


’

Roof.

This is to certify that the

thesis entitled

LOAD BALANCING AND RESOURCE RESERVATION IN

MOBILE AD-HOC NETWORKS

presented by

Gautam Chakrabarti

has been accepted towards fulfillment

of the requirements for

Master's degree in Computer Science

& Engineering

 

8%1fldt91»;

$AND€EP KoLKhRNl

Major professor

Date Dec, 61 2002.
 

0-7639 MSU is an Affirmative Action/Equal Opportunity Institution



 

 

LIBRARY

Michigan State

University   

PLACE IN RETURN Box to remove this checkout fromyour record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

 

 

 

 

 

 

 

 

      
6/01 CIICIHCIDataDUOpSS-DJS



LOAD BALANCING AND RESOURCE RESERVATION IN

MOBILE AD-HOC NETWORKS

By

Gautam Chakrabarti

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science and Engineering

2002



ABSTRACT

LOAD BALANCING AND RESOURCE RESERVATION IN

MOBILE AD-HOC NETWORKS

By

Gautam Chakrabarti

To ensure uninterrupted communication in a mobile ad-hoc network, efficient route dis-

covery is crucial when nodes move and/or fail. Hence, protocols such as Dynamic Source

Routing (DSR) precompute alternate routes before a node moves and/or fails. In this re-

port, we modify the way these altemate routes are maintained and used in DSR, and show

that these modifications permit more efficient route discovery when nodes move and/or fail.

Our simulation results show that maintenance of these alternate routes (without affecting

the route cache size at each router) increases the packet delivery ratio without incurring any

extra traffic overhead. We also show that our approach enables us to provide QoS guaran-

tees by ensuring that appropriate bandwidth will be available for a flow even when nodes

move. Towards this end, we show how reservations can be made on the alternate routes

while maximizing the bandwidth usage in situations where nodes do not move. In addition,

we adaptively use Forward Error Correction techniques with our protocol and show how it

can improve the packet delivery ratio.
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CHAPTER 1

Introduction

The recent emergence of mobile devices has increased the relevance of mobile ad-hoc

networks. Such networks are formed by a collection of wireless nodes that are free to move

about, often in a restricted amount of space. Such movement of nodes results in temporary

networks, formed by a set of nodes due to their proximity to each other. Often, all mobile

hosts in a network may not be in the transmission range of each other. In such scenarios,

each node acts not only as a host sending (respectively, receiving) data to (respectively,

from) another mobile host, but also as a router. Thus, nodes use multi-hop routes to reach

their destinations. This task of routing data through multiple hops to the destination be-

comes all the more challenging due to the possibility of router movement in the middle

of transmission. Applications of wireless ad-hoc networking include emergency rescue

operations, and meetings in which persons want to share information among themselves.

To ensure uninterrupted communication in the presence of node movement, it is nec-

essary to discover a new route efficiently. More specifically, if an intermediate node finds

that it cannot reach the next hop on the route to the destination, then that intermediate node

needs to find an alternate route to the destination. For uninterrupted communication, it is

necessary that a new route be available as soon as a node becomes unreachable. In other

words, it is necessary to identify alternate routes even before a node moves away or fails.

While identifying and using alternate routes, it is important to ensure that other flows

using that alternate route are not affected and that appropriate bandwidth is available for

the rerouted flow. However, one cannot simply reserve the entire requested bandwidth for

a data transmission on the alternate routes, as it will lead to underutilization of the network



bandwidth in the case where no nodes move. Based on the above discussion, in this report,

we focus on two conflicting goals that need to be met in ad-hoc networks: (1) ensuring the

availability of an alternate route that provides the required bandwidth, and (2) maximizing

the available bandwidth when no node moves/fails.

We proceed as follows: First we begin with the observation that in source-based routing

when an intermediate node detects that it cannot reach the next hop in a source route, it

can use precomputed alternate routes to other intermediate nodes mentioned in the packet

header, to transmit that packet. This can be achieved by caching routes to other nodes in

the network. If a node uses such a route cache, it is highly probable that an intermediate

node may have an alternate route to other intermediate nodes in the source route even if

it does not have an alternate route to the final destination. To achieve this end, we aim to

maximize the number of alternate routes cached at each node. At the same time, we need

to be careful so as not to cache stale routes.

Second, we note that a node may have multiple alternate routes to reach another node

in the network. Hence, a rerouted transmission needs to consume only a small amount of

bandwidth from each individual alternate route, and thus can minimally affect other flows

using links in the alternate route. This implies that it is important to study the number

of alternate routes to a particular node that are available in general, and to see how many

of them can be used for rerouting. Availability of such valid alternate routes would help

in using the available bandwidth efficiently. It would also enable us to deal with the case

where some alternate routes have become invalid due to node movement.

Third, we consider the effect of the rerouted flow on other flows in the network. As

argued earlier, reserving the requested bandwidth in a single alternate route would result in

inefficient bandwidth usage if there were no node movement/failure. Also, trying to reserve



parts of the requested bandwidth along multiple alternate routes would generate high con-

trol overhead. Generating more control overhead may in effect be even more harmful since

there is no guarantee how long the reserved alternate routes will remain valid. Moreover,

attempting to reserve bandwidth when a packet is waiting to be rerouted would increase

the end-to-end delay. Hence, we cannot afford to explicitly reserve bandwidth along the

alternate route(s). At the same time, we need to have at least an implicit reservation along

alternate routes to maximize the delivery ratio of rerouted packets. While having such an

implicit reservation is beneficial, it is also important to maximize the network bandwidth

utilization. This implies that we need to have an implicit reservation such that (1) this re-

served bandwidth is utilized to the maximum possible extent by rerouted packets, and (2)

the rest of the network bandwidth is efficiently utilized by ordinary data packets. Hence,

we study in this report how the amount of implicitly reserved bandwidth affects the packet

delivery ratio.

Fourth, we consider the issue of reusing the existing route while determining alternate

routes. The reuse of the existing route will enable us to use the bandwidth already reserved

on that route. This will, in turn, remove the need of reservation teardown on the reused

links. Also, if the number of new links on the alternate route is minimized then there

is a greater potential that sufficient bandwidth will be available on that alternate route.

Moreover, if the existing route is being reused, it is more likely to be valid (except for the

next hop) than other cached routes.

