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ABSTRACT

FILTERING FOR SOME STOCHASTIC
PROCESSES WITH DISCRETE OBSERVATIONS

By

Oleg V. Makhnin

The processes in question are jump processes and processes with jumping velocity.
We estimate the current position of the stochastic process based on past discrete-time
observations (non-linear discrete filtering problem). We obtain asymptotic rates for
the expected square error of the filter when observations become frequent. These
rates are better than those of a linear Kalman filter. For jump process, our method is
asymptotically free of the process parameters. Also, estimation of process parameters

is addressed.
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1 Introduction

This work deals with estimating the position of a stochastic process based on past
observations (filtering). With respect to square error, the optimal non-linear filter is
the conditional expectation of the current state of the process given the observations.
The observations are discrete, and we are interested in the asymptotic behavior of
the non-linear filter as these observations become more frequent.

Several factors may affect the asymptotic behavior of a non-linear filter. One of
them is the nature of the process itself. The more irregular a process is, the harder
it will be to filter. Another factor might be the distribution of observation errors.

The simplest example of such results is the estimation of the mean of a sequence of
i.i.d. variables. One can think about this mean as a “process” that remains constant
over time. Assume that the variables have a density with respect to Lebesgue measure
on R. As pointed out in a book by Ibragimov and Khas’minskii [13], the quality of
the estimate depends on whether or not this density is continuous. In the case of a
density with discontinuities, the phenomenon of “hyper-efficiency” occurs. One gets

different results, for example, in cases of normal distribution and uniform distribution.



1.1 Review of past results

Filtering is a major area of stochastic process theory. This has been progress-
ing rapidly over the last 40+ years, starting with Kolmogorov and Wiener. A
great deal of attention has been paid to the filtering with continuous-time obser-
vations that typically involves stochastic differential equations. Among the major
contributions here are R. Kalman and R. Bucy (1961)[18], A. Shiryaev (1966)[25],
T. Kailath (1968)[14], M. Zakai (1969)[27], G. Kallianpur and C. Striebel (1969)[16],
G. Kallianpur (1980)[15], B. Rozovskii (1990) [23]. In most of these works, the obser-
vation noise is a Wiener process, or, more generally, the observation process satisfies
a stochastic differential equation driven by a Wiener process.

Filtering with discrete-time observations was considered by Kalman (1960) [17]
and continued in multiple works, including Brémaud (1981)[3]. After the pioneering
work by Kalman, a lot of attention has been paid to linear filters, which are linear
combinations of observed values. Many works have been devoted to the theory of
Kalman filter, for example, Anderson and Moore (1979)[1]. Lately, as the computing
facilities have improved greatly, the focus has shifted to non-linear filters, which
typically perform much better. Comparison with linear filters is one of topics in this
work.

Yashin(1970)(26] derived the optimal non-linear filter for situation when the pro-



cess X (t) is Markov taking values 0 and 1, and the observations are also 0 or 1. This
situation is expanded in the book by Elliott, Aggoun and Moore (1995)[10] in the
context of Hidden Markov Models. Their approach has become popular recently and
involves a change of measure, rendering the observations independent of the process
in question. One then arrives at a discrete-time version of Zakai equation, which
presents a recursive way to compute the optimal filter. This was used, for example,
in Dufour and Kannan (1999)(9] and Kannan(2000)[19].

The recent papers, to mention a few, are Portenko, Salehi and Skorokhod (1997)[21],
Ceci, Gerardi and Tardelli (2001)(5], Del Moral, Jacod, Protter (2001)[7]. The latter
deals with Monte-Carlo methods for estimating the optimal filter, even in case when
no explicit expressions for the filter are available. Monte-Carlo methods are also
discussed by Gordon et al. (1993)[12] and Doucet, de Freitas and Gordon (2001)(8].

Relatively little is known about the asymptotic behavior of filtered estimates as
observations become frequent. Some results on this are given in [22]. This work con-
siders asymptotics for certain classes of stochastic processes. They include compound
Poisson processes and piecewise-linear processes.

The discrete observations are natural in target-tracking, when the process in ques-
tion is a position of a target, and our observations come from a radar. A special case

(with uniform errors) was considered by Portenko, Salehi and Skorokhod (1998) [22],



although they introduce many extra features useful for target-tracking like multi-
targets and false targets.

A general exposition of filtering techniques employed can be found in [21]. A
detailed overview of the target-tracking from an engineer’s prospective is given by

Bar-Shalom et al. [2].

1.2 Hyper-efficiency

The results for parameter estimation in i.i.d. case are well desribed in [13]. They can
be summarized as follows. Suppose that {Yi}r=1,. . is a sequence of i.i.d. random
variables with density f,, depending on parameter 6.

a) Suppose that f, is continuously differentiable, with a several additional regu-
larity conditions, including local asymptotic normality for the family {fs}sco. Then,
both Bayesian ;nd maximum likelihood estimates are asymptotically normal with the
rate E(d — 6)2 = C/n + o(1/n).

b) Suppose that the densities fy possess jumps at the finite number of points
z1(0), ..., zx(0) and are continuously differentiable elsewhere, plus some identifiability
and regularity conditions. The earliest treatment of such a problem known to the
author is Chernoff and Rubin [6]. In this case both Bayesian and maximum likelihood

estimates have the rate E(6—0)? = C/n?+0(1/n?). That is, the estimates are “hyper-



efficient”.

An important special case is when the location parameter is estimated, that is
when fy(z) = f(z —0). The difference between the above two cases can be illustrated
using normal distribution in case (a) and uniform distribution in case (b). For normal
distribution, the mean of observed values is a natural estimator with the expected
square error O(1/n). For uniform distribution on the interval [6 — a,60 + a], the
estimator [maz(Yy) + min(Yx)]/2 with the expected square error O(1/n?) is a better
estimator for # than the mean. Thus, for a density with jumps, the best location
estimator is a function of observations near a discontinuity point.

A generalization of these results to multi-dimensional variables and vector pa-
rameter 6 is published by Ermakov [11]. (This problem also traces to Rubin [24].)
When the error density fy has discontinuities along a smooth manifold Sy, then both
Bayesian and maximum likelihood estimates for  have asymptotic square error of
order 1/n?. He also has some results on the sequential estimation of such parameters.

