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ABSTRACT

NONEQUILIBRIUM AND QUANTAL ASPECTS

OF

RELATIVISTIC HEAVY ION COLLISIONS

BY

Joseph J. Molitoris

The approach to local kinetic equilibrium in relativistic heavy ion

collisions is studied by following the time evolution of the Wigner

function in configuration and momentum space using the Vlasov-Uehling-

Uhlenbeck theory. This theoretical approach includes the nuclear mean

field, two body collisions, particle production, relativistic

kinematics, and the Pauli principle in a microscopic model. A Newtonian

Force Model, Time Dependent Hartree Fock, the Vlasov equation,

intranuclear cascade, and macroscopic nuclear fluid dynamics are studied

as reference cases. In the VUU theory, for central nucleus-nucleus

interactions, rapid equilibration of the participants is observed within

time spans of the order of 10 fm/c. Total stepping of the projectile

occurs at small impact parameters for heavy systems: a sidesplash of

nuclear matter is seen due to the interplay of the nuclear compressional

potential energy and the collision term. The intranuclear cascade model

lacks this essential compressional energy and Pauli blocking and so does

not give a realistic representation of medium and high energy heavy ion

collisions. Density, temperature, and entropy of the interacting nuclei

are extracted. The formation of complex nuclear fragments is studied by

applying a six dimensional coalescence model to the final state. The
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I. Nuclear Matter

1. Prospectus

For decades, nucleanphysicists have occupied themselves with

essentially one point on the phase diagram of nuclear matter, the ground

3
state at po - 0.15 mm and T - 0 MeV. Studies of low energy nuclear

physics (Elab < 10 MeV/nucleon) only probe moderate degrees of

excitation. Certainly, there are still many unsolved problems relating

to the ground state of nuclei and what happens in such low energy

nucleus-nucleus collisions.

However, we have just begun to realize the wide vista open to our

study on the phase diagram of nuclear matter. We are just beginning to

study the properties of hadronic matter at finite temperatures and

densities other than the ground state. There are conjectures about a

nuclear liquid-vapor phase transition at’tenperatures T < 20 MeV and p <

90, abnormal nuclear matter (density isomers and pion condensates) at

high densities p . 3 - 5 p0, pionization of nuclear matter for high

temperatures T > 50 Mev, and the possibility of the deconfinement phase

transition from hadronic matter into the quark-gluon plasma at high

densities p ~ 5 - 10 p0 and/or high temperatures T - 150 - 250 MeV

(see Figure 1.1) . Even more exotic objects such as nuclearites of quark

matter are possible [Wit 85].

These different regions of the phase diagram can be probed briefly

by nucleus-nucleus collisions at different beam energies. Nuclear

physics has continually been driven to higher energies by the need to

probe and understand the complicated short range nuclear force which may

result in such phases. Consider the present capabilities of our
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accelerators for a heavy projectile. The present (or soon to be

operating) facilities range in energy from 20 MeV/nucleon with the

Unilac at 031 to 100 MeV/nucleon at Ganil or the MSU Phase II through

the Bevalac at 1000 MeV/nucleon. Only recently have ions with A > no

been accelerated at this highest energy.

At the greatest available beam energies, densities > 3p° and

temperatures > 90 MeV are probed. Such extreme densities (1015 g/cm3)

and temperatures (1012 Kelvin) have prevailed before only in the first

fractions of a second during the birth of the universe (in the big bang)

and during the death of stars (in supernova explosions and neutron star

or black hole formation) [Bow 82, Bet 83, Wil 85]. Thus, in the

laboratory we seek to create a little bang, to probe even the parton

degrees of freedom. Nuclear physics and high energy physics come to

overlap and share theoretical ideas, experimental facilities, and vast

manpower.

Clearly today the field of relativistic and ultra-relativistic

nucleus-nucleus collisions is exciting and where much of the future of

nuclear physics lies. The goal experimentally is to reproduce in the

lab these conditions of high density and temperature. Currently,

experiments are being done at the Bevalac in Berkeley and the

Synchrophasotron at Dubna. Experiments have been approved for the

Alternating Gradient Synchrotron at Brookhaven (S + Pb at 16

GeV/nucleon) and for the PS at CERN beginning in 1986. By 1988, there

should be HI collisions in the SPS at CERN. Finally, the aborted

Isabelle/CBA at BNL may be a HI collider by 1992 (Au + Au at 100

GeV/nucleon).
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Experimental information on this unexplored domain is thus now

being sought by analyzing high energy collisions of heavy nuclei (see

Figure I.2). If the nuclei can stop each other (if the longitudinal

momentum can be sufficiently degraded), high energy densities can be

obtained for t - 10-22 seconds. All that is accessible experimentally

are the final state fragments. From these and theoretical models, we

must try to understand what happens in this very short time. The fact

that the duration of a relativistic nuclear collision is so short makes

the physics problems even more challenging.

In this thesis a recent theoretical approach is presented and a

survey is given of recent experimental and theoretical developments in

the field of high energy heavy ion reactions. First the statistical

concepts necessary to study the properties of infinite hadronic systems

at high density and temperatures are discussed. Then an overview is

given of various theoretical approaches developed to describe the finite

time and size effects in the dynamical evolution of the highly excited

strongly interacting system in an ephemeral heavy ion collision.

Finally, the recent Mn experiments on fragment formation, pion

production and collective flow are discussed. The implications of these

experiments for the nuclear equation of state are pointed out.

2. Statistical and Thermodynamical Concepts

High density matter is formed in nuclear collisions only for brief

moments, and global equilibrium can not be reached. However,

statistical concepts have been successfully applied to nuclear

collisions, e.g. in the Nuclear Fluid Dynamical model, which assumes

that local (rather than global) equilibrium is closely approached even

 



 

 

on these short time scales. But the assumption of statistical

equilibrium in nuclear collisions must be checked via microscopic

theories, which are able to describe the evolution of the system from

the non-equilibrium situation to the locally equilibrated state. These

theories and the questions related to the equilibration are discussed in

detail in the second and third chapters of this thesis.

What are the general statistical concepts appropriate to describe

the near equilibrium situation? The nuclear matter properties can be

characterized by two canonical variables: for example the density p and

the temperature T. The discussion of the properties of a piece of

hadronic matter at rest usually starts with the definition of the energy

per baryon, E(p,T), as a function of these two variables. It is

convenient to divide the total energy per baryon into a thermal and a

compression part:

E(p,T)- ET(p,T) + EC(p) + E, (1)

where

Ec(p)- E(p,T-0) - E(p°,T=0) - E(p,T=O) - E0 (2)

is defined to be the compressional energy and ET is the thermal

excitation energy per baryon. Note that ET is zero if the temperature

vanishes and EC(p°) = 0. EO ~ 939-16 - 923 MeV is the rest energy of a

nucleon at equilibrium density and zero temperature.

In order to understand the physical significance of E(p,T) consider

a piece of nuclear matter of volume V. It's energy content is given by

EV - f p E(p,T) dV, where e - p E is the energy density of the matter.

V

In evaluating this quantity the Coulomb energy and the long range part

 



 

  

    

   

  

  

   

 

   

  

 

  

   

 

..M 1W Yukawa energy are excluded since these lead to divergence for

(infinite systems. Hence only the short range part of the nuclear

interaction has been considered. This is the origin of the binding

enemy or 16 (rather than 8) MeV/nucleon: it comes from the volune term

of the Bethe-Weizacker formula (surface and Coulomb terms are

neglected).

Once the functional form of E is given, standard thermodynamic

relations can be used to calculate the pressure p, entropy S, and

enthalpy H of the system at a given density and temperature. For

example, the pressure is calculated from the internal energy as

.-3_E . 22%
p 3118 p 39  

(3)

s

and can also be separated into two parts pC and pr. Similarly one

obtains the entropy of the system from the thermal energy alone: because

of Na'nst's theorem (1906), the T - 0 part of the equation of state does

not contribute to the entropy. The entropy of a body vanishes at the

absolute zero of temperature.

3-. Relativistic Field Theory

The total energy per baryon can also be expressed in kinetic and

potential terms. This becomes particularly useful in the field

theoretical approach. A relativistic description of the nucleus using

the Dirac equation may give a more coherent view of nuclear phenomena

l‘thenthe SchrOdinger equation. The relativistic field theory or Quantum

Edges-Maids developed by Walecka [Wal 7‘1. Ser 85]. Boguta [Bog 77,

 



classical spin zero attractive meson field (sigma) obeying the Klein

Gordon equation, a spin one repulsive meson field (omega) obeying the

Proca equation and a meson-baryon interaction between them. This

approach starts directly from a Lagrangian involving the exchange of

bosons. The resulting coupled field equations are solved simultaneously

in a mean field approximation.

QHD is a relativistic field theory of nuclear systems which is

based on baryons and mesons and so at the hadron level offers a

complete, consistent, and unified treatment of nuclei. The most

successful results of QHD are based on the relativistic Hartree

approximation. By fitting a minimal number of coupling constants and

masses to bulk nuclear properties [Wal 711, Ana 81], the relativistic

Hartree solutions predict charge densities, matter densities, and rms

radii of the ground state of closed shell nuclei [Due 56 and 58, Mil 72,

Jam 81]. An RPA like treatment of excited states is also possible. but

the effective interaction involves strong and often sensitive

cancellations of large potentials, unlike the usual nonrelativistic

approach. QHD can be based on baryons and neutral vector and scalar

mesons a and m or include in addition charged vector p and pseudoscalar

11 fields in a renormalizable field theory. Feynman rules for the meson-

nucleon vertices and meson propagators have been developed [Ser 85].

The Hartree approximation yields an effective Lagrangian where

masses and coupling constants for the mesons are phenomenological and

are adjusted to fit static nuclear matter properties. The model

Lagrangian densi ty 1 s

- ch l 2
I - ‘ __ - __ 2 _

5 he 111(71‘15/axu + M )111 2 (he) (ac/3x") U(o)
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5 (ho) FWFW 2 (mvc ) mum“ + igvhcwuwmu gallows, (II)

where

F - (21/321 )1» - (a/ax )m . (5)

w u v v u

w is the baryon field, 0 is the sigma field, and 1.1 is the omega field.

Some typical [Cus 85] model parameters are m c2 - 938 Mev, msc’ - 500
B

MeV, m c2 - 780 MeV, the scalar coupling constant gS - 18.030 MeV-fm,
V

and the vector coupling constant g . 33.1111 MeV-fm.
V . ,

The potential function is taken to be a quartic polynomial in the

field 01.808 77. Bog 83]:

U(o) -% (mac’Vo2 +1§b03 +1300“ . (6)

The addition of nonlinear terms to the Lagrangian allows for a more

realistic fit to other nuclear properties, such as the compressibility

and effective nucleon mass [Sar 85].

This model has been applied to dynamical calculations [Cus 85].

But let us here discuss the equation of state resulting from these

relativistic mean field theories for infinite nuclear matter, neglecting

the space and time derivatives in the equations of motion and assuming

thermal equilibrium. The compression energy EC(p) of nuclear matter has

been calculated in this relativistic field theory with additional

nonlinear terms in the Lagrangian and in non-relativistic many-body

calculations using the variational method [Bog 83]. The results of both

approaches agree for p < 1.2 p" for any reasonable set of parameters for

*

the compressibility K and effective nucleon mass m at saturation

density p0. However, at higher densities p > 1.2 po the nuclear
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11 (ho) Fquuv 2 (mvc ) (11an + igvhcwuqmu gsncwa, (II)

where

F =(3/3X)u1 ' (a/BX )m . (5)

uv u v v u

w is the baryon field, 0 is the sigma field, and w is the omega field.

Some typical [Cus 85] model parameters are m c2 . 938 MeV, m c2 - 500
B S

MeV, m c2 - 780 MeV, the scalar coupling constant g - 18.030 MeV-fm,

SV

and the vector coupling constant g . 33.1111 MeV-fm.

V ,

The potential function is taken to be a quartic polynomial in the

field 11 [BOS 77. Bog 83]:

We) '15 (mscz)’o’ +1§b03 + 13c.“ . (6)

The addition of nonlinear terms to the Lagrangian allows for a more

realistic fit to other nuclear properties, such as the compressibility

and effective nucleon mass [Sar 85].

This model has been applied to dynamical calculations [Cus 85].

But let us here discuss the equation of state resulting from these

relativistic mean field theories for infinite nuclear matter, neglecting

the space and time derivatives in the equations of motion and assuming

thermal equilibrium. The compression energy EC(p) of nuclear matter has

been calculated in this relativistic field theory with additional

nonlinear terms in the Lagrangian and in non-relativistic many-body

calculations using the variational method [Bog 83]. The results of both

approaches agree for p < 1.2 p° for any reasonable set of parameters for

x

the compressibility K and effective nucleon mass m at saturation

density p,. However, at higher densities p > 1.2 po the nuclear
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equation of state is so sensitive to K and m at p, that differences of

several hundred percent arise even if K and m* are only varied within

their present experimental 10-20$ uncertainties. These results

demonstrate the obvious fact that even a precise determination of the

nuclear properties at ground state densities does not enable us to

wediot the high density behavior of nuclear matter. A theoretical

determination of these properties is also very difficult in view of the

fact that many body forces may play an essential role.

It is a shortcoming of this relativistic field model that the

nucleons and mesons are point particles. Another problem is the

explicit lack of the delta. Furthermore, a field theoretical treatment

beyond the mean field approximation is not yet developed. To describe

the collision dynamics in a time dependent theory, semi—classical

approaches must be used which include the nuclear potential, but also

the effects of two body collisions (see Chapter II). For such

approaches, phenomenological equations of state are used. The

compression energy Ec(p) then incorporates phenomenologically the

nuclear binding energy, the Fermi energy of the nucleons, hard core

effects and the exchange part of the nuclear forces. It is often

loosely referred to as the "nuclear equation of state (303)." Two

commonly used functional forms for Ec(p), the linear and the quadratic,

érfglnate from the extended liquid drop model of Scheid and Greiner [Sch

68‘]:

f . sci.) - Kim-9.1511811...) (7a)
A; ,le' ‘3 1

~ ::;_~:.s%».. w .. ....  



 

—_
i—

11. Finite temperature
s

The temperatur
e of the system is the second thermodynam

ic variable

of importance.
The total energy of the systen at finite tanperatur

e is

described
by the interactio

n energy plus the kinetic energy of the

particle
s in the system.

The latter is given by interact
ing

relativi
stic Fermi-Di

rac and Bose-Ein
stein distribut

ions, hence the

total energy per baryon is [Hei 79, Hah 85a]

  

ob o 2 .. 2/ 2 211

E.U+£{pimlc+
”“81 126(Em10)d5}

0(2nfic) i

o .. 2/ 2_2 u
-

. 1: ""31 12 E (E “‘1‘” a. (8) 3

1Mb” p(2nhc)3 mic exPE(E+U‘“))/T]+1

. 1

where the first sum runs over the Bose-degree
s of freedom (the pion,

1

heavier mesons, and the photon) while the second sum is over all the

excited states of the nucleon (the A(1232) resonance
being the most

important resonance in the GeV/nucleon
energy region).

Here it is assumed that all nucleonic
resonances

feel the same

interaction
energy per particle U, which depends only on the total

baryon density p [Hei 79, Hah 85a]. This potential
energy must be

included into the Fermi-Dirac
distributio

n function in a self-consis
tent

way. It is also assumed that all the particles are in chemical and

thermal equilibri
um and that the chemical

potential
u is the same for

all baryons.
Both the chemical potential and the interaction

potential

for the bosons are taken to be equal to zero.

Since at least the baryons feel a potential
, this approach

is thus

more physical than Hagedorn's
approach where the dynamics is shifted to

(the density of states. In Hagedorn's
thermodynam

ics, if a system of
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particles interacts through the formation of a new resonance or bound

state R, then for all thermodynamic purposes, this interaction may be

ignored and in its place a new non-interacting species may be added to

the system with the quantum numbers of R [Hag 68].

0

In (8). 91 is the contribution of the Bose ground-state to the

density of the boson-phases. The photon naturally has no Bose

condensate. The connection between the baryon density and the chemical

potential reads [Hah 85a]

0 m 2_ 2 u

p - 2 “"31 f2 e (e mic ) dc . (9)
a I —

i ab+1 (2“fl0)3 mlc expl(e+U p)/T]+1

The number of mesons can be calculated via [Hah 85a]

g Mng.V w e {(ez-mgcu)
Ni- 1 + 1 f l

.c
2

I

—

exp(mic2/T)-1
(annc)3 m1 eXplc/T] 1

de (10) 

The connection between U and the compression energy EC is also needed.

This is found by letting T + 0 in eq. (8) and (9) to get [Hah 85a]:

 3(1-0) . 0.75x + u + mzc” {gx - 3m2c"1n[(x +X1)/mc2]} (11)

8 X12 X13

with g - u, mc2- 939 MeV, c = 612(uc)3, x1 . (pt/g)l/3. and x - «((chi +

X12) assuming that for T=0 only the nucleonic ground state is populated

(which should be true for small densities unless the nucleon-A

interaction is much stronger than the nucleon-nucleon interaction [Bog

2/

82]). Expanding (11) for small densities, the well known p 3

dependence for the energy is obtained [Hah 85a]

E ~ u + mc2+ 0.3 (p/p,)2’3nz/m (6n2po/g)2/3 + ... (12)
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The relation between U and EC is then [Hah 85a]:

  

U(p) - EC + E, - 0.75 x -

mzc" {35; 3mzculn[(x+x1)/mcz]} (13)

8 x12 3X1

Finally, the pressure is [Hah 85a]

0

b a ———-

p - ~T z ”“31 12 e/(ez-mfc“) ln(1-exp[-e/T])de

13‘ (Znhc)3 mi0

0 m .

+ T Z u"gt f2 e/(ez-mfcu) ln(1+exp[(p-U-e)/T])de

i"’11"‘(21111c)3 ‘%°

+ 9222 (111)

do

and the entropy per baryon is

o
b

8U
. — 2 __ - _ _ 2

S/NB P/(pT) T 3p I/NB 15.1 giln(1 exp[ mic /T])

t (E-u)/T . (15)

5. Pionization in Hot Systems

These equations have been used in simplified models of heavy ion

reactions [Hah 85a] to extract the temperature in the reaction from pion

multiplicities. The dependence of the number of pions per nucleon on

the temperature as calculated with the above approach, which includes

all firmly established resonances, the pion, the n meson, and the photon

is shown in Figure I.3. Observe that the pion yield increases rapidly,

with temperature from zero to about one per nucleon at T a 100 MeV, and

then flattens out - nuclear matter is gradually transformed into a

hadron plasma. This becomes obvious in Figure 1.11, which shows the
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distribution of pions over the various pion producing channels [Hah

85a]. At low energy, temperatures of the order of 50 Mev or less, most

of the pions reside in the Bose condensed zero momentum state. At

higher temperatures, the pion yield is due to nuclear resonances. The

A(1232) resonance is of particular importance in the Bevalac energy

regime, Elab a 1 GeV/nucleon, while the more massive resonances become

important at temperatures above 100 MeV. In the evaluation of the

relativistic integrals, it is seen that most of the pions stem from the

decay of the A resonance. The direct production of pions due to

equilibrium evaporation [Cal 84, Aic Bua], equilibrium hot spot emission

[Aic 88b] and nuclear pion bremsstrahlung [Vas 80ab,8”] has been studied

by others.

Figure I.3 can be used to extract the temperatures in the moment of

pion emission from the observed pion yields [Han 85a] - see Figure 1.5.

One finds that the temperature rises smoothly with the bombarding

energy, reaches T . 100 MeV at the top Bevalac energies and can be

extrapolated to temperatures exceeding the critical temperature for

deconfinement, T = 200 MeV, at energies in the range of relativistic

heavy ion facilities presently under construction at CERN and

Brookhaven, Elab > 10 GeV/nucleon. This equation of state (14) is too

complicated to be of practical importance for many three dimensional

model calculations. Therefore simpler approximations are widely used to

determine the energy and density dependence of the thermal energy.

The simplest ansatz for the thermal energy is the classical ideal

gas relation ET- 3/2 T. This is actually the asymptotic value for the

full non-interacting non-relativistic Fermi gas: it neglects the

s
{‘1
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influence of the interactions on the thermal energy, but it contains the

Fermi degeneracy energy. However, the classical approximation is only

reasonable if the temperatures are considerably larger than the chemical

potential or the Fermi energy at a given density.

6. Exotic Matter

The possible existence of density isomers in nuclear matter has

been suggested repeatedly by many authors [Fee 116, Bod 71 , Mig 72, Lee

711]. Lee and Wick observed that the nonlinear scalar meson self-

interaction model - the chiral sigma model - can lead to an abnormal

state at high density, p/p0~ 3-5. They found that chiral symmetry is

restored in this state - the nucleons become massless. The binding

energy can be enormous, leading to secondary minima in the compressional

energy which are several hundred of MeV/nucleon deep. Another mechanism

proposed to create secondary minima in EC(p) is the collective

excitation of zero frequency spin—isospin modes in nuclear matter called

pion condensation (since these modes carry the quantum number of the

pion [M13 72]).

However many of these proposals did not attempt to describe the

nuclear EOS at other densities or (as in the case of the linear sigma

model) the description of the known properties of nuclear matter was

incorrect. Since the existence of isomeric superdense matter is

speculative, it is desirable to study this question in models which

describe normal nuclear matter in a self consistent way. A recent

calculation [Bog 82] fulfills this requirement and still predicts

abnormal superdense states.

e
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The model used is the relativistic mean field theory discussed

above, which. is well able to describe normal nuclear matter. The

abnormal state comes in by introducing the A resonance into the theory.

The abnormal state occurence depends now on the strength of the scalar

interactions of the A. If the coupling constant for this interaction is

only one third larger than the corresponding coupling of the nucleon,

secondary minima occur in EC and the abnormal state is predominantly

populated by the resonance rather than the nucleon. A similar mechanism

has been discussed at high temperatures, leading to abundant resonance

formation above a critical temperature [Hei 79, Gar 79]. Since the

scalar coupling of the A is unknown, the possible existence of these

baryonic resonance isaners can not be ruled out.