Fifth, we analyze the effect of Forward Error Correction techniques on the behavior

of our routing protocol. We consider the effects of sending parity packets for all blocks

of data packets. This leads to the possibility of transmitting parity packets even when the

data packets are transmitted successfully to the destination. This implies that too much

bandwidth may be wasted by transmission of such parity packets. Hence, we analyze the



issue of selectively sending parity packets only when the source receives an indication that

some data packets might have been dropped. In such a scenario, the source can transmit

parity packets for some recently transmitted data blocks.

In the context of the issues discussed above, this report takes up the issues of bandwidth

reservation and route maintenance in the face of node movement. Our approach provides

better route availability between hosts and better delivery of data packets compared to the

existing Dynamic Source Routing Protocol presented in [1]. We use the network simulator

ns [2] to compare the performance of DSR and our protocol. We present simulation results

showing the performance improvements we have achieved with our modifications. A part

of this work appeared in [3].

Organization of the report. The rest of the report is organized as follows: In Chapter

2, we describe the DSR protocol for ad-hoc networks and the optimizations added to it.

In Chapter 3, we present our approach, and in Chapter 4, we present simulation results

comparing the performance of DSR and our protocol. Finally, in Chapter 5, we present

related work and conclude in Chapter 6.



CHAPTER 2

Dynamic Source Routing

In Dynamic Source Routing protocol for ad-hoc networks, the sender of a packet deter-

mines the route that the packet should follow in order to reach the destination. The entire

source route is inserted in the packet header. A node receiving the packet determines from

the header if it is an intermediate host in the route or if it is the final destination. If it is an

intermediate node, it forwards the packet to the next hop as specified in the source route. If

it is the final destination, the packet is instead delivered to the network layer. The protocol

performs two major Operations: route discovery and route maintenance.

Route discovery. When a host wants to send a packet, it consults its cache of previously

discovered routes to determine if it has a route to the destination. If the host does not

have a valid route, it broadcasts a route request packet containing its own address and the

destination address for which it is requesting a route. Each host receiving the route request

consults its cache to see if it has a route to the destination. If the cache does not yield a valid

route, the node inserts its address in the packet header and broadcasts it again. Thus, the

route taken by the packet gets stored in its header. If no intermediate host has a cached route

and the destination is reachable from the source, the route request packet will ultimately

reach the destination. When a packet reaches the destination or a node with a valid cached

route, the node replies to the source with a route reply packet containing the source route

discovered.

Route maintenance. DSR uses a hop-by-hop acknowledgment at the data link level to

detect failure of a link. If a host is not able to reach the next hop while trying to transmit a

packet, it sends a route error packet to the source of the packet giving addresses of nodes



at both the ends of the failed link. The source host removes the hop from the cache and

truncates routes containing that link at the failed point.

Previous Improvements to DSR. The Dynamic Source Routing protocol as presented

in [4] has undergone some modifications in [1], some of which are:

0 IEEE 802.11 requires an RTS/CTS/Data/ACK exchange for all unicast packets. This

implies that data packets can be transmitted only through bidirectional routes. The

source routing protocol is modified to use only bidirectional links for data transfer.

Specifically, when a node replies to a route request packet, it reverses the source route

in the packet header and sends out the route reply packet along this route. Conse-

quently, the source node will receive a route reply only if all the links in the route

are bidirectional. Moreover, since a route reply packet may not reach the source, a

destination node replies to all route requests.

0 Nodes are modified to work in promiscuous mode. A node in this mode overhears

packets even if it is not listed in the source route. This approach allows nodes to learn

about route failures by tapping route error packets. Moreover, if a node overhears

a packet which has its own address listed in the unprocessed portion of the source

route, it implies that the node is set to receive the packet through a longer route.

In that case, it can let the packet source know about the available shorter route by

sending a gratuitous route reply.

0 When a node forwarding a packet to its next hop discovers that the node is unreach—

able either due to a link failure or a node movement/failure, it consults its cache to

find an alternate route to the destination. If the node has another route to the destina-

tion, it changes the source route appropriately and forwards the packet according to

this new route.



The version of DSR implemented by CMU Monarch [5] has a few additional modifications.

Notably, when an intermediate node forwards a packet to its next hop, it snoops into the

unprocessed portion of the route in the packet header to get a route to the destination. This

route is cached by the intermediate node. The node can use the route for transmission of

its own packets or for rerouting packets from another source if some existing route fails.

This version of DSR has been ported to the Network Simulator, ns [2]. We compare our

protocol with this implementation.



CHAPTER 3

Proposed Improvements

In this chapter, we describe our approach for route maintenance and bandwidth alloca-

tion. First, we describe our approach to validate the hypothesis: when an intermediate node

needs to find an alternate route due to node movement/failure, it should try to reuse the ex-

isting source route as much as possible. Then, in Section 3.1, we discuss our approach to

load balancing. In Section 3.2, we address our modifications to the cache implementation.

Subsequently, in Section 3.3, we discuss our approach for route reservation when a node

starts communicating with a destination. We present our approach to bandwidth reserva-

tion on alternate routes in Section 3.4. Finally, we present our Forward Error Correction

scheme in Section 3.5. The simulation results for our algorithms are presented in Chapter

4.

When an intermediate host in a source route cannot reach its next hop along the route, it

looks up its cache for alternate routes to reach the destination. If it finds an alternate route,

it modifies the source route accordingly and transmits the packet to the newly selected next

hop. While selecting such alternate routes, our approach strives to maximize the part of

the original route that is preserved in the new route. As mentioned in the Introduction, this

helps in reducing interference with other flows and in increasing the probability of finding

bandwidth on the alternate routes.

With this intuition, in our protocol, when a node detects that its next hop along a route

is unreachable, it tries to find an alternate route to the node that lies at a distance of 2

hops (mentioned henceforth as hop-2 neighbor) along the route. An alternate route to the

hop-2 neighbor would enable the intermediate node to remove the next hop neighbor from



the route, but keep the rest of the route intact. It follows that, if successful, this leads to

maximum reuse of the existing source route. If such an alternate route is not present in the

cache, our protocol searches for routes to nodes farther away in the source route. We have

implemented and tested three versions of our approach:

1. An intermediate node starts scanning the source route from its hop-2 neighbor to-

wards the destination. For each node in this route, it searches its cache for an alter-

nate route to that node. It uses the first alternate route that it obtains from its cache

to appropriately modify the source route and send the packet to the newly discovered

next hop. Hence, the part of the route starting from the current node to the node to

which it found an alternate route is changed. If there is no alternate route available

to any of the intermediate nodes, but there is a route to the destination, then it results

in an entirely new alternate route from the current node. In the worst case, if there

is no alternate route to any of the nodes including the destination, the intermediate

node drops the packet.

