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ABSTRACT

Interval Estimation for the Difference of Two Binomial PrOportions in

Non-adaptive and Adaptive Designs

By

Yichuan Xia

When comparing two treatments with dichotomous responses, the difference

in proportions of successful responses of the two groups is often of primary interest.

Confidence intervals are typically provided to estimate the treatment difference.

This interval estimation problem for both non-adaptive and adaptive designs is

studied in the dissertation.

Several methods of constructing confidence intervals for the difference of two

proportions are evaluated in non-adaptive designs. We begin by exploring the poor

performance of the most widely used confidence interval, the Wald interval. We

show that the poor behavior mainly results from its inappropriate center: the cov-

erage performance can be improved greatly by simply recentering the Wald interval.

We then derive a formula which gives smooth approximation of the coverage prob-

ability of the Wald interval. Regardless of oscillation, this approximation shows

how much the coverage probability of the Wald interval falls below the nominal

level. Our analysis demonstrates the Wald interval is rather anti-conservative and

often behaves much worse than pe0ple’s expectation. As alternatives, the Wald in-

terval with continuity correction, two confidence intervals with adjusted centers(a

Bayesian interval derived from Beta priors and Agresti-Coull’s adding 2 successes

and 2 failures interval) and the profile likelihood based confidence interval are eval-



uated. We compare both their coverage performance and expected lengths with

those of the standard Wald interval. To replace the Wald interval, intervals with

adjusted centers are recommended. Adaptive designs are gaining more attention

nowadays. For adaptive designs, the validity of constructing confidence intervals

discussed in non-adaptive designs is verified. We evaluate the performance of those

confidence intervals in two general categories of adaptive designs: allocation adap—

tive designs and response adaptive designs. We develop theorems concerning the

connections between the coverage performance and expected lengths of confidence

intervals based on non-adaptive and allocation adaptive designs. The theorems

suggest that the Wald interval does not behave satisfactorily and that the inter-

vals with adjusted centers should be used in allocation adaptive designs. Extensive

simulation supports the same conclusion in response adaptive designs.
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Chapter 1

Literature Review

1 .1 Introduction

In clinical trials and in industrial work, to compare a new treatment with a stan-

dard (control) treatment, the difference in probabilities of successful responses of

the two groups is often of primary interest. Confidence intervals are typically pro-

vided to estimate the treatment difference. There exist quite a lot of methods for

constructing confidence intervals for the difference of the two success probabilities.

The most widely used confidence interval, the Wald interval, which is an

asymptotic confidence interval computed based on a normal approximation, does

not behave satisfactorily. In this dissertation, the poor performance of the Wald

interval and the reason for the poor coverage performance are explored in Chapter

2. In Chapter 3, some selected methods for constructing confidence intervals for

the difference of two treatment proportions are evaluated and compared with the

Wald interval. We restrict attention to non-adaptive designs in these two chapters.

1



Nowadays, adaptive designs, in which the allocation of next subject to a certain

treatment depends on accumulating information, is more widely used. The interval

estimation problem is studied for adaptive designs in Chapter 4.

In this dissertation, we use three types of “coverage” probabilities: exact, ap-

proximate and nominal coverage probabilities. The exact coverage probability of a

confidence interval is the actual coverage probability of that interval. The approxi-

mate coverage probability is an approximation of the coverage probability. We will

be using an Edgeworth expansion to derive the approximate coverage probability

of the Wald interval. The nominal coverage probability is its named confidence

level. For example, a 95% confidence interval has nominal coverage probability

0.95 though its exact coverage probability might be different from the claimed level.

Sometimes we don’t specify whether a coverage probability is exact, approximate

or nominal if it is obvious in context.

Before presenting our findings, it is useful to give a survey of related literature.

1.2 Some Confidence Intervals and Comparisons

Though we are interested in confidence intervals for the difference of two pro-

portions, it is worthwhile to mention two papers on confidence intervals for one

proportion which have impacted our study.

Let us begin by introducing the Wald intervals for one proportion and for the

difference of two proportions.

Let X denote the number of successes from n Bernoulli trials with success



probability p and let :3 denote the sample proportion. For two independent treat-

ments, let X1, X2 denote the numbers of successes from treatment 1 and treatment

2 respectively, so that X,- ~ Bin(n,~, p,) for 2' = 1, 2. Let 2,, represent l—a percentile

of the standard normal distribution.

1. The 100(1 - a)% Wald confidence interval for p is

15 i Za/2 150“ film

2. The 100(1 — a)% Wald confidence interval for p1 - 132 is

. . ‘ 1—‘ ‘ 1—“pl—pgiza/2¢pl( P1)+P2( P2)

 

 

n1 n2

One way to derive these confidence intervals is to invert large sample Wald

tests, which evaluate standard errors at the maximum likelihood estimates. For

instance, the interval for p is the set of po values having P-value exceeding a in

testing

Hozpzpoversus Hazpyépo

using the approximately normal Wald test statistic. The Wald intervals are some-

times called the standard intervals. Although these two intervals are simple and

applied most often, a considerable literature shows that they behave poorly.

Brown et al. (2002) consider confidence intervals for one proportion. They

notice there is a widespread misconception that the problems of the Wald interval

are serious only when p is close to either boundary, or when the sample size n is

rather small. Brown et al. (2002) shows that virtually all of the conventional wisdom

3



and popular prescriptions are misplaced because the Wald interval has a pronounced

systematic bias due to its inappropriate center. They derive two-term Edgeworth

expansions as an analytical tool to compare and rank the some selected intervals

with regard to their coverage probabilities. They also give the two-term expansions

for the expected lengths of the Wald interval and some alternative intervals.

When deriving the two-term Edgeworth expansions for the coverage probabil-

ities of those intervals for p, Brown et al. (2002) express all the confidence intervals

in a unified form:

1/2 ‘_

{ZELSWSM},

p(1-p)

where l. and u. are not related to the sample proportion 15. Since the statistic

121/2 (i) — p) /mhas lattice structure, a direct application of a Theorem of

Bhattacharya and Ranga Rao (1976) gives the desired Edgeworth expansions. But

this method does not apply in two treatment problems.

Brown et al. (2002) Show that the Wilson confidence interval for p, due to

Wilson (1927), behaves much better than the standard interval. The Wilson interval

is based on inverting the test with standard error evaluated at the null hypothesis

value, which is the score test approach. Given level of significance (1, this interval

contains all p0 values for which

 

 

  

n1/2 « _

lP Pol < Za/2

100(1-pa)

and has the form

X + 22 /2 711/22 22

052 i 65/2 15(1 -13) + “/2. (1.2.1)
n+za/2 n+zm/2 4n



This interval turns out to behave better than the Wald interval for p.

Some confidence intervals for p1 - p2 are motivated by the Wilson interval for

Agresti and Coull (1998) noticed that (1.2.1) can be rewritten in the following

way:

 

1 n 1 22/2

:tza —— ‘1-‘ —— +- ——‘-’-— .
/2 ri+z;‘:/2 p( p) n+z2/2 4 n+2?”2

Hence, the midpoint of the Wilson interval is a weighted average of 15 and 1/2,

and it equals the sample proportion after adding 32/2 pseudo observations, half

of each type. The square of the coefficient of 20/2 in this formula, is a weighted

average of the variance of a sample proportion when p = [3 and the variance of

a sample proportion when p = 1/2, using 72 + .22” in place of the usual sample

size n. Motivated by this decomposition of the Wilson interval, Agresti and Caffo

(2000) proposed adding 4 pseudo observations, one success and one failure from

each treatment, to get the confidence interval for p1 — p2,

Also motivated by the Wilson confidence interval for p, Newcombe (1998)

proposed a method that performs substantially better than the Wald interval. This

confidence interval results from the single-sample score intervals for p1 and p2.

Specifically, let I,- < u,- be the roots for p, in



for z' = 1, 2. Newcombe’s hybrid score 100(1 -— a)% interval is defined as

 

 

. - lI—l u l—u . . 1_ l 1—l

(p1‘p2)"za/2\/l—(——ll+‘l(‘—2
)a(1h—P2)+za/2\/ul( “0+ 2( 2)

n1 n2 n1 n2

Unlike quite a lot of other confidence intervals, the Newcombe’s interval is not

symmetric around 131 -152. It has margins of errors different from those of the Wald

interval.

Newcombe (1998) evaluate eleven methods of constructing confidence inter-

vals for p1 - 132 through simulation. Some of those confidence intervals have rela-

tively complicated expressions compared to intervals discussed so far such as the

Wald interval and the Agresti-Coull interval. Newcombe (1998) suggests replacing

the Wald interval with the Newcombe hybrid score interval.The profile likelihood

method (introduced in detail later), involving

~

{A E (-1~ 1) = 2001,1132) - 1(A)) S Xi(a)}.

where A = p1 — p2, A = 131 — 132 and 1 denotes the log-likelihood function of (A, p2),

RA) 2 rgaxl(A,p2), is also considered in his paper. Newcombe (1998) shows

this interval has the best coverage and location prOperties among all the eleven

confidence intervals while it displays an undesirable anomaly. Suppose X1, 721 and

152 are held constants, while In —> 00 through values which keep X2 integer valued.

One expects that a good method would produce a sequence of intervals, each nested

within its predecessor, tending asymptotically towards some corresponding interval

for the single proportion, shifted by the constant 132. Yet the profile likelihood

method gives a sequence of lower limits which increase up to a certain 722, but

subsequently decrease, violating the above consideration.

6
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Agresti and Caffo (2000) evaluate the Wald interval, the Agresti-Coull interval,

a Bayesian interval(considered in detail in Chapter 3) and Newcombe’s hybrid score

interval.They find their exact coverage probabilities and mean expected lengths at

some specific pairs (n1,n2) with p1 and p2 taking values from the unit square.

It is shown that the Agresti-Coull interval has better coverage performance than

Newcombe’s hybrid score interval.

The above results all involve non-adaptive designs with constant sample sizes.

The sample sizes in adaptive designs are not constants but random variables. To

distinguish from non-adaptive design, we use N,(k), 5,-(k) to denote the sample size

and the number of successes from treatment z' for 2' = 1, 2.

Wei et al. (1990) studied the interval estimation problem for p1 — p2 and a

specific adaptive design: randomized play-the-winner design, which is due to Wei

and Durham (1978) and tends to assign more study subjects to the better treatment.

Wei et al. (1990) developed a network algorithm to find the joint distribution of

(N1(k), 6306) + 32(k), 51(k)), through which exact confidence intervals for p1 — p2

could be derived. The authors suggest using this method when the sample size n

is small or moderate. There are two disadvantages of this method which limit its

wide application . First, though the network algorithm can be easily modified to

accommodate other adaptive designs, the computation of the joint distribution of

(N1(k), 530:) + 52(k), Sl(k)) is not very easy. Second, the exact confidence interval

does not have an explicit form. Wei et al. (1990) also evaluated the Wald interval

and the profile likelihood based interval for p1 — p2 with randomized play-the-



winner designs though simulation. They found that the Wald interval was rather

anti-conservative. The profile likelihood method was recommended in Wei et al.

(1990) for a moderate-sized or large sample design.

1 .3 Application

All the confidence intervals studied in this dissertation are based on asymptotic

theory. However, some confidence intervals behave rather well even when sample

sizes are small or moderate. Therefore, one may use confidence intervals that will

be suggested for a broad range of sample sizes.

Moreover, the simplicity of all the confidence intervals except the profile like-

lihood interval is an attractive feature from the point of view of applications.

