply

appropriate congestion control algorithms. To further improve performance, the protocol

131

 



adopts both local and global NACK suppression algorithms, activating one of them when

it is more effective than the other.

We evaluated the AFRM protocol and compared it with several other reliable

multicast protocols through both experimentation and simulation. We studied the

protocol behavior in a wireless LAN with up to three receivers. The experiments were

conducted in both “normal” indoor conditions and in environments with artificial losses.

For the simulations, we built a general-purpose network simulation framework that

supports application code reuse. The IEEE 802.11 wireless LAN MAC protocols and

multiple wireless channel loss models are also supported. We implemented a simple

random loss model, a bursty loss model and a synthetic loss model. The framework also

supports packet trace replay. We set up a simulated wireless network with up to 100

receiver stations. The protocol behavior was studied in this environment on all the loss

models. Both experimental and simulation results show that the protocol has acceptable

performance in small-scale network with low loss rate. Moreover, simulation results

indicate that the proposed protocol outperforms the other protocols in large-scale

networks or under situations of relatively high loss rate.

Future Work. A number of problems are open to further investigation. First, the channel

condition estimation in AFRM can be improved. Due to the bursty and dynamic nature of

wireless losses, it is almost impossible to derive a precise formula for loss prediction. A

possible improvement is to take into consideration more history information when

making the estimation, such as the long-term average loss rate and the performance of the

previous proactive rate. Second, depending on the environment, one of the AFRM-A1

and AFRM-A2 algorithms exhibits better performance. A hybrid approach combining

132



these two algorithms might be able to achieve higher overall performance. Third, a more

effective loss differentiation approach will be helpful to improve the flow control

algorithm in AFRM protocols. Fourth, an integrated analytical model is needed to

improve our understanding of the problem and help design a better adaptation algorithm.

Fifth, the effects of other protocol parameters, such as the packet size, the packet group

size and the NACK suppression windows size, on the performance of the protocols are

worth studying. Finally, a more realistic and comprehensive loss model would be helpful

to produce simulation results with higher confidence.

133



Bibliography

[1] G. Aben. "Throughput Performance of Wireless LAN5 Operating at 2.4 and 5 GHz".

In 11th IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC 2000), pp. 190-195, London, Sep. 2000.

[2] F. Alagoz, D. Walters, A. Alrustamani, B. Vojcic, and R. Pickholtz. "On the Effects

of Adaptive Forward Error Correction Mechanism in Direct Broadcast Satellite

Networks". In Proceedings ofthe 2” ACM International Workshop on Modeling,

Analysis and Simulation of Wireless and Mobile Systems, 1999.

[3] S. V. Appala, and J. R. Austen. "An Evaluation of Reliable Multicast Protocols". In

Proceedings ofIEEE Southeastcon '99. pp. 165-168. 1999.

[4] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz. "A Comparison of

Mechanisms for Improving TCP Performance over Wireless Links". In Proceedings of

ACM SIGCOMM '96, pp. 256-269, 1996.

[5] Deepak Bansal, Anurag Chandra and Rajeev Shorey. "An Extension of TCP Flow

Control Algorithm for Wireless Networks". In IEEE International Conference on

Personal Wireless Communication (ICPWC'99), Jaipur, India.

[6] V. Bharghavan et a1. "MACAW - A Media Access Protocol for Wireless LAN’3". In

ACM SIGCOMM, pp. 212-225, Aug. 1994.

[7] G. Bianchi. "IEEE 802.11-Saturation Throughput Analysis". In IEEE

Communications Letters, 2, 12, pp. 318 —320, Dec. 1998.

[8] G. Bianchi. "Performance Analysis of the IEEE 802.11 Distributed Coordination

Function". IEEE Journal on Selected Areas in Communications, 18, 3, pp. 535-547,

March 2000.

