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ABSTRACT

HIERARCHICAL BAYESIAN THRESHOLD MODELS APPLIED TO THE
QUANTITATIVE GENETIC ANALYSIS OF CALVING EASE SCORES IN
ITALIAN PIEMONTESE CATTLE
By

Kadir Kizilkaya

First parity calving ease scores for Italian Piemontese cattle were analyzed using
sire and maternal grandsire threshold models. Genetic parameters were estimated by
approximate marginal maximum likelihood (MML) methods such as the historically
popular expectation-maximization method and Laplace's method in addition to
inferentially exact Markov Chain Monte Carlo (MCMC) methods. Laplacian MML and
MCMC point estimates of variance components and direct and maternal heritabilities
were seen to be statistically significant with measures of uncertainty that were virtually
identical to each other. Furthermore, the joint modal estimates of sire effects and
associated standard errors conditioned on MML estimates of variance and covariance
components were seen to differ little from the respective posterior means and standard
deviations derived from MCMC. These results suggest that there may be little need to
consider computationally intensive MCMC methods for national breed genetic
evaluations derived from large calving ease datasets in cattle production industries.

A heavier tailed Student ¢ residual distribution may be specified as an alternative
to the normal distribution for modeling underlying liability variables that characterize a

threshold probit-link model. Both #-link and probit link models were applied to simulated



data sets characterized by various degrees of freedom specifications for ¢-error on the
liability variables. Model choice, using either the deviance information criteria (DIC) or
the log marginal likelihood (LML), was generally correctly assigned in all cases, whether
for the direct linear model analysis of liability variables or for the threshold model
analysis of the corresponding ordinal data. The threshold ¢-link sire maternal-grandsire
model was found to better fit Italian Piemontese calving ease data compared to the
regular threshold cumulative probit link model; nevertheless, the rank correlation on
posterior means of breeding values between a threshold-¢ and regular threshold model
analyses exceeded 0.98.

A hierarchical generalized linear mixed model based on a structural multifactorial
model with fixed and random effects that multiplicatively influence residual
heteroskedasticity was developed. Validation of models and MCMC algorithms were
based on simulated normal and ordinal categorical data with heteroskedastic residual
structures. Simulation results indicated that DIC and LML were useful in correctly
choosing between heteroskedastic and homoskedastic models. The residual variance for
male calves was significantly greater than that for female calves and significant residual
heteroskedasticity existed across herds, whether for linear model analyses of birth
weights or for threshold model analysis of calving ease scores. However, the high
correlation between posterior mean of sire effects from heteroskedastic and
homoskedastic models indicated that there was no significant rerankings of sire genetic

merit between the two models.
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PREFACE
Chapter 1 and Chapter 2 in this dissertation were written in the style required for
publication in the Journal of Animal Breeding and Genetics. Chapter 3 and Chapter 4

were written in the style required for publication in the Genetics Selection Evolution.
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INTRODUCTION

Profitable cattle production requires careful cost control. A herd's cost of
production is strongly associated with its general level of fitness and fertility (Banos
1999). Consequently, over the last two decades seedstock selection emphasis has been
increasingly directed towards fitness traits such as conformation scores, calving ease, and
stillbirth incidences.

Calving ease, or conversely calving difficulty, is particularly important for beef
and dairy cattle production since calving problems, compared to successful unassisted
calvings, generate additional costs well beyond parturition. Costs are immediately
incurred, of course, as veterinary fees, increased labor costs, and potential loss of calf, but
long term losses also accrue due to subsequent declines in dam health and fertility,
directly resulting in reduced long-term productivity (Albera et al. 1999). Although all
breeds experience calving difficulty to various degrees, incidence rates are particularly
high in the heavy muscled Italian Piemontese breed (Carnier et al. 2000) relative to
reported estimates on the continental and British breeds (Varona et al. 1999; Bennett and
Gregory 2001). In the Germplasm Evaluation Program at the Roman L. Hruska U.S.
Meat Animal Research Center (MARC) in Clay Center, NE (Wheeler et al. 1996) the
Piemontese breed has been concluded to be the only breed out of 10 studied to “provide
the greatest opportunity to produce, lean tender meat”. Hence the importance of
controlling calving difficulty in this breed cannot be understated. Oﬁe strategy for
improving calving ease is through genetic selection.

Genetic evaluation systems for normally distributed production characters have

been based on well-characterized linear mixed models (Henderson 1973). Breeding sires



are typically ranked by best linear unbiased predictions (BLUP) or, equivalently,
empirical Bayes estimates of their corresponding random effects. Furthermore, variance
component and derivative heritabilities are typically estimated using restricted maximum
likelihood (REML), which has desirable properties relative to other methods (Mc Culloch
and Searle 2001). Calving ease, however, is generally recorded as a 4 or 5 level ordinal
category trait, such that normality assumptions are clearly violated. Abdel-Azim and
Berger (1998) and Luo et al. (2001) have demonstrated that REML estimates of variance
components based on linear mixed model analysis of categorical data yield biased
estimates of heritabilities and genetic correlations.

A suitable model for genetic analysis of categorical data is the cumulative probit
or threshold model adapted by Gianola and Foulley (1983) and Harville and Mee (1984).
However, the proposed inference procedures rely upon rather strong asymptotic or
approximate assumptions. Variance component estimation has been historically based on
a joint maximization of the marginal posterior density of the variance components using
an approximate invocation of the expectation-maximization (EM) algorithm (Harville
and Mee 1984, Stiratelli et al. 1984). However, in various simulation tests of this
method, some significant biases in heritability estimates were found (Hoeschele et al.
1987, Simianer and Schaeffer 1989). Furthermore, under the threshold model, breeding
sire merit is typically estimated using elements of the joint posterior modes of these
random effects, conditionally on estimated variance components. These joint posterior
modes are intended to approximate the posterior means, shown to be optimal selection
criteria by Fernando and Gianola (1986). Whether or not those approximations work well

as intended for breed genetic evaluations is not clearly known.



Markov Chain Monte Carlo (MCMC) methods have facilitated exact sample
Bayesian inference for many applications in animal breeding, including inference on
categorical traits. In MCMC, inference on parameters is based on random but correlated
draws from posterior distributions. Earlier studies have highlighted MCMC analysis for
genetic parameter estimation in production traits (Wang et al. 1994a,b; Luo et al. 1999;
Varona et al. 1999). The superiority of MCMC inference over, for example, approximate
EM-based inference on variance components for categorical data under conventional
threshold models has been demonstrated in simulation studies (Hoeschele and Tier 1995).
MCMC allows additional modeling possibilities for quantitative genetic analyses of
calving ease that have not yet been fully studied and exploited.

For example, it has been noted that preferential treatment may be partly
responsible for the records of some high producing animals. Stranden and Gianola
(1999) developed hierarchical Bayesian models based on a Student ¢ distributed error
structure to provide outlier-robustness on genetic evaluations. Calving ease is often
subjectively scored by herdspersons on an ordinal scale such that data quality might
conceptually be a greater issue here than for continuously distributed production
characters. Albert and Chib (1993) proposed a cumulative ¢ link model providing greater
modeling flexibility relative to cumulative probit model for the analysis of ordinal
categorical data. In animal breeding applications, a cumulative ¢ link model might be
considered to be an outlier-robust model to minimize the impact of outlying records on
genetic merit predictions for calving ease on breeding sires.

As another example, many studies have indicated that residual variances are

heterogeneous for normally distributed production characters across herds, sexes, and



other factors (Hill et al. 1983; Ibanez et al. 1999). If this phenomenon is not properly
taken into account (i.e. a homoskedastic error distribution is assumed), differences in
within-subclass variances result in biased breeding value predictions such that a
disproportionate numbers of animals may be selected from environments characterized
by high variability. This bias has the potential effect of substantially reducing genetic
progress due to breedstock selection based on these predictions (Hill 1984; Weigel and
Gianola 1992).

A structural model for heterogeneity of residual variance on a conceptual
underlying scale has been developed for the threshold model by Foulley and Gianola
(1996). However, this model, as well as a subsequent model by Jaffrezic et al. (1999),
invokes analytical approximations, which appear tenuous, particularly for the analysis of
categorical data. Exact MCMC inference on residual heteroskedasticity is conceptually
possible but requires development and testing.

Cumulative ¢-link and heterogeneous variance models need to be tested as
alternatives to conventional threshold models used currently by the beef cattle industry
for genetic evaluation of breeding sires for calving ease of their daughters as dams and
progeny as calves. A hierarchical Bayesian framework seems to be suitable for the

construction of these models, using MCMC for statistical inference.
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CHAPTER 1

Literature Review

INTRODUCTION

Dystocia, or calving difficulty, is defined as an abnormal or difficult birth
requiring assistance (Manfredi et al. 1991). The percentages of dams requiring some
assistance at calving range from 28.9% in American Gelbvieh (Varona et al. 1999) to
88.4% in Italian Piemontese cattle (Carnier et al. 2000), although these numbers may be
further indicative of management differences as well. The percentages of dams requiring
Caesarean section at calving range from are 0.4% in Holstein Fresian (Meijering 1984),
to 13.7% in Italian Piemontese cattle (Carnier et al. 2000). Calving difficulty, or
conversely calving ease, is scored subjectively according to its departure from a normal
calving, the latter of which results with a healthy dam and a healthy calf without any
human intervention (Meijering 1984). These scores are generally defined on an ordinal
scale from 1 (unassisted calving) to 4 or 5 (Caesarean section), the score thereby

reflecting the amount of required assistance at birth.

Injuries or suffocation resulting from difficult or delayed calving cause the death
of many calves either at birth or immediately thereafter in spite of the fact that about 80%
of all calves lost at birth are anatomically normal (Whitter and Thome 1995). In various
beef breeds, calf mortality at or near the time of birth has been shown to be four times
greater (P<0.01) in calves experiencing dystocia (20.4%) than in those not experiencing
dystocia (5.0%) (Laster and Gregory 1973). In addition to the loss of the calf or dam,
calving difficulties negatively impact cattle production through increased veterinary labor

costs, subsequent dam health and fertility problems (i.e., increases in the postpartum



interval or decreases in overall conception rate) and subsequently decreased dam milk

production (Walker et al. 1994; Albera et al. 1999).

Anderson (1998) estimated that calving difficulty results in annual losses of 25
million dollars in the state of Nebraska and overall annual losses in the United States are
estimated at between 500 million and 750 million dollars (Walker et al. 1994). Albera et
al. (1999) itemized economic losses derived from market prices or supplied by
veterinarians and Piemontese extension specialists in the computation of dystocia costs in
Italian Piemontese cattle. These losses are highlighted in Table I. Since calving difficulty
has both major direct and indirect costs on production, cattle breeders have an interest in
genetic analysis of calving difficulty to selectively improve populations for better calving

€ase.

Genetic and environmental factors contribute to the cause and severity of calving
difficulty. Figure 1 taken from Burfening (1991) flowcharts the complexity of this trait
and serves to point out the numerous interacting factors that affect calving difficulty. As
seen from Figure 1, calving ease is both a characteristic of the cow and of the calf.
Furthermore, a breeding bull may influence calving ease either as a sire or as a maternal
grandsire. For example, a calf's sire contributes to the calving ease as a characteristic of
the calf through the sire's direct genetic effect. This particular genetic effect may be
influenced by the birth weight, gestation length and shape of the calf as inherited from its
sire. Sire breed differences for calving ease are known to exist. Laster et al. (1973) have
shown in a study involving Hereford and Angus cows that calves sired by Charolais,
Simmental, Limousin and South Devon bulls experienced significantly more calving

difficulty than calves sired by Hereford, Angus and Jersey bulls (P<0.01). A maternal



genetic effect, on the other hand, is determined by genes passed on by the sire to his
daughter that affect her pelvic measures, uterine environment, hormonal control and other
factors that determine her ability to calve easily as a dam. That same sire also passes on
genes to his daughter's calf that directly influences its ability to be calved out easily (i.e.

direct genetic effects).

Pollak and Freeman (1976) and Berger and Freeman (1978) determined that calf
sex was an important source of variability for calving difficulty in Holsteins. This is not
too surprising since bull calves are generally larger than heifer calves at birth. Laster and
Gregory (1973) determined calf losses in various beef breeds to be higher in male calves
(22.4%) than in female calves (16.3%) delivered from dams experiencing difficult births.
However, they found no difference in calf mortality between sexes when calving was

unassisted.

Calf birth weight is an important factor affecting calving difficulty. Laster et al.
(1973) determined that the regression of calving difficulty on birth weight was highly
significant (P<0.005). Birth weight is also genetically correlated to calving difficulty
(Varona et al. 1999), which indicates that genetic selection against calving difficulty
reduces birth weight. The effect of birth weight on calving difficulty is significant in
heifers but as dams become older, the effect of birth weight becomes less important
(Herring 1996). Calving difficulty in two-year-old dams (54% Hereford and Angus cows
in U.S. Meat Animal Research Center, MARC and 30% Hereford cows in Colorado State
University, CSU) is three to four times more frequent than in three-years-olds (16% in
MARC and 11% in CSU), since the younger dams have not yet attained full physical or

skeletal maturity (Meijering 1984). Calving difficulty problems are minimal when a dam
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reaches four to five years old. In an analysis of calving difficulty data collected over 14
years, Berger (1994) determined that fewer in Holstein cows needed assistance for
calving in second (18.42%), third (16.97%) and later parities than in first parity (40.40%).

Season of calving also impacts calving difficulty. Berger (1994) reported that
calving difficulty in Holsteins is more frequent during winter than in summer. Philipsson
(1976) explained this by noting that summer is grazing season which enables cows to
exercise on the pasture. In contrast, cows are confined and receive less exercise during
the winter.

Pelvic opening of the dams also represents an important source of variation in the
frequency of calving difficulties. Disproportion in size between the fetus and dam
appears to be the major cause of dystocia. Thus, there is a critical need for adequate

growth in heifers to allow an increase in pelvic area.

Both direct and maternal genetic variability appears to exist for calving ease based
on studies reported in Table II. This table reports heritability and genetic correlation
estimates by study, model and method of variance component estimation. These models
and methods are discussed in more detail later. Although reported heritability estimates
are highly variable, direct heritability estimates generally concentrate around intermediate
values (0.15-0.20) with maternal heritability estimates being generally lower. The
estimated genetic correlations between direct and maternal effects are also generally
negative, thereby indicating that the ability of a female calf to be easily delivered from
her own dam is antagonistic with that same female's ability to subsequently calve easily

herself. Since calving ease and body dimensions are inherently related, a calf may be
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small at birth allowing her own easy delivery but then being small as a dam would have

subsequent calving problems.

STATISTICAL MODELS FOR GENETIC EVALUATION OF CALVING EASE
A primary goal of breeding programs is to maximize genetic gain in animal traits

affecting livestock production. Since the greatest selection differential is on sires in most
beef cattle populations, particularly where the use of artificial insemination is prominent,
accurate sire ranking is important. Achieving accurate sire selection requires inference on
genetic parameters such as, for example, heritability, or the proportion of total variability
that is genetic, whether for direct or maternal genetic effects. The greater the heritability,
the greater the potential for genetic improvement of the character through selective
breeding. For continuous production characters like weight gain, estimation of genetic
parameters is typically carried out using restricted maximum likelihood (REML) under
linear mixed models. In linear mixed models, the influence of fixed effects such as age,
breed or sex along with genetic and other random effects are jointly inferred upon for the
analysis of normally distributed traits. Predicted breeding values of individual animals
using best linear unbiased prediction (BLUP) are useful for seedstock selection in
livestock improvement programs (Henderson, 1973).

In addition to obvious production characters affecting farm revenue, economic
efficiency in animal production can also be enhanced by considering genetic selection for
health and reproductive fitness traits such as conformation score, calving ease and
ovulation rate (Dematawewa and Berger, 1997). However, unlike production traits,
fitness traits such as calving ease are often not continuous in their expression but are

discrete. Thus, key multivariate normal distributional assumptions invoked under a linear
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mixed model analysis are violated, particularly when the number of ordinal categories is
small; i.e. <5. Gianola (1982) argued against using BLUP to predict breeding values for
ordinal data since estimated breeding values and residuals can be shown to be dependent
upon each other. Furthermore, several recent studies illustrate that variance component
estimation based on linear mixed models consistently yielded biased estimates of
heritabilities and correlation coefficients in the analysis of categorical data (Abdel-Azim

and Berger 1998; Luo et al. 2001).

Threshold models, more commonly known as cumulative link models in the
statistics literature, are appropriate for the multifactorial analysis of ordinal categorical
traits. Threshold models are probably best understood by the concept that the ordinal
trait is influenced by an underlying liability or latent variable binned by various
thresholds that impose a discontinuity on the visible expression of the trait (Falconer and
MacKay, 1996). In Figure 2, for example, a liability value between the first and second
thresholds maps to an observed category of assisted easy calving. The concept of the
threshold model dates back to Wright (1934) who inferred upon the variability of the
number of toe digits between and within strains of guinea pigs and hypothesized an
underlying normal distribution of liability variables with strain-specific means and
common variance. Using calving ease data as the application, both Gianola and Foulley
(1983) and Harville and Mee (1984) proposed breeding value estimation procedures
under a threshold mixed effects model based on the generalized linear model formalized
by Nelder and Wedderburn (1972). Unlike the linear mixed model, the threshold mixed
model does appropriately account for the multinomial distribution of calving ease data,

conditional upon a "linked" function of both fixed and random effects as defined
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previously. The typical link function used for threshold mixed models in animal breeding
is the cumulative probit function. The probit function is simply the inverse function of
the standard normal cumulative density function (cdf). In a cumulative probit threshold

model for the analysis of data with C ordinal categories, the cumulative probability,
Prob(J < j ) , up to a certain ordinal score j, 1</<C, on a subject is written as standard

normal cdf of a linear function of the (j-1)™ threshold parameter and the fixed and
random effects associated with that subject. Using Figure 2, for example, the probability
of a dam experiencing an easy unassisted calving or easier calving is modeled as the cdf
of the first threshold plus any fixed or random effects that influence the magnitude of the
liability variable. Gianola and Foulley (1983) developed scoring equations for the
threshold mixed model under the Bayesian paradigm. These equations maximize the
joint posterior density of the fixed and random effects, conditional upon known or
estimated variance components. The corresponding joint modes are then reported as
point estimates with standard errors based on the information matrix of this joint
posterior density. These joint modal or maximum a posteriori (MAP) estimates are
currently used for genetic evaluations on calving ease (Berger 1994; Wang et al. 1997).
Genetic evaluation models are of two broad types. The first model is the sire or
sire and maternal grandsire model where calf records on, say, calving ease are connected
directly to sires with genetic relationships identified only through known paternal
ancestry. The second is the animal model where each record is connected directly to each
calf identification with all known genetic relationships explicitly modeled. Whereas
animal models are now predominantly used for genetic evaluation of production traits

under a linear mixed model, sire or sire and maternal grandsire models are most often
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used for threshold mixed model analysis of calving ease data. If the predominant genetic
relationship is that due to paternal halfsibs, there should be intuitively very little
difference in sire genetic evaluations between those computed under a sire versus an
animal model. Indeed, these models can be shown to be equivalent under a linear mixed
model framework if the only genetic relationships are paternal half sibs on calves making
the records. However, threshold animal models have been shown to lead to MAP
estimates of breeding values that are much more biased than those determined under
threshold sire models (Mayer, 1995), since the approximation invoked for MAP breaks
down substantially when the number of records per individual in a model is small. Such
a number on average is smaller in animal models than in sire models since there are
generally many more unique calf identifications than unique sire identifications in a set of
data.

