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Abstract

BAYESIAN MODELING ON

INHOMOGENEOUS POINT PATTERNS VIA INDEPENDENT INCREMENT

RANDOM MEASURES

By

Fanzhi Kong

The main objective in this thesis is to investigate the inference and prediction

of the intensity functions governing inhomogeneous point patterns. The intensity

functions are modeled as random fields directed by independent increment random

measures in a reference state space. Random fields are the foundation of spatial data

analyses. One constructed model on point patterns is based on the Poisson general-

ized Gamma random fields. The generalized Gamma measures can be simulated by

the Inverse Lévy Measure algorithm. For highly clustered point patterns, it is more

appropriate to apply the geostatistical modeling approaches after the log transforma-

tion of count data. The related models are based on Wiener measure subordinated

random fields, which are closely related to the ordinary random fields specified directly

by mean and covariance functions.

Another concern is to make full use of collateral information obtained along

with point patterns. The collateral data, treated as fixed covariates and covariate

stochastic processes, are considered in the setting of joint modeling on the intensities.

The involved modeling approaches follow both theoretical and simulation methods.

The corresponding MCMC schemes are proposed for each data model. The actual

implementation is demonstrated and performed for the joint model on counts and

binary clipped random fields.
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Chapter 1. Spatial Poisson-Generalized Gamma

Random Fields

The study of inhomogeneous point patterns often involves the treatment of ad-

ditional spatial data types. The joint analysisof point patterns and collateral in-

formation may improve the inference and prediction efficiency. The consideration is

demanded because point patterns are practically most expensive and collateral data

are often available along with point patterns. Thus, the methods of joint analysis of

point patterns and their collateral data are highly recognized recently. The follow—

ing section gives a short introduction to point patterns and other spatial data types

considered in this thesis.

1.1 Point Patterns and Collateral Information

Consider a bounded subset S of the d—dimensional Euclidean space with d 2 1.

A point pattern, {S}; j = 1, - - - ,J}, is the set of locations of observed events from

all sampling windows {A,-} in S.

Other spatial measurements {Ygi = 1, - - - ,n} are taken from the corresponding

locations {3,} C S. The locations {5,} are explicitly/implicitly associated with sam-

pling windows {A;} for obtaining feasible measurements. Practical applications often

involve those random variates Y,- distributed on a regular lattice. Examples include

image analysis, where locations represent pixels, and crop experiments, where they

equate with plots in the field. Another example is a two-way table with responses that

are the aggregate of independent row effects, column effects and higher order effects.

In this context, the locations {3,} are called the positive integral coordinates or

 



the generic locations. One may distinguish point patterns from other types of

measurements by associating Y, with the sampling window A, with s,- E A,- C S. The

sampling windows {A,-} may fall far away from each other or may make contact with

their neighbors. In the former case, {3,} can be assumed to have no distinguishable

points in the space concerning the sizes of sampling windows, and in the latter case,

{3‘} together with {24,-} form a partition of the study region. When the relative size

of sampling windows can not be neglected, and sampling windows are disconnected,

{8;} forms a network with features of the sampling windows as node attributes.

The corresponding data {Yi} may be called geostatistical data, lattice data and

network data, respectively.

The spatial data can also be categorized by the characteristics of observables and

may be grouped into three categories: geostatistical data, point pattern data

and categorical data (or random setsl). Cressie (1993) classifies the general spatial

data into three types, i.e., geostatistical data, lattice data, and point pattern data.

1.2 Thesis Synopsis

The choice of spatial models is dictated by the particular form of the spatial data.

It is also influenced by the modeling objectives, which may be to summarize data,

to predict dynamics, or to model mechanistically in order to advance understanding.

In this thesis, the data representation and interpretation for different types of spatial

data will be based on the Voronoi tessellations. The corresponding models will be

constructed with the aid of their directed acyclic graphic representations. The direct

approaches for inference and prediction in inhomogeneous models are generally not

feasible. We will follow Monte Carlo and Markov Chain methods, and all the required

 

1The random set is the main subject of the spatial geometry.



full conditional distributions are derived or approximated for the prOposed models.

The thesis develops several models on inhomogeneous point patterns in the pres-

ence of covariates and covariate stochastic processes. A chapter based synopsis of the

involved models and their analyses follow.

The rest of this chapter concerns the Poisson generalized Gamma random fields.

We establish properties of the generalized Gamma measures that are useful for mod-

eling and inference for point patterns. We also discuss the incorporation of a covariate

into the analysis.

Chapter 2 performs the simulation study for the joint model of count data and

censored data. In Section 2.1, we continue the work on the two-stage model with a

particular generalized Gamma measure and with a particular data structure (count

and indicator variables). The data structure is more fully described in Section 2.2;

it consists of count data on a subset of the cells of a regular lattice and indicator

variables for counts in excess of a cutoff point on the other cells. In Section 2.3,

we develop the full conditional distributions needed for an MCMC implementation.

Section 2.4 gives the results of the MCMC implementation based on specific data

values.

Chapter 3 studies modeling on point patterns with the intensity function as the

transformed kernel mixture of Wiener measures, i.e., log Gaussian random fields. In

Section 3.1, we introduce a model for log-count data that includes covariates and an

additive error. In Section 3.2, we motivate a model for binary data derived from a

clipped intensity function. The second order structure is discussed. In Section 3.3,

we discuss inference for point patterns that associate with a covariate process.

Chapter 4 summarizes the main results in the thesis and discusses some issues



for further investigation.

1.2.1 Terminology and Notation

Some terminology and notation described here will be used through the thesis.

The Bayesian approach is natural for the type of statistical problems treated in the

thesis. The Bayesian approach to statistics uses probability measures, usually defined

in terms of density functions, to quantify and assess unknown parameters and other

unknown quantities, so it involves a direct application of probability theory. Densities

and probability functions of random vectors X and Y will be denoted generically by

square brackets in the context, so that the joint, conditional and marginal forms

appear, respectively, as [X, Y], [X |Y], and [Y]. This notation is used by Gelfand et

al. (1990a). The usual marginalization by integration or summation procedure will

be denoted by forms such as [X] = [X [Y] [Y]

When applying the Monte Carlo Markov Chain methods, we will use the term

‘MCMC’ for simplicity. In deriving the conditional densities, the phrase “is propor-

tional to” is denoted with the symbol ‘oc’. For the log conditional densities, the

involved additive constant will be denoted by a generic constant ‘cg’. This convention

is convenient because it reduces the amount of notation, and since these densities are

seldom evaluated, it produces no confusion. The density or distribution of a random

vector X will denote by ‘~’, interpreted as “X is distributed as”. The transpose of a

vector or a matrix X will be denoted as XT.

In defining random measures the underlying probability space will be denoted by

(Q, f, P). We will denote the Lebesgue measure on d—dimensional Euclidean space Rd

by ‘| - |’. Among others, ‘GG’ is the shorthand for the generalized Gamma measures

or distributions with arguments supplied in the context. Finally, the geostatistical



random fields, models, and data will be used to emphasize the continuous nature over

a subset of Euclidean space Rd.

1.3 Poisson-Generalized Gamma Random Field Mod-

els

In analyzing point patterns the unifying theme is to model its spatial uncertainty

through its (first-order) intensity function. Point patterns are commonly modeled as

a Poisson process N(ds) over the state space S (and its Borel a-algebra S), which

provides the independency structure for mathematical manipulation. The N(ds) is

an inhomogeneous Poisson process with mean measure A if (i) for any A E S,

P(N(A) E {O,1,~ -- }) = 1, and for any collection of disjoint sets A1, - -- ,An 6 S, the

random variable N(A1), - -- ,N(An) are independent; (ii) for all s E S,

P(N(ds) = O) = 1 — A(ds) + 0(A(ds))

P(N(ds) = 1) = A(ds) + o(A(ds)) (1.1)

P(N(ds) > 1) = 0(A(ds))

where ds is an infinitesimal region located at s E S. From these two postulates, it

has been shown that N(A) has a Poisson distribution with mean measure A(A), for

all A E S, (e.g., pp13-14, Rogers, 1974),

A A j -A(A)

P<N<A> =1) = -(—)f.———. j = o.1.2.--- (1.2)

Point patterns may present spatial correlation. The double stochastic process

about to be described is a generic structure for creating spatial correlation. In this

study, the intensity function A(s) of a point pattern is modeled as a random field,



given by the stochastic integral,

A(s) I=Lk(S,U)1\I(dU) (1.3)

where M(du) is an independent increment random measure on a reference state space

III (also a bounded subset of the d-dimensional Euclidean space) with the control

measure A(du) and the nonnegative deterministic kernel k is such that

sup k(s, u) E £2(lU,L(, A) (1.4)

sE S

where U is the Borel a-algebra of U. The kernel mixture type of independent incre-

ment random measures provides a flexible family of models for inhomogeneous point

patterns with a simple and interpretable structure. The specification of kernels often

relies on the preliminary analysis of semi-variogram structures. The resulting models

for point patterns are called Com M models.

The Cox M models have been used to explain the interaction among the point

events at small scales. Heisel et a1. (1996) use one to quantify the small range

covariance structure in a weeds application. Wolpert and Ickstadt (1998a, 1998b)

have deveIOped the theory of the Poisson Gamma random fields, that is, when M(du)

is a Gamma measure. Brix (1999) discusses the properties and the simulation of the

generalized Gamma measures with constant parameter functions.

In this study, we consider the generalized Gamma measures (CG-measures

for short), with possibly nonconstant parameter functions over III. The family of

GG-measures includes Gamma random measures, positive stable random measures

and inverse Gaussian measures. The family of Cox 66' models is a Poisson cluster

process type and includes Poisson processes and ordinary Neyman-Scott processes.

As such the family provides models which can be interpreted both as germ-grain

models (Stoyan et al., 1995) and as overdispersion models for point patterns.



1.3.1 Generalized Gamma Random Measures

The Laplace functional for random measures plays a role similar to the Laplace

transform for random variables. The distribution of a random measure M(du) on a

measurable space (M, .M) is uniquely determined by its Laplace functional (Stoyan et

al., 1995). The Lévy-Khinchin representation (Jacod and Shiryaev, 1987 and W'olpert

and Ickstadt, 1998a) for a nonnegative independent increment random measure M

has a Laplace functional

Ee"M[fl = exp (—ab]f] + // (e'hflu) - 1)€(dudh)) , (1.5)

u-

where f (u) is any compactly-supported bounded measurable function, and the drift

(1')]f] = In f(u)¢(du) with ¢(du) a a-finite positive measure on U. The inhomogeneous

Lévy measure [(dudh) on U‘ := II] x IR+ satisfies the integrability condition

// (1 /\ h)[’(dudh) < 00 (1.6)

BXR+

for each compact B E U. Hence, the random measure AI is determined by the pair

of measures (d), f).

