```
THFSSIS
    1
    20,3
#54344340
```


LIRDARY Mictin,., State University

This is to certify that the dissertation entitled Horseshoe-Type Diffeomorphisms
with a Homoclinic Tangency
at the Boundary of Hyperbolicity
presented by

Ulrich Hoensch
has been accepted towards fulfillment of the requirements for

PhD. degree in Mathematics

Date_ May 5, 2003

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

HORSESHOE-TYPE DIFFEOMORPHISMS WITH A HOMOCLINIC TANGENCY AT THE BOUNDARY OF HYPERBOLICITY

By

Ulrich A. Hoensch

A DISSERTATION

Submitted to
Michigan State University in partial fullfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
Department of Mathematics

ABSTRACT
 HORSESHOE-TYPE DIFFEOMORPHISMS WITH A HOMOCLINIC TANGENCY AT THE BOUNDARY OF HYPERBOLICITY
 By
 Ulrich A. Hoensch

In 1979 Devaney and Nitecki showed that for certain parameters in the real Henon family, the set of points with bounded orbits is hyperbolic, and the dynamics are topologically equivalent to those of the full shift on two symbols. It was long known that this set of parameters could be enlarged by considering the geometry given by the invariant manifolds of one or both of the (hyperbolic) fixed points. In this paper we use this approach to extend Devaney and Nitecki's results, and also to illustrate some methods and assumptions that are used in the process.

In Chapter 2, we give results concerning the geometry and position of these invariant manifolds, in particular we investigate the situation before and at the first homoclinic tangency, and establish some sufficient conditions for quadratic contact.

In Chapter 3, we illustrate the symbolic dynamics associated with the existence of a topological "horseshoe"; this is the first part on symbolic dynamics. The second part is given in Chapter 5, where we use a hyperbolicity condition to establish topological equivalence of the dynamics to the full shift on two symbols.

Chapter 4 introduces an abstract class of maps - a class of maps that satisfy certain geometric and hyperbolicity conditions. Here we give the main definitions and technical conditions needed; the strongest result in this chapter is that of proving hyperbolicity of a return map.

Finally, Chapter 6 is devoted to applying the results of the previous chapters to the Henon map. We state our main results in this chapter.

ACKNOWLEDGEMENTS

I am most indebted to my thesis adviser, Sheldon Newhouse, for suggesting the topic of this thesis and for his guidance on the long and arduous journey towards its completion. I would like to express my gratitude for his patience and persistance in explaining some of the underlying concepts to me, both in the many excellent classes I took with him, and also in the many personal conversations we had. Without his advise - and the concurrent motivational effect - this thesis would not have been possible. Dr. Newhouse was also very helpful in providing me with references to the relevant sources in the literature.

I would also like to thank the members of my dissertation committee, Kening Lu, William Sledd, Clifford Weil and Zhengfang Zhou for their time and interest in my academic progress.

Special thanks belongs to Clifford Weil for his interest in the seminar talks I gave on subjects relating to this thesis. The knowledge that others were following the development of my academic work helped me greatly in its pursuit.

Lastly, I would like to acknowledge the financial support of the Department of Mathematics at Michigan State University, and in particular the granting of a research assistantship in the spring of 2003 which gave me the much needed time to complete this thesis.

Contents

1 Introduction 1
2 The Henon Map 5
2.1 Introduction 5
2.2 Fixed Points and Images of Curves 5
2.3 Invariant Manifolds 11
2.4 Quadratic Contact at the First Tangency 16
3 Symbolic Dynamics (Part I) 19
3.1 Orientation-Preserving "Horseshoe" Maps before the First Tangency 19
3.2 A Coding for $\Lambda=\bigcap_{n \in \mathbf{Z}} F^{n}(Q)$ before the First Tangency. 24
3.3 Orientation-Preserving "Horseshoe" Maps at the First Tangency 25
3.4 A Coding for $\tilde{\Lambda}=\bigcap_{n \in \mathbb{Z}} F^{n}(Q)$ at the First Tangency. 27
4 The Abstract Model 30
4.1 Basic Definitions and Assumptions 30
4.2 Hyperbolicity Results for $\left|F_{2 y}\right|,\left|F_{1 y}\right| \ll\left|F_{1 x}\right|$ 37
5 Symbolic Dynamics (Part II) 46
5.1 Assumptions and Definitions 46
5.2 Stable and Unstable Curves 47
5.3 Topological Equivalence 48
6 Application to the Henon Map 49
6.1 Geometric Conditions 49
6.2 The Region of (R, α)-Hyperbolicity 50
6.3 Concavity Conditions 52
6.4 Main Results for Henon Maps 55

1 Introduction

In their 1979 paper, R. Devaney and Z. Nitecki proved that the set Λ of points with bounded orbits of the Henon map $H(x, y)=(r x(1-x)-b y, x), b \neq 0$, is a hyperbolic set, and that $\left.H\right|_{\Lambda}$ is conjugate to the full shift (σ, Σ) on two symbols (cf. sections 3 and 5 for an explanation of these terms), provided the parameters are chosen so that $r>(2+\sqrt{5})(1+b)(c f$. [DN]). Devaney and Nitecki's method of proof uses real geometry and extends to include C^{2}-perturbations of the Henon maps considered. These results involve only geometric estimates on the relative position of $Q:=[0,1]^{2}$, $H(Q)$ and $H^{-1}(Q)$ - it turns out that Λ is actually equal to the largest H-invariant set containing Q; i.e., $\Lambda=\bigcap_{n} \in \mathbb{Z} H^{n}(Q)$.

On the other hand, for a diffeomorphism F, Smale's homoclinic point theorem gives a result about the existence of a (possibly small) hyperbolic set associated with the occurrence of a transverse homoclinic point q of a hyperbolic saddle point p. The hyperbolic set is the maximal F^{N}-invariant set (for some possibly large N) of a tubular neighbourhood R about part of the unstable manifold of p, and R contains both p and q. Smale's homoclinic point theorem relies on the geometry of the stable and unstable manifolds of the saddle point p. It is important to note that if the angle of intersection of the stable and unstable manifolds at q is small (q makes the transition from a transverse homoclinic point to a homoclinic tangency), R must be chosen to be very narrow.

Relating [DN]'s result to the geometry of the invariant manifolds, we note that the main requirement would be that the homoclinic contact be quadratic, and - more restrictvely - that the distance d between unstable and stable manifolds between the two associated homoclinic intersections has to be rather large.

We introduce an abstract class of maps that bridges the gap between having a large hyperbolic invariant set, but requiring that d be large, and allowing d to be small, with the trade-off that the hyperbolic invariant set then shrinks to consist simply of
the hyperbolic saddle point and the orbit of the homoclinic point q. The abstract class contains the Henon family $H(x, y)=(r x(1-x)-b y, x)$, for $0<b \ll 1$, and C^{2}-perturbations. For a map F in this class, we denote by Λ the set of points with bounded orbits. We obtain hyperbolicity of a "return map" on Λ, which is a (possibly high) iterate of H, depending on in which region of Λ the initial point lies. This allows us to establish symbolic dynamics of $\left.F\right|_{\Lambda}$ before and at the first tangency. The main technical assumption is on the relative concavity of the stable and unstable manifolds, related to their distance d.

We devote the rest of this section to introduce some of the concepts just mentioned. We limit outselves to diffeomorphisms of \mathbb{R}^{2} - the definitions and results can be naturally extended to general euclidian spaces, and finite dimensional manifolds.

Hyperbolic saddle points, invariant manifolds, and homoclinic intersections

Let F be a C^{r}-diffeomorphism $(r \geq 1)$ of an open set $U \subset \mathbb{R}^{2}$ onto $V=F(U) \subset \mathbb{R}^{2}$. A fixed point is a point $p \in U$ such that $F(p)=p$. We say that the fixed point p is hyperbolic if none of the eigenvalues λ_{1}, λ_{2} of the differential $D F_{p}$ has modulus 1 ; if $0<\left|\lambda_{1}\right|<1<\left|\lambda_{2}\right|$, then the fixed point is called a hyperbolic saddle point.

Given a hyperbolic saddle point p, we consider the sets

$$
W^{u}(p)=\left\{q:\left|p-F^{-n}(q)\right| \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

and

$$
W^{s}(p)=\left\{q:\left|p-F^{n}(q)\right| \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

Then $W^{u}(p)$ and $W^{s}(p)$ are injectively immersed C^{r}-curves containing p (cf. e.g. [HK]). $W^{u}(p)$ is called the unstable manifold of the hyperbolic saddle point p, and $W^{s}(p)$ is called the stable manifold of the hyperbolic saddle point p.

A homoclinic point is a point $q \neq p$ in the intersection of $W^{u}(p)$ and $W^{s}(p)$. If the angle of intersection is not zero, then q is a transverse homoclinic point; otherwise q is called a homoclinic tangency.

Hyperbolic sets and the cone criterion

Let Λ be a compact F-invariant set; i.e., $F(\Lambda)=\Lambda$. Then Λ is called (uniformly) hyperbolic, if there exist $\lambda>1, C>0$, such that for each $p \in \Lambda$, there is a splitting $T_{p} \mathbb{R}^{2}=E_{p}^{u} \oplus E_{p}^{s}$ such that:

- the splitting is $D F$-invariant: $D F_{p}\left(E_{p}^{u}\right)=E_{F(p)}^{u}$ and $D F_{p}\left(E_{p}^{s}\right)=E_{F(p)}^{s}$,
- the splitting depends continuously on $p \in \Lambda$,
- if $v \in E_{p}^{u}$, then $\left|D F_{p}^{n}(v)\right| \geq C \cdot \lambda^{n} \cdot|v|$ for all $n>0$,
- if $v \in E_{p}^{s}$, then $\left|D F_{p}^{-n}(v)\right| \geq C \cdot \lambda^{n} \cdot|v|$ for all $n>0$.

If p is a hyperbolic fixed point, then $\Lambda=\{p\}$ is a hyperbolic set. We also have invariant manifolds for hyperbolic sets. Assume for instance that Λ is a hyperbolic set of saddle type; i.e., $\operatorname{dim}\left(E_{p}^{u}\right)=\operatorname{dim}\left(E_{p}^{s}\right)=1$ for all $p \in \Lambda$.

Now we consider the sets

$$
W^{u}(p)=\left\{q:\left|F^{-n}(p)-F^{-n}(q)\right| \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

and

$$
W^{s}(p)=\left\{q:\left|F^{n}(p)-F^{n}(q)\right| \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

Then $W^{u}(p)$ and $W^{s}(p)$ are again injectively immersed C^{r}-curves ([HK]). $W^{u}(p)$ is called the unstable manifold of the point $p \in \Lambda$, and $W^{s}(p)$ is called the stable manifold of the point $p \in \Lambda$.

In order to show that a given compact F-invariant set is a hyperbolic set, one can use the following cone criterion.

A cone in \mathbb{R}^{2} (or in $T_{p} \mathbb{R}^{2}$) is a set of the form

$$
C=C(u, v)=\{\alpha u+\beta v: \alpha \beta \geq 0\},
$$

where $u, v \in \mathbb{R}^{2}$ (or $u, v \in T_{p} \mathbb{R}^{2}$).

Cone Criterion

Suppose Λ is a compact, F-invariant set, and suppose there exists a $\lambda>1$, and for each $p \in \Lambda$ there exists an unstable cone C_{p}^{u} in $T_{p} \mathbb{R}^{2}$ and a stable cone C_{p}^{s} in $T_{p} \mathbb{R}^{2}$ satisfying the conditions:

- $C_{p}^{u} \cap C_{p}^{s}=\{0\}$,
- the unstable cones are $D F$-invariant: $D F_{p}\left(C_{p}^{u}\right) \subset C_{F(p)}^{u}$,
- the stable cones are $D F^{-1}$-invariant: $D F_{F(p)}^{-1}\left(C_{F(p)}^{s}\right) \subset C_{p}^{s}$,
- the cones depend continuously on $p \in \Lambda$,
- if $v \in C_{p}^{u}$, then $\left|D F_{p}(v)\right| \geq \lambda \cdot|v|$,
- if $v \in C_{F(p)}^{s}$, then $\left|D F_{F(p)}^{-1}(v)\right| \geq \lambda \cdot|v|$.

Then Λ is a hyperbolic set.

2 The Henon Map

2.1 Introduction

The Henon map we consider is given as

$$
H_{b, r}(x, y)=(r x(1-x)-b y, x)
$$

For $b \neq 0$, this is a diffeomorphism of the plane \mathbb{R}^{2}, and for $b=0$, we have the logistic $\operatorname{map} H_{0, r}(x, y)=(r x(1-x), x)$.

In [DN], R. Devaney and Z. Nitecki use the following form for the Henon map:

$$
h_{A, B}(x, y)=\left(1+y-A x^{2}, B x\right)
$$

whereas in [NY], H. Nusse and J. Yorke use the form

$$
\mathcal{H}_{\rho, c}(x, y)=\left(\rho-x^{2}+c y, x\right) .
$$

All these maps are conjugate via affine coordinate changes; for $A, B \neq 0$, let

$$
\left.T_{A, B}(x, y)=\frac{r}{2 A}(2 x-1,2 B y-B)\right), \text { and } S_{A, B}(x, y)=\left(A x, \frac{A}{B} y\right)
$$

Then for $r \neq 2+2 b, b \neq 0$, and $A, B \neq 0$, we have
$T_{\frac{r(r-2-2 b)}{4},-b} \circ H_{b, r}=h_{\frac{r(r-2-2 b)}{4}},-b \circ T_{\frac{r(r-2-2 b)}{4},-b}$, and $S_{A, B} \circ h_{A, B}=\mathcal{H}_{A, B} \circ S_{A, B}$.
We want to investigate the dynamics of the map $H(x, y)$ under iterates.

2.2 Fixed Points and Images of Curves

We note that for $b \neq 0$, the inverse of the Henon map is

$$
H_{b, r}^{-1}(x, y)=\left(y, \frac{r}{b} y(1-y)-\frac{x}{b}\right) .
$$

Where convenient, we write $H(x, y)=\left(H_{1}(x, y), H_{2}(x, y)\right)=(r x(1-x)-b y, x)$ and thus omit the dependence on the parameters b and r.