The way our problem is different lies in the stochastic-process perspective. We
are estimating not a stable, unchanging parameter, but a value of some stochastic

process in time.



1.3 Formulation of the problem

Process X(t) is a real-valued stochastic process on the interval [0,T] or [0, 00), de-
pending on the context. In general, suppose that the apriori distribution of the entire
process X (t,w) has a density 7 (X (-)) with respect to measure v in a suitable function
space F[0,T]. Also let the distribution of observations L(observations|X(:)) have a
density f in some space of observations. Keep the notation of X(-) for the entire
trajectory of the process X.

In this work, we use two approaches:

a) when estimating the current position of the process X (t) at a given time ¢, use
the information obtained up to this instant (“filtering”), regardless of whether or not
the trajectory comprised of resulting estimates X (t) belongs to the specific family F,
and

b) when estimating the parameters of the process itself, based on observations
in the interval [0, T}, try to produce a process that belongs to the family F (“jump
process” below), that is reasonably “close” to X(-).

Under certain conditions, prior distribution 7, of X(t), consistent with 7(X(-)),
will have a density with respect to Lebesgue measure. As an estimate of process’
position, we use the posterior (with respect to m;) conditional expectation of X (t)

given all the observations up to the time ¢t. It is well known that such estimator




minimizes the squared error of estimation.

Consider two varieties of process X:

e “Jump process”. Consider a compound Poisson process

Xt)=Xo+ ) &

izs; <t
where (s;,&;) are the events of a 2-dimensional Poisson process on [0, T]xR. The
intensity of this process is given by A(s,y) = Ah(y), where A > 0 is a constant
“time intensity” describing how frequently the jumps of X occur and hy(y) is
the “jump density” describing magnitudes of jumps &; of process X. Here § € ©
is a parameter (possibly unknown) defining the distribution of jumps. In the
Bayesian formulation, parameters 8 and A will have a prior density 7 (6, A) with
respect to Lebesgue measure. Assume that for each 6§ € ©, E€? < co.

Also, assume that starting value X, has some prior density mx, ().

e “Piecewise Linear Process”.

This is a process with jumping velocity V
t
X(t) = Xo + /0 V(s)ds

with V being a compound Poisson process described above.

Assume that the prior distribution of X, V; is known.




Observations
Our observations {Y;} are always going to be “Process+noise” over a finite grid of

values:

Y;=X(j/n) +e;

where the noise variables {e;} are i.i.d. with some density ¢y, possibly depending on
a parameter f and independent of process X. Assume that for each 8 € O, Ee; = 0,
and Ee? < oo.

A sample path of a Jump Process and observations are given below.

X@), Y .

o0 Time

Figure 1

1.4 Main results

We will consider asymptotics when n — oco: as the observations become frequent,
but the process changes slowiy (rate of change A is bounded from above). When the

process X (-) is changing fast, its diffusion approximations become appropriate, but




these are not discussed here.

We establish the following results:

e Recursive formulas for conditional density of process position given the obser-

vations.

e Asymptotic rates for the estimate of position of jump (compound Poisson) pro-

Ccess.

e Asymptotic behavior of the parameters of jump process, as both observation

frequency and total time spent observing become large.

e Asymptotic rates for a piecewise-linear process.

e Comparison with linear filters. Simulation results in a small-sample setting.



2 Filtering of a jump process

The filtering and Bayesian estimation problem can be formulated as follows: find
the conditional distribution of the states of the process X and unknown parameters
A, 0 given the observations (Y;), initial distirbution of X(0) = X, and some prior

distribution on the unknown parameters.

2.1 Recursive formulation

The results in this section are in spirit of Elliott et al. {10]. In the future, use 7 = 1/n
as the time between observations.

Denoting X := X (7k), we have

Xi+1 = X + Ceq (1)

Yi = X+ ex

Ck is a sum of jumps of X on the interval [7(k — 1), 7k):

G = Z &

T(k—1)<5;<7k
Thus, {(c}k>1 are i.i.d. with an atom of mass e at 0 and the rest of the mass
having (improper) density P = 1/;9',\ expressible in terms of the original density of

jumps hy. To simplify the notation in the sequel, I will call 1 a “density”, actually

10



meaning that 1 (0) is a scaled é-function, that is for any function g,

[ 9@r@ds = e () + [ g(@)d(x)da

Also, subscripts 8, A in ¢y, 1 will be omitted.

Suppose the priors are given:

6, X have density n(-,-),

Xo has density mx,(-).
Our goal is to find the posterior conditional distribution
Lo( Xk | Y1, Ya).

From (1), we obtain the densities

k
Dxo,... X, (T0y -y Tk | 0, A) = Txo(20) H Yo (T; — zj-1).
i=1

For briefness, let’s denote

Xk = (.’130, ...,11,'k), Xk = (Xo, ...,Xk), Yk = (}/1, Yk)

Now, applying Bayes’ Theorem, the joint density of X4, Yy, 8 and A is

p(xka )’k,o, ’\) = p(yk ’ xkaea ’\) 'p(xk I 0! A) : 71'(9, ’\) =

k k
=m(0, ) - Tx,(2o) - l:[ o(y; — z;) - 1:[ Y(zj — zj-1),

J

11

(2)



and the conditional density given the observations

. p(xk, ka 01 A)
p(xk, 07)\ I Yk) - ka fe pr(xk, Yk’ 0, )\)ka dadA.

Introduce

qr(z,6,)) = /Rk p(Xk, Yi, 0, A) dzg....dzg ;.

It is an unnormalized density of the latest state X; and parameters 6, A given the

observations Y. The normalized density px(z, 8, A) is then given by

qx(z,60, )
Jr Jo Jr ax(z,0,N)dz dO d)

pr(z,0,)) = /p(xk,o,)\ | Yi)dzg....dzp_y =
The reason we use this density in an unnormalized form is the recursive relation:
Theorem 1
90(x,0, ) = mx,(z) - 7(6, A),

gk (z,0,)) = ¢p(Yy — ) - /ng,,\(a: - 2)qk-1(2,0,2) dz = (3)

= ¢o(Yi — ) - [e M ge-1(z,0,A) + /R'/;o,,\(?? — 2)qk-1(2,0, )) dz].