More exotic possibilities include that of nuclearites or balls of

11,d,s quarks in possible islands of nuclear stability [Wit 85] beyond

the A values of the nuclear table. Only by doing a careful analysis of

high energy experiments can the existence or non-existence of such

objects be ascertained .

  



 

11. Many Body Theory of Nuclear Collisions

1. Hierarchy of Theories

A comprehensive theory of nuclear collisions at high energies

should describe relativistic quantum mechanical wave packets interacting

via an apropo many body interaction. Such a relativistic quantum

mechanical treatment has not yet been attempted: even the formulation of

the interaction itself poses formidable problems. A natural suggestion

for a simpler treatment — and one that has been very successfully

employed in the cascade calculations [Tar 79,81; Cug 80.81.82] - is to

use measured free N-N cross sections as the primary physical input for a

model. This is legitimate if only binary N-N interactions occur and the

scattered nucleons always reach their asymptotic states before

encountering another nucleon - in other words, if the system is dilute.

Thus, the cascade models and all other models that assume point N-N

scattering, require diluteness.

If one does not want to assume this diluteness. then the

simultaneous interaction of many nucleons has to be allowed. In this

case, scattering can no longer be described in terms of asymptotic

states and cross sections, but an explicit interaction potential is

required. The models that use this approach generally describe the

nucleon motion in terms of classical trajectories and forces and are

therefore called Classical Equations of Motion or Newtonian Force Models

[Bod 77.80.81; Wil 77.78; Cal 79; M01 88a]. A classical description

might be considered a reasonable approach for intermediate energies 100-

800 MeV/nucleon because of the high degree of thermal excitation that

20
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tends to smear out nuclear structure and the quantum mechanical features

of the system .

In the relativistic realm there are problems even with the

formulation of the theory - the meson fields, which have to be included

in a relativistic theory, do not obey classical equations even

approximately. although it is possible to replace the Dirac equations by

relativistic Newton equations. The only possibility to obtain a

solvable model seems to be to ignore second quantization and treat the

meson fields classically. The closest tractable treatment of the many-

body aspect thus occurs in a model which solves the non-relativistic

equations of motion.

2. Newtonian Force Model - the Classical Limit

Consider the classical 1 space description of an A body system with

fixed degrees of freedom: I have in mind the colliding system of A a AP

+ AT nucleons. Recall that the r space is a 6A dimensional phase space

and the state of the system is represented by one point in this space.

Let p(;1....,;A,p1.....SA,t)dr be the probability to find the system at

the point (31,...,FA,51,...,5A) in 1 space at time t: p is the A-body

distribution function. The classical Liouville equation then follows

from considering p as an incompressible probability fluid:

A o 0

EB 3_. " 1.. * .
3t *12 * (p r1) + , (9 pi)) 0 (1)
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Hamilton's equations imply that:

3

5% - {11.11} (2)

This is the classical Liouville equation which describes a

microcanonical ensenble. For equilibrium. one has the condition {H.p} -

0 d ( ~> <> + +

an hence p = C6 13 H(r1.--o.f‘A.P1y---,PA))-

The Newtonian Force Model of heavy ion physics solves Newton's or

Hamilton's equations of motion for the A interacting nucleons. This is

thus a theory for the full non-equilibrium classical situation. Hence

the NFM is more fundamental than a kinetic equation (see below): it

solves the A-body Liouville equation. In the NFM model there are all

classical degrees of freedom so that non-equilibrium as well as

equilibrium events can be described. This classical description is the

only method which can account for the dual role of forces in determining

the nuclear equation of state and the collisional relaxation effects.

The main objective in considering a classical approach here is as a

model which can roughly describe the N-N interaction (both in terms of

cross sections and binding energies) and to use it to study the approach

to equilibrium and the influence of the short range repulsion in

nucleus-nucleus collisions.

Historically, NFM has some similarities with the molecular dynamics

approach to the theory of liquids [Ald 57]. There the

Newtonian equations of motion for spherical molecules or the coupled

Newton-Euler equations of motion for translations and rotations (in the

case of rigid non-spherical molecules) are solved. The first molecular

dynamics calculations used hard sphere and square well potentials [Aid

57. 59. 72]. The first NFM calculations used Yukawa potentials in three

 J .

1”." . n
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dimensions [Bod 77. Wil 77] and Lennard-Jones potentials in two

dimensions [Nun 77] introducing this type of approach into nuclear

physics. The former two groups applied the NFM approach for the energy

range 100-300 MeV/nucleon whereas the latter were interested in few

MeV/nucleon reactions.

Of course, there are no quantum effects in this model. However,

one does have information about the A-body classical distribution

function once one has chosen some classical potential. The choice of

this potential is subtle since over the years nuclear physicists have

been driven to more and more complicated nucleon-nucleon interactions

culminating e.g. in the Paris potential [Cot 73] in order to accommodate

the spin, isospin, etc. degrees of freedom.

The standard problem of scattering theory is to determine the

scattering amplitude f(e) from the interaction potential between

projectile and target. Generally the potential may be non-local

Vw(r) - f V(r.r')w(r')d3r' . (3)

The inverse problem is to gain information on the potential from the

observed differential scattering cross section

do .2

35.1mm . (A)

One can get information on the amplitude from polarization experiments.

If the interaction is local. V = V(r). then the potential is unique.

However, the N-N interaction is known to be non-local - there is an 1-5

term and a complicated momentum dependence. Then the scattering

amplitude does not determine the potential uniquely - there exist many

phase equivalent potentials which give the same phase shifts and hence

the same amplitude. The problem is that one doesn't have information on
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off-shell (E # p2/2m) scattering: the wave function at finite distance

is not fixed by the asymptotic behaviour [Pei 79].

The N-N interaction has been studied by hp and pp scattering for

many years. Cross sections, analyzing powers, polarizations, spin-

transfer, and spin correlation parameters have been measured to try to

more completely describe the process in terms of the scattering matrix.

The isospin T-1 phase shifts are fairly well-known from pp data. but T=0

ones less so (because of the imprecision of hp data). With a classical

potential. one can only hope to fit some part or moment of the

differential cross section.

Yet it is through the potential that the NFM attempts to give some

explanation of ground state properties, at the very least in terms of

nuclear size and binding. and also via the same forces to explain the

interaction of nuclei. One must of course note that the NFM can't hope

to do more than produce roughly stable nuclei to be used in studying the

short range repulsion in nucleus-nucleus collisions: nuclei are

fundamentally quantum mechanical in the ground state. Thus the defining

characteristic of NFM is the use of some potential V(r) acting between

each nucleon and all the others. This is both the key ingredient of the

approach and also a major problem because the potential demanded by the

model may be different from these standard quantum mechanical potentials

for the NN interaction: the potential must be deduced in a classical way

from the available experimental data (binding energies. cross sections.

nuclear size).
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A simple ansatz for a classical central potential that acts between

each nucleon and all other A-1 nucleons consists of repulsive and

attractive Yukawa terms [Bod 77. W11 77]:

'k '7' -k 0r

R A

VY - (VR e VA e )/r. (5)

The attractive part serves to bind the nucleons and the repulsive core

prevents nucleons from approaching each other closely (which amounts to

a strong correlation).

The parameters in the phenomenological potential have been chosen

in a compromise between reproducing the np differential scattering cross

0

section at eCM - 90 (which has the largest influence on the transverse

momentum transfer) and giving reasonable binding energies and stable

nuclei in a completely classical calculation. For Nb nuclei. typical

parameters are K = 1.75 fm_1. KR - 2.66 fm_1, VA - 765. MeV-fm. and VR
A

- 2970 MeV-fm [Mol 88a]. Recall that the cross section classically is

calculated from:

92 ,___b 1921
dn sin(6) d6 '

(6)

It is not adequate to compare this quantity directly with the

experimental differential cross section, because of the purely quantum

mechanical diffraction and exchange effects, which can't be reproduced

in this classical theory. A meaningful quantity to fit is the viscosity

moment of the scattering cross section:

av - 2n 1 o(6)sin2(e)d(cos(6)) (7)

which is related to the viscosity and thermal conductivity in a

Boltzmann equation approach [Bod 77].

 



  

 

26

.1 v. . In a two dimensional model [Nun 77] made an even simpler ansatz for

the potential. Each nucleus was taken to consist of seven equally

charged nucleons confined to two dimensions and interacting via a

Coulomb and a Lennard Jones 6-12 potential. One may write their

potential in the general form:

V1.1“) - 91(3)” 41%)“: (a)

where [Nun 77] took 111 -12. n - 6, a - 2 fm and D -10 MeV. Fermi

energy is completely neglected but Coulomb effects are included and

simulations were done with initial energies up to twice the Coulomb

barrier. Some features of Heavy Ion reactions at few MeV/nucleon

energies are reproduced such as fully and partially damped scattering

and orbiting (a deflection to negative angles) [Nun 77]. Low energy

studies with a classical model have not been pursued further since the

quantum mechanical aspects of the interaction are then very important.

In the NFM approach in three dimensions [Bod 77. W11 77. M01 811a].

nuclei are described as an ensemble of protons and neutrons initially

distributed at random throughout a sphere with the nuclear radius

1/3

R-RoA (9)

where R, - 1.2 fm. Some cutoff on the interparticle positions, say 1.2

m, must be imposed so that nucleons do not evaporate with large amounts

of energy due to the repulsive potential. There is. of course. always

some evaporation since it is a difficult problem to put the particles

into stable orbits. The nucleons may be subjected to a minimization

procedure to find more stable positions in phase space: the use of such
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a procedure is discussed below. The nucleons are also given random

Fermi momenta.

For a numerical simulation of a collision process, the nuclei are

Galilei boosted with the respective center of mass momenta at given

impact parameter. The Newtonian equations of motion are then integrated

using a fourth order Adams-Moulton predictor—corrector method [Hof 83].

This routine requires three previous positions and momenta so that a

fourth order Runge-Kutta routine is also used. The use of a predictor-

corrector routine makes available an estimate of the error by comparing

the predicted with the corrected values. If this error becomes too

large (small). then the time step is reduced (increased). Energy

conservation to better than 1% has always been demanded. Of course,

both momentum and angular momentum are conserved. All calculations are

done using the double precision available on a VAX 11/780 or FPS 16”.

A slightly modified version of this integration routine is used to

effect the minimization [Bod 77, Nil 77]. The only modification is to

cause each nucleons momentum to be cut by a factor of one half in each

integration step, thus effectively damping the motion of the particles.

This is equivalent to introducing an artificial viscosity term [Nil 77].

The configuration of minimum energy is then a crystalline structure.

Thus one finds (for pF - 0) a linear structure for the deuteron, a

triangle for three nucleons, a tetrahedron for four, etc. The

characteristic interparticle distance corresponds to that of the

potential minimum.

Newton‘s equations of motion are solved for the A - AP + AT

interacting nucleons:
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dpi au
-Tt_--—--rt (10)

1

A

U(P1) - 351 V(rij) . (l1)

Jii

Shown in Figure II.1 is how a Nb + Nb collision at 1800 MeV/nucleon

evolves in this approach. Note the strong bounce-off or side-splash of

nuclear matter [Moi 814a].

Bodmer and Panos [Bod 77] initially chose the four Yukawa

parameters based on the potentials of Bethe and Johnson [Bet 711] but

adjusted to give reasonable values of the viscous cross section. Their

calculations for A-SO on A-SO at 117 and 300 MeV/nucleon were done to

look for shock-like phenomena. Some transverse peaking for small impact

parameter b and even large fused residues with A-6O for the 117

Hell/nucleon case were found. Results for Ne on Ne at 117, 1#00, and 800

Hell/nucleon and for Ca on Ca at 1400 MeV/nucleon [Bod 80] compare a

static two body potential and a scattering equivalent momentum dependent

potential to test for finite range effects. For Ca on Ca a transverse

peaking in the momentum distribution is found.

A classical two body potential with a momentum dependent two body

core which roughly satisfies piJriJ 2 h has also been used [Wil 77].

The Pauli core is

VP(r,p)-(52h2/5mr2)exp(-2.5[(pr/€h)u-1J) (12)
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t-O fm/c
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h 20 mm: a H 30 fm/c

  
 

Figure

II.1

-I5 -IO -5 O 5 '0 IS -|5 -IO -5 O 5 IO I5

Nb (MOO MeV/nucleon) + Nb as a function of time in the

Newtonian Force Model: strong collective flow is sensitive 'to

the short range repulsive nuclear force.

 



 

30

where g is a number of order one. At minimum, the nucleonic velocities

will all be zero but the momenta will not. The Pauli core may include

I

spin-isoSpin by

Vp(r,p) + VP(r,p)6518' (13)

J

where 51 and 33 are a spin isospin index. In 20 on 20 and no on NO

collisions at 800 MeV/nucleon [Cal 79] there is only qualitative

agreement with the fireball/firestreak model: the NFM is found to

exhibit shear viscosity and incomplete thermalization.

A relativistic approach to 0(v2/02) may be obtained by including a

retarded momentum dependent correction to the nonrelativistic static

potential V - VS + V [Bod 77]. An alternate approach [Nil 76]
ta ret

included retardation effects but ignored the acceleration of the source

particle to obtain a relativistic momentum dependent potential. One may

try [Kun 81] to extend this model to include the meson field. Nucleons

are then treated as relativistic Dirac particles coupled to the

isovector pion field through pseudoscalar Y coupling. The problem of

5

one nucleon interacting with a pion field is solved and the A33

resonance is qualitatively reproduced. A many body extension is not

tractable.

Other forms for the potential are possible. The attractive Yukawa

potential may be replaced with a Woods-Saxon potential [Kit 81]:

- or K -(r-r

sz(r) - VR e /r - VA/(l+e ). (in)

With the potential parameters given by these authors, the greatest

possible potential energy that one can obtain for Ar is -17 MeV/nucleon

'
1
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(neglecting Coulomb energy); adding 20 MeV of Fermi energy would then

produce an unbound state.

Kiselev [Kis 814] haS‘used a double parabolic form for the N-N

potential and have also included spin and isospin projections.

Calculations for Ne + U and Nb + Nb at 1&00 MeV/nucleon and for Ca + Ca

at 800 MeV/nucleon yield the same collective flow phenomena (see below)

that has been observed experimentally and attributed to the short range

component of the nuclear force [Moi 81a]. The NFM approach can't hope

to be realistic since it is classical; however, one can see

qualitatively the effect of the short range repulsion.

Furthermore, a simple mechanism whereby the formation of fragnents

in the final state may be accounted for has been utilized: whenever the

total energy of a fragment becomes about -8 MeV/nucleon its internal

motion is frozen. The problem with this approach to fragmentation is

that the NFM cannot be expected to apply to light systems where the

binding energy is not roughly 8 MeV/nucleon (see below); such systems

correspond to the majority of fragments which will be formed (d,t,Li,Be,

etc.)!

It is also possible to introduce [Kis 814] a Woods Saxon density

function for the nucleus:

9(r)=p /(1+exp((r-R)/a)) (15)
o .

where R is as above in (9) and a - .53 fm is the skin thickness. In

particular, adding the surface improves the stability of the nuclei

since the Fermi momentum will then be lower near the surface. This

refinement has been neglected here.
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5.. Bodmer and Panos [Bod 77, 80. 81] discovered that for the

potentials they used with r - 1.23-1.37 fax, the ground state nuclei are
.1 o 7 i

too small. This may be understood as follows. The NFM considers the

nucleus as a classical system governed by classical forces. The volume

available per nucleon is “/3111“? With R0 =- 1.2 fm and equating this

Volume to that of a cube one finds 1 - 1.9 fm for the cube edge length.

This cube edge corresponds to the smallest interparticle distance in a

simple lattice with nucleons at the center of each cubic cell. Thus

this distance should roughly correspond to the location of the classical-

two body potential minimum. In the configuration of minimum energy. the

wound state, all the particles will lie on such a lattice in the pF - 0

limit: thus the NFM allows a sol id phase of nuclear matter. The ground

state with pF 1‘ 0 has interparticle distances smeared about 1.

A convenient potential form for study is the Morse potential, which

is parametrized as follows:

- or -K-r

KR -V e A (16)VM(r) - VR e A

The more usual form for the Morse potential is

-2(r-r°)/a -(r-r.,)/a

VM(r) - Vo (e - 2e ) (17)

where there are only three paraneters: ro, V0, and MO). The first two

specify the minimum and the last is the zero crossing where a - (r. -

r10))/1n2. One advantage of using the Morse potential is that these may

unvaried independently to fit the viscous cross section: this is a much

simpler. parameter space than that of Yukawa potentials. In particular
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the constraint r. - 2.25 fm and ov(E - 1100 MeV/nucleon) - 25 mb implies

the following V. and a values:

Table II.1

v, 2.23 u.oo u.67 6.30 8.76 12.

a .65 .711 .76 .811 .91 1.01

Furthermore the finite V(O) value does not present a problem so long as

it is sufficiently large: indeed this is why Morse introduced the

potential [Nor 29].

To substantiate this idea about ro - 2 fm, consider Morse

potentials of constant depth Vo - 41.67 MeV and vary r. subject to the

constraint that °v - 25 mb at Elab - 1100 MeV. We use an ensenble of Ar

nuclei minimized for t - 200 fm/c so that the nucleons have drifted to

more stable positions. The desired average radius is 2.82 fm (R. - 1.1

fm) or 3.08 fm (R. - 1.2 fm), assuming a uniform distribution for the

density. The results are:

Table II.2

r. 1.85 2.05 2.25 2.u5 2.65

(r) 2.38 2.511 2.71 2.82 2.98

It is clear that a potential with r z 2.25 fm is necessary to ensure the

correct value for <r>. Note that these potentials do not all give the

same average potential energy after minimization. Using a Horse

potential such as the last is clearly not desirable because r(V - 1100

N._e1l_)_is too small (.26 fm) and also the range of the potential becomes

too long r(V - -.1 MeV) - 7.29 fm.
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.l. Note that there is an easy way to get a Yukawa type potential from

auorse potential. Multiply the Morse potential by r./r. Then by the

,use of the more usual form for the Morse potential and a Taylor

expansion about ro to first order one can obtain a quadratic equation

for the new minimum. It may also be necessary to rescale VA and VR to

get the same value for the depth at this new minimum.

The Morse, Yukawa,.Yukawa-Woods Saxon, and Lennard Jones type

potentials have been studied for their stability (Ar nuclei) with

parameters given by:

Table 11.3

Potential KA KR VA vR 'ws <r> M100) M200)

Morse 1.308 2.616177.1 1680. — 2.71 .69 .68

Yukawa .9763 1.953 207.0 1088. - 2.66 .72 .66

Yuk/W8 5.0 11.0 14.7 11700. 3.2 2.39 .78 .67

a n D m

LJ 2.25 2.3 2.9 11.6 - 2.65 .60 .56

Note that all of these potentials have ro - 2.25 fm, a sufficient depth

to give a binding energy of -9 MeV/nucleon with an average of 20 MeV of

Fermi energy, and give °v - 25 mb at Elab - H00 MeV. Shown after the

potential parameters is the average radius after 200 fm/c of

minimization.

The last two columns give the density within an r - u.1 fm sphere

after the specified time of integration. Note that there is clearly not

an order of magnitude stability improvement for any of these potentials

when compared with the other [Kit 81]. Neither a shorter range

  



35

potential (Yuk/W8 has r(V .. -.1 MeV) - 3.97 fm) nor an extremely longer

range potential (LJ has r(V =- -.1 MeV) - 13 fm) improves the stability

of the nuclei to the evaporation of particles. The instability must

thus be due to something else, e.g., from both the fact that the

nucleons at the surface with high Fermi momenta tend to escape, and also

that correlations between F and 5 are not taken into account in the

initialization. Furthermore, the initial Fermi distribution of the

nucleons is not the equilibrium distribution for a finite collection of

particles interacting via classical forces: hence the Fermi gas

distribution must be driven to a Maxwell-Boltzmann distribution.

One might expect that there is some effect of the degree of

minimization on the stability. Consider a collection of Ar nuclei

minimized for various times and then allowed to evolve for 100 fm/c:

Table II.1-l

tmin O 50 100 200

(r) 3.07 2.81 2.72 2.71

0(100) .62 .71 .70 .69

For tmin - 0 a Morse potential is used with Vo = 6.6 MeV, whereas for

the later times the Morse potential of Table 11.3 is used. For

unminimized nuclei, one must use a deeper potential to get the same

binding. Thus one satisfies <K> - 20 MeV and BE . -9 MeV in all cases.

Note that once the minimum energy has been obtained, further

minimization only decreases the average radius but does not increase the

stability. Furthermore, the momentum distribution is degraded much

quicker for the minimized nuclei: (10 goes from 20 to 11 during the

first 10 fm/c of integration for a minimized collection whereas this
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same degradation takes 200 fm/c for an unminimized collecticni. Thus a

deeper potential and unminimized nuclei are called for.

To fit a fair range of~nuclei (Ca to U). both in terms of binding

energy and average radii, a repulsive tail can be added in the form of a

third Morse or Yukawa potential [Wil 78]; this increases the number of

parameters from three to four. Let us choose two potentials for further

study. The first is a Morse (but with a small long range repulsion to

simulate nuclear saturation effects) soft potential,

.e“Kw"', (18)V(r) . VM(r) + Vw

and a hard potential that is identical to the first for distances probed

by the ground state nucleons

V(r) - VY(r) + VM(1.2) - VY(1°1) + 0.1b + 0.115m, r < 1.1 fm

-br - 0.5mr2 + VM(1.2) + 1.2b + 0.72m, 1.1 < r < 1.2 fm

VM(r), r > 1.2 fm. (19)

Thus the two forces only differ in the repulsive cores and effects due

to the core can be investigated.