2. The intermediate node, in contrast to the previous approach, starts scanning the

source route from the destination node towards its hop-2 neighbor. If the cache has

an alternate route, the source route is modified as in the first approach.

3. The intermediate node first checks if it has an alternate route to the destination. If

not, similar to the first approach, it searches hop-2 neighbor, hop-3 neighbor, and so

on.

For all the versions, the routing protocol takes care not to include the next unreachable

hop in the alternate routes used for rerouting. This is achieved by first removing all the

routes from cache that contain the link from the current node to the unreachable next hop.

We first conducted simulations to compare these approaches and to validate the hypothesis



that reusing the existing routes is desirable; the first version follows this hypothesis. The

second approach is a variant of the first, but it does not follow our intuition. The third

approach attempts to find an alternate route only when DSR fails to find a route to a desti-

nation. Since we find that the first approach indeed outperforms the others, we only present

the first approach here.

It may be noted that in our first approach, a node has to lookup its cache to search for

alternate routes to each intermediate node. This may lead to an increased average end-to-

end delay. This approach, however, is better than the other option of dropping a packet

employed by DSR, if there were only alternate routes to any of the intermediate nodes and

not to the destination. Moreover, this approach has the potential of using the available

bandwidth more efficiently.

3.] Load Balancing

As we discussed in the Introduction, using alternate routes to reroute all packets of a

flow may interfere with normal data transmissions that are sending packets through that

alternate route. This problem is aggravated if multiple flows facing route failures use the

same alternate route to transmit their packets. Hence, our routing protocol does load bal-

ancing among the number of alternate routes that are available. The protocol uses multiple

alternate routes (if available) in round robin order for rerouting packets that face a route

failure. Our simulations have shown that in general nodes have two or more alternate

routes to 90% of the nodes in the network. Hence, with this assumption, while looking for

alternate routes to the hop-2 neighbor, we start transmitting to that neighbor if there is any

route to it. This is also consistent with our hypothesis that reusing existing routes is desir-

able. We search for alternate routes to our hop—3 neighbor only if there is no route to the

hop-2 neighbor. In addition, our protocol, like DSR, notifies the source of the data transfer

10



about any route failure. Hence, we try to transmit packets using multiple alternate routes

until the source stops transmitting packets using the failed route. Thus, our protocol tries

to efficiently balance the load of the rerouted packets among multiple available alternate

routes.

3.2 Modifications to the Cache

In our protocols, we modify the way cache is updated. The first modification deals with

how the protocol learns of new routes, and the second modification deals with how the

protocol uses its primary and secondary cache of routes. The total cache size is kept fixed

to 64 entries.

1 2 3 4 5 6 7

CACHE IN NODE 3: 3. 2, 1 S: Source Node

3, 4, 5, 6, 7 C: Current Node

D: Destination Node

<—-> : Bidirectional Link

Figure 3.1: Learning of route segments from the source route in a data packet header

In DSR, a node caches a route when it receives a new route in reply to a route request

packet, or when it overhears a packet not addressed to it and snoops into the source route to

discover the route contained in that packet. Also, an intermediate node forwarding a packet

snoops into the source route in the packet header and extracts the segment of the source

route starting from the current node to the destination. Our protocol, in addition, extracts

the route segment starting from the current node to the source of the packet. Thus, we can

11



cache alternate routes for both the destination and the source (as shown in Figure 3.1) of

the packet without increasing the total size of the cache maintained at each node, compared

to DSR. Extracting the route segments in both directions from the current node in the

source route is, however, possible only for data packets. This is because, the source route

enclosed in the data packet header has been proved to be bidirectional in the route discovery

phase. Such a route segment cannot be learnt from a route request packet since it has only

traversed the links in one direction. For a route reply packet, the route segment from the

current node towards the destination is bidirectional, and hence, can be cached. The route

segment from the current node towards the source is still liable to be unidirectional, and

hence, not extracted by the current node.

Like DSR, our protocol also maintains two separate fixed-sized caches of routes: 3

primary cache and a secondary cache. The primary cache is used to store routes returned

in reply to route request packets. The secondary cache stores routes that have been learnt

by other ways, for example, by snooping into the header of a packet while it is being

forwarded. In general routes are added more frequently to the secondary cache, as a node

is able to learn more routes from others’ packets than the number of explicit route replies

it receives. This implies that a route is more quickly eliminated from the secondary cache

than it would if it were in the primary cache. Hence, when a source node uses a route

from the secondary cache to transmit its own packets, DSR promotes the route from the

secondary cache to the primary cache. Our protocol, however, needs the routes to remain

in the same order throughout their existence in cache. Otherwise, doing load balancing

with the possibility of changes in the ordering of routes may make its overhead prohibitive.

Moreover, as explained in the next section, only routes for which bandwidth has been

allocated are stored in the primary cache. Hence, we do not promote routes from the

secondary to the primary cache. This implies that our protocol uses only a small amount

12



of primary cache, but needs a larger secondary cache. To reflect this requirement, we have

reduced the size of the primary cache, and increased the size of the secondary cache while

keeping the total cache size constant. In addition, while replacing a route from cache, we

try to preserve routes that are currently in use. This approach also helps in removing stale

routes. This is because, if a route is being used or has been used recently, it is highly

probable that the route is still valid. On the other hand, if a route has not been used for

long, it is quite probable that it has become stale in a relatively high mobility network.

Thus, our protocol efficiently maintains the caches of reserved and alternate routes.

3.3 Route Reservation

Now we discuss our approach towards reserving bandwidth for original source routes

and alternate routes. Our routing protocol tries to provide Quality of Service guarantees to

source nodes initiating a data transfer. When a source wants to send data to a destination,

it tries to reserve the requested amount of bandwidth along a source route before starting

the data transmission. Towards this end, we assume that a host would be able to estimate

the available bandwidth, using some link-level techniques. This may also need a close

interaction between the link layer and the routing layer for the routing protocol to use this

knowledge of bandwidth availability. The approach used to estimate the total available

bandwidth is outside the scope of this report.