People who wish to perform adaptive designs have a wide variety of adaptive

allocation procedures at their disposal. And the corresponding asymptotic theories

of quite a lot adaptive designs are also reported. There are numerous references

on the interval estimation problem for p1 — p2. But most of them concentrate on

non-adaptive designs. We hope this dissertation will be useful for constructing good

confidence intervals for p1 — p2, especially in adaptive designs.



Chapter 2

Wald Interval Estimation for the

Difference of two Binomial

Proportions

2.1 Introduction

Interval estimation for a single binomial prOportion and the difference of two bino-

mial proportions are used extensively in practice and have been widely discussed

in the literature. It is well known that the standard Wald intervals behave poorly.

Brown et al. (2002) focused on the interval estimation for one binomial proportion

and explored the reason why the coverage probabilities of the Wald interval for one

binomial proportion are often far less than the nominal level even when the sample

size is moderate or quite large. They evaluated the approximate coverage proba-



bilities and expected lengths of the Wald interval for one binomial proportion and

its candidate replacements. Inspired by their article, we studied interval estimation

for the difference of two binomial proportions.

In Section 2, we focus on the poor performance of the Wald interval of the

difference of two binomial proportions by exhibiting its behavior through a few

examples. As will be shown, the Wald interval for the difference of two binomial

proportions, defined in (2.2.1), shares some similar properties to those of one bi-

nomial proportion addressed in Brown et al. (2002). For example, the discreteness

of the Binomial distribution leads to oscillatory coverage probabilities and the true

coverage probabilities often differ significantly from the nominal level even when

the two pr0portions are near 0.5 and sample sizes are moderate or large. We also

note that unbalanced sample sizes, when the two proportions are close, among some

other issues, may have severe effects on the coverage probabilities. In Section 3, we

explore the reason for the poor performance of the Wald interval. Section 4 deals

with a smooth approximation of the coverage probability of the Wald interval by

applying Edgeworth Expansion methods.

2.2 Coverage Properties of the Wald Confidence

Interval

Let X1 and X2 be two independent random variables, X,- ~ Bin(n,-,p,-) , where

p,- 6 (0,1) forz' =-- 1,2. Let :3, = Xi/ng. As mentioned in Chapter 1, the 100(1—a)%

10



Wald confidence interval for p1 -- p2 is

- 1_ . . 1_ .

21-miz%\/p-———l(“HM, (2.2.1)

 

n1 712

where 222:. denotes the 100( — %) percentile of the standard normal distribution.

We will use CIw(n1,n2, X1,X2) to denote this interval and CPw(n1,n2,p1,p2) to

denote its exact coverage probability. Then

CPW(nl) n21p11p2)

=P{p1 —' p2 E CIw(n1,n2,X1,X2)} (2.22)

In 2 Tl 3 -:r n :r _

= Z Z ( 1)p11(1_p1)(n1 1)( 2)1’220 ’P2)(n2 I"01.4.,(3731p’132)

11:01:220 $1 $2

where Ap = {(xl,z2)|p1-p2 E Chi/(711,112, 3:1, (132)}. We will present a few examples

to show that the coverage probabilities of the Wald interval are typically lower than

its nominal level.

The probabilities reported in the following plots and tables unless otherwise

specified, are the result of exact probability calculations produced in S-Plus. Instead

of using the algorithm given in equation 2.2.2, which contains two loops, we apply

a more efficient one:

CPW(n1) n21 plap2)

"2

=ZP{LW(n1’n2’p1’pz9i)
< X1 < Uw(nlin2aplap27i)}P{X2 =

Z} (2.23)

i=0

where Lw(n1,n2,p1,p2,z') < Uw(n1,n2,p1,p2,i) are two proper real roots of the

equation as a function of X1:

 

X. Xzi \/X1(1—X1) 2'(1—z‘)

“"pFE‘E 2 (12.13 W
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The algorithm given in (2.2.3) contains only one loop.

Example 1. Figure 1 plots the exact coverage probabilities of the nominal 95%

standard Wald interval for p1 = 0.9, p2 =: 0.1, 111 = n2 = 71 when n varies from 6 to

100. Two important features of the Wald interval are exhibited in the figure.

First, there exists a very strong oscillation which is due to the discreteness of

the binomial distribution. Therefore, the coverage probability does not at all get

steadily closer to the nominal level though the magnitude of the oscillation tends

to decrease. For example, at n = 14, the coverage probability is 0.942, but it is

only 0.808 at n = 15. Even when n is as large as 67, the coverage probability is

only 0.914. When n = 100, the coverage probability is still not satisfactory, it is

only 0.927. Only after n 2 300 does the coverage probability fluctuate above 0.94.

Second, the Wald interval is anti-conservative: the coverage probabilities at

most values of n are less than the nominal level. Among all the coverage probabil-

ities (for n = 6 up to n = 100), only three reach the nominal level. There are 50

coverage probabilities less than 0.93 and 31 less than 0.92.

Similar to the phenomenon pointed out in Brown et al. (2002) for one sample

interval, the existence of the oscillation of the coverage probability makes some

quadruples lucky and some unlucky. For instance, the quadruple (n1, 112,191,122) =

(53, 53, 0.9, 0.1) is lucky, with the exact coverage probability of the Wald interval

equal to 0.9501. But (n1,n2,pl,p2) = (54, 54,0.9, 0.1) is unlucky, with the exact

coverage probability 0.9132. Similarly, changing the proportions may result in some

lucky or unlucky quadruples as well. Further, the lucky or unlucky quadruples

12



Figure 2.1: Exact coverage probability of the nominal 95% Wald interval for p1 =

0.9,p2=0.1 and n1=n2=n=6to 100
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are not predictable. There is no obvious pattern to follow on telling whether a

quadruple is lucky or not.

Example 2. Suppose the confidence level is 95%, 111 = 712 = n and n varies from 20

to 100. Compare the coverage probabilities in two cases. Case one, p1 = 19;; = 09;

case two, 191 = 102 = 0.5. Conventional wisdom might suggest that the coverage

probabilities in case 2 would be higher than those in case one. But this is not true.

Figure 2 plots the coverage probabilities in the two cases. It is surprising to see

CPw(n, n, 0.5, 0.5) is not obviously higher than CPw(n, n, 0.9, 0.9). When n varies

from 20 to 100, CPw(n,n,0.9,0.9) has less oscillation. All CPw(n, n,0.9,0.9) are

located between 0.940 and 0.949. The range of CPw(n, n, 0.5, 0.5) is [0.919, 0.953].

This example demonstrates we cannot judge the coverage probabilities of the Wald

13



Figure 2.2: Exact coverage probability of the nominal 95% Wald intervals for p1 =

p2=05andp1=p2=0.9withn1=n2=n=20to100
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interval by whether p1 and p2 are close to center or not. The relative positions of

191 and p2 affect the coverage probability.

Since there are four quantities n1, 712, p1 and p2 affecting the coverage proba-

bility, considering only the magnitudes of proportions is not enough. In fact, not

only the relative positions of 1); and 112 but also the relative sizes of 111 and 71;. may

influence CPw(n1, 712,111,112) significantly: Moreover, the four quantities interact.

Example 3. Fix p1 = p2 = 0.9. Consider the coverage probabilities at 711 = 712 =

10 and I11 = 10,712 = 100 and nominal confidence level 95%. Which coverage

probability is greater? It is striking to see that C'Pw(10,10,0.9,0.9) = 0.8282

and CPW(10, 100, 0.9, 0.9) = 0.6474. The large sample size does not improve but

14



Figure 2.3: Exact coverage probability of the nominal 95% Wald interval atnl -

112 = 10 and n1 = 10, 112 = 100 with p2 = 0.9 and p1 = 0.8 to 0.999 with jump size
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reduce the coverage probability in this special case. And the big difference between

the two coverage probabilities cannot be explained only by the phenomenon of

oscillation. This suggests the drOp on the coverage probability in case two is caused

by unbalanced sample sizes. Figure 3 plots the coverage probabilities for p1 varying

between 0.8 and .999 with step size 0.001.

Table 1 and 2 list some coverage probabilities under different confidence levels

for some pl, 122, m and n2. Observe how much the sample sizes might affect the

coverage probability. From Figure 2.3 and the two tables, we may conclude that a

larger sample size on one 11,- could not guarantee a better coverage probability. The

15



Table 2.1: Exact coverage probability of the nominal 95% Wald interval
 

 

  

nl 10 10 10 30 30 30 100 100 100

712 10 30 100 10 30 100 10 30 100

p1=.9,p2=.5 .911 .920 .804 .906 .934 .937 .896 .940 .947

p1=.9,p2— .871 .849 .688 .849 .938 .908 .688 .908 .927

p1=.8,p2— .894 .900 .877 .898 .940 .929 .893 .931 .939

p1=.6,p2— .922 .913 .908 .913 .934 .941 .908 .941 .948

p1=.9,192— .949 .869 .647 .869 .945 .918 .647 .918 .948

p1=.5,p2=.5 .912 .917 .905 .917 .948 .939 .905 .939 .944          
 

 

Table 2.2: Exact coverage probability of the nominal 99% Wald interval
 

 

 

            

711 10 10 10 30 30 30 100 100 100

712 10 30 100 10 30 100 10 30 100

p1 = .9,p2 = .5 .963 .963 .892 .968 .984 .978 .968 .982 .988

p1 = .9, p2 = .1 .878 .856 .754 .856 .946 .953 .754 .953 .982

p1 = 8,122 = .3 .972 .948 .895 .954 .976 .979 .958 .981 .986

p1 = .6, p2 = .4 .974 .964 .954 .964 .982 .983 .954 .983 .988

p1 = .9, p2 = .8 .991 .973 .692 .973 .991 .956 .692 .956 .989

p1 = .5,p2 = .5 .958 .966 .967 .966 .986 .985 .967 .985 .987
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relative magnitudes(balanced or not) of the two sample sizes is another issue that

influence the coverage probability significantly.

It is obvious from above examples that the exact coverage probability of Wald

interval seldom achieves the nominal level. We will examine the reason theoretically

in next section.

At the end of this section, it is worthwhile to mention an issue that might cause

a non-negligible loss of the coverage probability of the Wald interval. Unlike a lot of

alternative intervals, the Wald interval is sensitive to whether a confidence interval

is defined as open or closed. The next remark gives such an example. Neither

Brown et al. (2002) nor Agresti and Coull (1998) specifically mentioned whether

their confidence intervals were closed or not. But their results are consistent with

open confidence intervals. In Wei et al. (1990), the authors specified open confidence

intervals. In this report, we define a confidence interval to be Open.

Remark 2.2.1. The shrinkage of the Wald interval to an empty set, (a, a), at some

realizations of (711,131; n2,p2) can cause its poor coverage performance, especially

when both sample sizes are small and both proportions approach boundaries. The

coverage probability of the Wald interval is at most 1 — (p;l1 + qI“)(p’2'2 + (132)

regardless of the nominal level. For example, when p, = p2 = 0.95 and both sample

sizes are 20, the coverage probability of the Wald interval is at most 0.872 regardless

of the nominal level. A more simple and instructive example is 711 = 712 = 10 and

p1 = 112 = 0.9. If X1 = X2 = 10, then the confidence interval shrinks to (0,0).

Though p1 — p2 = 0, but since 0 ¢ (0,0), (10,10) is not a proper pair in the AP
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defined at the beginning of this section. Note that P{X1 = X2 = 10} = 0.1216,

which makes C'Pw(10, 10, 0.9, 0.9) at most 0.8784.