In the rest of this chapter and Chapter 2 we take M(du) to be the general-

ized Gamma measure. It is the GG(a(u), /\(du), b(u))-measure specified by the Lévy

measure,

_1_

F(1 - a(U))

where a(u) < 1 is the index parameter function, b(u) > O is the inverse scale

[(dudh) = h"°(“)‘le‘b(“)h)t(du)dh, (1.7)

parameter function, and the boundedly finite measure /\(du) is the control measure

on (11,“). By a boundedly finite measure, we mean it is finite on every bounded Borel

set. A suflicient condition for the Lévy measure 6 in (1.7) to satisfy the integrability

condition in (1.6) is given by: for every compact B G U,

/ b(u)°(“)‘1)\(du) < 00. (1.8)

B



We take a(u) and b(u) to be continuous on U unless specified otherwise.

The Generalized Gamma Distributions

The GG—measures are derived from the family of generalized gamma distribu-

tions, GG(a, A, b). This family is suggested by Tweedie (1984) and Hougaard (1986),

and considered in various directions by Bar-Lev and Enis (1986), Jorgensen (1987),

Aalen (1992), Hougaard et a1. (1997), and Brix (1998). A GG(a, A, b)-distribution is

concentrated on (0,00) and infinitely divisible in A, which make it a natural basis for

defining independent increment random measures. This also has an important impli-

cation in assigning independent random variables to disjoint subsets in the reference

state space in modeling spatial data.

The family of GG(a, A, b)-distributions is characterized by its Laplace transform,

A
L(t|a,A,b)=exp (— ((b+t)°—b°)), tZO,

E

where a _<_ 1, A > O and b 2 0. The family includes three subfamilies, separated by

the index parameter a.

For a = O, the family is defined only for b > 0 through the limit of its Laplace

transform, limano L(t|a, A, b). It consists of the Gamma distributions GG(O, A, b) with

the shape parameter A and the inverse scale b.

For a < 0 and b > O the family is a convolution of a Poisson distributed number

of Gamma random variables with shape —a and inverse scale b (Aalen, 1992), and its

absolutely continuous component has density

(hIaAb)-ex bh+5b° ESE—i— ——A—)k (19)
q ” ‘ p a hkzlk!I‘(—ka) ah“ '



on (0,00); the point mass at zero is given by

 

Ab“

q<0|a.A.b)=exp(a), ,\>o.

For 0 < a < 1, the family is the natural exponential family generated by the

positive stable distributions with the stable index a; in particular, for A > 0 and

b 2 0, the density is given by

A a 1 F(ka+1) A ", ..
q(h]a,A,b) = —exp (bh + Eb ) EZT( ) Sin(al.n). (1.10)

:x:

ah“
k=1

Its saddle point approximation is discussed by Hougaard (1986).

For a GG(a,A,b) distribution, all the moments exist for b > O, and the rth

cumulant, r > 1, is given by

x, = A(1-— a)(2 —a)---(r — 1 — a)b“".

The squared coefficient of variation (i.e., the ratio of the variance and the square of

the mean) is (1 — a) / (Aba). The mean of the distribution is Ab“‘1 and the variance is

(1 — a)Ab“‘2. The conditional moments for the continuous part of the distribution in

the case a < 0 was considered by Aalen (p955. 1992).

Aalen (1992) uses the powerful tool Mathematica to perform numerical studies

of these densities and demonstrates the irregularly curved density surfaces for vari-

ous ranges of parameters. The densities of GG-distributions are generally difficult to

compute due to multi-modality except for special cases, such as the Gamma distri—

bution GG(0, A, b) and the inverse Gaussian distribution GG(1/2, A, b). In statistical

problems involving CG—distributions, it may be difficult to apply density computation

oriented methods such as the maximum likelihood inference. In analyzing inhomoge-

neous point patterns with the Cox M models, the MCMC method is the main tool

for numerical implementation. This will be used Chapter 2.



Poisson Processes Representations

Any independent increment random measure M(du) on U can be uniquely de-

composed into the following form, (see Theorem 6.3VIII, Daley and Vere-Jones, 1988)

M(du) = awn) + [00 hN“(dudh.) + i Wj6u1(du). (1.11 )

0 j =1

Here the sequence {uJ} enumerates the countable set of fixed atoms of M, 6,, is the

Dirac measure in u, and {Wj} is a sequence of mutually independent nonnegative

random variables determining the masses at these atoms. ¢(du) is a fixed diffuse

boundedly finite measure on U and N*(dudh) is a Poisson process on U’, independent

of {Wj}. The intensity measure 8 of the process may be unbounded on sets of the form

B x (0, 6), but satisfies (1.6) for every bounded Borel set B, in which [({u} x (0, 00)) =

0 for all u E B.

The Poisson process N‘ in (1.11) can be viewed as the generalized marked Pois-

son process on U with the marking space 1R1“. In particular, the GG-measures can be

represented as or approximated by the marked Poisson point processes.

For a probability space (9, .7“, P), a random measure M is said to have a fixed

atom u if P(M({u}) > 0) > 0 and is diffuse if M({u}) = 0 for every u E U (p4,

Karr, 1991). The following proposition shows that a GG-measure is almost surely

purely atomic.

Proposition 1. For a GG-measure [W with its Le’vy measure 8 given by (1.7), M is

almost surely purely atomic and has no fixed atoms if and only if A(du) is diffuse.

Proof. The following proof can be extended to any random measure M having the

Laplace functional (1.5) without the drift (2’) and with its Lévy measure 6 satisfy-

ing (1.6).

10



Let N’ be the Poisson process on U‘ with the intensity measure l(dudh) satisfy-

ing (1.6). Consider the random measure M’ on U given by

M’(du) = / hN’(dudh)

0

which is almost surely purely atomic. For a bounded set B 6 LI , the Laplace transform

of AI’(B) is then, for t 2 0,

E(e“""[’3]) = Eexp (—/U/0°°th13(u)N'(dudh))

= Eexp (— / thN’(B x dh))

O

= exp Occur“ — 1).?(3 x (111))

0

= exp ( / (e-WBM — 1)£’(dudh))

ID 0

where the third equation follows from Campbell’s theorem; see Kingman (p82, 1993)

for a constructive proof. By taking limiting simple function approximations for all

compactly-supported measurable functions f on U, it follows from the dominated

convergence theorem and the integrability condition (1.6) that the Laplace functional

of M’ is as follows:

E(e-M’lfl) = Eexp (—// f(u)hN’(dudh))

U 0

= exp (// (e‘hm‘) — l)€(dudh)) .

U 0

Thus, M and M’ have the same Laplace functional and consequently follow the same

distribution. The fact that a GG-measure M is almost surely purely atomic, and has

no fixed atoms if and only if A(du) is diffuse follows from the result (1.11). C]

Later we use the so—called Inverse Le’vy Measure (ILM) algorithm2 to con-

struct a generalized marked Poisson process representation of GG-measures. Let

 

2Wolpert and Ickstadt (19983.) were the first to propose this algorithm.

11



H(du) be a Borel probability measure on U and assume that A(du) have a density

A(u) with respect to the measure II(d-u). Let [(u, h) denote the density of the mea-

sure l(dudh) in (1.7) with respect to the measure H(du)dh. Let {Uj} be independent

identically distributed from the probability distribution 17(du), and tj 2 0 be the

successive jump times of a unit rate Poisson process. Set

Tu(h) :2/ l(u,:r)d.7: (1.12)

h

and, for each j = 1,2, - - ~ , define

Hj I: lnl{hZOITUJ(h) Stj}. (1.13)

Then, for a compactly-supported bounded measurable function f(u), the random

measure given by

Mm == 2 H.f<U.>

j <30

has the Laplace functional of the form ( 1.5) with its Lévy measure given by (1.7). In

particular, for a bounded Borel B in U, we have

M(B) = Z rig-603(3). (1.14)

J <30

The number of terms in (1.14) depends on the index parameter function a(u).

The following proposition shows that the sum (1.14) consists of infinitely many terms

when 0 S a(u) < 1 on II. For a random measure M, a Borel B E L! and e > 0 define

N,(B) to be cardinality of the set {u 6 B; M({u}) 2 e}, i.e., the number of atoms for

M in B with mass at least 6 with e > 0. Denote by SAAB) the support of M within

'8.

Proposition 2. For any random measure M(du) with its Le’vy measure 6, N6 is a

Poisson process on (UL!) with finite intensity measure €€( ) := €(- x [e,oo)). In

particular, if M(du) is a GG-measure with a(u) < 0 for all u in U, then, for any

12



compact B in U, the number ofjumps in SM(B) is finite; for 0 S a(u) < 1 for all u

in U and any Borel B in U, 5111(3) is dense in the support of A.

Proof. For each 6 > 0 and with the notation in (1.11), Nc can be written as N£(B) =

N"(B X [6, 00)), which is a Poisson process with intensity [6. Define No as the almost

sure limit of the process N( as e —+ 0. Recall that a(u) and b(u) are continuous, they

are bounded on a compact set B. If a(u) < 0 on [U and b(u) > 0, then a(u) g —6

and b(u) 2 6 for some 6 > 0. Thus

lim0 66(B) = limO / / €(dudh)

i _’ 6 7 B . (1.15)

u)a(“)A(du)

Z/BM —a<u)

which implies that No is a Poisson point process with finite intensity (’0. In general,

 

to in (1.15) is finite if b(u) is bounded from above and a(u) is bounded from zero. On

the other hand, for any Borel B in U with 0 g a(u) < 1, A(B) ———+ 00 as e ——> 0, so

that N0(SM(B)) is almost surely unbounded. D

The above proposition together with the marked Poisson process representation

of GG—measures imply that the number of terms in (1.14) is finite on a compact B,

on which a(u) < 0, with a Poisson intensity measure A(du)b(u)“(“)/(—a(u)) on U

and a Gamma marking distribution of shape —a(u) and inverse scale b(u). When

0 S a(u) < 1 the discrete measure M has dense support on the support of A for any

Borel set B. An approximate Poisson process representation can be simulated by the

ILM algorithm. The choice of a finite number J of atoms for the algorithm is discussed

by Wolpert and Ickstadt (1998a) and by Brix (1999). The truncation bound given by

13



Brix (1999) could be applied in most applications. The ILM algorithm implements

the sampling of atoms on the partially ordered sampling space, i.e., ®Jf=l(uj, hj) such

that TuB(hj)S 7213+] (hj+1) for every j < J. When simulating atoms of the

GG—measure with index 0 S a(u) < 1, J is used in tabulating 7‘1, which has no

closed form.

With the ILM algorithm, the joint distribution of the locations and marks of

atoms is provided by the following theorem. Define

Ea+1(h) = [hoe x‘a-le"xdx (1.16)

from which E1(h) is the exponential integral function (p220, Abramowitz and Stegun,

1964)

Theorem 1.3.1. The joint distribution of locations and jump sizes {(uj, hj)}j SJ C

U“ in the ILM algorithm has a density with respect to the product measure H]. SJ H(duJ-)dhj

proportional to

A(u1)b(u.})a(u") Ea(uA)+l(b(uJ)hJ)
 

 

exp —

F(1 — 04%))

J.)a(us)
-a(uB)-1 —b(u )h

x h,- e B B

311M747)F( 1 — a(a(u)-D J

on the set of {(21}, hj)}j SJ for which the measure

A u b u a(u)

7.0:) == F[—,)_—(;,%53Earui+l<b<u)h)

satisfies TuB(hj) S TUB+1(hJ+1) for everyj < J.