In the QoS version of our protocol, when a source host initiates a route discovery phase

to reach a particular destination, it is required to state the amount of bandwidth, it intends

to consume, in its packet header. An intermediate node processing a route request packet

checks to see if it has enough available bandwidth to be able to accept the request. If

the node determines that it can support the requested flow, it re-broadcasts the route request

packet. In addition, it inserts an entry in a Flow Table specifying the source-destination pair

13



and the reserved bandwidth. If multiple flows for the same source-destination pair need to

be supported, an additional identifier can be stored in the Flow Table entry to uniquely

represent a data flow. It is important to reserve the bandwidth on receiving a route request

packet, and to verify it on seeing a corresponding route reply packet. If, instead, the initial

reservation is postponed till receiving of a route reply packet, then an intermediate node

may allow simultaneous route request packets to propagate towards their destinations irre-

spective of their reservation requests, increasing control overhead. This process of initial

resource reservation continues until either the request reaches the destination, or some in-

termediate node that does not have enough available bandwidth. In the latter case, the node

drops the packet.

As in DSR, once a route request reaches the destination, the node reverses the route

record so far formed in the packet header, and retransmits the route reply packet back

to the source. When an intermediate node receives the route reply packet, it flags the

corresponding reservation entry in the Flow Table indicating this. In the event that the

reservation entry is absent in the table (that is, it has been removed as explained later), the

intermediate node drops the route reply packet.

If any of the links in the route record were not bidirectional, the route reply would

not reach the source. Hence, the source would only receive routes whose all links are

bidirectional (required by IEEE 802.11 as discussed earlier in Chapter 2). Thus, although

a node makes a reservation when a route request packet travels towards its destination, the

route may not work out due to any of a variety of reasons such as link failure or due to the

source deciding to use a different route. This implies that we need a mechanism for efficient

teardown of reservations from nodes present in the route, so that the available bandwidth

can be distributed to other data flows. Explicit removal of reservations would result in

increased control packet overhead. Hence, we take the approach of implicit teardown of

14



reservations. Nodes maintain timeout values to determine if a reservation should be kept

any more. In our protocol, a reservation is not removed as soon as its timeout expires, but

it is removed if its timeout has expired and some new data flow is requesting a reservation

for which the node does not have enough free bandwidth.

This approach of implicit teardown has another advantage over using control packets

to explicitly remove reservations. If explicit mechanisms were used, a node in a failed

route would be immediately signaled to remove the reservation. In our protocol, on the

other hand, a reservation is removed after a timeout period. Although a source requesting

bandwidth during this time interval may not get its share, this allows the existing reservation

to be used again by the same data flow. As explained earlier, while choosing alternate

routes when a link fails, we aim to reuse the existing route (and hence, reuse the existing

reservations) as much as possible. Hence, the new route may: have some of the nodes in

the original failed route. In such a scenario, the new route would start using the resource

reservations existing on these nodes, and only unused reservations in any other nodes would

be timed out.

We maintain three timeout values: route reply timeout, data start timeout, and data

timeout. The route reply timeout is used to remove reservations for which the node received

a route request packet, but has not seen a route reply packet. This may happen, for instance,

if some node towards the destination could not provide the requested bandwidth, or if one

of the links on that route is unidirectional. The data start timeout expires if a node has

seen a route reply for a reservation, but has not yet received data from the source. This can

happen if any of the links from the current node towards the source does not work out, or if

the source chooses to use a different (probably shorter) route for the data transfer. The data

timeout value is used to keep track of flows which have transmitted data, but this timeout

value has elapsed since the last data packet was forwarded. This can occur, for example,

15



due to node movement so that the currently used route fails, and the source needs to use a

separate route.

As the QoS version of our protocol aims to reserve bandwidth along a route before

starting a data transfer, it requires the route request packet to reach the destination. It does

not allow any intermediate node to reply to the source with a cached route it may have for

the destination. (DSR and non-QoS version of our protocol continue to be configured to

use cached routes during route discovery.)

In the QoS version of our protocol, we store routes returned in route replies in the

primary cache. Thus, routes in the primary cache have bandwidth allocated for them. When

a source node initiates a data transfer, our protocol allows it to look for routes only in

the primary cache (and not in the secondary cache), since we want it to use a route for

which bandwidth has been reserved. Hence, to support multiple data flows between the

same source and destination, routes in the primary cache can also store the corresponding

identifiers representing the data flows for which they are reserved. Thus, successive flows

for the same source-destination pair would need to reserve bandwidth separately through a

route request phase before they can transmit data. As in DSR, the shortest available route in

the primary cache to the destination is used for data transmission. Routes in the secondary

cache are used only for rerouting packets through alternate routes when a route fails. (Note

that DSR and the non-QoS version continue to use the routes in the secondary cache.)

Such an approach in our QoS protocol still allows the possibility of a source using a route

whose reservation has been timed out from some intermediate node. In such a scenario,

the intermediate node not having the required reservation would drop the data packets. Our

simulation results show that this has only a minimal effect on packet delivery ratio.
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3.4 Implicit Reservations on Alternate Routes

We make implicit reservations for rerouted flows. Consider the case where k dis-

joint alternate routes are available when a packet needs to be rerouted due to node move-

ment/failure. In this case, {h of the flow will be transmitted on each alternate route. With

this intuition, we allow a node to reserve only k—i—Tth bandwidth while making reservations.

rh 1th

(I of ——"—’h) bandwidth is implicitly reserved for rerouted flows. WeThe remaining “#1 H1

found that in over 90% cases, two (or more) disjoint alternate routes are available when a

flow needed to be rerouted. Hence, while simulating the QoS version of our algorithm, we

let k=2. Thus, 31,-” bandwidth is implicitly reserved for rerouted flows. If the redundancy

in an ad-hoc network is high, higher values of k can also be used; larger values of k will

reduce the bandwidth that is reserved for rerouted flows.

The amount of implicitly reserved bandwidth needs to be chosen judiciously. This is

because, if a relatively large fraction of the available bandwidth is reserved to be shared

by alternate flows, then a part of this reservation may never be used by rerouted packets

leading to reduced network utilization. On the other hand, too low a reservation may in-

crease the loss of rerouted packets. We analyze these effects of varying amounts of implicit

reservations on the packet delivery ratio in Chapter 4. It is to be noted that when a rerouted

flow reuses parts of the original route, nodes present in the original failed route use the ex-

isting reservations as explained earlier, and the implicitly reserved bandwidth is used only

by other nodes in the new route.