2.3 A Reason for Inadequate Coverage

Similar to the reason for the inadequate coverage of the Wald interval for one bi-

nomial proportion explored in Brown et al. (2002), we will show that the poor

performance of the Wald interval is due mainly to the fact that the Wald confi-

dence interval is symmetric about a “wrong” center. Although 131 — 152 is the MLE

and an unbiased estimator of p1 — 122, as the center of a confidence interval it causes

a systematic loss of coverage from the nominal level. As we will see in next Chap-

ter, by simply recentering the interval, one can improve the coverage performance

significantly.

One way to derive the Wald interval is to invert the large-sample Wald test.

The nominal (1 — a)% Wald interval for p1 — p2 is the set of 6,, for which

I151 - 152 - 5p|

\/I51(1- I51)/711“l‘152(1 - I52)/n2

 

 < Za/2

Hence, in deriving the Wald interval, the following consequence of the central

limit theorem plays an important role:

. pi i122 -(p1A-p2) - __c_> N(0.1)

\/P1(1- I’ll/"1 +132(1 - P2l/nz

 

For simplicity, denote the left side above Wmm. Even for quite large values of 711

and 712, the actual distribution of an, can be far from the the standard normal

distribution for many p1 and p2 as we will show next. Thus the very premise on
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which the Wald interval is based is seriously flawed for moderate and even quite

large values of n1 and 712.

The bias of anz, which is EWmm, from the mean of standard normal

distribution can be analytically computed by doing standard expansions. Denote

can, = 15,- —— p,- for 2' = 1,2. Then simple algebra gives

W — ”"1 ’ “"2
nimz "‘

PIQX+(Ql-Pllwn1'W121L + P202+(02-P2)wn2 —w;~’,2

n1 ’12

where q,- = 1 — p,- for 2' = 1, 2. Let u = 9%? + 3:733. Denote the denominator b, then

l/b can be expressed as

l

2 2 --

11—1/2 (1 + (91*P1lwn1 + ((12 —' 1’2)an _ (Wm + wn2)) 2

72121. 11211. 77.11]. le’u.

=u'1/2(1+x)’1/2,

2 .2

_ (91—p1)wn, (92-p2)wn2 _ wn, w. - _ 71/2
where 2: —- mu + "2" mu + 47.20 . Since can, — 0,,(71, ), a Taylor

expansion yields

_ :r 31:2 5a:3 _

(Wm ‘7 wmlu U20 " 5 + ? — T6_ + 0p((711/\ 712) 3/2))anu =

The formulas for central moments of the binomial distribution then yield an

approximation to the bias:

p1—1/2 1 9 p2-1/2 1 9
EW,, .-.-.-——-—-— 1 ———--—1 --—-———— 1 -—-———--~1

""2 n1u1u1/2 ( + n1(2u1 ) n2u2u1/2 + n2(2u2 )

+ 30p. - 1/2)-(p2—1/2))
2n1n2u1u2u1/2

_ 15(121 -1/2)(p2 -1/2) (122 -1/2 _ 91—1/2)

2n1n2u1u2u3/2 n2 111

+ 0((n1 /\ n2)'3/2) (2.3.1)
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where

From (2.3.1), it can be seen that when both p1 and p2 approach 1/2 for fixed

sample sizes, the bias tends to decrease. Therefore, ignoring the oscillation effect,

one can expect to increase the coverage probability by shifting the terms of the cen-

ter of Wald confidence interval from 151 and :52 toward 1/2 and 1 /2. When the two

proportions are close for comparable sample sizes, the effect from p1 could coun-

teract that from p2. On the other hand, it also explains why the Wald confidence

interval behaves poorly when the sample sizes are extremely unbalanced for some

p1 and 192: the effect from p1 cannot cancel out most effect from p2. In general,

equation (2.3.1) can be used as a rule of thumb to explain how interaction among

n1, 112, p1 and p2 affects the bias and thus the coverage probability.

2.4 A smoothing formula obtained by Edgeworth

Expansion methods

In this section, we will not justify Edgeworth Expansions, but rather will use Edge-

worth expansion techniques to derive a formula that works well in approximating

coverage probabilities of the Wald interval in a variety of settings. See Bhattacharya

and Ranga Rao (1976) and Hall (1992) for more details on Edgeworth Expansions.

First a theorem from Hall (1992) on Edgeworth expansion is presented. It

gives general conditions under which the Edgeworth expansion is valid and will be
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used as a tool to derive the smooth approximation of the coverage probability of

the Wald interval.

Theorem 2.4.1. (Hall, 1992, page 56) Let X, X1,X2,..., be independent and

identically distributed random column d-vectors with mean II, and put I: = n‘1 2;, Xi

. Assume the function A : Rd —+ R has j + 2 continuous derivatives in a neighbor-

hood of/I = E(X), that 2401) = 0, that E(||X||j+2) < 00, and that the characteristic

function x of X satisfies

limsuplx(t)| < 1. (2.4.1)

IltII-wo

The above inequality is called Cramer’s condition. Denote the asymptotic vari-

ance of nl/zAOT) by 02. Suppose a > 0. Then forj Z 0,

P(n1/2A(-X_)/o S x) =<I>(:r) + n'1/2r1(:r)d>(x) + n'1r2(a:)d(:r) + - ~-

+ n‘j/zrj(:r)¢(z) + 0(n"j/2) (2.4.2)

uniformly in :c, where r; is a polynomial of degree at most 33' — 1, odd for evenj

and even for odd j, with coefiicients depending on moments of X up to order j + 2.

According to the arguments (pages 47, 48) in Hall (1992), the rj for j = 1,2

in Theroem 2.4.1 are given by

r1(x) = — {km + £103,101? — 1)} (2.4.3)

and

1 1 1

r2(:r) = —:I: {50623 + kiz) + £09“ + 4Ic1,2k;.,,1)(2:2 — 3) + 7—2k§J(:r4 — 10:1:2 + 15)},

(2.4.4)
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where those k’s can be determined through the following expressions of It’s that

may are expanded in terms of k’s as a power series in n“1

#ij = n'(j"2)/2(kj,1 + n”1kJ-,2 + 71—21013 + ...),j Z I (245)

Let 5,, = n1/2(é - 60)/&. The It’s are defined by

K1," == E(Sn)

K2,, = E(SZ) — (E(S,,))2 = var(S,,)

n3," 2 E(Sfi) — 3E(S,2,)E(Sn) + 2(E(S,,))3 = E(Sn — ES")3

64,. = E(Sil - 4E(SS)E(Sn) - 3(E(33.)2 +12E(S.2.)(1‘3(Sn))2 - 6(E(Sn))4

= E(Sn — ES")4 — 3(va.r(S,,))2 (2.4.6)

To derive the smooth approximation of the coverage probability of the Wald

interval, we define some notation. Let {YM- :j= 1,2, . . .} and {Yzj :j = 1,2,...)

be two independent sequences of independent Bernoulli random variables, 1’,”- ~

Bernoulli(p,~) and let X,- = 2:;1KJ, where i = 1,2. Let '7 and K3 stand for the

skewness and kurtosis of D = Ym — Yu respectively. Then

7 = E(D - ED)3 = E (Y1,1 - Y2,1 - (p1 - 192))3

= P191011 "- 191) — P292012 '7' P2)

and

K. = E(D — ED)4 — 3(var(D))2

= E (Y1 - Y2 - (P1 - 102))4 - 3(vaT(Y1 - Y2))2

= p191(q1 - 721)2 + 19292012 — 122)2 - 219%? - 219393
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We do not have appropriate random variables to apply Theorem 2.4.1 directly

since Bernoulli random variables do not satisfy Cramer’s condition. In general,

absolutely continuous random variables satisfy Cramer’s condition. Therefore, we

need to smooth Bernoulli random variables first. However, there is another problem

arising after smoothing: the Wald test statistic, through which we may define the

exact coverage probability of the Wald interval, is

 

W _ P1‘P2—(P1'7P2)

n ,n — .. - A . a

l 2 \/p1(1 -p1)/n1+p2(1-p2)/n2

on the set

- 1_ - - 1_ -

11mm ={P1( P1) +P2( P2) > 0}

711 112

and has no definition on

—- A 1- A A 1— A
Hmm = {P1( P1) + P2( P2) = 0}.

77.1 722

Consequently, we need to consider the smoothing random variables on Hum”. But

Theorem 2.4.1 does not apply to random variables defined on a proper subset.

Since P(II,,,,,) = (p'f+q§‘) (p3 +q3), which is of higher order of 0(n‘3/2). Hence,

the probability that an, has no definition can be absorbed in 0(n‘3/2). And a

smooth approximation of the coverage probability of the Wald interval will be given

in an expression with error term 0(n’3/2).

What would happen if the Edgeworth Expansions were theoretically valid on

the subset Hm”? We will focus on 11mm henceforth.

For simplicity, we consider the case when n1 = n2 = n 2 2.

The procedure of deriving the smooth approximation contains four steps.

First, we create two sequences of random variables and define a statistic Tn," by
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using those created random variables. We then show statistic Tn," can be used to

approximate the exact coverage probability of the Wald interval. In step 2, we

verify the validity of doing Edgeworth expansion for statistic Tn," if the expansions

were valid on a subset. The Edgeworth expansion for TW, is derived in step 3. Last,

in step 4, the smoothing formula of the coverage probability of the Wald interval is

given by applying results from the first three steps.

Step 1. We first create two sequences of random variables to be used in the

Edgeworth expansion and show the exact coverage probability of the Wald interval

can be approximated using a statistic defined through the created random variables.

Suppose £131“ and "iu' are two independent sequences of i.i.d random variables

forj = 1,2, - - -, both are independent of Yid- for 2' = 1,2 and EiJ ~ U(—1/n4,1/n"),

17,-,3- ~ U(1—1/n4,1 + l/n“). For 2' = 1,2 and j = 1,2,-.., define

T1,,- = Gall/3.1 = 0] + Pull/m = 11° (2-4-7)

Then

1 1

Ym‘ - a: < Tm“ < Ym‘ + '7; (2-4-8)

Put T,- = 2;:17},j/n The following inequality holds by applying inequality

(2.4.8)

1
Ti-

, — 1
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Consider the quantity under the square root in W”.

 

151(1‘ 151)+ 1520‘ P2)

  

n Tl

<(il"'1'+1/n“)(l- TI +1/n“) + (72 +1/n“)(1 — 273+ 1/n")

12 TL

7“ —T Tl—T

<—§—1—-‘-)-+—3-€———Q+%. (2.4.10)
n n TL

Similarly,

. _* *1_* Tl—T‘ Tl—TMO 121) +pz( 122) > _1_l__L)_+.L_2_)_ 35 (2.411)
n n n n n

NotethatQU—J—m+fl§E—)—fg SOifandonlyif’i—‘(l—nul’fl+‘i'2—(-1;;_—p‘22 =0,

which is out of our consideration according to previous analysis. Then, on Hum,

define

 

= TT—TZ-(pl—pz)

\/T1(1-T1) + ran—113)
n n

Tn,n  

Therefore, applying inequalities (2.4.10) and (2.4.11), the following inequality chain

holds,

 

Tl-T'2:-(P1—P2)"2/n4<W Tr-T2—(P1—P2H'2/n4

¢M+M+3§ ¢m+m_4

 

  

5

Further more, a few lines of expansions and algebra yield,

Tn,,.(1— 2/n3) — 11-2 < WM, < Tn,n(1+ 2/n3) + 71-2
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Therefore, the coverage probability of Wald interval satisfies

PW = P (IWn,n| S Za/2)

=P (WW, 5 2w) - P (WW, < —za,2)

SP (2:... s (Zn/2 + n‘2)/(1 - 2/n3)) — P (Tm < -(Za/2 + n'2)/(1 + 2M)

(2.4.12)

Similarly,

P (IWn,n| S Za/2) (2”413)

2P (TM, 3 (Zn/2 - n‘2)/(1 + 2/n3)) — P (TM, < -—(Za/2 — n‘2)/(1 — 2/n3))

(2.4.14)

Step 2, verify the validity of performing an Edgeworth expansion for Tm".