Proof: Straightforward, follows from integrating (2)

a
Remark.

1. In order to use Theorem 1 for the estimation of state X, we will compute

12



gj(z,0, ), j < k consecutively, then compute marginal unnormalized density gx(z) :=

J qe(x,6,)) d6 dX and then find

Xy := B(Xx|Yy) = %. (4)

2. Although not derived explicitly, the unnormalized density ¢ has to do with a
change of the original probability measure to, say, (2, which makes the observations
Y1, ..., Yx independent of the process X (t). This way, prior distributions on (6, \) and
X (0) ensure that the two measures are absolutely continuous with respect to each
other. The change of measure approach is used extensively in non-linear filtering.
The recursive formulas for the densities can be used to compute “on-line” updates

as new observations are coming in.

2.2 Single-block upper bound for expected square error.

Next, we investigate asymptotic properties of the above filtering estimator X (T) :=
X,,T as the observations become frequent (n — oc). First, we will produce a sub-
optimal estimator of X (T') based on a single “block” of observations at time points

immediately preceding T

Assume that the last observation is obtained exactly at the moment T'. Denote
tr(r) = B(X(T) - X(T))"

The following discussion is based on the well-known fact (e.g. see [3, p. 84])

13



Lemma 1 For a square-integrable random variable X, sigma-algebra F and an F-

measurable random variable U,

E[X - E(X|F)]? < E(X - U)?

O

Setting F := o{Y},..., Y}, we can see that the filtered estimator X introduced by
(4) has the smallest expected square loss among all possible estimators of X, based

on observations Y.

To produce an upper bound on ¢r(7), consider the following sub-optimal estimator

of X(T):

Ved)= Y Y/(na),

k—nA<j<k

where A is the block length to be specified later. Here, k = k(v) = T/7, so that

X(T) = X;.

Theorem 2 . Asymptotic upper bound for E(X — X)2

AsTt—0,
er(r) < (\EE + Ee)VT + o(V7) (5)

Proof: Consider the estimate Y;(A) introduced above. By Lemma 1, it is no better

than X (T), that is

tr(r) < E[X(T) - V(A)P.

14



Suppose that the process X has m jumps on the interval (T — A, T], with the locations
of jumps 3y, ..., 5, and the heights of jumps &, ..., .
Denote
So:=X(T - A4),
Sj:= j_1+«fj, 1<3<m
consecutive values taken by X(t) for t € (T — A, T), and S,, = X(T).

Note that

Emaz;(Sm— S;)? < Y E(Sp — S;)2 = ﬂ(ﬂ‘Q—tI—)ng.
J

Therefore,

- Ee?
E[X(T) -Y(A)? < n—PA‘ + e MEE {)\A + .

(Aa)™ g m(m + 1) +
m! 2

Setting A = 7° for some 0 < b < 1, the above becomes
=Ee} - '™ + (1 - ArY)E€2 A + o(*)] .
Setting b = 1/2, we obtain the statement of the Theorem.
O
Remark. Note that since the estimating procedure we used did not depend on 6,

the above Theorem is also true when the parameter € is unknown. In that case, one

needs to consider Bayesian loss

#,(r) = [ Eo(X(T) - X(T))*n(6) d8

15



and, integrating (5), obtain the bound
€,(r) < V7 [ (XEE? + Eel)m(6) db + o(v/7)

To produce finer approximations, we have to assume the knowledge of the error

distribution.

2.3 Multiple-block upper bound

Next, we modify our estimating procedure. Starting with time 7', we will probe one
block of observations after another, stopping whenever we believe that a jump has
occurred.

The following results were obtained when the error distribution is considered
known. Denote o, := \/Ee_f.

We use the same idea as before: produce a sub-optimal estimate for X (T') based on
Y for a suitable interval. The difficulty lies in not knowing where exactly the last jump
of process X occurred. Consider the intervals (blocks) (T1, To], (T2, T, -y (T, Tn-1),

where

To =T
T;:=Tj_, — (lnn)/n, j=1,..,N

TN+1 = 0.

16



There is a total of

Inn

" Ininn

blocks; j-th block has length (Inn)?/n and n; := (Inn)’ observations. The last block
has length 1/Inn.
Let X; be the value of the process at the end of j-th block, that is X; := X(T}_,).

Let Y; be the average of observations on the block j, that is
?j = Tl;l ZY[; I(T] < kT < 7}_1).
k

Assumption 1 . Let

Xm- Ue\/_'rﬁ

be the normalized sum of m errors. Assume that for the distribution of errors ex
the following s true. There exist constants Cy, Cy, C3 and K > 0 such that for all

sufficiently large m and all integers j

E[XEn I(leI > Cl ° ml/K])] < 02 el‘p(—Cs ml/J)

This assumption is satisfied for Normal errors with K = 2; in general, it requires e,
to have small tails.

The following is a simpler-looking but more restrictive than Assumption 1:
Assumption 1' . For x,, given above, there exist constants G,y > 0 such that for

17



all sufficiently large m,
Eezp(y|xm|) £ G.
Proposition 1 Assumption 1’ implies Assumption 1 with K = 1.

Proof:
Suppose that Assumption 1’ is satisfied. Let F,(.) be the distribution function of
Xxm- Pick C) such that z? < exp(vy|z|/2) for |z| > C,.

Then for any j,
/R I{|z] > Cim"i} 22 dFn(z) < /R I{|z] > Cym3} 424 F, () <
< exp(—yCum/2) [ @FldF(z) <

< exp(—yCym'"1/2) -G

Theorem 3 . Tighter upper bound for E(X,(T) — X(T))?

Suppose that the error density ¢ is known and does not depend on the parameter
0, and there exists a constant Ay such that A\ < Ag. Then, under Assumption 1, there
exists a constant C such that for n — oo,

InMn

E(X.(T) - X(T))*< C

with M = (1+2/K) Vv (3 — 2/K).

18




Proof:

Consider N — 1 blocks as described above. Denote T* the point of last jump of X:
T*=sup{0<t<T:X(t)— X(t-) > 0}.

The idea is to approximate T*, then take the average of all observations from that
moment up to 7.
Construct an estimate of X (T') as follows.
Define j, as
Y;

= Yonl 2C, -n)/f I} A N. (6)

Oe

jo:=inf{j >0: m;

Then, as our estimate of X(T'), take

X(T) = —on.