Proof. From the definition (1.16), for b > 0, by a change of variable,

Ea+1(bh) = b““/ x—“’le“bxdx

h
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It follows from the definition in (1.12),

_ A(U) so —au-1—u:c

“(kl—ml x " 6““

_ A(U)bIU)°‘“)

which is decreasing in h and its inverse function r;1(t) exists for each fixed u. Thus,

the greatest lower bound for infh ru(h) = t is attained, and we can define

._ -1 _ _1_ -1 ————-—F(1_a(u))th .— Tu (t) — b(U) Ea(u)+l (A(u)b(u)°(“’)

Consider a sequence T1,T2,--- of independent exponential random variables, i.e.,

the waiting times for the successive jumps in the standard Poisson process. Then

Hj = T531 (T1 + ° ° ° + TS) for each 3' _<_ J. Thus the theorem follows by a

change of variable. C]

For a special case of the above theorem, where the index function of the CG-

measure constant zero, see Corollary 2 to Theorem 2 in Wolpert and Ickstadt (1998a).

1.3.2 Intensity Models and Modeling Objectives

Generally, the intensity functions in (1.3) used for modeling point patterns are

complex mechanisms with unknown parameter functions. The kernel and parameter

functions are parameterized with problem specific unknown quantities 0. We suppress

the display of 0 in k9(s, u), a9(u), A9(du) and b9 (u) for the rest of this chapter.

Covariates and Intensity Models

For some applications, covariates a(s) are available to be included in the analysis,

and the intensity model in (1.3) may be treated as a “baseline” intensity Ao(s) of the
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point patterns. The covariate factor 6(s) can be modulated by the Poisson intensity

locally in locations, given by 6(3) = :rT(s)6 with the covariate coefficients ,8. We

adopt the multiplicative incorporation of collateral information into the analysis of

intensities for a different class of spatial Poisson models. In this case, the intensity

function A(s) for point patterns may be factored into two factors, i.e.,

NS) = €XP(8(S))A0(8)- (1-17)

The multiplicative model with the exponential link has the merits of simplicity and

positivity insured when further parameterizing the model (Diggle, 1990; Ickstadt and

Wolpert, 1996). Often in applications, the covariates 95(3) are determined only in

lattice cells of the state space S, and one takes :I:(s) = :z:(s,-) for all s in the lattice

cell with center 3,. In this case, on the cell with center 3,, 3(5) = 2:36. For the

intensity model (1.17), the covariate factor 6(5) can be incorporated into the kernel

k(s, u) = exp(6(s))k0(s, u) with [to as the baseline kernel corresponding to the baseline

intensity A0(s).

The mean intensity surface in (1.3) with a GG-measure A/I(du) is given by

EA(s) =/wk(s,u)b(u)°(“)_lA(du)

and the independence property of GG-measures leads to the covariance function given

by

71((8, s') = /Uk(s,u)k(s’,u)(1 —- a(u))b(u)°(“)“2A(du) — EA(s)EA(s’). (1.18)

This can also be derived by the Campbell theorem, see Brix (1999).

Inference on Intensity Models

With the observed point patterns {Sn}, there is a general interest in the spatial

correlation, which is specified through a parameterized kernel, say k(s, u). Another
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aspect of spatial dependence is the locality, which is explained by the distribution of

a GG—measure M9(du) and covariate coefficients 6. The inference on the intensity

model is carried out through estimation of the involved parameter, estimation of the

intensity at the observed locations, and prediction of the intensity at unobserved lo-

cations. The stochastic view to the inference problem is to treat the point patterns

{Sn} as part of one realization of the spatial Poisson process N(ds) with the given

intensity measure A(ds), while the unobserved part (of the same realization) is pre-

dicted using the point patterns data, location-dependent covariates and correlation

structure specified by the model. This has proved to be very useful as a surrogate for

the analyst’s lack of knowledge about the complex system generating {Sn}.

When modeling point patterns, uncertainty analysis is often of main interest.

One concern is actually the spatial homogeneity, which involves invariant properties

such as location-transformation, rotation, scaling, and location-dependent covariates.

Another concern is spatial trends and spatial patterns, such as clustering and aggre-

gation. The third concern lies with the spatial correlation. Traditionally, stationary

random fields together with other special conditions are assumed; inference in spa-

tial statistics is based on a combination of ad hoc nonparametric techniques, such

as distance-based methods and second-order methods, kernel smoothing (Silverman,

1986), maximum-likelihood parameter estimates and associated approximations and

simulation-based estimation and testing. With constant index and scale parameters,

a GG-measure is stationary if and only if its control measure A(du) is proportional

to the Lebesgue measure on (UN); see Brix (1999).

The inference on inhomogeneous Cox GG models is difficult in part due to its nu-

merical implementation.- The emergence of MCMC algorithms (Gelfand and Smith,

1990a; Tierney, 1994; Gilks, Richardon and Spiegelhalter, 1996) has made it prac-

ticable, and increasingly common, to apply Bayesian statistical methods to spatial
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analyses, where the full conditional distributions required for the Gibbs sampling ap—

proach are available. The posterior samples are obtained from the stabilized Markov

chain in a MCMC scheme. One realization obtained by this simulated chain can be re-

garded as a dependent, approximate sample from the posterior, and various posterior

inferences can be drawn from empirical data analysis of this sample. The estimates

of parameters and prediction of A(s) are obtained by the posterior sample means.

The visual appreciation can be obtained from the posterior empirical distributions

(histograms), which will be discussed in Chapter 2.

The implementation of MCMC schemes sometimes turns out to be difficult be-

cause of the difficulty in sampling from full conditional distributions. An important

MCMC technique is data augmentation (Tanner and Wong, 1987). When the di~

rect sampling from the conditional distributions for certain parameters is difficult,

the data augmentation may be needed and will be demonstrated later in context.

Another useful technique is the MetrOpolis-Hastings (MH) algorithm (see Smith and

Roberts, 1993), which makes it possible to sample from complicated full conditional

distributions. The MH scheme is not only straightforward to implement, but is also a

general purpose method. This makes it suitable for handling any form of conditional

distribution under general assumptions.
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Chapter 2. Joint Inference on Counts and Binary

Random Fields

In this chapter, a simulation study is performed for the joint model of count

data and binary clipping data. In Section 2.1, we continue the work on the two-stage

Cox M model with a Gamma measure (Wolpert et al., 1998a) and with a particular

data structure (count and indicator variables). The data structure is more fully

described in Section 2.2; it consists of count data on a subset of the cells of a regular

lattice and indicator variables for counts in excess of a cutoff point on the other cells.

In Section 2.3, we develop the full conditional distributions needed for an MCMC

implementation. Section 2.4 gives the results of the MCMC implementation based

on specific data values.

2.1 Model Specification and Representation

Consider a Poisson process N(ds) on S C R2 with the intensity defined as in (1.3),

in which M(du) is a GG(0, A(du), b(u)) measure with parameter functions given by

A(du) = Adu, b(u) = exp(bTu/62)

where 0 > O and b E R2. Take the kernel to be

k9(s u) = —1—exp —-i[|s -— u||2 (2.1)

’ r02 02 ’

which is a two-dimensional stationary Gaussian kernel, normalized by the condition,

IR, k = 1, supporting a range of possible spatial correlations. With the above choices
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the mean intensity function is given by

1

EA(s) = /U 7763 exp (—-;—2|Is — 11H?) b—(1u—)A(du)

1 1 b 2
— Umexp(—-6—2 ([[s+§—u[|))du

2

= cA exp (512' (st + H—Zl))

where c = c(0, II). It is seen that the mean function has the directional trend. For

example, for b = (b1, 0)’, the mean function has an “eastness” trend. The covariance

function of the intensity random field A(s) is given by

 '7'(s,s’) = [J k(s‘u)k(sl’u)A(du)—EA(s)EA(s’)

 

WU)

/\ A 1 I I 9

1 1 s+s’+b 2 ,
X/fiexp (_fillu—TH) du—EA(s)EA(s) (2-2)

I)

cA 1 , ,

= Wexp (_W ([[s —— s [I2 — 2bT(s + s ) — [|b[|2))

1 2

"‘C2A28Xp (a? (bT(8+S’)+ [lb2ll ))

where the covariance function consists of a stationary part and directional part.

Point Pattern Voronoi Tessellations

In spatial data analysis, Voronoi tessellation provides a way of translating the

state space into spatial attributes, 0, for instance, which can be in turn characterized

through parameter functions or unknown quantities for modeling inference. Voronoi

tessellation is a method of partitioning a (state) space into convex polygonal re-

gions; divisions of the plane are most often discussed. The Voronoi cell of a spatial

object is the set of all points in the state space closer to the object than to any other
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Figure 2.1: Homogeneous Poisson Voronoi tessellation

object in the set. The set of Voronoi cells for a set of spatial objects, called Voronoi

diagram (also known as Dirichlet or Thiessen polygons), provides the partition of a

set of spatial objects according to its spatial structure. For a theoretical treatment

of Voronoi tessellations and mathematical proofs concerning their properties refer to

Moller (1994) and Okabe et a1. (2000). The latter follows an application oriented

approach. In a two-dimensional Euclidean space, Voronoi cells are convex polygons,

whose edges are half-way between two points in U and perpendicular to the line seg—

ment joining them. Green and Sibson (1978) provide an efficient computer algorithm

for constructing a Voronoi tessellation from a given set of points. Okabe et al. (2000)

compare the Green-Sibson to alternative construction methods.
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The Voronoi tessellation generated from a random point pattern is a random par-

tition of the state space (Figure 2.1). Miles (1972) gives an excellent survey for the

case where a Poisson process generates the Voronoi tessellation. For a homogeneous

planar Poisson-Voronoi tessellation of rate A, the expected number of sides (or edges)

in an arbitrarily-chosen cell (e.g., the cell containing the origin) is 6, and its expected

area is 1/A. The connection between the intensity and tessellation cell attributes

thus provides a way of representing a point pattern. This can be extended to inho-

mogeneous point processes, in which the intensity measure is characterized through

the parameter functions. Probably the most useful application of the Voronoi model

lies in compilation of intensity surface maps from point data. As the area of cells

estimates the inverse value of the local intensity, assigning 1 /A to the point location

as local intensities, the map can be easily compiled with the aid of any kind of (either

deterministic or stochastic) interpolation method.