T1 j

Define a sequence of random vectors ZJ- = , where j = 1, 2, - - -. Note that

T2,]-

ET,”- =E(€z‘,j[Yi,j = 0) + 772311311 = 1])

=E(€i,j)(1 — Pi) + E(Ui,J’)Pi = Pi

P1

so the Zj's are i.i.d random vectors satisfying )1 = E(Zj) = ( . Let

P2

_ Tl-
Z = 5:23;, Z,- = . For any vector x = (3(1),x(2)) 6 (0,1)2, define

T;

(1) _ (2) ._ ...
A(x) = 1' 37 (P1 P2)
 

 

«($(1)(1 — 3(1)) + 3(2)(1— 3(2)»

Then A(x) is a infinitely differentiable function with A(_Z-) = nl/zTnm and A(p) = O.
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Note that the asymptotic variance of n1/2A(Z) is 1, according to Theorem 2.4.1,

Phil/214(2) .<. x} = P{”1/2Tn.n.m,p2 S as}

= 4441+ n‘1/2T1(I)¢($)+ n-1r2<x)¢<x)+~-

+ n’k/2rk($)¢(z) + 0(n‘k/2).

The above expansion is valid as an asymptotic series to 1: term if for any positive

integer j,

E(HZJ-HHz) < 00 (2.4.15)

and

limsup (Eexp(z't<1>z§” + it<2>z§2))| < 1. (2.4.16)

It“)l+lt‘2)l-+oo

By an argument (page 65) in Hall (1992), Cramer’s condition (2.4.16) holds if the

distribution of the random vector ZJ- has a non-degenerate, absolutely continuous

component, which is satisfied in current settings. The former inequality (2.4.15) is

guaranteed by

k 2

E(||Zj||"+2) = E(D/1,312 + |Y2,j|2)k—;—2 S 4+.

Step 3, derive the two-term Edgeworth expansion of Til/214(2).
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For simplicity, use 5,, to denote Til/224(2). Let W,- = T,- — p., for 2' = 1, 2, then

E(W,) = o E(WE) = 13% + o(n-8)

 

E(W?) = piQi(::2- pi) + 0(71—8)

 

 

. . a 3 - 2 2
E(Wi‘i) = pigt(p1 + q,)1-:;3(n 1)p1 Q: + 0(71-8) ~ 0(n-2)

? .2 . _ .

E(Wis) = 1019,11,); p.) + 0(n'4) + 0(n'8) ~ O(n"3)

3 a

E(Wis) = 13:1qu + 0(n-4) + 0(n‘8) ~ 0(n‘3) (2.4.17)

Then with 5,. = n1/2A(-Z-) and W1 = 012(71-1/2),

Sn = 111”(W — W2)((W1+ p1)(-W1+ 41) + (W2 + p2)(—VV2 + (kn-V2

= 1"(WWI — W2) (plql + p242 + (ql - pawl + (q2 — p2)VV2 — (W,2 + 113))“2

_ _ —1/2

= 111/2(W1 - way-”2 (1+ ————(q‘T 7")W1+ ___(q2T 1""‘)1/V2 — 1(11'3 + 14/22))
7.

2
1 .

= n1/2T—1/2(W1 — W2){1 —' 57-12(01- P0”?

i=1

1 2 3 3

+ 2T—1 ;[1 + ZT—1(Qi - Pi)2]Wi2 + 37-2% - P1)(Q2 - P2)W1W2}

:9

Therefore, apply the moment equations (2.4.17) and the independence of W1 and
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W2, we have

E6.) = nl/2r-WE ((Wl - W2)<1— $74241.- — paw») + 0111-1)

1

= —§n"1/2T‘3/2’y + 0(n'1)

2

E(Sg) = nT—1E{(W1 — W2)2(1- 7-1 2((15 — p,)W,-

i=1

2

+ 7‘1 2(1 + T‘1(q,- — p,-)2)W,-2

i=1

+ 2T_2(€11 - P1)(<12 — P2)W1W2)} + 0(71—3/2)

= 1 + n“1 + 2n‘17_2(p¥qf + pgqg) + 27‘372 + 0(n‘3/2)

2

E6?» = n3/2r-3/2E ((Wl — W230 - 37-12(4- - paw») + 0(n-l)
i=1

= —;n_1/2T'3/l27 + 0(n—1)

and

2

E(SZ) = n2r-2E{(Wl - W2>4(1 — 27—1 2(4- — paw.-

i=1

2

+ 7-1 2(2 + 3T_1(qi — pi)2)I’Vz-2

i=1

+ 6T_2(QI - P1)(Q2 — P2)W1W2)} + 0(71—3/2)

= 3 + 611‘1 + 18n‘17‘2(p¥qf + pgqg) — 211-1745 + 287—372 + 0(n‘3/2)
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Hence, by equations (2.4.6)

141,. = E(Sn) = —-;—n‘1/27'—3/27 + 0(n“)

”2,71 = E(Si) " (E(Sn))2

= 1+ 21.-1 + 2n’1'r'2(p§qf +p§q§) + En’lr’a’f" + 0(n'3/2)

Kan = E(Sfi) - 3E(Sr21)E(Sn)+ 2(E(Sn))3

= -2n'1/2T‘3/2'y + 001“)

and

11:4," = E(Si) - 4E(53)E(Sn) - 3(E(53.)2 +1219(53)(E(Sn))2 - 609(5))»4

= 611-174(12qu + pgqg) — 27147-216 + 1211—17—372 + 0(n’3/2)

Therefore, in the notation of (2.4.5), the two-term Edgeworth expansion for TW, is

P(Tn,n < a) = <I>(a) + n‘1/2r1(a)q5(a) + n’1r2(a)¢(a) + 0(n‘3/2)

where r1(a) and r2(a) are given in equation (2.4.3) equation (2.4.4) with

1

191,2 = - “Fa/22 ’Y

7

km = 1 + 27—20912? + 19343) + {"312

k3,1 = —2T—3/2’)’

(“4.1 = 5T_2(PiCIi + qug) - 27’2“? + 127—372

in which 7' = plql + sz2.

Step 4, compute the smooth approximation of the coverage probability of the

Wald interval.

30



By equation (2.4.12),

PW 3P (TM 3 (20,,2 + n‘2)/(1 — 2/n3)) - P (Tan < -(Za/2 + n'2)/(1 + 2/n3))

=<I>((Za/2 + n‘2)/ (1 - 2/n3)) — <I>(-(Za/2 + n‘2)/ (1 + 2/113))

+ n‘1/2ri((Za/2 + n'2)/(1- 2/113))<z>((Z../2 + n'2)/ (1 - 2/n‘°’))

— n‘1/2n(—(Za/2 + n'”)/ (1 + 2/n"‘))<15(—(Za/2 + n“"’)/ (1 + 2/n3))

+ n'1r2((Za/2 + n"2)/(1- 2/n3))¢>((z../2 + n-2)/(1 — 2/n31)

_ Trim—(z...)2 + n-2)/(1+ 2/n3))¢(—(Za/2 + n‘2)/(1 + 2/n3))

+ O(n"3/2)

=(1- a) + 2n’1r2(Za/2)¢(Za/2) + O(n"3/2) (2.4.19)

The cancellation is valid because all functions appeared in the two-term Edgeworth

expansion of Sn are continuous and the n-2 terms can be absorbed in 0(n-3/2) .

That r1 (1:) and (Mac) are even functions and rw(:r,) is an odd function also guarantees

the last two steps.

Similarly, it can be shown that

PW 2 (1 — a) + 2n-1r2(za,2)¢>(za,2) + 0(n-3/2). (2.4.20)

Combine inequalities (2.4.19) and (2.4.20), then we have the smoothing for-

mula for the coverage probability of the Wald interval:

The coverage probability of the Wald interval is at most 1 — (12'; + q?)(p§z + q?) and

can be expanded as

PW = (1 — a) + 2n'1r2(Za/2)¢(Za/2) + 0(n-3/2) (2.4.21)
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where ”(Zn/2) = r2(Za/2) in equation (2.4.4) with

- 7 ._

k2.2 = 1 + 27' 2(Pi4i +P§CI§) + 47 372

k3,1 = -2r'3/2'y

164.1 = (ST—200%? + 12311?) - 27'2n + 127‘312

in whichr=p1q1+p2q2 when0<a< 1 andn1=n2=n22.

Remark 2.4.1. Neglecting the error term 0(n‘3/2), one can see the approximate

coverage probability given by the smoothing formula is a smooth function with

respect to sample size n and the proportions, thus it does not inherit the oscillation

of the exact coverage probability. Because we used random variables with absolutely

continuous distribution functions instead of the discrete binomial random variables

in deriving the expansion, the oscillation is likely caused by the discreteness of

Bernoulli distribution.

Remark 2.4.2. Compare the approximate coverage probabilities from the expan-

sion and the exact coverage probabilities, for instance, see Figure 4 and 5, in which

the nominal levels are 95% and the SE stands for the smooth expansion. We notice

that the coverage probabilities approximated by the smoothing formula follows the

trend of the exact coverage regardless of the oscillation. The approximate cov-

erage given by the smooth formula is lower than the nominal level. Our further

study shows that at 95% nominal level, the rw(Za/2) term is always negative un-

less both proportions are either less than 0.028 or greater than 0.972. When the
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Figure 2.4: Exact and SE approximate coverage probabilities of the nominal 95%

Wald intervals for p1 = 0.9, p2 = 0.1 and n; = 112 = n
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nominal level is 90%, if 0.001 S p,- S 0.999 for i = 1 or i = 2, then rw(Za/2) < 0.

When the two proportions take some extreme values, the (p'f‘ + qi")(p’2'2 + q?)

term may achieve non-negligible amount even for quite large sample sizes, say

0.999200 = 0.819, 0.99200 = 0.134. Therefore, formula 2.4.21 explains why the Wald

interval has typically lower exact coverage probabilities than the nominal level and

the formula gives the order of the negative deviation of the coverage probability of

the Wald interval from the nominal level.

Remark 2.4.3. The smooth approximation of the exact coverage probability of

the Wald interval at different sample sizes is still valid when 11,- = 7r,-n for i = 1, 2,

where 71'1 and 11'; are two relatively prime positive integers and n is an positive

integer. Figure 6 plots the exact coverage probabilities and their approximations
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Figure 2.5: Exact and SE approximate coverage probabilities of the nominal 95%

Wald intervals for p1 = 0.8, p2 = 0.3 and n1 = 712 = n
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given by the smoothing formula when p1 = 0.9, p2 = 0.8, n; = 2111 and n1 varies

from 20 to 100 at 95% level. The smoothing formula approximates well in this case

too.

Remark 2.4.4. For any discrete random variables that have finitely many possible

values, a corresponding formula can be derived through the method applied above.

For other discrete random variables, the constant 4 in defining g” and 17 may take

some other value.