BAYESIAN INFERENCE

Likelihood-based methods have been generally used to infer upon genetic
parameters in animal breeding and genetics. However, recent theoretical and
computational developments in Bayesian inference, such as Markov Chain Monte Carlo
methods, have inspired researchers to increasingly use Bayesian methods in animal
breeding and genetic applications.

In Bayesian inference, as with likelihood inference, the joint density of the data y
is characterized by a probability distribution p(y|0) . The quantity @ denotes the vector of
unknown parameters, including those that an investigator may wish to infer upon. A
Bayesian model essentially consists of two parts. The first is the sampling distribution or

likelihood function p(y|0) which is the information provided by y on 0 . The second part
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is a prior distribution p(8). In the Bayesian approach, researchers may have some prior
knowledge about @ which could be incorporated in the analysis using their specification
of p(8). This feature creates one main distinction between Bayesian and frequentist or
likelihood approaches.

After combining the prior information p(8) with the available information from

data p(y|0), inference on® is based on the posterior distribution:

p(y|6)p(0)

0 —
p(Oly) o)

, where p(y)= [p(y|8)p(8)de .

In the posterior distribution, p(y) is constant relative to inference on 0 . Thus the posterior

distribution can be written in the more compact form
p(Bly) < p(y|8)p(6)
where « denotes 'proportional to'. Herein lies another basic distinction between

likelihood and Bayesian inference. Bayesian inference is conditional upon a single

realization of y whereas likelihood or frequentist inference in based on conceptual
repeated realizations of y. Furthermore, provided that p(8]y) can be determined,

Bayesian inference is exact for small samples whereas likelihood inference generally is

not.
With 0=(0,,0,,...,.6,)’, marginal and conditional densities of any parameter 6, can
be obtained from the joint density p(,,9,,...,8,) . That is the marginal posterior density of

any one parameter of interest, say 0, , can be determined by:

P@©,ly)= [p(©,.0,....6,ly)d0, , where 8,=(6,,0,....8,,.0,,...9,) .
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When the posterior distribution is determined, inference on parameters can be made using
any features of this distribution including location (mean, mode and median) and

dispersion (variance and standard deviation).

VARIANCE COMPONENT ESTIMATION

Variance components and their derivative genetic parameters (i.e., direct and
maternal genetic heritabilities and genetic correlation) in a threshold mixed model have
been historically estimated using approximate marginal maximum likelihood (MML)
techniques. The techniques are used to maximize the approximate marginal posterior
density of the variance components. One historically popular technique in animal
breeding is based upon an approximate invocation of the expectation-maximization (EM)
algorithm proposed by Harville and Mee (1984), and Stiratelli et al. (1984). In simulation
studies based on this algorithm, some biases were determined in heritability estimates.
Hoeschele et al. (1987) reported that mean square error of MML was larger than that of
REML when contemporary subclass sizes were small. Simianer and Schaeffer (1989)
also determined EM-MML heritability estimates to be biased upwards by 50% in a binary
trait simulation study when the mean subclass sizes were approximately 2.3 and 1.1 for

each dataset. Hoeschele et al. (1987) and Simianer and Schaeffer (1989) considered that
the approximation u|Y,o ~ N(4,C,, ), where u is breeding values, Y is ordinal
categorical data, o’ is genetic variance, i is the posterior mode estimates of breeding

values and C,, is the u-part of the inverse of the coefficient matrix, used in EM-MML is
related to the bias of MML since this approximation is based on a normality assumption,

which may not hold with small subclass sizes.
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A second approximate MML algorithm is based on Laplace's method (Leonard
1982) and was first adapted to animal breeding by Tempelman and Gianola (1993). Ina
sire model simulation study by Tempelman (1998), binary data was generated from each
of three populations (additive genetic variance = 0.20, 0.60 or 1.00). Laplacian MML
estimates were determined to be much less biased than EM-MML estimates of variance
components along with 20 to 30% less relative error. Since the Laplacian procedure is
analogous to the derivative-free REML procedure introduced by Graser et al. (1987), it
facilitates hypothesis testing of variance components via marginal likelihood ratio tests
(Tempelman, 1998).

Markov Chain Monte Carlo (MCMC) is a general method for the simulation of
random variables from probability density functions known only up to proportionality
(Geyer 1992) and thus is particularly well suited to Bayesian inference. The root of
MCMC methods can be traced back to the application of Metropolis et al. (1953) in
physics. The Gibbs sampler introduced by Geman and Geman (1984) is simply one
implementation of MCMC whereby the joint posterior distribution of all unknowns can
be derived from knowledge of the distributions of each unknown parameter conditional
on all other parameters and the data. These distributions are typically referred to as fully
conditional posterior distributions (FCD's). Due to the Markov Chain properties, MCMC
samples are autocorrelated such that the information content of these samples is less than
if the samples could be drawn independently. This problem can be readily overcome,
however, by simply drawing more MCMC samples. In contrast to the approximate EM-
MML algorithm, which simply yields point estimates, MCMC methods can retrieve the

entire posterior distribution of any unknown parameter of interest (Sorensen et al. 1994).
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Wang et al. (1993, 1994a) first used the Gibbs sampler in animal breeding,
applying the method to both linear mixed sire and animal models. Sorensen et al. (1994)
and Wang et al. (1994b) implemented Gibbs sampling in a method for drawing Bayesian
inferences about selection response in livestock populations over time. Jensen et al.
(1994) extended the use of the Gibbs sampler to models that involve covariance
components, such as that would exist between direct and maternal additive genetic effects
for beef production traits.

The Gibbs sampler was introduced for the analysis of binary data by Zeger and
Karim (1991). Extensions of their procedure for the analysis of ordinal categorical
responses were presented by Albert and Chib (1993), who used it in conjunction with
data augmentation (Tanner and Wong 1987; Gelfand et al. 1992) in a somewhat
computationally simpler strategy relative to Zeger and Karim (1991). Sorensen et al.
(1995) subsequently adapted Albert and Chib's work to quantitative genetic inference on
ordinal data. By augmenting the observed categorical data with the MCMC generated
underlying liability variables, the FCD's for all fixed and random effects and variance
components were found to have the same simple forms as in the linear mixed model,
using liability variables generated from their FCD as, essentially, the data (Sorensen et al.
1994). Van Tassell et al. (1998) further extended the Gibbs sampler for multiple trait
analysis of several continuous and ordered categorical traits, applying their sampler to the
joint analysis of twinning and ovulation rates from a herd of cattle selected for twinning
rate at the U.S. Meat Animal Research Center.

Hoeschele and Tier (1995) demonstrated that MCMC point estimates (posterior

means) of variance components have frequency properties that are superior to
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approximate EM-MML estimates in simulated ordinal categorical data characterized by
small contemporary subclass sizes (i.e. small herds). However, these differences were
shown to be increasingly smaller with larger sample sizes.

Varona et al. (1999) analyzed calving difficulty scores from Gelbvieh cattle by
using a threshold animal model using MCMC to obtain the marginal posterior mean and
standard deviation of the direct and maternal heritabilities and the direct-maternal genetic
correlation. The posterior means + standard deviations of the direct and maternal
heritabilities for calving difficulty were 0.23+0.036 and 0.10+0.018, respectively. The
posterior mean of genetic correlation (—0.36+0.090) demonstrated an antagonistic genetic
relationship between the direct and maternal effects for calving ease. Luo et al. (2001)
also studied statistical models including direct and maternal genetic effects for calving
ease scores using Gibbs sampling for inference. Inference properties on heritabilities and
genetic correlations comparing animal models versus sire and maternal grandsire models
and threshold mixed models versus linear mixed models were compared. They concluded
that linear mixed models produced significant downward or upward biased (P<0.05)
point estimates of heritabilities in contrast to point estimates derived using threshold
mixed models. Also, threshold sire and maternal grandsire models yielded smaller mean
squared error of heritability estimates than a threshold animal model. Furthermore,
treating herd-year-season (HYS) as random effects in the threshold sire models reduced
the variance of estimates of genetic parameters for the categorical traits. Luo et al.
(2001) concluded that the threshold sire and maternal grandsire model was most

appropriate for the quantitative genetic analysis of calving ease.
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ROBUST MIXED LINEAR MODELS
For normally distributed data or alternatively for underlying liability variables in
threshold mixed models, residual terms are typically assumed to be normally distributed
with zero mean and common variance in animal breeding applications. This assumption,
however, may make the resulting analysis vulnerable to the presence of outliers (Rogers
and Tukey 1972, Lange et al. 1989). Heavier-tailed densities (such as the univariate or

multivariate Student ¢ distributions) are viable alternatives to the Gaussian one. The ¢

family of distributions [#(u,0?,v)] is characterized by three parameters: center u, scale

o’ and degrees of freedom parameter v € (0,0) that determines the heaviness of the
tails (Gelman 1995). Whenv =1, the ¢ distribution is the Cauchy distribution with a very
thick tail, infinite mean and infinite variance. Conversely, when v — o, the ¢ distribution
approaches the lighter-tailed normal distribution. Having a thicker tail, the ¢ distribution

can provide robustness against unusual or outlying observations when used to model the

density of the residual terms.

Lange et al. (1989) considered the ¢-distribution as a useful extension of the
normal distribution for statistical modeling of datasets having outliers. A maximum
likelihood approach was used for parameter estimation including the degrees of freedom
parameter. Numerous datasets were analyzed based on the maximum likelihood strategy
for a general t-distributed error model. Generally, the # model was found to fit much
better than a normal model based on the likelihood ratio test. The asymptotic standard
errors for the location parameter estimates under the ¢ model also were generally smaller
compared to the normal models. Reasonable estimates of degrees of freedom were

obtained for all datasets, except for a radioimmunoassay dataset. In a nonlinear regression
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analysis of radioimmunoassay dataset, the maximum likelihood estimate of the degrees of
freedom parameter was 0.29, which was concluded to be not very satisfactory. Lange et
al. (1989) concluded that the low estimate stemmed from attempting to accommodate one
very extreme outlier. When that outlier was removed, the resulting estimate increased to
1.2. Fraser (1979) suggested that maximum likelihood estimation of degrees of freedom
is not advisable when degrees of freedom estimation goes much below 1 suggesting that
the -model is not well suited to data with extreme outliers. Fraser (1979) further
suggested that in problems with small sample sizes, researchers might fix the degrees of
freedom at some predetermined value, such as 4, rather than attempt to estimate the
degrees of freedom simultaneously with other parameters. Based on the results from
different analysis, they concluded that outliers and robustness can be handled by the
maximum likelihood estimator for all the parameters in the s-distributed error model
using the EM algorithm.

Lange and Sinsheimer (1993) extended the work by Lange et al. (1989) further by
considering alternative heavy-tailed distributions to the Student . Each of the models
considered in their paper, including the logistic, slash, ¢ and contaminated normal
distributions, were shown to be derived as scale mixtures of normals. More specifically,

. o’
given that the residual terms e; are specified conditionally as e, ~ N (O,T:] ,i=1,2,....n,
alternative heavy-tailed residual densities can be marginally specified by alternative

distributions on A;. For example, a Student ¢ distribution is represented as a scale mixture
of normals with Gamma distributed scaling factors A, ~ Gamma(—‘zi,—;-) , v being the
degrees of freedom (Lange et al. 1989). Alternatively, the slash distribution is

22



characterized by scaling factors having the density p(4|v)=v4"",,i=12,....,n. Under

a contaminated normal error model, each residual is drawn from a mixture of two
populations based on Prob(4, =1|¢,y)=y if A=¢ or1-y, if 1 =1.In a logistic error

model, the probability is transformed to odds to remove the upper bound and then taking
the logarithm of odds also removes the lower bound for the linear function of the

explanatory variables. Lange and Sinsheimer (1993) chose the following logistic
model y, =6,/ (l+e°’ *Orc 8, i, OF ) for their analysis. Using maximum likelihood in large

datasets, the authors found that the ¢, slash and contaminated methods showed great
promise in muting the effects of outliers. The slash and r-models had particularly superior
estimation properties while the contaminated and logistic model were less satisfactory.
However, in the analysis of radioimmunoassay data, Lange et al. (1989) found potential
problems with the ¢ and slash error models and suggested that the best alternative with a
data set of this nature may be to discard the outliers and simply use the normal error
models.

Geweke (1993) considered methods for Bayesian inference in econometric
models in which errors were independent and identically s-distributed using the Gibbs
sampler. Posterior odds ratios were calculated for ¢-error models having different degrees
of freedom versus a normal error model. Geweke applied these models to fourteen
macroeconomic time series datasets and found that the posterior odds ratio always
heavily favored the independent Student-t error model over the normal error model.

In animal breeding and genetics, it has been noted that preferential treatment
commonly influences the records of high producing or economically valuable animals

and consequently, their predicted breeding values (Stranden 1996). Stranden and Gianola
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(1998) simulated the effect of preferential treatment of cows for milk production in four
herds of a multiple ovulation and embryo transfer scheme under selection. Three mixed
effect linear models were compared in terms of their ability to handle preferential
treatment: the classical Gaussian model, a model with multivariate ¢-distributed error
clustered by herd, and a model with independent s-distributed error. The posterior
distributions of all parameters were obtained using the Gibbs sampler. The three models
were found to have similar performance in the absence of preferential treatment.
Conversely, when the preferential treatment was prevalent and substantial in effect, the
univariate f-model lead to substantially less biased inference on breeding values and
genetic trends than those obtained with the Gaussian model.

Stranden and Gianola (1999) also presented a Bayesian approach for inferences
about parameters of mixed effects linear models with ¢-distributed error effects in
quantitative genetic application. Data was generated based on a preferential treatment
process. The univariate f-model for the errors led to better estimates of additive genetic
and error variances than either a herd-clustered +-model or a Gaussian sampling process.
Using a univariate ~-model, posterior distributions of breeding values were found to be
sharper and the posterior mean estimates of heritabilities were closer to the true values
compared to estimates derived from the other two models.

Rosa (1999) considered the application of robust mixed linear models based on ¢-
distribution, slash and contaminated normal error distributions to pup birth weight from
reproduction toxicology study. Marginal posterior densities of degrees of freedom, for

the ¢ and slash error distributions, were determined to be concentrated about small values,
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suggesting the inadequacy of the Gaussian distribution. Rosa (1999) also computed
Bayes factors to verify the better fit of the long-tailed distributions to this data set.

In statistical mapping of quantitative trait loci (QTL), a common assumption is
normally distributed phenotypic observations; any deviation from this assumption can
affect power and robustness of QTL detection. Von Rohr and Hoeschele (2002)
demonstrated the application of a skewed Student-¢ sampling model under four different
error distributions and determined that residual, additive QTL and dominance QTL
variance estimates were much closer to the true value when the analysis was performed
with the skewed Student-f model rather than with normal model. Replacement of the
normal by a skewed Student-f penetrance function also clearly improved the accuracy of
parameter estimation. Thus, their results indicated substantial benefits of heavy-tailed
skewed error models for QTL mapping.

Albert and Chib (1993) considered a cumulative ¢-link function, rather than a
cumulative probit link function for the analysis of ordinal categorical data. This
specification is equivalent to specifying the underlying latent variables in a threshold
model to be ¢-distributed rather than normally distributed. Gianola and Sorensen (1996)
extended Albert and Chib’s (1993) work to describe a hierarchical Bayes model with
correlated random effects suitable for quantitative genetic analysis of categorical data.
Albert and Chib (1993) also presented Gibbs sampling schemes for models where the
latent distribution was either univariate or multivariate ¢, and also considered Bayes

factors for contrasting different models as well as for identification of outliers.
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HETEROSKEDASTIC MIXED EFFECTS MODELS

An important assumption in most genetic evaluation models is that variance
components associated with random effects are constant across all environmental
conditions. However, the existence of heterogeneous variance, or heteroskedasticity, for
milk production (Hill et al. 1983; Ibanez et al. 1999), growth performance (Garrick et al.
1989), and conformation (Robert-Granie et al. 1997) has been firmly established. More
recently, work on estimating heteroskedasticity on the underlying scale in threshold
models have been investigated in animal breeding (Foulley and Gianola 1996; Jaffrezic et
al. 1999; Ducrocq 2000).

A number of possible reasons for heteroskedasticity have been suggested,
including a positive relationship between herd means and variance, spatial gradients in
residual variability across geographical regions, and temporal gradients in residual
variability within herds due to changes in herd management. If heteroskedasticy is not
properly taken into account, differences in within-subclass variances can result in biased
breeding value predictions and disproportionate numbers of animals selected from
environments characterized by high variability, thereby reducing genetic progress (Hill
1984; Weigel and Gianola 1992).

Alternative methods have been proposed to take into account heterogeneity of
variance in quantitative genetics and animal breeding. For continuous production data, a
logarithmic transformation can be used to alleviate the heterogeneous variance problem if
the variances are a simple function of the mean of trait. Scaling of observations by the
estimated standard deviations was proposed by Hill (1984) as another method of

accounting for heterogeneous variance.
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Heterogeneity of genetic and residual variances can be accounted for in genetic
evaluation using BLUP, provided that these variance components are known (Gianola
1986). However, variance components are rarely known and need to be estimated. Since
most preferred methods of variance components estimation, including ML and REML,
rely on asymptotic properties, such procedures may not yield reliable estimates if
variance components are estimated separately for each of many small subclasses (Weigel
and Gianola 1992). This was demonstrated by Winkelman and Schaeffer (1988) who
used REML and ANOVA to estimate within-herd genetic and residual variances.