Also,

$$
D H_{(x, y)}=\left(\begin{array}{cc}
r(1-2 x) & -b \\
1 & 0
\end{array}\right),
$$

and

$$
D H_{H(x, y)}^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{b} & \frac{r}{b}(1-2 x)
\end{array}\right) .
$$

Note that the Jacobian determinant $\operatorname{det} D H_{b, r}=b$. Throughout this paper, we assume $0<b<1$; i.e., that the Henon map is orientation-preserving and dissipative.

The following result is easily verified.

Proposition 2.1

(1) The Henon map $H_{b, r}$ has exactly two fixed points; namely, $p_{0}=(0,0)$ and $p_{1}=\left(1-\frac{b+1}{r}, 1-\frac{b+1}{r}\right)$.
(2) $\left.D H_{b, r}\right|_{p_{0}}$ has the two eigenvectors $\left(\lambda_{1}, 1\right)$ and $\left(\lambda_{2}, 1\right)$, where

$$
\lambda_{1,2}=\frac{r \pm \sqrt{r^{2}-4 b}}{2}
$$

are the respective eigenvalues.
(3) $\left.D H_{b, r}\right|_{p_{1}}$ has the two eigenvectors $\left(\mu_{1}, 1\right)$ and $\left(\mu_{2}, 1\right)$, where

$$
\mu_{1,2}=\frac{\tilde{r} \pm \sqrt{\tilde{r}^{2}-4 b}}{2}
$$

are the respective eigenvalues, and $\tilde{r}:=2(b+1)-r$.
(4) If $r>1+b$, then $p_{0}=(0,0)$ is a hyperbolic saddle point with $0<\lambda_{2}<1<\lambda_{1}$.
(5) If $r>3(1+b)$, then $p_{1}=\left(1-\frac{b+1}{r}, 1-\frac{b+1}{r}\right)$ is a hyperbolic saddle point with $\mu_{2}<-1<\mu_{1}<0$.

Note that the images (under $H_{b, r}$) of vertical lines are horizontal lines, and that the images (under $H_{b, r}$) of horizontal lines are parabolas of the form $t \mapsto(r t(1-t)+D, t)$.

Let $I=[0,1]$, and $Q=I^{2}$. Then the image of Q is a "horseshoe", with the left and right boundaries of Q being mapped to the bottom and top horizontal bounding lines of $H_{b, r}(Q)$ (with length b), and the bottom and top boundaries of Q being mapped to the left and right bounding parabolas of $H_{b, r}(Q)$ (whose horizontal distance is b). A picture of $H_{b, r}(Q)$ with $r=4.5$ and $b=0.2$ is given below.

Picture 2.1

The next two results show that there are certain invariant classes of curves.

Proposition 2.2 Suppose $\gamma(t)=(r t(1-t)+g(t), t)$ is a curve in \mathbb{R}^{2} such that $2 r\left|t-\frac{1}{2}\right| \geq 1+b$ for all t, and such that $\left|g^{\prime}(t)\right| \leq b$ and $\left|g^{\prime \prime}(t)\right| \leq \frac{2 b r}{1-b}$. Then $H_{b, r}(\gamma(t))$ can be written in the form $(r s(1-s)+h(s), s)$, where $\left|h^{\prime}(s)\right| \leq b$ and $\left|h^{\prime \prime}(s)\right| \leq \frac{2 b r}{1-b}$.

Proof: We have that for $s=: s(t):=r t(1-t)+g(t), H_{b, r}(\gamma(t))=H_{b, r}(s(t), t)=$ $(r s(1-s)-b t, s)$, and

$$
\left|\frac{d s}{d t}\right|=\left|r(1-2 t)+g^{\prime}(t)\right| \geq 2 r\left|t-\frac{1}{2}\right|-\left|g^{\prime}(t)\right| \geq 1+b-b=1 .
$$

This means that $s(t)$ has an inverse $t(s)$. Letting $h(s)=-b \cdot t(s)$, we get $H_{b, r}(\gamma(t))=$ $(r s(1-s)+h(s), s)$, and $\left|\frac{d h}{d s}\right|=b \cdot\left|\frac{d t}{d s}\right| \leq b \cdot 1=b$.

Also,
$\left|\frac{d^{2} h}{d s^{2}}\right|=b \cdot\left|\frac{d^{2} t}{d s^{2}}\right|=b \cdot\left|\frac{d^{2} s}{d t^{2}}\right| \cdot\left|\frac{d t}{d s}\right|^{3} \leq b \cdot\left|-2 r+g^{\prime \prime}(t)\right| \cdot 1^{3} \leq b \cdot\left(2 r+\frac{2 b r}{1-b}\right)=\frac{2 b r}{1-b}$.

Proposition 2.3 Suppose $\gamma(t)=(g(t), t)$ is a curve in \mathbb{R}^{2} such that $2 r\left|t-\frac{1}{2}\right| \geq 1+b$ for all t, and such that $\left|g^{\prime}(t)\right| \leq b$ and $\left|g^{\prime \prime}(t)\right| \leq \frac{2 b^{2} r}{1-b^{2}}$. Then $H_{b, r}^{-1}(\gamma(t))$ can be written in the form $(h(s), s)$, where $\left|h^{\prime}(s)\right| \leq b$ and if $0<b \leq \frac{1}{\sqrt{2}},\left|h^{\prime \prime}(s)\right| \leq \frac{2 b^{2} r}{1-b^{2}}$. Furthermore, the signs of $h^{\prime}(s)$ and $h^{\prime \prime}(s)$ are equal to the sign of $\frac{1}{2}-t$.

Proof: We have that for $s:=s(t):=\frac{r}{b} t(1-t)-\frac{g(t)}{b}, H_{b, r}^{-1}(\gamma(t))=(t, s(t))$, and

$$
\frac{d s}{d t}=\frac{1}{b} \cdot\left(r(1-2 t)-g^{\prime}(t)\right) \geq \frac{2 r}{b}\left(\frac{1}{2}-t\right)-\frac{1}{b}(b) \geq \frac{1+b}{b}-1=\frac{1}{b}
$$

if $2 r\left(\frac{1}{2}-t\right) \geq 1+b$,

$$
-\frac{d s}{d t}=\frac{1}{b} \cdot\left(r(2 t-1)+g^{\prime}(t)\right) \geq \frac{2 r}{b}\left(t-\frac{1}{2}\right)+\frac{1}{b}(-b) \geq \frac{1+b}{b}-1=\frac{1}{b},
$$

if $2 r\left(t-\frac{1}{2}\right) \geq 1+b$.
In any case, $\left|\frac{d s}{d t}\right| \geq \frac{1}{b}$, and this means that $s(t)$ has an inverse $t(s)$. Letting $h(s)=$ $t(s)$, we get $H_{b, r}^{-1}(\gamma(t))=(h(s), s)$, and $\frac{d h}{d s}=\frac{d t}{d s}$ gives $\left|\frac{d h}{d s}\right| \leq b$ and the statements about the sign of $h^{\prime}(s)$.

The condition $0<b \leq \frac{1}{\sqrt{2}}$ guarantees that $\frac{d^{2} s}{d t^{2}} \leq 0$; the formula $\frac{d^{2} t}{d s^{2}}=-\frac{d^{2} s}{d t^{2}} \cdot\left(\frac{d t}{d s}\right)^{3}$ gives

$$
\left|\frac{d^{2} h}{d s^{2}}\right|=\left|\frac{d^{2} t}{d s^{2}}\right|=\left|\frac{d^{2} s}{d t^{2}}\right| \cdot\left|\frac{d t}{d s}\right|^{3} \leq \frac{1}{b} \cdot\left|-2 r+g^{\prime \prime}(t)\right| \cdot b^{3} \leq b^{2} \cdot\left(2 r+\frac{2 b^{2} r}{1-b^{2}}\right)=\frac{2 b^{2} r}{1-b^{2}}
$$

and the statements about the sign of $h^{\prime \prime}(s)$.

We define the following sets:

$$
\begin{aligned}
& \mathcal{E}=\mathcal{E}_{b, r}=\left\{(x, y): 2 r\left|x-\frac{1}{2}\right| \geq 1+b\right\} \\
& \mathcal{E}^{\prime}=\mathcal{E}_{b, r}^{\prime}=\left\{(x, y): 2 r\left|y-\frac{1}{2}\right| \geq 1+b\right\} \\
& \mathcal{S}=\mathcal{S}_{b, r}=\left\{(x, y): 2 r\left|x-\frac{1}{2}\right| \leq 1+b\right\}
\end{aligned}
$$

and

$$
\mathcal{S}^{\prime}=\mathcal{S}_{b, r}^{\prime}=\left\{(x, y): 2 r\left|y-\frac{1}{2}\right| \leq 1+b\right\}
$$

Note that $H(\mathcal{E})=\mathcal{E}^{\prime}$ and $H(\mathcal{S})=\mathcal{S}^{\prime}$. Note also that $\mathcal{S}_{b, r}$ is a closed vertical strip about the line $x=\frac{1}{2}$, and that that $\mathcal{S}_{b, r}^{\prime}$ is a closed horizontal strip about the line $y=\frac{1}{2}$.

We will be interested in the invariant set $\Lambda=\bigcap_{n \in \mathbb{Z}} H^{n}(Q)$. We make the following observation regarding the relative positions of $Q, H(Q), \mathcal{S}$ and \mathcal{S}^{\prime}.

Lemma 2.1 Suppose $0<b \leq 1$.
(1) $H(Q) \cap Q$ has two connected components if and only if $r>4 \cdot(1+b)$; i.e., Λ is a "topological horseshoe".
(2) Let $\mathcal{S}_{Q}^{\prime}=\mathcal{S}^{\prime} \cap Q$. Then $H(Q) \cap \mathcal{S}_{Q}^{\prime}=\emptyset$ if and only if $r>(2+\sqrt{5}) \cdot(1+b)$.

Proof: The left boundary of $H(Q)$ is given by the parabola

$$
\Gamma:=H(\{(x, 1): 0 \leq x \leq 1\})=\{(r x(1-x)-b, x): 0 \leq x \leq 1\}
$$

Γ intersects the right boundary of Q precisely when $r \geq 4(1+b)$, and Γ intersects \mathcal{S}_{Q}^{\prime} precisely when $r \leq(2+\sqrt{5})(1+b)$.

We define:

$$
\begin{aligned}
& \mathcal{E}_{\text {left }}=\left\{(x, y): 2 r\left(\frac{1}{2}-x\right) \geq 1+b\right\} \\
& \mathcal{E}_{\text {right }}=\left\{(x, y): 2 r\left(x-\frac{1}{2}\right) \geq 1+b\right\} \\
& \mathcal{E}_{\text {bottom }}^{\prime}=\left\{(x, y): 2 r\left(\frac{1}{2}-y\right) \geq 1+b\right\} \\
& \mathcal{E}_{\text {top }}^{\prime}=\left\{(x, y): 2 r\left(y-\frac{1}{2}\right) \geq 1+b\right\}
\end{aligned}
$$

We also let $Q_{\text {bottom,left }}=Q \cap \mathcal{E}_{\text {bottom }}^{\prime} \cap \mathcal{E}_{\text {left }}$, and $Q_{\text {top,left }}, Q_{\text {bottom, right }}$, and $Q_{\text {top,right }}$ along the same lines. Then we have the following lemma.

Lemma 2.2 Suppose $0<b \leq 1$, and $r \geq 2(1+2 b)$, then we have the following:
(a) $H^{-1}\left(\mathcal{E}_{\text {left }} \cap Q\right) \cap Q$ consists of two connected components $\mathcal{C}_{\text {left }}$ and $\mathcal{C}_{\text {right }}$.
(b) $\mathcal{C}_{\text {left }}$ is full-height in $\mathcal{E}_{\text {left }} \cap Q$, and $\mathcal{C}_{\text {left }}=H^{-1}\left(Q_{\text {bottom,left }}\right) \cap Q$.
(c) $\mathcal{C}_{\text {right }}$ is full-height in $\mathcal{E}_{\text {right }} \cap Q$, and $\mathcal{C}_{\text {right }}=H^{-1}\left(Q_{\text {top,left }}\right) \cap Q$.

Proof: H^{-1} maps the left boundary of $\mathcal{E}_{\text {left }} \cap Q$ to the parabola $y \mapsto\left(y, \frac{r}{b} y(1-y)\right)$, the bottom boundary of $\mathcal{E}_{\text {left }} \cap Q$ to a vertical line $\{0\} \times[0,-D]$, and the top boundary of $\mathcal{E}_{\text {left }} \cap Q$ to a vertical line $\{1\} \times[0,-D]$, for some $D>0$. It remains to be checked whether the pre-image $H^{-1}(l)$ of the right boundary l of $\mathcal{E}_{\text {left }} \cap Q$ avoids the region $\left\{(x, y): 0 \leq y \leq 1,2 r\left|\frac{1}{2}-x\right|<1+b\right\}$. Let x^{\star} be such that $2 r\left(\frac{1}{2}-x^{\star}\right)=1+b$. Then $l=\left(x^{\star}, t\right), 0 \leq t \leq 1$, and $H^{-1}(l)=\left(t, \frac{r}{b} t(1-t)-\frac{x^{\star}}{b}\right)$.
Suppose that t is such that $2 r\left|\frac{1}{2}-t\right| \leq 1+b$. Then we need to show that $\frac{r}{b} t(1-$ $t)-\frac{x^{\star}}{b} \geq 1$. Using that $t(1-t)=\frac{1}{4}-\left(t-\frac{1}{2}\right)^{2}$, we get $\frac{r}{b} t(1-t) \geq \frac{r^{2}-(1+b)^{2}}{4 b r}$, and consequently

$$
\frac{r}{b} t(1-t)-\frac{x^{\star}}{b} \geq \frac{r^{2}-(1+b)^{2}}{4 b r}-\frac{r-(1+b)}{2 b r}=\frac{r^{2}-2 r-b^{2}+1}{4 b r}
$$

We need $r^{2}-2 r-b^{2}+1 \geq 4 b r$. Since $r \geq 2(1+2 b)$, we have $r-(1+2 b) \geq 1+2 b$, and then $[r-(1+2 b)]^{2} \geq(1+2 b)^{2}$. This means

$$
r^{2}-2 r(1+2 b)+(1+2 b)^{2} \geq(1+2 b)^{2}=1+4 b+4 b^{2} \geq 5 b^{2}+4 b
$$

because $b \leq 1$. This gives $r^{2}-2 r-b^{2}+1 \geq 4 b r$, as required.