The average potential energy per nucleon of the nuclei is

A A

U - 0.5 2 (UN(ri) + '2 VC(riJ))/A (20)

1:1 3-1

' jfil

where the first term is the nuclear potential energy (11) and the second

is the Coulomb potential energy where VC(r) . 1.1111/r. For the nuclear

potential energy, one sums over all pairs of nucleons whereas the

Coulomb sum is only over all proton pairs. Note that the Coulomb energy

u

reproduces well the standard liquid drOp result UC/A - 0.705 Z2/A /3
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[Nix 69], as it shoud. A theoretical binding energy is then BE =- U +

(K) where (K) is the average Fermi kinetic energy. Note that

experimentally the average Fermi kinetic energy varies with atomic

number [Mon 71]: for 61.1, (K) - 9 MeV whereas for elements from Ni to

Pb, <K> - 22 MeV. Let us compare the theoretical binding energies with

the experimental ones [Mat 65] for A . 1-300 for the two potentials

Table 11.5

ABE BE

exp

Ne -2 -8.03

Ca -5 -8.55

Nb -9 -8.66

Ba -8 -8.M0

Pb -6 -7.87

U -8 -7.57

Note that the lower elements are underbound and the higher ones (Ca to

U) are approximately bound correctly.

A second constraint is how well these potentials can fit the N-N

scattering cross section. Experimental viscous cross sections have been

calculated.from tabulated hp and pp data [Sig 85]. The Coulomb peak is

removed from the pp data using the formula of Rutherford. Then:

ov-(ovmp) + ov(pp))/2 . (21)

One then uses the integration routine described above without Coulomb

forces. From an initial state of fixed impact parameter b one can then

produce a final state. With respect to the viscous and 90 degree

scattering cross sections, these potentials compare as follows to the

experimental data:
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Table II. 6

energy soft potential hard potential experimental

5 av (Ci—3190) ‘av 31-3190) 0V 3729190)

20 323 9.05 328 9.05 263 30.2

100 611.2 11.30 614.0 14.30 142.5 11.30

200 110.7 2.68 110.2 2.80 27.6 2.75

300 31.0 1.80 31.9 2.311 26.5 2.65

1100 25.1 1.33 27.14 2.03 25.0 2.62

770 13.6 0.112 19.5 1.112 11.7 0.511

Note that these potentials give identical values for E < 100 MeV/nucleon

as they should. Both the hard and the soft potentials compare

moderately well with the experimental values. The hard potentieu. tends

to give higher cross sections than the soft one. The experimental

values compare well with those previously compiled by Bodmer and Panos,

even though they use a parameterization of N-N data [Bod 76]. Note that

the experimental values of °v are overestimated. One can't expect more

than 10-20% agreement over the whole energy range since the full

differential cross section calculated classically is a monotonically

decreasing function of the angle and hence can't reproduce the charge

exchange peak.

The for our purposes reasonable stability of the ground state in

configuration and momentum space is illustrated in Figure 11.2 for Ca

and Figure:11.3 for Nb nuclei. Figures 11.“ and 11.5 show the fraction

of particles within the Fermi sphere defined by (9) versus time. All of

the particles are not within the sphere initially because of the

necessary shifting of the center of mass. Note that the Ca nuclei are
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less stable than the Nb nuclei. This is probably due to surface

effects, which are not taken into account by using a uniform density

distribution - these are more important for the smaller nucleus since it

has less interior. In both type of nuclei, note how the momentum

distributions degrade and note also the generation of some high energy

evaporated particles. The degradation is due to the lack of a Pauli

principle: particles fall into regions of phase space that are already

fully occupied (in the quantum mechanical sense). The evaporated

particles come from both the surface and the adjusting of the particles

to a more stable distribution in phase space. Classically, it is not so

easy to hold together a cloud of nucleons. However, they are held

together well enough, especially for the heavier atomic numbers, to

simulate a collision.

One may also give justification to this classical potential in

terms of its compressional potential energy. In fact, this

interpretation is an explanation of why the NFM method may provide

similar observable results as a kinetic or fluid dynamic approach with a

nuclear 508. Using a collection of 150 Nb nuclei and the soft sun: hard

potentials, the particle positions are scaled and a classical analog to

the Skyrme potential (neglecting the Fermi contribution) is calculated.

Compare this to the values obtained from using a mediwnzmuia stiff

Skyrme potential [Kru 85a]:

Table 11.7

p/p° .5 1. 1.5 2.0 2.5 3.0

ESQ, -22 -33 -36 -34 -29 -21

Ehar -22 ‘33 ‘35 -31 -20 -5



Emed '27 '38 '43 '42 '38 '30

Esti '25 '39 'NO 30 '8 25

Note that the potential energy per nucleon from the NFM agrees

qualitatively with the Skyrme potential energy. However the ROS and the

compressibility K are underestimated. A minimization of Unanuclei

would increase K by as much as a factor of five; this is another reason

why the minimization process is undesirable.

Once one has a potential with reasonable binding and scattering

properties, one can then study many physical collision observables in

this model. In Chapter 111, the NFM will be confronted with these

experimental observables.

Before leaving the theoretical discussion of the NFM approach,

consider some possible future improvements. In particular, how can the

effects of the Pauli principle be incorporated into a classical model?

It is not possible to directly incorporate the Pauli principle since

every movement of particles in phase space is given deterministically by

Newton's laws. In a Hamiltonian formulation, one can introduce momentum

dependent potentials; however, these should be related to free N-N

potentials in some way, which has not been done. One easy way to

include the Pauli principle in a hybrid model is the following. From a

classical viewpoint in pp scattering:

do/dn= lr<e>|2+ .r(.—e)|2 for s=O (22)

and

00/00. |f(e)-f(n-e)|2 for s=1 (23)

Thus if only s-waves are important, one may alter the above classical

cross section:
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00/09 - do/dflcl(6) + do/dflcl(n'0) for 8:0 (24)

Of course this approach can only be used if one does a 2n impact

scattering for r < rcor where rcor is some core radius and one selects

the cross section from cross section tables. The Pauli blocking may

perhaps be included1in.such a hybrid NFM model by looking at the

occupation of phase space.

IVhat about relativistic effects? An approach valid to 0(v2/c2) is

not a significant improvement. There is a fundamental problem which

must be solved before there can be any relativistic NFM model. This is

the Coulomb scattering problem for relativistic particles of equal mass.

The only relativistic treatment that exists is that of Mott scattering

in the Born approximation where the one particle is infinitely massive

[Dar 13].

The main problem with the NFM approach is that classical potentials

can provide only a poor approximation to N-N scatteringzuuinuclear

binding properties. Additional complications occur in the relativistic

generalization [Kun 81] due to difficulties with second quantization and

considerations of covariance [Eks 65, Cur 65, Lus 81]. However, the NFM

is the model which comes closest to the solution of the many-body aspect

and enables a study of finite range effects of the repulsive core [Mol

8H2]. Certainly for the non-ultra-relativistic domain, NFM is a

valuable tool to gain insight into the short range nature of the nuclear

force. It would be most important to study also retardation effects in

an appropriate generalization, which for v << 0 reduces to the NFM.
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3. Time Dependent Hartree Fock and Beyond

'To solve the quantum non-relativistic A body nuclear physics

problem, one has to solve the time dependent SchrOdinger equation:

. 311
in St a H? (25)

where

W = W(1,2,...,A,t) (26)

is the time dependent many-body wave function, A is the total number of

nucleons, and H is the many body Hamiltonian. This is in general an

impossible task just as the complete relativistic problem is.

The finite many body problem is of course less tractable than the

few body one. Recall that an approach to the static many body problem

for atomic electrons is Hartree's theory of the self-consistent field.

There one starts with a set of single particle wave functions, generates

with this set a single particle potential by averaging the many body

interaction, solves the single particle problem and gets a new set of

single particle wave functions. These steps are iterated until

consistency between the wave functions and the potential is achieved.

Static Hartree-Fock theory includes an additional exchange term.

The many body wave function is approximated as a Slater determinant of

single particle wave functions, the Hamiltonian containing the Hartree

field and a non-local single particle potential. Again one proceeds

iteratively to achieve consistency between the averaged interaction and

the wave functions. The HF method constructs a Fermi sea of particles

with a sharp Fermi surface, since in calculating the HF determinant one

selects the A lowest single particle wave functions in energy. In the

HF method, the use of a Slater determinant neglects all correlations
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between the nucleons except those required by the Pauli principle. The

fact that two identical nucleons with parallel spin must not be very

close to each other is represented by the antisymmetrization.

Euler [Eul 37] first used the HF method with a Gaussian force to

calculate the energy of infinite nuclear matter, neglecting the

divergent Coulomb repulsion. Nucleons are bound together solely by

their mutual interaction: there is no external central field as in the

case of atomic electrons. The HF method is an approximation for

reducing the problem of these interacting particles to one of non-

interacting particles in a potential and neglects residual interactions.

Static Hartree Fock theory has had much success in the shell models

for electrons and.later nucleons. In heavy ion nuclear physics,

however, one has a time dependent problem of A colliding scattering

nucleons. The complete nuclear wave function V contains lots of

information - perhaps more than we will ever need or be able to use.

Therefore, some approximations to get a tractable Time Dependent Hartree

Fock theory are justified. TDHF is used to describe excited states and

to take into account the long range or field part of the residual

interaction.

Recall that 11””? can be derived in the formalism of second

quantization [Koo 75]. Let

|abc...> . 1//A! z )wawb...sgn(abc...) (27)
(ab...

be the Slater determinant, where the subscripts label space, spin, and

isospin. Define the particle creation and destruction operators a: and

ai, respectively. Antisymmetry and the Pauli principle yield the anti-

commutation relations [Row 70]:
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T 1 , I

. . . a . -o 28(ai ,aj} O and 1a1,aJ} 613, ( )

The state v of the nucleus is a linear combination of such Slater

determinants.

The many body Hamiltonian is

H = K + V

I 1 1 T

- Z K..a a. + - 2 U . a a.a a (29)
ij ij i j 2 ijkl ijkl l j l k

where the kinetic energy is a single particle operator and U is the two

body interaction. The one body density matrix is

T ,

in . <T|aiaj|W> . (50)

The von Neumann equation

ih dp/dt . <v|[a:aj,H]|v> (31)

follows from the Schrddinger equation and the assumption that H is

hermitiahd After inserting the many body Hamiltonian and some algebra,

this time dependent density equation will £133: reduce to a purely one

body equation. The two body force couples 0 to the two body density

matrix DUN. leading1x>the so called BBGKY hierarchy [Koo 75]. The

TDHF approximation is based on the assumption that the matrix elements

(2)
of p factor:

(2)
- - , 2

pijkl pjkpil pjlpik (3 )

This terminates the BBGKY hierarchy and yields the TDHF equation

ih dp/dt - [h,p] (33)

where h is the HF hamiltonian:

h - X (K + 2 (V ) . (3“)
ij ij kl .ikjl ’ viklj)plk
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It is not difficult to show that particle number and the energy are

conserved in TDHF [Koo 75]. Furthermore, each of the single particle

orbitals satisfies the time-dependent Schrodinger equation with the HF

hamiltonian h.

TDHF has been applied with some success at energies up to 10

IieV/nucleon. Fusion, compound nucleus formation, dissipation, strongly

damped collisions, shock wave prOpagation, and fragmentation are all

reportedly found in TDHF [Bon 76, Std 82a, Cus 82]. Beyond this range,

TDHF and mean field theory in general are not sufficient because of the

Zlack of two body collisions and the assumption of a long mean free path

for the nucleons. The mainly potential scattering of TDHF implies only

a single particle viscosity so that the nuclei are rather transparent

for ECM > BF a 38 MeV. Furthermore, the solution of the TDHF equations

becomes difficult for higher energies. This transparency is illustrated

in Figure 11.6 for C (85 MeV/nucleon) + C [Std 80a,81b].

However, irITDHF, the sensitivity of the observables, e.g. dynamic

fusion thresholds, to the particular effective two body interaction may

be large [Mar 85]. Nevertheless, what is important for us is that TDHF

is approximately equivalent to a classical pseudo-particle simulation

[Won 82]; the dynamics is then determined by following the pseudo-

particle trajectories, which are identical to tme trajectories of real

particles moving in the self-consistent field.

To go beyond TDHF, consider that some perturbing two body

interaction causes particles to scatter from their unperturbed orbitals.

In first order perturbation theory, the perturbed wave function is [Ber

84a]:
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Time evolution in configuration and momentum space for C (85

MeV/nucleon) + C at b - 1 fm for Time Dependent Hartree Fock

(left), the Vlasov equation (middle), and the VUU theory

(right). Transparency occurs in both cases with a mean field

only.
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|v> . |v,> + 1/1» 2 f dt elwtvk,l,kla;,a:,alak|v,>

klk'l'

1001'.

e - '1 1’ 1'
a 11110) kli'l' T Vk,l,klak,al,alak|'¥ > . (35)

The density matrix then evolves according to the von Neumann equation:

1 1 r
dpii/dt =- IE <w|a1[a1,V] + [ai,V]ai|\P>. (36)

Proceeding is now complicated by the fact that one has to evaluate

octupole Fock space operators. Let us therefore consider a one body

perturbing interaction as an illustrative example [Ber 84a]-.‘ Then the

first order perturbed wave function is: 5

1001:

|v> = Ivo> - 2 5L———J—v T
kk, no k'k ak'ak|w°> ° (37)

In the one body case, it is easily shown using the anti-commutation

rules that

TT

[ai,V] . i Vjiaj and [ai,V] a '2 Vijaj' (38)

J J

With the additional assumption that the one body density matrix is

diagonal

pji= n1 61.1 (39)

the occupation number ni obeys the equation

. 1 1
dni/dt = 1/1n 3 Vij<V|aiaj ajai|V>. (no)

Substituting the bra and the ket first order perturbed wave

functions, one gets terms of first, second, and third order in V. The

first order terms are already in the mean field and the third order
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terms may be neglected with respect to the second order ones. A typical

second order term is

T t -. 1 T
<v0|aiajal,al|vo> <volai(5jl,-al,aj)al|vo>

‘ 9115311- 0131%

' pliajl'-pjl'pli+pjipll'

“1(1 “3)611531'”1”15135111 f (“1)

Combining the above equations, one finds

dni/dt a 1/h2 Z [ZVEJ sin (wji t)/w..1J][n (1- hi )- hi (1- nj )]

' J

. 2n/h 2 Vi36(EJ-E. )[nj (1- hi )'hi (1- nj )1 (42)

3

where the time limit has been extended to infinity and one definition of

the delta function made use of. This is a standard Boltzmann equation

with the golden rule applied for the interactions.

Consider the physical import of letting t + co. Qualitatively,

there are three important times for the interacting nucleons: tint the

duration of an interaction between nucleons 0(1-5 fnvx:), tcol the mean

time between collisions 0(5-10 fm/c), and tcro the time to cross the

nucleus at high speed 0(10-20 fm/c). In the initial stage of the

collision, where O < t < t the full quantum Liouville equation is

int

necessary to describe the interaction. For tint < t < tcol one may have

a kinetic stage where approximately the A-body distribution function is

an antisymmetric product of one body ones. Finally, tcol < t < tcro is
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the hydrodynamic stage where Local Thermodynamic Equilibrium may be a

useful approximation.

The extension to the 6-function (42) requires that the time tint of

the transition be sufficiently large but also less than tcol’ so that

double and higher order collisions (formally higher order in V) can't

take place. It is part of the famous stosszahl-ansatz of Boltzmann that

the one particle has no correlation with the other with which it is

going to collide. The particle can't be rescattered by the first

scatterer unless it is in the meantime collided with another. The delta

function or sinusoid has height t/hrr and width nh/t so that the area

is one . For large times, the width is negligible and one get a delta

function. However one needs t < too so that double and higher order

1

collisions don't occur - this implies width > h/tcol. One still

neglects this width provided that other factors in the equation vary

little with energy over it. Thus the question of the apprOpriateness of

the 6 function is subtle [Pei 79].

In the two body case, one expects by analogy the corresponding

equation [Ber 84a]:

2

[ni,nJ,(1-ni)(1-nJ)-ninj(1-ni,)(1-n )]. (43)
J'!

This provides some plausible justification for Uehl ing and Uhlenbeck's

original ansatz for a collision term [Ueh 33].
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4. The Vlasov-Uehl ing-Uhlenbeck Kinetic Equation

One way to include two body collisions is thus to couple to the

TDHF equation a master equation involving the occupation probabilities

of the single particle states ni [Rem 84]. Now replace the summation

over the discrete single particle levels by continuous integrals over

momenta:

+ 3 3 , 3 , 9
2‘. f d p2d p1d pZ/(Znh) (44)

Ji'J'

Furtrmnunore, the continuous analog of the occupation probability is the

Wigner function [Wig 32]

.+ +/h

3S elP'S

+ + + +

r+s/2,r-s/2

+ +

-iq-r/h3

aque +-> ++

p+q/2.p-q/2

(45)

which has the properties that

3
73(3) - f 0 p r(S,F)/(2M)3 and 0(5) = I d3r NEE/(21011)? (46)

+

One can also eliminate the matrix element <61p2|V|Sipé> with the Born

approximation [Ber 84a]. Then one obtains from eq. (43) the Uehling-

Uhlenbeck collision term

df 3 3 '

(dt)coll Id 0,0 p2 d""12 "

-> + + +

[f,'r,'<1-r>(1-r,) - rr,(1-r,')(1-f2')]03(p+p,—p;—p;) (47)

where f1 has been replaced by f and where the f's represent the phase

space distribution, except in the Pauli blocking terms where it

represents the dimensionless occupation numbers. Also v12 . v1,2, is
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D
.

the relative speed of the two colliding nucleons and 7% is the

differential cross section in the two particle center of mass system.

The imaginary part of the mean field relates to the Uehling-

thlehbeck collision term and gives a relaxation time [th 80]. However

the transport equation collision term is more complete since it not only

describes tuna a state decays, but also what final states will be

populated.

Finally, one may also write the total derivative as:

Q
)

"
'
2

Q
)

"
9a)

+v.

.)

«19.2:
+ ‘51:: + e (“8)

2
1
%
;

I
Q
)

(
‘
1
‘

'
1
6

3

This last equation set equal to zero is the Vlasov equation.

Combining these, one gets the Vlasov-Uehl ing-Uhlenbeck equation [Ueh

331:

%Ef+;oa—;f- VU -B—;)f=fd3p2d’p2' dov12 x

3r 8p .

[f,'f2'(1-f)(1-f2) - rr,(1-r,')(1—r,')]03(5+52-E;-E;) (49)

The main input is now a potential and the free nucleon-nucleon

differential cross section. The Fermi-Dirac distribution, which is a

solution of the Vlasov equation, is also the equilibrium solution of the

collision term. The VUU collision term is in fact only valid for a

dilute quantum gas. However, the strongly interacting system of a

nucleus-nucleus collision can be considered to be such if the Pauli

principle is respected. The Pauli principle prevents phase space from

becoming over-occupied.

The Vlasov part of the VUU equation can alternatively be derived.

The single particle density operator is an inverse Laplace transform of
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the single particle propagator [Rem 84]. The Wigner transform of the

propagator can be expanded in powers of I: [Ram 84]. From truncating the

Wigner transform of the Liouville-von Neunann equation [Neg 82]

1h %% =- [H,p] (50)

one then obtains the Vlasov equation.

What is the relativistically correct form of this VUU transport

. i '

equation? Let _r_' s r = (our?) and _p_ = p1 a (E/c,3) be contravariant

four vectors. and gij be the standard metric tensor 3003 1, gm: -1,

and 81.13 O for i :4 j. Recall that 3 and 6 define six dimensional u

. . . . + + 3 3 -
space and r,p,t seven dimenSIOnal 11 space. Then f(r,p,t)d rd p 13 a

-> + + +

number of particles such that f(r,p,t) = f'(r',p',t') [Kam 69]. The

relativistic VUU equation without interaction is then

1 1. z 3
p Bif m c f d p2 d0v12712/E2 x

[f,'f2'(1-f)(1-f2) - ff2(1-f,')(1-f2')] (51)

where

1 E 33 + 5.95 . (52)
9 di 3 2 t +

c 8r

The above is form invariant under a Lorentz transformation since Y 3? =

.)

’3? where 7 is the time measured in the inertial frame where p vanishes

[Ran 79]. All the well known properties of the non-relativistic

Boltzmann equation - conservation laws, H- theorems, equilibritml, heat

flow, and viscosity can be obtained from this covariant equation [Mal

81].
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One should describe particle propagation in a quasi-classical model

of relativistic nucleus-nucleus collisions. Then one needs a

reformulation of field theory in terms of functions defined on a

classical phase space using the four dimensional Wigner transform to

obtain Covariant Distribution Functions. Such a CDF expresses part of

the solution to a field-theory problem. Classical particle trajectories

are used and one can interpret the results as meaning the stochastic

scattering of particles. However, in a succession of scatterings, there

are negative as well as positive contributions to probabilities with

only the net probability being positive. In such a field theory model,

a real scalar field V describes any hadron with rest mass m [Rem 85a].

A one particle CDF is a real function of the position and momentum four-

vectors. Results of such a formal approach show how, classically,

particles can propagate off-shell and yet be found on-shell

asymptotically [Rem 85a].

What shall actually be solved in the VUU model - see below - will

incorporate as much of the essential physics as is possible with an

interaction U. For the interaction U, a local Skyrme interaction is

used. Let us briefly review the Skyrme model [Sky 58, 59]. Skyrme's

interaction can be written as a potential:

VsZV‘2.)+X V

ij ‘3 ijk

(3)
ijk (53)

with two and three body parts. In configuration space, the two body

part is [Vau 72, Bei 75]:

2
v‘2’(F-F') . c,(1 + x,po)5(F-Fv) +1/2 n,(£125(F-F') + 3(F-F')E ) +

++ +

t,§'-0(r-r')§ + 1w,§'-0(F-F')o‘i (54)
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where

E - (a/aF - a/aF')/2i and E1 - Q1 (55)

are the relative momentum operators and

+ +

Pd 8 1/2 (1 + o,- 02) (56)

is the spin exchange operator.