We will use the lattice or gridding tessellation of point patterns, where the corre-

sponding spatial models are then specified based on count data instead of point pat-

tern data directly. We shall take a state space S of the rectangular shape with length

11w and width 12w, where w is the length of the lattice cell. The number I = 11 x 12 is

the total number of lattice cells. A cell is referred to as Ci = Cm”). The center

of a lattice cell C,- is then ((21, 7:2) — I /2)w used for necessary approximation,

and the area of a lattice cell is wz. Each sampling window A,- can be considered as

the union of 0,8 with generic location at 3,, and A = Uz' Ai. Similarly, a reference

space U is defined in an analogous way indexed by J with S C U for correcting the

edge effect and with generic locations uj. In general the sampling windows may be

any shape or size. We shall take the sampling windows as the union of neighboring

square lattice cells (or quadrants) for convenience.
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Data Representation and Approximation

Tessellation is an effective way of approximating the sample paths of a stochas-

tic process on the state Space. However, the accuracy of the approximation highly

depends on the smoothness of the sample paths. The smoothness of parametric func-

tions is problem specific. For deterministic kernels, 1:, Marcus and Rosinski (2000)

derived explicit and easily verifiable sufficient conditions for the almost sure continu-

ity of the stochastic integrals (1.3) directed by the GG-measures. Tessellation is used

to provide data driven approximation of parameter functions or unknown quantities

in the spatial models. For smooth parameter functions, we may integrate parameter

functions over tessellation cells or evaluate parameter functions at any point in the

tessellation cell.

In this study, we follow the generic (or cell center) location approximation for

the smoothing parameter functions b(u) and random intensity function A(s). Based

on the above gridding tessellation scheme, we have A,- = A1172, b,- = exp(uTb/0;u E

(3,) z exp(u}‘b/0), kfj z k9(s,-, uj). With 9 = (0, 11,, 11,-) ~ «(9), a lattice model

is given by

(11,.9] ~ II 00(0. 13, b?)

1'

Ai = Z kzngdei (2.3)

.7

[N1|9, {Mjll N UPON/M)-

With known counts {Ni}, Ickstadt et a1. (1996) Show that the features (including

mean vectors and covariance matrices) of the joint distribution of random variables
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{A’Ij} and {N,} conditional on 0 E O, can be studied from their Laplace exponents,

i.e., the negative logarithms of their Laplace transforms,

-10s Ewe-WW) = Z 10s(1 + m».-
j

— log Eg(€_ ZYfWYIMJ) = :(1 — e-fB)k,J-Mj

773'

— log E9(e_ZYf‘N‘) = Zlog 1+ :(1— e’fB)k,j/bj

j 1'

XAJ'

(2.4)

2.2 Counts and Binary Data

In the rest of this chapter, we illustrate inference for partially censored data on

a lattice. The data consists of counts N = {N,} for each lattice cell within sampling

windows, and binary variables Z = {2,}, where

Z, = I{]Viz 2 71.0}.

Here no is the level of censoring and the unobserved counts N: are assumed to be on

the same path as the observed counts N,.

In simulation of Section 2.3, the exact locations of the events are known. The

counts in lattice cells are represented by independent Poisson random variables N+ ——

{Ni} U {N12,} With N25 denoting the counts in a binary observation cell Oil.

The Poisson means are a linear combination (approximation) in (2.3) of unobserved
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independent Gamma-distributed random measure M = {M}, €J with uncertain 110n-

negative coefficients Kg —-—,-6]{k-.} Uncertainty about the parameters of the

Gamma distribution of the measures M, ~ GG(O /\j,b'), and about the values or

collateral dependence of the coefficients kg- is modeled through dependence of kg,

/\j = A? and bj = b? on an unknown parameter 6 E O, regarded as a random

variable taking values in O C R” for some p, with intensity 7r(6) with respect to

Lebesgue measure d6. Dependence on 6 is indicated by sub- or super-scripts.

Given the random measure M, the N+ are conditionally independent Poisson

random variables with means A = {A,}. It follows from (2.4) that unconditionally the

{N,} are dependent, distributed as sums of independent negative-binomial random

variates. Their means and covariances are given by

EQN, = Z kfjAj/b,

J'

C
)
!

(2: )

_ 2 : i 6 6
COV(N,‘, Nil) — (61:14“ kij/bj)(ki’j/bj))‘

j

where (522-, is the Kronecker symbol, 1 if i = i’ and 0 otherwise. From (2. 5) we see

that N, and Ni’ are uncorrelated (and in fact independent) only if It)? 110%: 0

for all jand each i ¢ 1". That is, k, and [(330 are orthogonal1n the sequence space

emit/(11.9)?)
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2.3 Joint Inference on Counts and Binary Random

Fields

2.3.1 Graphical Representation

The specification of spatial models may become complicated when introduc—

ing many parameters, especially in the presence of data augmentation and collateral

stochastic processes. Gilks et a1. (1996) develop a graphical representation, called

directed acyclic graph (DAG), to describe the conditional independence for model

components. The DAG representation of the model under consideration in this Chap-

ter is shown in Figure 2.2. The statement “6 influences M” describes 6 as being a

parent of M, as shown by the arrow that goes from 6 to M. The DAG makes state-

ments about a sequence of conditional distributions. Each node is independent of all

its other ancestors given its parents. Types of nodes can be differentiated (Gilks et al.,

1996). We shall use squares about N and Z, and circles about 6 and M, for observed

and unknown quantities, respectively. In addition, the dotted circles about N‘ and

V, denote augmented data nodes. The model dependence structure and assumptions

can be readily derived from the directed acyclic graph. The implementation of a

MCMC scheme will accordingly visit each node in a DAG. We leave out the implicit

functional relationship among unknown quantities for simplicity in a DAG scheme,

although they are important in deriving full conditional distributions. Several DAGs

related intensity models of spatial point processes are given in the next chapter.

The implementation of MCMC inference below requires samples from the full

conditional distribution of the random measure M, given 6 and the observed counts

N = n, a mixture distribution from which direct sampling is cumbersome. Therefore,
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Figure 2.2: DAG of counts and binary random fields

1',V

we introduce latent “augmentation” variables V = {l/zjli, j E I x J, which can

be sampled easily and which lead to a mixture-model representation of model (2.3)

and to the conjugate (Gamma) full conditional distribution for M. More specifically,

conditional on M = m, N = n and Z = z, where Z, is the indicator variable, no

is assumed to be a constant. Also the augmented counts {NZ-z} corresponding to

binaries variables {2,} are conditionally independent Poisson random variables with

AYB
means {A,}. Set Aij — k,jmj,A1, = Zj Aij, pij — X17 and let {Vii}

have independent Multinomial distributions MN(TL: , pi). We might regard the

random variates I/z'j as the portions of counts 11, attributable to the jth measure,

j E J in some applications.

2.3.2 MCMC Scheme

We now study the (analytically intractable) posterior distribution of uncertain

quantities 6 and M by simulating steps from an ergodic Markov chain with the pos-

terior as its stationary distribution. The joint distribution of all uncertain quantities

are given by the following theorem

Theorem 2.3.1. The joint distribution of 6, M, V, N, N2, and Z has a density

function with respect to the product of counting measure for discrete and Lebesgue
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measure for continuous variables, given by

[0,M, V, N, N3, Z] = 71(9)

 

mAB-F’UQB- leB

X H (Z:+1 —Z___z‘-) J

i pt 1— pi) jEH] F(AJ)

16?.“
2J

x HJ exp —-(ZbJ+ ng)m

2] .7

where pf = IP(NJ-z Z 710),?)23' = Zi ’UiJ‘ and kQJ' = Zi kiJ'.

Proof. With the adopted notations, and from the directed graph presentation, we

have the following factorization under the considered model,

[6,M,V,N,N’,Z] =[6][M|6][V[6,M,N,N’,Z,no][N|6,M]

(Nae, M, z, nOIIZIO, M, no]

Note that [V|6,M,N,N“,Z] = [V|6,M,N,N"], in which Z is redundant, is the

product of multinomial distributions. [N [6, M] and [Nz|6, M] are products of Poisson

distributions. [Z|6, M] can be evaluated by computing the tail probabilities of a

Poisson distribution. Direct calculation will lead to the result. [:1

In the above theorem, we consider no to be a fixed value. In practice, this may

be estimated by the available count data and collateral information.

Corollary 1. The conditional distribution of the augmented data vector (V, Nz) given

the observed counts n and z, the signal measure M, and the parameter 6 is the
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product of multinomials with parameters 71,- and p,, independent fori E I and [Ni =

nz|6,M,z], i.e.,

[V = v,Nz = nz

nE.

HIV—[NW ,Pi) (1722 + q) 711! €XP(—‘/\z:)

n,z,m,6] =
 

 

Corollary 2. The conditional joint distribution ofM given N, Z, V, and 6 is again

gamma component, independent forj E J with parameters AJ' + UQj and bj + kg];

i.e.,

[M[0, ’1), I1, Z] '—" H GO“), AJ' + v2j, bj + kgj)

j

Corollary 3. The conditional density of6 given {n,}, {2,}, {2117]}, and {mJ} is

  

given by

[6|M,V, N] oc 71(0)

AB+v2B-1 /\B We

11 ’"J' ‘5' 11 ’“‘. . .ljEJ F(AJ) i], v,J.

exp — E (DJ + ICQJ')7TLJ'

j

Proof. Immediate from Theorem 2.3.1 and the definition of {I/th, J'. C]

The above corollaries lead directly to the following MCMC scheme. Given a

prior density 7r(6) on 9, a parametric kernel {1626]}, a transition probability kernel
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Q(6,d6’) = q(6,6’)d6’, parameters {AJ} and {bJ} for the Gamma distributions of the

random measures {MJ}, and initial points 60 E O, and nonnegative integers {110‘},

we can generate successive points starting at t = 0 as follows:

Step I: Gibbs step to update the random measure. Given {n,}, {2,}, {21,9}. and

6’,

1+1 _ 03 t t-I-l 63
. SCI, Aj — Aj + Uzj and bj :b’ + A2j’

. Mt+1 _ t+1 . G At+1 bt+1 .

o generate 1ndependent - — mj w1th C(O, j , j )

1+1 63 HI t+1 1+1
0 set Ai]- :07le ’Al :ZjEJ]Ai' ,

t+1J t-I-l t+1

10.,- =.-/\. /A

Step II: Gibbs step to update the augmentation points. Given {n,}, {2,} {mt-,H}

and 6‘,

o generate independent random variates A'f with probability

(--A) (2-6)    

nE.

Zi+I—ZinAil

195 1-191’

for each iw here the indicator random variable Z, is observed;

0 generate { ICE-+1}j N MN(71:, pg“) independent for i E I .

Step III. Metropolis-Hastings step to update the parameter 6. Given {n, }, {UtJ-H ,

t-I-1
{mj }, and at

o generate a new candidate 6’ ~ Q(6’, d6’);
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o calculate the acceptance probability

.18.“

”(904(9’, 0’) H ’1";- ‘8
 

 

P’ =

r(6t)q(9‘.6”) .,. 11.6.3

X (mt+1)/\B+U§El— l(b§I)/\l3 11(A‘?‘9)

j (mt+1) A};+U2B1-I(b§S)AlBS
[‘(Agl)

X exp — 2(ng — bgs + kgj— kgJmJ)”1

j

(2.7)

o generate 6’+1 = 6’ with probability (1 /\ P’) and = 6‘ otherwise.

