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ABSTRACT

FOURIER SERIES BASED IMPLICIT FEM PROGRAM FOR AXISYMMETRIC

ANALYSIS OF TUBE HYDROFORMING

By

Manish Sharma

Tube Hydroforming has become a preferred alternative to stamping and

joining processes in industry for manufacturing closed cross section structural

components. This process requires proper combination of part design, material selection,

application of internal pressure and axial feeding. By using finite element analysis, these

process parameters can be detemlined efficiently in the very early stage ofproduction.

The thesis presents a Fourier series based axisymmetric analysis of Tube

Hydroforming. The material is assumed to elastic-plastic and to satisfy the plasticity

model that takes into account rate independent work hardening and normal anisotropy.

Numerical solution obtained from Total-Lagrangian formulation ofgeneral shell theory is

employed. The axial stroke is incorporated using Lagrange multipliers. Contact violation

and boundary fn'ction condition are introduced into the formulation based on penalty

functions, which impose constraints directly into the tangent stiffness matrix. The Force

Limiting Curves based on shear instability and on experimental results are used as

fracture criteria. The Axisymmetn’c Hydroforming program developed is verified against

results from Abaqus and experimental measurements for isotropic and anisotropic

(transverse) materials.
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INTRODUCTION

Hydroforming offers a way to cut material and manufacturing costs while

improving product performance in a variety of applications. Advantages include weight

reduction due to improved part design, part consolidation where a single component

replaces an assembly, reduced tooling cost as a result of part consolidation, and improved

structural strength and stiffness of the hydroformed component. It thus reduces tooling,

part, and labor costs, while significantly improving product performance (Anon, 1997).

The process currently is being used or being considered for making a wide range

of complex cylindrical, flat and tubular components. Cylindrical parts include gas

cylinders, washing-machine drums, and cooker cavities. Flat components include auto

body panels, firel tanks, and aerospace parts.

Tube hydroforming is receiving the greatest attention, especially in the auto

industry (Vari-Fonn Inc, 1998), because existing multi-piece, stamped/welded assemblies

in auto body and frame structures potentially can be replaced with less expensive

hydroformed parts that are lighter, stronger and more precise (Figure 0.1).

In tube hydroforrning, internal pressure is applied to form a tubular metal blank

into a structural component having a closed cross section. As shown in Figure 0.2, a

straight or prebent tube is placed in an open die, the die is closed, the tube ends are

sealed, and the tube is filled with a hydraulic fluid. Internal hydraulic pressure forces the

tube to conform to the shape of the die cavities, producing a part having different cross-

section shapes.



 

 

  

Figure 0.1 — Representative hydroformed components and assemblies

From left to right: instrument panel support beam, engine-cradle assembly.

Photo courtesy Vari-Fomr, Woodstock, Ontario, Canada.
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Courtesy Schafer Hydroforming, Wilnsdorf, Germany.

The thesis presents an axisymmetric analysis method for calculating strains and

expansion as the tube is subject to simultaneous internal pressure and axial displacement

stroke. Only free forming stage oftube hydrofomring is treated.



The present method employs a number of simplifying assumptions. The principal

geometrical assumption is that the representative meridian ofthe tube is initially straight.

All segments making up the meridian are assumed to be relatively thin and of constant

thickness. The deformation ofthe member is assumed not to vary along the cross-section

ofthe tube. Hence, the analysis can be considered to be an axisymmetric analysis.

The material is assumed to be elastic-plastic and to satisfy the plasticity model

that takes into account rate-independent, work hardening and normal anisotropy

(Pourboghrat et a], 2000).

At the tool-tube interface, the frictional stress is assumed, on the basis ofordinary

Coulomb friction, to be proportional to the contact pressure whenever relative sliding

occurs.

By using the virtual work principle and constitutive equation, the equilibrium

equation can be derived. Numerical solution obtained fi'om a Total-Lagrangian

formulation of a general shell theory is employed. Axial stroke is incorporated into the

equilibrium equation using Lagrange Multiplier technique. The boundary fiiction

condition is introduced into the formulation in the form of penalty firnction, which

imposes the constraints directly into the tangent stiffness matrix. The Newton-Raphson

algorithm is used to solve the nonlinear equation. Force Limiting Curve equations based

on the onset of shear instability and on experimental measurements are incorporated as

the fiacture criteria.



CHAPTER 1

LITERATURE REVIEW

1.1 Hydroforming Concept

Hydroforming has been one of the fiindamental sheet metal forming processes for

quite a long time, having been developed at least since pre-World War II, when it was

applied to the German aircraft industry (Zhang, 1997). About 30 years ago, the first

hydroformed parts were fabricated by expanding a straight or prebent tube to make

manifold elements and components of similar geometry for sanitary use. Today, many

hydroformed parts are already in mass—production in the automotive industry. Well-

known hydroformed automotive applications include exhaust manifolds, exhaust pipes

and subfi'ames, such as radiator enclosures, space fi'ames, dash assemblies, frame rail,

engine cradles, etc. (Dohman et al, 1997)

According to its features, hydroforming can be classified as the following

processes (Zhang, 1999 and Siegert et al, 2000):

g
—
a

. Flat sheet hydroforming or hydroforming deep drawing

2. Tube hydroforming or hydrobulging oftubular components

3. Hydromechanical deep drawing process

4. New variation of hydroforming including the integral hydrobulge forming

(IHBF) of sheet shell products and viscous pressure forming (VPF) processes

In this thesis, we focus on tube hydroforming that has become an economic

alternative to various stamping processes with the availability of advanced machine

design and controls.



Tube hydroforming offers several advantages as compared to conventional

manufacturing via stamping and welding (Ahmetoglu et al, 2000). These include:

(a) part consolidation (stamped and resistance welded two or more pieces of a

box section can be manufactured in one operation from a hollow component)

(b) weight reduction through more efficient section design and tailoring of the

wall thickness

(c) improved structural strength and stiffness

((1) lower tooling cost due to fewer parts

(e) fewer secondary operation (no welding of sections required and holes may be

punched during hydroforming)

(t) tight dimensional tolerances and low springback

(g) reduced scrap

While numerous variations of hydroforming exist, the basic principle remains the

same: utilize fluid pressure to form a component. Both traditional high-pressure

hydroforming and pressure sequence hydroforming are presented in Longhouse (1998)

and Morphy (1997). Typical Hydroforming sequence is shown below (Fig. 1.1), where

internal pressure and axial feed are applied simultaneously to improve the material

shaping abilities.



1) Place the blank tube into tooling 2) Seal the ends and fill with

fluid

 

4) Open the tooling, remove the part 3) Increase pressure, move

punches

Fig. 1.1 Hydroforming process sequence (Leitlofl', F. 1997)

If hydroforming technology is to be applied economically, it is essential to have

knowledge of the avoidance of failure cases as well as of the behavior of the tube in the

tool under the compressive stress and forces that are exerted by the machine (i.e., axial

feed). Several failure modes, buckling, wrinkling and bursting are shown in Dohmann

(1996) and Asnafi (1999).

1.2 Numerical Simulation

Kobayashi (1989) has worked on several sheet forming problems including

drawing, bulging, stretch forming and bending, solving the problems using a finite

element method based on incremental strain theory. In his work, the material was

assumed as rigid-plastic and anisotropy and work hardening characteristics were



included. An elastic-plastic FEM formulation of stretch forming for a punch and a die of

arbitrary shape was introduced by Wang and Bundiansky (1978), which is a classic

example verified by ABAQUS. A rigid-viscoplastic material model FEM formulation

was presented by Germain, Chung and Wagoner (1989).

All the numerical analyses mentioned above were obtained using simple

membrane theory which does not include the variation of stresses through the sheet

thickness. This approximation is justified when the thickness of sheet material is small

compared to the curvature of the sheet surface, the radius of either the punch or the die,

and when in-plane stretch dominates bending. However, in order to simulate bending

phenomena such as the early deformation in stretch forming, spring-back etc, inclusion

of the bending stress is necessary. A total Lagrangian formulation based on an extension

of a thin shell theory which takes into account large membrane and bending strain was

derived by Wang and Tang (1988). An updated Lagrangian and plane-strain bending

formulation based on nonlinear thin-shell theory was employed by Choudhry and Lee

(1994). A general purpose finite element program for analysis of forming processes,

which was implemented in MARC, was introduced by Nagtegaal and Rebelo (1988).