The three body part is

(Flpgzy F3) 3 1.136(9)!- F2)6(F2‘ g3). (57)

V(3)

Hartree-Fock calculations are usually done with this Skyrme

interaction. The expectation value of the total energy is:

E: =- <V|T + V|V>

- f H(F) d3r (58)

where H is the Hartree~Fock functional energy density. For the Skyrme

interaction, this energy density is an algebraic function of only three

-> +

quantities: the nucleon density p(r), kinetic energy density r(r), and

++

spin density J(r). For the case of a symmetric nuclew3,11= Z, and

neglecting the Coulomb field, the densities for neutrons and protons are

equal:

+ + +

pna ppa1/ap’Inafpa1/21,Jn=Jp=1/2Je
(59)

+ + + 2 3 2 '2

In nuclear matter V0 2 O = V-J, p =- -3- kF/n , and T = 3/5 ka. Then the

binding energy per particle reads

E/A a H/p =

U
H
L
A
)

. 3 __ 2 3 2I: + 8 top 116 t + 80(3t,+5t,)ka (60)
F

and the potential is

0(3) - 3 top + 7% t3p2 + 3%(3t, + 5 t2)pk:. (61)
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Note that the potential and the energy density are related by

+
u - (§%) . (62)

T,J

For colliding relativistic nuclei in the non-ultra-relativistic

case, one can to first order neglect the problems of the relativistic

field and calculate the potential locally. In the spirit of the Skyrme

interaction in nuclear matter, the potential is taken in a density

expansion

0 - a. + 0.2 (63>

so that the binding energy is

.3. 1 1 2 ,
E/A - 5 EF + 2 8p + 3 b p (04)

[Ber 84ab, Kru 85ab]. The long range Coulomb and Yukawa interaction are

Ineglected here as well as the nuclear surface. Now measure p in units

33 -
’SEF

of po = 0.17/fm . Then impose the three conditions E/A a - 16 MeV

a 23 MeV, and K = 380 MeV to get a stiff potential. 'NEasaturation

condition iégifll = O is equivalent to the zero pressure condition

F

2 8(E/A) a O (65)

30

2 82(E/A)
and the compressibility K a kF -——§—-— may also be written as

a“:

“97.92. (66)
39

These three conditions fix the parameters a .. -124 and b = 70.5 [Ber

84ab, Kru 85ab]. Similarly, for a medium potential, take the expansion

U - 3p + bp7/6 (67)
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and impose K a 200 MeV to find a - -356. and b =- 303 [Ber 84ab, Kru

85ab].

The incompressibility of nuclei is directly related to the energy

of the giant monopole resonance [Lui 85]. K is extrapolated from KA for

finite nuclei. Recall the empirical relation

-1/3 N-Z 2

KA Kvol + KsurA ' + Ksym( A ) + Kcou (68)

Kvol is to be identified with K for infinite nuclear matter [Pan 70, Bla

76]. Recently, it is found that Kv0 = 270 MeV is the best average value
1

[Lui 85]. The values for the two chosen Skyrme EOS thus span the

experimental value for K. However, one must remember that that these

potentials are stiff and medium is more a reflection of their difference

at high densities than their ground state compressibilities.

In Figure 11.7, these two local Skyrme interactions are plotted and

compared to the equation of state extracted recently from pion

multiplicity data [Sto 82]. Note that the cascade and chemical model

analysis, which derive a nuclear EOS from the differences cu’ the

calculated pion multiplicities and the observed pion yields, tend to

agree with the stiff EOS.

5. Application of the VUU theory -

The VUU equation (49) is difficult to solve since it is a highly

non-linear differentio-integral equation in six dimensional phase space.

Since this equation comes close to the classical limit, one may solve it

in terms of quasi-particles, whose mean positions are solutions of

Newton's equations [Won 82, Ber 84ab, Kru 853b, Mol 840,85a]:
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Figure ‘The Skyrme equation of state with K - 200 MeV and K - 380 MeV

11.7 as used in the VUU theory compared with values extracted from

pion yields.
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S/m . 03/01; and 03/01; a -aU/aF . (69)

One actually goes beyond the VUU equation by including not only a mean

field and Pauli Blocking of the final state, but also relativistic

kinematics and particle production. This can be loosely termed the VUU

theory.

Recall the simple gas model where the number space is related to

the momentum space by

 

3

dn= 39—53 d3kF (70)

(2h)

1 '1 Bose-Einstein

where F = (E- )/T and A . O Maxwell-Boltzmann. For a zero

e u + A 1 Fermi-Dirac

temperature Fermi gas of nucleons, this yields a density in

configuration space

dN 4 4 3

—— - ———-—-—- - - 11 p (71)

d3r (21M)3 3 F

and a density in momentum space

31‘- =————” $1.113. (72)

03 (2101)3

'Thus in both configuration and momentum space, the nucleons are

initialized within their respective Fermi spheres just as in the NFM

approach. For finite nuclei, a Woods Saxon density distribution would

be more appropriate in configuration space; however this would be a

future refinement.

The stability of the ground state nuclei in this VUU theory is an

important issue to address in testing the method [M01 850]. Figure 11.8

shows the effect of the time step on the stability of Ca nuclei.
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Clearly, one must be careful and use a small time step to do

calculations for light nuclei. Figures 11.9 and 11.10 show that the

ground state nuclei (Ca and Nb, respectively) are quite stable up to

times of the order of 40 mec in both position and momentum space. See

also figures 11.4 and 11.5, which illustrate how well the nucleons

remain confined within their respective Fermi spheres in position space.

Also note how in Figures 1.9 and 1.10 the Pauli blocking prevents

nucleons from falling down in momentum space as is the case in a

classical model (Figures 11.2 and 11.3).

To solve the VUU equation, fifteen collision simulations are

followed in parallel and the ensemble averaged phase space density in a

sphere of radius r s 2 fm around each particle is computed [Kru 852].
t

The ensemble averaging results in statistical fluctuations at the 10%

level and thus reasonably smooth single particle distribution functions,

which are used to determine the mean field and the Pauli blocking

probability. About a hundred such parallel ensembles are followed to

simulate an actual reaction.

The gradient of the potential at the position of each test particle

is calculated from the difference between the particle densities in two

hemispheres centered around the test particle, e.g.

9+ ’ D-

- 3F;7E“‘ (73)

0
2
'
:

x
1
3

where for delta x, the centroid location has been used. The force is

then Fx . - %%-§% by the chain rule. This force changes the momentum of

the particle according to the relativistic Newton equation.
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Figure The stability of Nb nuclei in the VUU approach is illustrated

11.10 by their evolution in configuration and momentum space.
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A constant time-step integration routine is used to insure

synchronization of the ensembles. The acceleration of the test

particles due to the field gradient is calculated prior to each

transport step from theiforce components and is assumed to be constant

within a synchronization time step. The local gradient of the field is

computed via a finite difference method (73) between two hemispheres

centered around the test particle. This method is analogous to

Lagrange's method in fluid dynamics, in contrast to the space-fixed

Eulerian mesh.

Protons, neutrons, deltas and pions of different isospin are

included separately with their experimental scattering cross sections.

The p + n + d + 1:0 channel is neglected. The following processes occur

N+N+N+N,N+A+N+A,A+A+A+A

N+N+N+A,N+A+N+N (74)

- 0 + ++

whereN=norpandA=A,A,A,orA .

For N-N elastic scattering, 0::p(/s) is used [Kru 853b] with an

angular distribution given by

 

. 6 3.656(v/s—1.876)6do eA(S)t

5 6
1 + 3.65 (ls-1.876)

66 ” where 11(3)
(75)

and t . -(momentum transfer)2 [Cug 81]. This form provides a good fit

from low energies where the cross section is fairly isotropic to higher

energies where it is forward peaked.

1201'.ine

The process N + N + N + A is given a cross section 0 (/s) =- °exp

' Gel with isotropic angular distribution. N + A + N + N is obtained

exp
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by detailed balance and N + A + A + A is neglected. The mass of the A

is chosen randomly according to a Lorentzian with E . 1232 MeV, width
0

r,- 120 MeV, and finite lifetime : chosen with exponential weight [Cug

82]. The A decay width is mass dependent; it is a function of the pion

momentum in the A rest frame [Ran 79. Hit 71]:

 

3 227 2 227 4

p (1 + (-—— + (———) )

I» . r, 1 p238 31.8 (7.)
3 _I_ 2 _I_ '1227 (1 + (238) + (318) )

When an inelastic collision occurs, (11A is chosen randomly with a cut on

the low energy side at the pion threshold [Cug 82, Ran 79]. An

isotropic angular distribution is used for delta production - it has

been shown [Cug 81] that an acceptable anisotropic distribution does not

significantly change the results. Pauli blocking of the delta decay is

not taken into account: this would perhaps reduce the final pion yields

by 5% or so.

Pion production thus occurs via the delta resonance and in the 3-

wave channel below the delta resonance energy. The formation

probabilities are given by the squares of the apprOpriate Clebsch-Gordon

coefficients. The A (T=3/2) has isospin states TZ = -3/2, -1/2, 1/2,

and 3/2; the proton T = 1/2 has T2 = 1/2 and the neutron TZ a -1/2; and

the pion T = 1 has T2 = -1, 0, and 1. Then the various probabilities

are for formation

O ..

n + n + h + A (1/4). p + A (3/4)

+ 0

n + p + n + A (1/2). p + A (1/2) (77)

p + p + p + 0+ (1/4). n + A++(3/4);
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.0 (2/3). p + n" (1/3)D

4
'

:
3

+

A 'n+n

p

6

:
3 ..
.

n+ (1/3). p + no (2/3) (78)

++ +

A+p+1[;

and absorption

“0 + n + A0, “0 + p + A+

n+n+A,n+p'A0 (79)

+ + + ++

11' +n+A,II +p'A .

Clearly the end result of such a process is not easy to predict. After

- +

one formation and decay step, the preportion of n mom is 7:10:7 with

equal nunbers of protons and neutrons. A neutron abundance tends to

enhance the proportion of n-, whereas a proton abundance that of n+.

Relativistic kinematics is used, but the one time nature of the

model results in a lack of Lorentz invariance. However, as in the

relativistic cascade model, this should give rise to an uncertainty of a

few 1 in the observables [Cug 81] for the non-ultra-relativistic realm.

The question of double counting of the mean field and the collision

term is a basic restriction for the VUU approach [Kru 850]. The

following operational point of view is taken here: the phenomenological

Skyrme potential incorporates the real part of the potential, i.e. the

attractive one meson exchange (the linear term in U) and repulsive mean

field interactions, while the two body scattering accounts for the

residual interactions. It should be pointed out that energy and
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11.11 energy for the Nb + Nb system at b - 3 fm.



71

momentum conservation is fulfilled in the present approach for

individual two body scatterings and for the ensemble average on the mean

but not within each separate ensanble, because of the coupling between

different ensembles (energy conservation problems have been studied for

a similar approach [Ken 80] using the relaxation time ansatz).

The free particle cross sections have to be corrected for "in

medium" effects, the most important one being the Pauli blocking of

collisions [Kru 85ab]. Two particles may undergo s-wave scattering if

they approach each other with a minimum distance of less than /(o(/s)/n)

and if the final states are not Pauli blocked. The Pauli blocking

factor for each nucleon is given by (1-f), and the scattering

probability is then reduced by the Uehl ing-Uhlenbeck factor (1-f,)(1-

f,). The Pauli blocker has been tested on ground states of nuclei and

forbids there about 97% of all collisions. It is very important at

intermediate bombarding energies, too: even at 137 MeV/nucleon, 80% of

the attempted collisions are blocked due to lack of available final

state configurations (Figure 11.11) [Kru 85b]. Many of these attempted

collisions are between nucleons of the same nucleus.

As we shall discuss in detail below, the effect of the collision

term is to cause equilibration. The repulsive part of the field results

in bounce-off or collective flow effects. We will return to these

collective effects in more detail in Chapter 111.

6. Intranuclear Cascade Models

The intranuclear cascade model represents the limit of the VUU

theory where there is no mean field and no sophisticated Pauli blocking.

Historically, the intranuclear cascade idea is due to Serber [Ser 47].
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His idea was that nuclear reactions at high energies might be understood

in terms of a quite simple picture different from the description needed

at low energies. Because the collision time between an incident high

energy nucleon and one in the nucleus is short compared to the time

between collisions of the nucleons in the nucleus itself, he suggested

that the high energy reaction could be regarded as a cascade process.

Collisions occur between the incident particles and those particles

which are directly struck in the nucleus. This model was first

investigated in two dimensions by Goldberger [Col 48], who performed his

calculations by hand for the case of high energy neutrons interacting

with heavy nuclei. The first three dimensional calculations were done

[Met 58] for incident protons and neutrons using the MANIAC computer;

also a second stage was added to the cascade calculation during which

the excited residual nucleus evaporates particles, as had also been

suggested by Serber.

Many others have contributed to the development of the intranuclear

cascade model. The two most commonly used versions of the cascade code

in the theory of high energy heavy ion reactions are due to Yariv and

Fraenkel [Yar 79,81] and Cugnon et. al. [Cug 80,81,82]. These codes

simulate a heavy ion reaction at high bombarding energies on a

microscopic level by treating nuclear collisions as a superposition of

independent two-body nucleon-nucleon collisions. Nucleons move on

straight line trajectories (since there is no field) until they collide,

with a probability given by the free nucleon-nucleon scattering cross

section. The creation of deltas, pions, and other particles and the

interaction of all these particles occur according to experimental cross

sections. Relativistic kinematics is included.



73

Target and projectile nucleons are initialized in configuration and

momentum space with random Fermi momenta and then Lorentz boosted to an

apprOpriate frame, where the collision simulation proceeds. Momentum

and energy are conserved in the particle-particle interactions and the

evolution of the systan is computed up to a time where the majority of

interactions has ceased. Collisions are Pauli blocked according to the

simple criterion that the collisions are forbidden if the total center

of mass energy is less than the Fermi energy in ground state nuclear

matter [Cug 80,81,82] or if the outgoing particle would scatter into

momentum space regions originally occupied by projectile or target [Yar

79.81].

Both the Yariv-Fraenkel and the Cugnon cascade satisfy the above

criteria. They differ in two respects: (1) the particles in the Yariv-

Fraenkel simulation sit in a potential well of constant depth V0; (2) in

the original Yariv-Fraenkel approach the incoming particles (projectile

nucleons) are cascading independently through a medium (the target) - in

the updated version, this scheme has been improved by including the so-

called cascade-cascade interactions.

In the Cugnon cascade, one has the problem that the nucleons are

not bound; hence one may get spurious effects [Cug 84a] due to nuclear

instability, see Figure 11.12 [Mol 85b]. It is possible to bind the

nucleons by letting each nucleon move only with the beam velocity until

it interacts with another nucleon, at which point it 'remembers' it's

Fermi momentum [Gyu 82]. However, this bound Cugnon cascade is not very

satisfying either, since in real nuclei, nucleons can travel in all

directions 0
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7. Nuclear Fluid Dynamics

Just as in the classical case, one can derive from the VUU equation

general transport equations; Let us re-write the VUU equation in the

simple form:

1
‘
?
“

.'

«‘
1.

SE
dt

) a-a-E+;O

coll t

3

+

3r 8p

'
1

6
'

0
)

w

(

l .
.
.

'
1
'
)

O l (80)

Assume for simplicity that the force F" a dE/dt is momentum independent.

Then an integration of this equation over p produces:

22 +. + . 3 9:.
at + V (pu) f d p (dt)coll . (81)

The term containing the force vanishes by partial integration. The

collision term on the right hand side of eq. (81) describes the net gain

rate of particles at position 3 and with momentum 3. Since the

collisions take place at one point and only redistribute particles in

momentwn:unce while conserving their number, the integral over all

momenta must vanish. Thus the first equation of nuclear fluid dynamics,

the continuity equation, is obtained:

22 +. -> a p

at + V (pu) 0 . (82)

This equation of continuity is valid for any fluid, viscous or not. 'To

get an equation for the momentum density, integrate the VUU equation

with a weight of 3:

3 + + 3 +3_f_: 3 .

B-E(pu)+V-fd Ivapjdp 0. (83)

++

pvvf + 2 F

.J
J

Again the collision term yields a vanishing contribution, because

momentum is conserved in the collisions locally. In the second term on

the left, one may separate an average and a fluctuating part:
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103p$3r - 103p33r + 103p(7-3)(7-E)f + [03p3(3—E)f + 103p(7-6)Jr (84)

The last two terms vanish because the average of 7 - 3 is zero. The

fluctuating part defines the kinetic stress tensor:

g(F,c) - 703p(¢-G)(¢-3)r(fi,3,t) . (85)

Note that the stress tensor is identically zero only if all the

particles have exactly the mean velocity 8. The external force

contribution can be rewritten using

3f

D: 56.

3 _
" 35113110 (5.11 (86)

J J

J

and then the first term on the right hand side vanishes in partial

integration. The momentum conservation equation is then:

3 + + ++ _ + Q +

at(pu) + V (puu) a V E + In F. (87)

Define the energy density as:

pH = fd3p v2f(8,3,t) . (88)

N
I
B

Then, through the introduction of the average velocity, pE may be split

up into a flow kinetic energy and a thermal contribution:

08 a g pu2 + g f(746)2f(8.3,t)d3p . (89)

2

Integrating the VUU equation with a weight of mv /2 gives

2 3
3 3f + F -10 p - -+— . o (90)

3 m

1§E(pE) + V-fd p 2 v

where again the collision term gives no contribution because it

conserves the kinetic energy of the particles. The second term is split

up into a number of parts:

103p g ¢v2r . fd3p g (7:6)2(¢-3)r + fd3p r $023 +
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m fa3pJ-(J-6>(¢-J)r + f d3 g (¢>E>23r

a-q+plEIu+u-£ (91)

wherein the first term 3 describes the transport of thermal energy by

thermal motion (thermoconductivi ty). The second and third term are

combined to give the transport of total energy by collective flow and

the last term describes the work done against the stresses. Finally the

external force contribution can be re-written by partial integration:

fi-fd3p 1 2 33 = — f-fd3p3r a -pJ-§ (92)

N

and the equation for energy conservation reads:

:%E(pE) + 6-(pafi) a ~6-(J-g + 5) + pJ.§ . (93)

These then are the general fluid dynamics equations (82, 87, and 93).

One obtains the usual Nuclear Fluid Dynamical equations by using Pij a

..)

p613 and q1 . 0. Also, a potential F = -VU is introduced. These Euler

equations are for local equilibrium and the Navier-Stokes equations (see

below) are for near local equilibrium.

For the applicability of the fluid dynamical concepts it has to be

ensured that fast equilibration and thermal ization of the incident

momentum and energy occurs in high energy heavy ion collisions. Some

support for this conjecture is seen for the most central collisions and

heavy projectile and target combination in the results of the VUU theory

(see Chapter III). A simple argument is that this is the case if the

mean free path A is small compared to the typical dimension, L . 2R, of

the system

A/L << 1. (9H)
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The mean free path A is given by

1

mp _

where o is the total nucleon-nucleon scattering cross section and p is

the actual nuclear density. For normal nuclear matter density p0 and a

free N-N scattering cross section 0 ~ 1&0 mb at high energies (ELab >

NM

200 MeV/nucleon), the mean free path is A a 1.5 fm, which is not too

small against the nuclear dimensions L a 10 fm for heavy nuclei [Sch 68,

Sch 714].

The large longitudinal momentum decay length calculated from the

free N-N scattering cross section was interpreted as a complete

transparency for the two nuclei at high energies and as the death for

compression (shock) waves at energies above 1 GeV/nucleon [Sob 75].

However, in the early interaction time of ensembles of nucleons,

collective scattering phenomena cannot be neglected, namely compression

effects and the enlargement of the cross section due to precritical

scattering [Gyu 77,Ruc 76], so that the scattering cross section and the

density can be modified drastically leading to a decrease of the mean

free path:

a
NN

ocoll

ohfmA a 1.1% . (96)
 

This would mean that even at bombarding energies above one

GeV/nucleon, nuclei do not become transparent to each other: on the

contrary, very violent collisions can be expected. One should keep in

mind, however, that nucleus-nucleus collisions are a quantum mechanical

process. Hence-~in the sense of quantum mechanical fluctuations--under

the same initial conditions processes with violent randomization (e.g.
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the occurrence of pronounced shock waves) may occur as well as processes

‘with less pronounced interaction. It is a formidable experimental task

to separate the former from the latter. Recent experiments show that Lu)

to lab-energies of u GeV/nucleon a considerable part (~30%) of the total

cross section is due to violent events with very high multiplicities and

large momentum transfer.

There is a formal relationship between quantum mechanics and fluid

dynamics which was noticed immediately after the discovery of quantum

mechanics [Mad 26]. One uses the SchrOdinger equation

- g3: v21, + vmw = ih git: (97)

and the separation of a phase S in the wave function

Wm) = ¢(r,:).e”‘5(""”“ (98)

to get

'3? ¢2 + 3-(¢2$S) - o . (99)

This is the well known continuity equation describing the conservation

of probability density in quantum mechanics. The probability density

and average velocity are

p(r,t) - ¢2(r,t) and 3 = vs (100)

from which it can be shown that

2. for/B)
t —— .

+ -> «)9 + + “2

(mpu) + V-(mpuu) = -pVU - pV (- 55 p (101)

Q
)

This is identical with the conservation equation of the momentum with an

exterrufl. force due to a potential U as in equation (87). Only the last

term on the right-hand side is different. It depends solely on the
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density and may be interpreted as an inner pressure caused by quantum

mechanical effects. It disappears in the classical limit n+0.