We will find an upper bound for the average risk of this estimate, ¢ := E(X(T) —
X (T))2. For this, we will need several inequalities, with proofs to follow in the next

section.

Case 1 . Block 1 jump

On the event F that the last jump of X occurred on Block 1, F = {T} < T*},

tr = B(X(T) - X(T)?Ir] < GO0 (7.1)

19



Case 2 . Correct stopping
In the event S that the last jump of X occurred just before the Block jo, S = {Tj,41 <
T* < T}

In?n

¢s = E[(X(T) - X(T))*Is] < Cs— (7:2)

Case 3 . Late stopping
In the event L that the last jump of X occurred in Block j, 1 < 5 < 7o,
L={T;, <T")

¢, :=E[(X(T) - X(T))%.) < Cs )

Case 4 . Early stopping
In the event £ that we stopped on the Block j, but there was no jump of X, £ =
{T* S Tjo+1}

(Inn)3-2/K

le = E[(X(T) - X(T))’I¢] < Cs (7.4)

Now note that P(FUSULUE) = 1. Thus, ¢ = €p + €s + £, + l¢. Also, the
estimator X does not depend on A and particular form of jump density hg, as long
as the frequency of jumps A is bounded.

By Lemma 1, the risk of estimate X does not exceed the risk of X. Combining

(7.1) through (7.4), we obtain the proof of the Theorem.

a

20



2.4 Proofs of inequalities used in Theorem 3

Proof of (7.1)
The probability of jump on the first Block, which has length Inn/n is
P(F) =Ilnn/n+o(lnn/n), and probability of more than one jump on the first Block

is o(Inn/n). Therefore,

E((X(T) - X(T))%r) < (6%/lnn + E€)inn/n < CslnTn

Proof of (7.2)
Let jo(w) be, as before, the last Block included in the computation of X (T). First,

consider the special case jo = N. Then
E[(X(T) -~ X(T))*IsI(jo = N)] <
< 0?/(n/lnn)- (1/Inn + o(1/Inn)) < const/n
Now let j0 < N.
Suppose that the last jump T*(w) occurred on the Block jo + 1, that is, w € S. Then

X(t) = X(T) for T, < t < T, and the squared loss from estimating X (T') equals the

variance of Y, so that

<

N
E[(X(T) - X(T))*IsI(jo < N)] ‘; (Y, — X(T))Is] <

<

M=

Il
—

P(Tj <T*<T;) - 07 /ny
J

21



by independence of {ex} and process X. Thus,

N
¢s < const/n+ 3 _(In"*'n/n+o(in’*'n/n)) - 02 In"In < C4l—n—n£

=1

Proof of (7.3)
Thanks to (7.1), we can exclude the case when the last jump T* happens on Block 1.
Therefore, suppose that the last jump happens on Block J, J > 1, but we stop the
summation only at Block jg, 70 > J.
Denote N; := {last jump happens on Block J}. Our stopping rule (6) implies that

for J < j < Jo,

Y; =Y < 20ecln;—l{2+l/(j—l)l(

Thus,
E[(X(T) - X(T))*In,] <
<E(X(T)-Y,_1? +Z[Y Y;_1|%) - P(jump on Block J) <
3=J
< [ ln n)] X [azln U-Dp 4+ C; Z —1+2/(J DK 1 <
j=J J
14+2/K 14+2/K
< p2inn ,lnn e (Inn) <c (Inn)
n n
a
Proof of (7.4)

If the stopping occurred too early then X (t) = X(T) for Tj,+1 < t < T. Also, the

22



stopping rule (6) implies that at least one of

— _ K
|on+l _ X(T)l > Clo_enjol/2+1/.70 ,

IV}, — X(T)| > Co.n;}/* 10K

Jo

is true. Thus,

E[(X(T) - X(T))’I¢] <
< E|Y;, — X(D)? P([Yjorr — X(T)| > C108n71/2+1/j°K) +

Jo

+E (IVj, - X(T)PI(IV ) — X(T)| > Croeny, **1/75)) = Ey + E,.
By Assumption 1, FE, < NCgezp(—n;/j) < Cy(lnn)/n.

To estimate F, consider the Chebyshov-type inequality

/24150 K\2 e . ~ .
(Cloenjoljf““"") P(|Y jo41 — X(T)| > Claenj01/2+1/’° ) <

<E([Vjor1 = X(T)PI(Vjpr1 = X(T)| > Croen;, 7777%)) < Co(inn)/n

by Assumption 1. Therefore

N-1
Ei < Y 02/n; - Callnm)/n- (Croeny {*17%) ™ <
Jj=1

2
< Cﬁz 0? . ln_n . (lnn)(1—2/1‘l\’)(j+l) <

5 Inin n
Inn)2-%K Inn)3-2K
< Cﬁz (inn) < 6( )
j n n
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2.5 Lower bound for expected square error.

Let us, as before, have exactly n observations on the interval [0,7] and the last
observation is made at the moment 7. Then X (T') = X,,.
To estimate the expected squared loss of the Bayesian estimate X, from below,

consider the estimator
Xvn - E(XnIYh seey an X‘n—lv In)a

where I, = I(X,, # X,_1) is indicator of the event that some jumps occurred on the

last observed interval.
It’s easy to see that X, = E(Xy|Y,, Xn_1,1,) and that E(X, — X,)? < E(X, —

X,,)?, since the estimator X, is based on a finer sigma-algebra.
Proposition 2 . The expected square error for X,
E(X, — X,)?=C/n+o(1/n),

where C > 0 is some constant not depending on n.

Proof:

Consider random variables
Zn ~ ¢
so that X, = X,,_1 + I,Z,, and

Wo =2, + e,.
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Joint distribution of Z,,, W,, does not depend on n and
P(Z, € dz,W, € dy) = P(z)$(y — z).

Also note that on the event {I, = 0}, X,, = X,_; and on the event {I, = 1},

Y, = X,_-1 + W,. Therefore,

X = E(Xu|Y, Xno1, In) = X1 + IE(Z, | Wa).