Gianola et al. (1992) presented a Bayesian approach to deal with heterogeneity of
residual variances with respect to some criterion of classification (strata) of the data. In
their model, variance components (or variance covariance matrices) were assumed to
have prior inverted chi-square (or inverted Wishart) distribution. The resulting empirical
Bayes estimates of within-herd residual variances can be essentially shown to be
weighted averages of the residual variance using data from the herd (i.e. REML) and the
average across-herd residual variance. Gianola et al. (1992) indicated that when the
amount of information in a particular herd stratum is large, the REML part of the
estimator dominates; otherwise, the average across herd estimate dominates.

Foulley et al. (1992) proposed a structural linear model for assessing the source of

heterogeneity of residual variances in Gaussian mixed linear models. Their procedures

are based on the concept of a log link function, y; =In ofl = m;A , for variance

components where of‘_ is the residual variance in subclass 7, and m, is a known incidence
matrix for the unknown vector A of dispersion parameters. The marginal likelihood

(marginal posterior density of A) is maximized with respect to A to determine point
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estimates. Hypothesis testing of any of the dispersion parameters in A are then based on
a marginal likelihood ratio test against subset models. The estimation algorithms in
Foulley et al. (1992) showed remarkable similarities to the mixed model equations of
Henderson.

San Cristobal et al. (1993) extended the method of Foulley et al. (1992) by
identifying potential multifactorial sources of heterogeneity of residual and genetic
variances in mixed linear Gaussian models. They developed the model based on a
structural linear model for log residual and genetic variances as a function of fixed and
random effects, just as is done for location parameters in a regular linear mixed effects
model.

Foulley and Gianola (1996) adopted the structural linear model and log link
function for heterogeneity of residual variance of underyling liabilites in the cumulative
probit threshold model. Approximate statistical inference and hypothesis testing on all
dispersion parameters and goodness of fit was again based on a marginal likelihood test.
Foulley and Gianola (1996) applied their method to calving ease scores from the US
Simmental breed and concluded that the heteroskedastic threshold model had a better fit
to the data than the standard threshold model.

Jaffrezic et al. (1999) also used a structural linear model on log-variance to infer
upon heterogeneity of residual variances in mixed threshold model. For parameter
estimation they presented an approximate quasi-score approach including two steps: i) a
marginalization with respect to the random effects leading to quasi-score estimators, ii)

an approximation of variance-covariance matrix of the observations.
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Ducrocq (2000) analyzed the calving ease data of French dairy breeds (Normande
and Montbeliarde) using the heteroskedastic threshold model as proposed by Foulley and
Gianola (1996). He first selected a satisfactory model to describe the effects of
environmental factors on the location and dispersion parameters of the underlying
liability variables. Four random effects were then added: sire of calf, sire of dam, dam
(within sire of dam) and herd-year-season, assuming homogeneous ratios of variance
components across environments. Accounting for heterogeneity of the residual variance
in the analysis significantly improved all model fit criteria (likelihood ratio, AIC and chi-
square statistics). He determined that direct and maternal heritability estimates were
similar for both breeds but were substantially lower than those obtained by Manfredi

(1990). Direct heritabilities were 5.4% in both breeds, while maternal heritabilities were

very low (around 3%).

The specific objectives for this dissertation were to

1) Compare variance component, genetic parameter and breeding value estimates
based on the two marginal maximum likelihood procedures (EM and Laplace),
and MCMC using a threshold sire-maternal grandsire model in order to assess the
relative need for MCMC methods in a national genetic evaluation system for
calving ease.

2) Assess the potential utility of outlier-robust threshold models in simulated and

actual calving ease data.
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3) Develop and apply a Bayesian structural multiplicative model on residual
variances for observed and augmented variables in heteroskedastic generalized

linear mixed models.
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Table I. Itemized dystocia costs (Albera et al. 1999).

Parameter Dollars’

Cost of caesarean section 99.99
Labor of the farmer per hour 4.58
Price of a newborn male calf 545.46
Price of a newborn female calf 409.12
Cost of involuntary culling after first calving 306.40
Cost of involuntary culling after other calvings 483.67

"Based on 1Euro = $ 0.8802.
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Figure 1. A flowchart interaction of direct additive and maternal genetic effects with
other factors in terms of their effect on calving difficulty (Burfening 1991).
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Figure 2. Mapping of underlying liabilities to observed calving ease phenotypes.
Thresholds 1, 2, and 3 delimit normally distributed underlying liabilities into 4 calving
ease phenotypes (unassisted calving, assisted easy calving, assisted difficult calving, and
Caesarean and embryotomy).
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CHAPTER 2

Bayesian Inference Strategies for the Prediction of Genetic Merit Using
Threshold Models with an Application to Calving Ease Scores in Italian

Piemontese Cattle

ABSTRACT

First parity calving difficulty scores from Italian Piemontese cattle were analyzed
using a threshold mixed effects model. The model included the fixed effects of age of
dam and sex of calf and their interaction and the random effects of sire, maternal
grandsire, and herd-year-season. Covariances between sire and maternal grandsire
effects were modeled using a numerator relationship matrix based on male ancestors.
Field data consisted of 23,953 records collected between 1989 and 1998 from 4,741 herd-
year-seasons. Variance and covariance components were estimated using two alternative
approximate marginal maximum likelihood (MML) methods, one based on expectation-
maximization (EM) and the other based on Laplacian integration. Inferences were
compared to those based on three separate runs or sequences of Markov Chain Monte
Carlo (MCMC) sampling in order to assess the validity of approximate MML estimates
derived from data with similar size and design structure. Point estimates of direct
heritability were 0.24, 0.25 and 0.26 for EM, Laplacian and MCMC (posterior mean),
respectively whereas corresponding maternal heritability estimates were 0.10, 0.11 and
0.12, respectively. The covariance between additive direct and maternal effects was
found to be not different from zero based on MCMC-derived confidence sets. The
conventional joint modal estimates of sire effects and associated standard errors based on

MML estimates of variance and covariance components differed little from the respective
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posterior means and standard deviations derived from MCMC. Therefore, there may be
little need to pursue computation-intensive MCMC methods for inference on genetic
parameters and genetic merits using conventional threshold sire and maternal grandsire

models for large datasets on calving ease.

INTRODUCTION

Calving ease has a significant economic impact on beef and dairy production
through increased risk to the survival of both calf and cow (McGuirk et al. 1998). The
Italian Piemontese breed has a particularly high percentage of difficult calvings (Carnier
et al. 2000) relative to reported estimates from other breeds (Varona et al. 1999; Bennett
and Gregory 2001). Accurate inference on genetic parameters and genetic merit are
important precursors for effective sire selection strategies to improve calving ease.

The threshold mixed model developed by Gianola and Foulley (1983) is one
example of generalized linear mixed models (Breslow and Clayton 1993) which have
become increasingly popular for the multifactorial mixed effects analyses of non-normal
phenotypes. There have been a number of recent studies illustrating advantages of
threshold mixed models over linear mixed models for the analysis of ordinal calving ease
data (Luo et al. 2001; Rameriz-Valverde et al. 2001).

Empirical Bayes or maximum a posteriori (MAP) estimates of breeding values
are based upon a joint maximization of the posterior density of fixed and random effects
conditioned upon variance components being known, or set equal to their estimates
(Foulley et al. 1987). These MAP estimates are currently used for published genetic

evaluations on calving ease (Berger 1994; Wang et al. 1997). Variance components and
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their derivative genetic parameters in a threshold mixed model have been historically
estimated using approximate and deterministic marginal maximum likelihood (MML)
techniques. One such technique is based upon an approximate invocation of the
expectation-maximization (EM) algorithm as proposed by Harville and Mee (1984) and
Stiratelli et al. (1984). Some significant biases on heritability estimates using this
algorithm were reported in simulation studies conducted by Hoeschele et al. (1987),
Hoeschele and Gianola (1989) and Simianer and Schaeffer (1989), particularly when
contemporary subclass sizes were small and genetic parameters were large in magnitude.

A second approximate MML algorithm is based on Laplace's method and was
first adapted to animal breeding by Tempelman and Gianola (1993). In a sire model
simulation study, Tempelman (1998) determined that Laplacian MML estimates tended
to be much less biased than EM-MML estimates of variance components. Since the
Laplacian procedure is analogous to the derivative-free REML procedure introduced by
Graser et al. (1987), it also facilitates hypothesis testing of variance components via
marginal likelihood ratio tests (Tempelman, 1998).

Markov Chain Monte Carlo (MCMC) techniques allow small sample inference
and have been utilized in animal breeding and genetics (Sorensen et al. 1995; Hoeschele
and Tier 1995; Varona et al. 1999; Luo et al. 1999; Luo et al. 2001). The relative
improvements in properties of MCMC point estimates (posterior means) of variance
components relative to approximate MML estimates from data characterized by small
contemporary subclass sizes have been demonstrated in simulation studies by Hoeschele
and Tier (1995), although differences were shown to be increasingly smaller with larger

sample sizes. Even so, in the largest simulated dataset considered by Hoeschele and Tier



(1995), herd-year-season (HYS) subclasses were large in average size (>50) and maternal
effects were not considered. In contrast, many breed association datasets used for genetic
evaluations are large yet characterized by many small contemporary subclass sizes. The
computing requirements for MCMC are not trivial for large datasets, and the need for
MCMC, not only for inference on variance components but as well as on breeding values,
needs to be validated. Furthermore, execution of MCMC requires far greater care than
conventional MAP implementations for national genetic evaluations.

The objectives of this study were 1) to determine and compare variance
component and corresponding genetic parameter estimates for calving ease scores in an
Italian Piemontese population using the two MML procedures (EM and Laplace), and
MCMC based on a threshold sire-maternal grandsire model, and 2) to compare
conventional MAP estimates of breeding values and approximate standard errors with
corresponding MCMC posterior means and standard deviations in order to assess the
relative need for MCMC methods in a national genetic evaluation system for calving
ease, and 3) to demonstrate the utility of a Metropolis-Hastings update on improving

MCMC mixing on the threshold parameters.

MATERIALS AND METHODS
Data
First parity calving ease scores recorded on Italian Piemontese cattle from
January, 1989 to July, 1998 by ANABORAPI (Associazione Nazionale Allevatori Bovini
di Razza Piemontese, Strada Trinita 32a, 12061 Carru, Italy) were used in this study.

Only herds with at least 50 records over that time period were considered, leaving a total
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of 23,953 records. Calving difficulty was coded into five categories by breeders and
recorded by technicians who visited the farmers monthly: 1) unassisted delivery, 2)
assisted easy calving 3) assisted difficult calving 4) caesarean section and 5) foetotomy.
Categories 4 and 5 were combined for analyses as the incidence of foetotomy was less
than 0.5%. The general frequencies of first parity calving ease scores in the data set were
2,747 (11.47%) for unassisted delivery, 14,131 (58.99%) for assisted easy calving, 3,683
(15.38%) for assisted difficult calving and 3,392 (14.16%) for caesarean section and
foetotomy.

The effects of age of dam and sex of calf and their interaction were modeled by
combining eight different age groups (20 to 23, 23 to 25, 25 to 27, 27 to 29, 29 to 31, 31
to 33, 33 to 35, and 35 to 38 months) with sex of calf for a total of 16 nominal subclasses.
Herd-year-season (HYS) subclasses were created from combinations of herd, year, and
two different seasons (from November to April and from May to October) as in Carnier

et al. (2000), except that HYS was treated as random in this study.

The total number of identified sires in the pedigree file was 9,090. A total of
1,817 of these sires were identified as being both calf sires and calf maternal grandsires,
thereby indicating the density of genetic relationships accruing from selection over time.
After pedigree pruning (i.e. treating as unknown those sires that do not have daughters
with calving ease records and appear in the pedigree file only once), the number of sires
that uniquely contributed to inference on genetic parameters and breeding values was

determined to be 3,624.
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Threshold Model
Calving ease scores are determined by unobserved underlying continuous

variables or liabilities and a set of fixed thresholds, 7, <7,....<7

m-1>

with 7, = —0 and
t, =, where m is the number of categories. An observed calving ease score is
dependent upon underlying variable, which is bounded between two unobserved
thresholds (Gianola and Foulley 1983). More specifically, calving ease scores y; for

individual i, in this study are defined by the following bins for Uj, the underlying liability

for individual i:

1 7, <U, <1,
2 ,<U <r,
Yi= (1)
3 7,<U <1,
4 ,<U, <7, i=l..n
A linear model is used to characterize the distribution of the unobserved liabilities:
U=n+e 2)

where U is anx 1 vector of liabilities on calving difficulty, n = E(U) is the vector of
mean liabilities, and e is a vector of liability residuals with e|a? ~ N(0,157).

In addition to the specifications on 1, and t,, identifiability constraints require
that one of 1, T,, or 1, be set to an arbitrary constant; in this case, we set 1, = 0 such

7,

that the vector of estimable thresholds is T = [ :| . An additional identifiability

T3
constraint was satisfied by setting o’ =1 (Gianola and Foulley 1983).

The mean liability is written as a linear combination of fixed and random factors

as typical of a sire and maternal grandsire model,
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N=Xp+Zs+Z,m+Z;h 3)
where Bis ap x 1 vector of fixed intercept and age-sex effects, s is a g, x 1 vector of

random sire effects, mis a g, x 1 vector of random maternal grandsire (MGS) effects, h
is a g, x 1 vector of random HYS effects, and X, Z;, Z;, and Z3 are known incidence

matrices. We assume:

(;}N([g],(;:com]

and
h~N(0,1c7)
ol o
where G, =( o ] , with & denoting the sire variance, o denoting the maternal
a\"" al"

grandsire variance, o, denoting the sire-maternal grandsire covariance, and o7

denoting the HYS variance. Furthermore, ® denotes the Kronecker product (Searle
1982), and A is the numerator additive relationship matrix between sires due to identified

male ancestors (Henderson 1976). Also, h is assumed independent of s and m.

MML Using the EM Approach
Variance components were first estimated by MML using the EM-type algorithm
of Harville and Mee (1984). Applied to the problem at hand, the EM algorithm is based

on iterating through

, $'AS +trace(A"(~fs)
o, = (4a)
q,




LR -1
ol =m A m+trace(A C_,,) (4b)
4.

$'A7'm+ trace(A"é,,,, )
O = (4¢)
9.

and

fl'ﬁ +trace(C
o} = ( ") (4d)
qn

Writing 8'=[t' B' s' m' h,then C_, C,,, C,, and C,, represent the sire by

sire, MGS by MGS, sire by MGS and HYS by HYS portions, respectively, of

é az logp(elo-xz’a':l’a.tm’a:’Y)
0000'

and §'= [1' ﬁ’ ' m' h '] is the joint maximizer of the conditional posterior density
p(O |o?,02,0,,.0; ,y) , readily determined using scoring methods as presented by
Gianola and Foulley (1983). In our study, Newton Raphson was used to compute 0

based on Fortran90 program that implemented FSPAK90 (Misztal and Perez-Enciso
1998) due to the dimension and sparsity of C.

At convergence, the resulting MML estimates are asymptotically considered to be
joint maximizers of p(of ,0l,0,,0% | y) , the joint posterior density of the
variance/covariance components. Convergence was determined to occur when the
absolute difference in all MML estimates from one iterate to the next was less than 107,

Further details and examples on the implementation of this MML technique invoking EM

in animal breeding can be found in Foulley et al. (1987) and Hoeschele et al. (1987).
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Laplace's Method
Laplace's method was the second approximate MML technique applied to the
data. Details on implementing Laplace's method for variance component estimation in
generalized linear mixed models are provided in Tempelman and Gianola (1993) and in
Tempelman (1998). Applied to the problem at hand, Laplace's method is based on
maximizing the following approximate log marginal joint density of the (co)variance

components.

log p (0"2 1O msTens T | Y) ~ i In (CD (Ty, -x;ﬁ'z;ig-z,)iﬁl-z;iﬁ ) -0 (Ty, -1 ";ﬁ'z'ng'z'ziﬁ"z;iﬁ ))
i=l

¥ ""]G"[.:.] B 1
q, 2 =
|_ o2y 2B _1ie
2 2 MO 50173 9

q
—Ja1(G )-
5 n(G,)

&)
where n is the total number of observations. The MML estimates of the variance
components that jointly maximize (5) were determined using the simplex algorithm
(Nelder and Mead 1965), as previously implemented for derivative free REML (Meyer

1989). Convergence was assumed when the variance of the values of
log p(af 102,00, |y) in the simplex was less than 10®. In order to control the
probability of converging to a local maximum, the simplex algorithm was restarted once
from the first set of converged estimates.

Smith and Graser (1986) presented a method for deriving asymptotic standard

errors of variance components for derivative-free REML that could be adopted in

Laplace's method, doing so jointly for all variance components. We determined this joint
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assessment to be numerically unstable for our problem. Therefore, approximate standard
errors of the Laplace MML estimates were derived separately for each component by

holding each of the other components equal to their MML estimates in
log p(af,af,,a{‘.,,,,a,f I y) and profiling log p(af,a,f,,a.‘,,,,a,f | y) over a grid of values

for the component of interest. Specifically, a second order polynomial was fitted to this

surface in the following manner:
b, +bo? +b, (af )2 = logp(d,2 | &f,,y) (6)
where 62, denotes the MML estimates of all variance components other than the

component o (r= s, m, sm and h) of current interest. The function in (6) was fitted using

10 equally spaced values of o local to each MML estimate & such that the

-1
corresponding asymptotic standard errors was computed as (,/—sz ) .
Final MAP solutions to 8 were determined by jointly maximizing
p(O |o2,02,0,,,01 ,y) via Newton-Raphson with the variance components set equal to

their approximate MML estimates (EM-based method and Laplace's method).
Asymptotic standard errors of the MAP estimate of s were determined as the square roots
of the diagonal elements of C,, evaluated at the MML estimates of the variance
components.

Formal hypothesis testing was carried out on each (co)variance component.