Equations (99) and (101) have been obtained for the probability

density of one single particle. The analogy to a quantum mechanical

many body system, behaving like interpenetrating fluids with

interaction, is obvious. It is important to note that (in contrast to

kinetic theory) each single quantum mechanical particle is a continuum

itself. Therefore the problem of granulation of the microscopic density

does not occur. However, the main problem is a reasonable definition

for the many particle densities and velocities. An important question

is whether all quantities entering the equations of motion may be

described as functions of these macroscopic variables (and a

temperature) or not.

It is also possible to derive continuity equations for many

particle systems. In particular, linearization of the Hartree equations

yields formulae similar to the equations of motion of an ideal

compressible fluid [Zyr 56]. A derivation of the hydrodynamic

equations by analogy to the TDHF equations is also possible [Stb 85];

this is less general, but the principal argument [Won 77, Mar 77] is the

same as the one used above.

After this brief analogy with quantum mechanics, let us collect the

general equations of dissipative fluid dynamics. These are continuity

9 +

equations for the baryon density p, momentum density M =- pu, and energy

density e . pE with the gradients of the pressure p and the potential U

[Stb 85]:

Sup + 81(pui) - O, (lOZ)



81

1 1 , , _ g
3t(pui)+aj(pujui)-- 5 319+ ?n' c)‘].[r1(aiuj+d\jui 3 dijakukh

. _ E

g‘513"k”1<] m aiU’

2
a 2 - _ — ‘~

3t(pET)+8J(pETuJ) kajT+aiuJL pTéij+n(aiuj+3Jui 3 Gijokuk)+£6

If the viscosity coefficients may be regarded as constant and if the

ijakuk1f

fluid is incompressible (V-J = O) , then the momentum equation is called

the Navier-Stokes equation [Lan 59]. The indices 1, J and k are running

over the space coordinates and the Einstein summation convention is

used. K is the heat conductivity, n is the shear viscosity, and g is the

bulk viscosity. The coupled nonlinear equations for the density fields

4 _ -> «b + .

p(r,t), momentum density fields p(r,t)u(r,t), and energy density fields

p(F,t)E(;,t) must be solved simultaneously. A three dimensional

solution of these equations for nuclear physics has only recently been

attempted. Deviations from local equilibrium have been treated before

by phenomenologically incorporating viscosity [Std 78,79].

How do these equations change if relativistic effects become

important? The range of validity of the non-relativistic formalism is

not sharply defined, but at bombarding energies E b > 500 MeV/nucleon,

la

the classical relative velocity of projectile and target exceeds the

speed of light and at best qualitative results may be obtained.

There are two ways in which a system may become relativistic: (a)

macroscopically relativistic when the flow velocity becomes large or

(b) micrOSCOpically relativistic when the excitation energy is non-

negligible in comparison to the rest energy (the fluid particles have a

large velocity). Case (a) is reflected by the equations of motion and
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case (b) by the equation of state. As in the nonrelativistic case, the

fluid dynamic equations reflect the conservation of baryon number,

momentum and energy, and may be brought into the continuity equation

form [StO 85]:

BtpL + dk(pLuk) - O

atMi + 8K(Miuk) = -’aip

ateL + 8k(eLuk) = -ak(puk) . (103)

where long range potentials and dissipative terms have been dropped.

The quantities pL, M and e are the densities for baryon number,
L

momentum and energy as specified in a fixed ("lab") reference frame.

These are related to the "proper" or "co-moving" densities in the local

rest frame by

9L = Yo

. 2

Mi Y (e + p)ui

eL = 72(e + p) - p (1011)

where Y - 1//(1-82) is the usual Lorentz factor, p a the proper baryon

number density, p the pressure, and e =- p(Eo + EC(p) + El.(p,T)) the

proper internal energy density including the rest energy. The proper

densities p, e and the velocity [1, which are the physically interesting

quantities, must be obtained from the lab densities pL, M, eL by

inverting the nonlinear equations with p=p(p,e) from the equation of

state. This nontrivial technical problem is a complication over the
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nonrelativistic case, where the velocity can be calculated directly from

p and p3.

Both the potentials and the dissipative terms become harder to

handle in relativistic fluid dynamics where the covariant formulation

adds time derivatives and implies retardation for the potential.

Shown in Figures 11.13 and 111 is the relativistic nuclear fluid

dynamical model calculations [Gra 8M] fir the reaction Ar (7%)

MeV/nucleon) + Pb at b . O and u fm, studied below in the VUU

nonequilibrium theory. Note the superposition of the head and sidewards

Mach shock waves which results in collective flow. Similar results

between VUU and NFD (see below) are however only expected when heavy

projectile and targets are studied, because only in this case the VUU

approach does predict local thermal equilibrium for the most central

impact parameters. For light systems like C + C the fluid dynamical

model does not apply - there is simply not enough target material in the

way of the projectile to result in nuclear stopping.

8. One Dimensional Shocks

It is often advantageous to gain more insight into the physical

processes by solving more simplified, schematic models, which can be

solved (at least to some extent) analytically. In this case another set

of equations is applied in the more schematic treatment of the fluid-

dynamical description of high energy heavy ion collisions, namely the

shock equations. In contrast to sound waves, shock waves are connected

with a strong, density dependent mass flow velocity vf. The shock front

itself propagates with the shock velocity vS > Vt. and also depends
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strongly on the compression amplitude [Bau 75]. Shock waves are non-

linear phenomena—-for large amplitudes (p >> p0) both v53 and vf. tend to

the velocity of light, while for small perturbations p a po they

approach the linear limit of sound waves. Shock waves imply a large

entropy production: the matter flow through the shock front is highly

irreversible, it is not only connected with strong compression, but also

with large thermal excitation [Hof 76, Std 77 .78].

The shock calculations have to be viewed as an idealization,

assuming a zero width of the shock front together with a discontinuous

jump of the state variables (e.g. p, T, e, p). However, comparison of

the one dimensional nuclear shock wave calculations with the result of

the two dimensional Navier Stokes calculations [Std 79] shows that the

resulting compression rates and temperatures are very similar, although

in the Navier Stokes calculations the compression front is smeared out

over 1-2 fm due to the viscosity. Such a width seems to be realistic,

as the width of a shock front is approximately given by 2-3 times the

mean free path, which can be less than half a fermi in high energy

nuclear collisions [Std 79 J. For a large nuclear transparency, the

shock front width may be of the order of the nuclear radius. However,

no indication for transparency has been found in the high energy

experiments up to now.

Let Tij be the energy-momentum II—tensor for a fluid in motion [Lan

59]:

a 1Tij huiuj + pgi‘j (.05)

where gij is the metric tensor. Also, 3 = u1 = Y(1,-u/c) is the

covariant u-veloci ty. The relativistic Rankine-Hugoniot equations can
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be derived from the continuity of particle flux density, energy flux

density, and momentum flux density [Lan 59]. Eliminating the

velocities ux from the continuity equations yields the relativistic

Ranki ne-Hugoni ot equation

2 2

2% ' a: + (p-DOHEJI - ) =0 (106)
Po 0 o .1

3
4
3
‘

which gives a unique connection between the free enthalpy h - e + p,

pressure p, and density p within the respective rest frame of the matter

(nought stands for the undisturbed matter in front of the shock wave,

quantities without subscript refer to matter in the compressed state).

When we insert h-pE+p, hospoEo, and p°=0 the equation

zz-Eg+p(%-%n)=o (107)
0

is obtained. This is the relativistic generalization of the Rankine-

Hugoniot equation, which determines the temperature T as a function of

p, i.e. T(p). If E = EC + ET + E0 is equated with the center of mass

energy one can solve eq. (107) for the density p(Elab) and therefore for

the bombarding energy dependence of any other thermodynamic quantity.

The shock velocities v8 and vf are given by the continuity of the

energy and momentum flux density. From the relative velocities of the

matter with respect to the shock front

V V

3.. ' PEp ___S_'= p(pE+p)

c '4 (Ep-E0007(Eopo+p) ‘ and c /{ (Ep-EfijE } (108)

 
 

the relative matter flow velocity v is found by the relativistic law of

f‘

addition of velocities:

v

i , p(QE-pQEQ)
c /{ DEIPWOEO) } . (109)
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A simple model can be constructed to calculate the shock

compression and tanperature in the central collision of two heavy nuclei

as a function of the bombarding energy [Bau 75, Std 78, Hah 85a]. This

model assumes the compressed fluid to be at rest in the center-of-

momentum system. Three-dimensional fluid dynamical calculations show

that this requirement is fulfilled fairly well for central collisions of

heavy nuclei near the collision axis: a sort of stationary compression

stage develops. Practically all of the incident kinetic energy is

transformed into internal energy (compression and excitation).

Calculations have been done with this model for Nb + Nb [Hah 85a]

in the 50 to 1000 MeV/nucleon range. The comwassional and thermal

energies versus Klab or KCM for the stiff equation of state (Figure

11.7) are:

Table 11.8

Klab KCM E:C E2T

50 13.5 8.0 5.5

150 37.5 18.0 19.5

250 61.2 26.11 311.8

1100 911.2 37.14 56.8

650 151.14 56.11 95.0

800 18N.5 67.0 117.5

1050 233.9 83.0 150.9

For the medium EOS, the compressional energy will be smaller and the

thermal energy larger.

Though this model will, due to its lack of kinetic energy of the

compressed matter and its neglection of the outflow of matter
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perpendicular to the collision axis, give large values for compression

and temperatures as function of the bombarding energy (as compared to

three dimensional NFD [Gra 811]), it is sufficient to give a rather

qualitative overview about the expected compression and the thermal

excitation. The influence of the beam energy and the nuclear equation

of state and the importance of resonance and pion production in the

collision dynamics can be studied almost analytically.



III. Confrontation of the Theory with Experimental Data

1. Compression and Expansion

In the preceding chapter, both microscopic and macroscopic

theoretical approaches to nucleus-nucleus collisions have been

discussed. Fluid dynamics was historically the first approach to be

applied to high energy nuclear collisions: it refers directly to

thermodynamical concepts and therefore the underlying physics of high

compression and excitation can be discussed in a macroscopic language.

However, local thermodynamic equilibrium is probably a poor assumption

except for the heaviest systems and the most central collisions.

Therefore, microscopic approaches such as the Newtonian Force Model, The

Vlasov-Uehl ing-Uhlenbeck approach, and the Intranuclear Cascade model

are essential. For these models, the dependence of the observables and

thermodynamic variables (to the extent that these latter can be inferred

from the non-equilibrium situation) on the impact parameter, bombarding

energy, and projectile-target combination can be studied. The VUU, NFM,

and NFD models include the compression energy and so effects of the

nuclear EOS can be probed.

Consider first the fluid dynamic model that has just been

discussed, the simple shock model [Hah 85a]. The laboratory bombarding

energy dependence of the thermodynamic variables density, temperature,

and entropy of the shocked matter for the two different EOS (Figure

11.7) are:

Table III.1

medium EOS stiff EOS

Klab p/po T S p/po T S

50 1.811 12 1.03 1.60 11 1.03

90
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150 2.28 27 1.80 1.90 2‘1 1.78

250 2.56 39 2.27 2.09 35 2.25

1100 2.89 52 2.76 2.30 117 2.73

650 3.32 67 3. 36 2.60 62 3. 35

800 3.56 75 3.70 2.711 69 3.65

1050 3.88 85 11.13 2.93 78 11.06

The softer 806 allows 15-30% higher densities, 10% higher temperatures,

and only a few 1 higher entropies to be probed. That the temperatures

are higher with a soft EOS is however not a necessary prediction; it has

been shown that two different EOS can predict the same temperatures [Hah

85a]. In general, shear viscous effects will increase S. Even a one

dimensional model thus predicts effects due to the nuclear equation of

state; collective effects that are dependent on impact paraneter or

event multiplicity are, of course, beyond the capabilities of such a

simple model. These simple shock model values will serve as references

for the three dimensional models.

Now consider that the full three dimensional evolution of a heavy

ion collision typically proceeds in the following way (Figures III.1 and

2): when the two nuclei collide at high energy the overlap zones are

stOpped and a hot dense interaction zone (Figures III.1,2) or a strong

nonlinear shock wave (Figures II.13,111) is formed. The nuclear matter

in the interaction zone is compressed and heated: high density, pressure

AtElab - l100 MeV/nucleon,and temperature are created in this region.

for example, a maximum compression of two to three times equilibrium

density (Figure III.3,11) and a temperature of about 110 to 50 MeV can be

reached. During the compression stage the entropy of the system rises

to a certain final value which depends on the nuclear EOS, the
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bombarding energy, the viscosity in the system, and the degree of

fragmentation.

In particular, the density rises to a maximum of 2.2 at t = 9 fm/c

(Figure III.3) for Nb (1100 MeV/nucleon) + Nb at b - 3’fm in the VUU

approach. The density drops to 0.5 of the ground state density by t -

25 fm/c. The simple one dimensional shock model with the same stiff EOS

predicts a density for the shocked matter of 2.3, very similar to that

achieved in a central region. In the NFD model, the density in one cell

of size 0.5 fm reaches the slightly larger value of 2.5 (with a softer

EOS) (Figure III.H). At a higher energy, for Nb (1050 MeV/nucleon) + Nb

in the VUU approach, the density rises to a maximum of 2.7 at t - 5 fm/c

(compare the shock model value of 2.9) and then falls to 0.5 by 18 fm/c

(Figure III.5). There is thus a somewhat less interaction time at the

higher energy.

As a function of energy, the density reached in heavy ion

collisions is very similar in Au + Au (see Figure III.6), Nb + Nb, or Ar

+ KCl collisions for the VUU model. What is important for the maximum

density is not the atomic number, but the EOS: higher densities are

achieved with softer equation of states just as the simple shock model

predicts (Table III.1). Let us compare the central density achieved for

the NFM, VUU, and INC models for the reaction Nb (1050 MeV/nucleon) + Nb

at b - 2 fm:

Table III.2

NFM VUU INC

hard soft stiff medium

x (3) (3) (2) (3) (B)
P D P 9lab pomax omax omax °max omax
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150 2.65 3.18 1.61 1.90 3.25

1100 3.05 3.63 2.29 2.50 3.60

650 3.28 3.62 2.55 2.95 3.75

1050 3.311 3.91 3.00 3.60 11.00

Notice that the soft potential in NFM or the medium EOS in VUU allows

greater densities to be probed. Also notice that the densities

calculated with the VUU theory are much lower than those reached with

the less realistic intranuclear cascade model [Cug 81 J; this is due to

the compressional energy which the cascade model lacks.

One would also expect that the temperature increases in this

interaction region. For this strongly interacting system, it is not at

all a trivial matter to define the temperature. One can however gain

some insight from Hagedorn's thermodynamics [Hag 71] where in the large

mass limit

(pl->2 - MDT/2 . (1)

This corresponds to the non-relativistic case where the two transverse

degrees of freedom obtain the classical equipartition of kinetic energy.

The n/u instead of one comes out from calculating (pJ->2 instead of <pi>.

The y-direction alone may be further used to avoid some of the possible

contribution from collective effects in the x-z reaction plane: the use

of a small sphere centered around the origin also helps. This

temperature is then a classical one simply calculated as twice the

kinetic energy out of the reaction plane (the y - direction).

For Nb (1050 MeV/nucleon) + Nb in the VUU approach, the temperature

rises to 80 MeV by t = 9 fm/c (Figure 111.7) and then falls away as the

the density does (Figure 111.5). This temperature compares quite well

with the temperature of 78 MeV extracted from the simple shock model
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with the same stiff EOS. Thus after the compression phase the

temperature drops during the expansion: the system expands due to it's

large internal pressure and at densities p .. 0.5-0.7 p0 most of the

collisions between the particles cease: the single nucleon or fluid

dynamic description then loses its validity.

Temperature or slope parameter values may also be extracted from

the invariant cross section at 90 degrees in the center of mass assuming

a Maxwell-Boltzmann form. In fact the invariant cross sections for the

NFM approach are completely Maxwell-Boltzmann. A shoulder appears in

the VUU model; nevertheless, one can use the tails of the invariant

cross section spectra to extract T (Figure 111.8). The sl0pe

0

parameters overestimate the maximum temperature achieved by large

amounts at the highest energies (Figure III.8). Experimentally, one

finds that T0 varies with increasing multiplicity from 112 to 65 MeV for

Nb (MOO MeV/nucleon) + Nb collisions [Cut 85]; these values compare well

with the NFM (TO . 57) or VUU (T0 - 73 MeV) results. A more detailed

comparison would require a connection of multiplicity with impact

parameter. For Ca (“00 MeV/nucleon) + Ca, one finds similar

experimental values for the same multiplicity bins [Cut 85].

The temperatures T as calculated in the microsc0pic theories and

fluid dynamics [Std 81b] may be compared to the experimentally

determined slope factors To [Nag 81] of protons and pions emitted from

violent nuclear collisions at various bombarding energies (Figure

III.9). The data seem to rule out a pure nucleon Fermi gas at energies

ELAB > 800 MeV/nucleon. A mixture of noninteracting gases of the

different hadrons with an exponentially increasing hadronic mass

spectrum is in much better agreement with the data. However, one must
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keep in mind that the finally observed slope factors do not give a

direct measure of the temperature [Sie 79, Std 81b]. The actual

temperature in a central region at the moment of maximum compression is

lower than that extracted from assuming a Maxwell Boltzmann form for the

invariant cross sections (Figure 111.8).

2. Entropy

One may also try to calculate the entropy production in the VUU

model, although this is more difficult. Consider the simple case of a

system of non-interacting fermions. Then the entropy is

S - - Idr(fln(f)+(1-f)ln(1-f)] (2)

1. 3 3 n
where (if - —- d rd p is the phase space element and f - ——-—— is

3 n (11‘
(211?!) ~ ens

the average occupation number. What is to be expected for the behaviour

of S in an expanding system?

One must remember that in a reversible adiabatic expansion the

entropy does not change (2nd law of thermodynamics). In an

irreversible, adiabatic expansion between two equilibrium states, the

entropy generally increases. Adiabatic only means that there is no

transfer of heat with the environment. Even if the finite system could

be restored to its initial state, the increases in S can't be eradicated

- at most it can be passed from one system to another. In a non-

equilibrium closed system, the processes occur in such a way that the

system continually passes to states of higher entr0py until a complete

statistical equilibrium (S - Smax) is achieved. However, interacting

nuclei are not a closed system: the nucleons and fragments expand into

the vacuum.
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Suppose we have an expansion of non-interacting fermions and the

momentum distribution is fixed in time. Then it seems that since f is

proportional to p that as t + infinity, one might expect fran (2) that S

increases without bound. However, locally the momentum distribution

shrinks with time since 6 and 3 become strongly correlated at late

times: a particular distance from the origin of the expansion implies

specific values of the momentum [Sie 79]. The mean field in the nucleus

may produce an additional viscosity; thus it is not clear that one

should expect isentrOpic expansion after a certain time in a heavy ion

collision, as is assumed by non-viscous NFD.

Consider first equation (2) which will strictly be valid only for

late times if one can neglect the fragmentation phenomenon. Really

there should be a sum over the distribution function of different

fragment types [Rem 85b] in (2): fragments continually form as the

nuclear reaction proceeds. Note further that once the fragment's

momentum distribution is fixed, then the entropy is fixed. Thus a

calculated S value for times after fragmentation may also not be

meaningful. Furthermore, for t = 0, S must be equal to 0 since the

nuclei start in the ground state.

To evaluate (2) for the primordial baryon distribution, one must

calculate a six-dimensional integral. The volume element is

2 2drd(coser,)p2dp, or 8112r2drp2dpd(cosep) depending on(411)2r2drp dp, 8112r

whether none of the angles is important, coast. is, or cosep is. The

integral must then be converted to a sum to investigate the sensitivity

to these variables. For Nb (1050 MeV/nucleon) at b a 3 fm in the VUU

model, one finds

Table III.3
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t none coser cosep full 6D

10 5.011 5.02 11.82 11.21

20 6.82 6.79 6.66 5.35

30 8.20 7.98 7.88 5.85

110 8.69 8.55 8.55 6.38

For intermediate and later times, where the computation may be

meaningful, there is thus very little sensitivity to the variable er and

6p. However, the full 6D Cartesian coodinate calculation shows that

there is sensitivity to some other variable: in fact this is cosepr [Ber

81]. Furthermore, the full 6D calculation agrees well with the results

of doing the integration with this new variable (Figure 111.10) . There

is little sensitivity to the binning in r and p since the entr0py is

such a smooth function, but one must be careful with the cosepr binning.

At first sight, it is surprising that S does not approach a

constant in this computation. (The cascade does however saturate - see

below.) However, in the NFD model, S will approach a constant for the

Euler equations and even when there is shear viscosity present but not

when there is a bulk viscosity (Figure 111.11). Thus, the VUU model

mean field produces a similar effect. This does not imply that S

increases without bound, since it will in fact be fixed at the time of

nucleation when the fragmentation distribution becomes fixed or, more

correctly, when the wavefunctions approach asymptotia.

Equation (2) has been used in a cascade model to calculate S [Ber

81]. For Ca (800 MeV/nucleon) + Ca at b - 0 fm, it is found that S =

11.5 for 10 < t < 20 fm/c; as has been seen above for Nb, the cosepr

correlation is important. Without incorporating the cosepr correlation,

S - 5.5 is found. One may redo these calculations with the Cugnon INC
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(frozen) both as a check on the method and to compare with the VUU

approach:

Table 111.11

t SINC 811110

10 3.91 11.09

20 11.113 11.50

30 11.81 11.80

110 11.92 11.99

One thus finds the same value as [Ber 81] for t - 20 fm/c. However, the

entr0py goes beyond this value at later times and does not approach a

constant saturation value so quickly. Theoretically, since the cascade

model solves the Boltzmann equation, S must become constant after the

collisions cease. The VUU approach shows a slightly faster increase of

S. This is due to the mean field, which reduces the compression

achievable, thus increasing the available volume and keeps the system

from a rapid freeze-out. Collisions still occur at late times in bound

clusters not present in the cascade. Note further that there is a

strong impact parameter dependence of S: in the INC model the final

entropy rises from 11.5 to 7.5 as the impact parameter is increased from

0 to 6.5 fm [Cug 89b].