3.5 Forward Error Correction

Our results (as presented in Chapter 4) show that for many ad-hoc network environ-

ments, our QoS version gives a packet delivery ratio of 90% or more. In such scenarios,

we feel that techniques such as forward error correction [6] can effectively provide a higher
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packet delivery ratio. In the simplest implementation of FEC, given two parameters m and

n, n > m, for each group of m packets, n—m additional parity packets are sent. If the re-

ceiver receives any m packets (some data packets and some parity packets), it can obtain

all m data packets.

We have added an FEC(4,8) scheme to the QoS version of our protocol, to explore if we

can improve the performance by sending a relatively low number of parity packets. In our

implementation, we aim to minimize the bandwidth consumed by parity packets. To this

end, for each group of m(=4) data packets, we do not immediately send the corresponding

parity packets. Instead, when a source node receives a route error packet, it is highly

probable that some of the most recent packets it had sent were dropped. Hence, on receiving

a route error packet, the source node uses a separately available route to send parity packets

for the groups of data packets sent in the last 2 x SECS seconds. SECS is a predetermined

constant signifying the average packet delay between the point of failure and the source

node. Thus, if the route fails at time t, and the route error packet reaches the source at time

(t + SECS), then the source should send parity packets for all data sent in the time interval

(t - SECS) to (t + SECS). Once the parity packets for the blocks of data packets are sent,

the source node continues to send data packets (without the corresponding parity packets).

When the source node receives another route error packet, it backs off and again sends the

corresponding parity packets. When the source is transmitting parity packets, it may also

receive a route error packet signifying that some or all of the parity packets might have

been dropped. In such a scenario, the source does not back off again. More specifically,

our protocol does not attempt to send parity packets for the same block of data more than

once. Our results show that when the packet drop rate is around 10% without this FEC

implementation, a suitable number of parity packets for blocks of data dropped can reduce

the loss rate to half.
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We have also analyzed an FEC(4,8) scheme which transmits parity packets for all

blocks of data packets. Interestingly, this scheme reduced the packet delivery ratio. This

is because such a scheme would transmit many unnecessary parity packets, that is, parity

packets for data that have been transmitted to the destination successfully. In addition, this

would consume a large fraction of the available bandwidth, thus affecting the delivery of

data packets. Our selective FEC(4,8) scheme, on the other hand, saves bandwidth com-

pared to the earlier version, and effectively transmits parity packets for data packets that

might have been lost.

We also experimented our QoS protocol with an FEC(4,6) scheme. It was, however, less

effective than our FEC(4,8) scheme. This is because, often a whole block of data packets is

dropped due to a route failure. In such scenarios, the parity packets for an FEC(4,6) scheme

would only waste bandwidth without being able to retrieve the data packets. Hence, in this

report, we present results for our FEC(4,8) schemes that transmit parity for 3 seconds and

9 seconds worth of data, respectively.
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CHAPTER 4

Performance Comparison

For our simulation, we use the network simulator ns (Version 2.1b8a) developed as part

of the VINT project [2]. Protocols are evaluated with ad-hoc network topologies consisting

of 50 wireless nodes, moving about in a rectangular space. The simulation time is 900

seconds for each run. The protocol takes as input a scenario file and a data traffic generation

file. The scenario file specifies the movement of each node, and the traffic generation file

has the data transfer characteristics giving details such as when each source node starts

a data transfer, the number of packets to be transmitted per second, and the size of each

packet. The link bandwidth is 2 Mbit/sec for all the results.

We use the random waypoint model to model node movement in our simulations. Each

run of the protocol is characterized by a pause time. At the start of the simulation, each

node remains stationary for pause time seconds. Then, each node selects a destination

from the rectangular space randomly, and starts moving towards the target with a speed

uniformly distributed between 0 and a maximum speed of 20 meters per second. At the

destination, the node again stays there for pause time seconds before moving again. For

small data rate (Figure 4.1), we use a rectangular space of dimensions 1500m x 300m. For

large data rate (Figure 4.2 onwards), we use a space of dimensions 1800m x lOOOm. In the

QoS version of our protocol that we compare with DSR, 66% of the bandwidth is reserved

for normal data flows and the rest is for rerouted flows.

We ran our simulations with networks containing CBR (constant bit rate) sources. First,

we compute the effect of node movement on the percentage of packets dropped (= total

number of packets dropped x 100 / total number of packets sent) (cf. Figure 4.1). The
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graph in Figure 4.1(a) is for a network of 10 data sources, while that in Figure 4.1(b) is

for a network of 20 sources. Each source has a sending rate of 4 packets per second,

with a packet size of 64 bytes. We conduct our experiments for the following values of

pause time: 0, 30, 60, 120, 300, 600, and 900 seconds. A pause time of 0 means constant

mobility, while that of 900 seconds implies no node movement. With high node mobility,

the percentage of data packets dropped by the non-QoS version of our protocol is around

half of that dropped by DSR. This performance improvement is achieved without any extra

control packet overhead. Our QoS version also does not have any extra overhead (other

than due to the fact that a route request packet needs to reach the destination, and cannot

be replied to by an intermediate node). As shown in Figure 4.1(a), the QoS version is

best when the number of sources is 10. This is due to the reason that routes used in the

QoS version are more stable; during route reservation, the QoS version validates the route

being used. However as number of sources is increased, due to the extra overhead of route

reservation, our non-QoS version is better. Moreover, for the results presented in Figure

4.1, source nodes do not wait for a reservation before starting a data transfer (in contrast to

our other results). Our QoS-version, however, accepts packets for transmission only after it

is able to make an end-to-end reservation. Hence, a source node starts dropping its packets

once its buffer is full, until it is able to get a reservation. Thus, the results for a higher

number of source nodes in Figure 4.1(b) show a higher packet drop ratio for this protocol.