Built on the successful application of finite element method on sheet metal

forming, explicit finite element method is being applied to hydroforming of tubular parts

by Ni (1994), bulging process by Hu et a1. (1997), and a sheet metal operation involving

punch stretching, drawing and hydroforming by Hsu and Chu (1995). In Noh and Yang

(1998) work, a general formulation for hydroforming of arbitrarily shaped boxes was

expressed.



1.3 Friction and Contact Problem

Friction and contact between sheet and die play an important role in hydroforming

processes. Classical Coulomb’s law is capable of describing only fiiction effects between

effectively rigid bodies and gross sliding of one body relative to another, However if

Coulomb’s law is applied pointwise in contact problem, then the contact stress developed

normal to the contact surface is ill defined. In Oden and Pires (1983), nonlocal and

nonlinear friction laws and variational principles for contact problems were introduced.

A method of discretizing the die boundary condition considered for the analysis of metal

forming processes with arbitrary shaped dies was employed by Oh (1982).



CHAPTER 2

THIN SHELL THEORY

The deformation of the mid-surface of an element in the plane containing the meridian

curve will be considered. The deformation of the element will be obtained fi'om the

theory ofthin shells and Figure 2.1-2.2 Show the mid-surface of an element ofthe sheet at

the initial time to, reference time °t and at the current time t as it bends and stretches.

Derivation of principal curvatures and stretches of a shell element undergoing an

axisymmetric deformation was discussed in (Pourboghrat, F. et al, 2000) using both total

and updated Lagrangian formulations. These formulations are used in the program.

2.1 Principal Stretch (Total Lagrangian Formulation)

Figure 2.1 shows a flat element at the initial time to and at the current time

t(=°t+At) as it bends and stretches. By referring to Figure 2.1, the following relationship

between the current and the initial position vectors and the total displacement vector for

the mid-surface ofthe element can be written:

x = X+ U (2.1)

where the initial position vector X and the total displacement vector U are, defined in

the global coordinate system,

#le mu~ 0 ~ w

In Eq.(2.2), u and w are the total displacements of the mid-surface. By substituting from

Eq.(2.2) into (2.1) , the position vector x becomes

§:[Xl +21] (2.3)

W



To calculate the principal stretch in the radial direction, we will consider the unit tangent

vector, 5 , ofthe current mid-surface, i.e.

d" dde_ d5 1 _[1+“.x.]_1_ (24)

where if = ds/dS . Here, 3 and S are travel length ofthe current and initial surfaces from

center, respectively, and the comma stands for the differentiation with respect to XI.

Then, by calculating the magnitude of vector 5 from Eq.(2.4) and setting it equal to

unity, if can be calculated to be:

"a” = (a a = 1.0 (2.5)

N
I
—

1.? = [(1+ u,x, )2 + Win] (2.6)

The principal stretch in the circumferential direction, 1.3, is calculated fiom the change in

the radial position of the element; i.e.

0_ Xr+u _ _u_
2.2—K X] )]—1+XI (2.7) 
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2.2 Principal Curvature and Stretch (Updated Lagrangian)

Afier bending and stretching, the principal mid-surface curvature, k1 , of a shell

element at the current configuration, t(=°t+At), can be calculated from the known

information about the element at the reference configuration (time °t, see Figure 2.2), as

follows:

r=R+uA+wN (2.8)

where R is the reference configuration at time °t and u and w are incremental

displacements defined in Figure 2.2. In Eq.(2.8), the unit tangent vector A and the unit

principal normal vector IV to the mid-surface ofthe reference are defined as

1
%
)

ll

Q
)

a
l
l
”

I

(
h
i
)

,8

A7:

’i
l

l

where K; is the curvature. Therefore,

117-21: 0

and

12

(2.9)

(2.10)

(2.11)

(2.12)



In
:

To calculate the current curvature, In, the unit tangent vector “ = and the

l .
.
’
_
_
s

unit principal normal vector of the mid-surface of the shell “ are calculated.

n

Using Eq.(2.8), the tangent vector a is found as:

ar A A A A

az—izr :R +uSA+uA +wSN+wN (2.13)

~ as ~,s ~,. ' ~ ~,s ' ~ ~,s

By substituting fi'om Eqs.(2.9), (2.10) and (2.12) into (2.13), and rearranging, the

following expression results:

6r .. . . .

az-a—gzrs =(1+u’s-K,w)/~1+(w’S+Klu)N=c/:1+dN (2.14)

The principal incremental stretch of the mid—surface in the radial direction calculated

from the magnitude ofthe base vector a in Eq.(2.14) is

N
i
—

i‘ Z ”a" = J“ = 1’62 +d2 =10 +21. —K.w)2 +(w,. +K.u)2] (2.15)

The current length of the mid-surface of the shell in the radial direction, ds, is calculated

from the reference length, dS, and 2.1 as follows:

(IS = AldS
(216)

The unit principal normal vector ofthe surface ofthe current shell, fr , is

a=—:——~ (2.17)

13



which, from Eqs.(2.l4), (2.15) and (2.17), shows that fr-[r = 0. The current principal

curvature ofthe shell, k1, can now be found as:

k,=—&-fi :—r 4‘1 =——a-ii (2.18)

where a is given by Eq.(2.13) and f1 S can be derived from Eq.(2.17):
Q
.

a ,1, (d, 21+ c, A?— K,c2r— Kid/V) — 2,, -(—d 21+ c1?)

: -——-:- : ~ ~ ~ 2 ~ ~ ~ (2. 19)

.s S A,

 

1
3
>

In Eq.(2.19), 31.3 is assumed to vanish within an element and the above expression

simplifies as :

(d, + K1c);1+(—c, + K,d)1i/

= — ~ ~ (2.20)
.s ,11

By substituting from Eqs.(2.l4), (2.15) and (2.20) into Eq.(2.18), the current centerline

 

1
:
)

curvature ofthe shell, k], can be found:

_ eds “dcs +[(1/112
k] 213 (2.21)

It should be noted that it is possible to recover Eq.(2.7), for total Lagrangian formulation,

From Eq.(2. 15). This is done by setting the reference curvature K1 equal to zero for a flat

sheet, replacing S with X1 and treating the incremental displacement u and w as total

displacements in Eqs.(2.l4) and (2.15). Similarly, the current curvature of the shell, k1,

can be calculated from the initial configuration by setting K1 equal to zero, replacing A,

with 211" and S with X1 and treating u and w as total displacements in Eq.(2.21)

{—W.Xr uerXr + (1 + uvxr )w,Xl.\’l ]k] z (103 (2.22)

14

 



The current principal stretch increment of the mid-surface of the shell in the

circumferential direction, 1;, is found from the geometry (in Fig. 2.2) as:

,1, = — (2.23)

The principal curvature of the shell in the circumferential direction, k2 , is found from

Fig. 2.1 (Flugge, 1973), as follows:

12 42-5"”) blitz—“"3 (2.24)
  

where w and s were defined previously and R is defined as (see Fig. 2.1):

R = X, + u (2.25)

Since it is known that as = 21.?Xm , Eq. (2.24) becomes

raw rawaX, raw w},
k, = ——— — ———————

Ras RaX, as :_,1,°R5)—rf:-2,°R

  (2.26)

Finally, by substituting from Eq. (2.25) into Eq. (2.26), we get the following expression

for the principal curvature in the circumferential direction:

W

 k, = —l (2.27)

.(Xr + 101?]

15



CHAPTER 3

KINEMATICS

Based on the general thin shell formulations in Chapter 2, the formulations for

finite strain and small rotation have been derived for the straight-line segment that are

used in the program. (Derivation in details can be seen in Appendix A).

 

¢
vY K

...,. :> .........

v2 vz

  

 

  

Fig 3.1 Representative Meridian for axisymmetric case

3.1 Kinematics Assumptions

For the purpose of modeling, all segments making up the meridian are assumed to

be thin and of constant thickness. The length of the straight segments should be greater

than ten times the thickness. The deformation ofthe structural member is assumed not to

vary along its cross-section for a given point on the meridian. Hence, the analysis can be

done for a straight meridian parallel to the axis ofthe tube.