[9] R. Caceres, N.G.Duffield, J. Horowitz, and F. Towsley. "Multicast-Based Inference

of Network-Intemal Characteristics: Accuracy of Packet Loss Estimation". IEEE

Transactions on Information Theory, Vol. 45, No. 7, pp. 2462-2480, Nov. 1999.

[10] F. Cali, M. Conti, and E. Gregori. "IEEE 802.11 Wireless LAN: Capacity Analysis

and Protocol Enhancement". In Proceedings ofIEEE INF0C0M, 1998.

[l l] J. Callahan, and T. Montgomery. "Approaches to Verification and Validation of a

Reliable Multicast Protocol". In Proceeedings ofthe I 996 International Symposium on

Software Testing and Analysis, San Diego, CA, January 1996.

134



[12] Cisco Aironet 340 Series Base Station,

http://www.cisco.com/univercd/cc/td/doc/pcat/340base.htm#BABFECDE

[13] Carlos de Morais Cordeiro, Judith Kelner e Djamel Sadok. "Establishing a Trade-off

Between Unicast and Multicast Retransmission Modes for Reliable Multicast Protocols".

Eighth IEEE International Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunication Systems MASCOTS ’2000, August 2000, San

Francisco CA, USA.

[14] Carlos de Morais Cordeiro, Judith Kelner, Djamel Sadok e Paulo Cunha. "An

Enhanced Reliable Multicast Protocol for Wireless Environments". In Proceedings ofthe

IEEE Vehicular Technology Conference (VTC '2000). pp. 975-982, September, Boston,

USA, 2000.

[15] Peter Danzig. "Flow Control for Limited Buffer Multicast". In IEEE Transactions on

Software Engineering, 20(1): 1-12, January 1994.

[16] David A. Eckhardt, and Peter Steenkiste. "A Trace-based Evaluation of Adaptive

Error Correction for a Wireless Local Area Network". In Mobile Networks and

Applications 4, 4. (Dec 1999) , pp. 273-287.

[17] Sally Floyd, Van Jacobson, Steven McCanne, Ching-Gung Liu, and Lixia Zhang. "A

Reliable Multicast Framework for Light-Weight Sessions and Application Level

Framing". In Proceedings ofACM SIGCOMM'95, pp 342--356. Cambridge, MA, USA,

28 August--1 September 1995.

[18] F. C. Fujiwara, M. Kasahara, K. Yamashita, and T. Namekawa. "Evaluations of

Error-control Techniques in Both Independent and Dependent Error Channles". IEEE

Transaction on Communications, COM-26(6):785-793, 1978.

[19] J. Gemmell, B. Schooler, and R. Kermode. "A Scalable Multicast Architecture for

One-to-many Telepresentations", IEEE International Conference on Multimedia

Computing Systems (ICMCS '98), pp. 128-139, 1998.

[20] E. N. Gilbert, "Capacity of a Burst-noise Channel", Bell System Tech. Journal,

39: 1253-1265, September 1960.

[21] 8. Ha, K. Lee, amd V. Bharghavan. "A Simple Mechanism for Improving the

Throughput of Reliable Multicast". In Proceedings of[CCCN '99 (the Eighth

lntemational Conference on Computer Communications and Networks), Boston, MA,

October 1999.

[22] A. Heindl, and R. German. "The Impact of Backoff, EIFS, and Beacons on the

Performance of IEEE 802.11 Wireless LAN8". In Proceeding of4th IEEE International

Computer Performance and Dependability Symposium, pp. 103-112, Chicago, IL, March

2000.

135



[23] Hugh W. Holbrook, Sandeep K. Singhal, and David R. Cheriton. "Log-Based

Receiver-Reliable Multicast for Distributed Interactive Simulation". In Proceedings of

SIGCOMM '95, August 1995.

[24] C. Huitema. "The Case for Packet Level FEC". In Proceedings of[F[P 5th

International Workshop on Protocolsfor High Speed Networks (PfHSN'96), pp. 110--

120, INRIA, Sophia Antipolis, FRANCE, October 1996.