Table 4.1 shows the packet rate and the packet size for the data rates used in this re-

port. Results presented henceforth are for networks of 20 sources and 30 data flows. Figure

4.2 compares our QoS protocol with DSR for the percentage of data packets dropped as a

function of the data rate of a source. The graph in Figure 4.2(a) is for a pause time of 600

seconds, while that in Figure 4.2(b) is for a pause time of 60 seconds. In our QoS protocol,

a source sends data packets only after it gets a reservation. This only requires coordination
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Figure 4.1: Comparison among the three protocols of the percentage of data packets

dropped as a function of pause time. (a) Number of sources = 10, (b) Number of sources =
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between the application sending data and the routing protocol. This is because if an appli-

cation needs QoS service, it has to get a resource reservation before it can start transmitting
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Data Rate Packet Rate Packet Size

(bytes/second) (packets/second) (bytes)

256 4 64

512 4 128

1024 8 128

2048 8 256

4096 8 512    
 

Table 4.1: Data Rate Specifications

packets. For comparison, we modify DSR so that it does not send packets when the sender

buffer is full. In other words, in simulating DSR, we ensure that packets are never dropped

at the source due to route unavailability. As discussed earlier, the results in Figure 4.2

show that the performance improvement of our QoS protocol over DSR increases with the

data rate. Even at high data rates of each source node transmitting at 4096 bytes/second,

our protocol manages to deliver 80% to 90% of data packets transmitted, whereas DSR is

able to deliver only around 30% to 40% of the data packets. It is also interesting to note

in the graphs in Figure 4.2 that the performance of our QoS protocol actually improves

while moving from a packet rate of 2048 bytes/second to that of 4096 bytes/second. This

is because at such a high data rate, few flows actually get reservation and, hence, they can

transmit most of their packets even through alternate routes in the event of a route failure.

For lower data rates, many flows get reservations initially, but some of them are not able to

reroute packets when a route fails.

While Figures 4.1 and 4.2 look at collective data loss, Figures 4.3 through 4.12 focus on

the effect of data loss on individual flows. More specifically, Figures 4.3 through 4.12 plot

the number of data flows that have the percentage of data packets dropped below a specific

level. For example, the number of data flows that have their percentage drop between 0

and 10% (inclusive of 0) is plotted corresponding to 10 in the X-axis, the number of flows
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Figure 4.2: Comparison between the two protocols of the percentage of data packets

dropped as a function of the data rate of a source node. (a) Pause time = 600 seconds,

(b) Pause time = 60 seconds

having percentage drop between 0 and 20% (inclusive of 0) is plotted corresponding to

20, and so on, until the number of flows having percentage drop between 90% and 100%
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drop below a certain level, for a pause time of 600 seconds, and a data rate of 256 bytes/sec
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Figure 4.5: Cumulative distribution of the number of data flows having their percentage

drop below a certain level, for a pause time of 600 seconds, and a data rate of 1024 bytes/sec

(inclusive of both) is plotted corresponding to 100. Figures 4.3 through 4.7 (respectively

Figures 4.8 through 4.12) show the simulation results for 600 (respectively 60) seconds

pause time. For both pause times, the data rate is varied from 256 bytes/second to 4096

bytes/second.

These results also show that the performance improvement of our QoS-protocol is more

for higher traffic rates. In Figures 4.3 and 4.4, both the QoS version of our protocol and the

DSR protocol have similar performance. In Figure 4.5, 16 flows have less than 20% drop

ratio for our protocol, whereas there are only 11 flows in this range for the DSR protocol.

Similarly, in Figure 4.6, our QoS protocol has 17 data flows having drop ratio below 20%,

while DSR has only 6 flows. For higher data rate of 4096 bytes/second, Figure 4.7 shows

that our protocol has 16 flows having percentage drop less than 10, while DSR does not

have any flow in this range. Also for higher data rates and lower pause time (cf. Figure

4.12), our version shows marked improvement over DSR. For example, for a data rate of
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4096 bytes/second in Figure 4.12, there are 29 flows for our protocol that have a percentage

drop less than 40, whereas DSR does not have any flow in this range.

As seen from the results, our protocol has large improvement over DSR for high data

traffic rate. This is because for such scenarios, our protocol effectively uses its route reser-

vations and, hence, can guarantee high packet delivery ratio for most of the reserved data

flows. On the other hand, DSR tries to transmit packets in every flow, effectively achieving

less packet delivery ratio for all the flows. Moreover, as shown in Figure 4.2, by allowing

some flows (with reservations) to transmit data into the network (and disallowing other

flows), we achieve a higher total packet delivery ratio compared to DSR.
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Figure 4.8: Cumulative distribution of the number of data flows having their percentage

drop below a certain level, for a pause time of 60 seconds, and a data rate of 256 bytes/sec

Figure 4.13 compares different versions of our QoS protocol employing no FEC scheme,

and FEC(4,8) schemes that send parity packets for data sent in the last 3 seconds, and 9

seconds, respectively. Our QoS version in these results has an implicit reservation of 75%
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bandwidth for normal data flows, and the rest 25% for rerouted flows. The graphs, for 600

seconds and 60 seconds pause time respectively, show improved packet delivery ratio when

FEC is employed. Moreover, the FEC scheme transmitting parity for 9 seconds worth of

data performs better than that for 3 seconds. We have also experimented with schemes that

send parity packets for data sent in the last 5 and 7 seconds respectively (results not pre-

sented). We have found that the packet delivery ratio increases gradually as we move from

the FEC (3 seconds) scheme through the 5 and 7 seconds schemes to the FEC (9 seconds)

scheme. This is because, as explained in Section 3.5, by selectively transmitting parity for

data, our protocol effectively recovers much of the data lost due to route failures without

consuming too much bandwidth. Moreover, any data packet lost during the time interval of

2 x SECS seconds due to any other reason, also has the chance of being recovered by the

transmitted parity packets. Experiments conducted with a similar implementation of FEC

on the original DSR protocol also gave similar amounts of improvement in terms of packet

delivery ratio.

Figure 4.14 compares different versions of our QoS protocol having different amounts

of implicit reservations for normal data flows. Each graph plots results for 50%, 60%, 66%,

and 75% of bandwidth reservations for normal data packets, respectively. The packet de-

livery ratio is highest for 50% bandwidth reservation, and decreases while moving towards

a reservation of 75%. When 75% of the bandwidth is reserved for normal data flows, many

rerouted packets cannot get the required bandwidth, and are dropped. A 66% reservation

provides the required bandwidth to rerouted packets in most scenarios, thus increasing the

packet delivery ratio. Our analysis shows that this version of our protocol also has better

network utilization than the other versions. For the versions with 50% and 60% implicit

reservations respectively, the delivery ratio is increased at the cost of bandwidth wastage

from the 50% and 40% reservation, respectively, for rerouted packets. More specifically,
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rerouted packets do not need the entire bandwidth reserved for them. Moreover, due to a

lower reservation for normal data flows, source nodes are able to transmit lesser number of

data packets into the network, thus reducing packet drops. Thus, we have found that our

QoS version with 66% implicit reservation results in a relatively high packet delivery ratio

and efficient network utilization. Hence, in this report, we have compared this version with

the DSR protocol.
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CHAPTER 5

Related Work

Ad-Hoc routing protocols have been categorized [7] as Table-driven and Source-initiated

on-demand. Table-driven routing protocols try to maintain a consistent view of the network

using one or more routing tables. In the event of network topology changes, routing table

updates are exchanged between nodes in the network. Some of the prominent protocols

in this category are Destination-Sequenced Distance-vector (DSDV) Routing [8], Wireless

Routing Protocol [9], and the QoS routing protocol presented in [10]. A problem often

attributed to these protocols is that even in the absence of data traffic between hosts, nodes

would continue to exchange broadcast messages to keep their routing tables updated.