Likelihood ratio tests for o, and for o} were based on computing the difference

between —2log p(a'_‘2 ,02,0,.,07 | y) evaluated at the joint MML estimates with
-2log p(o;2 ,02.0.,0}| y) maximized with respect all (co)variance components except
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the parameter(s) of interest which were set to 0. The difference involving o, was
compared to a y? whereas the difference involving o} was compared to an equal
mixture of yZ and y; as required by Stram and Lee (1994). The likelihood ratio test for

testing Ho: o2 = 0 was based on comparing the difference between

-2log p(oif ,02,0..,00] y) evaluated at the joint MML estimates with

-2log p(oif =0,02,0,, =0,0} | y) maximized with respect to o} and o’ against a
distribution based on a equal mixture of y’ and y; (Stram and Lee 1994). The
hypothesis test Hy: 0> = 0 was similarly tested by determining the difference between

-2log p(o;2 ,0.,0,,00| y) evaluated at the joint MML estimates with

-2log p(crf,af, =0,0,,=0,0} |y) maximized with respect to 67 and o?.

Markov Chain Monte Carlo MCMC)

The same model was considered here as with the approximate MML/MAP
procedures previously outlined. The same MCMC procedures as outlined by Albert and
Chib (1993) and adapted to animal breeding by Sorensen et al. (1995) were applied here
with one important exception. The threshold parameters in T were sampled jointly using
the multivariate Metropolis-Hastings (MH) update presented by Cowles (1996). In
agreement with the simulation studies by Cowles (1996), the Cowles MH update
facilitated considerably faster mixing on the threshold parameters relative to sampling

from univariate full conditionals on t, and t,, as presented by Albert and Chib (1993).

This issue is not trivial since the slowest mixing parameters in previous MCMC threshold
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model analyses are generally the threshold parameters (Sorensen et al. 1995; Varona et
al. 1999). Flat priors were invoked on the fixed effects and on the variance components.
Three separate MCMC chains of 85,000 cycles were generated. Starting values
for parameters in chain 1 were based on Laplace estimates of variance components. In
chain 2, starting values were set equal to each Laplace variance component estimate plus
three times the corresponding asymptotic standard error whereas for chain 3, starting
values were set equal to each Laplace variance component estimate minus three times the
corresponding asymptotic standard error. After discarding the first 5,000 cycles within
each chain as "bumn-in" (Gelman and Rubin, 1992), each set of the remaining 80,000
cycles within each chain were subsequently saved to determine the marginal posterior
density of each variance component and identifiable threshold parameters and to
determine the posterior means and standard deviations of each location parameter.
Generally, MCMC implementations are most problematic for variance component
and threshold parameters in terms of convergence and mixing (Sorensen et al. 1995).

Convergence diagnostics were assessed for each variance component and threshold

parameters by computing the potential scale reduction factor R of Gelman and Rubin
(1992) throughout burn-in. This diagnostic is based on an ANOVA technique that
computes the ratio of between chain variability to within chain variability, and which
should approach 1 at convergence. The effectiveness of MCMC mixing after burn-in was
determined by effective sample size (ESS) of the samples (Sorensen et al. 1995,
Hoeschele and Tier 1995) using the initial positive sequence estimator (Geyer 1992).

The ESS is an estimate on the information content of the MCMC samples in terms of an

equivalent number of independent samples.
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Inference on Heritabilities and Genetic Correlations

Point estimates and posterior densities of the additive direct variance o7, additive
maternal o, variances, and the corresponding direct-maternal covariance o, can be

derived from o2, ¢ and o, (Manfredi et al. 1991a,b; Matos et al. 1994; Luo et al.

1999), using
o} 4 0 0]|o?
al)M = _2 4 O Gm: (7)
o}, 1-4 4] o2

The phenotypic variance (o) is defined by
ol=0}+20, +0)+0}+0! 8)
Inferences on additive direct (42 ) and maternal (4, ) heritabilities and the direct-

maternal genetic correlation (7,,,) were further determined using the following

2
N o o .
relationships: A} =2, h;, =—% and r,, =——=22—. Note that with HYS treated as

Op Op \/ ooy,
random and hence o} included as part of o}, the heritabilities estimated in this study are

effectively reported as "across-herd" heritabilities rather than as "within-herd"

heritabilities as would be for the case when HYS are treated as fixed.

RESULTS AND DISCUSSION
Assessment of MCMC Convergence and Mixing

Based on the raw trace plots of samples from 85,000 cycles and Gelman and
Rubin's R computed from the 3 chains, it was determined that 5,000 cycles was a
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sufficiently long burn-in period for all dispersion and threshold parameters and within all

chains; i.e., the length of the burn-in period was enough to eliminate the effect of the

different starting values. The R values for the slowest mixing parameters (variance
components and threshold parameters) were all equal to 1.00 by the end of the burn-in
period.

The estimated ESS for each variance component and threshold parameter is given
in Table I and is based on a sum of separate determinations from each of the three
separate chains. The ESS for these parameters ranged from 1,705 to 6,953, indicating
sufficient MCMC mixing. Several animal breeders have recently suggested 100 as the
minimum ESS for reliable statistical inference (Uimari et al. 1996; Bink et al. 1998). The

ESS of 3,211 and 3,110 for 1, and 1, were found to be higher than that for the variance

components and considerably higher than what has been determined for threshold
parameters in comparable MCMC studies (Varona et al. 1999; Luo et al. 2001). Again,

improved mixing was most likely due to the Cowles MH update.

Variance Component Inference
Point estimates of variance components based on MML using EM, Laplace's
method and based on posterior means, modes and medians using MCMC are given in
Table II. The median has been suggested (Raftery and Lewis 1992) as a more robust
point estimator compared to the posterior mean. However, this study demonstrated no
appreciable differences between the posterior mean, mode, and median of parameters

since the posterior distributions of variance components and threshold parameters were
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nearly symmetric. The point estimates from the three independent MCMC chains were,
as expected, highly repeatable (not shown) because of the individually large ESS.

In this study, the EM-MML method produced slightly lower point estimates of
variance components compared to the Laplace MML method, which in turn lead to
slightly lower estimates relative to any of the MCMC point estimates. These results are
in agreement with what was anticipated given the simulation study results of Tempelman
(1998). That is, genetic variance estimates based on the use of the EM-MML method
may be slightly biased downwards. Nevertheless, there appeared to be no significant
difference in these estimates between all three methods in this study.

All likelihood ratio tests (test statistics not presented) based on Laplace's method

indicated that all components of variance and covariance (0'_3,0'2 a'x,,,,a,f) were

statistically significant (P<0.0001). Furthermore, the asymptotic standard errors of the
Laplace MML estimates closely corresponded to the posterior standard deviations
determined using MCMC, thereby suggesting that the joint posterior density of the
variance components was close to being multivariate normal. Further evidence of this is
indicated by the 95% posterior probability intervals being nearly symmetric about the
respective posterior means.

Table II also indicates that maternal genetic variability for calving difficulty is

appreciable in Piemontese cattle. However, there was no evidence to support a non-zero

additive-maternal covariance.
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Heritabilities and Genetic Correlations

Inferences on direct and maternal heritabilities and the genetic correlation are
presented in Table II. Point estimates of the heritabilities and genetic correlation obtained
from the MCMC algorithm were similar across all chains and estimation methods
(posterior mean, mode and median). These results indicated that the posterior
distributions of genetic parameters were nearly symmetric. As with the variance
components, the EM-MML estimates were found to be slightly lower than the Laplace
MML estimates and the various MCMC point estimates.

Our heritability estimates were similar to findings of Varona et al. (1999) who
used a threshold animal model with direct and maternal effects, but they were
substantially higher than the threshold model estimates reported by Manfredi et al.
(1991a,b), McGuirk et al. (1998), McGuirk et al. (1999), Luo et al. (1999), and Bennett
and Gregory (2001). The genetic correlation did not appear to be statistically significant;
nevertheless, the 95% posterior probability interval was extensive (i.e. from -0.29 to
0.25). In contrast, significantly negative direct-maternal genetic correlations have been
reported using threshold models (Luo et al. 1999; Bennett and Gregory 2001) and linear
models (Carnier et al. 2000) for the analysis of calving ease.

Carnier et al. (2000) used a linear mixed model to analyze a data set from a source
virtually identical to that used in this study and reported lower heritability estimates and a
significantly negative genetic correlation estimate compared to estimates reported in
Table II. In field data studies of various categorical traits in animal breeding, Weller et
al. (1988), Olsen et al. (1994), Matos et al. (1997), Varona et al. (1999) also found that

linear model heritability estimates were smaller than threshold model heritability
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estimates, as anticipated from theory (Dempster and Lerner 1950). Our results suggest
that selection of sires for calving ease of their progeny should not result in antagonistic
maternal effects over successive generations. The differences in results from Carnier et
al. (2000) may be based on model specification (i.e. threshold sire and maternal grandsire
versus linear animal model; fixed versus random HYS effects) and substantial differences
in data editing. Nearly twice as many records were used by Carnier et al. (2000) whereas
the current study concentrated on herds having 50 or more records over the same time
period. To investigate the impact of the HYS specification further, data were analyzed
with two linear mixed (sire-maternal grandsire) models, treating HYS as fixed in one case
and as random in the other. Treating HYS as fixed in a threshold mixed model was not
feasible due to the extreme category problem (Hoeschele and Tier 1995). A statistically
significant genetic estimate of -0.72 was found with fixed HYS effects whereas a
nonsignificant genetic correlation estimate of -0.05 was estimated when HYS were
treated as random. This implies that the direct-maternal genetic covariance may be
heterogeneous across different environments (i.e. different herds) and particularly
influenced by herd size since fixed versus random HYS specifications should lead to

similar results for large herds.

Comparison of Inferences on Sire Effects
Empirical Bayes or MAP estimates of sire effects were computed by maximizing
the joint density of fixed and random effects conditioned upon estimated variance
components by EM and Laplacian algorithms; the respective MAP sire effect estimates

are labeled MAP-EM and MAP-Laplace. Posterior means of solutions were determined
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to be corresponding point estimates of sire effects using MCMC. The Pearson and rank
correlations between these estimates were computed and found to be greater than 0.99
between MAP-EM and MAP-Laplace, between MAP-EM and MCMC, and between
MAP-Laplace and MCMC; i.e. there were no substantial differences in ranking. A simple
linear regression involving estimated sire effects of MCMC on MAP-EM, MCMC on
MAP-Laplace and MAP-Laplace on MAP-EM indicating regression slope estimates only
slightly different from one, respectively, 1.06, 1.03 and 1.03. Wang et al. (1997)
illustrated a similar relationship in a simulation study whereby the regression coefficient
of MAP on MCMC-derived posterior means for direct genetic effects was slightly greater
than one, 1.08. They also determined the corresponding correlation to be high (>0.99).

Posterior standard errors of the sire effects can be used to derive approximate
accuracies of estimated genetic merits. These standard errors were determined as the
standard deviation of the samples from MCMC and from the square root of the diagonals
of Cg, based on both EM and Laplace estimates of variances. Simple linear regression
analyses of these standard errors based on MCMC versus MAP-EM, MCMC versus
MAP-Laplace and MAP-Laplace versus MAP-EM, resulted in intercepts not different
from O but estimated slopes of 1.09, 1.03, and 1.07, respectively, indicating that the
posterior standard errors were on average larger under MCMC than under MAP
estimates. This was anticipated as uncertainty on the variance components is accounted
for in fully marginal inference using MCMC but not so in MAP. In all cases, the

correlation between the estimated standard errors was near one.
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CONCLUSIONS

In spite of the results of several smaller simulation studies, our work showed that
there were no appreciable differences between approximate MML/MAP versus MCMC
methods for inferences on genetic parameters and genetic merit on calving ease under a
threshold sire and maternal grandsire model and derived from a relatively large data set.
Furthermore, MCMC mixing was substantially improved relative to previously published
implementations due to the use of a joint MH update for the threshold parameters.
Maternal genetic variation was estimated to be an important source of variability
although the genetic correlation between direct and maternal effects was not significant.
The impact of random versus fixed HYS effects on the estimates of this genetic
correlation warrants further study.

Hence, there does not appear to be a pressing need to use MCMC methods for
national genetic evaluations of calving ease based on conventionally specified threshold
and maternal grandsire sire models. However, this may not be true for animal model

specifications.
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Table I. Effective sample sizes for (co)variance components and threshold parameters
using MCMC for first parity calving ease scores in Piemontese cattle.

PARAMETER
0-‘2 O':, O m 0'; 7, L5}
ESS? 1,799 1,705 1,799 6,953 3,211 3,110

*The combined effective sample sizes based on the sum of determinations from 3
independent MCMC chains post burn-in, each based on 80,000 samples.
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Table II. Estimation of variance-covariance components and genetic parameters for
calving difficulty in Piemontese cattle using EM, Laplacian, and MCMC algorithms.

Variance EM? Laplace’ MCMC

component PM® PMD®Y PME® PPI'

o? 0.083  0.091+£0.011 0.095+0.014  0.093 0.095 0.070-0.123
O':, 0.055 0.060+0.008 0.064+0.010 0.062 0.062 0.046-0.084
o 0041 0.045+0.007 0.045:0.008 0.044  0.044  0.029-0.061
o} 0.185 0.208+0.013  0.217+0.013  0.217 0.217 0.192-0.243
0-12) 0.331 0.363 0.380+0.055 0.373 0.373 0.278-0.493
6:4 0.140 0.151 0.170+0.037 0.163 0.163 0.106-0.252
O om -0.002 -0.002 -0.011+£0.035 -0.011  -0.011 -0.084-0.055
n, 0.236 0.251 0.259+0.0348 0.253 0.258 0.194-0.330
h:4 0.100 0.105 0.1162£0.0256 0.112 0.114 0.072-0.173
ors -0.008 -0.009 -0.034+0.136 -0.051 -0.037  -0.292-0.245

*Joint MML estimates using EM algorithm.

®Joint MML estimates using Laplace algorithm + asymptotic standard error.

‘Posterior mean + posterior standard deviation.
“Marginal posterior mode.
‘Marginal posterior median.

'95% posterior probability interval.
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CHAPTER 3

An Assessment of Cumulative ~-Link Threshold Models for the

@ Quantitative Genetic Analysis of Calving Ease Scores

ABSTRACT

The Student-f and other heavy-tailed distributions have been specified for
residuals to facilitate robust statistical inference in linear mixed models. In this study, we
develop a hierarchical threshold mixed model based on a cumulative ¢-link specification
for the analysis of ordinal data, specifically, calving ease scores. The validation of our
model and our Markov Chain Monte Carlo (MCMC) algorithm was carried out on
simulated data from normally and ¢, (i.e. a ¢ distribution with 4 degrees of freedom)
distributed populations using the deviance information criterion (DIC) and a related
measure to validate recently proposed model choice criteria. The simulation study
indicated that although inference on the degrees of freedom parameter is possible,
MCMC mixing was problematic. Nevertheless, the DIC was shown to be a satisfactory
measure of model fit to data. We applied a sire maternal and grandsire cumulative ¢-link
model to a calving ease dataset from 8,847 Italian Piemontese first parity dams. The
cumulative #,-link model was shown to lead to posterior means of direct and maternal
heritabilities (0.40+0.06, 0.11+0.04) and a direct maternal genetic correlation (-
0.58+0.15) that were not different from the corresponding posterior means of the
heritabilities (0.42+0.07, 0.14+0.04) and the genetic correlation (-0.55+0.14) inferred
under the conventional cumulative probit link threshold model. Furthermore, the

correlation (>.99) between posterior means of sire progeny merit from the two models
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suggested no meaningful rerankings. Nevertheless, the cumulative #-link model was

decisively chosen as the better fitting model using DIC.

INTRODUCTION

Data quality is an increasingly important issue for genetic evaluation of livestock,
both from a national and international perspective (Emanuelson et al. [13]). Breed
associations and government agencies typically invoke arbitrary data quality control edits
in order to minimize the impact of recording error, preferential treatment and/or
injury/disease on predicted breeding values (Bertrand and Wiggans [4]) in the belief that
the data residuals should be normally distributed.

It has been recently demonstrated that the specification of Student ¢ distributed
residuals in linear mixed models may effectively mute the impact of residual outliers,
particularly in situations where preferential treatment of some breedstock may be
anticipated (Stranden and Gianola [38]). Based on the work of Lange et al. [22] and
others, Stranden and Gianola [39] developed the corresponding hierarchical Bayesian
models for animal breeding, using Markov Chain Monte Carlo (MCMC) methods for
inference. In their models, residuals were specified as either having independent
(univariate) ¢ distributions or multivariate ¢ distributions within herd clusters. Outside of
possibly longitudinal studies, the multivariate specification is of dubious merit ([32],
[38], [39]) such that all of our subsequent discussion pertains to the univariate
specification only.

A Student ¢ distribution can be represented as a scale mixture of normals with

Gamma distributed scaling factors (Lange er al. [22]). Alternative specifications of scale



mixture of normals, all of which lead to heavy-tailed residual densities relative to the
normal, are further considered by Carlin and Polson [6] and in an animal breeding
context by Rosa [32]. Using Bayes factors approximations, Rosa [32] noted that these
heavier tailed models provided better fits to a dataset on birth weights in rats than a
model based on a Gaussian error distribution. More recent applications include linkage
mapping of quantitative trait loci (von Rohr and Hoeschele [44]).

Auxiliary traits such as calving ease or milking speed are often subjectively
scored on an ordinal scale. It might then be anticipated that data quality would be an
issue of greater concern in these traits than more objectively measured production
characters, particularly since record keeping is generally unsupervised, being the
responsibility of the attending herdsperson. Luo ef al. [23] has suggested that a decline in
the diligence of data recording was partially responsible for their lower heritability
estimates of calving ease relative to earlier estimates from the same Canadian Holstein
population.

The cumulative probit link (CP) generalized linear mixed model, otherwise called
the threshold model, is currently the most commonly used genetic evaluation model for
calving ease ([3, 46]). MCMC methods are particularly well suited to this model since the
augmentation of the joint posterior density with normally distributed underlying or latent
liability variables facilitate implementations very similar to those developed for linear
mixed effects models ([1, 36]). A cumulative ¢ link (CT) model has been proposed by
Albert and Chib [1] for the analysis of ordinal categorical data, thereby providing greater

modeling flexibility relative to the CP model. The CT model can be created by simply
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augmenting the joint posterior density with ¢-distributed rather than normally distributed
underlying liability variables based on a Gamma scale mixture of normals.

The objectives of this study were to validate MCMC inference of the CT
generalized linear mixed (sire) model via a simulation study and to compare the fit of this
model with the CP model for the quantitative genetic analysis of calving ease scores in

Italian Piemontese cattle.