2.3 Invariant Manifolds

The two results that follow indicate the position of the stable and unstable manifolds, given certain condtions on b and r. Let $W^{s}\left(p_{i}\right)$ denote the stable manifold of the fixed point p_{i}, and let $W^{u}\left(p_{i}\right)$ denote the unstable manifold of the fixed point $p_{i}, i=0,1$. Recall that $Q=I^{2}=[0,1]^{2}$, and let $l_{1,1}^{s}$ and $l_{1,2}^{s}$ be the first and second connected component (resp.) of $W^{s}\left(p_{0}\right) \cap Q$; let $l_{2,1}^{s}$ and $l_{2,2}^{s}$ be the first and second connected component (resp.) of $W^{s}\left(p_{1}\right) \cap Q$.

Proposition 2.4 Suppose $0<b \leq 1$, and $r \geq 3(1+b)$. Then we can write
(1) $l_{1,1}^{s}:[0,1] \rightarrow Q, \quad y \mapsto\left(f_{1,1}^{s}(y), y\right)$, where:
(1a) $f_{1,1}^{s}(0)=0,0 \leq f_{1,1}^{s}(y)$, and $2 r\left(\frac{1}{2}-f_{1,1}^{s}(y)\right) \geq 1+b$,
(1b) $0 \leq\left(f_{1,1}^{s}\right)^{\prime}(y) \leq b$, and
(1c) if $0<b \leq \frac{1}{\sqrt{2}}$, then $0 \leq\left(f_{1,1}^{s}\right)^{\prime \prime}(y) \leq \frac{2 b^{2} r}{1-b^{2}}$.
(2) $l_{1,2}^{s}:[0,1] \rightarrow Q, \quad y \mapsto\left(f_{1,2}^{s}(y), y\right)$, where:
(2a) $f_{1,2}^{s}(y) \leq 1$, and $2 r\left(f_{1,2}^{s}(y)-\frac{1}{2}\right) \geq 1+b$,
(2b) $-b \leq\left(f_{1,2}^{s}\right)^{\prime}(y) \leq 0$, and
(2c) if $0<b \leq \frac{1}{\sqrt{2}}$, then $-\frac{2 b^{2} r}{1-b^{2}} \leq\left(f_{1,2}^{s}\right)^{\prime \prime}(y) \leq 0$.

The following picture illustrates the general position of the first two connected components of $W^{s}\left(p_{0}\right)$ relative to the region $\mathcal{S}_{Q}=\left\{(x, y) \in Q: 2 r\left|x-\frac{1}{2}\right| \leq 1+b\right\}$.

Picture 2.2

Proof: For a fixed small $\delta>0$, consider the curve $\gamma(t)=(g(t), t)=\left(\lambda_{2} \cdot t, t\right)$, where $0 \leq t<\delta$ and $\lambda_{2}=\frac{r-\sqrt{r^{2}-4 b}}{2}$ is the contracting eigenvector of $D H_{p_{0}}$. If $r>1+b$, then we have that $0<\lambda_{2}=\frac{2 b}{r+\sqrt{r^{2}-4 b}}<b \leq 1$. We note that if $0<b \leq 1$ and $r \geq 3(1+b)$, then $r \geq 2(1+2 b)$. Thus, Proposition 2.3 and Lemma 2.2 give that the first two connected components in Q of $H^{-1}(\gamma(t))$ and of all subsequent pre-images have the properties listed.

It is well known in the theory of invariant manifolds (cf. for example [S1]) that for some small $\delta>0, H^{-n}(\Gamma) \rightarrow W^{s}\left(p_{0}\right)$ as $n \rightarrow \infty$, where $\Gamma=\{\gamma(t):-\delta<t<\delta\}$. It is easy to check that if $q=\gamma(t)$ for $t<0, H^{-n}(q)$ will not return to Q.

We also have results on parts of the unstable manifold of $p_{0}=(0,0)$. First, we establish a set \mathcal{P} of (b, r)-parameter values for which we have control over the unstable manifold.

Lemma 2.3 Let $t \mapsto(r t(1-t)+g(t), t)$ be a curve such that $g(0)=0$ and $\left|g^{\prime}(t)\right| \leq b$.
Let t^{\star} be such that $2 r\left(\frac{1}{2}-t^{\star}\right)=1+b$, and let $x^{\star}=r t^{\star}\left(1-t^{\star}\right)+g\left(t^{\star}\right)$.
Let

$$
\mathcal{P}=\left\{(b, r): r\left(r t^{\star}\left(1-t^{\star}\right)+b t^{\star}\right)\left(1+b t^{\star}-r t^{\star}\left(1-t^{\star}\right)\right) \leq(1+b) t^{\star}\right\}
$$

Then for every pair of parameters $(b, r) \in \mathcal{P}$, we have that

$$
\left(x^{\star}, t^{\star}\right) \in\left\{(x, y): 2 r\left(x-\frac{1}{2}\right) \geq 1+b\right\}
$$

and

$$
H\left(x^{\star}, t^{\star}\right) \in\left\{(x, y): 2 r\left(\frac{1}{2}-x\right) \geq 1+b\right\}
$$

Proof: This is an elementary argument using that if $(b, r) \in \mathcal{P}$, then $\left(x^{\star}, t^{\star}\right)$ is not to the left of the image of the right boundary of $\left\{(x, y): 2 r\left(\frac{1}{2}-x\right) \geq 1+b\right\}$.

The following is a picture of the (global) region of control \mathcal{P}.

Picture 2.3

Let l_{1}^{u} be the first connected component of $W^{u}\left(p_{0}\right) \cap\left\{(x, y): 2 r\left(y-\frac{1}{2}\right) \leq 1+b\right\} \cap Q$ and let l_{2}^{u} be the second connected component of $W^{u}\left(p_{0}\right) \cap\left\{(x, y): 2 r\left|y-\frac{1}{2}\right| \leq 1+b\right\} \cap$ Q.

Proposition 2.5 Suppose $0<b<1$, and $(b, r) \in \mathcal{P}$. Let y_{1}^{\star} be such that $2 r\left(y_{1}^{\star}-\frac{1}{2}\right)=$ $1+b$ and let y_{2}^{\star} be such that $2 r\left(\frac{1}{2}-y_{2}^{\star}\right)=1+b$. Then we can write
(1) $l_{1}^{u}:\left[0, y_{1}^{\star}\right] \rightarrow Q, \quad y \mapsto\left(r y(1-y)+f_{1}^{u}(y), y\right)$, where:
(1a) $f_{1}^{u}(0)=0$,
(1b) $\left|\left(f_{1}^{u}\right)^{\prime}(y)\right| \leq b$, and
(1c) $\left|\left(f_{1}^{u}\right)^{\prime \prime}(y)\right| \leq \frac{2 b r}{1-b}$.
(2) $l_{2}^{u}:\left[y_{2}^{\star}, y_{1}^{\star}\right] \rightarrow Q, \quad y \mapsto\left(r y(1-y)+f_{2}^{u}(y), y\right)$, where:
(2a) $f_{2}^{u}(y)<f_{1}^{u}(y)$,
(2b) $\left|\left(f_{2}^{u}\right)^{\prime}(y)\right| \leq b$, and
(2c) $\left|\left(f_{2}^{u}\right)^{\prime \prime}(y)\right| \leq \frac{2 b r}{1-b}$.

Proof: For a fixed small $\delta>0$, consider the curve $\gamma(t)=\left(t, \frac{t}{\lambda_{1}}\right)$, where $0 \leq t<\delta$ and $\lambda_{1}=\frac{r+\sqrt{r^{2}-4 b}}{2}$ is the expanding eigenvector of $D H_{p_{0}}$. The first image of $\gamma(t)$ is $H(\gamma(t))=\left(r t(1-t)-b \cdot \frac{t}{\lambda_{1}}, t\right)$. Let $g(t)=-b \cdot \frac{t}{\lambda_{1}}$. If $r \geq 1+b$, then we have that $\left|g^{\prime}(t)\right|=\frac{b}{\lambda_{1}}=\frac{2 b}{r+\sqrt{r^{2}-4 b}} \leq b<1$.

It follows from Proposition 2.2 that for $n \geq 1, H^{n}(\gamma(t))$ has properties (1a)-(1c), at least as long as the y-range is within $\left[0, y_{2}^{\star}\right]$. If $H^{n}(\gamma(t))$ has y-range within $\left[0, y_{2}^{\star}\right)$, the y-range will strictly increase under iterates $\left(\frac{d s}{d t}>1\right.$ in the proof of Proposition 2.2). Using Lemma 2.3, we may assume that for some $n \geq 1, H^{n}(\gamma(t))$ has x range $\left[0, y_{1}^{\star}\right]$, and hence $H^{n+1}(\gamma(t))$ has y-range $\left[0, y_{1}^{\star}\right]$. This proves part (1), since $H^{n}(\gamma(t)) \rightarrow W^{u}\left(p_{0}\right)$ as $n \rightarrow \infty$.

Also, Lemma 2.3 and Lemma 2.2 give that $H^{n+2}(\gamma(t))$ has y-range contained in $\left[y_{2}^{\star}, y_{1}^{\star}\right]$, which proves part (2). Finally, it is again easy to check that if $q=\gamma(t)$ for $t<0, H^{n}(q)$ will not return to Q.

Picture 2.4

It follows from Propositions 2.4 and 2.5 that for each there exists a curve $b \mapsto r(b)$ with $(b, r(b)) \in \mathcal{P}$ such that if $(b, r) \in \mathcal{P}$ and $r>r(b)$, the curves l_{2}^{u} and $l_{1,2}^{s}$ have two transverse intersections, and for $r=r(b), l_{2}^{u}$ and $l_{1,2}^{s}$ are tangent.

The following pictures illustrate the previous results for $r>r(b)$ and $r=r(b)$.

Picture 2.5

Picture 2.6

2.4 Quadratic Contact at the First Tangency

If we restrict the extent of the region \mathcal{P}, we can verify that the contact between l_{2}^{u} and $l_{1,2}^{s}$ is quadratic.

Definition 2.1 Let \mathcal{P} be as in Lemma 2.3, except that additionally $0<b<\frac{\sqrt{13}-1}{6}$.
Proposition 2.6 Let $\gamma^{u}: t \mapsto\left(g^{u}(t), t\right)$ be a curve whose concavity $K^{u}:=\left(g^{u}(t)\right)^{\prime \prime}$ satisfies $\left|K^{u}+2 r\right| \leq \frac{2 b r}{1-b}$, and let $\gamma^{s}: t \mapsto\left(g^{s}(t), t\right)$ be a curve whose concavity $K^{s}:=\left(g^{s}(t)\right)^{\prime \prime}$ satisfies $\left|K^{s}\right| \leq \frac{2 b^{2} r}{1-b^{2}}$. Let $0<b<\frac{\sqrt{13}-1}{6}$. Then $K^{s}>K^{u}$ for all t in the common domain of γ^{u} and γ^{s}.

The proof of the above Proposition is elementary. In particular, it gives us the following.

Corollary 2.1 If $(b, r(b)) \in \mathcal{P}(\mathcal{P}$ as defined in Definition 2.1), then the tangency at $(b, r(b))$ is quadratic.

We now investigate consequences of having a homoclinic tangency.

Suppose $\gamma^{u}(t)=\left(r t(1-t)+g^{u}(t), t\right)$ and $\gamma^{s}(t)=\left(g^{s}(t), t\right)$ are two curves with $\left|\left(g^{u}\right)^{\prime}\right| \leq b$ and $-b \leq\left(g^{s}\right)^{\prime} \leq 0$ such that γ^{u}, γ^{s} have a tangency at t_{0}; i.e.,
(*) $\quad r t_{0}\left(1-t_{0}\right)+g^{u}\left(t_{0}\right)=g^{s}\left(t_{0}\right)$
and

$$
\left({ }^{* *}\right) \quad r\left(1-2 t_{0}\right)+\left(g^{u}\right)^{\prime}\left(t_{0}\right)=\left(g^{s}\right)^{\prime}\left(t_{0}\right) .
$$

Let $\Delta(t)=g^{s}(t)-g^{u}(t)$, then $\left|\Delta^{\prime}(t)\right| \leq 2 b$, and $\left({ }^{* *}\right)$ implies $2 r\left|t_{0}-\frac{1}{2}\right|=\left|\Delta^{\prime}\left(t_{0}\right)\right| \leq$ $2 b$, in particular, since we assume $0<b \leq 1$, we have $2 r\left|t_{0}-\frac{1}{2}\right| \leq 1+b$. This gives the following result.

Proposition 2.7 If $(b, r(b)) \in \mathcal{P}$, then the tangency between l_{2}^{u} and $l_{1,2}^{s}$ occurs in the region

$$
Q_{\text {center,right }}=\left\{(x, y) \in Q: 2 r\left|y-\frac{1}{2}\right| \leq 1+b, \quad 2 r\left(x-\frac{1}{2}\right) \geq 1+b\right\} .
$$

Now, we want to give estimates for the parameter $r(b)$. Since $r t_{0}\left(1-t_{0}\right)=\frac{r}{4}-$ $r\left(t_{0}-\frac{1}{2}\right)^{2},\left(^{*}\right)$ and the equation $2 r\left|t_{0}-\frac{1}{2}\right|=\left|\Delta^{\prime}\left(t_{0}\right)\right|$ give

$$
r^{2}-4 r \Delta\left(t_{0}\right)=\left[\Delta^{\prime}\left(t_{0}\right)\right]^{2}
$$

where $r=r(b)$ is understood to depend on t_{0}, the y-coordinate of the tangency. Note that we know that $\Delta(1 / 2)=1$. Hence we must solve the initial value problem

$$
[r(t)]^{2}-4 r(t) \Delta(t)=\left[\Delta^{\prime}(t)\right]^{2} \quad \Delta(1 / 2)=1
$$

(Now r depends on t; note that using this notation, $r(1 / 2)=4$.) Using the estimates $\left[\Delta^{\prime}(t)\right]^{2} \geq 0, \Delta(t) \geq 1+\int_{1 / 2}^{t} \Delta^{\prime} \geq 1-2 b\left|t-\frac{1}{2}\right|$, and $\left|t-\frac{1}{2}\right| \leq \frac{b}{r}$, we get

$$
r \geq 4-8 \frac{b^{2}}{r} \quad, \text { or } \quad r \geq 2+2 \sqrt{1-2 b^{2}}
$$

The following picture shows the curve $b \mapsto\left(b, 2+2 \sqrt{1-2 b^{2}}\right)$ vs. the lower boundary of \mathcal{P}.