Let Z, := E(Z, | W,). Then

E(X, - X,)? = P(I, = 1)E(Z, — Z,) L

Clearly, E(Z, — Z,)? >0 and P(I, =1) =1 —e*" = A\/n+ o(n~!). This gives us
the statement of Proposition with C = X - E(Zn - Z,)2
O

This proposition shows us that the hyper-efficiency observed in case of estimating
a constant mean (different rates for different error distributions) here does not exist,
because there’s always a possibility of a last-second change in the process. The
following informal argument shows us what one can hope for with different error
distributions.

Suppose that the number of observations J since the last jump is known. Set
X, =E(Xu N, ..., Yy, J).

Just as before, E(X, — X,)2 < E(X, — X,)2.
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The optimal strategy is to use the latest J observations. If the error density ¢ has

jumps (e.g. uniform errors) then this strategy yields

] 1 1, 1
7 2 1712 il Y~ o
E(Xn = Xa)? 0™ (14 g5+ 4 55) = =

On the other hand, for the continuous error density (e.g. normal errors)

. 1 1 Inn
- X 2~ -1 —_ —_ )~ —
E(X,—- X)) ~n (1+2+...+J)_
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3 Estimation of parameters of a jump process

Next, our goal is to estimate the parameters of process itself, that is the time-intensity
A and parameter 6 describing jump density hy, based on observations Y (t),0 < ¢t < T.
Recursive formula (Theorem 1) will allow us to do it. The question is: how efficient
are these estimates?

Assume, as before, that the error density ¢ is known. Without loss of generality,
let 0. = 1. Also, assume that A is bounded by some constants: A; < A < A,.

When the entire trajectory of the process X (¢,w) is known, that is, we know exact
times t;, ¢, ... when jumps happened, and exact magnitudes §; = X (t;) — X (¢;—),7 >
1, the answer is trivial. For example, to estimate intensity, we can just take A=
i1 I(t: < T)/T.

Likewise, inference about hy will be based on the jump magnitudes &;. It’s clear
that these estimates will be consistent only when we observe long enough, that is
T — oo. In fact, we will consider limiting behavior of the estimates as both n and T
become large.

Now, when the only observations we have are noisy Y;, we can try to estimate the
locations and magnitudes of jumps of process X. Let n be number of observations

on the interval [0, 1]. Split the time interval [0, T] into blocks of m = n® observations

27



each. Let Z; be the average of observations over Block k,

1 m
= E; m(k—1)+
Consider several cases (see Figure 1). Let @ > 0 and 3 > 0 be specified later.
Case 1. /m|Zy,1 — Zx| < m®.
In this case we conclude that no jump occurred on both Block k£ and Block k£ + 1.
Case 2. \/m|Zx41 — Zk| > m®, Vm|Zi_1 — Zx| < m*, M| Zys2 — Zy 41| < m*.
In this case we conclude that a jump occurred exactly between Block k£ and Block
k + 1, that is, at time ¢t = mk/n. Here, estimate the magnitude of this jump as
& = Zkt1 — Zk-
Note: accumulation of errors does not occur when estimating £ because the esti-
mates are based on non-overlapping intervals.
Case 3. \/m(Zy41 — Zx) > m® and /m(Zy — Zx-,) > m®, or
VM(Ziy1 — Zx) < m® and ym(Zx — Zx_) < m?,
In this case we conclude that a jump occurred in the middle of Block k, that is, at
time t = m(k +0.5)/n. We estimate the magnitude of this jump as &€* = Zy,; — Zx_;.
Case 4. Jumps occur on the same Block, or on two neighboring Blocks.
The probability that at least two such jumps occur on the interval of a fixed length
is asymptotically equivalent to (m/n)?n = m?/n. Picking 8 < 0.5 we can make this

probability small.
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Of course, there are errors associated with this kind of detection, we can classify

them as:

Type I Error: we determined that a jump occurred when in reality there was

none (this involves Cases 2 and 3).

e Type II Error: we determined that no jump occurred when in reality it did (this

involves Cases 1 and 4).

e Placement Error: we determined the location of a jump within a Block or two

neighboring Blocks incorrectly.

e Magnitude Error: the error when estimating the value of §; (jump magnitude).

Note that the placement error is small, it is of order m/n. The magnitude error is

based on averaging m i.i.d. values, and is therefore of order m~*/2.

3.1 Errors in jump detection: Lemmas

Let’s estimate the effect of Type I and II errors. Here, as in Section 2.3, we demand
that Assumption 1 hold.

Type I errors.
Assume that there are no jumps over the Blocks £ and k + 1, but we detected one
according to Case 2 or 3.
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Consider

P(vVm|Zxi1 — Z| > m®) = P(|Xmk+1 — Xmx| > m®),

where

m
21 em(k—1)+j

Xm.k = Ue\/ﬁ

is the sum of normalized errors. Further,

P(Ixmk+1 = Xmk| >m®) <2 P(|Xmx| 2 0.5m?).
From Assumption 1, for any integer j > 0

E[xZ i I(Ixmx| > C1 - m'/"9)] < Cy exp(—C3m'/9),
and the application of Chebyshov’s inequality yields

P(|xmgk| > Ci - m'/Kj) < Cexp(—Cs ml/j) .2 KI

Picking j such that 1/Kj > a > 1/(2Kj) and for m large enough, summing up over

Tnm™! blocks, we obtain

Lemma 2 . As n — oo, provided that T grows no faster than some power of n,

P(Type I error) < C - Tnm™exp(—Csm**°®) -0
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Type II errors.

Suppose that a jump occurred on Block k, but it was not detected (Case 1), that is
|Zk—1 — Zk| V | Zksr — Zi| < m®0°

Of Blocks k — 1, k + 1, pick the closest to the true moment of jump. Without loss
of generality, let it be Block k — 1. Let £ be the size of the jump. Then averages of

X (t) on Blocks k and k — 1 are different by at least £/2 and
P(|Zk-r = Zk] < m°™") < 2P(2|xmi| > [€]lVM/2 = m®) <
< C-Tnm exp(—Csm?**?) (8)

-0.5+a+¢

as n — oo, as long as €| > m , for an arbitrary € > 0 (use Assumption 1 in a

way similar to Lemma 2).