Step IV: set t «no t + 1 and return to Step I.

2.4 Simulation and Results

2.4.1 Simulation Setup

Consider the model (2.3) with the state space, [0.2, l] x [0.2, l], and the reference

state space, [0, 1.2] x [0, 1.2]. The width of the lattice cell (quadrant) is set to be 0.2.

The control measure is proportional to Lebesgue measure with the proportion coeffi-

cient A = 1000, the parameter 6 = 0.4 for modeling the circular correlation structure,

and the spatial trend parameters bT= (b1,b2)= (1,0) for modeling‘‘”eastness in this

case. One run with true parameters is performed to get the raw count data for all

16 lattice cells. We set no = 10 to be equal to the average of raw counts. Six cells
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Figure 2.3: Empirical counts plot

are randomly selected, and their counts are compared with no to get the indicator

variables, Z, = I{N, 2 no}. Hence, the simulated data consist of six 0 — 1 indicator

values and raw counts for the rest of the 10 cells. The outcome of the simulated

data is shown in Figure 2.3, in which the true counts for indicators are shown in

parentheses.

The sensibility of model parameters in modeling this data is studied by compar-

ing the three models shown in Table 2.1. Model I has all three parameters unspecified

and to be estimated. It is most general in the sense of catching all the directional

covariance structure that is implied in (2.2). Model 11 is a wrong model in this case in

that it takes bl = 0 even though the data were generated from a model with bl = 1,
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Model Parameters Estimates

True Model (0.4, 1,0)

Model I (6, b1, b2) (0.93, 0.89, —1.00)

Model II (6, 0,b2) (161,—, -0.91)

Model III (6, b1, 0) (1.77, -3.10,—)

 

  
Table 2.1: True model and other models

that is, the “eastness” is expected. Finally, Model III is the correct model in that

b2 = 0 is assumed and is expected to give better estimates and prediction. The values

in the first column of the table is the posterior sample mean corresponding to each

model.

For each model we have chosen independent standard normal prior distributions

for each parameters 6, b1 and b2 and independent GG(0, AJ, bJ) distributions for M,

with AJ- E Aw2 constant in all j and b, as defined before. To perform the Metropolis-

Hastings step, the transition distributions for b1 and b2 are also normal with standard

deviations 1,01 and 1,122. For the parameter 6, first a transformation is imposed such

that E = log 6, then 6;H is generated from the proposal density qE( - [5,) = N(5,, v3),

and the value is accepted proportional to

WWW) 9 1 1 1
(19(9l9’) = 5 exp (—2—w32— (log(6 /6) + log(6/6 ))). 

The tuning scale parameters w,- control the rate of acceptance P’ in (2.7) of the

Metropolis-Hastings step, and a judicious selection is needed for efficiency of the

algorithm. If w,’s are too small, the rate of acceptance P’ will be high, but the steps

such as {2+1 — 6t will in general be small. Such a chain will move very slowly

through the support of the posterior distribution. On the other hand, if w,’s are too

large, the proposal distribution will generate large steps, often from the body to the

tails of the posterior distribution, so the rate of acceptance will be small. Such a

chain will frequently not move, producing slow mixing again. In both cases it would

33



take a large number of iterations for the chain to move through the support of the

posterior distribution, making the algorithm inefficient.

A rule-of-thumb used by many practitioners is to select (by experimentation)

values of 1633 giving an empirical rate of acceptance of about 0.4 — 0.5. This rule

has some theoretical support for the case when the target and proposal distributions

are both normal (Gelman et al., 1996). In this study, for model I, we use 111, = 1 for

all i = 1, 2,3, while for model II and III, 11), = 2, and the empirical acceptance rate

was about 0.40. Implementation for all models was based on 100, 000 MCMC steps,

and the posterior sampling was started at 90,000 and successive samples were taken

at every other 100 runs. The Monte Carlo iteration was realized by a C++ program.

The judgement as to how close an iterative algorithm is to convergence after a finite

number of iterations is difficult. Some discussion is found in Kass et. a1. (1997).

2.4.2 Posterior Analysis

One of our simulation goals is to predict intensities {A,} for those lattice cells

without known count data. The predictions of the intensities are obtained by the

corresponding posterior sample means of size 100. The predictions for Model I are

shown in Figure 2.4. The smooth prediction surface for intensities is curved instead

of showing a pure “eastness” trend. This is because of the presence of the parameter

b2, which measures the “northness” trend. In fact, Model I can explain all direc-

tional covariance structure if present. However, the other models did not improve

the prediction surfaces in the sense of catching the covariance structure during the

experimentation.

The following figures are plotted using the function plotdensO from MatLab’s

statistics toolbox. Figures 2.5, 2.6 and 2.7 show the prior (solid curves), true value
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Figure 2.4: Posterior means for intensities
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Figure 2.5: Posterior density for log-6

(dashed vertical lines) and the estimated posterior density function (dotted curves)

for 5 = log 6, b1 and b2, respectively. The posterior means are listed in Table 2.1.

The estimated densities for 6 and b1 suggest that the systematic trends should be

included in the analysis. The estimated density for b2 tends to be flat and suggests a

weak “northness” trend that is consistent with the true model.

While the above graphical outputs are very suggestive of which models fit well

and which do not, a more objective and more quantitative approach, using so called

Bayes factors, can be applied (Ickstadt, et al., 1996). This was not done in our

example.
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Figure 2.6: Posterior density for b1
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Figure 2.7: Posterior density for b2
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Chapter 3. Models Based on Log Gaussian

Random Fields

In this chapter we continue to focus on developing models based on inhomoge-

neous point patterns. For highly clustered point patterns, it may be more suitable to

perform the geostatistical analysis after an appropriate transformation of the count

data. The imposed transformation is convenient for factoring the intensity models,

and is required to achieve the Gaussian regularity for geostatistical models. This

commonly happens to be the log-transformation. More general transformation meth-

ods are discussed by Martinez (1997). Geostatistical models for log-counts tend to

explain large scale variation rather than small scale variation in point patterns (Heisel

et al., 1996).

In the geostatistical modeling setting, a log intensity model is suggested by the

intensity model (1.17) and is given by

77(8) = 3(5) + {(3)

A(S) = exp(.3(8))Ao(S) = exp(n(8))

(3.1)

where {(3) is a Gaussian random field on S. The direct specification of covariance

function of 5(3) is convenient under stationarity. For non-stationary covariance func-

tion of {(3), we shall instead consider a second order random measure W with control

measure A on ll. Its subordinated random field {(3) is given by

5(3) 2: /Uk(s,u)W(du), s 6 S (3.2)

then {(3) is diffuse and is well defined on S; see page 10 for the concept of diffuse

measure. Clearly, 6 is a centered second order random field, i.e., E£(s) = 0, and its

covariance structure can be specified by choosing appropriate kernels and parameter
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functions defining random measures. It is more convenient to work with the kernels

k.(3, -) rather than directly with the covariance function 7(3, 3’), in which it might

be difficult to ensure symmetry and positive definiteness for all 3 and 3’. Under the

condition (1.4), the specification of g in (3.2) is valid with arbitrary choice of kernels

and the derived the covariance function 7(3, 3’) of E is positive definite (Higdon et

al., 1999). Under the suggested transformation in (3.1), the relation between A0(3)

and 5 (3) is defined through the exponential link function, which is chosen so that

the intensity is nonnegative. The covariate factor 5(3) is an additive term in the

transformed model, and in this setting, 5 (3) may also be interpreted as a covariate

process to point patterns.

3.1 Models for Log Counts

3.1.1 Model Specification

Consider the log-count data, denoted by Y = (Y(31), - - - ,Y(3,,))’ at the generic

locations 31, - -- ,3". In this section we discuss the model

Y,- = 3338 +5,- + 62' (3.3)

where 6i = {(80 is from an underlying spatial stochastic process and e,- = e(3,-) is

from a spatial error process. In spatial data analysis, the spatial variation includes two

sources, i.e., the spatial uncertainty and measurement error. Measuring heterogeneity

is sometimes critical to the success of an error modeling system, especially in the case

where the measurements have underlying spatial patterns. Spatial processes 5(3) and

5(3) are assumed to be independent, and the K’s are thus conditionally independent

given {(3).
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In the sequel, 61,- -- ,6" are assumed to be i.i.d normal random variables with

mean zero and variance 02, and g (3) is a Gaussian random field with zero mean. i.e.,

E6 (3) = 0, and with covariance function 79(3, 3’) = cov({(3),€(3')) depending on a

parameter 0 E 9. We let ’75 := (7(31,3), - ~- ,7(3,,,3))T and let I‘ = {7(3,, 31)} denote

the n x n covariance matrix at generic locations. Although not demanded, it is often

2 o

assumed that 5 (3) has a constant variance 7' , 1.e.,

79(3, 3’) = 727543, 3') (3.4)

where r)" is the correlation function specified by 6" with 6 = (T, 6"). The mean for Y,

is

yo.) = EYIs.) = MEG/(sale) = as.) = .233 (3.5)

where x, = :17(3,-) is the p—dimensional covariate vector. The covariance matrix for Y

is given by

02 + 7(3), 33-), for 2' = j;

7y(3n 31) = i

7(81583‘), fOTifi'éj K
and is conveniently written as

cov(Y) = 02(1 -+- F/UQ) = 022

The additive measurement error 02 is the variance of the conditional random field Y,

analogous to a nugget efl'ect in the spatial statistics literature. Also let 0'3 1:

(YE/(31, S), ‘ ' ' 731(8”, 8)), for any 3 E S and denote the n x p covariate matrix

by X.
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3.1.2 MCMC Inference

In the inhomogeneous spatial models including the non-Gaussian cases, the main

difficulty in performing likelihood-based inference and prediction is the shortage of

multivariate families of distributions as flexible and operationally convenient as the

Gaussian distribution. In most cases, those densities are analytically intractable.

The most widely implemented methodology for coping with non-Gaussian problems

is trans-Gaussian Kriging and lognormal Kriging (Cressie, 1993), which consist of

applying standard Gaussian methods after a marginal non-linear transformation.

When applying log Gaussian models (3.3) for point pattern data analysis, the

error term is often omitted (Diggle and Tawn, 1998). In this section we introduce

the Bayesian analysis of the log Gaussian model with the error term present. Let

g : (€(Sl)7 ° ' ° 760970), and let 5" : (€*(310)1 ' ° ' 76*(3m0)), for

the corresponding values of 5 (3) at locations 3,0 for which predictions are required.

We are then working on the extended model [5,9, H,Y,0',£‘] instead of the model

[5, 9, fi,Y, a], where 9 denotes the parameter vector in the covariance structure [‘9

of 5 (3), in particular, under constant variance in (3.4), 9 includes the variance 72,

and any further parameters in the specification of the correlation structure of 5,

and fl consists of all the regression parameters. Our objective is to use MCMC

methods to estimate the model parameters, 0, fl and a, and to generate samples

from the conditional distribution of (£,£‘) given Y under the stated assumptions.