Source-initiated on-demand routing protocols discover a route only when needed. The

source node does a route discovery. Once a route has been obtained, it is inserted into

packets flowing from the node dictating the route the packet should take. Some of the

prominent protocols in this category are the Dynamic Source Routing Protocol [4], and the

Neighborhood Aware Source Routing [11].

The Neighborhood Aware Source Routing (NSR) [l 1] protocol maintains information

about the two-hop neighborhood of a node. A node, while forwarding a data packet, tries

to take advantage of the information it has about the status of the two links along the source

route in its 2-hop neighborhood. A node periodically broadcasts hello packets to its neigh-

bors to notify its presence. These packets are also used to collect link-state information.

In our protocol, however, we try to maintain information about the 2-hop neighborhood by

using the information already contained in the control packets. Hence, we do not generate

any extra control overhead. NSR uses the neighborhood information to detect a failed link,
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and reroute the packets after finding an alternate route. Our protocol, on the other hand,

uses the neighborhood information to efficiently find alternate routes for rerouting packets

(possibly to the 2-hop neighbor) when the next hop node moves and/or fails.

Alternate Path Routing (APR) [12] provides load balancing by distributing traffic among

a set of diverse paths, and studies the impact of route coupling on APR’s performance. In

Dynamic Load-Aware Routing (DLAR) [13], nodes use their load information (the number

of packets buffered in the interface) to select a route. This is in contrast to our protocol

(and DSR) which uses the shortest route to transmit packets, and finds another available

shortest route if the current route fails. In DLAR, the destination waits for an appropriate

amount of time to learn all possible routes. Then, it sends a route reply choosing the least

loaded route. Hence, the source may have to wait for a considerable amount of time before

it is able to transmit data. Intermediate nodes also periodically attach their load informa-

tion with data packets. On detecting congestion, the destination broadcasts a route request

packet towards the source (reverse of normal route request). Load Sensitive Routing (LSR)

[14] uses information about the local load as well as the load in the neighborhood to select a

route. In LSR, the destination compares the current path load with the initial load informa-

tion, and starts a route request phase (as in DLAR) if it detects congestion. Load-Balanced

Ad hoc Routing (LBAR) [15] uses the degree of nodal activity to select a route. The route

discovery process consists of a forward phase and a backward phase similar to DLAR. In

the forward phase, a “setup message” broadcasted by the source reaches the destination

containing nodal activity information for nodes along the route. The destination starts the

backward phase by selecting the best-cost path.

INSIGNIA [16] is a framework for QoS in ad-hoc networks. Unlike our QoS protocol,

in [16], nodes state their maximum and minimum bandwidth requirements. Intermediate

nodes maintain soft-state about reservations. Periodically the destination node provides
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feedback to the source giving status information about ongoing flows. A destination node

may also ask a source node to stop transmitting packets. When a flow is rerouted to a

node not having enough resources, the node provides best effort service to the flow. By

contrast, in our QoS protocol, a fraction of available bandwidth is reserved in anticipation

of rerouted flows.

CEDAR [17] is another QoS routing algorithm for ad-hoc networks. It uses a self-

organizing core of nodes. A core node performs route computations on behalf of other

nodes present in its domain. When a node wants to communicate to a destination, it con-

tacts its dominator node in the core to find a route to the destination, which meets the QoS

requirement. Nodes in the core use core broadcast to exchange network topology infor-

mation with other nodes in the core. By contrast, our algorithm does not send any extra

control packets.

SWAN [18] is a stateless network model for wireless ad-hoc networks. In contrast to

our QoS approach, intermediate nodes in SWAN do not keep per-flow state information.

Thus, signaling mechanisms to update and remove state information are not required. The

model provides service differentiation by using rate control for UDP and TCP best-effort

traffic, and sender-based admission control for UDP real-time traffic. The rate of best-

effort traffic is controlled by using the AIMD rate control algorithm based on feedback

about packet delay from the MAC layer. The total rate of best-effort and real-time traf-

fic is maintained below a threshold rate that would result in prohibitive delays. Similar to

our route-discovery phase in which we establish an end-to—end reservation, a source node

in SWAN has a request/response probe phase. During this phase, the source sends a re-

quest packet to estimate the end-to—end bandwidth availability between the source and the

destination. Thus, this packet needs to reach the destination. In contrast to our approach,

however, the packet does not carry the required bandwidth. The source, after getting the
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response packet from the destination decides if the required bandwidth is satisfied. The

model also uses explicit congestion notification (ECN) to dynamically regulate real-time

traffic in the face of network dynamics.

The transmission power of packets in ad-hoc networks determines among other things

the number of neighbors of a node, the bandwidth available to other nodes in the network,

and the battery life. E. M. Royer et al. studies the optimum number of neighbors for a

node in ad-hoc networks [19]. Kleinrock and Silvester shows that the optimum number

of neighbors for a node in packet radio networks is approximately six [20]. Results in

[19], however, show that there is no general optimum number of neighbors for ad-hoc

mobile networks, and that it varies with mobility. With increasing mobility, this optimum

number of neighbors increases. This is because, higher mobility results in more frequent

link failures. In such a scenario, higher transmission power increases the longevity of routes

because nodes move out of a transmission range less frequently. Thus, nodes should adapt

their transmission power to the mobility in the network. Elbatt et al. also studies the effect

of transmission power on throughput in ad-hoc networks [21]. Nodes keep track of their

closest neighbors and adjust their transmitting power to reach only this set of nodes. Thus,

clusters are formed. Within a cluster, a node may use the same transmitting power (the

maximum power needed to reach the farthest node in the cluster) to communicate to all the

nodes, or, it may further adapt its power to reach different nodes. Results [21] presented

show that the approach of dynamically varying the transmit power reduces average power

consumption, and improves throughput of the network. Moreover, the option of adjusting

power level within a cluster performs better than the other.