MODEL CONSTRUCTION
Suppose that elements of the n x 1 data vector Y ={Y;}" can take values in any

one of C mutually exclusive ordered categories. The classical CP model for ordinal data

(Gianola and Foulley [17]) can be written as follows:

Prob(¥, =J'|I3,u,t)=<b[rj—(xiﬂ“i“)}—d{t"' —(""””’")J , M

o (o)

where j = 1,2,...,C denotes the index for categories. Also @(.)denotes the standard
normal cumulative distribution function, p and u are the vectors of unknown fixed and

random effects, and t'= [r,, T .. z'(.] is a vector of unknown threshold parameters

satisfying 7, <7,... < 7 with 7,= -0 and 7= +w. Furthermore, x, and z, are known
incidence row vectors. Latent liability variables (L ={L,}"_) can be introduced to

alternatively define the same specification as in (1) but in two hierarchical stages:

C

Prob(Y, = j|L,t)=Y 1(7,, <L <7, )I(¥, = j) (2a)

j=l

L|B,u,c ~ N(xp+zu,0?) (2b)
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fori=1,2,...,n. Here 1(.) denotes an indicator function, which is equal to 1 when the
expression in the function is true and is equal to 0 otherwise. As shown by Albert and
Chib [1] and in an animal breeding context by Sorensen et al. [36]; this introduction of L
facilitates a tractable MCMC implementation.

The CT model is a generalization of (1), that is,

Prob(Y, = j|ﬁ,u,r,v,af)= F:_[tj _(Xiﬁ+zill)]_pv[fj-l -(X,ﬁ+z,u)] (€))

(o} (o}

e e

for j =1,2,...,C where F, represents the cumulative density function of a standard Student
t-distribution with degrees of freedom v. Note that as v —» o, (3) — (1) such that the

standard CP model is simply a special case of the CT model. Like the CP model, the CT

model can also be represented as a two-stage specification, with the first stage as in (2a)

~1(v+1)

but the second stage specified as:
(L,.- (x',ﬁ + z',u))2

r(v_"'l)
2 1+ i , @)

et

i.e., L; is Student r-distributed with location parameter u, = x B +z,u , scale parameter

p(L1B.u.0l,v)=

o?>0 and degrees of freedom v>0 for i=1,2,...,n. In turn, equation (4) can be

represented by a two-stage scale mixture of normals:

2
Lipot.d~N{sprzn % 52
)
pQA; [v)= 2—1? " CXP{‘Z;LV} (5b)
)
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Note that (5b) specifies a Gamma density with parameters v/2 and v/2, thereby having an
expectation of 1. The remaining stages of our hierarchical model are characteristic of

animal breeding models. We write
B~ p(B) (6)
where p(B) is a subjective prior, typically specified to be flat or vaguely informative.

Furthermore, the random effects are typically characterized by a structural multivariate

prior specification:

ule ~ p(ule) ~ N(0,G(9)) )
Here G(@) is a variance-covariance matrix that is a function of several unknown
variance components or variance-covariance matrices in @ , depending on whether or not

there are multiple sets of random effects and/or specified covariances between these sets;
an example of the latter is the covariance between additive and maternal genetic effects.
Furthermore, flat priors, inverted Gamma densities, inverted Wishart densities or

products thereof may be specified for the prior density p(¢) on ¢, depending, again, on

the number of sets of random effects and whether there are any covariances thereof

(Jensen et al. [20]).

Finally, a prior is required for the degrees of freedom parameter v. We use the

prior
1
p(v)e= (l—+v—)z" 3

which is consistent with a Uniform(0,1) prior on 1/(1+v).
As with CP models, there are identifiability issues involving elements of t with

o’ such that constraints are necessary. Typically, one element of 7,,7,,...,7, is restricted
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to an arbitrary value (e.g. 7,=0) along with o’ = 1. This is the parameterization we
chose such that inference on o is not subsequently considered in this paper.

Presuming that the elements of Y are conditionally independent given B and u, we
can write the joint posterior density of all unknown parameters and latent variables (L) as
follows:
p(B.u,7,9,v,L,A|y)

o (lerob(y =y, L;,t)p(Li IB,u,of,/l,.)p(/i, |V)JP(|3)P(“ |9)p (o) p(v) ©)

n
i=1"

where A ={4,}
A MCMC inference strategy involves determining and generating random
variables from the full conditional densities (FCD's) of each parameter or blocks thereof.
Many of the FCD's can be directly derived using results from Sorensen et al. [36] jointly
with results from Stranden and Gianola [39]. Let 0=[ﬁ' u']' . It can be readily shown that

the FCD of 0 is multivariate normal:

0|y,v,).,L~N(6,W'R"W+2‘) (10)
where R" =diag{4,}  is a diagonal matrix, £~ = O O W=[X Z] for
o 0 (G(e)) [

X=[x; x; ... x,]'Z=[z; z; ... z,]',and
é=['}]=[w'R"W+z-]"'WR“L 1)
u

Generation of individual elements 6;, j=1,2,...,p+q or blocks thereof of @ from their

respective FCD is straightforward using the strategy presented by Wang et al. [45].
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The FCD of individual elements of L and t are straightforward to generate from
using results from Sorensen et al. [36]. We, however, prefer the Metropolis-Hastings and
method of composition joint update of L and t presented by Cowles [11]. She
demonstrated and we have further noted in our previous applications (Kizilkaya et al.
[21]) that the resulting MCMC mixing properties using this joint update are vastly
superior to using separate Gibbs updates on individual elements of L and t as outlined

by Sorensen et al. [36].
If some partitions of @ form a variance-covariance matrix, then their respective

FCD can be readily shown to be inverted-Wishart (Jensen et al. [20]) whereas if other
partitions of @ involve scalar variance but no covariance components, then the FCD of

each component can be shown to be inverted-gamma.

The FCD of A; can be shown to be

p(4 |A,,L,0,v)x X,(VTH)—i X exp(—%((L, -x,p —z;.u)2 + v)) (12)
that is, the kernel in (12) specifies that distribution to be
Gamma(—z—1 %(v+(L xp-z u) )) Here A_; denotes all elements of A ={4;} except

for A,,i =1.2,...n

Finally, the FCD of vcan be shown to be

G

r(v/2) (l_.[ e (" )J(l lv) ()

n

p(vIBu,L,d)
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given the specification for p(v) in (8). Equation (13) isnot a recognizable density such
that a Metropolis-Hastings update is required. We utilized a random walk
implementation (Chib and Greenberg [10]) of Metropolis-Hastings sampling;
specifically, a normal density with expectation equal to the parameter value from the

previous MCMC cycle was used as the proposal density for drawing from the FCD of

x =log(v), using equation (13) and the necessary Jacobian for this transformation. The

Metropolis-Hastings acceptance ratio was tuned to intermediate rates (40-50%) during
the MCMC burn-in period to optimize MCMC mixing (Chib and Greenberg [10]). Since
the variance of a r-density is not defined for v < 2, we truncate sampled from (13) such

that v > 2, or equivalently « >log(2).

MODEL COMPARISON

Model choice is an important issue that has not received considerable attention in
animal breeding until only very recently ([19, 31]). Likelihood ratio tests have been used
to compare differences in fit between various models and their reduced subsets; however,
these tests do not facilitate more general model comparisons. The Bayes factor has a
strong theoretical justification as a general model choice criterion; however algorithms
for Bayes factors computations are either computationally intensive (e.g. Chib [9]) or
numerically unstable (Newton and Raftery [30]). Furthermore, as Gelfand and Ghosh
[15] indicate, Bayes factors lack clear interpretation in the case of improper priors which
are particularly frequent specifications in animal breeding hierarchical models. Akaike's
information criterion or Schwarz's Bayesian criterion are analytical measures that provide

an asymptotic representation of Bayes factors and reflect a compromise between
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goodness of fit and number of parameters. As the total number of parameters and latent
variables often exceeds the number of observations in an animal breeding (e.g. animal
model) analysis, the effective number of parameters in hierarchical models is not always
so obvious. The MCMC sample average of the posterior log likelihoods, or data
sampling log densities, may be used as a means for comparing different models
(Dempster [12]); however, as Speigelhalter er al. [37] indicate, it is not always so obvious
how to proceed when these densities are similar but the number of parameters and/or the
numbers of hierarchical stages of the candidate models vary. Speigelhalter et al. [37]
proposed the deviance information criterion (DIC) for comparing alternative
constructions of hierarchical models. The DIC is based on the posterior distribution of
the deviance statistic, which is -2 times the sampling distribution of the data as specified
in the first stage of a hierarchical model. It may not be so obvious, however, what exactly
the data sampling stage is in a hierarchical model. For example, the data sampling stage

for the CT model may be specified in one way as

Prob(}j=j||3,u,‘r,/1,.,crf)=¢ rj—(x£+z,.u) -0 rj_l—(:fi+z,-ll) (14)

i i

given the specifications of (2a) and (5a) or it may be specified more marginally using (3).
We prefer a more marginalized or heavier-tailed first stage specification such as (3) for
CT and (1) for CP, potentially leading to a more stable implementation with justification
provided by Satagopan et al. [34] but with their context being the stabilization of the

Bayes factor estimator of Newton and Raftery [30].
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The DIC is computed as the sum of average Bayesian deviance ( D) plus the
"effective number of parameters" (pp) with respect to a model, such that smaller DIC
values indicate better fit to the data. Let G denote the number of cycles after

convergence in a MCMC chain. Furthermore, we represent all unknown parameters in the

marginalized first stage specification by 8 =(B,u,,v) with 8 excluding v=co in the CP

model. Then, for the CT model, then the average Bayesian deviance can be estimated
using (3) by

n

D= —2(iZlog(Prob(Y =y | Blg',u“",t“”,v“"))J

g=1 i=l
where the superscript [g] denotes the MCMC cycle g, g = 1,2,...,G for the sampled value
of the corresponding parameter. Furthermore, pp can be estimated as p, = D - D(§)

where

D(3)=~2( S 1ogProb(¥ -, B.8%7) |
i=l
Here the bar notation (e.g. 3 ) denotes the corresponding posterior mean vector.

We alternatively considered the conditional predictive ordinate (CPO) as the basis

for model choice (Gelfand [14]). Defined for observation i, we write the CPO as

@

ﬁ(yi ly_i,M|)=|:éZ(Pr0b(Y= Y |B[x]’“[!¢l,rlx]))-|:|-

g=!
using (1) for the CP model (Model M) and

G

-1
ﬁ(y, |Y-i,Mz)z|:—éZ(Prob(Y =y, IB[“,u“‘],t“‘],v[“]))_ljl

&=l



using (3) for the CT model (Model M,). Here y.; denotes all observations other than y;.
The log marginal likelihood (LML) of the data for a certain model, say My, can then be

estimated as:

LML=L(y|M,)= ilog(ﬁ(}’, ly_, M,))

i=1

Larger values of LML indicate better model fit to the data.

DATA
Simulation Study
A simulation study was used to validate the CT model and the utility of the DIC
and the LML for model choice between CP and CT. Three replicated datasets were
generated from each of two different populations as characterized by the distribution of
the liability residuals. Population I had a residual density that was standard normal

whereas Population II had a residual density that was standard Student-# distributed with
scale parameter o = 1 and degrees of freedom v, = 4. All datasets were generated based

on a simple random effects (sire) model with null mean. Liability data for 50 progeny

from each of 50 unrelated sires was generated by summing independently drawn sire

effects from N(O, 0'3 = 0.10) with independently drawn residuals from N(0, 0'3' =1.00)

for a total of 2500 records. These underlying liabilities were mapped to ordinal data with

four categories based on the threshold parameter values of 7, =-0.50, 7,=1.00, and
7,=2.00 for all populations. Ordinal data from each replicated dataset was analyzed using

both CP and CT sire models. For purposes of parameter identifiability, we invoked the

restrictions o= 1 and 7, =-0.50. As a positive control, the underlying liability data for
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each replicate was analyzed using both normal and ¢ distributed error mixed linear
models. For the ¢ distributed error model, the MCMC procedure adapted was similar to
that presented in Stranden and Gianola [39], except that the degrees of freedom parameter
(v>2) was inferred as a continuous (rather than discrete) parameter, using the Metropolis-
Hastings update as presented earlier. Graphical inspection of the chains based on
preliminary analyses was used to determine a common length of burn-in period. For each
replicated data set within each population, a burn-in period of 20,000 cycles was
discarded before saving samples from each of an additional 100,000 MCMC cycles.
Furthermore, DIC and LML values were computed for each model on each replicated
dataset to validate those measures as model choice criteria. In all cases, flat priors were

invoked on the variance components.

Italian Piemontese Calving Ease Data

First parity calving ease scores recorded on Italian Piemontese cattle from
January, 1989 to July, 1998 by ANABORAPI (Associazione Nazionale Allevatori Bovini
di Razza Piemontese, Strada Trinita 32a, 12061 Carru, Italy) were used for this study. In
order to limit computing demands, only herds that were represented by at least 100
records over that nine-year period were considered for the demonstration of the proposed
methods in this paper, leaving a total of 8,847 records. Calving ease was coded into five
categories by breeders and subsequently recorded by technicians who visited the breeders
monthly. The five ordered categories are: 1) unassisted delivery, 2) assisted easy calving
3) assisted difficult calving 4) caesarean section and 5) foetotomy. As the incidence of

foetotomy was less than 0.5%, the last two ordinal categories were combined, leaving a
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total of four mutually exclusive categories. The general frequencies of first parity calving
ease scores in the data set were 951 (10.75%) for unassisted delivery; 5,514 (62.32%) for
assisted easy calving; 1,316 (14.88%) for assisted difficult calving; and 1,066 (12.05%)
for caesarean section and foetotomy.

The effects of dam age, sex of the calf, and their interaction were considered by
combining eight different age groups (20 to 23, 23 to 25, 25 to 27, 27 to 29, 29 to 31, 31
to 33, 33 to 35, and 35 to 38 months) with sex of calf for a total of 16 nominal subclasses.
Herd-year-season (HYS) subclasses were created from combinations of herd, year, and
two different seasons (from November to April and from May to October) as in Carnier
et al. [7] who also analyzed calving ease data from this same population. The sire
pedigree file was further pruned by striking out identifications of sires having no
daughters with calving ease records and appearing only once as either a sire or a maternal
grandsire of a sire having daughters with records in the data file. Pruning results in no
loss of pedigree information on parameter estimation yet is effective in reducing the
number of random effects and hence computing demands. The number of sires remaining
in the pedigree file after pruning was 1,929. Therefore, as in Kizilkaya et al. [21], the CP
and CT models used for the analysis of calving ease data included the fixed effects of age
of dam classifications, sex of calf and their interaction in B, the random effects of
independent herd-year-season effects in h, random sire effects in 8 and random maternal

grandsire effects in m. We assume:

(;} N[B]G =GO®A)

and
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h~N(0,I0})

2
o, O, . . . . .
where G, =L © 7 |, with o? denoting the sire variance, o, denoting the maternal
0..\"' o-"l

. . . . . . 2
grandsire variance, o, denoting the sire-maternal grandsire covariance, and o,

denoting the HYS variance. Furthermore, ® denotes the Kronecker (direct) product
(Searle [35]), and A is the numerator additive relationship matrix between sires due to
identified male ancestors (Henderson [18]). Also, h is assumed independent of s and m.
Flat unbounded priors were placed on all fixed effects and variance components. Based
on preliminary analyses of the data and results from the simulation study, v was not
inferred upon but held constant to v = 4 in the CT model. MCMC inference was based on
the running of three different chains for each model. For each chain in the CP model, a
total of 5,000 cycles of burn-in period followed by saving samples from each of 100,000
additional cycles was executed based on the experiences of Kizilkaya et al. [21].
Because of initially anticipated slower mixing, the corresponding burn-in period for each
chain in the CT model was 10,000 cycles followed by saving each of 200,000 additional
cycles. To facilitate diagnosis of MCMC convergence by 5,000 cycles, the starting
values on variance components for each chain within a model were widely discrepant,
with one chain starting at the posterior mean of all (co)variance components based on a
preliminary analysis, another chain starting at the posterior mean minus 3 posterior
standard deviations for each (co)variance component and the final chain starting at the
posterior mean plus 3 posterior standard deviations for each (co) variance component.
For both the simulation study and the calving ease data analysis, the effective

number of independent samples (ESS) for each parameter was determined using the
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initial positive sequence estimator of Geyer [16] as adapted by Sorensen et al. [36].

Furthermore, key genetic parameters, specifically direct heritability (hﬁ ), maternal

heritability (h,f,) and the direct-maternal genetic correlation (r,,, ) were inferred upon in

the calving ease data using the functions of G, as presented by Kizilkaya ef al. [21] and
Luo et al. [23], for example. The only difference in the computation of heritabilities

between the CP and the CT model was that the marginal residual variance for the
underlying liabilities is not o'e2 in CT, as it is in CP, but is equal to —150'3 (Stranden
v -—

and Gianola [39]). Posterior means and standard deviation of elements of s were also

compared between the CP and the CT model.

RESULTS
Simulation Study

Table I summarizes inference on v based on the replicated datasets from the two
populations, comparing the CP versus CT models for the analysis of ordinal categorical
data and comparing the Gaussian linear mixed model versus the z-error linear mixed
model for the analysis of the matched latent or underlying normal liabilities, as if they
were directly observed. The inference on v was surprisingly sharp and seemingly
unbiased for the r-error mixed model analysis of liability data from Population I (v=4),
with 95% equal-tailed posterior probability intervals (PPI) not exceeding 1.5 in width;
furthermore, the corresponding ESS were relatively large indicating stable MCMC
inference. Conversely, inference on v based on the ¢-error mixed model analysis of

liability data from Population II (v = «) indicated extremely wide 95% PPI and posterior
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means exceeding 100, correctly indicating stronger evidence of Gaussian distributed
versus f-distributed residuals for data from that population. Furthermore, ESS were
generally very small (~ 20) indicating that inference on v was rather unreliable for data
from Population I, at least given the specified MCMC sampling scheme. That is, five
times as many MCMC samples would be needed to attain a minimum ESS of 100 as
advocated by previous investigators ([5, 41]).