3.2 Principal Strains

The representative meridian shown in Figure 3.1 lies in the plane defined by the Y

and Z-axes. In this formulation, the initial geometry of the meridian is specified by first

defining the Y-Z coordinates of a set of nodes and then defining the segments. Two nodes

must bind each segment.

16
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Figure3.2 Geometry of a straight segment

For the straight segment in Figure 3.2, the local coordinates of the segment are 5 along

the segment and z in the through-thickness direction. The initial segment geometry is

defined by the location ofthe point 3 = 0 given by Y0 and Z0 , the orientation angle 0, the

length 10 and the thickness t ofthe segment. The position F0 is located at the mid-surface

of the segment, indicated by the dashed line. The displacement components of the mid-

surface are u and w along the original s and 2 directions respectively. The rotation of a

line is given by B

.6: ——= -w,. (3.1)

The coordinates of a point on a segment undergoing displacements u and w fi'om the

original configuration are (see Fig. 3.2) :

5: Zo +(s+u)sin9—wcos6+z(-cos€+,Bsin 6) (3.2a)

77=Yo +(s+u)cos€+wsint9+z(sint9+,BcosQ) (32b)

17



The axial strain component ex along the length ofthe tube is given by

8x = 83 + sz

where 63 is the membrane strain component given by

0 1 1
a = u + -—u 5 + —w

2 ’ 2 '

where the local curvature is given by

W
3

(1+w’5)2

The strain component in the circumferential direction is given by

0

a, = a, + 192

where a? is given by

0 _ 5-(2O +ssin6—zcost9) _ usin6—wcost9+zflsin6
 

gr

R R

and the local curvature K, is given by

3.3 Constraints

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

Since the whole length of the tube is made up of several independent segments,

which have their own local coordinate systems and variables, it is necessary to enforce

compatibility of deformations at junction of two or more segments. Two constraint

equations are used to ensure compatibility of displacements and one to ensure

compatibility of rotation between two segments. Therefore, at a junction where M

segments come together, 3(M-l) constraint equations need to be enforced. At a junction

between two straight segments having orientation angle 6, and 62 and components

18



u1 ,WI and u,,w2 , the two displacement compatibility conditions can be written in terms

ofthe displacement components in the Y and Z directions as follows:

u2 c0362 + w2 sin 62 — ul c0319l — w1 sin (91 = O (3.9)

u2 sin 02 —w2 c05192 —ul sin 01 +1121 0050, =0 (3.10)

The rotation constraint requires that the angle between segments at a junction

remain unchanged. For the current example, if the rotations of the two members at the

junction are ,6, and fl, , compatibility condition is

flz-flr:0 (3-11)

19



CHAPTER 4

CONSTITUTIVE EQUATION

The elastic-plastic model, which has been implemented in the program, has been

developed by Pourboghrat et al (2000). It is based on the isotropic hardening model. The

uniaxial stress-plastic strain curve of the material is given by

6=K(E+§o)” (4.1)

where 6' is the effective stress and E is the plastic strain. Parameters K, N and 50 are

material constants. The elastic strain increment is related to the stress increment through

the equations of linear, isotropic elasticity with Young’s modulus E and Poisson’s ratio.

The yield firnction allows for anisotropic yielding of the material. The yield firnction is

given by

2 2 _ 2
:0”: +03+R(0x 0'3) _0_::0 (42)

1+R

 

f

where a, is the yield stress and R is an anisotropy parameter.

During loading, Hooke's law is used to calculate stress below the elastic limit; i.e.,

6" 3 0y , where 0y is the initial yield stress of the sheet obtained from a uniaxial tensile

test. Beyond the elastic limit; i.e., E > cry, the co-rotational time derivative of stress

(Jaumann stress rate) is calculated, for a given strain rate, from an elasto-plastic

constitutive equation (Becker, 1992):

— -1

<
1

I
N

3
"
:

e
'
c

I
t
“

 0' = L— ° Z :1) (4.3)

+

“
B

2
'
s

i
s

  



V

Here a and D(= D‘ +D” ) are the Jaumann rate of stress and strain rate tensors,

respectively, or is the stress tensor, 6 is the material flow strength, h(= 66/85) is the
~

plastic hardening parameter, L is the fourth order elastic tensor and
~

 

  

), where Harri/6g" = Pip/6g : art/6g , is the second order tensor1%: 6¢/6g/“ags/ag

representing the unit normal to the flow potential surface. The plastic strain rate,

associated with Eq.(4.3) , is calculated from the following expression:

1
Q
<

R: :D—P:

 E:

l
t
h

(4.4)

P:0'

I
"
c

:L:P

The fourth order elastic tensor L(= LW) used in this work is the standard tensor for the

isotropic elasticity, which has only two independent components.
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CHAPTER 5

CONTACT ALGORITHM

The simulation of hydroforming processes requires the ability to model the contact

phenomena. The analysis of contact behavior is complex because of the requirement to

accurately track the motion of multiple geometric bodies, and the motion due to the

interaction of these bodies after the contact. The numerical objective is to detect the

motion of the bodies, apply a constraint to avoid penetration, and apply appropriate

boundary condition to simulate the frictional behavior (Marc's Theory and user

information).

5.1 Numerical Procedures for Contact

Two widely used procedures are available, namely the Lagrange multiplier

method and penalty method, which will be introduced here briefly. Both, the Lagrange

multiplier method and penalty method operate on variational formulation of problem

under consideration (Bathe, 1982).

For purpose of demonstration, consider the total potential energy I]1D of a discrete

system for steady-state analysis,

11, 2%UTKU-UTR (5.1)

The constraint equations can be expressed as

CU = 0 (5.2)

In the Lagrange multiplier method we amend the r.h.s. of (5. 1) to obtain

11; = é—UTKU—UTR + xTCU (5.3)
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where 1. contains as many Lagrange multipliers as there are constraint equations, and

invoke that 5 I]; = 0, which gives

T U R

K C = (5.4)

C 0 2. 0

The second ofEq.(5.4) is Eq.(5.2), the equation of constraint. Eq.(5.4) are solved for both

U and l. The A ,. may be interpreted as force of constraint.

In the penalty method we also amend the r.h.s. of (5. 1) but without introducing an

additional variable. Now we use

1 T T 1 T

l];=—U KU—U R+—t at (5.5)

2 2

in which t 2 CU , and t = 0 implies satisfaction ofthe constraint. The usual potential I],

of the system can be augmented by a penalty function étTat , where a is a diagonal

matrix of penalty numbers a, . The condition 6 II; = 0 now yields

[K + CTaC Kn} = {R} (5.6)

If a = O, the constraints are ignored. As a grows, U changes in such a way that the

constraint equations are more nearly satisfied.

It is difficult to assess which method, the Lagrange multiplier method and penalty

method, is better in the finite element implementation. However, it can be mentioned that

the Lagrange multiplier method introduces a large number of independent variables.

Also, the diagonal terms of the stiffness matrix corresponding to the 3. always become

zero and special attention is required during the assembly of the stiffness matrix so that

an equation corresponding to any A does not become the first one in the stiffness
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equations after applying the boundary conditions (Kobayashi et al, 1989). In comparison

with Lagrange multiplier, penalty functions have the advantages of introducing no new

variables and requiring no special care for the order ofunknowns for successfirl equation

solving. Their implementation can be as easy as assigning a high modulus for an element

already in the program. Thus, we use penalty firnctions to implement the constraints in

contact problem.

Effectively, the penalty procedure constrains the motion by applying a penalty to

the amount of penetration that occurs in the hydroforming processes. The penalty

approach can be considered as analogous to a nonlinear spring between the two bodies.

Using the penalty approach, some penetration occurs with the amount being determined

by the penalty constant or function. The choice of the penalty value can also have a

detrimental effect on the numerical stability ofthe global solution procedure.