The entropy production in the NFD model is shown in Figures 111.11

and 111.11 for a Nb + Nb collision at 1100 MeV/nucleon and an impact

parameter of 3 fm. EntrOpy is created during the first 20 fm/c of the

collision. During that time the colliding participant zones of the two

nuclei are stopped and compressed. When the maximum density of the

system starts to drop (after 20 fm/c) the entropy has reached its

saturation value of about 2.7 per nucleon (identical to the shock model
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value - but not with the same EOS). The entropy even saturates when a

large shear viscosity n is present in the Navier-Stokes equations. Then,

the absolute value of the entropy rises from 2.66 (nonviscous) to 2.96

(n-20 MeV/fmzc - see Figure 111.11) to 3.17 (n-60 MeV/fm2c), but still

remains constant after 20 fm/c [Cse 80ab, Std 811, Buc 811a]. However,

note that when the bulk viscosity is included (11 - 20 and g - 20) , then

the entropy does not saturate; the bulk viscosity causes a non-

isentropic expansion because of the divergence in the volume.

A method that would allow the determination of the entropy from

experiment could yield important insight into the state of the matter in

the moment of highest compression and excitation during the collision.

Unfortunately, such an experimental determination is model dependent.

Note that there are other approaches to calculating the entropy if one

does have fragments. In particular, the formula [Sie 79, Ber 81]

dlike

like

 

S = 3.95 - 1n (3)

has been used. This follows from the Sackur-Tetrode relation in a

kinetic model for ideal gases where

3
dlike = d + 1.5 (t + He) + 3 a (u)

p =p+d+t+2(3He+a) (5)
like

This formula (3) has been used to extract entropy values from the

inclusive fragment data [Nag 81] and in cascade models [Ton 83]. The

experimental values of S vary from 5 ~ 5.5 for C + C, Ne + NaF, and Ar +

KCl and are thus larger than the shock model or fluid dynamic values. A

more sophisticated calculation using an approximation of (2) [Rem 85b]

on the experimental Ne (1100 and 2100 MeV/nucleon) + NaF central
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collision data [Nag 81] gives entropy values of 3.69 and 5.110

respectively; the nucleons only contribute 2.511 and 3.83 units

respectively. By summing over the different fragments in (2),

contributions from pions and light fragments are incorporated.

For Ar (112-137 MeV/nucleon) + Au, one finds S - 2 - 2.11 using a

quantum statistical model and S - 14 - 6 using the d/p formula [Jac 83].

The QSM gives S - 11.0 for mid-rapidity fragments (participants) and S =-

1.8 for heavy fragments (spectators) [Jac 8”] from 30 MeV/nucleon to 350

GeV/nucleon. The d/p ratios tend to give higher S than the

thermodynamic formula 1.19. In fact, the d/p formula is only valid for

high T [Hah 85b]. Recently extracted values from Nb + Nb high

multiplicity data are 3.A and 3.7 for 400 and 650 MeV/nucleon and for Ca

+ Ca 3.9 and 11.3 at 1100 and 1050 MeV/nucleon. These values are from a

full quantum statistical calculation from fitting'the observed

asymptotic d/p, t/p, He/p, and a/p values [Han 85b]; they also agree

with values extracted using an approximation to (2) [Rem 85b] and

summing over the different fragment types [Hah 85b]. This quantum

statistical model includes the decay of the particle unstable excited

nuclei [Std 8A],

11* + (1-1) + p, (6)

which are important especially at intermediate and low energies [Std

811].

Recent data from the GSI/LBL Plastic Ball collaboration have made

clear that experimentally the d to p ratio depends strongly on the

multiplicity of the event in which the particles are emitted: in

peripheral collisions, which dominate the inclusive particle spectra,
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the ratio is much smaller than in central collisions with high

multiplicity [Dos 85].

One may also try in the VUU model to extract the energy dependence

of the entropy values from (2) at the time when the density in a central

region is 0.5 po or from (3) by clustering the nucleons into fragments

(see below) (Figure 111.12). The shock model values are somewhat less

than the values extracted from (2) for Au + Au; this may be due to the

finite impact parameter b =- 3 fm [Cug 84b] and the fact that fragments

have not been incorporated into the calculation. The values extracted

from the d/p formula after a six dimensional coalescence are S - 5,

although the constancy with energy may be an artifact of the chosen half

density time. These VUU results are meant to be only qualitative.

3. Equilibration

What is the effect of collisions in a heavy ion reaction? For p +

A reactions, the mean time between collisions is relatively long and

there is little multiple scattering of other than the projectile; so it

is questionable whether thermal or chemical equilibrium can be

established [Boa 85a]. The VUU model has been used to study this

question for nucleus-nucleus collisions. In particular, the system Ar +

Ca has been studied in the mean field approximation without two body

collisions [Kru 85b], thus mimicking TDHF by solving the Vlasov

equation.

The lack of two body collisions results in strongly forward peaked

angular distributions, in qualitative agreement with 3D TDHF

calculations [Std 80a, 81a] in this energy regime. The top of Figure

111.13 snows the initial state in momentum space for Ar (137 MeV/N) +
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Ca; note that at this energy the Fermi spheres of target and projectile

nuclei are well separated. The Ar projectile moves in the positive 2-

direction, while the Ca target moves in the negative z-direction in this

center of mass frame. The middle and bottan of Figure 111.13 show the

final state of this reaction as obtained in this approach without and

with the Uehling-Uhlenbeck collision term. Note that the momentum space

distribution is practically unchanged in the mean field calculation--

equilibration of the momenta is not observed--while the inclusion of the

Uehling-Uhlenbeck collision term results in strong equilibration: the

isotropy in the bottom of Figure 111.13 is indicative of substantial

thermalization.

A convenient way to compare momentum distributions is to use the

ratio of transverse to longitudinal momenta

R-2/112p‘L/Zpl' , (7)

where p and p11 are the momenta perpendicular to and parallel to the

i

beam. For an isotropically expanding system, one finds R - 1 in the

center of mass frame [Str 83]. Comparing the ratio of final to initial

R values, one finds 1.08 for the mean field only case and 2.05 for the

mean field + collisions approach. At lower energies, the difference is

not as dramatic; the initial R values are already high (but less than

one) since the nuclei overlap more in momentum space--furthermore, most

of the collisions are Pauli blocked. But the collision term always

leads to increased isotropy. In configuration space, one finds

transparency when the Vlasov equation is solved and a substantial

degrading of the initial momentum occurs once the collision term is

included [Kru 85b, Aic 85a].
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The time evolution in configuration space in the three dimensional

TDHF [Std 80a,81a] and Vlasov equation calculations [Aic 85a] is shown

in Figure 11.6 in the left and middle for the lighter system C (85

MeV/nucleon) + C at b - 1 fm . There is a very similar behavior in both

the quantum mechanical and classical mean field theories: both

calculations exhibit transparency and nearly identical small

longitudinal and transverse momentum transfers. The lack of two body

collisions results in strongly forward peaked angular distributions, in

sharp contrast to the data in this energy regime [Kru 85b, Aic 85a].

Both theories predict that for central collisions of C + C the nuclei

slip through each other and survive the reaction rather intact.

Just like for the Ar + Ca system [Kru 85b], the inclusion of the

Uehling-Uhlenbeck collision integral changes this drastically (right of

Figure 11.6): each individual reaction can now be separated into two

clearly distinct components. First, observe the slipped-through

projectile- and target-like fragments, which now retain about 10% of the

nucleons and less than 20% of the initial longitudinal c.m. momentum. As

one sees in Figure 111.11, these slipped-through residues contain mostly

particles which have not scattered at all [Aic 85a].

The second component consists of the 60% of the nucleons which have

undergone at least one nucleon-nucleon scattering and form a non-

equilibrated mid-rapidity system with an almost isotropic emission

pattern. At even higher energies, Ar (800 MeV/N) + Pb (see below).

complete stopping of the projectile in the target is predicted [Mol

8Nb]. What then is the reason for the incomplete deceleration for the C

+ C system? At these low energies a rather large fraction of the

attempted nucleon-nucleon collisions are forbidden by the Pauli blocking
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of the exit channels and the nucleon's mean free path is effectively

longer as a result of the Pauli principle [Aic 85a]. Furthermore, the C

+ C system is rather small, hence the chances for a nucleon-nucleon

collision to occur is smaller than in a bigger system.

At intermediate impact parameters, negative angle scattering is

observed in both pure mean field approaches, and again the classical and

the quantum approach agree remarkably well [Aic 85a]. Inclusion of the

collision term results in less inward scattering. The midrapidity

source is much less apparent; two slightly decelerated and excited

residues survive the collision. The effect of the collision term is

less dramatic at these larger impact parameters due to the smaller

geometrical overlap of the nuclei, which reduces the number of runaleon-

nucleon collisions.

Figure 111.111 shows the reaction C (85 MeV/N) + C at b =- 1 fm in

more detail [Aic 85a]. The initial and the final distributions in

configuration and momentum space are displayed. Particles which did not

undergo any collision (Nc - O) and scattered particles (Nc > 0) are

distinguished between. The mid-rapidity region consists almost

exclusively of scattered particles. The high momentum components of the

initial momentum space distribution get most effectively depleted by

collisions because for them the Pauli blocking is least effective. A

collective deceleration of the projectile-like fragments is caused by

the mean field. Those particles which have undergone collisions exhibit

a nearly isotrOpic distribution in momentum space.

The dependence of the nuclear stopping power on the target mass has

also been studied [Aic 85a] in the VUU approach. Central collisions of C

(85 MeV/nucleon) projectiles with 6 different targets from C to Au have
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been analyzed. The number of projectile nucleons undergoing at least one

collision increases from about 60% for the C target to about 97% for the

Au target. An almost complete stopping of the projectile in the target

occurs for the heavier targets.

The number of projectile nucleons being emitted without having

undergone a collision up to a time t - 160 fm/c is shown in Figure

111.15 as a function of the target diameter Dt for 100 parallel

ensembles [Aic 85a]. Observe the exponential fall-off with Dt of the

number of un-collided nucleons. This can be reproduced by assuming that

the mean free path of the nucleons in heavy ion collisions in this

energy region is A - 2.6 fm, which is larger than the mean free path

estimated from classical kinetic theory, Ac - 1/0 - 1.5 fm. This

difference is mainly due to the effects of the Paul i-principle. Other

counter-acting effects are the density increase in the collision (which

decreases A) and the finite deceleration due to the mean field (which

also decreases A) . The extraction of the mean free path is important

since at low energy it is related to the question of one body versus two

body dissipation and at medium to high energy to the question of the

validity of the NFD approximation; clearly, with such mean free paths,

it can only be coincidental if nuclear fluid dynamics describes the

correct physical observables especially for light systems where A - th

Fluid dynamics may well be a reasonable approximation for the heaviest

systems like Au + Au. This is another reason why one needs a tractable

approach like VUU or NFM.

The momentum degradation for C + C at these low energies and

central impact parameters is a good introduction to results obtained

with the VUU method for Ar + Pb at 92, 1100 and 800 MeV/nucleon
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bombarding energy [M01 8%]. Let us examine the evolution of the single

particle distribution function as calculated from the VUU approach for

Ar (770 MeV/nucleon) + Pb collisions. In Figure 111.16 and 17 one

displays projections of the distribution function into configuration and

momentum space for this system. It is remarkable how closely these

figures resemble Figure 11.13 and 111, calculated with the Nuclear Fluid

Dynamic model [Gra 811]. In the VUU approach, the collision term is

essential at both intermediate and high energies, as one expects

intuitively: in NFD, the fluid assumption mocks up a collision term.

At low impact parameter the Ar projectile is completely consumed by

the Pb target as well in configuration as in momentum space (see Figure

111.16 and 17). The t-O configuration space plots show the correct

nucleon-nucleon center of momentum frame Lorentz length contraction by a

factor 1/Y - .85. In configuration space, for t - 10 fm/c, the squashed

elliptical to octupole shape is an indication of the high density formed

in these collisions. For example, at 1 fm impact parameter, the density

within a sphere of radius 2 fm centered at the origin reaches 2.7 p0 at

5 fm/c; then, the density falls very rapidly - by 17 fm/c it is below

the ground state value.

The directed sidewards flow of nucleons is easily seen in

configuration space (Figure 111.16) at b .. 3 and 5 fm by the excess of

nucleons in the quadrant with x < 0 and z < O with non-zero p)( as early

as t s 20 fm/c. Spectator fragments are also observed, namely at b - 5

fm. The projectile is seen to not just shear off the target; it rather

experiences a substantial transverse momentum transfer away from the

region of high density - the bounce-off effect predicted earlier on the

basis of nuclear fluid dynamics [Std 80b, Buc 83a,811a]. Thus, simple
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geometric models [Wes 76, 003 78] are only a very poor approximation to

the rather complicated reaction dynamics illustrated here.

The momentum space evolution of the single particle distribution

function diaplayed in Figure 111.17 shows rapid equilibration at low

impact parameters: the projectile sphere in momentum space is rapidly

depopulated by two body collisions at b - 1 and 3 fm. At t - 5 fm/c

substantial filling of the nucleon-nucleon center of momentum region is

seen, indicating the formation of a participant zone. At t - 10 fm/c,

there are practically no nucleons left in the originally densely

populated projectile momentum sphere; almost all of the projectile

nucleons have been scattered out of their initial momentum states. At b

- 1 fm, this scattering has been with about equal probability into the

positive and negative px direction. At b - 3 fm, a preference for the

positive px direction can clearly be observed - this is due to the

expansion of the compressed participant matter away from the high

density repulsive interaction into the vacuum. At t - 110 fm/c the

number of hard nucleon - nucleon collisions has become negligible, the

final state in momentum space is closely approached. Secondary,

tertiary, and higher order collisions of the participants have resulted

in a further decrease of the number of fast particles and in a more

diffuse momentum distribution in the projectile hemisphere, with a very

pronounced visible sidewards flow at b - 3 fm.

At the intermediate impact parameter, b =- 5 fm, the situation is

even more complicated: since projectile and target exhibit only about

half overlap, there are a substantial nunber of projectile nucleons or

spectators which do not collide at all with the target nucleons. Hence

there is only a partial depopulation of the projectile momentum sphere:
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part of the projectile is st0pped and forms the participant zone

together with the struck nucleons from the target, while the projectile

spectators move ahead with nearly their initial longitudinal momentum.

The behavior of the participant nucleons is almost the same as at the

lower impact parameters - equilibration is achieved rapidly (t . 10

fm/c) and sidewards flow is observed.

The projectile nucleons which have not undergone collisions, and

thus the projectile-like fragments formed from them, exhibit a finite

transverse momentum transfer into the same direction as the directed

participant side splash. This bounce-off of the participants is a

result of the repulsive interactions felt by the spectators in the

vicinity of the compression zone. The simultaneous occurrence of this

bounce off and the sidesplash has recently been observed experimentally

in symmetric [Gus 811] and asymmetric [Ren 811] systems with high

statistical confidence.

The equilibration at low impact parameter goes hand in hand with

nuclear stopping; without the collision term, the nuclei are

transparent. As a reference case, one may also solve the Vlasov

equation by turning off the collision term; then the final momentum

distribution looks very much like the initial one, as was seen above at

lower energies (Figure 111.13). The filling of the intermediate

rapidity region is thus a consequence of the collision term.

An accessible experimental quantity is the longitudinal momentum

(pz) distribution in the laboratory frame. The multiplicity dependence

of this quantity should give information on the nuclear st0pping.

Initially the Ar nuclei form a bump at beam momentum pz- 11130 MeV/c,

whereas the Pb nuclei are at rest. In the final state at the lower
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impact parameter one sees evidence of nuclear st0pping: there is no

projectile remnant and the Pb target is accelerated. At the higher

impact parameter, there is less stopping: one sees some projectile

remnants and the target-like fragments are less accelerated [Mol 8ub].

An analysis of these processes for symmetric systems has also been

done. Figures 111.1 and 2 show the evolution in momentum and

configuration space of Nb (MOO MeV/nucleon) + Nb collisions and Figures

111.18 and 19 at 1050 MeV/nucleon in the VUU transport equation

approach. The above discussion for Ar + Pb holds almost verbatim for

the symmetric case. In particular, note how the depopulation of the

projectile and target Fermi spheres depend on impact parameter. Of\

course, the reaction proceeds faster at the higher energy: the

interaction time is smaller since the time for which a hot compressed

interacting zone exists is shorter (see Figures 111.3 and 5).

Note in the configuration plots that the collision term is not much

less effective at the higher energy. Consider however that the final

degree of isotropy is less at the higher energies:

Table 111.5

VUU NFM

stiff medm hard soft

R

Elab b- 1 ba 2 b- 3 ba 2 b- 2

50 - - 0.90 - - 0098

150 0.90 0.80 0.70 0.75 0.93 0.90

250 0.92 0.79 0.65 ‘ " "

1100 0.914 0.78 0.611 0.73 0.86 0.76

650 0.92 0.77 0.61 0.71 0.82 0.67



127

Nb (1050 MeV/nucleon) + Nb

' * 'u'-'san1' ' ' 1' '81-'5th

1.

 

 

 

 

  
   

 

 

 

 

2
(
1
m
)

   
 

 

 

    
  

Figure Nb (1050 MeV/nucleon) + Nb at b =- 1, 3, and 5 15‘!!! in

111.18 configuration space as a function of time (VUU).
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800 0.91 0.75 0.61 - - -

1050 0.87 0.73 0.58 0.68 0.711 0.118

One thus sees how sensitive the degree of isotropy is to the stiffness

of the EOS or the short range part of the nuclear force. The larger

repulsion has the effect of causing greater isotropy. However, the

decrease of R for the participants with energy in both VUU and NFM may

be less because the spectators tend to have higher p” at the higher

energies. This R calculated for all the protons is thus not a sensible

measure of the degree of local equilibration of the participants.

However note that at a given energy, the degree of equilibration

is, of course, the greatest for the most central impact parameters and

this is reflected in the above R values. The collision term fills the

mid-rapidity region in momentum space more strongly at the lower impact

parameters. The softer equation of state results in less equilibration,

as one would expect. Furthermore, turning off the Pauli blocking

increases the R values by about 10%. The classical NFM generally

results in a greater degree of isotropy.

u. Fragmentation and the Liquid-Gas Phase Transition

Clearly the questions of equilibration and entropy production are

related to the fragmentation problem. The fragments and the pions are

the only messengers from the reaction which are observed experimentally.

They carry all the available information about the initial dense state

of the system, modified by the ensuing expansion and any freeze-out. The

physics of their formation is a topic of great current interest because

of their possible relation to the entropy and the nuclear liquid gas

phase transition [Std 83, Cse 85]. Experimentally, it is found that a
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great number of composites are produced in nucleus-nucleus collisions in

the same range of energy and angles as the detected nucleons [San 80a,

Lem 79]. Mainly peripheral collisions produce composites through

evaporation since they result in excited projectile and target fragments

[Col 78]. The possibility of direct knock-out of pre-formed composite

clusters would require the existence of very strong correlations and a

low average momentum transfer [Aic 890].

How does one handle fragments in a single nucleon model or in fluid

dynamics? In practice, the hydrodynamic calculation is stopped when

the average density is .. 0.5po. Then the light fragment composition may

be determined from a statistical model by assuming that the baryon

nunber and energy per particle of the interacting nucleon fluid is

conserved. The quantum statistical model [Gos 78, Sub 81, Std 83, Hah

85b] used to calculate the fragment yields assumes that chemical

equilibrium between the different fragments (p, n, d, t, ’He and 01's

...) is established at this late stage of the reaction. This assumption

is supported by rate calculations for the appropriate densities and

temperatures [Mek 78ab]; however, it is probably only marginally true at

best.

The idea of final state interactions [But 63] between participants

fits naturally into the VUU approach since these have to do with the

rescattering contribution (participant-participant interaction).

Physically, nucleons collide with each other to form composites. In

this spirit, a generalized 6-dimensional coalescence model has been used

to find the nucleons bound in clusters and prevent them from

contributing to the proton cross sections [Kru 85b]. This coalescence
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is especially important at medium energies, where a large fraction of

the emitted protons are found to be bound in fragments.

In this coalescence scheme, a nucleon is part of a cluster, if it

is within a configuration space distance ro from some other member of

the cluster and within a momentum space distance p,3 from the center-of-

momentum of the cluster. The sequential evaporation of protons from

residual fragments is neglected: one would improve the calculation by

including these. The generalized coalescence prescription has been used

to calculate inclusive proton spectra from the primordial nucleon

(distribution with ro - 2-3 fm and po - 200-300 MeV/c [Jac 85]. This

approach gets further support from the agreement of the predicted

fragment yields as a function of fragment mass to the experimental data

for masses 1 - 111 [Jac 85].

Figure 111.20 shows the comparison between calculated and measured

proton spectra for H2 and 92 MeV/nucleon Ar + Ca. The calculated

absolute cross sections and the slopes of the spectra agree reasonably

well with the data. In contrast, a simple cascade simulation cannot

reproduce the medium energy data [Kru 85b]. [Aic 850] has shown that

un-coalesced proton spectra from the VUU approach compare very well with

experimental data if they are simply sealed.

The VUU approach may shed some light on the relative importance of

direct N-N reactions versus phenomena involving many nucleons

simultaneously by considering coincidence cross sections.