Consider separately
P(UH{]&] > m™%%e*5}) < C (AT + o(T))m™0%+o*,

using the assumption that density of &; is bounded in a neighborhood of 0 and the
total number of jumps is AT + o(T'). Finally, take into account Case 4 which yields

an upper bound CAT m?/n. Summing up, we obtain

Lemma 3

P(Type II error) < C - AT (n(-05+a+e)8 y p26-1)
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3.2 Asymptotic behavior of parameter estimates.

For simplicity, determine the behavior of estimates separately, that is consider first
an estimate of A\, and then an estimate of 8. Let § € ©, with © being bounded subset
of R. Let true values of parameters be Ay and 6.

Let ¢} be consecutive jumps of X(-) determined by Cases 2, 3. Estimate the

intensity A by

. %Zl(t{ <T).

i>1
From the previous discussion it’s clear that \* is asymptotically equivalent (as T —
00) to A determined from the “true” trajectory of process X. Thus, it possesses the
same property, that is asymptotical normality with mean )y and variance C/T for
some constant C.

To estimate 6, use the following

Assumption 2 . Jump magnitude § belongs to an exponential family with densities

with respect to some measure p,
ho(z) = exp(6B(z) — A(6))

Under this Assumption, A(0) = In fexp(6B(z))du(z). Also, A'(6) = E¢B(£) and

I1(6) := A"(8) = Varg[B(€)] is Fisher information. We follow the discussion in (20,
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Example 7.1]. There, the Bayesian estimate with respect to prior 7 (),
0:=E.(0]&:i>1)
is asymptotically normal, under some regularity conditions on 7 (6).

Assumption 3 .

(a) 1(8) >0

(b) hg(z) is bounded in a neighborhood of 0, uniformly in 6.

(c) There is a constant v, 0 < v < 1/4, such that for large enough N there ezists A

such that P(|&] > A) = o(N™') and

ba := supjz<a = supiz<al0B'(z)] = o(N7)

%(ln hg(x))

uniformly in 6.
Define the log-likelihood function based on estimated jumps
N
L*(8) = ) Inho(&]).
i=1
Theorem 4 . Let Assumptions 1-3 hold. Then the mazimum likelthood estimate
0* = argmazgco L*(6)
s asymptotically normal, that is

V(AT) (6" = 8o) — N0, I(65) "]

in distribution as T — oo no faster than T = n*, where k < (1/5) A (1 — 47).
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Proof:

Pick 3, k, a and ¢ such that

K+26-1<0
K+ B(-05+a+¢)<0

v—-B/2<0.

With o,€ arbitrarily small, this is achieved when 2« < 8 < (1 — k)/2, so that
k< (1/5) A (1 — 4y).

According to Cases 1-4, the estimated jump magnitudes are
& = (& + 6))Ige + 815,

where F is the exceptional set where Type I and II errors occurred, ; are the esti-
mates of £ resulted from these errors, and 67 are “magnitude errors” discussed in the
beginning of this Section.

From Lemmas 2, 3, P(E) — 0 as n — oo. Therefore we can disregard this set

and consider only
& =6+0.
Let N be the total number of jumps on [0, T]. Consider the log-likelihood function
N
L(6) = ) Inhe(&).
1=1
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Under the conditions of Theorem, maximum likelihood estimate § = argmazsece L()
is asymptotically normal with given variance. Next, we would like to show that the
estimate 6* based on {¢;}i<i<n is close to 6 based on true values of &.

Note that both maxima exist because L"(0) = —NA"(6) and therefore L(6) is a

convex function, the same is true for L*(#). Furthermore, for any € in a neighborhood

-

of 6,

L(9) = L) - (J"'zﬂzv A"(0) + o(6 — 6)?

Thus, if L(6) — L(6) = o(1) then (6 — 9)2N A”() = o(1) and therefore (8 — 8) =
o(N~1V/?),

According to Lemma 4, |L(8) — L*(8)| = o(1), and also |L(§) — L"(é)[ = o(1).
Therefore, (§° — ) = o(N~'/2), and the statement of Theorem follows from the

similar statement for 6.

0
Lemma 4 . Under the conditions of Theorem 4,
|L(6) — L*(6)] = o(1)
uniformly in 0, outside some ezxceptional set E; with P(E;) = o(1).

Proof:

According to Assumption 3.3, the probability of event E; := U;{|&]| > A} is o(1).
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Thus, excluding E,

N
IL(©B) — L*(0)] < " Inho(&:) — Inho(& + 6%)| < 3 |0B(&)] - |67 < Cban~?2
i=1 [&1<a

The statement of Lemma follows as v < /2.
a
Examples.
Assumption 3(c) is the hardest to verify. It holds, e.g., in following cases:
a) when B'(z) is bounded. For example, exponential distribution with hy(z) =
exp(—0z + A(0)), = > 0.
b) The normal distribution with hy(z) = exp(—6z% + A(f)). Here one can pick

A = In N, and then by = §In(N)/2 = o(N") for arbitrarily small ~.
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4 Piecewise-linear process

4.1 Problem formulation

Let’s consider the following simplified version of the problem.
Suppose that the velocity of the target is piecewise constant with jumps belonging
to the set {tx = k/n;k = 1,...,n}, the probability of jump p, and distribution of
the height of a jump are known. Note that this restriction is not important since
for n — oo the difference between this and our original process X (with jumps at
arbitrary locations) becomes of order O(n~2). We will be interested in the case when
Pn=A/n+o0(1/n). Let 7 = 1/n.

Denote Vi the velocity of the target on the interval [k/n, (k + 1)/n] and Xj the
position of the target at the point k/n.
Suppose the observations Y} are made at points 1/n,2/n,....,(n - 1)/n, 1.

Overall, we have the model

Vi = Vo1 + Gk
Xk = X1 + 7V (9)
Yy = Xp + €k,

where ¢ are i.i.d. observation errors with a known density ¢y, possibly also depending
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on 6, and {(x}x=1,.n are i.i.d. with distribution

(x = 0 with probability (1 — p,)

Cr = & with probability p,,

and {&;} are i.i.d. with a known density hy, depending on some parameter 6.

Initial values Xy,1p and the parameter 8 have some prior density m(zg, vy, 0).
Random variables Xo,Vp, {(x} and {ex} are jointly independent.
The problem of filtering is to find the posterior conditional distribution of the position

of process X,, and parameter 6 given the observations Y1, ..., Y,.