Inference on v in ordinal data under the CT model was also interesting. In
Population I, the 95% PPI correctly concentrated on low values for v although the PPI
were understandably wider than for the corresponding analyses of liability data under ¢-
error linear mixed models. Also, the ESS on v were considerably smaller (<25) for the
CT model analysis of ordinal data than for the corresponding matched linear model
analyses of liability data, such that acceptably accurate inference on v would require
substantially more sampling. In replicated ordinal data from Population II, the 95% PPI
on v were wide and concentrated on high values of v, consistent with what was expected.
Furthermore, as with the t-error mixed model analysis of liability data, MCMC mixing on
v using the CT model on ordinal data was seen to be particularly problematic in

Population II as manifested by the small ESS.
Table Il summarizes inference on o based on the replicated datasets from the

two populations, comparing the CP versus CT models for the analysis of ordinal
categorical data and comparing the Gaussian linear mixed model versus the r-error linear
mixed model for the analysis of the underlying liabilities. In the analyses of liability data

from replicated datasets from both populations, the 95% PPI were in good agreement

with &?=0.10; furthermore, very large ESS indicating very gopod MCMC mixing.
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MCMC mixing on o was understandably slower in the analysis of ordinal categorical
data, particularly in replicated data from Population II using CT due to the generally high
posterior sampling correlation between o’ andv.

Because of the problem of MCMC mixing of v in ordinal data, the MCMC chains
were rerun with v held constant (v = 4) for the DIC and LML comparisons between
models. In Table III, the DIC and the LML are given for each replicated dataset within
each population for the CP versus the CT model analyses of ordinal data and for the
Gaussian linear mixed model versus the ¢-error linear mixed model analyses of liability
data. Speigelhalter et al. [37] suggested that a DIC difference exceeding 7 to be a
substantial indication of an important difference in model fit. Given that, the model
choices based on DIC for the linear mixed model analyses of liability data were
resoundingly in favor of the correct model. However, in the comparison between CP and
CT models for ordinal data analysis, the correct (CT) model was decisively chosen in
only one of the replicates of Population I (v = 4) whereas the correct (CP) model was
decisively chosen in only two of the replicates of Population II (v = ), the other
comparisons being somewhat indecisive (i.e. DIC differences < 7). This may not be too
surprising given the information content of ordinal data relative to underlying continuous
liability data. Comparisons based on LML (larger is better) lead to similar conclusions as

those based on DIC (smaller is better).



Application to Calving Ease Scores in Italian Piemontese Cattle
Genetic Parameter Inference

Sire and maternal grandsire CP and CT models were used for the analysis of
calving ease scores in Italian Piemontese cattle. Because of the MCMC mixing problems
encountered in inferring upon v, this parameter was held constant to v =4. Posterior
inferences on key genetic parameters are summarized in Table IV and are based on the
combined results from each of the three separate chains. The posterior mean, median and
modal estimates (not shown) of the two heritabilities, and the genetic correlation using
the MCMC algorithms were similar to each other within both models, implying that the
posterior densities were symmetric and unimodal; this was further manifested by the fact
that the 95% PPI are closely matched by the posterior mean + 2 standard deviations. In
this study the total ESS for dispersion parameters across the three chains ranged from
1,420 to 9,305, indicating sufficient MCMC mixing under both models. Table IV shows
that the ESS from the CT model were found to be almost double those of the CP model,
attributable to the twice as large post-burn-in period for CT model. Considering v as
known also improves mixing of, particularly, genetic parameters, in the CT model
relative to joint inference with v (results not shown). Although the » x 1 auxiliary variable
vector A is included in the CT model, this augmentation does not appear to adversely

impact ESS and hence mixing of key genetic parameters relative to the CP model.
In this study, the CT model produced posterior means of genetic variance

components that were nearly twice as large as those estimated using the CP model.

Furthermore, the marginal residual variance is Lzo'e2 in the CT model such that
v —

seemingly twice as much residual variance is inferred under a CT model (with v = 4) than
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under a CP model (with v = ). Although these results might at first sight imply that
greater genetic and residual variation is directly captured by the CT model, it should be
realized that the variance of underlying variables L is only defined proportionately to the
marginal residual variance. This is further apparent in that the 95% PPI of heritabilities

were only very slightly concentrated towards lower values in the CT model relative to the
CP model such that the corresponding 95% PPI for both hf and h;‘:, overlapped

substantially between the two models. Furthermore, the posterior density of r,, was very

similar between CT and CP, with most of the density being between -0.2 and -0.8.

In order to compare the CP and CT models for fit to the calving ease data, LML and DIC

values, broken down into its components D and pp, are reported in Table V. Since it is
difficult to quantify the degree of Monte Carlo error on DIC (Zhu and Carlin [47]), we
report DIC and LML values separately for each of the three chains under each model. It
can be seen that there are relatively inconsequential differences in the measures from one
chain to the next within each model relative to between models, thereby indicating
considerably small Monte Carlo errors on the DIC difference between the two models.
Both model choice criteria were overwhelmingly in favor of the CT model withv=4. As
anticipated, the model complexity, as measured by pp, is higher for the CT model;
however, the complexity penalty is strongly counteracted by a smaller mean deviance D,

thereby resulting in a smaller DIC favoring choice of the CT model.
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Inferences on Sire Effects

Posterior means of elements of s were determined to be corresponding point
estimates of progeny differences (EPD) under both CT and CP models. The relationships
between these estimates are shown to be strongly linear in Figure 1, with no hint of
substantial reranking as indicated by a Pearson correlation of 0.99. The CT model had
greater spread in EPD's compared to the CP model, as further manifested by a least-
squares estimated slope of 1.38. This is not too surprising since a larger additive genetic
(sire) variance was inferred in the CT model such that posterior means of elements of s
should be more dispersed in the CT model relative to the CP model. However, as
discussed later, this is not practically important since the variance of L is defined only
proportionately to the marginal residual variability which is also larger in the CT model.

Posterior standard deviations of elements of s are analogous to standard errors of
prediction in mixed effects model analysis and can be used to derive approximate
reliabilities of EPD's (Wang et al. [46]). That is, the standard errors of prediction were
simply determined as the standard deviation of the MCMC samples of elements of s.
Figure 2 provides scatter plots of these standard errors with the corresponding least
squares regression line for the CT model versus the CP model. In this case, the
correlation between the estimated standard errors was near unity. The estimated slope
was nearly 1.41 indicating that the posterior standard errors were on average 41% larger

under the CT model than under the CP model; nevertheless, these need to be considered

proportionately to o> which was also larger under the CT model.
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DISCUSSION

Given the recent momentum in using heavy-tailed residual specifications for the
analysis of production data in animal breeding ([32, 38, 39, 44]) a hierarchical threshold
(CT) mixed model based on a cumulative ¢-link specification was developed, validated by
simulation and applied to a small calving ease dataset from Italian Piemontese cattle.
The simulation study indicated that inference on v is possible in a CT model; however, it
appears that either a more suitable MCMC strategy is needed or many more samples are
required than pursued in our study to ensure a more reliable inference on v. Until this
issue is satisfactorily resolved, we advocate fixing v at some arbitrarily low value ina CT
model analysis. We chose v = 4 since this value minimally assures defined first, second,
and third moments while providing a liability variable distribution that is maximally
heavy-tailed. One can then use model choice criteria such as DIC to assess whether or
not the CT model is a better data fit than the CP model. We further note that for the case
where v is fixed, that MCMC mixing was not negatively affected by using the CT model,
even though our data augmentation (of A ) implementation might be of concern to those
who might prefer Metropolis-Hastings sampling on all parameters (von Rohr and
Hoeschele [44]) instead of introducing augmented variables. More recently, it has been
demonstrated that data augmentation can be strategically used to enhance MCMC
mixing; the strategies discussed by van Dyk and Meng [42] may facilitate more favorable
mixing on v and hence deserve further consideration in CT model applications to animal
breeding. Of particular note was that due to the implementation of the algorithm of
Cowles[11], MCMC mixing of T was not seen to have been the most limiting (results not

reported) as in previous animal breeding implementations ([36],[43]).
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Our point estimates for heritabilities are substantially higher than corresponding
threshold model estimates for calving ease reported by Manfredi et al. [25, 26], McGuirk
et al. [28, 29], Varona et al. [43], Luo et al. [23], and Bennett and Gregory [2].
Nevertheless, our inference on a strongly negative direct-maternal genetic correlation is
in agreement with previous work on calving ease using threshold models ([2, 23, 43]) and
linear mixed models using data from the same source (Carnier et al. [7]). Hence, it
appears from our results, in agreement with other studies, that selection of sires for
calving ease of their progeny as calves should result in antagonistic effects in the ability
of their daughters to calve easily as dams in successive generations. What was most
surprising is that the 95% PPI for W4 are greater and do not overlap with corresponding
PPI in Kizilkaya et al. (2002) who used a larger data set on first parity records from herds
with greater than 50 rather than 100 records over the nine year period from the same data
source. This result may be indicative of heterogeneity in genetic and residual variance
due to size of herd or other confounding factors (e.g. region); this is an area for further
research that our group has started with respect to residual variability.

Two Bayesian model choice criteria, DIC and LML, were used to choose between
the CP and CT models. In a simulation study, it was demonstrated that both DIC and
LML were able to decisively choose the correct model in most cases whereas, in the
remaining cases, these measures were too similar between the two models to allow a
definitive choice. In the analysis of calving ease scores in Italian Piemontese cattle, the
CT model was overwhelmingly chosen as the best fitting model by both model choice
criteria. Nevertheless, in the examination of EPD's there were no real tangible

differences between the two models in terms of sire genetic rankings. Although the
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posterior standard deviations of sire progeny merit appear to be greater in the CT model
relative to the CP model, the impact on reported accuracies of these predictions would be
shown to be negligible. For example, the Beef Improvement Federation (USA) measure
(Wang et al. [46]) of accuracy is somewhat directly related to the genetic variance which
is higher in the CT versus the CP model.

Our study involved sire models, where calf records are connected directly to sires
with genetic relationships identified only through known paternal ancestry. Sire models
are different from animal models where each record is connected directly to a calf
identification with all known genetic (maternal and paternal) relationships explicitly
modeled. For animals (e.g. dams), with effectively less data information, we would
anticipate greater differences in predicted genetic merit between CT and CP animal
models than given in our study. However, a sire model has been seen to be more stable
than an animal model in CP implementations (Mayer [27]), particularly when paternal
half-sib relationships are predominant as in our data. Furthermore, the fact that a sire and
maternal grandsire model only accounts directly for a portion of the additive genetic
variance and of the maternal genetic variance implies that a r-error assumption is
essentially placed on a composite source of error, i.e. the sum of the residual variance and
remaining genetic variation, attributable to unknown dams and to Mendelian sampling.
From the perspective of using heavy tailed densities to mute residual outliers, this is
significant since deviant dam and/or Mendelian sampling effects may be muted as well in
a CT sire model specification.

Presently, it does not appear to be feasible to apply MCMC methods to the very

large datasets used for routine genetic evaluation of livestock by breed associations and
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national recording organizations. Kizilkaya ef al. [21] recently demonstrated, however,
very little differences in predicted genetic merit and standard error of prediction in a CP
sire model between inference provided by MCMC and by approximate empirical Bayes
procedures currently utilized by the industry (e.g. Berger [3]). Empirical Bayes
procedures are based on using the joint posterior modes of the sire effects as the EPD's,
conditional on estimated variance components as if they were known with certainty.
Based on results from Gianola and Foulley [17], the CT model can be readily
implemented using empirical Bayes methods since the probability density function and
the cumulative density function of a standard Student ¢ distribution could be substituted
for the corresponding Gaussian functions needed to derive the necessary scoring
equations used to determine the required joint posterior modes. Furthermore, the degrees
of freedom parameter, v, could be jointly estimated with the variance components using
Laplace's method and tested for statistical significance using marginal likelihood ratio
tests (Tempelman and Gianola [40]). Empirical Bayes implementation of the CT sire
model and the comparison of results with MCMC inference under the CT sire model
deserve further consideration. Unfortunately, however, these comparisons may not
necessarily apply to CP or CT animal models since joint modal estimates of EPD's in the
CP animal model can be badly biased (Mayer [27]).

In this study, we have considered only two cumulative link models for the
analysis of calving ease; conceptually, there are many others including those proposed by
Chen and Dey [8]. In fact, Albert and Chib [1] demonstrate that the cumulative logistic
link model is roughly equivalent to the CT model with v = 8. Other models can be

contrived by considering alternative heavy-tailed distributions for the underlying
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variables, such as those considered by Rosa [32]. Some of the resulting models may be
shown to have better fit to calving ease data than demonstrated with the CT model in our
paper. Specifications based on skewness (Von Rohr and Hoeschele [44]) may also have
merit.

The substantial residual and genetic correlations between birth weight and calving
difficulty imply that genetic evaluations of calving ease would substantially benefit from
a bivariate threshold/linear multiple trait analysis with birth weight ([24, 43]). Further
work on providing modeling flexibility with -distributed specifications on both traits
jointly is needed given our results and those already presented by Stranden and Gianola

[38, 39] and Rosa [32).
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CHAPTER 4

Bayesian structural modeling of heterogeneous residual variances in
generalized linear mixed models

ABSTRACT

A Bayesian hierarchical generalized linear mixed model (GLMM) based on a
structural multifactorial model with fixed and random effects that multiplicatively
influence residual heteroskedasticity was developed. The two specific GLMM
considered in this paper are the linear mixed model (LMM) for the analysis of normally
distributed characters like birth weight and the threshold or cumulative probit mixed
model (CPMM) for the analysis of ordinal categorical data like calving ease. We
validated our models using Markov Chain Monte Carlo (MCMC) methods for posterior
inference on parameters specifying residual heteroskedasticity. Three replicated datasets
on normally distributed and ordinal categorical data from each of four different
populations, characterized by various levels of residual heteroskedasticity, were
generated. Residual heteroskedasticity parameters, including fixed and random effects
specifications, were particularly well estimated for the analysis of normal data and when
heteroskedasticity was extreme. Furthermore, the deviance information criterion (DIC)
was useful in correctly choosing between heteroskedastic and homoskedastic models.
Sire and maternal grandsire heteroskedastic linear and cumulative probit link threshold
models were fitted, respectively, to birth weight (BW) and calving ease (CE) data on
8,847 Italian Piemontese first parity dams. The residual variance for male calves was

significantly greater than that for female calves for both BW and CE, translating to

substantial differences in the posterior means + standard deviations of direct heritabilities
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for BW (0.32 £ 0.05 for females versus 0.25 + 0.04 for males) and for CE (0.504 + 0.083
for females versus 0.370 + 0.064 for males). Although the heteroskedastic LMM and

CPMM were chosen by DIC as the better fitting model for BW and CE, respectively, the
high correlation between posterior means of sire effects (>0.97) suggested no meaningful

rerankings.

INTRODUCTION

An important assumption in many genetic evaluation models is that variance
components associated with random and residual effects are homogeneous across all
conditions, whether it be across sexes of animal or environmental conditions, such as
herds. These models are said to be homoskedastic. However, the existence of
heterogeneous variances, or heteroskedasticity, for milk production ([16], [18]), growth
performance (Garrick et al. [9]) and conformation traits (Robert-Granie et al. [30]) has
been firmly established.

A number of possible causes for heteroskedasticity have been suggested,
including a positive relationship between herd means and variances, differences across
geographical regions, and changes in variability over time due to changing herd
managements (Weigel ef al. [40]). If this phenomenon is not properly taken into account
in generalized linear mixed models, differences in within-subclass variances can result in
biased breeding value predictions with disproportionate numbers of animals selected
from environmental subclasses characterized by high variability. This bias potentially
translates into a reduced genetic progress due to breedstock selection based on these

predictions ([17], [40]).
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Generalized linear mixed models (GLMM) can be readily extended to take into
account heteroskedasticity. As an example, best linear unbiased prediction (BLUP) can
be reliably used in breedstock selection when random effects and residual variances are
heterogeneous, provided they are correctly specified across subclasses characterized by
unique variance components (Gianola [12]). However, variance components are rarely
known and may need to be estimated for a large number of small subclasses when
heteroskedasticity is present. Since most preferred methods of variance components
estimation, including maximum likelihood (ML) and restricted maximum likelihood
(REML), have only asymptotically desirable properties, such procedures may not yield
reliable estimates within small subclasses ([40], [41]).

Foulley et al. [7] introduced an empirical Bayes procedure for assessing sources

of residual heteroskedasticity in Gaussian linear mixed models (LMM). Their method

was based on the use of a structural log link model 7, =Ino, =m))\, where o is the
residual variance component specific to subclass i, m, is a known incidence matrix
unique to subclass i connecting 0': to A, a vector of unknown dispersion parameters.

Hypothesis testing on elements of A was based on an approximate marginal likelihood
ratio test. In addition, Foulley ef al. [7] and San Cristobal et al. [32] further extended the
structural log link model such that A includes both "fixed" and "random" factor
partitions. As in a classical linear model, the distinction between these two classes of
effects for modeling heteroskedasticity is such that levels of a random factor derive from
a probability distribution (Searle et al. [33]); that is, a structural prior is placed on random
effects. Conversely, fixed effects involve parameters that might be characterized by

subjective or noninformative priors. For example, sex of animal might be considered
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fixed whereas herds might be considered random with respect to a structural
classification model for heteroskedasticity (San Cristobal ef al. [32]). As with random
location effects in classical linear mixed effects models, specifying structural priors on
effects influencing heteroskedasticity is particularly beneficial in that statistical
information on one effect (e.g. herd) is borrowed from the distribution of all such effects
" within the same factor (Robinson [31]).

Foulley and Gianola [8] adapted the structural log linear fixed effects model for
heterogeneous residual variances in a threshold or cumulative probit mixed model
(CPMM), using likelihood procedures for residual heteroskedastic inference on calving
ease in American Simmentals as a function of sex of calf and age of dam. Ducrocq [6]
analyzed calving ease data of French dairy breeds (Normande and Montbeliarde) using
the methods developed by Foulley and Gianola [8] method, considering the effects of
sex, age of dam, parity, region, and year on residual heteroskedasticity on calving ease
scores.

Many of the proposed residual heteroskedastic models for animal breeding,
however, invoke analytical approximations, which appear tenuous, particularly for the
analysis of categorical data. Furthermore, we perceive the lack of a unifying framework
for structural modeling of heterogeneous variances in GLMM analysis for both
continuous production and categorical fitness traits. That is, structural prior or random
effects specifications have been developed for Gaussian error models, as by Foulley et al.
[7] and San Cristobal et al. [32] but not for any other GLMM, such as the CPMM,, in
animal breeding. The objectives of our study were 1) to develop and validate a Bayesian

structural multiplicative model on residual variances for observed or augmented variables
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in a heteroskedastic GLMM, concentrating on a LMM analysis of normal data and a
CPMM analysis of ordinal data based on use of Markov Chain Monte Carlo (MCMC)
methods and 2) to apply the model using MCMC to a calving ease dataset derived from

the Italian Piemontese population.