Experimentally, the relative contributions bf direct versus

multiparticle interactions has been studied for C + C, Ar + KCl, and C +

Pb at 800 MeV/nucleon [Tan 80], for C + C at 85 MeV/nucleon [Car 85],

and recently for C + C at “0 MeV/nucleon [Fox 85]. When the ratio of in
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to out-of-plane correlations was measured for the higher energy C + C

cases, a significant enhancement was observed at energies and angles

corresponding to quasi-elastic N-N scattering. For the heavier system

Ar + KCl, similar measurements showed less enhancement. Using the

reaction C + Pb the ratio was nearly constant as a function of the

observed proton energy. At 110 MeV/nucleon, one might expect that the

low multiplicity of protons might lead to a strong apparent direct

component. On the other hand, the Fermi spheres of the projectile and

target do overlap somewhat in momentum space possibly masking any quasi-

elastic component. The experimental results and the VUU calculation

support the latter conclusion (Figure 111.21).

At these intermediate bombarding energies, E < 100 MeV/nucleon,

lab

the temperatures are not high enough (T < 20 MeV) to cause substantial

hadronization. However, another interesting phenomenon, a liquid-gas

phase transition, has been predicted to occur in the late stages of the

collisions when the density has dropped below normal nuclear matter

density [Dan 79]. This is one of three different scenarios possible for

the fragmentation of large nuclei by medium energy projectiles:

statistical emission from a hot system (governed mainly by the available

phase space) [Fai 82, 83, Fri 83ab], the passage of energetic nucleons

from a hot spot (random shattering of the cold spectator matter) [Aic

811cd], expansion of the hot nucleus leading to lower densities and a

liquid-vapor phase transition [Hir 84, Ber 83, Pan 84, Lop 8A]. In this

third scenario, which is considered here, the study of fragment yields

offers a possibility to study the nuclear EOS at higher temperatures and

lower densities than the ground state.
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The pressure diagram P(p.T-const) of infinite nuclear matter shown

in Figure 111.22 [Std 83] exhibits the maximum-minimum structure typical

for matter with long range attraction and short range repulsions (e.g. a

van der Waals gas). This can be interpreted as a liquid-vapour phase

transition in low density nuclear matter. The nuclear 808 exhibits a

critical point at pc - 0.14m, , Tc - 18 MeV, and SC - 3 [Std 83]. It

turns out that these values are not too sensitive to the details of the

assumed interaction [Kap 814, Cse 85]. Experimental estimates for T for
C

finite nuclei currently vary around 10 MeV [Pan 811]; from Ne (20

MeV/nucleon) + Au data, it has been estimated that T is as low as 5.0
C

MeV [Mac 85].

The liquid and the vapour phase can coexist in a well determined

density regime once the temperature is less than the critical To (the

shaded area in Figure 11.22). Moderate T values may also be achieved in

the late expansion stage at higher energies due to the cooling that is

associated with expansion. The condition for thermodynamic stability of

the two phase system is:

T (8)
liquid. Tgas' Pliquid. I)gas' ”liquid' “gasi

At the critical point, Pc(pc’Tc)’ the isothermal has a saddle point .

One can make a first step towards a realistic microscopic nuclear

EOS by solving for thermal properties of finite nuclei within a mean

field approximation using a realistic Hamiltonian in finite temperature

Hartree Fock [802 85, Blo 58]. By studying the dynamics of the nuclear

di sassembly, one sees how the mass spectra and multiplicities vary [with

temperature to indicate a phase transition [Kno 84].

Unfortunately, the question of entropy is important also for this

hypothetical phase transition. From rough calculations of the entropy
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from (2) in a cascade approach to p + A reactions, it is found that for

the reaction path near the liquid gas phase transition, fragmentation

more resembles bubble growth than droplet formation [Boa 85a].

Experimental p (500 MeV/nucleon) + A reactions give S - 1.6 - 2.0 [Jac

81%]. Using the cascade model, one finds S - 0.15 - 0.5 in the 100-500

MeV/nucleon region [Boa 85a]. One can estimate a 0.3 increase in S due

to the E08 and that the fragment surface and droplet kinetic motion also

contribute 0.3 units [Boa 85a]. As has been seen above, the calculation

or extraction of the entropy is non-trivial - thus such results are only

preliminary.

The language of percolation theory is appropriate to discuss phase

transitions [Sta 79]. Suppose one has an infinite lattice of sites

which can be occupied or not. Physically, we have in mind a rough

analogy to a lattice in phase space. Let p be the probability that a

lattice site is occupied. Then there is a critical probability pC

analogous to a critical temperature TC. For p > pC, there is one

infinite cluster; for p < pC, no percolating network exists. Thus

percolation is a phase transition since the system or lattice exhibits a

qualitative change at a sharply defined parameter value. For physical

phase transitions, p-pC is analogous to TC-T. To describe the

condensation process (nucleation) in a gas, one may group the gas

molecules in a cluster or droplet [Fis 67, Vic 85]. The coalescence

model which is applied to the final state is essentially percolation in

phase space [Bau 85, Cam 85, Vic 85]; however, connections between a

critical probability and any nuclear dynamics still need to be made.

One may thus look for qualitative changes of e.g. the central

density time evolution in a dynamic model of the nuclear disassenbly
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[Vic 85]. Let us use the VUU and NFM models and initialize a hot (T -

5.10.15, and 20 MeV) compressed (p/po - 1.5) system of 20 protons and 20

neutrons using a finite temperature Fermi gas distribution. Then allow

the system to expand.

In Figure 111.23, the central density for this hot expanding system

at the different initial temperatures is shown. Note the sharp critical

behaviour for 5 < T < 10 MeV, especially for the VUU case (top). For

the NFM model, the Coulomb force tends to reduce the change somewhat;

the density at t - 6O fm/c increases by 7% when the Coulomb force is

turned off. However, the NFM many nucleon force never allows the

density to dip as low as quickly as it does in the VUU approach.

One may also look at nucleus-nucleus collisions for the same

qualitative change. For Au + Au at 50 MeV/nucleon and 250 MeV/nucleon,

the evolution of the central density in the VUU approach is shown in

Figure 111.214. Note again the sharp difference between the two

temperatures. The inferred maximum temperatures are T - 19 and 35 MeV;

these values are in fact overestimates since classically the T - 0 Fermi

gas has an apparent temperature since there is non-zero kinetic energy.

One must also realize that for E < 100 MeV/nucleon, one should more

realistically base T on the relative population of states (which are not

included in the VUU model); experimentally, one then finds temperatures

of about 5 MeV at the lower energy [Poo 85].

5. Pion Production and the Equation of State

Let us now return to the high temperature and density domain and

consider how pion yields can be used to study the nuclear equation of

state [Sto 78, Dan 79, Hah 85a]. Stacker, Scheid and Greiner first
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proposed to measure the stiffness of the nuclear EOS via the pion

multiplicities. The first exclusive measurements of the pion

multiplicities as a function of the participant multiplicity [San 80b]

have been used recently to extract the compressional energy via the

proposed method [Hah 85a, Bar 85] and via a substraction procedure,

which used the cascade model (which does not employ any compressional

energy) as input [Ste 82]. The data can only be reproduced if a very

stiff compression potential is assumed (see Figure 11.7). The assumption

of immediate freeze-out in the high density stage in this procedure

could overestimate the pion multiplicities [Std 810, 814]. However,

cascade calculations indicate that the pion degree of freedom decouples

from the baryonic 'heat bath' very early in the collision (see Figure

111.27 for the VUU time dependence), namely in the high density stage

[Cug 80, Sto 82].

Shown in Figure 111.25 is the pion multiplicities calculated with

the simple shock model [Hah 85a]. The linear equation of state withKl

. INOO MeV and the quadratic one with Kq . 800 MeV give the best fit tCI

the observed pion yields over the whole BEVALAC bombarding energy range.

With respect to the large values of K, one must keep in mind that they

are fitted for densities far away from normal nuclear matter density

[Hah 85a].

To study ttmnunodynamic variables and pion production on the

microscopic level the VUU theory has been employed [Kru 85a]. Pions of

different isospin are produced in this model via the production [of A-

resonances in elementary nucleon-nucleon collisions: thus both

production and absorption mechanisms are treated microscopically. The

VUU approach has been tested by turning off the Pauli blocking and mean
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potential field. Then the parallel ensembles decouple and the test

particles move on straight line trajectories until they scatter: the

intranuclear cascade model is recovered. The pion yields calculated with

the VUU method in this cascade mode agree quantitatively with results

obtained with the conventional cascade [Cug 80, Yar 81]. Both results

differ substantially from the data (Figure 111.26).

If the nuclear compression energy and the Pauli blocking are

introduced in the VUU method, the pion multiplicities change

dramatically, as shown in Figure 111.26 [Kru 85a]. Take the 360

MeV/nucleon case, for instance. The 1r- yield is 1.05 in the cascade

mode, but dr0ps to 0.56 if the compression energy (stiff EOS) is

included; the suggested large difference due to the nuclear matter EOS

is observed. The pion yield drops further to 0.116 when the VUU Pauli

blocking is applied. These results have been confirmed by an

alternative VUU prOgram [Aic 850].

The pion multiplicities as calculated with the full VUU theory are

also shown in Figure 111.26 as a function of the bombarding energy. The

VUU theory with stiff EOS plus phase space Pauli blocker compares well

with the data whereas the cascade mode overestimates the data by factors

> 2 at energies up to 1 GeV/nucleon. The required drop in the predicted

pion yield is due to the transformation of kinetic energy into potential

energy during the high density phase of the reaction as well as due to

Pauli blocking. To check the sensitivity of the pion yields to the EOS

the calculations have been repeated with the medium EOS. At 772

MeV/nucleon one finds nw- - 2.145 and 2.13 with the medium and the stiff

EOS, respectively. At lower energies, statistical errors of 10% prevent

an accurate assessment of the effect of the potential. At other
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energies, where the errors are < 3%, the calculation with the medium EOS

overestimates the yields systematically by about 10%.

The time dependence of the total pion multiplicity as calculated

from the VUU approach for Nb (1050 MeV/nucleon) + Nb collisions at b - 3

fm is shown in Figure 111.27. The pion number rises rapidly to a

maximum value at t - 10 fm/c and drops then to a stable final value at

20 fm/c. There is a small but significant effect due to re-absorption

until the pions escape the hot interaction zone. It should be

emphasized that in this theory - as in the previously discussed cascade

calculations - the pion yield approaches it's asymptotic value at a

time,vnuxm.near1y coincides with the moment of highest compression

(Figure 111.5) and temperature (Figure 111.7). thus demonstrating that

information on the high density stage can be obtained [Sto 82, Cug 82].

The bombarding energy dependence of the total pion multiplicity at

b . 3 fm for Nb + Nb collisions is shown in Figure 111.28. The

agreement with the shock model values with the same stiff EOS

Table 111.5

K nmed ns'ti

lab pi pl

50 0.0 0.0

150 0.2 0.07

250 1.9 1.0

000 7.7 0.7

650 20.7 15.3

800 30.1 22.5

1050 43.7 33.9

is remarkable. In the VUU approach, there is a strong energy dependence

(Figure 111.28) as there was for Ar + KCl (Figure 111.26). The decrease
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of the total pion yield with impact parameter is almost linear (the

decrease is faster when the impact parameters are nearly peripheral).

This provides some Justification for the usual extrapolation of

multiplicity selected pion data to zero impact parameter. There is also

a large effect due to atanic number: for Nb + Nb at 1100 MeV/nucleon and

t>- 3 fm, we have n“ - 2.9, wheras for Au + Au n“ . 5.7. For the

system Ali-*.Au, the pion multiplicity for b - 3 fm collisions is shown

in Figure 111.29 for the different isospin channels in the final state»

Note that the VUU theory predicts a distinct difference of the pion

multiplicity with a charged pion ratio 1r-/ 1r+ . 2 (Figure 111.29) for

the neutron rich Au + Au systan.

The VUU approach has also been used to study pion production in

asymmetric nucleus-nucleus collisions [M01 8%]. How do asymmetric

collisions compare with symmetric ones of the same atomic mass, when the

same number of nucleons is involved? For the Ar (770 MeV/nucleon) + Pb

case at b - 3 fm we obtain n1T - 9.9, which is less than the pion

multiplicity for Nb + Nb at the same energy (n1r . 12.0) even though the

united mass is greater for the asymmetric system. Thus asymmetric

systems appear to be more efficient in absorbing pions; this is due to

the large amount of cold spectator matter. For the Ar + Pb system, tJu:

total pion multiplicities vary from 10.6 at b - 1 fm to 3.7 at b - 7 fm;

again, an almost linear relation with b is found. About 25-30% more

pions are created when the Pauli blocking is turned off; equivalently,

with the Pauli principle turned on, many collisions that would otherwise

produce pions are forbidden by Pauli blocking.
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6. Collective Flow and the Equation of State

1.ittle information about the details of the reaction mechanism can

be extracted from comparison of the inclusive data to impact parameter

averaged calculations. As has been seen, the pion yields are sanewhat

sensitive to the 15:08. But for example, in spite of it's obvious

presence at small impact parameters, no signatures of the collective

sidewards flow predicted by the fluid dynamical calculations for central

impact parameters seems to be visible in the calculated inclusive cross

sections [Ams 75 and Web, Buc 83b]: only by triggering for nearly

central collisions (high multiplicity selected events) can the

sensitivity of the experiments be improved.

First fingerprints for collective flow have been found in early

high multiplicity selected particle track detector experiments [Bau 75].

which exhibit sidewards maxima in the angular distribution of He nuclei

emitted in very asymmetric reactions, e.g. C + Ag. Also the double

differential cross sections of light fragments (p,d,t), emitted from

highInultiplicity selected reactions of Ne + U, exhibits sidewards

maxima, in accord with the longstanding predictions of the nuclear fluid

dynamical model [Sch 7“, Std 80ab], while the intranuclear cascade model

predicts forward peaking [Std 81c,82b]. Hydrodynamic calculations

without thermal breakup yield sidewards peaks which are too narrow [Std

81c,82b]. The simplified two component and firestreak models giwe

similar results as the three dimensional cascade calculations.

.As the bombarding energy is increased, relativistic effects become

increasingly important. Already at 000 MeV/nucleon the relativistic
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treatment has a substantial influence on the spectra [Std 80b] of

protons, deuterons and tritons emitted from central collisions of Ne +

U. The relativistic calculations [Gra 811] give much improved agreement

with the data [Std 80b] compared to the nonrelativistic calculations.

The forward emission of particles is still strongly suppressed

exhibiting sidewards maxima.

The qualitative features of ¢-averaged (where ¢ is the azimuthal

angle) distributions do not change dramatically with impact parameter,

once violent collisions with b<~4 fm are selected. This means,

unfortunately, that m-averaged double differential cross sections are of

limited value for obtaining information on details of the reaction

dynamics and on the nuclear equation of state [Ber 78,Std 80b].

With the cross sections discussed above the standard observable of

nuclear collisions has been discussed. However, this observable

describes more or less final state features of the reaction, i.e. the

situation after the freeze-out of different clusters. Therefore a lot

of different models like the fireball [vies 76, Cos 78] or the cascade

[Yar 79,Cug 80] reproduce at least some (i.e. inclusive) experimental

results fairly well. But, the principal difference (e.g. stopping,

compression, sidewards emission, bounce-off) between NFD or VUU and

other models cannot be seen in the double differential inclusive

spectra. Selection of high multiplicity events helps a little, but still

more information is needed.

The first step in order to find messengers from the compreSSion

phase is to look for the quantitities which are integrated in the

equations of motion. Such a quantity is the density, for example. But

the density rises and falls off during the reaction. A density
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distribution is not observable in experiments. The various momentum

components also have very different histories during the collisions. Pz

starts with a high value and decreases, whereas py and px are built up

and saturate. On first glance it seems that only the direction of 3

could be interesting. In the experiment there is only a distinction

between pH and pi possible, reducing the outcome of information.

However, in each event there is a distinction between px and py if the

reaction plane is chosen to be the xz-plane; more detailed information

can be obtained by an event by event analysis where all the momenta of

the fragments from a single nuclear collision are measured.

In an event by event analysis, the individual collisions are

analyzed by diagonalizing the kinetic energy flow tensor [Gyu 82]

Fij - E p1(v)pj(v)/2m(v) (9)

or the momentum flow tensor:

PiJ-E [91(v)pj(v)/IP(V)IJ/Evlp(v)1 (10)

where the sum is over all charged particles in a given event and (i,j)

represent the Cartesian components (x,y,z). By diagonal izing this

tensor, the flow angle 9F is obtained for each event.

Let us now turn to the microscopic NFM and VUU theories and compare

their event by event predictions to NFD, INC, and experiment. In' the

Newtonian Force Model [Bod 77, Nil 77, M01 84a], for Nb (400

MeV/nucleon) + Nb at b - 3 fm, the computations are stopped at t - 3O

fm/c, by which the flow results have become constant. The evolution of
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a collision at b - 3 fm impact parameter was shown in Figure 11.1. The

resulting sidewards flow can clearly be seen. The demonstrated strong

correlation between configuration space and momentum space can be

attributed to the repulsive short range component (see below) of the

nucleon-nucleon potential [Mol 84a].

The distribution of flow angles dN/dcoseF is presented in Figure

111.30 for various impact parameter intervals. The qualitative behavior

of the flow pattern in the NFM model is as follows: the flow angle 913‘

rises smoothly from 0° at large impact parameters to 90° at b-O fm.

Such large changes in the peak flow angle are not seen in models which

lack compressional energy like the intranuclear cascade model [Mol 85b].

The contribution of zero impact parameter collisions to the observable

cross sections is negligible. Thus a finite range of impact parameters

is sampled to compute the distribution of the flow angle, dN/dcoseF,

which is to be compared to the experimental data of the GSI/LBL

collaboration (Figure 111.30).

Figure 111.31 shows the experimental data [Gus 811] for the Nb (1400

MeV/nucleon) + Nb case discussed above, together with the predictions of

the intranuclear cascade and fluid dynamical calculations [Buc 81m].

The data exhibit nonzero average flow angles once high multiplicity,

i.e. small impact parameter collisions, are selected. This is in

contrast to the intranuclear cascade calculation (using the Yariv

Frankel and Cugnon approaches). which yields zero flow angles even at

the highest multiplicities (also see Figure 111.32 [Mol 85b]). The

cascade model only exhibits a spurious flow effect when the nucleons are

unbound. The microscopic NFM and macroscopic NFD models, on the other
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Figure Kinetic energy flow angle distributions for Nb (1100

111.31 MeV/nucleon) + Nb from NFD, experiment, and the INC.
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DATA

   

 

DATA

     

 VVVVVVVV 
Figure The bound and unbound Cugnon cascade compared to the

111.32 experimental data for Nb (1100 MeV/nucleon) + Nb in various

multiplicity bins.
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hand, predicts the observed peaks in the angular distributions of the

flow angles, which shift to larger angles with increasing multiplicity.

The physical difference between the INC model and the NFM approach

can be traced back to the different treatments of the NN collision

process. The INC applies a stochastic II‘tl’ scattering at the point of

closest approach of straight line trajectories; this allows for

substantial transparency. In contrast, the repulsive short range

component in the N-N potential used for the NFM approach is a repulsive

core and thus effectively results in an excluded volume effect. The

nuclei are not as transparent and easily compressible as in the INC.

This causes incident nucleons to be deflected away from zones of high

density towards sidewards angles.

The soft and hard potentials discussed above in the NFM approach

and the medium and stiff EOS in the VUU model have been used to further

develop this point. For Nb + Nb at b = 2 fm:

Table III.7

NFM VUU

hard soft stiff medium

pk 1/4 pk 1/4 pk 1/N pk 1/4

E OF 6F 6F 6F 6F 6F 6F 6F

50 - - 6 18 - - - -

150 23 23 23 18 18 18 0 3

1400 23 18 8 8 25 18 18 8

650 17 13 0 3 25 18 18 13

1050 15 13 0 3 23 18 12 8

where 'pk' denotes the peak value and '1/11' denotes the quartile value.

Note that there is a clear difference between the hard and the soft

potentials or the stiff and medium EOS so that the flow angle provides
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information on the short range part of the N-N force. The experimental

data may even require a much harder short range force. In fact, if one

uses as the force (%—§)5Fsof(r) (see equation 11.18) in the NFM model,

which is much stiffer than the force obtained fran the hard potential ,

one obtains a peak flow angle of 20 degrees and a quartile of 18 degrees

at 1050 MeV/nucleon. The flow angles shown previously in Figure 111.30

are too high because of the minimization procedure used to prepare the

nuclei, which has been abandoned.

The VUU theory also predicts finite flow angles due to the

interplay of the collision term and the EOS. Let us study the flow

angle as a function of time: in Nb (1050 MeV/nucleon) + Nb, at b - 3 fm,

the flow angle reaches a maximum at t =- 111 fm/c (see Figure 111.33).

The compression or density of nuclear matter reaches its maximum value

earlier at 5 fm/c (Figure 111.5). it takes a finite amount of time for

the saturation of the momentum distribution to occur and for the final

value of the flow angle to be attained. The density is related to the

flow angle for a given system via the £08: a softer equation of state

results in less transverse momentum transfer and therefore lower peak

flow angles (Figure 111.35).

We have seen for b . 2 fm how the peak flow angle varies as a

function of the bombarding energy. At fixed impact parameter (b - 3

fm), the flow angle reaches a maximum value at 1100 MeV/nucleon and then

does not change further as the collision energy increases (Figure

111.36). However, for lower impact parameters, the flow angle actually

appears to go down for the highest energies (Figure 111.311). as is the

case also for the NFM model (Table 111.7) and for the experimental data

[Hit 85]. There is also a very strong effect due to the atomic number



 

O

N

- 1 -

ID

v-1

g ..

(83513930) new M011

 

 
 
 

N
b
(
1
0
5
0
M
e
V
/
n
u
c
l
e
o
n
)
+
N
b

b
=

3
f
m

I

l
A

A
A

A
A

A
A

L
A

A
A

l
A

A
‘

,
1

d 1

.
1 1 1 4  
 

0

0

F
i
g
u
r
e

1
1
1
.
3
3

1
0

2
0

3
0

4
0

5
0

T
I
M
E

(
f
i
n
/
c
)

T
h
e

a
v
e
r
a
g
e

f
l
o
w

a
n
g
l
e

f
o
r

N
b

(
1
0
5
0

M
e
V
/
n
u
c
l
e
o
n
)

+
N
b

a
t

1
)
:
:

3

f
m

v
e
r
s
u
s

t
i
m
e

i
n

t
h
e

V
U
U

a
p
p
r
o
a
c
h
.