4.2 Recursive filtering equations

We will obtain the filtering equations analogous to Section 2.1. But in this case, we
have to consider an unobservable variable (velocity), and the resulting filtered density
will be two-dimensional.

To simplify notation, in the sequel we will write that (; has “density” ¥ = 1.

Consider the joint density of V, 6 and Y:

k
Dk (Z0; V0, oy Uk Y1, -, Yk 0) = (0, Vg, 0) X H oo(y; — ;) [ ve(v; — vj-1)
i=1

where zx are uniquely determined from (9) as zx =z + 7 Z] o0 Yj-

By changing the variables {zg, vo, v1, V2, ..., Uk} to {zo, z1, T2, ..., Tk, Uk }, we obtain
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the joint density of X, 0, v, and Y:

k
p:(l‘o,.’l’l, ooy Thy Vg3 Y1y oey ylne) = 7?1.(5[,‘0,.’1,'1,0) X H ¢9(yj - z]) X
i=1

Tjy1 — 2% + x5 Ty — Th_
XF e j+1 TJ j 1) X g (v — Tl)’ (10)
=1

where prior density 7,(xg,z;,6) can be determined from = (vy, zg,6). The density is
“predictive” in its v, argument: though v, depends also on Y;,;, we do not include
Yk 41 into the equation.

Introduce g¢f(xx, vk, ) the unnormalized density of X, V) (position and ve-

locity of the target at the moment k/n) and @ given the observations Y}, ..., Y;
ar (zk, vk, 0) = /p}:(xo,xl, cees Thy Uk} Y1y -ovy Uk 0) dp...dxp_,. (11)

Then the following recursive relation holds

Theorem 5 .

q (z,v,0) = n(z,v,0)
g (z,v,0) = 7¢g(Yx — ) - /wo(v — Uk—1)@k—1(Z — Vg—17, Vg—1,0) dvg—y =
=7¢e(Yr — 7) [e"’\’qk_l(x —vT,v,0)+ (12)

+(1 - 6—)‘7) . /ho(’v - 'Uk—l)Qk—l(x — Vg-1T, Vk—-1, 0) dvk_l]
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Proof: Replace vx_; = (xx — zx—1)/7 and rewrite (11) as

T — Tg—
ak (Tk, vk, 6) = /pZ_l(ro,xn,.--,zk_l, S Y e Uk 0) X
T — Tg-—
X¢9(Yk - .’L‘k)lf)o(’l)k - ———-—1-) dilfo...d.’l‘k_l =
T — Tk Tk — Tk—
= ¢o(Yr — 7%) /Qk-l(lk, = ) (v — ————)dzi—y

Changing the variable xx_; into z; — vx_,7, the above yields the statement of the
Theorem.

a

4.3 Asymptotics: special case

The question of interest is whether the asymptotic rate of the optimal Bayesian
estimate depends on the smoothness of error distribution, that is, whether “hyper-
efficiency” takes place. In [22], the asymptotic rate for estimating a linear function
X(t) = Xo + Vot was found for uniform errors and was equal to O(n~2). Will this
rate be changed when we shift to piecewise-linear?

Consider a special case. Let s have the (prior) uniform distribution on [0, 1] and

consider the following process instead of X:
Wit)y=(t-s)T=(@t-s)v0, 0<t <1

with observation errors e; having uniform distribution on the interval [-7, 7] (y > 0 is

known). The process W in this case is a piecewise linear function with all parameters
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known except the turning point s, and we need to estimate s based on observations.
Note that estimating the final position W (1) is equivalent to estimating s.

It’s clear that the asymptotic rate of E(W(1) — W(1))? is no worse than the
asymptotic rate of X from the previous section. Let’s write the likelihood function

(the density of distribution L(s | observations Yi,...,Yy))

Fs) = f(s | YaonYa) = I %I{ef > (i/n - s)* — )

0<i/n<1

Let true value of s = 1. Then the likelihood equals to a constant on the interval

[s*,1], and 0 otherwise, where
s*=min{u : (i/n—u)t —e <~}

Then, the Bayesian estimate of s (given its uniform distribution) is
s=E(s|Y,...,.Y,)=(s"+1)/2

Consider the step function (see Figure 2)

1—u u+1
>

Du(t) = ——1(t > —=).
W(t)
D2s—l(t) :
| Dy(t)
0 s 1

Figure 2
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Note that D,(t) < W(t) < D,_1(t). Now consider
§=min{u : D,(i/n) —e; < ~}.

It’s clear that § > s*. Find the asymptotic rate of the estimate §, = (5§ + 1)/2. We

have

PG<t)= [I ==(2v- Dy(t) = (1 - Dy(t)1~0".

t<i/n<1

In case when t = Cn~'/2, P(5 < t) =~ exp(—C) — 0 when C — oo. Thus, for s close
tol, 3 is 1 —0(n"?).

The same statement can be obtained for § = min{u : Ds,_1(i/n) —e; < 7v}.
As a result, we would have § < s* < §, and it follows that for s close to 1, s* is
1 —-0(n1?).

The case s = 1 is the worst, for s < 1 the estimate 3, is s — O(n™!). Finally, this

yields the following for the expected square loss (with uniform errors)

Proposition 3 .

Keeping in mind that the expected square loss for normal errors cannot be lower than
O(n™!), we obtain some “hyper-efficiency” in this case, although not as good as when

estimating a constant [rate O(n~?)].
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5 Comparison to linear filters

The optimal linear filter for our problem is the well-known Kalman filter. Let’s take
a look at its asymptotics.

5.1 Jump process

In case of jump process, the model can be re-written as a state-space model (for

example, see Brockwell and Davis [4])

}/t=Xt+eta t=1,2,

Xe=Xi1 + G

and subsequently the optimal linear predictor (the estimator of X, based on all obser-

vations up to time ¢ — 1) is based on second moments of e; and (; and can be written

_ _ 0 _
X=X+ 0, _'_tog(yt - Xi)

where , = E(X,; — X,)? is defined by

2

Y=L+ ECC— ——
t+1 t C Qt + Ug

and 2y depends on prior distribution of X,. Furthermore, the optimal linear filter is

Q
Qt + 0’3

Xt+l = f(t + (Y, - Xt) (13)
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with the error

o7
Qt+0'§.