This allows us to obtain predictions for any functional L of interest associated with

this conditional distribution, while making proper allowance for uncertainty in the

parameter estimates. Under a standard MCMC scheme we need to generate samples

from the posterior distribution of [(0, 5, fl, a)|Y] for inference and from the posterior

of [£‘|(0,£,B,Y,a)] for prediction.
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Figure 3.1: DAG of log Gaussian models

The implementation of the MCMC scheme requires sampling from the condi-

tional distributions: [0|5,fi,Y,0], [,B|0,5,Y,U], and [5i|9,5_,-,[3,Y,0], where 5_,- =

{(51); j aé 2'}. A graphical representation of the dependence structure of the model is

shown in Figure 3.1, the model can be factorized into

l9,€,fi,Y,0,£‘l = l91[€|9llfill0llY|9,£,fi,Ullfi'lété,flY,0] (3.6)

The first objective is inference about model parameters. We can simplify this struc-

ture by dropping the node 5'. It only requires visiting the nodes 0, 5, [3 and a in

Figure 3.1. Given 5, it is clear that 0 is conditionally independent of Y, and that 9 is

conditionally independent of fl and 0. So for inference, a single cycle of the MCMC

algorithm involves first updating [0|5], then [5|0,[3,Y, a], [fi|5,Y, a] and [0|5,,6,Y].

Under the model (3.3), [Y|0,5,fi,o] is the product of normal densities with

. T .
respective means 772' = 1137; ,8 + £2“ and variance 02 I says

lY|9,€,fi,Ul = [Ylfifl 0] = Mfléfifl) (3-7)

and

l9l£.l3,Y. 0] = l9|€l = l£|91l91 = <p(€|9)7r(9) (3-8)

and

[€i|€_iy,B,Y, 0'] : [Y|€,fl,0][€i|6,€_il (39)
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where <p(5|9) in (3.8) is a multivariate normal density. As a consequence. [510.5 _1]

in equation (3.9) has a univariate Gaussian distribution. Finally.

lfi|9,€,Ya0l = lflléeYeUl 0< lYléafiIUllBl (3.10)

and

l0l9,£,Y,fil = [OILYfilCX [Yléfiflllal (3-11)

In practice, any prior distributions [0], [fl] and a will make MCMC work.

The MCMC algorithm consists of the following steps. Initial values need to be

chosen for 0, [3 and 5 to start the algorithm. Arbitrary starting values for Ofl , o and

5 may be chosen in the range specified by the prior. However, assuming 5 = 0, our

model reduces to a standard generalized linear model and the corresponding estimate

of b from this model may be used as an initial value, [30. We then set the starting

value, 6?, for each 5.- by equating 17,- to y,- for each i in the link function defined to

give {20 = yz’ — (EffiO. 0’0 can be set to the sample standard deviation.

In a MCMC cycle, we first update all the components of the parameter vector

0 through a MH step to accept a new state 0' chosen uniformly from the parameter

space specified by the prior, with acceptance probability

,_ . p(£l9') }
A(0,6)—m1n{p(£|0),1

The second step is to update the signal 5. Choose a new value, 5;, for the ith

 

component of 5, from the transition probability function q(5,,5,’) = [5'|5,0], and

accept 5:- with probability

 

.. r: . 90(yil‘52’ala) }

mas.) mm{w(yilw),1 .

Repeat the sub-steps for all z' = 1, - n ,n. The third step is to update the elements

of the regression parameter fl. Choose a new value ,6' from some appropriate density
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(1(393) = [B'Ifi]. Accept ,8’ with probability

IaIwazaiqwcm 1}

90(y|£,fi,a)q(fi,fi’)’ '
 mm = min{

The fourth step is to update the parameter 0. Choose a new value 0’ from some

appropriate density q(a, 0’) 2: [or’|a]. Accept 0’ with probability

a ,2 . <p(y|£,fi,0’)q(0’,0) }

A( ’0) mmlw(y|£,fi,0)q(a,a’)’l ’

 

The choice of the transition kernel q is problem-specific. We iterate the above

steps until the chain is judged to have reached its equilibrium distribution. At

this point we draw a random sample from the multivariate Gaussian distribution

of [5'|0,5,3,Y,a], where (6,5,fl,0) are the values generated in previous updat-

ing steps. This step reduces to direct simulation from the Gaussian distribution of

[519,5], since our model implies that 5" is conditionally independent of Y, [3 and a,

given 5. Specifically, it follows from the assumptions that

[§*|9,g] ~ Nm(rZr-1g,r., — PIP-'11:.)

where I‘ = var(5), F. = cov(5,5’) and F... = var(5‘).

We then cycle over all the above steps as many times as necessary to obtain

the required number of realizations from the distribution of [(0,5,fi,a)|Y] and of

[516,5]. After convergence we sample every rth realization of the chain. Increasing

the value of 7‘ reduces the serial correlation in the resulting output-sample. The last

step is then only necessary at every rth cycle.
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3.2 Clipped Intensity Models

This thesis has been motivated in part by a research project concerning the pre-

diction and inference of deoxynivalerol (DON vomitoxin) intensity in wheat scab from

truckloads and wheat fields; see Schabenberger, Gregoire and Kong (1999). Unfor-

tunately, the developed models were not successfully applied to the DON assessment

due to lack of information about marking distributions. One issue raised in that re-

search is that the measurement of DON in ppm cannot be obtained when the DON

exceeds the threshold for the assay techniques. This leads to be the multinomial map-

ping problem in the geostatistical modeling. This type of spatial data has recently

received large attention in terms of “hotspots” and “excursion set” (Gregoire, Sch-

abenberger and Kong, 2000), where a spatial point process is highly clustered with

certain attributes. Other examples where this sort of situation occurs are numerous:

a geologic formation composed of three rock types, a contaminated geographic region

with a subregion determined by the locations where the contaminant concentration

surpasses a safety level, or below a limit of detection.

Now we consider a binary random field {Z(3); 3 E S}, which assumes the values

0 or 1 for every location 3. Furthermore, we assume that the binary random field

Z(3) come from clipping an underlying intensity surface at some given cutoff point

I

c, i.e.,

2(3) = I{A(3) 2 c’}. (3.12)

Suppose that we have n observations Z = (21,- ~ ,2") based on (3.12) and a sin-

gle realization of the random field A(3) given by (3.1), where 31, - .. , 3,, are known

sampling locations in S. Based on Z and our prior knowledge on parameters from

the random field model, we want to predict the unobserved random vector Z* =

(2(801), ' ° ' , Z(30m)), where 2" comes from the same realization of A(s) as
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the data vector Z, and 801, ° ° ° , 80m are known locations in S. To apply geo-

statistical analysis methods, the equivalent log transform on intensity to (3.12) is

considered, namely,

2(8) = I{77(8) 2 C} (3-13)

where 77(3) = 33T(3)fi + 5(3) as defined before. Since the binary data contain no

information about variance, we assume that {5 (3); 3 E S} is an underlying unobserved

random field with the form (3.1), with E5(3) = 0 and the covariance structure as

in (3.4).

Under the normality assumption for 5(3), the connection between the two ran-

dom fields (3.12) and (3.13) provides an indirect way to model the family of finite

dimensional distributions of a binary random field, enabling one to perform likelihood-

based inference. It also allows for an ‘exact’ sampling-based predictive inference in

the resulting binary random field by exploiting the mathematical tractability of ran-

dom field 5(3). The likelihood of the parameters (fl, 7', 6’", c), based on the binary data

2, is given by

1
L 0. = o o I —— F. _1/2

(fiaTa ,CIZ) Al [4" (27TT2)n/2l 9|

x exp «Elf—207 — XT3)Tr;-1(n — XTfl)) dn (3.14)

1 ., 1 ,_
= /, .../I WHEN—U“ exp (_§_+_2 TF9 1£)d£

Where 6 = (€(81)7. ' ' ,€(Sfl))” 7] = XTIB + £9 and

(-oo,c), if z, = 0;

A,=A(z,~)= forz'=1,-~,n

[C,OO), lei=1.

—oo,c—ar,-T , if 2.3-=0;

A2=A'(z,)= ( '8) fori=1,--~,n

[c — 1633,00), if z,- = 1.
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It is apparent from (3.14) that a direct Bayesian analysis of this model is in-

tractable, even when using MCMC, because the likelihood of the model parameters

is given in terms of high-dimensional integrals, which are difficult to evaluate. No-

tice from (3.14) that under this full model, the parameters are not identified. If

anp with p = 1, then for any constant a1 > 0, a2 6 R, the parameter vector

(a13 — a2,a¥72,0,a1c - (12) all have the same likelihood, and in particular the binary

data contain no information about 7’2. To avoid this situation, we fix the parameter

72 = 1 and c = 0 in the rest of this section so that our unknown model parameters

are (9, )6).

3.2.1 Second Order Structure of Binary Random Fields

In the study of the mean and covariance structure of the resulting binary random

field it is helpful to understand the global behavior of the binary realizations and their

relation with the parameters of the underlying random field 5 (-.) Given (6, B) we have

var(Z(8)) = <P($T(S)B)(1 - ‘P($T(8)fi)))

where (I) is the cdf of the standard normal distribution, so the mean and variance of

the binary random field are controlled only by the parameter B as well as the location

dependent covariates. Likewise, conditional on (6, B), the correlation function of the
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binary random field is given by

00 OO

72(8,8')=/ “I )fl/ “I [mt/92001,w2;7*(8,8’))dw1dw2

—.’L' S ‘17 S

 

/< \/<I>(:vT(s)fl)(1 — <I><xT<s>m>

 

(fibws'mxl - <1><xT<s'>m> )

<P($T(8)fi)¢($T(S’)fi)

(1 - ¢($T(8)fi))(1 - ‘P($T(8’)fl))

 

 

(3.15)

where 992(w1,w2;7) is the bivariate normal density function with zero mean, unit

variance and correlation 7‘. Note that the correlation structure in (3.15) of the

binary random field depends on both Band B, as well as on the covariates, even

though the correlation structure of the underlying field 5(3) is independent of H and

only depends on 6.

Suppose that 5 (-) has a constant mean, say (3(3) = 3. We assume this is so in

the remainder of this subsection. Using the formula given in Kedem (p35, 1980), the

correlation function (3.15) reduces to

dt
  

* , _ 1 fl“) exp (—,82/(1 + t))

“3’ 3) ‘ 27r<1><m<1— (FWD/o (142)”?