A cluster-based approach [22] to routing divides a network into clusters of nodes. A

change in network topology is equivalent to a change in cluster membership. In such a

scenario, a routing protocol needs to handle routing from one node to another in the same
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cluster, and routing between clusters. The entire connected network is interpreted as a

network of clusters, with each cluster represented in this global network by its chosen

boundary node. This approach reduces control overhead for routing updates, and also has

quicker reconvergence.

In a GPS-free positioning system [23] for wireless ad-hoc networks, nodes keep track of

their local coordinate system and their network coordinate system. In the local coordinate

system of a node, it sits at the center (0,0), and the positions of its neighbors are computed

relative to the center, based on the distances between them. Each node shares with its

one-hop neighbors, the set of one-hop neighbors, and the distances of the node from these

neighbors. Once every node has computed its local coordinate system, a global network

coordinate system is constructed by adjusting the directions of the local systems, electing

the center of the network system, and then computing the positions of all nodes relative to

the global center. [24] exploits the low mobility in ad-hoc wireless sensor networks, and

formulates a 3D-triangulation problem to solve for the location of the sensor nodes. It uses

a distance or range measurement based on factors like received signal strength, and angle

of arrival of a signal, to formulate the problem. The node positions are computed based on

information from a set of nodes (anchor nodes) that are aware of their locations relative to

a global coordinate system.

SSA [25] discovers and maintains routes based on signal strength information available

at the link level. A node keeps track of the signal strength of link layer beacons that it

receives from its neighbors. Thus, it can detect strongly connected and weakly connected

neighbors, and uses the strong links to route packets. Each intermediate node in a route

maintains the next-hop information. During route maintenance, the source node does ex-

plicit teardown of the old route by sending an ERASE packet.

39



The VMAC algorithm [26] is a Virtual MAC algorithm that runs in parallel to the MAC

algorithm on a mobile host, and estimates MAC-level statistics related to service quality.

It emulates MAC actions, and estimates the probability of a collision if a packet were

actually sent. A Virtual Source (VS) algorithm uses VMAC to estimate application-level

service quality. Based on this estimation of service quality, a mobile host decides if a new

flow with a specific service requirement should be admitted.
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CHAPTER 6

Conclusion and Future Work

In this report, we focused on the problem of route maintenance and bandwidth allo-

cation in ad-hoc networks. We presented two protocols, a QoS version and a non-QoS

version. The main features of these protocols are as follows: (1) When the route specified

by the source breaks due to a node movement/failure, that source route is reused —as much

as possible— while rerouting the packets on an alternate route. (2) When the route specified

by the source breaks, intermediate nodes use multiple alternate routes so that the rerouted

flow does not interfere with other flows in the network. We find that in most cases, these

alternate routes are disjoint and, hence, if k alternate routes are available then only g}!

bandwidth is used on each alternate route. (3) In the QoS version of our protocol, a source

explicitly reserves the requested bandwidth before transmitting. For the case where the

route chosen by the source breaks, no explicit reservations are made on the alternate routes

used. However, implicit reservations are maintained on all links. More specifically, if k

alternate routes are available for load balancing then 75'3"! bandwidth is used for rerouted

flows and a node permits reservations for fi—lm of the maximum limit. Thus, regular data

packets can use a fraction of the total available bandwidth, while only rerouted packets use

the rest. This implies that in absence of node movement, the bandwidth implicitly reserved

for alternate routes would be left unused in the QoS version of our protocol. The simulation

results in Chapter 4 show that by letting k: 2, such implicit reservation typically provides

the required bandwidth. (4) A source node, on receiving a route error packet, transmits

FEC parity packets only for blocks of data sent recently. Our simulation results show that

the delivery ratio for our protocol is higher than that of DSR.
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In our QoS protocol, a source node may initially obtain multiple reservations for the

same data flow. Once the node settles with the shortest reserved route, the other reservations

are timed out. Hence, this bandwidth would be unavailable to other flows that might try

to do a route request during the timeout interval. Our protocol tries to minimize this by

choosing a relatively low timeout value.

The simulation results in Chapter 4 show that our protocols are better than DSR for

both low and high data rates, as well as for networks with low or high node mobility. Our

protocol sends FEC parity packets for selective blocks of data, thus minimizing the parity

packet overhead and improving the delivery ratio. With low data rates, our protocol delivers

close to 100% of transmitted data packets. With high data rates, our protocol efficiently

uses the available bandwidth and tries to maximize the number of flows having very low

data loss rates. In addition, nodes in our protocol maintain a running average of data being

transmitted for each source node. This implies that our protocol can verify if a source node

is really transmitting at the requested rate. Hence, our protocol enables the intermediate

nodes to charge the respective source nodes for the QoS service it provides.

The approach for load balancing and route reservation is also applicable in other do-

mains. Our approach has been used in an application that is a variation of the beam experi-

ment used in [27]. In this problem, the network consisted of a simply supported elastic 2-D

grid. Each node in the grid consisted of a sensor-actuator pair, where the sensor provided

velocity measurements and the actuator applied force. This grid was subject to external

vibrations and the sensors and actuators were used to minimize the vibration at all nodes.

Due to the correlation between sensor values at multiple nodes, it was necessary to com-

municate sensor values of a node to other nodes in the network. By using our approach for

load balancing and implicit bandwidth reservations, it was found [28] that the quality of

vibration control is maintained when nodes fail.

42



There are several possible extensions to this work; in our simulations we used a pre-

determined amount of implicitly reserved bandwidth for alternate routes. The bandwidth

requirement along alternate routes will, however, vary depending on factors like the num-

ber of alternate routes available, the transmission rate of the source nodes, and the number

of competing data flows. A possible extension is to dynamically change the implicit reser-

vation based on a combination of these factors. This may require increased control packet

overhead in the form of information a node should share about its alternate routes and band-

width requirements with other nodes in the network. In addition, our FEC scheme sends

parity packets for data sent during a predetermined amount of time. This period of time can

be adapted, probably based on estimated packet delays, to better reflect the actual number

of data blocks sent.
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