MATERIALS and METHODS
HIERARCHICAL CONSTRUCTION OF THE HETEROSKEDASTIC
GENERALIZED LINEAR MIXED MODEL

In a number of GLMM, data augmentation schemes exist such that a nx1 vector
of either observed or augmented variables L = {L,.}:'=I conceptually maps one-to-one to
the data vector Y ={Y,}" . Examples where such augmented variables are useful include

threshold models (Sorensen et al. [34]) and censored data models (Sorensen et al. [35]).
We write a linear mixed effects model as

L=Xp+Zu+e (1)
where B is a vector of fixed location effects, u is a vector of random location effects, X

and Z are known design matrices and e is a vector of normally distributed residuals with
variance covariance matrix R having a certain heteroskedasticity specification as defined

later. The linear model in (1) is equivalent to the following distributional specification:
L|B,u,R~ p(L|B,u,R)=N(XB+Zu,R) )
For normally distributed data as in a LMM, y=L such that

p(Y|B,u)= p(L|B,u) whereas for ordinal data with, say, C = 4 categories, L maps to y

as follows:
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1 7,<L <7,
y < 2 7,<L <t 3)
"3 r,<L <7,
4 ,<L <7, i=1l..n
where 1, =—0< 1,< 1, < 1,< T, = are threshold parameters that define bin
boundaries for y based on L.
We further partition e according to residual variance subclasses
e=[e;, e, - e,]wheree,~N (0,R,,,=I,,“ o, ) pertains to the ny;x1 subvector of

residuals identified with the ¥ level (k=1,2,....s) of a fixed effect subclass (e.g. sex) and
™ level (I=1,2,....t) of a random effect subclass (e.g. herd) that jointly influence the
residual variance for the K/ subclass. For pedagogical purposes, we just concentrate on
the effect of one fixed factor and one random factor on residual heteroskedasticity but

extensions to additional factors are possible. We partition the data

y'= [y',, Y, yf‘.,] and the corresponding augmented variables

L'= [L’,, L, - L'_,,] accordingly. We propose a multiplicative structural effects

model as follows:

ol =528, k=12,..51=12,...1. )

ey el
where Ei is the residual variance identified with the k™ level of the fixed effect subclass

and &,>0 is a random multiplicative scaling factor unique to the /" level of the random
effect. Note then that fixed and random effects specifications are provided on both
location and residual dispersion parameters, although the classes of effects considered do
not need to be the same as for the log structural heteroskedastic models of Foulley e? al.

[7] and San Cristobal et al. [32].
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The prior density on the fixed location effects B is specified

B~ p(B) &)
where p(P) is a subjective prior, typically specified to be flat or vaguely informative.
Furthermore, the random location effects are typically characterized by a structural
multivariate prior specification:

ul¢ ~ p(ule) = N(0.G(9)) 6
Here G(9@) is a variance-covariance matrix that is a function of several unknown
variance components or variance-covariance matrices in @ , depending on whether or not

there are multiple sets of random effects and/or specified covariances between these sets;
an example of the latter is the covariance between additive and maternal genetic effects.
Furthermore, flat priors, inverted Gamma densities, inverted Wishart densities or
products thereof may be specified for the prior density on ¢,

?~p(®) ™
depending, again, on the number of sets of random effects and whether there are any
covariances thereof (Jensen et al. [20]).

A subjective conjugate inverted-gamma prior density or, alternatively, a flat prior

density may be specified separately for each 63' ,i.e.
5, ~p(32) ®
for k=1,2,...,s. Conversely, a structural prior is used to model the random residual

dispersion effects, &, /= 1,2,...,t. We conveniently choose this structural prior to be an

inverted-gamma density with parameters o, and o-1,
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—-1* a- -1
p(al |ae)x(_art(a—l))(61) (@D exp(_a:s Js I=1,2,.... (9)
e 1

Here E(6,) =1and Var(4)) = such that asa, — o, the random dispersion effects

a, -2
influence on residual heteroskedasticity diminishes. Note that with the specification in
(5), there is a borrowing of information across levels /= 1, 2,..., ¢ of the random factor,

just as there is for classical random effects modeling of location parameters. Generally,

a, is unknown such that a subjective prior may be placed on it. One noninformative prior

used in our applications is specified as follows:

@, ~ pla,) = (10)

1
(I+a,)

which is identical to specifying a Uniform(0,1) prior on

1
+a,)

The remaining hierarchical specifications in this heteroskedastic GLMM depend
upon the first (data sampling) stage of the n x 1 data vector y. For a LMM analysis of
normal error data, equation (1) would suffice (i.e. y = L) such that no augmented
variables are required, whereas for a CPMM analysis of ordinal data with C ordinal
categories, numbered j = 1,2,...,C, we would specify the first stage of our hierarchical

model using Sorensen et al. [34]:

p(y| L’T)=ll[{zl(rj-l <Ly < Tj)‘(yikl =J)} (11a)

= | j=I

followed by, using a scalar representation of (2),

Ly|Bu,5.8,~ N(x,B+2,0,5.5,). (11b)
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Here L., and yjy are the ith elements of Ly, and yx, respectively, whereas x'iy and z'y, are

known incidence row vectors corresponding to subject i within the kI™ residual variance

subclass for k=12....5,/=1.2,...,,and i = 1,2,...,n. Asbefore,t=[1, 1, - ‘CC]I

denotes a vector of unknown threshold parameters that delimit the augmented variables L
into their respective observed data bins y with 1(.) denoting the indicator function having
value 1 if the condition within the function is true, being 0 otherwise.

Recall previously that t, = -0 and t¢c = +co but further note that in addition 1, is

fixed to an arbitrary constant in order to satisfy identifiability constraints as in Sorensen
et al. [34]. We further adopt the alternative parameterization presented by Sorensen et al.
[34] in which residual variance is explicitly modeled, rather than typically constrained to
equal to 1, as typically invoked in homoskedastic error CPMM (Gianola and Foulley
[13]). This specification thereby requires one additional constraint on T, such that C-3
parameters in 7 are uniquely identifiable. A prior distribution on the uniquely identifiable

elements of T may be specified provided that the order constraints on elements of t are
satisfied (Sorenson et al. [34]), i.e.
=1, T, - tc_,I~p(t); T, <Ty < <T (12)
Note that our parameterization of the heteroskedastic cumulative probit threshold

model, as per Foulley and Gianola [8], does not readily extend to the modeling of binary

outcomes since it is required that C-3 > 0.

The joint posterior density of ,u, {5 . }; )

{6,},.,9,a.and any other parameters

necessary for the GLMM in question (i.e. L and t in the CPMM) is simply specified as
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the product of the various stages of the hierarchical model. That is, for the LMM where

=L, the joint posterior density of all unknowns specified to proportionality is:

p(Bufol}, (6} 0.ely)

< p(yIBufol}, 18} p®rp@I9pE@) (13)
([1ete)|[ 110120 e
whereas for the CPMM,

p(Lesufol),, (o) ey
< p(yIL, r)p(LIB,u,{ o} {5,};_I) a4)

p(t) p(B)p(u] <|')1rf(<|')(]j_]l p(o? ))(f[p(& Ia,))p(a,)

1=l

Note that p(L |B,u,{o? }; . {5/}L.) is equivalent to (2) given that R is a function of

{ol ), and {o ).

A MCMC inference strategy requires determination of and sampling from the full
conditional distributions (FCD) of each parameter or groupings thereof. The FCD for
fixed and random location effects, regardless of whether inference is based on the LMM

or the CPMM, can be readily shown to be multivariate normal

81 ([xX'R'X X'R'Z B
B.ul9,5.,5.,...6.,6,,6,,...6,a,y,L~N| | " |, y
i|||ZR'X Z'R'Z+(G(9))

(15)

113



-1
8 X'R™'X X'R'Z R-!
where [B] = [ )_,} [X R L} is the typical mixed model

i| |Z'R'X Z'R"'Z+(G(9) Z'R'L

solutions to P and u based on current MCMC-sampled values of R, L, and ¢.

k=s,
1=

Furthermore, R = o R;, X= {x',.k, } ,and Z = {z',k,} . Univariate strategies for sampling
=1

-~

from (15) are elucidated in Wang et al. [39].

Using results from Sorensen et al. [34], it is straightforward to generate from the
FCD of individual elements of L and t under the CPMM. We prefer, however, the
Metropolis-Hastings and method of composition joint update of L and t presented by
Cowles [5]. She demonstrated and we have further noted in our previous applications
(Kizilkaya et al. [21 22]) that the resulting MCMC mixing properties using this joint
update are vastly superior to using separate Gibbs updates on individual elements of L
and 7 as outlined by Sorensen et al. [34].

For either the CPMM or the LMM, it is straightforward to generate elements of
¢ from their FCD using results presented in previous work. If some partitions of ¢ form
a variance-covariance matrix, then their respective FCD can be readily shown to be
inverted-Wishart (Jensen et al. [20]) whereas if other partitions of @ involve scalar
variance but no covariance components, then the FCD of each component can be shown
to be inverted-gamma ([34], [39]).

We subsequently derive the FCD for Ei for either the CPMM or the LMM.

Under the CPMM,
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¢

— —2 =2 =2
p(ae, IO' O, 90' 0’«, (300090 9513 250 ,5,,'3,“ 9.Q, ,L,T,y)

RPN (L, - XuB-Zu) (yy - X,B-Z,u) 6
- ( k=l I=1 (O'q.a ) ]exp[ Izsl: 53,51 (16)
$a y (L -X,B-Zyu) (Ly - X,B-Z,u)
| @) 5 o] - 2 ()

€

for k=1,2,...,s. Under the LMM, yy, is substituted for Ly and conditioning on t and L is

not required in the specification of the FCD of 63. . With a flat noninformative prior

specified for 0' (ie. p( ) « 1, the FCD for cr is then simply inverted gamma with

Z My ‘ _ : ' _ _
parameters a, = '=|T_1 and ﬂk - Z(Lu xuﬂ Zuug;Lu xup Zk,ll)
=1 i

. Itcan

also be readily shown that if one specifies p( ) to be inverted gamma, the FCD of a

will also be inverted gamma.

The FCD of J,can be similarly derived:

P(6/183.52 10528183001 811561113002 0,8, 1,0,2,y, L, T)

(H(G 5 ]exp[—li(l‘” -X,B-Z,u) (L, - X,B-Z,u)

k=l 253 5,2,5,
(a‘, _l)a’ ~(a,+1) ae -1
r@) o) P a7)
:, 3 (Lu-X,p- Zu) (Ly-X,B-Z,8)
o 5 “+a +1 exp| - k=1 20 —2
5/
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That is, the FCD for &, is then simply inverted gamma with shape parameters

S
2

a, =¥ — + a, and scale parameter
2

B = i(Lu -XuB- ZH“Z) (L -XuB- Zu“)

a,—1forl=12,..t
The FCD for «, based on the prior p(a, )adopted from (10), is
p(a,18.1,9,52,52,...5: ,8,,63,+0,,¥, L, )

S exp( (@030 1@ “"p()

Now (18) is not a recognizable density. We sample from y = log (e, ) using a

(18)

random walk Metropolis-Hastings sampler with a Gaussian proposal density tuned during
MCMC burn-in such that the Metropolis-Hastings acceptance rates are intermediate for

optimal MCMC mixing (Chib and Greenberg [4]).

MODEL COMPARISON
The deviance information criterion (DIC) has been recently proposed for
comparing goodness of fit for alternative constructions of hierarchical models to data
(Speigelhalter et al. [36]) and has been increasingly used in animal breeding ([15], [22],
[29]). The DIC is based on the posterior distribution of the deviance statistic or -2 times
the sampling distribution of the data as specified in the first stage of a hierarchical model.

For the LMM, the data sampling stage is specified as:
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P(y I B,U,Q,Efl ""’602,’51""’5:’)')
= ]i[['](zn)'”%‘ @26)°* exp([)'u -X.B+Z IRy [y, - X, B+ zuu]J (19)

2

k=1 I=1
whereas for the CPMM, the data sampling stage is based on further marginalizing the

product of (11a) and (11b) across all n observations over L and is written as follows:

p(y|$,u,9,5.....5. ,6,,...6,,)

= ﬁﬁﬁProb(Yw =Yy 1B,0,7.52,...57 .5,,...5,) (20)
k=1 I=l i=]
ST | T~ (XB+Z40) 7,1 —(XuB+2Z,n)
= (D il —‘D ikl
(751 of i) of i

The DIC is computed as the sum of average Bayesian deviance ( D) plus the
"effective number of parameters" (pp) with respect to a model, such that smaller DIC
values indicate better fit to the data. The log marginal likelihood (LML) of the data for a
certain model is an alternative model choice criterion that we have adopted in previous
research (Kizilkaya et al. [22]). Larger values of LML indicate better model fit to the
data. We base our LML computations on (19) and (20) in comparing the two respective
models. More information about DIC and LML determinations can be found in

Speigelhalter et al. [36] , Gelfand [10] and Kizilkaya et al. [22].

DATA
Simulation Study
A simulation study was carried out to validate Bayesian inference on the proposed
heteroskedastic error LMM and CPMM and to assess the ability of the DIC and the LML

to correctly choose between homoskedastic and heteroskedastic error GLMM. A simple
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mixed effects model was used to generate underlying variables liability data L for n =
2500 progeny from each of 50 unrelated sires:

L, = p+sex; +herd, + sire, +e,,

Here u=0.5, {sex,.}; (sex,;=-0.5 and sex,=0.5) represents a 2 x 1 vector of fixed sex

100

effects. Furthermore, {herd j} ~N (O,Ia,f) isa 100 x 1 vector of random effects and

=
{sire, }ii ,~N (0,10‘3 ) represent a 50x1 vector of independent random effects with

;=025 and o’ =0.10. Finally, e, = {e,.j,} ~N (0,1 5.6, )is the vector of residuals

n@eCj
associated with the n,; records from sex i and herd j. Three replicated datasets from each
of four different populations or different values of a, were generated: Population I) =3,
Population II) o,=12, and Population II) &=50 each with &, =1, &, =1.25 and

&, ~ Inverted-Gamma(a,,, —1), j=1,2....100; and Population IV with homoskedastic
error, i.e. a=oo with &. =&, =1 and §,=1,=1,2,...,100. The values a,=3, 12 and 50

represent extreme, moderate and mild levels, respectively, of residual heteroskedasticity
across herds. Levels of fixed and random location effects were randomly assigned to
individuals in data generation. Augmented data L. was mapped to ordinal data y based on

C=4 categories with 7,=-0.50, r,=1.00 and 7,=2.00 in all populations. Both L and y

were analyzed using the appropriate GLMM (LMM and CPMM, respectively) based on

both homogeneous and heterogeneous residual variance structures with flat priors utilized

on B, 5. ,5. , 0, ,0,, and a noninformative prior, as previously described, used for a..

For the purposes of parameter identifiability, we invoked the restrictions 7,=-0.50
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and 7, =1.00. MCMC was used for Bayesian posterior inference on all parameters. For

each replicated data set within each population, a burn-in period of 10,000 cycles was
discarded before saving samples from each of an additional 100,000 MCMC cycles.
Graphical inspection of the MCMC chains based on preliminary analyses was used to
determine a common length of burn-in period. Furthermore, DIC and LML values were
computed for each model on each replicated dataset to validate those measures as reliable

model choice criteria.

Italian Piemontese Birth Weight and Calving Ease Data

Birth weight and first parity calving ease scores recorded on Italian Piemontese
cattle from January, 1989 to July, 1998 by Associazione Nazionale Allevatori Bovini di
Razza Piemontese (ANABORAPI), Strada Trinita 32a, 12061 Carru, Italy were used for
this study. As in Kizilkaya et al. [22], only herds that were represented by at least 100
records were considered in the study, leaving a total of 8,847 records. Calving ease was
scored into five categories by breeders and subsequently recorded by technicians who
visited the breeders monthly. The five ordered categories are: 1) unassisted delivery, 2)
assisted easy calving 3) assisted difficult calving 4) Caesarean section and 5) foetotomy.
As the incidence of foetotomy was less than 0.5%, the last two ordinal categories were
combined, leaving a total of four mutually exclusive categories. The general frequencies
of first parity calving ease scores in the data set were 951 (10.75%) for unassisted
delivery; 5,514 (62.32%) for assisted easy calving; 1,316 (14.88%) for assisted difficult

calving; and 1,066 (12.05%) for Caesarean section and foetotomy.
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The effects of dam age, sex of the calf, and their interaction were considered by
combining eight different age groups (20 to 23, 23 to 25, 25 to 27, 27 to 29, 29 to 31, 31
to 33, 33 to 35, and 35 to 38 months) with sex of calf for a total of 16 nominal subclasses.
Herd-year-season (HYS) subclasses were created from combinations of herd, year, and
two different seasons (from November to April and from May to October) as in Carnier
et al. [3] who also analyzed calving ease data from this same population. The sire
pedigree file was further pruned by striking out identifications of sires having no
daughters with calving ease records and appearing only once as either a sire or a maternal
grandsire of a sire having daughters with records in the data file. The number of sires
remaining in the pedigree file after pruning was 1,929.

As in Kizilkaya et al. [21 22], the LMM and CPMM used for the analyses of birth
weight and calving ease data included the fixed effects of age of dam classifications, sex
of calf and their interaction in f§, the random effects of independent herd-year-season

effects in h, random sire effects in s and random maternal grandsire effects in m. We

assume:

(;]~N([g]6 =G0®A]

h~N(0,1c7)

and

o! o,

o, O’

where G, =( J , with o denoting the sire variance, o> denoting the maternal

grandsire variance, o, denoting the sire-maternal grandsire covariance, and o;

denoting the HYS variance. Furthermore, ® denotes the Kronecker product (Searle
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[33]), and A is the numerator additive relationship matrix between sires due to identified
male ancestors (Henderson [14]). Also, h is assumed independent of s and m. Flat priors

were placed on all fixed location effects and variance components.