According to our analysis, we conclude that the Wald interval behaves much

worse than people’s expectation and should be used with caution. Alternative

intervals will be evaluated in next Chapter.
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Figure 2.6: Exact and SE approximate coverage probabilities of the nominal 95%

Wald intervals for p1 = 0.8, p2 = 0.3 and 712 = 2n1
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Chapter 3

Interval Estimation for the

Difference of two Binomial

Proportions

-3.1 Introduction

The poor performance of the Wald interval for the difference of two binomial pro-

portions has been addressed in last chapter. Consequently, there are quite a lot

of methods of developing alternative intervals suggested. Their performances differ

significantly.

In Section 2, we present several interval estimation methods as candidates to

replace the Wald interval, each with its motivation. The candidate intervals are

classified into three groups: (1) The Wald interval with continuity correction. It has
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the same center as the original Wald interval. (2) Confidence intervals with adjusted

centers. We select two of such intervals. One is derived through Bayesian approach

with Beta prior distributions and then using normal approximation. we identify it

the (approximate) Bayes interval in the report. Another one is pr0posed by Agresti

and Coull (1998). The main idea is to add four pseudo observations. Both intervals

have different centers from the Wald interval. (3) The profile likelihood based

confidence interval. Which, unlike the other intervals, does not have an explicit

form.

In Section 3, the performances of the above intervals with explicit forms along

with the Wald interval are evaluated. We assess those intervals on two aspects.

One is their coverage probabilities. All the coverage probabilities in this section are

computed exactly rather than by simulation. The other is their expected lengths.

The profile likelihood based interval is taken into consideration in Section 4.

We compare the coverage probabilities and lengths of all the alternative intervals

along with the Wald interval through simulation.

According to our analysis, we recommend the intervals with adjusted centers

as substitutes for the Wald interval.

We concentrate on intervals with 95% nominal level in this chapter. The

conclusions also hold for intervals with other nominal levels.
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3.2 Some Alternative Intervals

The following are some alternatives to the Wald interval.

3.2.1 The Wald interval with continuity correction

There are a few intervals with different correction terms in this category. The most

widely used one is

 

 

.. . ‘ 1— ‘ ‘ 1— “ 1 1

P1 — P2 21: 2'2 p____1(P1) + p2( 122) + + — (3.2.1)
2 n1 n2 2n1 2n2

It results from inverting the Wald test: when computing the p-value, a continuity

correction is applied for improving the accuracy of the central limit theorem ap-

proximation. This interval has the same center as the Wald interval and a greater

margin of error.

3.2.2 Intervals with adjusted center

Approximate Bayes interval

The method is motivated by using the Bayesian estimates instead of the maximum

likelihood estimates when deriving confidence intervals. For i = 1, 2, the indepen-

dent conjugate Beta(a, b) prior distribution results in the posterior distribution of

p,- is Beta(a + X;, b + 111 — X.) with mean 5, = (Xi + a)/(n.- + a + b) and variance

15.-(1 — 13,-) / (n.- + a + b + 1). Using a normal approximation for the distribution of

the difference of the posterior beta variate leads to the approximate Bayes interval

 

 

151—13221529-
2

Jan-51) + 1520-152)
n1+a+b+1 n2+a+b+1

38



In particular, if a = b, the estimators 1'51 and 132 are driven to be closer to 1/2 than

131 and 152 respectively unless p, = 1/2. Suggested by Berry (1996) (p.291), the

approximate Bayes interval in the report is specified to take a = b = 1, which leads

to

 

 

- .. Pl(1 'Pl) P2(1‘P2)
— :1: 9. 3.2.2

pl 172 22\/ n1+ 3 + 712 + 3 ( )

where 13" = (Xi+1)/(n.-+ 2) fori=1,2.

The Agresti-Coull interval

As mentioned in Chapter 1, motivated by the Wilson interval for one binomial pro-

portion as shown in Wilson (1927), Agresti and Coull (1998) suggested an interval

with Z3025 z 4 pseudo observations, one success and one failure from each binomial

population. Then the sample proportions are p, = (X. + 1)/(n,~ + 2) for i = 1, 2.

Replacing p, with p, and n,- with n.- + 2 for i = 1, 2 in the ordinary Wald interval

yields the Agresti-Coull interval

 

~ ~ 1510-131) 1520—152)
CI = — :1: 2 -——— —-—- 3.2.3

A pl p2 22¢ n1+2 + n2+2 ( )

The above two intervals have the same center. The approximate Bayes interval

is a subset of the Agresti-Coull interval. Since they have a different center from

the Wald interval with or without continuity correction but a similar form, we call

them intervals with adjusted centers.
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3.2.3 The profile likelihood based intervals

Unlike the other intervals discussed so far, profile likelihood based intervals do not

have explicit forms. Suppose the log-likelihood function of 0 = (A, p2) is l (A, p2),

where A = p1 — p2 is the parameter of interest and p2 is regarded as a nuisance

parameter. Let {(A) = rriaxl(A,p2), which is called the profile likelihood for A,

where the range of po for the maximization is (0,1 — A) if A Z 0 and (—A, 1)

otherwise. Then an approximate 100(1 — a)% profile likelihood interval for p1 — 122

is

{A e (-1,1) = 2mm» — 11.4)) s xi(a)} (3.24)

where A = 131—152 and xfla) is the 1000 upper percentage point of xi. This interval

follows from the fact that for A = A0, 2(1(A,p2) — 1(A0)) is asymptotically chi-

squared distributed with 1 degree of freedom as shown in Cox and Hinkley (1974)

3.3 Comparison of Intervals with Explicit Forms

We address the comparisons on two aspects: coverage properties and expected

lengths. For convenience, we define some unified notations: CI. represents interval

*, CP. and EL. refer to its coverage probability and expected length respectively,

where air may be W, WCC, B, AC and PLB that indicate the Wald interval,

the Wald interval with continuity correction, the approximate Bayes interval, the

Agresti-Coull interval and the profile likelihood based interval respectively.

40



Figure 3.1: Exact coverage probability Boxplots of some 95% nominal intervals
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3.3.1 Coverage Properties

Since the Wald interval with continuity correction contains the Wald interval, its

coverage probability is always no less than that of the Wald interval. Similarly,

the coverage probability of approximate Bayes interval cannot exceed that of the

Agresti-Coull interval.

To explore the average performance of the four intervals for small to moderate

sample sizes, we randomly sampled 10,000 values of (n1,p1;n2,p2), taking p1 and p2

independently from U(0, 1) and taking n1 and n2 independently from the uniform
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distribution over {10, 11,. . . , 50}. We evaluated the exact coverage probabilities of

the four intervals for each realization of (721, pl; 712, p2) at the 95% nominal level.

Figure 3.1 shows the coverage probability boxplots of the four intervals. The

means and medians of the coverage probabilities of the four intervals are listed in

the figure as well. The performance of the Wald interval is very poor. Both the

mean and the median of its coverage probabilities are much lower than the nominal

level and those of other intervals. Its behavior is not stable either. It suffers from

occasionally very low coverage probabilities. For example, the minimum coverage

probability of the Wald interval from our evaluation is only 0.170.

Contrary to the Wald interval, the coverage probabilities of the Wald interval

with continuity correction tends to be much higher than the nominal level. It has

81.4% of its coverage probabilities greater than 0.96. Since it is just a simple spread

of the Wald interval, it inherits some disadvantages of the Wald interval such as

unstable and occasionally very low coverage probabilities.

Compared with the Wald interval and its variate, coverage probabilities of

approximate Bayes interval and Agresti-Coull interval lie more closely to the nom-

inal level, which makes them more reliable. This can also be seen from the mean

distances of the coverage probabilities of the four intervals from the nominal level,

which are 0.026,0.019,0.07 and 0.07 for the Wald, Wald with continuity correction,

Bayes and Agresti-Coull intervals respectively.

According to the analysis in Chapter 2, when both p1 and p2 are getting closer

to 1/2, EWmm, the bias of the test statistic Wm”, from the mean of standard
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normal distribution tends to decrease, where

W _ 151 -152- (101 -p2)
n in? — a. A A A 3

l \/Pl(1—Pl)/n1+P2(1-P2)/nz

through which the Wald interval can be derived. This explains why the coverage

 

behaviors of the intervals with adjusted centers are better than that of the Wald

interval: 15',- is closer to 1/2 than 13,- unless p‘, = 1 /2.

Average performance over the unit square for (p1,p2) and {10, 11,. . .,50} x

{10, 11, . . . , 50} for (n1, 712) can mask certain behaviors of the four intervals in some

regions. In particular, some pairs of (p1, p2) are of more interest, say |P1 -p2| small.

Similarly, some pairs of (n1, 112) may be more important, for example, proportional

sampling may result in some favorable (n1, n2). Hence, it is necessary to focus on

some special and common cases.

Figure 3.2 shows how the coverage probabilities of the four intervals vary for

122 = 0.5 and p1 varying between 0.01 and 0.99 with step size 0.01 at 711 = no = 20

and nominal level 95%. In this case, the coverage probabilities of the Wald interval

never achieve the nominal level. Its mean coverage is 0.933. The coverage of the

Wald interval with continuity correction is always above 0.96 with mean 0.969.

Most coverage probabilities of the Bayes interval and the Agresti-Coull interval

fluctuates between 0.94 and 0.96. The mean coverage probabilities are 0.946 and

0.951 respectively.

Figure 3.3 demonstrates the behaviors of the four intervals when p1 = p2 vary

between 0.01 and 0.99 with step size 0.01 at 711 == 712 = 20 and nominal level 95%.

Again, the coverage probability of the Wald interval never reaches the nominal
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Figure 3.2: Comparison of exact coverage probabilities for p2 = 0.5, n1 = 212 = 20

at 95% nominal level
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Figure 3.3: Comparison of exact coverage probabilities for p1 = p2 = 0.01 to

0.99,n1 = 122 = 20 at 95% nominal level
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Figure 3.4: Comparison of exact coverage probabilities at p1 = 0.7, p2 || 9
3
0
1

n2 = 2n1 at 95% nominal level
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level and the coverage of its variate remains above 0.96. It is striking to see that

all the coverage probabilities of the three alternative intervals converge to 1 and

the coverage of the Wald interval drops dramatically as p1 = p2 approach either

boundary. This is because the Wald interval suffers from shrinkage to an empty

set for some realizations of (nl, pl; 712, p2) while the other intervals do not. When

both sample sizes approach boundaries and sample sizes are small or moderate, the

chance that the Wald interval is empty might be non-negligible or quite large.

The coverage performances for p1 = 0.7, p2 = 0.5 and 112 = 2711 are plotted

46



in figure 3.4. When sample sizes are small, the coverage probabilities of the Wald

interval are much lower than the nominal level while the other three intervals have

coverage probabilities much closer to the nominal level. As sample sizes increase,

all the coverage probabilities are driven to the nominal level. Though the exact

coverage probabilities of the Wald interval with continuity correction and the inter-

vals with adjusted centers are much higher than the 95% nominal level, this does

not persist for all p1 and p2 when 712 = 2711. For example, if p1 = 0.9, p2 = 0.1,

n1 = 12,n2 = 24, the coverage probability of the Wald. interval with continuity

correction is only 0.915. More coverage probabilities for p1 = 0.9, p2 = 0.1 are

plotted in figure 3.5.

The discussion so far shows that the coverage of Wald interval is too low

and the coverage of Wald interval with continuity correction is often too high. The

intervals with adjusted centers have coverage probabilities around the nominal level.