Picture 2.7

This justifies the following proposition.

Proposition 2.8 If $0<b<0.07$, then the tangency between l_{2}^{u} and $l_{1,2}^{s}$ is quadratic.

3 Symbolic Dynamics (Part I)

We have established that for $(b, r) \in \mathcal{P}$, and $r>r(b)$, the Henon map exhibits a topological horseshoe, and for $r=r(b)$, there is a first tangency between the stable and unstable manifolds of the fixed point $(0,0)$. We will consider such maps in their own right.

3.1 Orientation-Preserving "Horseshoe" Maps before the First Tangency

Let F be a diffeomorphism of \mathbb{R}^{2}, and let $p \in \mathbb{R}^{2}$ be a fixed hyperbolic saddle point of F. Suppose the stable and unstable manifold $W^{s}(p)$ and $W^{u}(p)$ of F at p have transverse homoclinic intersections only. Then F exhibits a "topological horseshoe" which can be illustrated as follows (for orientation-preserving F).

Picture 3.1

Note that the dynamics of the points q_{i}, s_{i}, r_{i} and t_{i} in the picture above are given by $F\left(q_{i}\right)=q_{i+1}, F\left(s_{i}\right)=s_{i+1}$, etc.

We want to define certain regions bounded by parts of the stable and unstable manifolds. We let Q be the region enclosed by the part of $W^{u}(p)$ connecting p and q_{0}, the part of $W^{s}(p)$ connecting q_{0} and s_{1}, the part of $W^{u}(p)$ connecting s_{1} and q_{1}, and the part of $W^{s}(p)$ connecting q_{1} and p. We use the notation

$$
Q=p \xrightarrow{u} q_{0} \xrightarrow{s} s_{1} \xrightarrow{u} q_{1} \xrightarrow{s} p .
$$

We also define the regions

$$
\underline{1}=p \xrightarrow{u} q_{-1} \xrightarrow{s} t_{-1} \xrightarrow{u} q_{1} \xrightarrow{s} p
$$

and

$$
\underline{2}=s_{0} \xrightarrow{u} q_{0} \xrightarrow{s} s_{1} \xrightarrow{u} r_{-1} \xrightarrow{s} s_{0} .
$$

Note that $\underline{1} \cup \underline{2}=Q \cap F^{-1}(Q)$. We define the following regions (also called blocks):
For $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2\}$ and $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{Z}$, let

$$
Q_{i_{1}, \ldots, i_{k}}^{n_{1}, \ldots, n_{k}}:=\left\{x \in Q: F^{n_{j}}(x) \in \underline{i_{\underline{i}}}, 1 \leq j \leq k\right\}=\bigcap_{1 \leq j \leq k} F^{-n_{j}}\left(\underline{i_{j}}\right)
$$

Then we get the following schematical pictures for certain blocks:

Picture 3.2 The blocks $Q_{1}^{0}=\underline{1}$ and $Q_{2}^{0}=\underline{2}$.

Picture 3.3 The blocks $Q_{i, j}^{0,1}=F^{-1}(\underline{j}) \cap \underline{i}$.

Picture 3.4 The blocks $Q_{i, j, k}^{0,1,2}=F^{-2}(\underline{k}) \cap F^{-1}(\underline{j}) \cap \underline{i}$.

Picture 3.5 The blocks $Q_{1}^{-1}=F(\underline{1})$ and $Q_{2}^{-1}=F(\underline{2})$.

Picture 3.6 The blocks $Q_{i, j}^{-2,-1}=F(\underline{j}) \cap F^{2}(\underline{i})$.

Picture 3.7 The blocks $Q_{i, j, k}^{-3,-2,-1}=F(\underline{k}) \cap F^{2}(\underline{j}) \cap F^{3}(\underline{i})$.

We note the following.

Proposition 3.1 Let $i_{-k}, \ldots, i_{-1}, i_{0}, i_{1}, \ldots, i_{k} \in\{1,2\}$. Then:
(1) Each block $R=Q_{i_{0}, i_{1} \ldots, i_{k}}^{0,1, \ldots, k}$ is a full-height sub-rectangle of $Q_{i_{0}, i_{1} \ldots, i_{k-1}}^{0,1, \ldots, k-1}$. In particular R is a full-height sub-rectangle of Q.
(2) Each block $R=Q_{i_{-k}, i_{-k+1} \ldots, i_{-1}}^{-k,-k+1 \ldots,-1}$ is a full-width sub-rectangle of $Q_{i_{-k+1}, \ldots, i_{-1}}^{-k+1, \ldots,-1}$. In particular R is a full-width sub-rectangle of Q.
(3) Consequently, each block $Q_{k}:=Q_{i_{-k} \ldots, i_{k}}^{-k, \ldots, k}$ is non-empty.
(4) Since every block Q_{k} is compact and non-empty, we have that given any sequence $\left(a_{n}\right) \in\{1,2\}^{\mathbb{Z}}$, the set $\bigcap_{n \in \mathbb{Z}} F^{-n}\left(\underline{a_{n}}\right)=\bigcap_{n \in \mathbb{Z}} Q_{a_{-n}, \ldots, a_{n}}^{-n, \ldots, n}$ is non-empty.

3.2 A Coding for $\Lambda=\bigcap_{n \in \mathbb{Z}} F^{n}(Q)$ before the First Tangency.

We now consider the set $\Lambda=\bigcap_{n \in \mathbb{Z}} F^{n}(Q)$. This is a non-empty F-invariant set. For each $x \in \Lambda$, we define a sequence $\mathbf{a}=\left(a_{n}\right)_{n \in \mathbb{Z}}, a_{n}=1$ or $a_{n}=2$, via

$$
a_{n}=\left\{\begin{array}{lll}
1 & \text { if } & F^{n}(x) \in \underline{1} \\
2 & \text { if } & F^{n}(x) \in \underline{2}
\end{array}\right.
$$

Let Σ denote the space of bi-infinite sequences of 1 's or 2 's; i.e., $\Sigma=\{1,2\}^{Z}$. Then we have defined a map $\psi: \Lambda \rightarrow \Sigma, \psi(x)=\left(a_{n}\right)$. We define a metric d on Σ as follows. If $\mathbf{a}=\left(a_{n}\right), \mathbf{b}=\left(b_{n}\right) \in \Sigma$, then if $\mathbf{a} \neq \mathbf{b}$, we let $d(\mathbf{a}, \mathbf{b})=\left(\frac{1}{2}\right)^{N}$, where N is such that $a_{n}=b_{n}$ for $|n|<N$, and $a_{n} \neq b_{n}$ for $n=N$ or $n=-N$. For $\mathbf{a}=\mathbf{b}$, we let $d(\mathbf{a}, \mathbf{b})=0$. It is easy to check that this is a metric on Σ. We have that two sequences are close if they agree on a cylinder set $C_{N}:=C_{i_{-N}, \ldots, i_{N}}^{-N, \ldots, N}:=$ $\left\{\left(a_{n}\right) \in \Sigma: a_{n}=i_{n}\right.$ for $\left.-N \leq n \leq N\right\}$ for large N. The map ψ is called the coding map or simply the coding of Λ. The next two results show that this map is continuous and onto.

Lemma 3.1 The coding map $\psi: \Lambda \rightarrow \Sigma$ is continuous.

Proof: Suppose $N \geq 0$ and $x \in \Lambda$ are given. Let $\left(a_{n}\right)=\psi(x)$. For each $n=$ $-N, \ldots N$, there exists a $\delta_{n}>0$ so that the δ_{n}-ball $B_{\delta_{n}}\left(F^{n}(x)\right)$ around $F^{n}(x)$ satisfies $\underline{a_{n}} \cap B_{\delta_{n}}\left(F^{n}(x)\right) \subset \underline{a_{n}}$. Let $B(x):=\bigcap_{|n| \leq N} F^{-n}\left(B_{\delta_{n}}\left(F^{n}(x)\right)\right)$. This is a non-empty open set containing x. Now, if $y \in B(x),(\psi(x))_{n}=(\psi(y))_{n}$ for $|n| \leq N$.

Lemma 3.2 The coding map $\psi: \Lambda \rightarrow \Sigma$ is onto.

Proof: This follows immediately from Proposition 3.1, part (4).
We now define the left shift $\sigma: \Sigma \rightarrow \Sigma,\left(\sigma\left(a_{n}\right)\right)_{k}=a_{k+1}$. It is easy to see that σ is a homeomorphism of Σ, and that $\sigma \circ \psi=\psi \circ F$.

We have therefore established the following.

Proposition 3.2 The map $\psi: \Lambda \rightarrow \Sigma$ is a semi-conjugacy between the map $F: \Lambda \rightarrow$ Λ and $\sigma: \Sigma \rightarrow \Sigma$. This means that the diagram

commutes.

3.3 Orientation-Preserving "Horseshoe" Maps at the First Tangency

We consider the same situation as in 3.1, except now the stable and unstable manifold $W^{s}(p)$ and $W^{u}(p)$ of F at p have a homoclinic tangency. Then F also exhibits a "degenerate topological horseshoe" which can be understood as follows (for orientation-preserving F).

Picture 3.8

Again, the dynamics of the points q_{i}, s_{i} and t_{i} in the picture above are given by $F\left(q_{i}\right)=q_{i+1}, F\left(s_{i}\right)=s_{i+1}$, etc.

Similar to what is done in 3.1, we define the regions

$$
\begin{aligned}
& Q=p \xrightarrow{u} q_{0} \xrightarrow{s} s_{1} \xrightarrow{u} q_{1} \xrightarrow{s} p, \\
& \underline{1}=p \xrightarrow{u} q_{-1} \xrightarrow{s} t_{-1} \xrightarrow{u} q_{1} \xrightarrow{s} p
\end{aligned}
$$

and

$$
\underline{2}=s_{0} \xrightarrow{u} q_{0} \xrightarrow{s} s_{1} \xrightarrow{u} t_{-1} \xrightarrow{s} s_{0} .
$$

We still have that $\underline{1} \cup \underline{2}=Q \cap F^{-1}(Q)$. What is different from the situation in 3.1 is that $\underline{1} \cap \underline{2}=\left\{t_{-1}\right\}$. We again define blocks exactly as before.

For $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2\}$ and $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{Z}$, let

$$
Q_{i_{1}, \ldots, i_{k}}^{n_{1}, \ldots, n_{k}}:=\left\{x \in Q: F^{n_{j}}(x) \in \underline{i_{j}}, 1 \leq j \leq k\right\}=\bigcap_{1 \leq j \leq k} F^{-n_{j}}\left(\underline{i_{j}}\right)
$$

These blocks look like the ones in 3.1 , only with the points $F^{n}\left(r_{0}\right)$ and $F^{n}\left(t_{0}\right)$ collapsed to $F^{n}\left(t_{0}\right)$, for each $n \in \mathbb{Z}$.

Proposition 3.1 holds verbatim in the present situation.

Proposition 3.3 Let $i_{-k}, \ldots, i_{-1}, i_{0}, i_{1}, \ldots, i_{k} \in\{1,2\}$. Then:
(1) Each block $R=Q_{i_{0}, i_{1} \ldots, i_{k}}^{0,1, \ldots, k}$ is a full-height sub-rectangle of $Q_{i_{0}, i_{1} \ldots, i_{k-1}}^{0,1, \ldots, k-1}$. In particular R is a full-height sub-rectangle of Q.
(2) Each block $R=Q_{i_{-k}, i_{-k+1} \ldots, i_{-1}}^{-k,-k+1 \ldots,-1}$ is a full-width sub-rectangle of $Q_{i_{-k+1}, \ldots, i_{-1}}^{-k+1, \ldots,-1}$. In particular R is a full-width sub-rectangle of Q.
(3) Consequently, each block $Q_{k}:=Q_{i_{-k}, \ldots, i_{k}}^{-k \ldots, \ldots}$ is non-empty.
(4) Since every block Q_{k} is compact and non-empty, we have that given any sequence $\left(a_{n}\right) \in\{1,2\}^{\mathbb{Z}}$, the set $\bigcap_{n \in \mathbb{Z}} F^{-n}\left(\underline{a_{n}}\right)=\bigcap_{n \in \mathbb{Z}} Q_{a_{-n}, \ldots, a_{n}}^{-n, \ldots, n}$ is non-empty.

3.4 A Coding for $\tilde{\Lambda}=\bigcap_{n \in \mathbb{Z}} F^{n}(Q)$ at the First Tangency.

Let Q be as in section 3.3. We let $\tilde{\Lambda}=\bigcap_{n \in \mathbb{Z}} F^{n}(Q)$, a non-empty F-invariant set. Our first objective is to define a coding for $\tilde{\Lambda}$. Let $\Sigma=\{1,2\}^{\mathbf{Z}}$. We define the equivalence relation \sim on Σ. We let $t=\left(t_{n}\right) \in \Sigma$ be the sequence such that $t_{-3}, t_{-4}, \ldots=1$, $t_{-2}=2, t_{-1}=1, t_{0}=2, t_{1}, t_{2}, \ldots=1$; i.e.,

$$
\mathbf{t}=(\ldots, 1,1,2,1, \stackrel{\bullet}{2}, 1,1, \ldots)
$$

(the dot • denotes the 0th position). We also let

$$
\mathbf{r}=(\ldots, 1,1,2,2, \stackrel{\bullet}{2}, 1,1, \ldots)
$$

Now, we define that $\sigma^{n}(\mathbf{t}) \sim \sigma^{n}(\mathbf{r})$ and $\sigma^{n}(\mathbf{r}) \sim \sigma^{n}(\mathbf{t})$ for all $n \in \mathbb{Z}$, and $\mathbf{a} \sim \mathbf{a}$ for all $\mathbf{a} \in \Sigma$. This is an equivalence relation. We denote by $\tilde{\Sigma}$ the set of equivalence classes of \sim, and we let $\pi: \Sigma \rightarrow \tilde{\Sigma}, \mathbf{a} \mapsto \tilde{\mathbf{a}}$ be the canonical projection onto $\tilde{\Sigma}$. Next, we let $\mathcal{O}\left(t_{0}\right)=\left\{F^{n}\left(t_{0}\right): n \in \mathbb{Z}\right\}$, and we define the $\operatorname{map} \tilde{\psi}: \tilde{\Lambda} \rightarrow \tilde{\Sigma}$ as follows.