5.2 Detection of Contact

During the contact process, each potential contact node is first checked to see

whether it is near a contact segment. The contact segments are either edges of the other

2D deformable bodies, faces of 3D deformable bodies, or segments fi'om rigid bodies

that stand for the dies in tube hydroforming process. The motion of the nodes is checked

to see whether it has penetrated a surface by determining whether it has crossed a

segment. The determination of when contact occurs and the calculation of the normal

vector are critical to the numerical simulation. In this part, the normal vector of potential

contact node has been pre-defined and a so-called cross-product algorithm is used to

determine which segment is associated with the potential contact node.
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5.2.1 Contact Tolerance

During the contact process, it is unlikely that a node exactly contact the surface.

For this reason, a contact tolerance is associated with each surface (Figure 5.1). Ifa node

is within the contact tolerance, it is considered to be in contact with the segment. The

contact tolerance is calculated by the program as 5% ofthe thickness of segment.

 

2 x Tolerance
 

/////////////////IL

Figure 5.1 Contact tolerance

5.2.2 Normal Vector and Tangential Vector

In order to track the motion of each potential contact node, it is important to

define the normal vector and tangential vector of the node (Sheet-S).

The normal and tangential vectors of the nodes of the mesh (Figure 5.2(a)) can be

calculated as follows: The element 1 has nodes i and k and length Li , The element j has

nodes k and j and length L J. . The unit normal vector, 11 , at the contact node k, as shown

in Figure 5.2(b), is evaluated by averaging the normals of elements i and j, N 1 and N j ,

as follows:

Ni+Nj

n =W (5.7)

By rewriting the normal vector, u, in the following component form:

F143}; zN=,/z: +1 (5.8)
ZN
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(b)

Figure 5.2 (a) The computational mesh and

(b) The normal vector and tangent vector
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where Zx which is interpreted as the slope at node k, can be obtained fiom Eq.(5.7), in

terms ofthe coordinates, (x,z), ofthe nodes i, k and j, as follows:

: LJ-(zk —zi)+Li(Zj _zk)

x Lj(xk -x,)+Li(xj -—xk)

 (5.9)

where Li and L J. are respectively lengths of elements i and j. As seen in Eqs(5.8) and

(5.9), the normal vector, 11, at the contact node k, can be expressed in terms of the

neighboring nodal coordinates.

The tangent unit vector, t, at the node k, whose direction is normal to the normal

vector, 11, and which is oriented opposite to the sliding direction, is expressed using the

orthogonality as follows:

t—1 l 510
"zfiz, (')

where ZN and Zx are defined in Eq.(5.8) and Eq.(5.9), respectively.

Actually, as we can see in Appendix B, when the Fourier series expansion is used

to approximate the nodal coordinates, it is easy to exactly define the normal of a node by

differentiating the Fourier series without any numerical difficulty.

5.2.3 Condition for Contact Violation

As shown in Figure 5.3, when a node is within the contact tolerance, it is

considered to be in contact with the segment. The location of the closest point on the die

corresponding to the contact node needs to be determined by using the cross-product

algorithm. B“, B, and Bm are die nodes, Ak is one of the contact nodes and n is its

normal vector.
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If (AkBH xn)-(AkBi xn) > 0 (5.11a)

and (Akai x n)-(AkBH, xn) < o (5.1 lb)

Then, we define segment Bi Bmto be the segment associated with contact node Ak.

n

Akf Sheet Segment

/Die Segment

Figure 5.3 The associated die segment with contact node

 

  
5.3 The Projection Algorithm

A nodal position produced by the trial solution may penetrate the die. By using

the cross-product algorithm, the closest point on the die corresponding to the node can be

found. The nodal coordinates are then modified by a projection scheme such that the

node just touches the die surface. There are two ways to bring the penetrated node back

to the die surface.

5.3.1 The Iterative Method

The position of a penetrated node is changed to locate it at the tool (die) surface

where the normal vector for that node intersects it. After calculating the normal vector,

11 = (nx,nz), using Eq.(5.8), the tool surface point to be projected (t-nx,t- nz) can be

iteratively found by solving for the length parameter, t, fiom the nonlinear equation:

S(t-nx)—t-nz=O (5.12)

where S(x) is the tool surface equation.
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5.3.2 The Directive Method

As shown in Figure 5.4, PO is assumed to be the tool segment associated with the

penetrated node A, point B is the intersection point between normal vector and PQ , and

O is the original point. Based on the following vector equation, the coordinate of point B

could be calculated:

'0—15+1_>1§=5}1'+E (5.13a)

1713' = r), If? , 7413 = —q,n (5.13b)

IP
  

where 711,772 are scalar. Once I], , 772 are solved from Eq.(S. 13), the coordinate of B could

be determined.

 

 

Figure 5.4 The projection Algorithm
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5.4 Implementation of Constraint

A node located on the sheet at time t +At , is constrained to move in the tangent

direction defined by the trial solution, A u’. The tangent direction incorporates the Zx in

Eq.(5.9). The constraint on 5 u = (5 11K ,6 uz), for contacting nodes is then:

6 u - n = 0 (5.14)

which by substituting in Eq.(5.8) we will have

5u z = Zx ~6u , (5.15)

Actually, Eq.(5.15) is the alternative constraint equation, Eq.(5.2), in the contact

problem.

5.5 Friction Model

Friction is a complex physical phenomenon that involves the characteristics ofthe

surface such as surface roughness, temperature, normal stress, and relative velocity. The

numerical modeling ofthe friction has been simplified to two idealistic models.

The most popular fiiction model is the Coulomb Friction model. This model is used for

most applications. The Coulomb model (Marc's Theory and user information) is:

afiS-an-t (5.16)

where o n is the normal stress

a f, is the tangential(friction) stress

11 is the friction coefficient

t is the tangential vector in the direction ofthe relative velocity

v . . . . .

t = l—il- , vr rs the relatrve slrdrng velocrty.

v!’

The Coulomb model is also often written with respect to forces
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1't s—ufn-t (5.17)

where f, is the tangential force, fn is the normal reaction.

For a given normal stress, the fiiction stress has a step firnction behavior based upon the

value ofvr (see Figure 5.5).

f, or c f,

Slip T

 

 

 
T Slip

Figure 5.5 Coulomb Friction Model

This discontinuity in the value of of, can result in numerical difficulties so a

modified Coulomb fiiction model (Oh, 1982) is implemented:

  

A A

f3 =—mk v, e_—2-mktan“[ 1),] (5.18)
IAV, It 110

 

where Av: is slipping velocity, m is friction factor, k local flow stress in shear and u0 is

very small positive number compared to Avs.

When the Coulomb model is used with the stress based model, the integration point

stresses are used to calculate the normal stress component of the contact node. The

tangential stress is then evaluated and a consistent nodal force is calculated.
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5.6 Separation

After a node comes into contact with a surface, it is possible for it to separate in a

subsequent iteration or increment. Mathematically, a node should separate when the

reaction force between the node and surface becomes tensile or positive.

When contact occurs, a reaction force associated with the node in contact balance

the internal stress of the element adjacent to this node. When separation occurs, this

reaction force behaves as a residual force (as the force on a free node should be zero).

This requires that the internal stresses in the deformable body be redistributed.
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CHAPTER 6

NUMERICAL SIMULATION

In this chapter, based on the virtual work principle, the equilibrium equation can

be derived. The numerical solution obtained from a Total Lagrangian formulation of a

general thin shell theory is employed. In contrast to traditional finite element method, the

nodal displacement approximate function based on Fourier series is used. The boundary

friction condition is introduced into the formulation in the form of penalty function,

which imposes the constraints directly into the tangent stiffness matrix. The Newton-

Raphson algorithm is used to solve the nonlinear equilibrium equation.