Residual heteroskedasticity was modeled as a function of fixed sex effects (53...,..
and Ef/m ) and random herd effects (4, , j=1,2,...,66) where 6, ~ Inverted-

Gamma(a,, @,-1) in a similar way as in the simulation study. The same flat priors that
were considered for fixed dispersion effects and «, in the simulation study were also

considered here.

MCMC inference was based on the running of three different chains for each
model. For each chain, a total of 20,000 burn-in cycles followed by saving samples from
each of 100,000 additional cycles was generated as previously done in Kizilkaya et al.
[21 22]. To facilitate diagnosis of MCMC convergence by 20,000 cycles, the starting
values on variance components for each chain within a model were widely discrepant,
with one chain starting at the posterior mean of all (co)variance components based on a
preliminary analysis, another chain starting at the posterior mean minus 3 posterior
standard deviations for each (co)variance component and the final chain starting at the

posterior mean plus 3 posterior standard deviations for each (co) variance component.

Key genetic parameters, specifically direct heritability (h3 ), maternal heritability

(h,f,) and the direct-maternal genetic correlation ( r,,, ) were inferred upon in the calving

ease data using the transformations on G, as considered by Kizilkaya et al. [21 22];

however, hg and h,%, was determined separately for each sex dependent upon the use of

either 5%  or 52 in the denominator.
€Male €Female
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For both the simulation study and the calving ease data analysis, the effective
number of independent samples (ESS) was determined using the initial positive sequence

estimator of Geyer [11] as adapted by Sorensen et al. [34].

RESULTS
Simulation Study

Posterior means and standard deviations and 95% equal-tailed posterior
probability intervals (95%PPI) on 07,0, ,5. ,5, anda,based on the three replicated
datasets from each of the four populations, are provided in Table I for LMM analysis of
L and Table II for CPMM for the corresponding mapped ordinal values of y. For each of

the four populations in the simulation study, posterior means of o and o7 were

generally slightly biased upwards for the LMM analysis on L and for the CPMM analysis
ony. Nevertheless, 95% PPIs of these two variance components under both the LMM
and CPMM analyses included the true values of parameters in all cases, being
understandably wider for the CPMM analysis of y due to the substantial loss in data

information in mapping from continuous L to discrete y.

The 95% PPl of &, and&., in both the LMM and CPMM analyses of L and y,
similarly, always included the true values of 5: =1 and 6,21 =1.25, respectively, for each

of the three replicated datasets from each of Populations I, II, and III. Furthermore, for

Population IV with homoskedastic error, posterior means and 95% PPIs for

Efl and 6'31 were found to be similar each other and concentrated around the true value

&, =&, =1 as anticipated. Also, 95%PPI for e, inferred on each of the three datasets
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from each of Populations I, II, and IIl included the corresponding true parameter value.

Posterior standard deviations and widths of 95%PPIs of a, increased as «, increased

from 3 to 12 to 50 as in Populations I, II, and III, respectively. Furthermore, because of
the lower information content of ordinal data relative to underlying liability data, CPMM

analyses produced understandably wider 95% PPI and larger standard errors on a,

relative to LMM analyses.

To further validate the residual heteroskedastic GLMM that we propose, the
posterior means of each element of 8 as unique for each level of random factor for herd-
specific residual variances were compared against the true elements of & for each
simulation replicate from Populations I, IT and III based on LMM and CPMM analyses of
L and y, respectively. The linear relationship between estimated and true values of &

was estimated based on simple linear regression. We anticipated that as when a,

increased, the linear relationship between posterior means and true values of & should
approach 0 with greater degree of statistical shrinkage of posterior means to 8 = 1. This
would be consistent with what is expected with random location effects models where a
greater degree of statistical shrinkage is observed when random effects variances are
small as opposed to being large (Robinson [31]). The least-squares estimated slopes
between posterior means and true values of 8 averaged across each of the three replicates
from Populations I, II, and III were 0.882, 0.670 and 0.181, respectively, for the LMM
analysis of L and 0.669, 0.456 and 0.141, respectively, for the CPMM analysis of y,
further illustrating the greater degree of shrinkage with the less informative CPMM

analysis.

123



It is important to generate sufficient number of MCMC cycles in order to
minimize the impact of Monte Carlo error on posterior inference. Several animal breeders
have recently suggested 100 as the minimum effective sample size (ESS) for reliable

statistical inference ([2], [37]). In our simulation study, the ESS for
ol,0;,.6.,G. anda,ranged from 250-78,000 in LMM for the analysis of L and from

160-15,000 in CPMM for the analysis of y. As anticipated, the CPMM analysis of y was
characterized by substantially lower ESS than the LMM analysis of the corresponding L
from which y was mapped via T ; nevertheless, ESS appeared sufficient for reliable
posterior inference in both GLMM.

The simulation study was also used to validate DIC and LML as model choice
criteria. For this purpose, DIC and LML values for each replicated dataset based on
homoskedastic and heteroskedastic GLMM within each of the four populations were
determined for the analysis of L using a LMM and for the analysis of y using a CPMM.
A DIC difference exceeding 7 has been suggested by Speigelhalter et al. [36] as an
indication of a meaningful difference in model fit. The DIC differences between
homoskedastic and heteroskedastic GLMM (LMM for y and CPMM for L) for each
matched replicate within populations are shown in Figure 1. In all cases, DIC differences
were clearly in favor the correct model. Furthermore, as expected, the magnitude of DIC
differences involving LMM analyses of L was higher than that for CPMM analyses of y
since, again, y is less informative than L. The DIC differences between homoskedastic

and heteroskedastic error GLMM approached 0 with increasing «, .
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Application to Birth Weight and Calving Ease Scores in Italian Piemontese Cattle
Genetic Parameter Inference

Sire and maternal grandsire LMM and CPMM were used for the analyses of birth
weight and calving ease scores, respectively, in Italian Piemontese cattle. Posterior
means and standard deviations, 95% equal-tailed PPI and ESS on dispersion and genetic
parameters for birth weight and calving ease scores are summarized in Table III and
Table IV, respectively. In all cases, reported inferences were based on combining
samples from the three separate MCMC chains after burnin. In addition to the posterior
means, the posterior modes and medians (results not reported) using the MCMC
algorithm were calculated for each parameter and were found to be very similar to each
other, whether for LMM analysis of birth weights or for the CPMM analysis of calving
ease scores. These results imply that the posterior densities were symmetric and
unimodal.

The total number of ESS for dispersion parameters across the three chains ranged
from 1,836 to 21,839 for the LMM analysis of birth weights and from 841 to 14,045 for
the CPMM analysis of calving ease scores. As anticipated from the results of the
simulation study, the CPMM analysis generated lower ESS than the LMM analysis.

Relative to reported results for the homogeneous CPMM in Kizilkaya e al. [22], the

additional inference on a,, G , and &’
male  female

did not appear to adversely impact MCMC

mixing and, subsequently, ESS in the CPMM. We observed similar comparisons in the
heteroskedastic versus homoskedastic (results not reported) LMM analysis of birth

weights.
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For the purposes of model comparison, birth weights were also analyzed using
homoskedastic LMM. Estimates of o and o2 from homoskedastic LMM and CPMM
were found to be somewhat higher than the corresponding estimates under the

heteroskedastic LMM and CPMM. However, the corresponding 95% PPI for these
parameters overlapped considerably between the homoskedastic and heteroskedastic
GLMM. Of particular note, the estimate of o2 using homoskedastic LMM for birth
weight was found to be significantly greater than the corresponding estimate in the
heteroskedastic LMM since the respective 95% PPI did not overlap whatsoever.
Regardless of the GLMM considered, we observed that the posterior mean of the
residual variance from homoskedastic model is nearly equal to the average posterior
means of sex-specific residual variances in the heteroskedastic error models. Table III
further indicated that the residual variance for male calves is significantly greater than for
female calves for birth weight and calving ease scores using LMM and CPMM
respectively. This significant difference between residual variances translated into sex-
specific differences for direct and maternal heritabilities, as indicated in Table IV.
Heteroskedastic LMM and CPMM lead to very low posterior means (<5) for a,

indicating that there is considerable residual heteroskedasticity across herds for both birth

weights and calving ease.

Approximate 95% PPI on herd-specific §; in the birth weight and calving ease
scores analyses were computed and presented in Figure 2 for LMM model and Figure3
for CPMM, respectively. As seen in figures, the PPI for §, in many herds do not overlap

with the expected average value of 1, indicating that residual variances for these herds is

significantly higher or lower than average.
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In order to compare the homoskedastic and heteroskedastic LMM (and CPMM)
model for fit to the birth weight (and calving ease) datasets, LML and DIC values with its
components D and p,, are given in Table V. DIC and LML values in Table V were
reported separately for each of the three chains under LMM and CPM models. As seen
from Table V, DIC and LML results are very consistent within each model indicating
small Monte Carlo errors on the DIC and LML differences between homoskedastic and
heteroskedastic residual models. Both DIC and LML model choice criteria were in favor
of the heteroskedastic LMM and CPM models. Surprisingly, the model complexity, as

measured by p,, , was lower for the heteroskedastic LMM model whereas the

heteroskedastic CPMM model generated higher model complexity value. Kizilkaya et al.
[22] analyzed the calving ease data by using homoskedastic cumulative ¢-link model and
determined that homoskedastic cumulative ¢-link mixed model (CTMM) was
overwhelmingly chosen as the best fitting model choice criteria. However, the DIC and
LML comparisons between the heteroskedastic CPMM in this paper and the
homoskedastic CTMM in Kizilkaya et al. [22], strongly favor the heteroskedastic error

CPMM for goodness of fit.

Inference on Sire Effects
Posterior means of elements of s were computed under homoskedastic and
heteroskedastic error GLMM models, as corresponding point estimates of expected
progeny differences (EPD). The relationship between these EPD's were determined by
using simple regression and shown in Figure 4 and Figure 6. As seen from figures, there

is strong linear relationship between posterior mean estimates of s, indicating no
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reranking problem of sires based on Pearson correlations of 0.97 from LMM and 0.98
from CPM.

The standard errors of prediction were computed as the posterior standard
deviation of the MCMC samples of elements of s. The scatter plots of these standard
errors for both models with the corresponding least squares regression line for the
homoskedastic versus heteroskedastic LMM and CPMM models were presented in
Figure 5 and Figure 7, respectively. Regression coefficient and correlation between
models in birth weight and calving ease analysis were near unity, indicating almost

perfect linear relationship between posterior standard errors.

DISCUSSION

There is already extensive animal breeding research dealing with statistical
inference on heterogeneous variances based on maximum likelihood or empirical Bayes
methods over the last two decades ([6], [8], [9], [16], [18], [19], [30]). In this study, we
developed a general framework for structural modeling of heterogeneous residual
variances in GLMM based on fully Bayesian inference using MCMC methods. We
validated our heteroskedastic GLMM by simulation and applied it to birth weight and
calving difficulty data from Italian Piemontese cattle using linear mixed models and
cumulative probit mixed models, respectively. Our method could also be conceptually
extended to a heteroskedastic analysis of count data based on a Poisson log-normal model
or to censored data models (Sorensen et al. [35]).

The results from our simulation study indicated that inference on parameters

specifying fixed and random sources of residual heteroskedasticity is possible in both
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linear and threshold mixed models. Furthermore, model choice criteria such as DIC can
be used with confidence to assess to choose between heteroskedastic and homoskedastic
GLMM specifications.

Residual variances for BW and CE were shown to be greater in male calves
compared to female calves in Italian Piemontese cattle, directly resulting in smaller
heritabilities of direct and maternal effects for male calves. Furthermore estimates from a
homoskedastic specification were midway between the separate male and female
posterior mean estimates derived from a heteroskedastic specification. Our results for
birth weights are in good agreement with the results from Garrick et al. [9]. Ducrocq [6]
also estimated 7-18% residual variances in male calves relative to female calves for
calving ease scores in Normande and Montbeliarde breeds. Our female calf posterior
means of direct and maternal heritabilities were substantially higher than corresponding
threshold model estimates with homoskedastic residual assumption for calving ease
reported by Manfredi et al. [25 26], McGuirk et al. [27 28], Varona et al. [38], Luo et al.
[23], Bennett and Gregory [1] and Ducrocq [6]. Direct and maternal heritabilities were
also determined to be greater for female than for male calves and differences between
them were significant for BW and CE. However, these results should be treated with
caution since we did not consider sex-specific inference on genetic variance. This is an
area for further research, particularly as the power for inferring upon sex-specific genetic
variance is substantially lower than that for residual variance. Inference on strongly
negative direct-maternal genetic correlations for BW and CE is in agreement with

previous work ([1], [3], [6], [22], [23], [38]).
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There appeared to be no appreciable differences in sire re-rankings between
homoskedastic and heteroskedastic models. This should be not too surprising if sires are
randomly used across lowly and highly variable herds and calf sex ratios within each sire
do not deviate appreciably from 50%. However, substantial differences in rerankings
might be anticipated using animal models, particularly for across herd rankings of dams.

In the analyses of simulation and field data, two Bayesian model choice criteria
DIC and LML, were utilized to choose between homoskedastic and heteroskedastic
GLMM s and the homoskedastic GLMM was clearly rejected with small DIC and large
LML values. In the analyses of BW and CD datasets in Italian Piemontese cattle,
heteroskedastic GLMMs were overwhelmingly chosen as the best fitting models by both
model choice criteria. These results and results from previous studies showed the
existence of heteroskedastic residual structure and deficiencies of many current genetic
evaluation systems.

To further fine-tune genetic evaluation systems, heterogeneous variances could be
additionally modeled as a function of age of dam, region or year in models. In addition,
heavy-tailed distributions for production traits and liability variables in fitness traits can
be jointly modeled with heteroskedastic specifications in GLMM as we are working on
currently. Residual and genetic correlations between birth weight and calving difficulty
imply that genetic evaluations of calving ease would substantially benefit from a bivariate
threshold/linear multiple trait analysis with birth weight ([24], [38]). Further work on
providing heteroskedastic modeling options with normal and ¢-distributed specifications

involving both traits jointly is needed.
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CONCLUSIONS AND RECOMMENDATIONS

Fitness traits such as conformation score, calving ease and ovulation rate affect
livestock production profitability. This fact has been reflected in animal breeding as
selection emphasis has shifted gradually away from yield to fitness traits in order to
maximize farm income. Calving ease is particularly important for cost control to beef and
dairy cattle production because of the increased risk that calving problems add to the
survival of both calf and dam. Accurate inference on genetic parameters and genetic
merit are important for effective sire selection strategies to improve calving ease.

Variance components and their derivative genetic parameters in a threshold sire-
maternal grandsire model analysis of calving ease have been historically estimated using
approximate marginal maximum likelihood (MML) procedures based on expectation-
maximization (EM). In order to assess the validity of approximate MML estimates,
inferences were compared to those based on sequences of Markov Chain Monte Carlo
(MCMC) sampling in Chapter II. Laplacian MML and MCMC point estimates of
variance components and direct and maternal heritabilities were found to be significant
for calving ease in first parity Italian Piemontese dams. However, the covariance between
additive direct and maternal effects was found to be not different from zero based on
MCMC-derived posterior probability intervals. Furthermore, the joint modal estimates of
sire effects and associated standard errors based on MML estimates of variance
components differed little from the respective posterior means and standard deviations
using MCMC. The results suggest that it may not be necessary to apply computationally

intensive MCMC methods for inferences on genetic parameters and sire genetic merits
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using threshold models on large calving ease data sets, at least based on a conventional
genetic evaluation model.

A hierarchical threshold mixed model based upon a cumulative #-link rather than a
cumulative probit link specification for the analysis of ordinal data was developed and
applied to calving ease scores in Chapter III. The model and MCMC algorithm were
validated on simulated liability and categorical data sets from normal and ¢ distributions
(with 4 degrees of freedom) using the deviance information criterion (DIC) and log
marginal likelihood (LML). The simulation study indicated that inference on the ¢ error
degrees of freedom was reliable for the analyses of liability and ordinal data sets;
however, MCMC mixing was problematic, especially for ordinal data. Both DIC and
LML were able to choose the correct model in most cases. In the analysis of calving ease
scores on Italian Piemontese cattle, the cumulative ¢-link model was overwhelmingly
chosen as the best fitting model. However, the posterior means of direct and maternal
heritabilities from cumulative probit link and ¢-link threshold models were found to be
not meaningfully different from each other. Furthermore, the examination of posterior
means of sire effects showed that there was no real difference between two models in
terms of genetic rankings of sires. A surprising result is that the covariance between
additive direct and maternal effects was found to be significantly negative in Chapter III,
in stark contrast to the results presented in Chapter II. The result in Chapter II further
appeared to be dependent upon whether or not herds were treated as random or fixed.

In Chapter IV, a Bayesian hierarchical generalized mixed model based on a
structural multifactorial model with fixed and random effects that multiplicatively

influence heterogeneity of residual variance was developed. The models and MCMC
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algorithms were validated on simulated normal and ordinal categorical data characterized
by heteroskedastic residual structures. The simulation study further indicated that DIC
and LML were useful in correctly choosing between heteroskedastic and homoskedastic
models. Application of the method on Italian Piemontese calving ease data indicated that
the residual variance for male calves was significantly greater than that for female calves;
and that residual variances for some herds were significantly higher or lower than
average. However, as in Chapter 2, the high correlation between posterior mean of sire
effects from heteroskedastic and homoskedastic models suggested no meaningful
reranking.

It appears that better hierarchical Bayesian models confer primary advantages in
more accurately modeling variability in calving ease without providing major
perturbations on sire rankings. Whereas this may be true for cumulative probit mixed
effects models, this is less likely to be the case for linear mixed effects models, as hinted
by a heteroskedastic analysis of birth weight in Chapter IV. Furthermore, significant
rerankings may be expected to occur in animal model rather than sire model
specifications, particularly for dams.

In future research, heterogeneous residual variance could be modeled as a
function of age of dam, year or region as further extensions to the models considered in
Chapter IV. Furthermore, heteroskedastic ¢-error based mixed models for residuals might
be considered for the analyses of production and liability variables; work is already
underway on this front with preliminary results indicating heteroskedastic t-error models

as the best fitting relative to those models considered in this dissertation.
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More significantly, heterogeneity of residual and genetic correlations might exist
between birth weight and calving difficulty. As this phenomenon potentially influences
national selection strategies, further work on providing greater modeling flexibility with
normal and ¢-distributed homoskedastic and heteroskedastic error structures on both traits

jointly is needed.
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