3.3.2 Expected Lengths

In addition to coverage probability, parsimony in length is another important issue

for evaluating a confidence interval. We have shown that the coverage probabilities

of intervals with adjusted centers are much higher than the Wald interval in a fre-

quentist sense, but the gain on coverage probability is not due to greater lengths.

On the contrary, the intervals with adjusted centers often have smaller lengthes

than the Wald interval. But for the Wald interval with continuity correction, the

improvement of coverage probability is completely through widening the Wald in-
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Figure 3.5: Comparison of exact coverage probabilities at p1 = 0.9, pg

712 = 2721 at 95% nominal level
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terval.

22
Theorem 3.3.1. Denote 1? by c. Then

   

-12 2 2 3 2

cELw = u1/2 _ u / (4(P141 + T P2CI2) + P191011 ‘P1) + r p2q2(q2 —p2) )

 

 

8 "2 n2(1)1111 + TP2CI2)

+0(n‘2) (3.3.1)

cELWCC = cELw + 12:: + 0(n"2) (3.3.2)

cELB = cELw + 411/2 1 + ’2 — 7W“ + ’2p2q'2) + 0(n-2) (3.3.3)
274121111 + ("12242)

2 2

1/21 + r — 6(pqu + T p2Q2) + 0(n—2)

cEL = cEL + 11

AC W 2n(piqi + 772222)

 (3.3.4)

where r = 711/712 , n = 71.1 and

u = qul + P202 1

. = - (mm + 7102112)
n1 n2 n

Proof. Define w,- = (p,- —p,-)/p,-, then 15,- = piw, +p,-. The length of the Wald interval,

denoted by Lw, is

b
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+ fw(wi. 122)] + 0,,(n'2) (3.3.5)

where fut/(1121, (.112) only contains terms of w,- and wlwg and has mean 0. The second

step is achieved by multivariate Taylor Expansion and w,- = Op(n‘i). Equation

(3.3.1) follows from taking expected value of equation (3.3.5) with respect to wl

and 1.22.

Since the length of Wald interval with continuity correction is

LWCC = Lw + 22%(1/2711-1-1/2712),
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some elementary algebra results in (3.3.2).

The length, LB, of approximate Bayes interval, is

_1_

pi((1 — pi

L =2 e. . (2: .. .3)
2

=2ze(t% — -t'i 2 (—t‘1 n’p'(q p) 2 + "‘1” >13?

2 2 4 (n.- + 2)4(n,- + 3) (n,- + 2)2(n,- + 3)

  

i=1

+ fB(w1,w2)) + Op(n-2) (3.3.6)

where f3 (1121,1122) only contains terms of w,- and wlwg and has mean 0. The second

step is again achieved by multivariate Taylor Expansion and w,- = 0,,(n’i). The t

has the expression

:Pl(1 - P2) + P2(1 — P2)

 

n1 '1’ 3 n2 '1' 3

1 — 7 1 - 7

=Pl_‘11 + 219141 +___p222+ P292 +0(n_3)

1 2 _ 7 2

=11 (1 + + r (P141 + r P242)) + 0(n‘3) (3.3.7)

"(P141 + 1'P2(I2)

Therefore, replacing the t with the expression given by (3.3.7) and taking

expectation of equation (3.3.6) with respect to wl and (.122 gives the desired result

(3.3.3).

The proof of (3.3.4) is very similar to the proof for the approximate Bayes

interval and is omitted. El

A direct conclusion of Theorem 3.3.1 is the comparison results of the expected

lengths of the intervals.
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Corollary 3.3.1. Denote r = nl/ng and n1 = n, then up to an error of 0(n‘2),

ELw Z ELB if and only if

7(qul + 1'2P242) _>_ 1 + 7‘2

and ELWCC Z ELB if and only if

 

1 + r2 - 7(12121 + ”122112)
1 + r >

\/n(piqi + T122112)

 

Remark 3.3.1. The above corollary can be applied to the Agresti-Coull interval

after replacing the 7’s by 6’s.

Remark 3.3.2. Based on the corollary, when both p1 and p2 are in (0.173, 0.827),

the Bayes interval is shorter than the Wald interval and it is the shortest among the

four intervals if the 0(n'2) error is neglected. In addition, if p,- E G — % a?

is satisfied for either i = 1 or i = 2, the Bayes interval is shorter than the Wald

interval with continuity correction if the 0(n‘2) error is neglected. Therefore, when

one sample size is not too small and the corresponding proportion is not too close

to the boundaries, the approximate Bayes interval is shorter than the Wald interval

with continuity correction.

Remark 3.3.3. The Wald interval with continuity correction is often much longer

than the other three intervals. Figure 3.6 and 3.7 plot the approximate expected

lengths of the four intervals under different conditions when nominal confidence

level is 95%. They demonstrate that the expected lengths of those intervals except

the Wald interval with continuity correction are comparable.
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Figure 3.6: Comparison of approximate expected lengths of some confidence inter-

vals for p2 = 0.5 and n1 = 11.2 = 25
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Figure 3.7: Comparison of approximate expected lengths of some confidence inter-

vals for p2 = 0.1 and n1 = 10, 71.2 = 20
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Now we may conclude that the poor coverage performance of the Wald interval

is not because it is short. On the contrary, compared to intervals with adjusted

centers, the Wald interval is often longer than them but with less coverage proba-

bility. The high coverage probability of Wald interval with continuity correction is

achieved by widening the Wald interval dramatically. Hence, in replacing the Wald

interval, intervals with adjusted centers are much more preferable.

3.4 Comparison of the Wald Interval and all Pro-

posed Alternatives

The comparison is based on a simulation with 10000 iterations for each selected

(n1,p1; n2,p2). The simulation results are summarized in next table, in which we

use WCC and PLB to indicate the Wald interval with continuity correction and the

profile likelihood based interval respectively. Since the Wald interval with continuity

correction is not as good as the intervals with adjusted centers, we will not compare

it with other intervals.

Through table 1, we can see that the profile likelihood based interval does

improve upon the Wald interval on coverage probabilities in a frequentist sense. As

listed in the table, its coverage probabilities are (much) higher than the coverage

probabilities of Wald interval except a few points of (n1,p1;n2,p2). Hence, the

coverage of this interval is more reliable than the Wald interval. This suggests that
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Table 3.1: Comparison of Confidence intervals at 95% level

 

 

 

 

 

 

 

 

Coverage Probability Length

71 1 02 p1 p2 Wald WCC Bayes AC PLB Wald WCC Bayes AC PLB

10 10 .9 .1 .870 .878 .953 .953 .857 .458 .658 .556 .579 .467

.9 .8 .874 .989 .976 .985 .921 .567 .767 .601 .626 .638

.8 .3 .896 .973 .951 .953 .949 .707 .907 .671 .699 .708

.8 .7 .917 .975 .956 .968 .913 .707 .907 .671 .699 .728

.6 .4 .919 .972 .955 .961 .941 .812 1.01 .730 .760 .812

.6 .5 .907 .966 .955 .957 .941 .821 1.02 .736 .766 .822

.5 .5 .910 .955 .954 .954 .945 .830 1.03 .741 .771 .831

15 15 .9 .1 .809 .955 .962 .971 .930 .396 .529 .450 .463 .406

.9 .8 .933 .979 .960 .970 .923 .479 .613 .496 .511 .527

.8 .3 .932 .955 .937 .956 .940 .591 .724 .568 .584 .596

.8 .7 .931 .976 .953 .958 .933 .591 .724 .568 .584 .614

.6 .4 .932 .973 .956 .959 .949 .676 .810 .626 .644 .676

.6 .5 .930 .974 .933 .933 .931 .684 .817 .631 .649 .684

.5 .5 .939 .954 .951 .954 .951 .691 .824 .636 .654 .689

20 2O .9 .1 .916 .920 .956 .956 .967 .352 .452 .387 .396 .367

.9 .8 .943 .972 .960 .971 .931 .423 .523 .433 .445 .463

.8 .3 .938 .965 .954 .954 .931 .517 .617 .501 .512 .523

.8 .7 .940 .970 .949 .951 .939 .517 .617 .501 .512 .544

.6 .4 .942 .973 .938 .956 .942 .591 .691 .556 .569 .596

.6 .5 .931 .963 .949 .955 .949 .598 .698 .561 .574 .601

.5 .5 .918 .958 .954 .954 .954 .604 .704 .566 .578 .606

50 50 .9 .1 .932 .969 .949 .949 .953 .231 .271 .240 .242 .248

.9 .8 .944 .967 .953 .957 .941 .273 .313 .276 .279 .294

.8 .3 .945 .969 .951 .951 .946 .333 .373 .329 .332 .354

.8 .7 .940 .966 .944 .948 .943 .333 .373 .329 .332 .355

.6 .4 .941 .957 .944 .944 .944 .380 .420 .370 .374 .394

.6 .5 .939 .966 .940 .940 .940 .384 .424 .374 .377 .396

.5 .5 .939 .962 .939 .939 .939 .388 .428 .377 .381 .397

20 10 .9 .1 .856 .955 .956 .960 .930 .409 .559 .479 .495 .434

.9 .8 .873 .945 .972 .972 .906 .520 .670 .530 .549 .557

.8 .3 .908 .966 .943 .951 .937 .632 .782 .597 .618 .631

.8 .7 .913 .966 .949 .949 .939 .632 .782 .597 .618 .644

.6 .4 .921 .964 .946 .951 .944 .710 .860 .649 .671 .701

.6 .5 .917 .966 .947 .947 .945 .720 .870 .655 .677 .710

.5 .5 .926 .969 .944 .947 .944 .725 .875 .659 .682 .714

10 20 .9 .1 .856 .958 .953 .957 .932 .410 .560 .479 .495 .434

.9 .8 .945 .983 .970 .984 .927 .475 .626 .516 .533 .540

.8 .3 .911 .963 .946 .955 .924 .604 .754 .587 .607 .609

.8 .7 .921 .966 .954 .963 .923 .604 .754 .587 .607 .629

.6 .4 .921 .962 .945 .950 .941 .710 .860 .645 .671 .701

.6 .5 .919 .962 .944 .948 .939 .715 .865 .653 .675 .706

.5 .5 .925 .967 .941 .945 .941 .725 .875 .659 .681 .714   
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Figure 3.8: Comparison of coverage probabilities for p1 = 0.21 to 0.99, p2 = p1—0.2,

m = 712 = 20 at 95% nominal level
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the profile likelihood interval might be a good alternative to the Wald interval.

However, for small or moderate balanced sample sizes, the coverage behavior

of the profile likelihood based interval is questionable. Figure 3.8 plots the coverage

probabilities of the five 95% nominal intervals at n1 2 n2 2 20 and p1 = 0.21 to

0.99 with step-size 0.01 and p2 = p1 — 0.2. In this specific case, though the lengths

of the profile likelihood based interval are always greater than those of the Wald

interval, its coverage behavior is even worse than that of the Wald interval .

In general, one disadvantage of the profile likelihood based interval is, for
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balanced sample sizes, the lengths of the profile likelihood intervals are greater

than those of the Wald intervals.

There is an “outlier” among the coverage probabilities of the profile likelihood

based interval in the table. When n1 = M = 10 and p1 = 0.9, p2 = 0.1, the

coverage probability of the profile likelihood based interval is only 0.857 while all the

other coverage probabilities of this interval listed in the table are greater than 0.90.

This is due to the discrete nature of the binomial distribution. Some quadruples

(n1,p1,n2,p2) are lucky and some are unlucky. The quadruple (n1,p1,n2,p2) =

(10,0, 9, 10, 0.1) is an unlucky one for the profile likelihood interval.