6.1 Principle of Virtual Work

An equivalent approach to express the equilibrium of the body is to use the

principle of virtual work. This principle states that the equilibrium of the body requires

that for any compatible, small virtual displacements imposed onto the body, the total

internal virtual work is equal to total external virtual work. In the Lagrangian incremental

analysis approach we express the equilibrium of the body at time t+ At using the

principle ofvirtual work as:

J'HAITUJHAteU ”de : J‘HNflBa‘i t+ArdV+ INN-fisalfnmcis (61)

r+Aty HAIV t+Ats

Where l.h.s is the total internal virtual work and r.h.s is total external virtual work. The

”wry. are the Cartesian components of the Cauchy stress tensor, the 1+ A, ea. are the

Cartesian components of an infinitesimal strain tensor, the ”mfg and ”A’fi" are the
1

components of the externally applied body and surface force vectors, respectively, and

611,. is the ith component ofthe virtual displacement vector.
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6.2 Newton-Raphson Algorithm

Substituting the element coordinate and displacement interpolation into the

principle ofvirtual work expression Eq.(6.1), the equilibrium equation can be written as

”A’ R - "A’F = O (6.2)

where the vector ”A’ R lists the externally applied nodal point forces in the configuration

at time t+ At, and the vector "A’ F lists the nodal point forces that correspond to the

element stresses in this configuration. For the nonlinear problems, the basic approach for

an incremental step-by-step solution is to assume that the solution for the discrete time t

is known, and that the solution for the discrete time t+At is required, where At is a

suitably chosen time increment. Hence, considering (6.2) at timet + At we have

f(U') = 0 (6.3)

where f(U') = ”A‘ R(U’) - ”A’ F(U') (6.4)

Assume that in the iterative solution we have evaluated ”A‘ U0"); then a Taylor series

expansion gives

f(Ue):f(r+ArU(tl))+[§_] (Uo_r+ArU(i—1)) (65)

t+AtU(i-l)8U  

where higher-order terms are neglected. Substituting from (6.4) into (6.5) and using (6.3)

we obtain

0: t+AtR_ ”INFO-1) +[§R;_ 6F] (U.-!+AIU(F1)) (66)

HA! U(i—l)auBfi  

when we assume that the externally applied loads are independent of the displacements,

which means ER 2 O , (6.6) becomes

6U t+AtU(i-1)
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fl (Us-HAgUa—n): r+AtR_ t+AtFi—1 (67)

6U ”mun—1)

We now define

AUU) : U‘ _ t+AtU(i-l) (68)

and a—F =“A’KU‘” (6.9)
6U 1+A1U(1—1) 

where "’3’ K0”) is the tangent stiffness matrix in iteration i-l, which we assume to be

nonsingular. Thus (6.7) can be written as

”A’ K""’AU"’ = 1+4: R — ”’1‘ F0") (6.10)

Since (6.5) represents only a Taylor series approximation, the displacement

increment correction is used to obtain the next displacement approximation

”A’U“) = ”A’UU") +AU") (6.11)

The relation in (6. 9) and (6. 10) constitute the Newton-Raphson solution of (6.2).

6.3 Four Types of Modeling

Four different models, i.e. for pressure loading, axial force, displacement stroke

and fiictional contact, are derived respectively.

6.3.1 Pressure Loading Modeling

Based on kinematics and constitutive equation discussed in Chapter 3 and Chapter

4, the principle of virtual work is used to satisfy the equilibrium equation and takes the

following form for pressure loading:

21“, [(a; as; +6; 55; )R‘dL’ +itj 6C}. = 5m; (6. 12)

1'21i=1 L‘
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where I is the number of segments along the tube length, I is the number of constraint

equations, ,1]. are Lagrange multipliers, CJ. are the constraint equations(from Eqs.(3.9-

3.11), 5W3: is virtual work due to external force (pressure), dL’ is the incremental length

for the straight segment and Ri is the radius ofthe tube at current segment.

The displacement component w, ,u, for each straight segment are approximated

using the following Fourier series expressions:

mas, mzs,
  

NI

_ x i

w, —a0+ E ancos

 

NI

[0 + 2,6; sin 10 (6- 13a)

n2] i ":1 i

i N‘ r‘ "”3: N! i - "7131'
11,270 +27" COS [0 +25" Stu—15— (6.13b)

n:l r' n=1 1‘

After substituting from Eqs.(6. 13a-b) into the principle of virtual work Eq.(6.12) ,

a nonlinear expression of the following form will result

f(c, P) = 0 (6. 14a)

where

c={a5,a;, $.7s,r;,6;,1,} (6.14b)

Eq. (6.14) should be solved for c for given values of P.

Since Eq. (6.14) is highly nonlinear, it will be numerically solved by the Newton-

Raphson method. The Newton-Raphson iterative method used to solve c will look like

this:

[’Sfldfi- [6]: Fg- Fm
(6.15)

where K is the stiffness matrix, 6c is the incremental c and R is the force residual.
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FEx, is externally applied nodal forces, Fm is the nodal forces that correspond to

~

the element stress in this configuration ( Internal forces).

Pressure loading is modeled as an external force to expand the tube. The external

work done by a pressurep applied to the inside of the tube is equal to

W;,=:Ipn6(Au~)RdL‘ =ijfi‘a—L—g‘z)acRdL" (6.16)

i=1 Ll, i=1 Ll
~

where 6(Au’) is the virtual displacement increment having two components 6(A 145')

and 6(A v‘) , ft" is the unit outward normal to the segment Lip .

The variation of the virtual external work due to internal pressure loading is

17;: pzjn" ———)a(aA:i‘RdL" (6.17)

i=lL‘
~

Due to the follower forces effect (Hibbitt, 1979), the load stiffness matrix is

 

’ am") 6(Au") .. 62(Au‘) . .
KP = '— R'dL’ 6.18

E“ p: [ 60 ac +n 62c p ( )
N

Eq. (6.17) and (6.18) will appear on the right-hand and left-hand side of the Newton-

Raphson expression (Eq. (6.15)) respectively, namely,

[K+K§u][dc]:[1~i]=EEu+FEfl,— Fm (6.19)

When we implemented above formulations into the code, we found that the load

stiffness matrix Kg, has nearly no effects on the solution that led us to simplify the

E
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formulation. Actually, ifwe approximated ii‘ 6(Au’) z 6(Aw‘) , the whole formulation

above can be simplified. The proof can be seen in Appendix B. Since 2 O , there 

62 (Aw')

2

C

~

will be no stiffness matrix due to pressure (Kg, ) going to the left side ofthe Newton-

Raphson expression (Eq. (6. 19)). Both methods are implemented in the code; the results

are almost the same.

6.3.2 Axial Loading

Application of axial force with internal pressure is critical to improve material

shaping abilities for deeper draw configurations and higher expansion in localized

regions. Axial compressive feed F is modeled as an external force at both the ends ofthe

tube as follows:

i=nse ,k= 1 i:use ,kzl

5W5; = (—1)"Fi‘6(Au‘) g =-—( 1)‘r Fta_(____§uc)6 g (6.20)

~ 1:11:20 0 ~ i=l,k=0

A:

where S(Aui ) is the virtual displacement increment having two components (S(Awi )

and 5(A v‘) , 5‘ is the unit tangent vector along the segment L; and nseg is total number

of segments. Since the force is compressive at both ends, when i =1(i.e. first segment),

k = O and when i = nseg (i.e. last segment), k =1.

6.3.3 Displacement Stroke Modeling

The displacement stroke at both ends ofthe tube is included in the equilibrium equation

using Lagrange Multiplier technique. The stroke is specified in the u direction (along the

length ofthe tube).
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For the left end ofthe tube(i =1):

ll

 

_. *

s=0,i=l — ll

       
 

_ *

s O,i—'l — u
.11."$1.]:[73 +271.

NI

1 l

=>ro+Zrn=u*
nzl

Ni

=>73 +27}. -u*=0 (6.21)

n=l

For the right end ofthe tube (i = nseg ):

 

  

 
     

u “in... z _u ,.

:> [73 +217; "2:9. :1 561%] WW8 : _u*

375% + 2(1),)”, =—u*

2’ 70Q + N21- 1)"7,',“‘3 +u*_—
(6.22)

Eqn. (6.21) and Eqn. (6.22) are incorporated in the equilibrium equation using

two Lagrange Multipliers.

6.3.4 Frictional Contact Modeling

The most challenging task when developing a numerical code for metal forming

processes is to model fi'ictional contact. To model the tooling-workpiece fiictional

contact correctly, the following two conditions must be continually checked during each

equilibrium iteration:
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l. Penetration of the workpiece nodes into the tooling.