[25] IEEE 802.1 1, 1999 Edition (ISO/[EC 8802-11: 1999) IEEE Standards for

Information Technology -- Telecommunications and Information Exchange between

Systems -- Local and Metropolitan Area Network -- Specific Requirements -- Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications. http://standards.ieee.org/getieee802/802.l 1 .html

[26] R. Jain, and K. Ramakrishnan. "Congestion Avoidance in Computer Networks with

a Connectionless Network Layer: Concepts, Goals, and Methodology". In Proceedings of

IEEE Computer Networking Symposium, Washington, DC, pp.l34-l43, April 1988.

[27] A. Kamerman, and G. Aben. "Net Throughput with IEEE 802.11 Wireless LANS".

In IEEE Wireless Communications and Networking Confemce 2000 (WCNC. 2000), Vol

2, pp.747 -752, 2000.

[28] P. Karn. "MACA — A New Channel Access Method for Packet Radio". In

ARRl/CRRL Amateur Radio 9'" Computer Networking Conference, pp. 134-140, Apr.

1990.

[29] R. Kermode. "Scoped Hybrid Automatic Repeat Request with Forward Error

Correction (SHARQFEC)". ACM SIGCOMM 98, September 1998, Vancouver, Canada.

[30] S. K. Kesera, G. Hjalmtysson, D. F. Towsley, and J.F. Kurose. "Scalable Reliable

Multicast Using Multiple Multicast Channels". In IEEE/ACM Trans. Networking, vol. 8.

pp 294-309, Jun. 2000.

[31] L. Kleinrock, and FA. Tobagi. "Packet Switching in Radio Channels: Part I -

Carrier Sense Multiple Access Modes and Their Throughput-Delay Characteristics". In

IEEE Transactions on Communications, vol. COM-23, no. 12, pp. 1400-1416, 1975.

[32] A. Koifman and S. Zabele. "RAMP: A Reliable Adaptive Multicast Protocol". In

Proceedings ofIEEE INFOCOM, pages l442--l451, March 1996.

[33] Almudena Konrad, Ben Y. Zhao, Anthony D. Joseph, and Reiner Ludwig. "A

Markov-based Channel Model Algorithm for Wireless Networks". In MSWIM'01 , 2001.

[34] J. Korhonen, "HIPERLAN/Z", Department of Computer Science and Engineering,

Helsinki University of Technology, Jan. 1999, httpzllwww.tml.hut.fi/Studies/Tik-

1 10.300/1999/Essays/hiperlan2.html

136



[35] D. R. Kosiur. "IP Multicasting: The Complete Guide to Interactive Corporate

Networks". May 1998, John Wiley & Sons.

[36] V. Kumar. "MBone: Interactive Multimedia on the Internet". Indianapolis, IN: New

Riders, 1996.

[37] J. Kuri, and S. Kasera. "Reliable Multicast in Multi-access Wireless LANs", In IEEE

INF0COM’99, March 1999.

[38] L. Lehman, S. Garland, and D. Tennenhouse. "Active Reliable Multicast". In IEEE

INFOCOM’98. IEEE, March 1998.

[39] Philip K. McKinley, and Arun P. Mani. "An Experimental Study of Adaptive

Forward Error Correction for Wireless Collaborative Computing", In Proceedings of the

2001 IEEE Symposium on Applications and the Internet (SAINT-2001), San Diego-

Mission Valley, California, January 2001.

[40] P. K. Mckinley, C. Tang, and A. P. Mani, "A Study of Adaptive Forward Error

Correction for Wireless Collaborative Computing", IEEE Transactions on Parallel and

Distributed Systems Special Issue on Mobile Computing, 2002.

[41] Mesquite Software Inc., "CSIM 18 -- A Low Cost Development Toolkit for

Simulation and Modeling", http://www.mesquite.com.