(3.16)

This provides a strictly increasing correspondence between 7‘(3, 3’) and 7;(3, 3’). For

any fixed value of '7‘(3, 3’), 7X3, 3’) is an even function of 3, having its maximum at

B = 0, and decreasing to zero in absolute value as Ifil increases (Ochi and Prentice,
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1984). For the case B = 0, the equation (3.16) reduces to (2/7r)sin‘1(7‘(3,3’)), so

for any 6 and 7‘(3,3’) we have [7';(3,3’)| S |7‘(3,3’)|. Therefore, the correlation

structure induced on the binary field is always weaker than that of the underlying

Gaussian field, and extremely so if [5| is large, i.e., if P(Z(3) = 1) is close to 0 or

1. In these extreme cases the realizations of the binary random field will be ‘almost

constant,’ either 0 or 1.

3.2.2 MCMC Inference

The direct Bayesian analysis of the clipped Gaussian random field is intractable.

We again use ’data augmentation’ and work with the extended model [6, fi, 17, Z, 17‘, 2"]

that explicitly includes the unobserved latent vectors 5 and 5'. In doing 0, we take

advantage of the mathematical tractability of the underlying Gaussian random field

and, by using MCMC methods we are able to: 1) obtain posterior inference of the

model parameters, and 2) obtain a posterior sample of the latent vectors 5 and 5‘,

which provide the needed probabilistic bridge between Z and 2", allowing us to pre-

dict the former from the latter.

The model assumption with its graphic representation in Figure 3.2 is defined
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as follows:

[0,B,n,Z,n‘l = [Bllfillnlétfillzlaflnlln‘l9,fi,nl (3.17)

To identify the full conditional distribution for each component of the vector (5, fl, 0),

we need to pick up all the unknown factors in (3.17) depending on the component in

question. In doing so, and using

Tl

lnlflfil = Him-In...» 9, film—AB, El
i=1

we have for each component of the latent vector 17 or 5 that

[min—I, 9&2] = lmlmiflfi, 22']

= N(szfi + 7?P:f(TI—i — X—ifi): 1 “ Virrj’l’z')

X [{772' E 142‘}

lfz‘IE—ia Bifil 2] = N(‘YIFFjE—ia 1 — WIFPj'Yz')

X [{fi' 6 A2}

where 77—1; = {(nj)ij 74 Z} and E—i = {(gj),j 75 Z}, and the matrix

P_i is F with the ith column and row removed, ‘7? is the ith row of F, and the

matrix X_z'i s X with the ith row removed, 2' = 1, - - - ,n. The above full conditional

distribution is a Normal distribution truncated to A, or A’.

Sampling from the truncated distribution can in principle be done using rejection

sampling, but this is inefficient due to the large proportion of rejections. To draw

an observation from N(11,02) distribution, truncated to (a, b) with a,b 6 IR, the
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inversion CDF methods can be applied (Devroye, 1986). If U ~ Uni.f (0.1), the

following statistic T, where

T==I+o¢-l<<»(—;—u>+v<¢<a>w<ar>>I
has the desired distribution. The ideas are easily extended to give a general account

 

of Bayesian analysis for order-restrictive parameters (Gelfand et al., 1990a). A mixed

rejection algorithm for sampling from univariate normal distribution truncated to

intervals is given in Geweke (1991).

Under the present framework, first regarding our prior specification, [3 and 6 are

assumed to be independent, with 3 ~ Np(fio, BO“ 1), where .50 and Bo are chosen to

reflect prior information about P(Z(3) = 1). In most cases a vague prior distribution

may be obtained by setting [30 = O and Bo = 701,, with To small, say 0.05, which

assures that the inferences are mainly driven by the likelihood. The prior on 6 would

depend on the correlation function '7‘(3, 3’). Suppose that the prior distribution for

the model parameters is given by

1

loglfi, 9l = ’§(B — [BOVBOCB — ’30) +10g[6l + Cg-

Then, for the full conditional distribution of 5, again from Figure 3.2. we have

lfil0,n,2l = lfil9anl = [nlflfillfil

0< In - XTfiIBflIIBl = l€|9fillfil

since conditional on n the data 2 are redundant. Similarly, for the full conditional

distribution for 0,

[Wind 0< l€l9fill9l~

The last two full conditional distributions are of non-standard form and are difficult to

directly sample from, so one has to perform a Metropolis-Hastings step. For example,

given the current value 6‘, a candidate 6’ for the next iteration is generated from a
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proposal distribution q(6’|6‘) and this candidate is accepted as the next iterate with

probability

 A(6‘, 9') = min [ W1 “4‘9"” 1}
l9‘lfi,€l4(9’|9‘)’

If the candidate 6’ is accepted, the next iterate becomes 6‘+1 = 6’; otherwise it is set

to the current state 6‘. The choice of proposal distribution depends on the choice

of correlation function 79(3, 3’) and so is problem specific. The MH algorithm also

works for updating 5.

Starting with initial value of (17°, 60, 30), one cycle (iteration) of this MCMC al-

gorithm consists of successively (and in that order) sampling from the full conditional

distributions (4.9), and then performing the MH step described above. The generated

sequence, of length m say, is a trajectory of a Markov chain having [17, 6, fllz] as its

limiting distribution. Therefore, after discarding an initial burn-in of the chain, say

7‘ iterations, long enough to surpass the transient stage of the chain, the subsequent

iterations are a dependent sample {(17‘, 6’, [3‘);t = r + 1, - -- , m} approximately dis-

tributed as [17, 6, filz]. This sample can be used to make inferences about the model
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parameters and the latent vector 17. The MCMC algorithm is used to obtain approx-

imate samples from the posterior distribution of (6,5, ,6), which is given by

lnflfilzl = [9llfillnl9flllzl9flml

o< IOIIHIII‘I‘W

>< expo-$01 - XTIB)TP‘1(77 - X730

X H1071 E A1}

—1/2 1 T —1 n I

Imam oc [HilfillFl exp (7: r a) [1133 e A.)

(3.18)

3.3 Joint Inference of Point Patterns and Geosta-

tistical Random Fields

In this section we consider the point patterns that associate with the covariate

stochastic processes. When the data sets of various types are closely related to the

same topic of interest, the joint modeling of those data sets may lead to more efficient

analysis. This is possible, because we assume all the data sets are associated with

or depend on a spatial process (a random field 5(3)). Then we can make prediction

and inference based on this random field. The joint modeling makes full use of the

data, such as the location information in the point pattern data. Point pattern

data associates with the random field 5(3) through the intensity function, and the
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categorical data associates with the random field through clipping. Consequently, we

can perform the joint analysis of point patterns and other types of spatial data. We

can also measure their association and dependence.

Assume that an observed point pattern {Sj} of N(d3) with intensity function

A(3), and observations {Y,-} of a covariate stochastic process 5 (3) are both available

over the same region S. The covariate random field is modeled as in (3.3), and the

point process may depend on the covariate process 5 through a functional link defined

to be

log A(s) = 5 + 017(3) (3.19)

where 17(3) is defined in (3.1) as 17(3) = 5(3) -+- 5(3).

3.3.1 Association between Point Patterns and Covariate Pro-

CBSSGS

Assume that the local intensity of a spatial inhomogeneous Poisson process N(d3)

depends on the realization of another spatial stochastic process 5 (3). The extent

of the dependence of the point process on the covariate process 5(3) is determined

by the unknown regression coefficient a in (3.19). We examine the dependence of

the intensity A(3) on the level of the covariate process 5 (3) using a model of the

form (3.19).

The data consist of a partial realization of a point process, (83-, J}, and mea-

surements (Y, ;2' = 1, - -- ,n} of a spatial process, 5 (3) on a region S. In the case

where 5 (3) has no effect on the intensity of the point process, a = 0. Conditional

on 17(3) and on the observed point pattern, {S}, J}, the locations of the points 5',-

from a subset S of the study region are independently and identically distributed
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with probability density function proportional to Ms). Given (5,5), the conditional

log-likelihood equation for (a, 5) in (3.19) is

1(a,€|n) = —— /A exp<< + an(8))d8 + Z (c + am) (3.20)

where 77,- = 17(8)). Inference for a and C can be based on Cox (1972), provided that the

true value of the 5(3) throughout A is known. When 17 is estimated, the conditional

likelihood estimates of (‘1 and its variance derived from Cox (1972) will be invalid, as

they do not allow for prediction or measurement error. However, we may estimate

(5,5) by Kriging estimates or other generic geostatistical methods described in the

previous sections.

Currie (1998) develops a test for association between realizations of a point

pattern and a covariate process 5(3) on the study region. The test is also valid with the

presence of covariates 5(3). The test is motivated by the score test. Measurements Y.-

of this process are assumed to follow the model given in Equation (3.3). The intensity

of the point process depend on 5 and 5(3) jointly according to (3.19). Under this

model, the test for association is a test of the null hypothesis: Ho : a = 0. Up to

an additive constant, the conditional log-likelihood for the intensity 11(3) of the point

process given 17(3) is given in (3.20). The parameter 5 is a nuisance parameter, so we

maximize over it. Differentiating the expression with respect to 5 , and then setting

the expression equal to zero gives the expression for C

C J

e = .

fA exp(a17(3))d3

Differentiating this equation with respect to a, and substituting for 5, the derivative

 

of the log-likelihood with respect to a is

(3.21) 

gt _ __ J L, 71(8)e><p(0n7(8))ds

a... — Z" fAexp(an(8))d8 '
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For testing the null hypothesis, 0 = 0, consider the statistic

J

U0 — 23:771- WAleldS

: ZWTfi +51) — Iii—l [A(xT(8)5 + 5(3))ds

This is the score statistic for testing the association between A(s) and 5(3), the

derivative of the log-likelihood evaluated at the null hypothesis. If we had exact

ascertainment of 5(3) throughout S, then we could calculate the mean and variance

of the distribution of this test statistic under the null hypothesis of a = 0, and hence

carry out the test of the null hypothesis. Note that calculating U0 only involves the

evaluation of (3.21) at a = 0. Thus we avoid the need for calculation of stochastic

integrals any more complex than fA 17(3)d3.

In practice we do not observe 17(3) directly but only through observation Y, on S.

From these measurements, we obtain the conditional expectation of 17(3) throughout

S. The Y,’s are conditionally independent given 17, according to the model (3.3). We

may use an estimator (e.g., Kriging, see Diggle et al., 1998) for 17. Substituting 17 for

17 in the expression, we obtain the approximate test statistic

J

00 = 0‘2Z (XT5 + flit—WY — XT5))

i=1

J

02|A|

where ‘Yj = 733 = {COV(€J', K) ?=1 2 {COV(€j,€i)}zn___1 is the column

vector of length 11. Under the assumption that 5(3) is Gaussian process, the distri-

 / (XT5 + 7ST2-1(Y — X75» d3

A

bution of (70 is Gaussian. To find the expected value of this statistic under the null
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hypothesis, we take the expectation of 00w ith respect to Y, which is zero, that is

a(QEyU0): ZEY(XTH+1.TE(Y —X-%))

j:—-1

J

_l—AlA EY(XT3+7Z§:(Y —XT5))d3

Thus, the approximate score statistic [Jo has expectation zero under the null hy-

pothesis a = 0. The variance of 00 with respect to the measurements Y is given

by

02 vary(U )=Z')'JTE—1’7]- + 2 2732-17,,

1': lkaéj

J
O_IXIZ/ryf21’ysd8

—1 I

+I——A2I2//78T2 ysrdsds.