- If $x \in \tilde{\Lambda} \backslash \mathcal{O}\left(t_{0}\right)$, then define the sequence $\mathbf{a}=\left(a_{n}\right) \in \Sigma$ by

$$
a_{n}=\left\{\begin{array}{lll}
1 & \text { if } & F^{n}(x) \in \underline{1} \\
2 & \text { if } & F^{n}(x) \in \underline{2}
\end{array},\right.
$$

and then let $\tilde{\psi}(x)=\tilde{\mathbf{a}}$.

- If $x=F^{n}\left(t_{0}\right)$ for some $n \in \mathbb{Z}$, then let $\tilde{\psi}(x)=\widetilde{\sigma^{n}(\mathbf{t})}$.

Proposition 3.3 shows that $\tilde{\psi}: \tilde{\Lambda} \rightarrow \tilde{\Sigma}$ is onto. To show the continuity of the map $\tilde{\psi}$, we make the assumption that there is a continuous transition from the situation before the first tangency to the situation at the first tangency; more precisely, we assume
(C) there exists a continuous, open and onto map $\tau: \Lambda \rightarrow \tilde{\Lambda}$ such that the diagram

commutes.

Using the quotient topology on $\tilde{\Sigma}$ (this means that a set G is open in $\tilde{\Sigma}$ iff $\pi^{-1}(G)$ is open in Σ), we see that then $\tilde{\psi}: \tilde{\Lambda} \rightarrow \tilde{\Sigma}$ is continuous; namely, if G is open in $\tilde{\Sigma}$, then $\pi^{-1}(G)$ is open in Σ, and hence $\psi^{-1} \circ \pi^{-1}(G)=\tau^{-1} \circ \tilde{\psi}^{-1}(G)$ is open in Λ. Applying τ to the left side of this equality gives that $\tilde{\psi}^{-1}(G)$ is open in $\tilde{\Lambda}$.

We define the left shift $\tilde{\sigma}$ on the quotient space $\tilde{\Sigma}$ simply by $\tilde{\sigma}(\tilde{\mathbf{a}})=\widetilde{\sigma(\mathbf{a})}$. It is easy to check that σ is well-defined, a homeomorphism of $\tilde{\Sigma}$, and that $\tilde{\sigma} \circ \tilde{\psi}=\tilde{\psi} \circ F$. We have the following version of Proposition 3.2

Proposition 3.4 Under the assumption (C), the map $\tilde{\psi}: \tilde{\Lambda} \rightarrow \tilde{\Sigma}$ is a semi-conjugacy between the map $F: \tilde{\Lambda} \rightarrow \tilde{\Lambda}$ and $\tilde{\sigma}: \tilde{\Sigma} \rightarrow \tilde{\Sigma}$. This means that the diagram

$$
\begin{array}{ccc}
\tilde{\Lambda} & \underline{F} & \tilde{\Lambda} \\
\tilde{\psi} \downarrow & & \tilde{\psi} \downarrow \\
\tilde{\Sigma} & & \tilde{\sigma} \\
\tilde{\Sigma}
\end{array}
$$

commutes.

4 The Abstract Model

4.1 Basic Definitions and Assumptions

Suppose that $F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$ is a C^{2} diffeomorphism of \mathbb{R}^{2} onto its image. For $(x, y) \in \mathbb{R}^{2}$, the differential map $D F_{(x, y)}: T_{(x, y)} \mathbb{R}^{2} \rightarrow T_{F(x, y)} \mathbb{R}^{2}$ is

$$
D F_{(x, y)}=\left(\begin{array}{ll}
F_{1 x}(x, y) & F_{1 y}(x, y) \\
F_{2 x}(x, y) & F_{2 y}(x, y)
\end{array}\right)
$$

Then the inverse of $D F_{(x, y)}$ is given by

$$
\left(D F_{(x, y)}\right)^{-1}=D F_{F(x, y)}^{-1}=\frac{1}{J_{F}(x, y)} \cdot\left(\begin{array}{cc}
F_{2 y}(x, y) & -F_{1 y}(x, y) \\
-F_{2 x}(x, y) & F_{1 x}(x, y)
\end{array}\right)
$$

where $J_{F}(x, y)=\operatorname{det} D F_{(x, y)}=F_{1 x}(x, y) \cdot F_{2 y}(x, y)-F_{2 x}(x, y) \cdot F_{1 y}(x, y)$. We use the maximum norm $\left|\left(v_{1}, v_{2}\right)\right|=\max \left\{\left|v_{1}\right|,\left|v_{2}\right|\right\}$ for $\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}$ or $\left(v_{1}, v_{2}\right) \in T_{p} \mathbb{R}^{2}$. Then we have

$$
\left|D F_{(x, y)}\right|=\max \left\{\left|F_{1 x}(x, y)\right|+\left|F_{1 y}(x, y)\right|,\left|F_{2 x}(x, y)\right|+\left|F_{2 y}(x, y)\right|\right\}
$$

Note that for $v \in T_{(x, y)} \mathbb{R}^{2},\left|D F_{(x, y)}(v)\right| \leq\left|D F_{(x, y)}\right| \cdot|v|$, and also that for $w \in T_{F(x, y)} \mathbb{R}^{2}$, $\left|D F_{F(x, y)}^{-1}(w)\right| \geq \frac{1}{\left|D F_{(x, y)}\right|} \cdot|w|$.

Definition 4.1 Suppose $\alpha \geq 0$ and $p \in \mathbb{R}^{2}$. We define
(a) the unstable α-cone at p to be $K^{u}(\alpha, p)=\left\{\left(v_{1}, v_{2}\right) \in T_{p} \mathbb{R}^{2}:\left|v_{2}\right| \leq \alpha\left|v_{1}\right|\right\}$;
(b) the stable α-cone at p to be $K^{s}(\alpha, p)=\left\{\left(v_{1}, v_{2}\right) \in T_{p} \mathbb{R}^{2}:\left|v_{1}\right| \leq \alpha\left|v_{2}\right|\right\}$;
(c) a $K^{u}(\alpha)$-curve is a curve $\gamma(t)$ in such that $\dot{\gamma}(t) \in K^{u}(\alpha, \gamma(t))$ for all t;
(d) a $K^{s}(\alpha)$-curve is a curve $\gamma(t)$ in such that $\dot{\gamma}(t) \in K^{s}(\alpha, \gamma(t))$ for all t;
(e) a $K^{u}(\alpha)$-line is a $K^{u}(\alpha)$-curve $\gamma(t)$ such that $\operatorname{curv}(\gamma)(t)=0$ for all t;
(f) a $K^{s}(\alpha)$-line is a $K^{s}(\alpha)$-curve $\gamma(t)$ such that $\operatorname{curv}(\gamma)(t)=0$ for all t.

Definition 4.2 Let $I=[0,1] \subset \mathbb{R}, I=(0,1] \subset \mathbb{R}, I=[0,1) \subset \mathbb{R}$, or $I=(0,1) \subset \mathbb{R}$ and let $I^{2}=I \times I \subset \mathbb{R}^{2}$ (i.e. there are $4 \times 4=16$ choices for I^{2}). A C^{2}-rectangle Q is the image of I^{2} under a C^{2}-diffeomorphism Ψ. We define bottom, top, left and right boundaries of Q by

$$
\begin{array}{lr}
\partial_{\text {bottom }} Q=\Psi(I \times\{0\}), & \partial_{\text {top }} Q=\Psi(I \times\{1\}), \\
\partial_{\text {left }} Q=\Psi(\{0\} \times I), & \partial_{\text {right }} Q=\Psi(\{1\} \times I) .
\end{array}
$$

If Q is a C^{2}-rectangle, then we say that R is a C^{2}-subrectangle of Q if R is itself a C^{2}-rectangle, and if $R \subset Q$. Moreover, we say that R is a full-height subrectangle of Q if $\partial_{\text {bottom }} R \subset \partial_{\text {bottom }} Q$ and $\partial_{\text {top }} R \subset \partial_{\text {top }} Q ; R$ is a full-width subrectangle of Q if $\partial_{\text {left }} R \subset \partial_{\text {left }} Q$ and $\partial_{\text {right }} R \subset \partial_{\text {right }} Q$.

A curve γ is a full-height curve in Q if $\gamma \subset Q$ and γ connects $\partial_{\text {bottom } Q}$ and $\partial_{\text {top }} Q$; a curve γ is a full-width curve in Q if $\gamma \subset Q$ and γ connects $\partial_{\text {left }} Q$ and $\partial_{\text {right }} Q$.

Let Q be a C^{2}-rectangle in \mathbb{R}^{2}, and suppose that Q can be written as the union $E_{1} \cup Q_{0} \cup E_{2}$, where E_{1}, Q_{0}, E_{2} are closed, full-height C^{2}-subrectangles of Q with disjoint interiors, and such that $\partial_{\text {right }} E_{1}=\partial_{\text {left }} Q_{0}, \partial_{\text {right }} Q_{0}=\partial_{\text {left }} E_{2}$.

In all that follows, $0<\alpha<1, R>1$ and $K>\epsilon>0$ are fixed constants. We assume the following geometric conditions for the map F.
(G1) Both $F\left(E_{1}\right)$ and $F\left(E_{2}\right)$ are full-width C^{2}-subrectangles of $E_{1} \cup Q_{0}$ such that
(a) $F\left(\partial_{\text {bottom }} E_{1}\right)=\partial_{\text {bottom }}\left(E_{1} \cup Q_{0}\right)$,
(b) $F\left(\partial_{\text {bottom }} E_{2}\right)=\partial_{\text {top }}\left(E_{1} \cup Q_{0}\right)$,
(c) $F\left(\partial_{l e f t} E_{1}\right) \subset \partial_{l e f t} E_{1}$,
(d) $F\left(\partial_{\text {right }} E_{2}\right) \subset \partial_{l e f t} E_{1}$.
(G2) F maps Q_{0} parabolically across E_{2}. This means that the set $F\left(Q_{0}\right) \cap E_{2}$ consists of two connected components that are full-width subrectangles of E_{2} (this is the situation "before the first tangency"), or $F\left(Q_{0}\right) \cap E_{2}$ consists of two full-width
subrectangles of E_{2} that intersect in one single point, which we denote by p_{t} (this is the situation "at the first tangency"). Furthermore, there exists a fullheight curve γ in Q_{0} such that F maps γ outside of E_{2} (i.e., $F(\gamma) \cap E_{2}=\emptyset$), or - in the situation at the first tangency - we have $F(\gamma) \cap E_{2}=\left\{p_{t}\right\}$.

We call such a curve γ a critical curve. We also assume that
(a) $F\left(\partial_{b o t t o m} Q_{0}\right) \supset \partial_{b o t t o m} E_{2} \cup \partial_{t o p} E_{2}$,
(b) $F\left(\partial_{l e f t} Q_{0}\right) \subset \partial_{l e f t} E_{2}$,
(c) $F\left(\partial_{\text {right }} Q_{0}\right) \subset \partial_{\text {left }} E_{2}=\partial_{\text {right }} Q_{0}$.

Definition 4.3 Suppose $0<\alpha<1$ and $R>1$. We say a diffeomorphism F is (R, α)-hyperbolic on a set E, if for every $p \in E$, we have:
(1) if $v \in K^{u}(\alpha, p)$, then $D F_{p}(v) \in K^{u}(\alpha, F(p))$ and $\left|D F_{p}(v)\right| \geq R|v|$;
(2) if $v \in K^{s}(\alpha, F(p))$, then $D F_{F(p)}^{-1}(v) \in K^{s}(\alpha, p)$ and $\left|D F_{F(p)}^{-1}(v)\right| \geq R|v|$.

The following lemma gives necessary conditions for (R, α)-hyperbolicity.

Lemma 4.1 If $F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$ is (R, α)-hyperbolic on E, then we have the following estimates on E :

$$
\left|F_{1 x}\right| \geq R, \quad \frac{\left|F_{1 y}\right|}{\left|F_{1 x}\right|} \leq \alpha, \quad \frac{\left|F_{2 x}\right|}{\left|F_{1 x}\right|} \leq \alpha, \quad \text { and }\left|F_{1 x}\right| \geq R \cdot\left|J_{F}\right|
$$

Proof: Let $p \in E$. Since $\binom{1}{0} \in K^{u}(\alpha, p)$ and hence $D F_{p}\binom{1}{0}=\binom{F_{1 x}(p)}{F_{2 x}(p)} \in$ $K^{u}(\alpha, F(p))$, we get $\left|F_{2 x}(p)\right| \leq \alpha\left|F_{1 x}(p)\right|$. Also, $\left|F_{1 x}(p)\right|=\left|D F_{p}\binom{1}{0}\right| \geq R \cdot 1$. Since $\binom{0}{1} \in K^{s}(\alpha, F(p))$ and hence $D F_{F(p)}^{-1}\binom{0}{1}=\frac{1}{J_{F}(p)} \cdot\binom{-F_{1 y}(p)}{F_{1 x}(p)} \in$ $K^{s}(\alpha, p)$, we get $\left|F_{1 y}(p)\right| \leq \alpha\left|F_{1 x}(p)\right|$. Also, $\frac{\left|F_{1 x}(p)\right|}{\left|J_{F}(p)\right|}=\left|D F_{F(p)}^{-1}\binom{0}{1}\right| \geq R \cdot 1$.

We also have sufficient conditions. The proof of the first lemma is elementary; the second lemma comes from [JN].

Lemma 4.2 Suppose $0<\alpha<1$ and $R>1$. Suppose also that for all $p \in E$, the diffeomorphism F satisfies the conditions:
(1) if $v \notin K^{s}(\alpha, p)$, then $\left|D F_{p}(v)\right| \geq R|v|$; and
(2) if $v \notin K^{u}(\alpha, F(p))$, then $\left|D F_{F(p)}^{-1}(v)\right| \geq R|v|$.

Then F is (R, α)-hyperbolic on E.