2. Nodal contact forces becoming tensile at the contact boundary (separation).

Once the penetration of the workpiece nodes into the tooling has been detected, the

penetration nodes must be returned to the tooling surface and constrained to stay on the

tooling surface for the remainder of the equilibrium iterations. The nodes, which are

returned to the tooling surface, are constrained to move only tangent to the tooling

surface and only condition 2 stated above can cause a contacting node to be detached

from the tooling surface. Figure 6.1 shows an example of a typical contact check during

the Newton-Raphson equilibrium iteration.

Tooling Surface

Workpiece ;

   

    

\

Nodes on !

TheTM

  
 

I

l

I

I l

i Po ‘ : P1

1 :
! I

! i
! I

! i

y

3mm”in (b) (c) «1)

Figure 6.1 A schematic of tool-workpiece contact check

(a) shows the tube and the tooling, (b) shows initial penetration of some of the nodes,

(c) shows how those nodes are returned to the tooling surface and finally (d) shows how the equilibrium

shape is obtained after several iterations.
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The external work done by the frictional contact is added into the virtual work

principle equation (6.12) as following:

J+2

$1,101.66; +01,58j,)R’d1’ +2166, 2
i=1

1:]

tweak—J + Pi] fit a(Aui)R"d[jp +212IT,6(Aui)RidL'} (6'23)
(—1)"Fi"5(Au")

~ 66.

 r=l,k:0 i=1 L1

where r, is the traction on the surface of the tube and 6 (Au‘ )is the virtual incremental

displacement ofthe contacting nodes.

In order to improve convergence, a special algorithm is introduced (see Figure

6.2). For each trial set of contacting and non-contacting nodes, equilibrium iteration is

performed. Afier equilibrium is satisfied, the nodes are reexamined for non-penetration

condition. The contact set is then updated by releasing or projecting certain nodes and

another equilibrium iteration is initiated.

In each contact iteration, the trial displacements are first updated according to the

Newton-Raphson procedure and the non-penetration contact condition is then applied to

these trial values by projecting the contact nodes to the tool surface along the normal

vector. The modified trial solutions are used for Newton-Raphson iteration. Within this

force equilibrium iteration, the internal force is calculated. The signs of the sheet normal

force at contact points are checked so that the nodes having non-compressive force are

released.
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Figure 6.2 Flow chart for contact iteration
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6.4 Fracture Criteria

Force Limiting Curve equations based on the onset of shear instability and on

experimental measurements are incorporated in the program as fracture criteria:

6.4.1 Shear Instability:

Force Limiting Diagram based on the onset of local shear instability, using

Hosford yield criterion and critical shear stress under plane strain (Lee & Kim, 1989), is

“1'

" k2 + p)V~ (1 + p)“/5»(a;,) (6.24)

given by:

(na- "—1 )/

1111.1 1 “11.11.
“)Hawg’ [I + R(1— at)“1 |1 - a

l
1....

,6  

 

(1+1ar +R|1-a
  

where

R = Anisotropy parameter

n 2 Strain Hardening Exponent

a = Stress ratio

p 2 Strain ratio

,6 = 1 + RX"

a 2 Order of Yield Function (=2 for Yield Function used)

a: = Maximum principal strain at shear instability

8].}, = Maximum principal strain fi'om plane strain test

The effects of thickness, surface roughness and strain gradient through the

thickness are not accounted for in the equation above.
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6.4.2 Experimental Measurements:

The Force Limiting Curve derived from experimental measurements for Hot-dip

galvanized DP6OO (Asnafi, 1999) is used for Steel in the second verification problem.
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CHAPTER 7

PROGRAM STRUCTURE

This chapter describes the input file, control flow of the main program and the

output files.

7.1 Input File

The input is divided into two parts. The first part contains all the geometric,

numerical and material information for a run. It is written in an input file that is read by

the program prior to specification of the loading. The second part contains the loading

history. This input is provided interactively by the user. All input is free-formatted.

7.1.1 Geometric, Numerical and Material Input

1. Title of this case

 

TITLE
   

TITLE: Array of 72 characters used to identify a case.

2. Number of nodes

 

NODES. RADIUS
   

NODES: Number of nodes in the cross-section. Each segment in the cross-section is

bounded by two nodes. Maximum: 20.

RADIUS: Tube radius

3. Node coordinates. Input this record NODES times before proceeding to 4.

 

YN, ZN
   

YN: Y global coordinate ofthe location ofthis node.
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ZN: Z global coordinate ofthe location ofthis node.

4. Number of segments.

 

NSEG. MU. DELTAV
  
 

NSEG: Total number of segments in the cross-section. The segment may be straight lines

or circular arcs. Maximum: 40.

MU: The frictional factor.

DELTAV: The relative sliding velocity

5. Type of segment. Input NSEG item {5,6} pairs before proceeding to 7.

 

  
STYPE
 

STYPE: Enter “str” if the segment being described is straight.

6. Segment parameters.

For straight segments input the following record:

 

INODE. JNODE. T. NCOEFF. IS. IZ. NC
  
 

INODE: First node ofthe segment (s=0).

JNODE: Second node ofthe segment (s=lQ).

T: Thickness ofthe segment (I).

NCOEFF: Number of terms in the Fourier series expansions for the displacement

components (N). Maximum: 10. Recommended: 4 to 6.

IS: Number of Gauss integration points along the segment. Maximum: 48.

Recommended: 8 to 12.
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IZ: Number of Gauss integration points along thickness of the segment. Maximum:

48. Recommended: 3 to 7.

NC: Number of contact nodes on segment (t).

7. Number of point constraints

 

NPC
   

NPC: Number of point constraints. At least three constraints are needed to prevent rigid

body motion. Also input the constraints needed to maintain contact with the mandrel or

symmetry conditions. All constraints are enforced at nodes.

8. Point constraint information. Input this record NPC times before proceeding to 9.

 

NSPC. IVARPC
   

NSPC: Segment number for which the point constraint will be enforced.

o IfNSPC is positive, the constraint is enforced at the node with s = 0.

o IfNSPC is negative, the constraint is enforced at the node with s = 10.

IVARPC: Variable which will be constrained.

0 To constrain the rotation ,6, input 1.

0 To constrain the displacement component it, input 2.

0 To constrain the displacement component w, input 3.

9. Iteration parameters:

 

TOL. ITEMAX. JEVAL
   

TOL: Convergence tolerance ofNewton-Raphson iteration. Recommended:0.00000001
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ITEMAX: Maximum allowable number of iterations.

JEVAL: Multiple of the iteration count at which the Jacobian is evaluated. IfJEVAL =

l the Jacobian is evaluated every iteration, If JEVAL = 2 it is evaluated every other

iteration, etc.

10. Material properties.

E. V. SIGMY. R. XK. XN. EPSO

 

  
 

E: Young's modulus.

V: Poisson's ratio.

SIGMY: Initial yield stress.

R: Anisotropy parameter.

XK: Material constant.

XN: Hardening exponent.

ESPO: Initial plastic strain.

11. Hardening Model.

I_choice, A, B, C

 

   

I_choice :

o I_choice=1: Ludwig-Holloman Model

0 I_choice=2: Voce’s Model

A, B, C : Material constants for Voce’s model
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11. Output option.

IWR

 

   

o IWR = 1: print coefficients and Lagrange multipliers.

o IWR = 0: do not print coefficients and Lagrange multipliers.

7.1.2 Loading Input

Loading is prescribed in an incremental manner.

Loading parameters

 

NINC. TINIT. TINC. PINC
   

NINC: Number of increments / Load-steps

TlNIT: Initial Tension

TINC: Tension increment.

PlNC: Internal pressure increment.

Displacement stroke increment is calculated by “Ioad_curve.f’ based on the loading

curve programmed.

7.2 Program Flow Chart

The program includes a main program and 24 subroutines.

Subroutine input: input geometric and material parameters.

Subroutine store: store integration, trigonometric and second derivative information.

Subroutine newrap: solve system of nonlinear equations using Newton-Raphson method.

Subroutine build: evaluate the system of equation and the Jacobian.

Subroutine constr: add constraint contribution to system of equation and Jacobian matrix.
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Subroutine decomp: find the inverse matrix using Gauss-Jordan method.

Subroutine disp: evaluate displacements and their derivatives with respect to s at

integration points along a segment.