Thus, given locations of events of a point processes, {Sj} on A, the measurements

{Y,-} of the underlying continuous process {77(3)} are used to calculate I70. Then

conditioning on the locations of the process points, we use expressions for the mean

and variance of this statistics under the null hypothesis, to obtain a p-value for the

data.

Currie (1998) examines the performance of this test on a selection of simulated

data sets for a simple model. The test performs well, in the sense that it is able to

identify association between the point process intensity and the covariate process 5(3)
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Figure 3.3: DAG of point patterns and geostatistical models

when the association is not evident to the eye. Currie also investigates the effect of

estimating the covariance parameters of the covariate process, rather than using their

true values. The replacement of the true covariance parameters by their maximum

likelihood estimates has only a small effect on the null distribution of the approximate

score statistic and on the power of the test.

3.3.2 MCMC Inference on Joint Models

Consider when both a point pattern {51} and a geostatistical process Y(3) de-

pend on the realization of 5(3) and on the parameters a, 5, and 9. The dependence

structure for the quantities in (3.19) can be referred to its graphic representation in

Figure 3.3. The graphical model also aids the factorization of the joint distribution of

all the quantities in our graph into the product of the full conditionals. The analysis

for factorization is to take the product over all nodes of the conditional density of

that node given its parents. With the given DAG, the joint distribution of our model

quantities can be factored as follows:

[9, W110, C, N, 0, Y] = l9llWl9llfill0llYl9, Wfi, Ulla, CllNl9, W710“, Cl (3.2?)

Model specification is involved in the distributional forms for each of the fac-

tors in (3.22). The covariate process 5(3) is most commonly modeled as a stationary
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Gaussian random field with a partially uncertain covariance structure. Some no-

table references in this area include Besag (1974), Ripley (1981), Cressie and Chan

(1989), Clayton and Kaldor (1987), Isaaks and Srivastava (1990), Besag, York and

Mollié (1991), Cressie (1993), Bernardinelli et a1. (1997), and Moller, Syverseveen

and Waagepetersen (1998). Ideally, the distributional assumptions about the under-

lying properties of our model should be sufficiently flexible to accommodate a wide

range of behavior of the random variates they describe. In this study, we are focusing

on the model in (3.2) with the inhomogeneous intensity. Modeling on the combined

spatial data with the kernel mixture type is best implemented through tessellation of

the reference state 11}. Consider a tessellation of J cells in [U with cell centers {11,-}.

The W(du; Uj E du) are assumed to be independent normal random variates with

mean zero and variance depending on some parameters. Approximately, the Gaus-

sian random field 5 (3) is constructed through the kernel mixture of Wiener process

W(du) on U, given by,

s = ROW” (3.23)

where 5 = (5(31),- -- ,5(3,,)) with 31, - ~ ,3ni n S, and the elements of the random

vector W = {Wj }j EJ are independent normally distributed with the variance

subject to smooth variation in parameters 6 and cell attributes M(du). Note that

K = {kg} with kg]- = [60(87, Uj), and the covariance matrix of 5 is then

F = KKT. Thus, the density of 5 is given by

p€(z) = (21r)""/2|F[_1/2 exp (—%ZTF—IZ) .

The density of 17(3) = $T(3)5 + 5(3) is then

p,,(z) = (27)‘"/2|F|“/2 exp (gt - XTmTr-wz — XTm) .

Other model distributional assumptions are given by

[N(ds)l€l~ wows»

lY(S)I€l~ N(n(8), 02)-
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When applying the MCMC method to simulate from the joint posterior density

function given in (3.22), we may employ independent vague priors on the model

parameters in the absence of genuine prior information, for example,

l91~ 7(9)[fi]~Np(BBo,)lal~1\/m§(ao,)[Cl~M0<o,( )l0l~ gammmba )

Other steps for generating the chain are to update the other unknown quantities

conditional on the data, {53-} and Y, and visiting each of the other nodes in Figure 3.3

in turn. The full conditionals of the quantities 6, 5, a, 5, a and W are derived as

follows

The log of the conditional density for 6 is derived based on the Bayesian relation,

[6|W, 5, a, 5, N, 0,Y] = [6|W]o< [Wl6][6[ then, up to an additive constant, we have

1 T —1
10g[91|9_1,£]= ‘103lFal — 55 F9 5 + Cg

where 5 is the vector of the {62-}7 E 1. We may employ a symmetric random walk

proposal on the feasible values of 6,’s, so the update steps for each of the 6,- reduce to

MH steps.

From the relation, [5|6,W,a,5,N,a,Y] oc [Y|6,W,0][N[6,W,a,5][5], the log

of the conditional density of 5 is, up to an additive constant, given by

loglfi|€,Nl=--2——12 (Y— 772)
l

- feXpK +an(8))d8

+ a 217,- + log[5] + cg

j

where 17, = 17(3,-) and 17]- : 17(5)).
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For the full conditional density of 5, from the relation [5 [6, W, 5,01, N, a, Y] o<

[N[6, W, a, C][5], we have

log[5[0, W,5,a, N, a, Y] = — /(exp(5 + 017(3))d3 + J5 + log[5] + cg.

The full conditional density of 0, follows [a|6,W,5,5,N, a, Y] or [N[6,W,a,C][a]

and is given by

[a|9, W1181C1 N7U7Y]

= — /(exp(5 + a77(3))d3 + aZ 77]“ +103lal°

.7

With the model, [0|6, W’,5, a, 5, N, 0,Y]o< [Y|6, W,5, a][a]. Up to an additive

constant, the log density of the conditional density of a is

1

log[0|5, Y] = nloga — :2??- (Y, — 17,-)2 + log[0] + cg.

Based on [5|9,W,5,a,5,N,o,Y,a] o< [Y|6,W,5,a][N|6,W,a,5][5|6], the log

density of covariate random vector 5 is given by

log[5|6,N,5,Y] = ——(17— (Y1 — 772')2

— /exp(5 + an(3))d3 + aZ 17]-

1

—§ TFgln+cg.
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From equation (3.23), K is constant in W and 5, the log of the full conditional density

of W is given by the following, up to an additive constant,

log[W|6, NyfiaYl = ’7 (Y2? — 777.)“

— €XP(C) 2 d3,- €XP(0’772')

2'

1

+ a2 11,17,- - -2-WT(KKT)_1W + cg.

Then we can use an independent random walk proposal for the candidate W with

centered normal density on Wj. As such, the update step reduces to a MH step in

the MCMC algorithm.
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Chapter 4. Summary of Results and Further

Investigation

4.1 Summary of Results

The thesis concerns the Cox M modeling approach to inhomogeneous point pat-

terns with the random intensity functions directed by independent increment random

measures in a reference state space. The idea of kernel mixture representations is

relatively new in spatial statistics. It has the potential to model non-stationary pro-

cesses, such as the Poisson/Gamma mixture models by Wolpert and Ickstadt (1998a)

and Binary/Gaussian models as in Section 3.2.

In Chapter 2, the proposed model on point patterns is based on the Poisson

generalized Gamma random fields. The generalized Gamma measures can be simu-

lated by the Inverse Lévy Measure algorithm. The tessellation representation of a

point pattern creates a lattice structure, which is the vehicle to tackle the problem

of spatial prediction. This is worked out in detail for an example where the data are

counts from a subset of lattice cells and binary variables on the complement. The

implementation is performed with MCMC for this type of model on counts and binary

clipped random fields.

For highly clustered point patterns, it is more appropriate to apply the geosta-

tistical modeling approaches after the log transformation of count data. The related

models are based on Wiener measure subordinated random fields, which are closely

related to the ordinary random fields specified directly by mean and covariance func-

tions. The proposed models in Chapter 3 are intended to make full use of collateral
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information obtained along with point patterns. The collateral data, treated as fixed

covariates and covariate stochastic processes, are considered in the setting of joint

modeling on the intensities. The corresponding MCMC schemes are proposed for

each data model.

The probability structure in the binary clipped models (in Section 3.2) that

contain latent Gaussian processes may be of great interest to spatial statisticians,

but very little progress has been made in the past in deriving likelihoods and in

studying the covariance structures in such processes. One may think of a myriad of

examples where the two types of processes are linked. For example, a smooth fertility

trend in soil will affect both the emergence of weed plants (a point process) as well

as the crop yield surface (a geostatistical process).

4.2 Further Investigation

Wolpert and Ickstadt (1998a) propose a data augmentation scheme for the Cox

M models when M is a Gamma measure. The data augmentation method does not

work with nonzero index parameter function a(u). For the discrete case in Chap-

ter 2, a product multinomial augmentation scheme works in general for the spatial

Poisson-generalized Gamma random fields. A new data augmentation scheme may be

needed in order to implement a MCMC inference on point patterns. The method is

computationally intensive and time consuming in practice. However, it is demanded

in that it utilizes the point patterns.

A point pattern may be obtained by thinning of another one, or by the super-

posing of others, or by the clipping of geostatistical random fields. The limiting point

patterns may result in geostatistical random fields. Weak convergence of random
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fields has been studied largely using mixing conditions, see Yoshihara (1992). The

explicit conditions for GG—measures to be approximated by geostatistical random

fields are still under investigation, especially on the index set where a(u) sé 0 on

U. The classic asymptotic normality theory for a 06' distribution may suggest the

conditions for weak convergence of point patterns. For a 06'(a, A, b) random variable

M, the standardized variable is asymptotically normal, i.e.,

__ 0-1 _

= M Ab _ =1, N(0,1) as 1 a

\//\(1—a)b° 2 Ab“

  

10 

where the convergence is along the decreasing sequences of the squared coefficient of

variation. The proof comes from taking the limit of the Laplace transforms; see also

Jorgensen (1987). Note that when a —+ —00 the distribution of bIVI/ (1 — a) converges

to a Poisson distribution with mean Ab“/ (1 — a). This follows by applying a limit

argument to the Laplace transform; see also Aalen (1992). Then the property of

asymptotic normality of a 06'(a, A, b) may suggest that, for a large inverse scale b(u)

when a(u) > 0 or small b(u) when a(u) < 0, the limiting random field may tend to

be a Gaussian random field. The re-weighted GG—measures with a(u);£ 0 can not

be constructed under the current augmentation method. In application, this occurs

mostly for highly clustered point patterns; it might be more appropriate for applying

geostatistical methods as discussed in Chapter 3.

When testing of association of a point pattern and geostatistical random fields

in Section 3.3 the hypothesis being tested is Ho : a = 0. In case you reject, we plan to

study whether the direction of the association can be gleaned from the test statistic.

It would be interesting to know whether the latent process inhibits one process while

exacerbating the other. One might imagine that through a site-specific application

(spatially varied) of herbicide one can reduce the number of weeds (suppress the point

pattern) and increase the crop yield (accelerate the yield process).
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