According to table 1, compared to the intervals with adjusted centers, the

profile likelihood interval does not behave better. The coverage probabilities of

the Bayes interval and the Agresti-Coull interval are seldom less than those of the

profile likelihood interval and have less deviation according to the above table. For

small or moderate sample sizes, when p1 and p2 are close, the coverage probabilities

of intervals with adjusted centers tend to be greater than or equal to those of

the profile likelihood interval. This property makes the intervals with adjusted

centers more attractive because it is more common that the difference of the two

proportions of interest is small or not very large.

In addition, except that p1 and p2 are close to boundaries, intervals with

adjusted centers are always shorter than the corresponding profile likelihood based

intervals. The other disadvantage of the profile likelihood based interval is that it

does not have an explicit form.
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Based on our evaluation, all the candidate intervals improve the coverage prob-

abilities greatly upon the Wald interval in a frequentist sense. The phenomenon

of over nominal coverage probability occurs quite often to the Wald interval with

continuity correction, which tends to have the largest expected length. The profile

likelihood based interval has a better coverage performance but greater expected

length than the Wald interval when the binomial proportions are not close to the

boundaries, and the computation of this interval is complex. Moreover, our ex-

tensive simulation shows the performance of the intervals with adjusted center is

better than other intervals.

With respect to the five confidence interval methods discussed for construct-

ing approximate 100(1 — (1)70 two-sided intervals, we recommend intervals with

adjusted centers as substitutes for the Wald interval. Because of their stable cov-

erage behaviors, they have relatively reliable coverage performance even when n1 ,

n2 are very small and p1, p2 are close to boundaries. Their simple expressions make

the computation easier. Moreover, their lengths are not longer than other intervals

in a frequentist sense. Especially, when the proportions are not very close to the

boundaries, the lengths of the intervals with adjusted centers tend to be smaller

than the others. As for which interval to choose between the Bayes interval and

the Agresti-Coull interval, it depends on one’s favor. The former is shorter and a

little bit less conservative.
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Chapter 4

Interval Estimation for the

Difference of Two Binomial

Proportions in Adaptive Designs

4.1 Introduction

In clinical trials and in industrial work, adaptive designs which use accumulating

information to assign subjects to different treatments, are often highly desirable.

People apply adaptive designs for two possible aims: first, to draw reliable statistical

inferences for the benefit of future subjects, which can be thought of as an utilitarian

goal. Second, to assign each subject to the treatment with better performance,

which is the individualistic goal.

In this chapter, the approaches of constructing confidence intervals for non-
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adaptive designs will be applied to adaptive designs. A sequential adaptive model

is considered in which two treatments are compared and the responses are binary:

success or failure.

In section 4.2, notation and some existing adaptive designs will be introduced.

The validity of extending non-adaptive methods to adaptive designs will be checked

in section 4.3. As will be explained in more details, adaptive designs are classified

into two categories: allocation adaptive designs and response adaptive designs. In

section 4.4, the connection between the coverage performance and expected lengths

of a confidence interval derived from a non-adaptive design and its counterpart from

allocation adaptive design is stated and proved. In section 4.5, simulation results

are given for response adaptive designs.

4.2 Notation and Some Adaptive Designs

The two populations to be compared are referred to as Population A and Popu-

lation B, and {Xk : k 2 1} and {1”,c : k 2 1} denote the potential independent

observations from populations A and B respectively. For each k 2 1, exactly one

of (Xk,Yk) is actually observed. It is assumed that (X1,Y1), (X2,Y2), . .. are i.i.d.,

where X1 ~ Bernoulli(pA) and Y1 ~ Bernoulli(p3). The total sample size is n,

the number of observations from populations A and B. For each k > 1, define 6,,

to be 1 or 0 according to whether the kth object is assigned to population A or

B. The symbols NA(k) and N3(k) indicate the numbers of the first k observations
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that are allocated to p0pulation A and B through stage I: . Then

and

k

NBUC) = 2(1— 61‘) = k — NA(k)°

i=1

Further, define SA(k) and Sg(k) to be the numbers of successes from populations

A and B through stage 1:. Then

k

SAUC) = 25.913

i=1

and

k

330:) = 2(1- 601/.
i=1

As stated in Geraldes (1999), most adaptive designs fit into one of two general

categories: allocation adaptive designs and response adaptive designs. The former

encompasses those approaches for which the allocation of each subject does not

depend on the responses of previous subjects but only depends on the subject’s

covariate levels (when covariate information is taken into consideration) and the

allocations and covariate levels of the previous subjects. The second category in-

cludes those approaches for which the allocation of each subject depends also on

the responses of the previous subjects. Hence, the main difference between alloca-

tion adaptive designs and response adaptive designs is that (X1, Y1), (X2,Y2), . ..

are independent of the 6’s in allocation adaptive designs and they are dependent in

response adaptive designs.
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There are a lot of adaptive designs in the literature, for example, the doubly

adaptive biased coin design proposed by Eisele (1994), the play-the-winner design

proposed by Smythe and Rosenberger (1995). Woodroofe (1982) considers the prob-

lem of sequentially allocating patients to treatments when covariate information is

present. We will introduce some adaptive designs in the next two subsections.

4.2.1 Some Allocation-Adaptive Designs

The Biased Coin Design, pr0posed by Efron (1971), allocates the next subject to

one of the two populations, A or B, according to the following rule. Let D), denote

the difference of NA(k)/k and N3(k)/k. Let p0 be a constant in [05,1]. Then

il-Po, ika>0;

P(5k+1=1)= 1/2, ika=0;

p0, if Dk < 0.

This allocation policy tends to balance the number of observations from both pop-

ulations.

The Adaptive Biased Coin Design, proposed by Wei (1978), allocates subjects

to A or B according to the following rule. Let D], denote the difference of NA(k) /k

and N3(k)/k. Let h : [—1,1] —> [0,1] be a non-increasing function such that

h(:r) = 1 — h(—x) for any as 6 [-1,1]. Then P(6k+1 = 1) = h(Dk). This allocation

policy may force an extremely imbalanced experiment to be balanced very quickly.
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4.2.2 Some Response-Adaptive Designs

The Randomized Play-the- Winner Rule, proposed by Wei and Durham (1978),

tends to allocate more subjects to the population with higher success proportion.

This rule can be described with an urn model. An urn has balls of two different

types, marked A or B. We start with 0: balls of each type. When a subject enters

the study, a ball is drawn at random and replaced. If it is type A, then the subject

is assigned to A. It is assigned to B otherwise. If the observation of the subject is

aisuccess, then [3 balls of the same type are added. Otherwise, 6 balls of the other

type added to the urn. This rule is denoted by RPW(a, B).

The Randomized Adaptive Design, pr0posed by Melfi and Page (1995), tends to

allocate subjects to both populations according to an optimal proportion. Suppose

{Uk : k 2 1} are a sequence of i.i.d. random variables, whose common distribution

is U(0,1), and which are independent of both {X,c : k 2 1} and {Y1c : k 2 1}. To

minimize the variance of the estimatorpAUc) - 153(k), the desired proportion is

PA(1 - PA)

”(p/hm) =W+ 193(1 -p3)°

Let in, = 7r(13,4(k),153(k)), where 15,4(k), 13,4(k) are two estimators of the success

 

probabilities pi and 103. Then

6k+1 = [{Uk+1 < 7706)}.
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4.3 The Confidence Intervals in Adaptive Designs

Because of the adaptive nature of the design, the distribution of SA(k) may no

longer be Binomial Bin(NA(k), pA). And SA(k), 53(k) are no longer independent.

Therefore, the validity of constructing confidence intervals using the non-adaptive

formulas needs to be verified.

The maximum likelihood estimators, at stage 1:, of the success probabilities,

1),, and p3, are

 

 

mus) - 22%.)

and

1013(k) = 2:22))-

Some statisticians have studied asymptotic prOperties in some adaptive design

settings, such as Eisele and Woodroofe (1995), Bai et al. (2002), Rosenberger (1993)

and Rosenberger et al. (1997).

Melfi et al. (2001) prove some theorems and applied them to show that

(NAM/262(k) - p.) Na(k)‘/2(p‘a(k) — p3)

(PAqul/2 , (pBQB)l/2

under a wide range of adaptive design rules, where Z1 and Z2 are independent

 ) :5. (21,22) (4.3.1)

standard normal random variables. Wei et al. (1990) proved the same result under

randomized play the winner rule using martingale technique. Therefore, the adap-

tive version of the Wald confidence interval and the Wald interval with continuity

correction up to stage It with nominal level 100(1 — a)% are

_ - _ . p‘A(k)qla(k) pia(k)qia(k)

 

(4.3.2)
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and

 

  

a
l
l
)and.) = no.) at.) . ( fill???) .. ”Bl-“ill“ . 2,10,, .W)

(4.3.3)

When A = A0 for A = 1),, — 123, it follows from (4.3.1) and the arguments in

Cox and Hinkley(1974, page 322-323) that the variable 2{I(A(k),133(k)) — l(Ao)} is

asymptotically chi-squared distributed with one degree of freedom, where A(k) =

13,.(k) —133(k). Thus an approximate 100(1—a)% profile likelihood based confidence

interval for 1),; — p3 of adaptive designs is:

Claw) = {A 6 (-1,1) : 2(l(13(k).233(k)) - RA» 5 xi(a)}. (4.3.4)

To derive the confidence intervals with adjusted centers for adaptive designs,

we define two estimators for 1),, and p3:

- _ SAlk) +1

and

- _ 513(k) +1

”8“” —W“

Theorem 4.3.1. In the above adaptive setting, if 5%? ——> 1 and L255) —> 1 in

probability as k —-) 00, where {ab bk} are positive constants with ak and bk tending

to infinity. Then,

 

(NAUC) + (JP/”(12346) - PA) (NBUC) + C)‘/2(p"a(k) - 103) c

( PAQA ’ «P343 ) = (21,22),

(4.3.5)

where c is a constant and Z1, Z2 are independent standard normal random variables.
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Proof. The desired conclusion is a direct result of Corollary 3.1 in Melfi et al.

(2001). [:1

This theorem gives the validity of the confidence intervals with adjusted centers

for adaptive designs. Hence, the nominal level 100(1—a)% Bayes and Agresti-Coull

confidence intervals for adaptive designs are

 

_ - .. 124(qu~ (k) p‘a(k)<i (k)
013(10— 114(k) - 193(k) 2‘: 2%\/W+W (43-6)

and

 

 

_ .. - p1(k)q”.4(k) p"B(k)q"B(k)
Clfidk) —PA(k) -pB(k)iz°,‘/NA(k)+2 + Na(k)+2' (4-3-7)

We will consider the performance of the above confidence intervals in the next

section.

4.4 Comparison of Confidence Intervals in A110-

cation Adaptive Designs

For convenience, we define some notation: CI{‘(k) is the confidence interval derived

by method It and based on a certain adaptive design up to stage k, where * might be

W, WCC, B, AC and PLB that indicate the Wald interval, the Wald interval with

continuity correction, the approximate Bayes interval, the Agresti-Coull interval

and the profile likelihood based interval respectively. If necessary, we may replace

A by a specific adaptive design. And CI.(i, j) is the counterpart of CIflk) from a
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non-adaptive design with i observations from population A and j observations from

population B, where i+j = 1:. Similarly, use ELf(k) to denote the expected length

of the confidence interval derived by method * and based on an adaptive design.