159



1
.
2

(
1
8

(
1
4

~19 SOOP/NP

(
1
8

(
L
4

(
1
0

F
i
g
u
r
e

 

_
.
.
_
  

T
N
b
'
(
1
5
0
F
e
r
/
n
l
i
c
l
e
o
é
i
a
W
‘

.
__

__
m

b
=
1
f
m
+

 
 
 

l_

i
t

u
p

N
b

 

‘1?
c:

'3!
c:

 

 

w
-

 
‘
P

e
V
/
n
fi
c
l
e
b
n
)

'
+
‘

b
=
3
f
m
+

ii0

 

  V

 

T
N
b
(
1
1
0
5
'
0
“
M
e
V
/
T
i
-
‘
u
-
c
l
e
‘
o
n
)

'
+
0

b
=

3
i
n
;

-
I
I
-

‘
1

‘
1
?
-  

l
A

I
'
h

-
.

I

 

-
I
I
-

I
)

 
1
D   

 
L
 

4
0

8
0

4
O

0
,
.
(
d
e
g
r
e
e
s
)

4
0

8
0

K
i
n
e
t
i
c

e
n
e
r
g
y

f
l
o
w

a
n
g
u
l
a
r

d
i
s
t
r
i
b
u
t
i
o
n
s

f
o
r

N
b

(
1
5
0
.

"
0
0
.

a
p
p
r
o
a
c
h
.

1
0
5
0

M
e
V
/
n
u
c
l
e
o
n
)

+
N
b

a
t

b
=

1
,

3
,

a
n
d

5
f
m

i
n

t
h
e

V
U
U

160



 
1
.
2

'
I

'
I

'
l

'
I

N
b
(
1
5
0
M
e
V
/
n
u
c
l
e
o
n

b
=

2
M
e
d
i
u
m
n
o
s
“

I
1
1

S
t
i
f
f
n
o
s

  
  

  
 

S
t
i
f
f
E
O
S

..
”
-
5

P
u
i
i

o
f
f

 

A

A

v

 
 

 
I
n
J
L

(
6
5
0
M
e
V
/
n
u
c
l
e
o
n1
1
1
+
N
b

S
t
i
f
f
E
O
S

_
_

S
t
i
f
f
E
0
8

P
a
u
l
i

o
f
f

 

--

I

-

1’

A

 

I N
b
1
0
5
0
N
e
v
y
n
u
e
i
e
o
n
f
+
N
b

_
L
.

M
e
d
i
u
m
E
O
S
_

s
u
n

2
I
-
z
o
s
_

s
u
n
E
0
8

°
°
°

P
a
u
l
i

o
f
f

 
0
.
4

1
‘

“
r

-

1
b

n
o

-
l
l
—

A
I

-
A

l
I

0
4
0

8
0
0

8
0

0
4
0

8
0

0
,
(
d
e
g
r
e
e
s
)

  
 

 
 
 

F
i
g
u
r
e

K
i
n
e
t
i
c

e
n
e
r
g
y

f
l
o
w

a
n
g
u
l
a
r

d
i
s
t
r
i
b
u
t
i
o
n
s

f
o
r

N
b

(
1
5
0
,

6
5
0
,

1
1
1
.
3
5

1
0
5
0

M
e
V
/
n
u
c
l
e
o
n
)

+
N
b

a
t

b
-

2
f
m

w
i
t
h

t
h
e

m
e
d
i
u
m

E
O
S
,

s
t
i
f
f

E
0
3
,

a
n
d

s
t
i
f
f

E
O
S

w
i
t
h
o
u
t

P
a
u
l
i

b
l
o
c
k
i
n
g

c
a
s
e
s

(
V
U
U
)

161



162

(Figure 111.37) at fixed energy E a 000 MeV/nucleon. This can be

understood physically: even though the same densities are reached in

these different symmetric systems, there are many more collisions for

the higher atomic numbers. The collective flow in the VUU theory thus

is determined by an interplay between the collision term and the EOS.

We find similar results for the peak flow angle in Au + Au at b - 3 fm

as in Nb + Nb except that the maximum flow angle is now twice as large

(Figure 111.37).

Asymmetric collisions present results sanewhat different from the

above. Here a new difficulty arises - namely the problem of how to do

the flow analysis. E.g. for the Ar (770 MeV/nucleon) + Pb experiment,

the data [Ren 84] were interpreted on an event by event basis in a

rather complicated way. First, only charged particles were used. Then

the center of mass velocity for each event was computed from the momenta

of all charged particles with transverse momenta per nucleon greater

than the Fermi momentum and, finally, only the forward hemisphere of

this participant center of mass frame was considered [Ren 8H].

Compare in Figure 111.38 these data with the predictions of the

Vlasov-Uehl ing-Uhlenbeck theory with the stiff EOS. Both in theory and

experiment a broad bump is observed in the distribution of flow angles

for near central collisions, while a rather sharp peak occurs at 15-30

degrees for the medium impact parameters, i.e. intermediate multiplicity

events. This contrasts strongly with the results of intranuclear

cascade cutlculations, which exhibit forward peaked angular

distributions independent of impact parameter as well for asymmetric as

for symmetric collisions.



 

I

I

I

I-

I

I

I-

1'

t

-

p

I-

p

I!)

N

O

N

 

 

1

l -

In

1-0

0

1-1

N
b
+
N
b

b
=
3
f
m

‘

ID

(83321930) mom mo'm xvad

 
 

0
2
5
0

5
0
0

7
5
0

1
0
0
0

1
2
5
0
.

E
m

(
M
e
V
/
n
u
c
l
e
o
n
)

F
i
g
u
r
e

P
e
a
k

f
l
o
w

a
n
g
l
e

v
e
r
s
u
s

b
o
m
b
a
r
d
i
n
g

e
n
e
r
g
y

i
n

t
h
e

V
U
U

a
p
p
r
o
a
c
h

1
1
1
.
3
6

f
o
r

N
b

+
N
b

a
t

b
=

3
f
m
.

 

A

O

163



($333930) mom M0121

 

O
<-

V
T

V
V

T
‘
V

V
U

1
'

V
V

V
f

I
V

U
V

V
l

‘
V

f
V
‘
—
T

E
m

=
4
0
0
M
e
V
/
n
u
c
l
e
o
n

O

0')

V'fi V f I V

I L
b
=
3
f
m

I

V V V7

A A-

O

N

I

J,

O

H

1

 
 
 o

5
0

1
0
0

1
5
0

2
0
0

2
5
0
.

A
T
O
M
I
C
N
U
M
B
E
R

(
S
Y
M
M
E
T
R
I
C
S
Y
S
T
E
M
)

1
F
i
g
u
r
e

P
e
a
k

f
l
o
w

a
n
g
l
e

i
n

t
h
e

V
U
U

m
o
d
e
l

f
o
r

E
-

0
0
0
M
e
V
/
n
u
c
l
e
o
n

a
t

b
-

1
1
1
.
3
7

3
f
m

s
t
r
o
n
g
l
y

d
e
p
e
n
d
s

o
n

a
t
o
m
i
c

n
u
m
b
e
r

d
u
e

t
o

t
h
e

i
n
c
r
e
a
s
e
d

n
u
m
b
e
r

o
f

c
o
l
l
i
s
i
o
n
s
.

164



165

A different approach is suggested for the data analysis in

asymmetric collisions [M01 8ND]. One sees from Figure III.1”! that in

order to detect the collective sidewards flow of nuclear matter one

needs to look at the projectile hemisphere in momentum space for

asymmetric systems. An asymmetry here is evidence of collective flow;

this is easily recognized at the intermediate impact parameter b - 5 fm

in Figure III.17. As in the case for symmetric systems, the flow of

nucleons in momentum space is correlated with a flow in configuration

space.

Therefore, the flow analysis should be done in the nucleon-nucleon

center of momentum system with the usual kinetic energy flow tensor, but

restricted to the projectile manentum hemisphere; this will avoid the

distortion of the event shape by the large number of target spectators

at rather small momenta and thus give the best reflection of the flow of

the participant nucleons. We see in Figure III.38 on the bottom that

the flow distribution changes it's characteristics in particular for the

high multiplicity events. It is skewed towards 90° for the small impact

parameters, while the peak remains near 20° degrees for the intermediate

impact parameters (also see Figure 111.39). This is similar to the

results for symmetric systems; the peak of the flow angle distribution

decreases with increasing impact parameter. However, the peak flow

angle at b . 3 fm appears to be greater than even the one for Au + Au

collisions!

In Figure III.39 the standard kinetic energy flow distributions for

the system Ar + Pb are compared for individual impact parameters to the

new transverse momentum analysis of Danielewicz and Odyniec [Dan 85].



Figure
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Here, the transverse momentum spectrum px(y) was analyzed, where y is

the rapidity

y-1/2 1n (E+p||)/(E-pll) (ll)

E the total energy of the fragment, and p” the momentum in the beam 2-

direction. Note that in the simulations shown here the projectile has

p‘ l- pz > 0. This technique has also been used to predict the presence

of collective flow for O (600 MeV/A) + 0 within a time dependent Dirac

equation approach [Cus 85]. One must however be careful in such a

continuum theoretical approach to place confidence only in transverse

momenta values near the projectile rapidity where there are many

particles.

As is evident from Figure 111.17, the flow angle approaches it's

asymptotic value rather rapidly; indeed at b- 3 fm, the final flow angle

distribution is established in less than 20 fm/c. At b - 1 fm, the flow

angle distribution is skewed to 90°, i.e., the projectile momentum

hemisphere exhibits sidewards peaking (see Figure III.39); a significant

number of particles are thrust to the side perpendicular to the beam

axis. A broad peak around 55° is observed at b =- 3 fm; the flow angle

becomes well defined. For b =- 5 fm, there is a clear peak at 20-30

degrees. Thus it is only at the intermediate impact parameters where

the flow is evident by a sharp peak in such asymmetric systems. Part of

the reason why the peak is not so pronounced at lower impact paraneters

is statistical: the projectile hemisphere contains substantially fewer

fragments in the final state in an Ar + Pb collision than in a Nb + Nb

collision.

In the transverse momentum plots (Figure III.39) . much the same

behavior is seen. However, here the analysis is not restricted to the
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forward hemisphere in momentum space. Summation over px and division by

the number of protons in each rapidity bin shows very little flow

effects in the target rapidity region, which is dominated by target

spectator matter. At b - 1 fm, px is about 50 MeV/c/nucleon at the

projectile rapidity 0.60, whereas at target rapidity, vr=--u60, px

amounts to only 25 MeV/c/nucleon. The flow at b - 3 fm is particularly

pronounced in this method of analysis: px(yp) is equal to lSO

MeV/c/nucleon whereas px(y,r) is only 180 MeV/c/nucleon. At b - 5 fm, we

have much the same result as at b - 3 fm. Note that in the massive

system studied here the transverse momentum transfer (bounce-off effect)

is larger than in lighter systems at higher energies - 100 MeV/c/nucleon

have been observed for the system Ar (1.8 GeV/N) + KCl (Figure III.u2).

The influence of the nuclear matter equation of state has been

studied by varying the EOS from stiff to medium at b - 1, 3 and 5 fm.

At the lower impact parameter, the broad distribution prevents any

statistically significant difference from being seen in this asymmetric:

system. Am.the intermediate impact parameter, one sees a small shifting

of the flow angle to the smaller angles as the compressibility

decreases, this is consistent with what has been found for symmetric

systems (Figure 111.35), but less dramatic. Note that one sees a great

difference if K a 0 MeV (the cascade model) is used; then the

distributions are peaked at zero degrees for all impact paraneters. An.

equation of state with compressional energy seems essential to

qualitatively reproduce the data; but asymmetric systems are less

sensitive to the details of the equation of state than symmetric ones.

Furthermore, one can look for quantum effects by turning off the Pauli

principle at b - 3 and 5 fm. No strong effects are seen, which is
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somewhat a surprise in view of the strong effect one sees in the

symmetric case (Figure 111.35) and the fact that about 50% of the

collisions are Pauli blocked even at this high energy. However, this

may be understood since many of the blocked collisions are between

nucleons in the same nucleus, not between nucleons in the compression

zone.

Let us consider now the same system Ar + Pb but at a lower energy,

H00 MeV/nucleon (see Figure III.39). The kinetic energy flow angular

distribution becomes more forward peaked at fixed impact parameter b - 5

fm. The transverse momentum transfer px(yp) decreases to iOO

MeV/c/nucleon. Preliminary results from the streamer chamber group

indicate an experimental maximum of 76 MeV/c/nucleon [Kea 85]; this is

somewhat smaller than our prediction with the stiff 808. Thus it will

be important to relate their experimental multiplicities with finite

impact parameters. A similar system, Ar (92 MeV/N) + Au, shows what

happens in the VUU model as the energy is decreased further: the flow

distributions at b - 2, 3, and ‘4 fm impact parameter become very broad;

the transverse momentum at beam and target rapidities is zero to within

10 MeV/c/nucleon. At still lower energies, the transverse momentum

spectra are inverted as the attractive part of the nuclear potential

becomes dominant: the bounce-off caused by the short range repulsion at

high density is converted into the negative angle deflection known from

TDHF calculations in this energy region [Std 80a and 81b] and from

experimental data.

The transverse momentum for the symmetric systems Nb + Nb (Figure

111.140) and Au + Au (Figure IIIJH) is a strong function of energy. At

b - 3 fm the transverse momentum px(yP) rises from negative or zero
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values for E < 100 MeV/nucleon to 140 to 160 MeV/c/nucleon at 1050

MeV/nucleon for Nb and Au systems, respectively. One probes higher

densities at the higher energies so that the bounce-off increases. The

bounce-off increases dranatically with energy but only slightly with

atomic number. Experimentally, one finds px(yp) - 80 MeV/c/nucleon for

75% multiplicity [Hit 85], which compares rather well with Figure IiI.M0

for the VUU model with the stiff £08.

A bounce-off effect is thus predicted and may be seen by the

variation of px(yP)/nucleon with impact parameter (Figure III.2 and 19):

from zero at b - O (for symmetry reasons) to a maximum at intermediate

impact parameters to zero again for the most peripheral interactions.

For Au (250 MeV/nucleon) + Au with the stiff EOS, we can emphasize this

point

Table III.8

b px(yp)

1 A2

'3 8n

5 7o

7 36

9 25

Thus one can in the future compare the maximum transverse momentum

obtained versus impact parameter (here at b - 3 fm) to the maximum

obtained from multiplicity selection.

For light systems and high energies flow effects are not observed

when the standard kinetic energy flow analysis is used [Dan 85, M01

85a]. In fact, the experimental flow angular distributions for the

reaction Ar(1800 MeV/nucleon, b < 2.1% fm) + KCl are peaked at zero
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degrees as the cascade model predicts. But also the Vlasov-Uehl ing-

Uhlenbeck approach, which does predict finite flow angles for heavier

systems, does not yield any observable sidewards maxima in the flow

angle distributions; even less so can a difference between hard and

medium equations of state be seen when the standard kinetic energy flc»:

tensor analysis is used. All flow angle distributions are peaked at zero

degrees [Moi 85a]. However, one should not hastily conclude that flow

effects do not occur for light systems.

Ekperimentally, one may determine the scattering plane by

controlling the finite multiplicity distortions carefully [Dan 85].

Danielewicz and Odyniec detected collective flow effects in the streamer

chamber data for Ar (1800 MeV/nucleon) + K01 using this technique (see

Figure 111.u2 tOp left). There is a transverse momentum accumulation at

both the projectile and target rapidities y = $0.86 in the center of

uwmentum frame. The collective flow effects are weaker than in the

hydrodynamic model, but much stronger than in the cascade (see Figure

111.142 bottan left). It is important to point out that the intranuclear

cascade model fails to reproduce this data, even though it appeared to

be consistent with it when the kinetic energy flow analysis had been

applied [Moi 85a].

The transverse momentum analysis technique has been applied to the

Vlasov-Uehling-Uhlenbeck results [Mol 85a] for the reaction Ar(1800

MeV/nucleon, b < 2.1} fm) + KCl. One finds that the peak in the

transverse momentum spectrum px(y) depends linearly on the nuclem~

equation of state: the cascade model predicts pmax a- 25 MeV/c/nucleon

(Figure 111.42 bottom left), the medium equation of state in the Vlasov-

Uehling-Uhlenbeck approach predicts pilax- 50 MeV/c/nucleon (Figure
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111.142 bottan right). and the stiff equation of state yields p3“ - 100

MeV/c/nucleon (Figure 111.182 top right). Only the latter is in

agreement with the data. At the lower energy 1.2 GeV/nucleon, one finds

experimentally px (peak) - 7O MeV/c/nucleon [Kea 85]; the VUU prediction

with the stiff EOS is px - 80 MeV/c/nucleon. At still lower energies of

770 MeV/nucleon, VUU predicts a value of 70 MeV/c/nucleon. The

variation over the energy range 770 - 1800 MeV/nucleon is thus not

large. Let us stress that the stiff equation of state reproduces best

the pion yields observed in the streamer chamber at this energy (1800

MeV/nucleon) and also at lower energies, down to 360 MeV/nucleon (Figure

111.26). This equation of state also agrees well with the one extracted

phenomenologically from the pion data.

7) Outlook

1n the above, the sensitivity of the nuclear £108 to the pion

yields, the transverse momentum transfer, and the flow angle has been

demonstrated. Our first glimpse at the nuclear EOS in the Bevalac

energy domain seems to reveal surprisingly large energies at densities

two to four times the ground state density. At even higher beam

energies in the ultra-relativistic realm, the nuclei might be heated

strongly enough so that a new state of matter, the quark-gluon plasma,

may be created. There the present VUU approach would be inadequate

since the parton degrees of freedom are probed.

Partons are quarks, anti-quarks, and gluons. In nuclear physics,

they may have significant contributions even in the ground state. In

particular, the manner in which the parton degrees of freedom appear in

the interaction of nuclei will be important to understand, especially
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for nucleus-nucleus collisions at high energies Ecm > 20 GeV/nucleon.

The high density achieved necessarily implies small distances so that

the short range nature of the nuclear force and the internal

iconstituents of the nucleons are probed.

The energy densities attainable in both the central rapidity region

(the nucleus-nucleus center of momentum frame) as well as in the

fragmentation regions have been estimated to be 1-2 GeV/fm’. For

example, in a quark-gluon cascade code based on QCD applied to ultra-

relativistic heavy ion reactions, one finds partial thermal ization of

quarks and gluons with e a several GeV/fm3 in the central regions [Boa

85b]. This range of values coincides with the energy densities at which

the deconfinement transition is predicted by SU(N) Yang Mills theory

(pure gluon matter) on the lattice [Cle 85].

What can be done with the present VUU approach is to extend it to

study strangeness production. This is most relevant for the study of

very high energy densities at which the quark gluon plasma is expected

to be formed. This can be accomplished through the incorporation of the

elementary reaction cross sections, as has been done to include pions.

The forthcoming heavy ion experiments would thus have a theoretical

estimate of the number of strange particles expected just from nucleon-

nucleon interactions.

Beyorui this estimation of the meson background at higher energies,

the difficulty of the many body problem with the parton degrees of

freedom will rk3<n3ubt require the use of phenomenological forces. In

view of the success of the microscopic VUU approach, it may be possible

to extend some of the ideas and approaches of this thesis to the ultra-

relativistic domain. Quark-gluon cascade codes or models based on
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relativistic kinetic theory [Hei 83] may be needed to study the

tranSport properties of ultra-relativistic nucleus-nucleus collisions

and the quark gluon plasma.



IV Conclusions

The central results of this dissertation were presented in the

preceding chapter. They have to do with the application of the recently

(developed VUU method for modelling relativistic heavy ion collisions.

The principal results are essential in interpreting the recent 14m data

of the LBL/GSI Plastic Ball group to gain information on the nuclear

EOS.

It has been seen that in the Vlasov-Uehling-Uehlenbeck model, for

central nucleus-nucleus collisions, rapid equilibration of the

participants is predicted within time spans of the order of 10 fm/c.

Some stopping or significant degradation of the longitudinal momentum of

the projectile occurs at small impact parameters for heavy systems. A

sidesplash of nuclear matter is seen due to the interplay of the nuclear

compressional energy and the collision term. The intranuclear cascade

model lacks this essential compressional energy and so does not give a

realistic representation of high energy heavy ion collisions.

Evidence has been presented for a stiff nuclear EOS on three

fronts. First, the Ar + KCl pion yields require a stiff EOS in order to

best agree with the data; the cascade model, which lacks compressional

energy, overestimates these data. Second, the large flow angles

observed experimentally for Ar + Pb, Nb + Nb, and Au + Au are better

explained with a stiff EOS; the VUU approach with this EOS predicts

qualitatively both the energy and the mass dependence of the flow angle

distributions. Third, the stiff EOS seems to be necessary to explain

the large transverse momentum transfers that have been observed for both

Ar 4' KCl and Nb + Nb.

179
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Much progress has been made both theoretically and experimentally

over the past decade in the study of relativistic heavy ion physics.

Over the next decade, even more difficult problems must be solved to

extend bottlexperimental apparatus and theoretical models to the ultra-

relativistic domain. What has been achieved so far is encouraging.

Tantalizing insight has been gained into the nuclear equation of state.

The sensitivity of physical observables such as pion production, the

flow angle, and the transverse momenta to the EOS has been demonstrated

above in the context of the microscopic Vlasov-Uehling-Uhlenbeck

theoretical model. The precise determination of this equation of state

will require much more effort, but it is a prize worth seeking.
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