Lemma 4.3 Suppose $0<\alpha<1$ and $R>1$. Suppose also that for all $p \in E$, the diffeomorphism F satisfies the conditions:
(1) $\left|F_{2 x}(p)\right|+\alpha\left|F_{2 y}(p)\right|+\alpha^{2}\left|F_{1 y}(p)\right| \leq \alpha\left|F_{1 x}(p)\right|$,
(2) $\left|F_{1 x}(p)\right|-\alpha\left|F_{1 y}(p)\right| \geq R$,
(3) $\left|F_{1 y}(p)\right|+\alpha\left|F_{2 y}(p)\right|+\alpha^{2}\left|F_{2 x}(p)\right| \leq \alpha\left|F_{1 x}(p)\right|$,
(4) $\left|F_{1 x}(p)\right|-\alpha\left|F_{2 x}(p)\right| \geq J_{F}(p) R$.

Then F is (R, α)-hyperbolic on E.

We suppose that the following hyperbolicity condition holds.
(H1) F is (R, α)-hyperbolic on $E_{1} \cup E_{2}$.

We define the sets

$$
\begin{aligned}
& E_{2,0}=E_{2} \\
& E_{2,1}=E_{2} \cap F^{-1}\left(E_{1}\right) \\
& E_{2, k}=E_{2} \cap F^{-1}\left(E_{1}\right) \cap \ldots \cap F^{-k}\left(E_{1}\right) .
\end{aligned}
$$

Then each $E_{2, k}$ is a full-height C^{2}-subrectangle of E_{2}. Also, each $\tilde{E}_{2, k}:=E_{2, k} \backslash E_{2, k+1}$ is full-height in E_{2}, and we have $E_{2}=\bigcup_{k=0}^{\infty} \tilde{E}_{2, k} \cup \partial_{\text {right }} E_{2}$.

We have that for each $k \geq 0$, each of the two connected components of $F^{-1}\left(\tilde{E}_{2, k}\right) \cap Q_{0}$ is full-height in Q_{0}. We denote these components by $E_{k \pm}$.

The following two pictures illustrate the geometry of these components.

Picture 4.2 The region Q_{0} before the first tangency

Picture 4.3 The region Q_{0} at the first tangency

We make the following assumption on how certain curves intersect, and their concavity.
(K1) If $p \in E_{k \pm}$, let $q=F^{2}(p) \in F\left(\tilde{E}_{2, k}\right)$. Then for every $K^{u}(1 / \alpha)$-line l through p there exists a $K^{s}(\alpha)$-line κ through q such that $l^{\prime}=F(l)$ and $\kappa^{\prime}=F^{-1}(\kappa)$ intersect in exactly two points (one of them being $F(p)=F^{-1}(q)$).

Furthermore, between these two points of intersection,
(a) l^{\prime} can be parametrized as a curve $(x(t), t)$, and $-2 K-\epsilon \leq \ddot{x}(t) \leq-2 K+\epsilon$ for all t;
(b) κ^{\prime} can be parametrized as a curve $(y(t), t)$, and $-\epsilon \leq \ddot{y}(t) \leq \epsilon$ for all t.

The maximal distance of l^{\prime} and κ^{\prime} between these points of intersection is denoted by $d_{p}(\kappa, l)$. Let

$$
d_{p}(l)=\max _{\kappa} d_{p}(\kappa, l) \text { and } d_{p}=\min _{l} d_{p}(l)
$$

We also let

$$
\begin{gathered}
C_{\epsilon}=\frac{2 K-2 \epsilon}{\sqrt{K+\epsilon}} \\
R_{k}=\inf \left\{\left|D F_{p}^{k+1}\binom{1}{0}\right| \cdot \sqrt{d_{p}}: p \in \tilde{E}_{2, k}\right\} \\
\beta=\inf \left\{\frac{\left|D F_{p}(v)\right|}{|v|}: v \neq 0, v \in K^{u}(1 / \alpha, p), p \in Q_{0}\right\}
\end{gathered}
$$

We now assume
(H2) $\inf _{p \in E_{1} \cup E_{2}}\left|F_{1 x}(p)\right| \cdot \beta>1$ and $\inf _{k \geq 0} R_{k} \cdot C_{\epsilon} \cdot \beta>1 ;$

4.2 Hyperbolicity Results for $\left|F_{2 y}\right|,\left|F_{1 y}\right| \ll\left|F_{1 x}\right|$

We will be concerned with the situation when $\left|F_{2 y}\right|,\left|F_{1 y}\right|$ are small when compared with $\left|F_{1 x}\right|$. Then we have the following four results.

Proposition 4.1 Suppose (H1), $\alpha, \beta>0$ and $\alpha \beta<1$. Given $\epsilon>0$, there exists a $\delta>0$ such that if $\frac{\left|F_{2 y}\right|}{\left|F_{1 x}\right|}, \frac{\left|F_{1 y}\right|}{\left|F_{1 x}\right|}<\delta$ on $E_{1} \cup E_{2}$, then we have that if $p \in E_{1} \cup E_{2}$ and $v \in K^{s}(\beta, F(p))$, then $D F_{F(p)}^{-1}(v) \in K^{s}(\epsilon, p)$.

Proof: Consider $v=\left(v_{1}, v_{2}\right) \in K^{s}(\beta, F(p))$, and let $v^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=D F_{F(p)}^{-1}(v)$. Then

$$
v_{1}^{\prime}=\frac{1}{J_{F}} \cdot\left(F_{2 y} v_{1}-F_{1 y} v_{2}\right) \text { and } v_{2}^{\prime}=\frac{1}{J_{F}} \cdot\left(-F_{2 x} v_{1}+F_{1 x} v_{2}\right) .
$$

Hence

$$
\frac{\left|v_{1}^{\prime}\right|}{\left|v_{2}^{\prime}\right|} \leq \frac{\left|F_{2 y}\right|\left|v_{1}\right|+\left|F_{1 y}\right|\left|v_{2}\right|}{\left|F_{1 x}\right|\left|v_{2}\right|-\left|F_{2 x}\right|\left|v_{1}\right|} \leq \frac{\left|F_{2 y}\right| \beta+\left|F_{1 y}\right|}{\left|F_{1 x}\right|-\left|F_{2 x}\right| \beta}
$$

The (R, α)-hyperbolicity on $E_{1} \cup E_{2}$ implies $\frac{\left|F_{2 x}\right|}{\left|F_{1 x}\right|} \leq \alpha$. This means

$$
\frac{\left|v_{1}^{\prime}\right|}{\left|v_{2}^{\prime}\right|} \leq \frac{\left|F_{2 y}\right| \beta+\left|F_{1 y}\right|}{\left|F_{1 x}\right|(1-\alpha \beta)} \leq \frac{\delta(\beta+1)}{1-\alpha \beta} \leq \epsilon .
$$

Remark 4.1 Proposition 1 asserts that if $\frac{\left|F_{2 y}\right|}{\left|F_{1 x}\right|}$ and $\frac{\left|F_{1 y}\right|}{\left|F_{1 x}\right|}$ are small, then the left and right boundaries of $E_{1} \cup E_{2}$ and the left and right boundaries of each $\tilde{E}_{2, k}$ are C^{1}-close to vertical lines.

Proposition 4.2 Suppose $0 \leq \epsilon \leq 1$, and $\delta>0$. If $\frac{\left|F_{2 y}\right|}{\left|F_{1 x}\right|} \frac{\left|F_{1 y}\right|}{\left|F_{1 x}\right|}<\delta$ on $E_{1} \cup E_{2}$, then for each $p \in E_{1} \cup E_{2}$ and $v \in K^{s}(\epsilon, p)$, we have that $\left|D F_{p}(v)\right| \leq(\epsilon+\delta)$. $\sup _{E_{1} \cup E_{2}}\left\{\left|F_{1 x}\right|,\left|F_{2 x}\right|\right\} \cdot|v|$.

Proof: For $v=\left(v_{1}, v_{2}\right) \in K^{s}(\epsilon, p)$ (i.e., $\left.\left|v_{1}\right| \leq \epsilon\left|v_{2}\right|\right)$, let $v^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=D F_{p}(v)$. Then

$$
v_{1}^{\prime}=F_{1 x} v_{1}+F_{1 y} v_{2} \quad v_{2}^{\prime}=F_{2 x} v_{1}+F_{2 y} v_{2}
$$

Hence

$$
\left.\left|v_{1}^{\prime}\right| \leq\left|F_{1 x}\right|(\epsilon+\delta)\left|v_{2}\right| \quad\left|v_{2}^{\prime}\right| \leq\left(\left|F_{2 x}\right| \epsilon+\left|F_{1 x}\right| \delta\right)\right)\left|v_{2}\right| .
$$

Finally, note that $|v|=\left|v_{2}\right|$.

Proposition 4.3 Suppose (H1), $\alpha, \beta>0$ and $\alpha \beta<1$. Given $M>0$, there exists a $\delta>0$ such that if $\frac{\left|F_{2 y}\right|}{\left|F_{1 x}\right|}, \frac{\left|F_{1 y}\right|}{\left|F_{1 x}\right|}<\delta$ on $E_{1} \cup E_{2}$, then we have that if $p \in E_{1} \cup E_{2}$ and $v \in K^{s}(\beta, F(p))$, then $\left|D F_{F(p)}^{-1}(v)\right| \geq M \cdot|v|$.

Proof: For $v=\left(v_{1}, v_{2}\right) \in K^{s}(\beta, F(p))$ (i.e., $\left.\left|v_{1}\right| \leq \beta\left|v_{2}\right|\right)$, let $v^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=$ $D F_{F(p)}^{-1}(v)$. We have that

$$
\left|v^{\prime}\right| \geq\left|v_{2}^{\prime}\right| \geq \frac{1}{\left|J_{F}\right|} \cdot\left(\left|F_{1 x}\right|\left|v_{2}\right|-\left|F_{2 x}\right|\left|v_{1}\right|\right)
$$

where $F_{1 x}, F_{2 x}$ and J_{F} are evaluated at $p \in E_{1} \cup E_{2}$.

So we can estimate

$$
\left|F_{1 x}\right|\left|v_{2}\right|-\left|F_{2 x}\right|\left|v_{1}\right| \geq\left|F_{1 x}\right|\left|v_{2}\right|-\left|F_{2 x}\right| \cdot \beta \cdot\left|v_{2}\right| \geq\left|F_{1 x}\right| \cdot(1-\alpha \beta) \cdot\left|v_{2}\right|
$$

and

$$
\left|F_{1 x}\right|\left|v_{2}\right|-\left|F_{2 x}\right|\left|v_{1}\right| \geq\left|F_{1 x}\right| \cdot \frac{1}{\beta} \cdot\left|v_{1}\right|-\left|F_{2 x}\right|\left|v_{1}\right| \geq\left|F_{1 x}\right| \cdot \frac{1}{\beta} \cdot(1-\alpha \beta) \cdot\left|v_{1}\right|
$$

In both estimates we used $\left|F_{2 x}\right| \leq \alpha\left|F_{1 x}\right|$ (cf. Lemma 4.1).
Now, $\left|J_{F}\right| \leq \delta \cdot\left|F_{1 x}\right|^{2}+\alpha \delta\left|F_{1 x}\right|^{2}$. Hence,

$$
\left|v^{\prime}\right| \geq \frac{\min (1,1 / \beta) \cdot(1-\alpha \beta)}{\delta \cdot(1+\alpha) \cdot\left|F_{1 x}\right|} \cdot|v|
$$

Using that $\left|F_{1 x}\right|$ is bounded on $E_{1} \cup E_{2}$, we get $\frac{\min (1,1 / \beta) \cdot(1-\alpha \beta)}{\delta \cdot(1+\alpha) \cdot\left|F_{1 x}\right|} \geq M$ if δ is small enough.

Proposition 4.4 Suppose (H1). There exists a $\delta_{0}>0$ such that if $0<\delta \leq \delta_{0}$ and $\frac{\left|F_{2 y}\right|}{\left|F_{1 x}\right|}, \frac{\left|F_{1 y}\right|}{\left|F_{1 x}\right|}<\delta$ on $E_{1} \cup E_{2}$, then we have that if $p \in E_{1} \cup E_{2}$ and $v \in K^{u}(1, p)$, then $D F_{p}(v) \in K^{u}(1, F(p))$ and $\left|D F_{p}(v)\right| \geq(1-\delta) \cdot\left|F_{1 x}(p)\right| \cdot|v|$.

Proof: If $v=\left(v_{1}, v_{2}\right)$ is such that $\left|v_{1}\right| \geq\left|v_{2}\right|$ and $v^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}\right):=D F_{p}(v)$, then

$$
\left|v^{\prime}\right| \geq\left|v_{1}^{\prime}\right| \geq\left(\left|F_{1 x}\right|-\left|F_{1 y}\right|\right) \cdot\left|v_{1}\right| \geq(1-\delta) \cdot\left|F_{1 x}\right| \cdot\left|v_{1}\right|=(1-\delta) \cdot\left|F_{1 x}\right| \cdot|v|
$$

and

$$
\left|v_{2}^{\prime}\right| \leq\left(\left|F_{2 x}\right|+\left|F_{2 y}\right|\right) \cdot\left|v_{1}\right| \leq(\alpha+\delta) \cdot\left|F_{1 x}\right| \cdot\left|v_{1}\right| .
$$

Hence $\frac{\left|v_{1}^{\prime}\right|}{\left|v_{2}^{\prime}\right|} \geq \frac{1-\delta}{\alpha+\delta}$. Since $0<\alpha<1$, we can find a $\delta_{0}>0$ with $\frac{1-\delta}{\alpha+\delta} \geq 1$ for all $0<\delta \leq \delta_{0}$.

We want to study the return map on Q_{0}. We make the following definition:

Definition 4.4 Suppose $p \in E_{k \pm}$. Then the return time of p to Q_{0} is $N(p):=k+2$, and $\Phi:=F^{k+2}$ is the return map on $E_{k \pm}$. This defines the return map $\Phi: \bigcup_{k=0}^{\infty} E_{k \pm} \longrightarrow$ Q_{0}.

For the next result we assume (G1), (G2), (K1) and (H1), (H2).

Theorem 4.1 There exists an $\tilde{\alpha}$ with $1>\tilde{\alpha}>\alpha$, an $\tilde{R}>1$, and there exists a $\delta>0$ such that if $\frac{\left|F_{2 y}\right|}{\left|F_{1 x}\right|}, \frac{\left|F_{1 y}\right|}{\left|F_{1 x}\right|}<\delta$ on $E_{1} \cup E_{2}$, then the map Φ is $(\tilde{R}, \tilde{\alpha})$-hyperbolic.