[42] K. Miller, K. Robertson, A. Tweedly, and M. White. "StarBurst Multicast File

Transfer Protocol (MFTP) Specification--An Internet Draft". Available from

httpz/lwww.ietf.org/internet-drafts/draft-miller-mftp-spec-03.txt.

[43] W. L. Miller, R. M. Ollerton, A. Shum, and C. J. Warner. "Proactive FEC-Based

Forwarding for the Collaborative Reliable Multicast Protocol". EUROCOMM 2000.

Information Systemsfor Enhanced Public Safety and Security. pp. 269 —273,

IEEE/AFCEA , 2000.

[44] M. Mosko, and J.J . Garcia-Luna-Aceves. "An Analysis of Packet Loss Correlation in

FEC-Enhanced Multicast Trees". In Proceedings of8th IEEE International Conference

on Network Protocols (ICNP 2000), Osaka University Convention Center, Osaka, Japan,

November 14 - 17, 2000.

[45] M. Natkaniec and A. Pach. "An Analysis of the Backoff Mechanism Used in IEEE

802.11 Networks". In Proceeding of[SCC, 2000.

[46] Giao T. Nguyen, Randy Katz, and Brian Noble. "A Trace-based Approach for

Modeling Wireless Channel Behavior". In Proceedings ofthe Winter Simulation

Conference, pages 597--604, December 1996.

[47] Neda Nikaein, and Christian Bonnet. "On the Performance of FEC for Multicast

Communication on a Fading Channel". In proceedings ofInternational Conference on

Telecommunications [CT, Acapulco, Mexico, May 2000.



[48] Neda Nikaein, Houda Labiod, and Christian Bonnet. "MA-FEC: a QoS-Based

Adaptive FEC for Multicast Communication in Wireless Networks". In Proceedings of

International Conference on Communications ICC, New Orleans, USA, June 2000.

[49] J. Nonnemacher, and E. Biersack. "Scalable Feedback for Large Groups",

IEEE/ACM Transactions on Networking, June 1999.

[50] J. Nonnenmacher, E. Biersack, and D. Towsley. "Parity-Based Loss Recovery for

Reliable Multicast Transmission". Technical Report 97-17, Dept. of Computer Science,

U. Massachusetts, March 1997.

[51] J. Nonnenmacher, M. Lacher, M. Jung, E. Biersack, and G. Carle. "How Bad is

Reliable Multicast without Local Recovery?". In Proceedings ofIEEE INFOCOM, San

Francisco, CA, USA, March 1998.

[52] Christos Papadopoulos, Guru Parulkar, and George Varghese. "An Error Control

Scheme for Large-scale Multicast Applications". In Proceedings ofIEEE INFOCOM,

1998.

[53] S. Paul, K. Sabnani, J. Lin, and S. Bhattacharyya. "Reliable Multicast Transport

Protocol (RMTP)". IEEE Journal on Selected Areas in Communications, vol. 15, no. 3,

pp. 407-—21, Apr. 1997.

[54] S. Ramakrishnan, and B. N. Jain "A Negative Acknowledgement with Periodic

Polling Protocol for Multicast over LAN". In Proceedings ofIEEE INF0C0M, April

1997. '

[55] Victor M. Ramos, Chadi Barakat and Eitan Altman. "Queueing Analysis of Simple

FEC Schemes for IP Telephony". In Proceedings ofIEEE INF0COM, Anchorage, April,

2001.

[56] L. Rizzo. "On the Feasibility of Software FEC", DEIT Tech Report,

http://www.iet.unipi.it/~luigi/softfec.ps, Jan 1997.

[57] L.Rizzo, and L. Vicisano. "RMDP: an FEC-based Reliable Multicast Protocol for

Wireless Environments". ACM Mobile Computing and Communications Review, 2, 2,

April 1998.

[58] D. Rubenstein, S. Kasera, J. Kurose, and D. Towsley. "Improving Reliable Multicast

Using Active Parity Encoding Services (APES)". In Proceedings ofIEEE INF0C0M,

1999.