Subroutine dstrn and dstrnC: derivatives of displacement components and their

derivatives with respect to the coefficients of the series expansions at one point along 3

for straight and are segment respectively.

Subroutine d2curvature: evaluate the second derivatives of curvature.

Subroutine incm: increment of all variables.

Subroutine solve: solve the nonlinear equations.

Subroutine stndsp: find strains at the integration points along the local coordinate.

Subroutine stsstrr: find stress increments and force residual at integration points.

Subroutine cnstutv: constitutive equation.

Subroutine contact: deal with contact problem.

Subroutine coloumb: use Coloumb friction model.

Subroutine dieinfo: calculate die geometric information.

Subroutine forcecheck: check nodal force at each contact point.

Subroutine getcoord: calculate the coordinates of each integration point.

Subroutine nodalf: calculate nodal force at each contact point.

Subroutine setpenalty: set penalty firnction.

Subroutine violation: check each integration point to see if it violates contact.

Subroutine bringback: bring each contact point to die surface.

Subroutine load_curve.f: calculates stroke increments based on current pressure.

Following is the flow chart ofthe program:
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Figure 7.1 Flow chart of the program
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7.3 Output File

The program has two output files: betges.out and betges.ooeff. The contents of each file

are described below:

betges.out: This file is formatted and contains the output of the program in the form of

tables. The first part of this file is written prior to the specification of the loading and

contains an augmented echo print ofthe input. It is useful to look at this part ofthe file to

ensure that the input file was read correctly. The second part includes a list of the

curvature, axial strain, tension and internal pressure at each loading step. Ifthe variable

IWR is set to 1 then the file will also contain the coefficients of the trigonometric series

expansions for each segment.

betges.coeff: This file contains information necessary to make plot of the deformed

cross-section of the member at any loading step. It also contains information to plot the

shape ofthe meridian prior to loading. The file is organized as follows:

Line 1: (Format: i2)

Number of segments.

For each segment, the file contains the next set ofthree records:

Line 2.1: (i3, e135, a4, 3e13.5)

Number ofterms in this segment, length ofthe segment, type of segment, location

of the segment in Y, location of the segment in Z, radius of the segment. The location of

the segment is partially given by the coordinates Y0 and Z0 as shown in Figure 3.2.

Line 2.2: (4e13.5)

Coordinates ofthe nodes bounding this segment in the following order: Y-coordinate

of first node, Z-coordinate of first node, Y-coordinate of second node, Z-coordinate
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of second node.

Line 2.3: (2e13.5)

Sine and cosine of the angle6 defined in Figure 3.2 for straight segments. This

concludes the part of this file which contains the original, undeformed description of the

cross-section. The second part of the file contains, for each loading step, additional

information necessary to describe the deformed shape of the meridian. For each loading

step, the file contains the following:

Line 3.1: (i2)

Step number.

Line 3.2: (i2)

Segment number.

For each segment along the length of the tube, the output file contains the following set

of four records:

Line 3.3.1: (6(e22. 14))

a0 ,(an , n = 1, number of terms).

Line 3.3.2: (6(e22.14))

( ,6" , n = 1, number ofterms).

Line 3.3.3: (6(e22. 14))

70 ,( y" , n = 1, number ofterms).

Line 3.3.4: (6(e22. 14))

(6”, n = 1, number ofterms).
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CHAPTER 8

EXAMPLES

The AXHD (Axisymmetric Hydroforming) program has been validated using the

following two examples:

8.1 Bulging of an Aluminium Tube

This example concerns bulging of a straight Aluminium tube under pressure and

stroke loading. The tube is 8.0” long with an outside diameter of 2.0” and a wall

thickness of 0.049’ ’. The following are the material properties used for Aluminium 6061-

T4 material in plasticity (Ludwig Holloman) model:

E = 10300000 psi, v = 0.3, 0,: 18730 psi, R = 0.8179, K=69183 psi, N=0.2646 and 80:0

The input file to run this case is shown below (the definition of input parameters

at each line is given in Chapter 7):

Title: 'Aluminium Straight tube subject to 2030 psi pressure and 0.1181 in. stroke’

5,1,000

4.0,1.000

3.0,1.000

2.0,1.000

1.25,].000

0.0,1.000

4,0.1,0.01,0

Stt’

1,2,0.049,5,10,5,41

str

2,3,0.049,5,10,5,41

str

3,4,0.049,5,10,5,41

str

4,5,0.049,5,10,5,41

3

1,1

1,3

-4,2

0.000000001, 150, 1

10.3e6,0.3,18730,0.8179,69183,0.2646,0
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1,0,0,0

This tube was subjected to a pressure loading of 2030 psi and 0.1181” axial

displacement stroke. The deformed shape and strain results obtained from AXHD were

compared with the results from ABAQUS and experimental measurements.

To study the effect of Aluminium’s anisotropy on the strain distribution along the length

ofthe tube, the ABAQUS code was run with the following three yield firnctions:

0 Von Mises (Isotropic)

o Hills (with transverse anisotropy)

o Barlat (with planar anisotropy)

Due to the inability of ABAQUS/Standard to account for the current thickness and

mid-surface offset for shell elements in contact analysis, the same simulation (with S4R

shell element and Hill’s yield function) was run with ABAQUS/Explicit and

ABAQUS/Standard. The results were compared and it was found that the true strain

distribution along the length of the tube is offset by a finite magnitude (within an

acceptable error limit) when the mid-surface (instead ofthe external surface) contacts the

die.

Figure 8.1 shows the intermediate shapes ofthe deformed tube predicted by AXHD

program at various pressure levels. Similar to the experiment the tube was pressurized to

the maximum pressure level of2030 psi while axially being compressed to a maximum

stroke of 0.1 181” (3.0 mm). The predicted deformed shape ofthe tube at the maximum

pressure of 2030 psi is compared against the actual one. The radius ofthe predicted
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deformed tube is 1.17” (29.72 mm), while that of the actual tube was measured to be

1.25” (31.75 mm). This corresponds to an underestimation of 6.4%.

Corresponding distribution of hoop and axial strains along the length ofthe tube are

shown in figures 8.2 and 8.3. The maximum hoop and axial strains occur in the middle of

the bulged tube and they are 17.54% and —7.4%, respectively. Figure 8.4 shows the

thinning ofthe tube at the maximum bulge point (middle ofthe tube) as a function ofthe

applied pressure. It is interesting to note that thinning accelerates exponentially beyond

the pressure level of 1000 psi. The thinning strain at the pressure level of2030 psi is

10%.

Figures 8.5 and 8.6 show a comparison of hoop and axial strain distributions

predicted with AXHD code and ABAQUS/Explicit code using axisymmetric element

(SAXl) and four-node shell element with reduced integration (S4R). The hoop strain

distribution predicted by the AXHD code matches those of ABAQUS very well, despite

the fact that a S4R shell element takes into account the shear deformation. Similarly, the

axial strain distribution predicted by the AXHD code again matches those of ABAQUS

very well. The two spikes (at 4:15") shown in figure 8.6 for the ABAQUS/Explicit code

are attributed to the dynamic effect.

Figure 8.7 shows a comparison of the measured and predicted hoop strain

distribution, as a function of material models used. For comparison, in the numerical

simulations isotropic and two types of anisotropic material models were used. Hill’s yield

criterion was reduced to Hosford yield criterion (Eqn. 4.2), for transverse anisotropy, for

both SAX1 and S4R shell elements and then compared with AXHD results. Barlat’s 1996
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yield function was also used to account for planar anisotropy. As expected, the isotropic

material model (von Mises) had the worst performance and significantly underestimated

the magnitude of the maximum hoop strain (14.9%). Those models (Hill’s SAXl, S4R

and AXHD) accounting for transverse anisotropy showed some improvement but still

underestimated the measured hoop strain (17.4%). Although not perfect, the best strain

predictions were obtained with Barlat’s yield firnction accounting for planar anisotropy

(20.4%). The coefficients used in Barlat’s yield function for the aluminum 6061-T4 tube

were obtained from reference [Pourboghrat, F. et a1, 2002]. The maximum hoop strain

measured experimentally was about 25%. The high error percentage between the

experimental and FEA results can be attributed to the high anisotropy of Aluminium.