Proof: For $\tilde{\alpha}$, we may choose any number between 1 and α. We want to verify the conditions (1) and (2) in Lemma 4.2 for Φ.
(1) Let $p \in E_{k \pm}$, and suppose $v \notin K^{s}(\tilde{\alpha}, p)$. We want to show that $\left|D \Phi_{p}(v)\right| \geq \tilde{R}|v|$ for some $\tilde{R}>1$.

Since $v \notin K^{s}(\tilde{\alpha}, p)$, we have that $v \in K^{u}(1 / \tilde{\alpha}, p) \subset K^{u}(1 / \alpha, p)$. Let $p^{\prime}=$ $F(p) \in \tilde{E}_{2, k}$ and let $v^{\prime}=D F_{p}(v)=\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$. By the definition of β, we have that $\left|v^{\prime}\right| \geq \beta|v|$. If $\beta>1$, then we are done; so we assume $0<\beta \leq 1$. We consider the two cases:

- $\left|v_{1}^{\prime}\right| \geq\left|v_{2}^{\prime}\right|$.

Using (H2), we can choose $\lambda_{1}>\lambda_{2}>1$ such that $\inf _{p^{\prime} \in E_{1} \cup E_{2}}\left|F_{1 x}\left(p^{\prime}\right)\right| \cdot \beta \geq \lambda_{1}$. Since $v^{1}:=v^{\prime} \in K^{u}\left(1, p^{\prime}\right)$, Proposition 4.4 allows us to assume that $v^{j}:=$ $D F_{p}^{j}(v) \in K^{u}\left(1, F^{j}(p)\right)$ for $2 \leq j \leq k+2$. Furthermore, for $\delta>0$ sufficiently small, $\left|v^{j+1}\right| \geq(1-\delta) \cdot\left|F_{1 x}\left(F^{j}(p)\right)\right| \cdot\left|v^{j}\right|$ for $1 \leq j \leq k+1$.

If $\delta \leq 1-\frac{\lambda_{2}}{\lambda_{1}}$, we have

$$
\left|v^{2}\right| \geq(1-\delta) \cdot\left|F_{1 x}\left(p^{\prime}\right)\right| \cdot\left|v^{\prime}\right| \geq \frac{\lambda_{2}}{\lambda_{1}} \cdot\left|F_{1 x}\left(p^{\prime}\right)\right| \cdot \beta \cdot|v| \geq \lambda_{2} \cdot|v|
$$

and also

$$
\left|v^{j+1}\right| \geq \frac{\lambda_{2}}{\lambda_{1}} \cdot\left|F_{1 x}\left(F^{j}(p)\right)\right| \cdot\left|v^{j}\right| \geq \frac{\lambda_{2}}{\lambda_{1} \beta} \cdot\left|F_{1 x}\left(F^{j}(p)\right)\right| \cdot \beta \cdot\left|v^{j}\right| \geq \frac{\lambda_{2}}{\beta} \cdot\left|v^{j}\right|
$$

for $2 \leq j \leq k+1$.
This means that $\left|D \Phi_{p}(v)\right|=\left|v^{k+2}\right| \geq\left(\frac{\lambda_{2}}{\beta}\right)^{k} \cdot \lambda_{2} \cdot|v| \geq \tilde{R} \cdot|v|$.

- $\left|v_{1}^{\prime}\right|<\left|v_{2}^{\prime}\right|$.

Let $\epsilon_{1}>0$, and let $q=F^{2}(p)=F\left(p^{\prime}\right)$. Let $u \in K^{s}(\alpha, q)$ be such that for the curves $l: t \mapsto p+t v$ and $\kappa: t \mapsto q+t u$, we have $d_{p}(\kappa, l) \geq d_{p}$. Also, let $\tilde{v}=D F_{q}^{-1}(u)$. If $\delta>0$ is chosen to be small, (H1) and Proposition 4.1 give that $\tilde{v} \in K^{s}\left(\epsilon_{1}, p^{\prime}\right)$. We can write $v^{\prime}=w_{1}\binom{1}{0}+w_{2} \frac{\tilde{v}}{|\tilde{v}|}$. Note that $\left|w_{2}\right|=\left|v_{2}^{\prime}\right|=\left|v^{\prime}\right|$. Using (K1), we can write $\frac{\tilde{v}}{|\tilde{v}|}=\binom{\dot{y}\left(t^{\star}\right)}{1}$ and $v^{\prime}=w_{2} \cdot\binom{\dot{x}\left(t^{\star}\right)}{1}$, where $x(t), y(t)$ are as in (K1), and $p^{\prime}=\binom{x\left(t^{\star}\right)}{t^{\star}}=$ $\binom{y\left(t^{\star}\right)}{t^{\star}}$. Thus we have $w_{2} \cdot \dot{x}\left(t^{\star}\right)=w_{1}+w_{2} \cdot \dot{y}\left(t^{\star}\right)$.

The functions $x(t)$ and $y(t)$ satisfy the hypothesis of Lemma 4.4 below, so we get that $\left|\dot{x}\left(t^{\star}\right)-\dot{y}\left(t^{\star}\right)\right| \geq C_{\epsilon} \cdot \sqrt{d_{p^{\prime}}}$. Since $\left|\dot{x}\left(t^{\star}\right)-\dot{y}\left(t^{\star}\right)\right|=\frac{\left|w_{1}\right|}{\left|w_{2}\right|}$, we have $\left|w_{1}\right| \geq C_{\epsilon} \cdot \sqrt{d_{p^{\prime}}} \cdot\left|w_{2}\right|=C_{\epsilon} \cdot \sqrt{d_{p^{\prime}}} \cdot\left|v^{\prime}\right|$. We have

$$
\left|D F_{p^{\prime}}^{k+1}\left(v^{\prime}\right)\right| \geq\left|w_{1}\right| \cdot\left|D F_{p^{\prime}}^{k+1}\binom{1}{0}\right|-\left|w_{2}\right| \cdot\left|D F_{p^{\prime}}^{k+1}\left(\frac{\tilde{v}}{|\tilde{v}|}\right)\right| .
$$

Using (H2), we choose $\lambda_{1}>\lambda_{2}>1$ such that $\inf _{k \geq 0} R_{k} \cdot C_{\epsilon} \cdot \beta \geq \lambda_{1}$.
Proposition 4.2 asserts that $\left|D F_{p^{\prime}}^{k+1}\left(\frac{\tilde{v}}{|\tilde{v}|}\right)\right|$ may be chosen arbitrarily small (if ϵ_{1}, δ are chosen small). Hence we choose ϵ_{1}, δ such that

$$
\left|D F_{p^{\prime}}^{k+1}\left(\frac{\tilde{v}}{|\tilde{v}|}\right)\right| \leq \frac{\lambda_{1}-\lambda_{2}}{2 \beta} .
$$

Now,

$$
\begin{aligned}
&\left|D F_{p^{\prime}}^{k+1}\left(v^{\prime}\right)\right| \geq C_{\epsilon} \cdot \sqrt{d_{p^{\prime}}} \cdot\left|v^{\prime}\right| \cdot\left|D F_{p^{\prime}}^{k+1}\binom{1}{0}\right|-\left|v^{\prime}\right| \cdot \frac{\lambda_{1}-\lambda_{2}}{2 \beta} \\
& \geq\left[R_{k} \cdot C_{\epsilon}-\frac{\lambda_{1}-\lambda_{2}}{2 \beta}\right] \cdot\left|v^{\prime}\right| \\
& \geq\left[R_{k} \cdot C_{\epsilon} \cdot \beta-\frac{\lambda_{1}-\lambda_{2}}{2}\right] \cdot|v| \\
& \geq\left[\frac{\lambda_{1}+\lambda_{2}}{2}\right] \cdot|v| \geq \tilde{R} \cdot|v| .
\end{aligned}
$$

(2) Let $p \in E_{k \pm}$, and suppose $v \notin K^{u}\left(\tilde{\alpha}, F^{k+2}(p)\right)$, i.e. $v \in K^{s}\left(1 / \tilde{\alpha}, F^{k+2}(p)\right)$. We want to show that $\left|D \Phi_{\Phi(p)}^{-1}(v)\right| \geq \tilde{R}|v|$. Let $w=D F_{F^{k+2}(p)}^{-(k+1)}(v) \in T_{F(p)} \mathbb{R}^{2}$. Note that we have that

$$
\left|D \Phi_{\Phi(p)}^{-1}(v)\right|=\left|D F_{F(p)}^{-1}(w)\right| \geq \frac{1}{\left|D F_{p}\right|} \cdot|w| \geq \frac{1}{\tilde{M}} \cdot|w|
$$

where $\tilde{M}:=\sup _{Q_{0}}\left\{\left|F_{1 x}\right|+\left|F_{1 y}\right|,\left|F_{2 x}\right|+\left|F_{2 y}\right|\right\}$. Let $M>\tilde{M}$. Proposition 4.3 allows us to assume that $\left|D F_{F^{k+2}(p)}^{-1}(v)\right| \geq M \cdot|v|$. Proposition 4.1 (with $\beta=\frac{1}{\tilde{\alpha}}$) gives that for $\delta>0$ small, $v^{1}:=D F_{F^{k+2}(p)}^{-1}(v) \in K^{s}\left(\alpha, F^{k+1}(p)\right)$ and consequently $v^{j}:=D F_{F^{k+2}(p)}^{-j}(v) \in K^{s}\left(\alpha, F^{k-j+2}(p)\right)$ for $2 \leq j \leq k+1$.
(R, α)-hyperbolicity on $E_{1} \cup E_{2}$ gives $\left|v^{j+1}\right| \geq R \cdot\left|v^{j}\right|$ for $1 \leq j \leq k$.

Combining these results, we get

$$
\left|D \Phi_{\Phi(p)}^{-1}(v)\right| \geq \frac{1}{\bar{M}} \cdot|w|=\frac{1}{\bar{M}} \cdot\left|v^{k+1}\right| \geq \frac{1}{\bar{M}} \cdot R^{k} \cdot\left|v^{1}\right| \geq \frac{M}{\bar{M}} \cdot R^{k} \cdot|v| \geq \tilde{R} \cdot|v| .
$$

The following lemma gives an estimate for the angle between curves with certain curvatures. This lemma is used in the proof of Theorem 4.1.

Lemma 4.4 Let $2 K>\epsilon>0$, and let $x(t), y(t)$ be a C^{2} functions on some interval $[a, b]$ such that $-2 K-\epsilon \leq \ddot{x}(t) \leq-2 K+\epsilon$ and $-\epsilon \leq \ddot{y}(t) \leq \epsilon$ for all t. Let t_{0} be a t-value with $\dot{x}\left(t_{0}\right)=\dot{y}\left(t_{0}\right), d:=x\left(t_{0}\right)-y\left(t_{0}\right) \geq 0$, and $x\left(t^{\star}\right)=y\left(t^{\star}\right)$ for some $t^{\star} \in[a, b]$. Then

$$
\left|\dot{x}\left(t^{\star}\right)-\dot{y}\left(t^{\star}\right)\right| \geq \frac{2 K-2 \epsilon}{\sqrt{K+\epsilon}} \cdot \sqrt{d} .
$$

Proof: If $t_{0}=t^{\star}$, then $d=0$; so we may assume $t_{0} \neq t^{\star}$. We have

$$
0=x\left(t^{\star}\right)-y\left(t^{\star}\right)=x\left(t_{0}\right)-y\left(t_{0}\right)+\frac{\ddot{x}(\tau)-\ddot{y}(\tau)}{2} \cdot\left(t^{\star}-t_{0}\right)^{2}
$$

for some τ between t_{0} and t^{\star}, or equivalently, $d=-\frac{\ddot{x}(\tau)-\ddot{y}(\tau)}{2} \cdot\left(t^{\star}-t_{0}\right)^{2}$. This means $\left|t^{\star}-t_{0}\right| \geq \frac{\sqrt{d}}{\sqrt{K+\epsilon}}$.
On the other hand, $\dot{x}\left(t^{\star}\right)-\dot{y}\left(t^{\star}\right)=(\ddot{x}(\tau)-\ddot{y}(\tau)) \cdot\left(t^{\star}-t_{0}\right)$ for some other τ between t_{0} and t^{\star}, i.e. $\left|\dot{x}\left(t^{\star}\right)-\dot{y}\left(t^{\star}\right)\right| \geq(2 K-2 \epsilon) \cdot\left|t^{\star}-t_{0}\right| \geq \frac{2 K-2 \epsilon}{\sqrt{K+\epsilon}} \cdot \sqrt{d}$.
Next, we want to give sufficient conditions for (K1), conditions (a) and (b) to hold.
Concerning (K1) (a) we have the following result:

Proposition 4.5 Suppose $0<\alpha<1$. Let D be a bounded open subset of \mathbb{R}^{2} and let $F(x, y)$ be a C^{2}-diffeomorphism of \mathbb{R}^{2}. Suppose that
(a) $\left|F_{1 x}\right|>0$ on $F^{-1}(D)$, and
(b) $\left|F_{2 x}\right| \leq \alpha\left|F_{1 x}\right|$ on $F^{-1}(D)$.

Then for any $\epsilon>0$ there is a $\delta>0$ such that if
(c) $\left|F_{2 y}\right|<\delta\left|F_{1 x}\right|$ and $\left|F_{1 y}\right|<\delta\left|F_{1 x}\right|$ on $F^{-1}(D)$, and
(d) $\left|F_{1 y y}\right|<\delta$ and $\left|F_{2 y y}\right|<\delta$ on $F^{-1}(D)$,
then the pre-image $F^{-1}(\kappa)$ of every $K^{s}(\alpha)$-line $\kappa \subset D$ can be parametrized as a curve $(y(s), s)$ with $-\epsilon \leq \ddot{y}(s) \leq \epsilon$.

Proof: Let $q=(x, y)$ and let $\kappa \subset D$ be a $K^{s}(\alpha)$-line through q; we may parametrize κ as $\kappa(t)=\left(x+t u_{1}, y+t\right)$, where $\left|u_{1}\right| \leq \alpha$.