[59] A. Shiozaki, K. Okuono, K. Suzuki, and T. Segawa. "A Hybrid ARQ Scheme with

Adaptive Forward Error Correction for Satellite Communications". IEEE Transactions

on Communications, vol. 39, pp. 482-484, April 1991.

138

 



[60] T. Speakman, R. Edmonstone, D. Farinacci, S. Lin, A. Tweedly, L. Vicisano, and J.

Gemmell. "PGM Reliable Transport Protocol Specification". INTERNET-DRAFT, June

1999.

[61] W. T. Strayer. “Xpress Transport Protocol Specification Revision 4.0". XTP Forum,

March 1995.

[62] Diane Tang, and Mary Baker. "Analysis of a Local-Area Wireless Network". In

Proceedings ofthe Sixth Annual ACM/IEEE International Conference on Mobile

Computing and Networking (MobiCom 2000), Boston, MA, USA, Aug. 2000.

[63] K. Tang, and M. Gerla. "MAC Layer Broadcast Support in 802.11 Wireless

Networks". In Proceedings ofIEEE MILCOM, pp. 544-548, Oct. 2000.

[64] K. Tang, and M. Gerla. "MAC Reliable Broadcast in Ad Hoc Networks". In

Proceedings ofIEEE MILCOM, McLean, VA., Oct. 2001.

[65] K. Tang, and M. Gerla. "Random Access MAC for Efficient Broadcast Support in

Ad Hoc Networks". In IEEE WCNC, Chicago, IL., Sep. 2000.

[66] D. Towsley, J. Kurose, and S. Pingali. "A Comparison of Sender-Initiated and

Receiver-Initiated Reliable Multicast Protocols". IEEE Journal on Selected Areas in

Communications, April 1997.

[67] Brian Whetten, and Gursel Taskale. "An Overview of Reliable Multicast Transport

Protocol II". In IEEE Network, pp.37-47, January/February 2000.

[68] T. Wilkinson. "HIPERLAN — An Air Interface Designed for Multi-Media". Hewlett

Packard Laboratories, 1995, http://www.hpl.hp.com/techreports/95/1-IPL-95-47.pdf.

[69] Robin Wright. "Design and Implementation of a Reliable Multicast Protocol".

Master’s Thesis, Dept. of Computer Science, Michigan State University, October 1998.

[70] Y. Xu, and T. Zhang. "An Adaptive Redundancy Technique for Wireless Indoor

Multicasting". In Proceedings ofIEEE Symposium on Computers and Communications,

2000 (ISCC 2000), Antibes-Juan les Pins, France, 4-6 July, 2000.

[71] George Xylomenos and George C. Polyzos. "Internet Protocol Performance over

Network with Wireless Links". In IEEE Network, 13, 4, pp. 55-63, 1999.

[72] G. Xylomenos and G. C. Polyzos. "Internet Wireless Link Performance". Technical

Report #9801, Center for Wireless Communications, University of California, San Diego,

La Jolla, CA, USA, January 1998.

[73] G.Xylomenos, and G.Polyzos. "TCP and UDP Performance over a Wireless LAN".

In Proceedings ofthe IEEE INFOCOM, 1999.

139



[74] Rajendra Yavatkar, James Griffioen, and Madhu Sudan. "A Reliable Dissemination

Protocol for Interactive Collaborative Applications". In Proceedings ofthe ACM

Multimedia ’95 Conference, November 1995.

[75] S. Yoon. "Reliable Multicast Considering the Temporal Dependence in Packet

Loss". INET 2001, Stockholm, Sweden, 2001. 1

[76] M. Zorzi, and RR. Rao. "On Channel Modeling for Delay Analysis of Packet

Communications over Wireless Links". In 36th Annual Allerton Conference, Allerton

House, Monticello, IL, Sep. 1998.

 

140  



 

 i



 