E(Xt - Xt)2 =, -

Note that when the observations become frequent (n — o), the optimal predictor
and optimal filter become close.
It can be shown that filter (13) is asympotically (when ¢ — oo) equivalent to the

exponential filter
X1 = X + B(Y: — Xt)
where 3 = lz'mt_,c,c,wf}a—2 and when n — oo,

B =/\/n-oe/o. +o(1/v/n).

Thus, the asymptotic rate of the best linear filter is of order n=1/2:

E(X, - X)) = \//\/_" - 0¢0e + 0(1/v/n)

See Figure 3 for the graphical comparison of linear (exponential) and optimal non-

linear filters.
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Process position
- Linear filter
Non-linear filter
00000 Observations

Figure 3
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5.2 Piecewise linear process

In case of piecewise linear process, we can reformulate (1) as a system of state-space

equations

Yi=X.+e
(7). ) (F)+(6)
t+1 t C t
where X, is the current position of the process and V; is the current velocity (note
that only position is observed, not velocity); as before, (; is the jump in velocity over
the interval [t/n, (t +1)/n], and ¢, is the change in X caused by this jump in velocity,

which is negligible (of order O(n~?)) when n is large.

Applying the recursive equations for Kalman filter (see [4]), we obtain the following

recursions for the best linear predictor ( {/( ) :

REIORTEED

with the error matrix

- (o m) 2[00, - ()] [),-(5)]

defined by recursive relation

Qz+1=<(l) 1{n>9‘(1}n (1))+Qt_

1 (wn + wm/n)2 (w11 + way /n)wa
wyy + 02 \ (w1 + wa/n)wy w3,
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where

Q= ( : agf\)/n ) +o(1/n).

It follows that the elements of matrix 2 = lim,_, 2 are
wyy = \/502/2051/2 n=34 4+ o(n_3/4)

wyy = g.0en" % + o(n1/?)

Woy = \/501/202/2 n~ 14 4 o(n=14)

[

Furthermore, as n — oo, the optimal predictor X, and optimal filter X, are close.
Thus, the asymptotic efficiency of the optimal linear filter E(Xt — X;)? is of order
n=3/4,

A summary of asymptotic behavior of 02 := E(X, — X,)? for jump and piecewise-

linear processes is given in Table 1.

smooth errors | discontinuous errors | Linear Filter
Jump Process < InMn/n < InMn/n n~1/2
Piecewise-Linear Process >n! n~3/2 (Special case) n~3/4
Constant Location Parameter n! n~? n~!

Table 1. Summary of asymptotic results
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One can see that increasing the “smoothness” of a process improves the asymptotics.
The behavior of the optimal linear and non-linear filters for a piecewise-linear process
is shown in Figure 4. The optimal non-linear filter was evaluated using the sequential

Monte-Carlo method described in [8].

Process position
............... Lz‘near ﬁlter

Non-linear filter
ooooo (Jhservations
Figure 4
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6 Simulation

The author has simulated the optimal filter for the jump process based on Theorem 1.
There, the densities g, (z) are found recursively using the relation (3). We consider a
case when the parameters 6, A and initial state X, are known, and the error density
is uniform on the interval [—7,v]. This causes gx(z) to be confined to an interval
[Yx — v, Yk + 7], and we keep a discretized version of gx(z) in memory. Integration
required for evaluating (3) was performed numerically.

The results of simulation are given in Table 2. In the case considered, distribution
of jumps is uniform on the interval [—2.5,2.5], with v = 1, on the interval ¢ € [0,9].
Two cases, 7 = 0.02 and 7 = 0.04 were considered. For each Monte-Carlo sample of

the process, the ratio of effectiveness of non-linear filter to the linear one was found:

~ 1/2
- [ (X - X,)“’} /
(X - X2

where X, is the optimal non-linear filter at time ¢ and X, is the optimal linear filter.
Also, the mean square error M S,; of the optimal non-linear filter is given. In each

case, N = 100 Monte-Carlo samples were generated.
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7 | mean of R | st.dev. of R | MS,,

0.02 2.141 0.535 0.0249

0.04 1.749 0.407 0.0479

Table 2. Simulation results

This and other simulations lead us to believe that the optimal filter becomes more
effective relative to the linear filter when:

a) 7 — 0 (we know that from the asymptotics, as well as Table 2).

b) jump magnitudes increase, making the process more “ragged”.

Intuitively, a linear filter has to compromise between the periods where the process
stays constant (and for the filter to perform better on those intervals, past observations
need to carry a greater weight) and the times when jumps happen (to cope with jumps,
we need to forget past observations quickly). As a result, greater jumps will upset the
performance of a linear filter. Some adaptive filters, for example, IMM filter described

in (2], might be more competitive.
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7 Open problems

Naturally, it makes sense to extend the results for a piecewise-linear process (of which
only the special case is treated in Section 4). This is considerably more difficult than
the jump process case, partly due to hyper-efficiency. Another interesting task is to
cover the unknown error distribution (in most asymptotic results above, the latter
was assumed known). The results on parameter estimation (Section 3) might also be
improved.

Also, in view of possible applications, other forms of stochastic process X(-) de-
serve to be considered. First, two- and three-dimensional processes are obviously
of interest. Second, some other types of processes, rather than jump and piecewise-
linear, might be more useful. Finally, one needs to consider the situation when param-
eters of the process are changing themselves, albeit slowly (“parameter tracking”).
Such situation is considered in Elliott et al. [10], and no doubt the recursive formulas

similar to Theorem 1 could be derived in this case, too.
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Notation

Some special symbols used in this work.
E(X) expected value of X
sVt maz(s,t) sAt min(s,t)
R set of real numbers

C,const some constant (often, their exact value is not specified but can be easily
obtained)

I(A) or I, indicator of the set/event A

A€ complement of the set/event A

AT matrix A transposed

A~ B asymptotic equivalence, that is A/B = const + o(1)
A := B definition of expression A in terms of expression B
L(X),L(X]...) distribution/conditional distribution of X
argminy f(Y) the value z such that f(z) = miny f(Y)

N (u,0%) Normal distribution with specified mean and variance.
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