Also, the maximum attainable pressure in the used hydroforming equipment is 30,000 psi

while the working range in Aluminium’s case is 2000 psi. So, even an error of0.5% (150

psi) in the pressure reading from the equipment will cause a high change in the strain and

deformation results. This could account to the discrepancy in the simulation and

experimental results too, since the experimental values obtained could well be for

pressure beyond 2000 psi.

8.2 Steel Tube

This example is concerned with the bulging of a straight steel tube under pressure

and displacement stroke. The tube is 8.66” long with an outside diameter of 2.36” and a

wall thickness of 0.05787”. The material properties used for hot-dip galvanized DP600

(HG/2140) in plasticity (Ludwig Holloman) model are:

E = 31465000 psi, v = 0.3, 0,, = 351040 psi, R = 1.0, K=143260 psi, N=0.182 and 80:0
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The input file to run this case is shown below:

Title: 'DP600 isotropic material under 5220 psi pressure and 0.24 in. displacement stroke’

7,1.146

4.33,].146

3.608,].146

2.8867,].146

2. 165,]. 146

1.4433,].146

0.722,].146

0.0,]. 146

6,0.0,0.00],0

str

1,2,0.05787,6,]2,7,41

str

2,3,0.05787,6,12,7,4]

Stt'

3,4,0.05787,6,12,7,4]

str

4,5,0.05787,6,12,7,41

str

5,6,0.05787,6,12,7,41

str

6,7,0.05787,6,12,7,41

3

1,1

1,3

-6,2

0.00000000001, 150, 1

31.465e6,0.3,51040,1.0,143260,0.182,0

1,0,0,0

0,0

The stroke vs. pressure loading history and experimental results for this

simulation are obtained from [Asnafi, N. et al, 1999]. The Forming Limit Diagrams

(FLD), based on the onset of shear instability [Lee & Kim et al., 1989] and experimental

measurements [Asnafi, N. et al, 1999] are used as fiacture criteria. As shown in the

figures described below, the results from AXHD are very close to the experimental

results for this isotropic material.
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Figure 8.8 shows the intermediate shapes of a bulged steel tube at various

pressure levels. Those deformed shapes were predicted by AXHD program using the

displacement stroke-intema] pressure history shown in figure 8.9, obtained fi'om

analytical equations given by [Asnafi, N. et a1, 1999] in order to maintain a proportional

axial to hoop strain ratio of ——0.5. The final displacement stroke was 0.24” (6.] mm) at the

maximum pressure level of 5220 psi in the tube bulging process.

Figures 8.10 through 8.12 show the evolution of hoop strain, axial strain and the

maximum thickness reduction as a function ofthe internal pressure. The maximum

thickness strain at the maximum pressure level of 5220 psi is 15.57%. The maximum

hoop and axial strains predicted by AXHD program were 28% and -10.9%, respectively.

These predicted values compared very well against measured maximum failure hoop and

axial strains of29% and —10% reported by [Asnafi, N. et al, 1999]. Finally, figure 8.13

shows the predicted major and minor strains by AXHD program against experimentally

measured [Asnafi, N. et al, 1999] and numerically predicted Forming Limit Curves

(FLC) based on shear instability [Lee & Kim et al., 1989], at the maximum pressure level

of 5220 psi. These results show that the steel tube is about to the fail (burst) in the

middle ofthe tube where maximum bulge occurs.
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CHAPTER 9

CONCLUSIONS

An Axisymmetric Hydroforming finite element analysis program has been

developed based on the formulations presented in the thesis. Fourier series interpolation

firnctions, which reduce the size of global stiffness matrix and the number of variables

drastically, are employed for approximating the displacements. The program is very

efficient in predicting deformations for free-forming stage of tube hydroforming under

simultaneous action of internal pressure and displacement stroke. Failure model based on

FLD is incorporated in the code. The results from the program are compared with the

results from commercial code (ABAQUS) and experimental measurements and are found

to be in good agreement.

In the future, this code is to be extended for 3D analysis of tube hydroforming

process. It is also planned to develop an ability to optimize the loading curve (pressure

vs. stroke) for improving the material shaping abilities.
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APPENDIX A

According to the total Lagrangian formulation discussed in Chapter 2 (Thin shell

theory), we derived the membrane strain, rotation of normal vector and the current

principal centerline curvature used in Chapter 3 (Kinematics) and compared with the

formulation developed by Corona and Pourboghrat (1998) and Brush and Almroth

(1975)

1. Membrane strain

For straight segment, the curvature K1=0, then fi'om Eq.(2. I 5) ,

1. =1<1+u,s)2 +1111 =11+u§ +221. +1111 (1)

Let's approximate the square root as:

(1+x)’g z]+%x—~- forx<<1, Eq. (1)becomes:

 

A, z1+u§ “Lg“; +£11.23 (2)

Since, 21., = ds/dS and the engineering definition e = (is — d5 = ES— —1 = 71, —1

6119 dS

We have the membrane strain:

ezu +—1-u2 +—1-w2 (3)
,S 2 ,S 2 ,S

which is used in Chapter 3 as Eq. (3.4) and Eq. (1.6) in Brush and Almroth (1975).

2. Rotation of normal vector

We assumed the angle between the current normal vector {rand the S (arc length)

is or, the angle between the current normal vectorii and normal vector 11/ at the reference

is B.
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Then, we have B +% =0 , and 73/} = cosa = -sinB (4)

Substituting Eq.(2.17) into Eq.(4), we obtain:

   

 
 

, d w S + K]it w S + Klu

srn|3 = — = ' = ' (5)

A 1. J(1+ u, — Klw)2 + (w, + Igu)2

For straight line segment (K1=0), according to assumption], Eq.(5) becomes

. w s

SinB zB = (6)

J(1+ u's.)2 + w:

According to assumption 2 and W; <<1, Eq. (6) becomes: 6 = W’s , for the coordinates

shown in Figure 3.2, we have the normal vector rotation for straight segment

B = -W.s (7)

which is used in Chapter 3 as Eq. (3.1).

3. The current principal centerline curvature

For straight segment (K1 =0), the centerline curvature at the current

configuration, k, will be obtained fi'om Eq. (2.21):

cd_s —dc.s (1+u's)w,ss —w_su,ss

  

3 71,3 413 (3)

According to assumption 2( as = as, = O ), 2, z ,1] + w; , the Eq.(8) becomes:

ks = _:V_§§_3 (9)

(l + w; )3

which is used in Chapter 3 as Eq. (3.5).
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APPENDIX B

Here we try to prove the equivalence oftwo formulations in the pressure modeling, i.e.:

#21734}—)’RdL’fs pzja5(A—”’—Raw

':1 Li ‘:1 Li

~

From the Chapter 3 kinematics, for the point on mid-surface, we have

6" = Z0 +(s+u‘)sint9—w’ c030

77’ = YO +(s+u‘)cos€+w‘ sint9

Define n‘ is the unit outward normal to the meridian segmentL‘p ,then we have

 

 

 

.55 _

fir-_ as as

I_as66" 6877’

     
where

ai = [1+ 2)sin 0 -— 9”.ng

6s 6s 6s

6_77_ : [I +Qjcos6+flsin0

6s 6s 6s

6656—”-)= +a”]2 {Qt-)2 “2.1
696 6¢ 61s [65

We also have

 
5(Aui): 6(A77’) 5&4”)

6e 6e ’ 66'

77

(1)

(2a)

(2b)

(3)

(4a)

(4.b)

(4c)

(5)

 



where

A6' 2 Au' sin6—Aw' cost9 (6a)

An' = Au’ c056 + Aw’ sin 6 (6b)

Combining (3), (4.a-c), (5) and (6.a-b), we have

i)” 6(Au’) _ _ 6(Aw’) + 619’ 6Au’ _ 611’ 6Awi

66 66' 6s 66 6s 66'

  

~ _ 6(Aw’)

132‘ (7) 

Thus, we have proven Eqn. (1).

62 (Aw')

62

 Since 2 0 , there will be no stiffness matrix due to pressure going to left side

C

~

ofNewton-Raphson expression.
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