EL. (i, j ) represents the counterpart of BL? with i observations from population A

and j observations from population B.

The following theorem explores the connection of the coverage probabilities

between confidence intervals based on allocation adaptive designs and non-adaptive

designs.

Theorem 4.4.1. In allocation adaptive designs,

I:

Plp. — p. e 013(k)) = Zap. — p. 6 cm, k -j))P<N,.(k> =1)

i=0

where the * may be any confidence interval that the non-adaptive version CI. (j, k —

j ) only involves svfl‘icient statistics: SA and SB.

The proof of this theorem is based on the next Lemma.

Lemma 4.4.1. In allocation adaptive designs, suppose a and b are any non-negative

integers satisfying a g j and b S k — j, then

1- P(SA(’€) = GINAUC) =1) = (1)1720 — will“;

2. assoc) = bINAUc) =1) -—- (kg-into - par-H and

s. P(SA(k) = a, 513(k) = blNA(k) = j)

= P(SA(k) = GINAUC) = J')P(Sa(k) = bIMUC) = j)-
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Proof. Let 75’ = (61, . . 461:)-

For anyj 6 {0,1,...,k},

Cl
. —> —->

{N4(k) =J}=U{ 6 = 6.}
t=l

where 3;) is such a k—dimension vector that has j elements with value 1 and the

other k — j elements with value 0. There are C'j = (j) different such vectors. We

put them in order.

Note that

(4.4.2)

The third step is valid because {61,l Z 1} is independent of the i.i.d sequence

{X,-, i = 1, 2, . . .} in allocation adaptive design. Hence, those 5’s only indicate when

to take observations from A and B. We have proved that SA(k) has a conditionally

binomial distribution.

Similarly, we can prove the conclusion related to P(Sg(k) = bl NA(k) = j ).
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Next to prove that given NA(k) = j, SA(k) and 83(k) are independent.

The conditionally joint distribution of SA(k) and S3(k) is

J' k-J k

=P (EX, =a,ZY.-=b, | 25,-:3') (4.4.3)

Therefore, by the independence of the responses and the allocations, equation

(4.4.3) can be rewritten in the following way:

P(SA(k) = 0,5300 = blNAlk) =1)

=P(:X=a|NA(k) =jP) (Zr-mum) :3)

i=1

=P (5406) = a|N4(l€) = j) P (519(k) = b|N4(k) = 1') (4-4-4)

Hence, the lemma holds. El

Proof. (of Theorem 4.4.1).

For any confidence interval,

P(p4 - 193 e 019(k))

k

=ZPoA—pgem() more): 2')
J:

=Z P(p4 - 123 e CII‘(k)INA(k) = j)P(NA(k) = 3') (4.4.5)

i=0
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If the non-adaptive version of the confidence interval only involves sufficient

statistics: SA and SB, the desired conclusion is achieved by applying Lemma 4.4.1

to (4.4.5). Cl

Remark 4.4.1. The condition that N—fiffl —> 1 and 1‘ng —> 1 in probability as

k —> 00 is not needed for the proof procedure, but does guarantee the validity

of the asymptotic normality needed in constructing those confidence intervals in

general adaptive designs.

There is a similar theorem concerning the connection of the expected lengths

of confidence intervals in non-adaptive designs and allocation adaptive designs.

Theorem 4.4.2. In allocation adaptive designs,

1:

EL? = ZEN]; k — j)P(N.. = j),

i=0

where the * may be any confidence interval that the non-adaptive version CI. (j, k —

3') only involves the svfl‘icient statistics: SA and S3.

Proof. This proof is similar to the one of Theorem 4.4.1. El

Remark 4.4.2. The five confidence intervals considered in the dissertation satisfy

the requirements of the two theorems.

Remark 4.4.3. The two theorems imply that for allocation adaptive designs, a

confidence interval should behave well if it behaves well in non-adaptive designs.
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4.5 Comparison of Confidence Intervals in Re-

sponse Adaptive Designs

For response adaptive designs, we do not have simple results as we do in allocation

adaptive designs. The main reason is Lemma 4.4.1 does not hold in response

adaptive designs because 6’s are not independent of the responses X’s and Y’s.

However, for response adaptive designs, we still have the same conclusion

via simulation: if a confidence interval behaves well in non-adaptive designs, one

may expect this confidence interval to behave well in response adaptive designs.

We obtain this conclusion through extensive simulation studies on some response

adaptive designs. All the results shown use a simulation with 10000 iterations for

each realized (n,pA,pB).

We concentrate on RPW(1,1), the randomized play the winner design with

a = 1 and fl = 1, in this dissertation. Similar conclusions hold for some other

response adaptive designs such as the randomized adaptive designs.

As we did in non-adaptive designs, to explore the average performance of the

five confidence intervals, we randomly sampled 10,000 values of (n, pA, p3), taking

pA and p3 independently from U(0, 1) and taking it from uniform distribution over

{10, 11, . . . , 100}. We then applied RPW(1, 1) rule to the sampled n to achieve the

sample sizes from the two treatments.

Figure 4.1 shows the average coverage performance of the five intervals with

means and medians of the coverage probabilities listed. Similar to the results in
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Figure 4.1: Coverage probability Boxplots of some 95% nominal intervals upon
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non-adaptive designs, the Wald interval behaves poorly: the coverage probability

is unstable and very low with median 0.914 and mean 0.875 at the 95% nominal

level. It also occasionally has very low coverage probabilities. Though the cover-

age probabilities of the Wald interval with continuity corrections are higher than

those of the Wald interval, it inherits some disadvantages of the Wald interval too:

occasional very low coverage probabilities and unstable performance. The average

coverage behaviors of the Bayes interval, the Agresti-Coull interval and the Profile

likelihood based interval are very similar: their means and medians are close to the

95% nominal level. The profile likelihood interval is not as stable as the intervals

with adjusted centers.

When comparing Figure 3.1 and 4.1 or simply comparing the corresponding
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Figure 4.2: Expected Length Boxplots of some 95% nominal intervals under

RPW(1,1)
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mean and median coverage probabilities, we notice one interesting point. The

average coverage performance of the Wald interval and the Wald interval with

continuity correction in RPW(1,1) is much worse than it is in non-adaptive designs.

However, this is not true for intervals with adjusted centers, which makes the

intervals with adjusted centers desirable with RPW(1,1) and some other adaptive

designs because of their stable performance.

We also plot the mean length boxplots of the five intervals with RPW(1,1) in

Figure 4.2. Since the Wald interval with continuity correction is too wide compared

to other intervals, we discard it in the following comparisons. And because the two

intervals with adjusted centers are very similar, we will only consider the Agresti-

Coull interval henceforth.
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Figure 4.3: Coverage probabilities of three 95% nominal intervals for n = 20 and

m = 0.5 under RPW(1,1)
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Figure 4.4: Expected lengths of three 95% nominal intervals for n = 20 and pA = 0.5

upon RPW(1,1)
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Figure 4.5: Coverage probabilities of three 95% nominal intervals for n = 20 and

pi = 0.9 upon RPW(1,1)
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Figure 4.3 plots the coverage probabilities of the Wald interval, the Agresti-

Coull interval and the profile likelihood based interval at the 95% nominal level

for n = 20, [9,4 = 0.5, p3 = 0.05 through 0.95 with step-size 0.05 with RPW(1,1).

And Figure 4.4 plots the corresponding mean lengths of those three intervals. We

see that the Agresti-Coull interval has both satisfactory coverage performance and

the expected length in this setup. Its coverage probabilities are almost all (right)

above the nominal level and it has the shortest length unless pH is close to either

boundary, i.e, the difference of 1),; — pH is not very big.

Though the values p3 taken are symmetric around p4 = 0.5, Figure 4.3 and

Figure 4.4 do not exhibit any symmetry. This is due to the adaptive nature of the

RPW(1,1) design and pA/pB being not symmetric around pA = 0.5.
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Figure 4.6: Expected lengths of three 95% nominal intervals for n = 20 and pA = 0.9

upon RPW(1,1)
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Different from the setup of Figure 4.3 and Figure 4.4, let pA = 0.9 in Figure

4.5 and Figure 4.6. When pA is far from p3, the coverage probability of the profile

likelihood interval is rather high. It drops when p, and p3 gets closer. Contrary

to the profile likelihood interval, the coverage probability of Agresti-Coull interval

is much less sensitive to the relative positions of pA and p3. The coverage remains

above nominal level. Though the expected length of the Agresti-Coull interval is

much greater than that of the profile likelihood based interval when pA -p3 is large,

it is close to the latter when pA - pH is not very large. This is verified through

our extensive simulation. Actually, when the total sample size n increases, the

disadvantage of the expected length of the Agresti-Coull interval when pA — p3 is

large decreases. For example, when n = 100 and keep p, and p3 same as in Figure
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4.6, the mean lengths of the three intervals are comparable. The expected length

of the Agresti-Coull interval is less than that of the profile likelihood based interval

most of the time and it has the smallest length when p3 is not very close to either

boundary.

In Figure 4.6, one may notice that the expected length of the Wald interval is

much smaller of those of the other two intervals, especially when 193 is close to 0 or

1. This is due to the high frequency of the occurrence of the empty Wald interval

when the sample size is small and the success proportions are close to boundaries.

This is also the reason for the low coverage probability of the Wald interval in

Figure 4.5. The feature of the much lower expected length of the Wald interval is

not so obvious or does not exist for moderate(say, n = 50) or large sample size(say,

n = 100).

Let us compare the three confidence intervals from another point of view: let

the total sample size n vary and keep pA and p3 as constants.

Figure 4.7 and Figure 4.8, respectively, plot the coverage probabilities and

mean lengths of the three confidence intervals for n varying from 10 through 100

with p, = 0.7 and p3 = 0.4. The Agresti-Coull interval has both the highest

coverage probability and the shortest expected length for most values of n. This

makes the Agresti-Coull interval very attractive in application. Another advantage

of the Agresti-Coull interval is it may achieve the nominal level for very small sample

sizes. When the sample size increases, the coverage probability of the Agresti—Coull

interval tends to go down and fluctuate around the nominal level which may be
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Figure 4.7: Coverage probabilities of three 95% nominal intervals for n = 10 — 100

and 1),, = 0.7, p3 = 0.4 upon RPW(1,1)
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Figure 4.8: Expected lengths of three 95% nominal intervals for n = 10 — 100 and

p), = 0.7, p3 = 0.4 upon RPW(1,1)
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explained by the central limit theory for adaptive designs.

Our extensive simulation shows that the Agresti-Coull interval always has the

most satisfactory coverage probability when pA and p3 are not far apart from each

other (say, lpA — pH] < 0.5). When IpA — p3| is very large, the profile likelihood

based interval has the highest coverage probability. The expected length of the

Agresti-Coull interval is also satisfactory unless the two proportions are close to

boundaries.

4.6 Conclusion

In summary, compared to other intervals discussed, the intervals with adjusted cen-

ters behave best with RPW(1,1). They have both stable and satisfactory coverage

probabilities and expected lengths in a frequentist sense. The stableness of the two

intervals makes them good intervals in other adaptive designs. Our simulation with

some other adaptive designs such as the randomized adaptive designs and adap-

tive weighted difference designs, due to Geraldes (1999), confirms this conclusion.

Therefore, we suggest the intervals with adjusted centers to be used in adaptive

designs.

One may expect to improve the coverage performance of the intervals with

adjusted centers for large sample size by adjusting the weights of 114(k) and 1 /2

when defining 114(k) for large k’s. We may adjust 153(k) the same way.
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