Let $g(t)=\left(F^{-1}\right)_{2}(\kappa(t))=\left(F^{-1}\right)_{2}\left(x+t u_{1}, y+t\right)$.
Then
$\dot{g}(t)=\left(F^{-1}\right)_{2 x}(\kappa(t)) \cdot u_{1}+\left(F^{-1}\right)_{2 y}(\kappa(t))=\frac{1}{J_{F}\left(\kappa^{\prime}(t)\right)} \cdot\left[-F_{2 x}\left(\kappa^{\prime}(t)\right) \cdot u_{1}+F_{1 x}\left(\kappa^{\prime}(t)\right)\right]$, where $\kappa^{\prime}(t)=F^{-1}(\kappa(t))$.

Hence,

$$
|\dot{g}(t)| \geq \frac{1}{\left|J_{F}\left(\kappa^{\prime}(t)\right)\right|} \cdot\left[\left|F_{1 x}\left(\kappa^{\prime}(t)\right)\right|-\alpha\left|F_{2 x}\left(\kappa^{\prime}(t)\right)\right|\right]
$$

Conditions (a) and (b) imply that $m:=\inf \left\{\left|F_{1 x}(z)\right|-\alpha\left|F_{2 x}(z)\right|: z \in F^{-1}(D)\right\}>0$.
So the function $s=g(t)$ is invertible, and we can write $F^{-1}(\kappa(t))$ as $(y(s), s)$, where $y(s)=\left(F^{-1}\right)_{1}\left(\kappa\left(g^{-1}(s)\right)\right)=\left(F^{-1}\right)_{1}\left(x+u_{1} g^{-1}(s), y+g^{-1}(s)\right)$.

Since $\frac{d}{d s}\left(g^{-1}\right)(s)=\frac{1}{\dot{g}(t)}$, we have that

$$
\dot{y}(s)=\left(F^{-1}\right)_{1 x}\left(\kappa\left(g^{-1}(s)\right)\right) \cdot \frac{u_{1}}{\dot{g}(t)}+\left(F^{-1}\right)_{1 y}\left(\kappa\left(g^{-1}(s)\right)\right) \cdot \frac{1}{\dot{g}(t)}
$$

$$
=\frac{1}{\dot{g}(t)} \cdot \frac{1}{J_{F}} \cdot\left[F_{2 y} \cdot u_{1}-F_{1 y}\right]=\frac{F_{2 y} \cdot u_{1}-F_{1 y}}{F_{1 x}-F_{2 x} \cdot u_{1}},
$$

where J_{F} and the partial derivatives of F are evaluated at $F^{-1}\left(\kappa\left(g^{-1}(s)\right)\right)=(y(s), s) \in$ $F^{-1}(D)$.

At this point, it is good to note that conditions (b) and (c) imply that

$$
|\dot{y}(s)| \leq \frac{\left|F_{2 y}\right| \cdot \alpha+\left|F_{1 y}\right|}{\left|F_{1 x}\right|-\left|F_{2 x}\right| \cdot \alpha} \leq \frac{\alpha+1}{1-\alpha^{2}} \cdot \delta .
$$

Now, we want to investigate $\ddot{y}(s)$:

$$
\begin{gathered}
\ddot{y}(s)=\frac{F_{2 y x} \dot{y}(s) u_{1}+F_{2 y y} u_{1}-F_{1 y x} \dot{y}(s)-F_{1 y y}}{F_{1 x}-F_{2 x} u_{1}} \\
-\frac{\left(F_{2 y} u_{1}-F_{1 y}\right) \cdot\left(F_{1 x x} \dot{y}(s)+F_{1 x y}-F_{2 x x} \dot{y}(s) u_{1}-F_{2 x y} u_{1}\right)}{\left(F_{1 x}-F_{2 x} u_{1}\right)^{2}} .
\end{gathered}
$$

Using that $\left|F_{1 x}\right|-\left|F_{2 x}\right| \alpha \geq m$ on $F^{-1}(D)$, we have

$$
\begin{gathered}
|\ddot{y}(s)| \leq \frac{\left|F_{2 y x}\right||\dot{y}(s)| \alpha+\left|F_{2 y y}\right| \alpha+\left|F_{1 y x}\right||\dot{y}(s)|+\left|F_{1 y y}\right|}{m} \\
+\frac{\left(\left|F_{2 y}\right| \alpha+\left|F_{1 y}\right|\right) \cdot\left(\left|F_{1 x x}\right||\dot{y}(s)|+\left|F_{1 x y}\right|+\left|F_{2 x x}\right||\dot{y}(s)| \alpha+\left|F_{2 x y}\right| \alpha\right)}{m^{2}} .
\end{gathered}
$$

Since $|\dot{y}(s)| \leq \frac{\alpha+1}{1-\alpha^{2}} \cdot \delta$, and using conditions (a)-(d), we can find a $\delta>0$ such that $|\ddot{y}(s)| \leq \epsilon$.

Concerning (K1) (b) we have the following result:

Proposition 4.6 Suppose $0<\beta$. Let D be a bounded open subset of \mathbb{R}^{2} and let $F(x, y)$ be a C^{2}-diffeomorphism of \mathbb{R}^{2}. Suppose that
(a) $\left|F_{2 x}\right|-\beta\left|F_{2 y}\right|>0$ on D.

Then the image $F(l)$ of every $K^{u}(\beta)$-line $l \subset D$ can be parametrized as a curve $(x(s), s)$, and furthermore,

$$
\ddot{x}(s)=\frac{F_{1 x x}+2 F_{1 x y} v_{2}+F_{1 y y} v_{2}^{2}}{\left(F_{2 x}+F_{2 y} v_{2}\right)^{2}}-\frac{\left(F_{1 x}+F_{1 y} v_{2}\right) \cdot\left(F_{2 x x}+2 F_{2 x y} v_{2}+F_{2 y y} v_{2}^{2}\right)}{\left(F_{2 x}+F_{2 y} v_{2}\right)^{3}}
$$

where v_{2} is the slope of the line l.

Proof: Let $p=(x, y)$ and let $l \subset D$ be a $K^{u}(\beta)$-line through p; we may parametrize l as $l(t)=\left(x+t, y+t v_{2}\right)$, where $\left|v_{2}\right| \leq \beta$.

Let $g(t)=F_{2}(l(t))=F_{2}\left(x+t, y+t v_{2}\right)$. Then $\dot{g}(t)=F_{2 x}(l(t))+F_{2 y}(l(t)) \cdot v_{2}$, and also $|\dot{g}(t)| \geq\left|F_{2 x}(l(t))\right|-\beta \cdot\left|F_{2 x}(l(t))\right|$.

Condition (a) implies that the function $s=g(t)$ is invertible, and we can write $F(l(t))$ as $(x(s), s)$, where $x(s)=F_{1}\left(l\left(g^{-1}(s)\right)\right)=F_{1}\left(x+g^{-1}(s), y+v_{2} g^{-1}(s)\right)$.
Since $\frac{d}{d s}\left(g^{-1}\right)(s)=\frac{1}{\dot{g}(t)}$, we have that

$$
\dot{x}(s)=F_{1 x}\left(l\left(g^{-1}(s)\right)\right) \cdot \frac{1}{\dot{g}(t)}+F_{1 y}\left(l\left(g^{-1}(s)\right)\right) \cdot \frac{v_{2}}{\dot{g}(t)}=\frac{F_{1 x}+F_{1 y} \cdot v_{2}}{F_{2 x}+F_{2 y} \cdot v_{2}}
$$

where the partial derivatives of F are evaluated at $l\left(g^{-1}(s)\right) \in D$.
Now,

$$
\ddot{x}(s)=\frac{F_{1 x x}+2 F_{1 x y} v_{2}+F_{1 y y} v_{2}^{2}}{\left(F_{2 x}+F_{2 y} v_{2}\right)^{2}}-\frac{\left(F_{1 x}+F_{1 y} v_{2}\right) \cdot\left(F_{2 x x}+2 F_{2 x y} v_{2}+F_{2 y y} v_{2}^{2}\right)}{\left(F_{2 x}+F_{2 y} v_{2}\right)^{3}} .
$$

5 Symbolic Dynamics (Part II)

5.1 Assumptions and Definitions

We look at the diffeomorphisms $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as considered in section 3 , only now we will assume certain hyperbolicity conditions that assure that the coding maps $\psi: \bigcap_{n \in \mathbf{Z}} F^{n}(Q)=: \Lambda \rightarrow \Sigma$ (before the first tangency) and $\tilde{\psi}: \bigcap_{n \in \mathbb{Z}} F^{n}(Q)=: \tilde{\Lambda} \rightarrow \tilde{\Sigma}$ (at the first tangency) are actually homeomorphisms.

We assume the the geometric conditions (G1), (G2) and the hyperbolicity condition (H1), as formulated in section 4. Recall that there we had two "hyperbolic regions" E_{1} and E_{2}, and a "parabolic region" Q_{0}. We defined the sets

$$
E_{2, k}=E_{2} \cap F^{-1}\left(E_{1}\right) \cap \ldots \cap F^{-k}\left(E_{1}\right) \quad \text { and } \quad \tilde{E}_{2, k}:=E_{2, k} \backslash E_{2, k+1}
$$

($k \geq 0$), which are full-height rectangles in Q, and for each $k \geq 0$, we let
E_{k-} denote the left component of $F^{-1}\left(\tilde{E}_{2, k}\right) \cap Q_{0}$, and
E_{k+} denote the right component of $F^{-1}\left(\tilde{E}_{2, k}\right) \cap Q_{0}$.

Furthermore, we let $E_{\infty-}$ denote the left component of $F^{-1}\left(\partial_{\text {right }} E_{2}\right) \cap Q_{0}$, and $E_{\infty+}$ denote the right component of $F^{-1}\left(\partial_{\text {right }} E_{2}\right) \cap Q_{0}$.

Then we have that $Q_{0} \cap F^{-1}\left(E_{2}\right)$ is "stratified" by the full-height (in Q) rectangles $E_{k \pm}$; i.e.,

$$
Q_{0} \cap F^{-1}\left(E_{2}\right)=\bigcup_{k \geq 0} E_{k \pm} \cup E_{\infty \pm}
$$

We have the return map $\Phi=F^{k+2}: E_{k \pm} \rightarrow Q_{0}$. We now assume that this return map is uniformly hyperbolic; i.e., Φ is (R, α)-hyperbolic, with the same $R>1$ and $0<\alpha<1$ on each "stratum" $E_{k \pm}$:
(H3) For all $k \geq 0$, the map $F^{k+2}: E_{k \pm} \rightarrow Q_{0}$ is (R, α)-hyperbolic.

Note that we can write

$$
Q_{1}=E_{1} \cup \bigcup_{k \geq 0} E_{k-} \cup E_{\infty-} \quad \text { and } \quad Q_{2}=E_{2} \cup \bigcup_{k \geq 0} E_{k+} \cup E_{\infty+}
$$

and that in combination with (H1), (an appropriate power of) F can be thought as being uniformly hyperbolic on each "stratum" of $Q_{1} \cup Q_{2}$. More precisely, by additionally letting $\Phi=F$ on $E_{1} \cup E_{2}$ we have that Φ is (R, α)-hyperbolic on ($Q_{1} \cup$ $\left.Q_{2}\right) \backslash E_{\infty \pm}$.

We refer to the collection $\mathcal{S}:=\left\{E_{1}, E_{2}, E_{k \pm}: k \geq 0\right\}$ as "strata". For $x \in Q_{1} \cup Q_{2}$, let S_{x} denote the $S \in \mathcal{S}$ with $x \in S$.

5.2 Stable and Unstable Curves

For $x \in \Lambda=\bigcap_{n \in \mathbb{Z}} F^{n}(Q)$, let

$$
W^{s}(x)=\left\{y \in Q_{1} \cup Q_{2}: S_{F^{n}(x)}=S_{F^{n}(y)} \text { for all } n \geq 0\right\}
$$

and

$$
W^{u}(x)=\left\{y \in Q_{1} \cup Q_{2}: S_{F^{-n}(x)}=S_{F^{-n}(y)} \text { for all } n \geq 0\right\}
$$

Let $Q_{U}=E_{1} \cup\left(Q_{0} \cap F\left(E_{1}\right)\right) \cup E_{2}$ and $Q_{C}=E_{1} \cup\left(Q_{0} \cap F\left(E_{1} \cup E_{2}\right)\right)$. Then the hyperbolicity assumptions (H1) and (H3) give us that for each $x \in \Lambda$,

- We have $F\left(W^{s}(x)\right) \subset W^{s}(F(x))$ and $W^{s}(x)$ is a continuous, full-height curve in Q, containing x, and it is a $K^{s}(\alpha)$-curve in Q_{U}. If $y \in W^{s}(x)$, then $\left|\Phi^{n}(x)-\Phi^{n}(y)\right| \rightarrow 0$ as $n \rightarrow \infty$.
- We have $F^{-1}\left(W^{u}(F(x))\right) \subset W^{u}(x)$ and $W^{u}(x)$ is a continuous, full-width curve in Q, containing x, and it is a $K^{u}(\alpha)$-curve in Q_{C}. If $y \in W^{u}(x)$, then $\left|\Phi^{-n}(x)-\Phi^{-n}(y)\right| \rightarrow 0$ as $n \rightarrow \infty$.

We are therefore justified in calling $W^{s}(x)$ the stable curve of $x \in \Lambda$, and $W^{u}(x)$ the unstable curve of $x \in \Lambda$.

Furthermore, on $Q_{U} \cap Q_{C}, W^{s}(x) \cap W^{u}(x)=\{x\}$. By applying F, we get this property on all of Q.

Now if $y \in \Lambda$ has the same coding as x; i.e., $\psi(x)=\psi(y)$, this last property gives that $x=y$. In other words, we now have that the coding map $\psi: \Lambda \rightarrow \Sigma$ is one-to-one. This lets us improve upon the results in section 3.

5.3 Topological Equivalence

We consider a family of C^{1}-diffeomorphisms $F_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \alpha \geq \alpha_{0}$ with the following properties:

- the family depends continuously on the parameter α,
- each $F_{\alpha}, \alpha>\alpha_{0}$, satisfies the geometric conditions (G1), (G2) "before the first tangency",
- $F_{\alpha_{0}}$ satisfies the geometric conditions (G1), (G2) "at the first tangency",
- each $F_{\alpha}, \alpha \geq \alpha_{0}$, satisfies the hyperbolicity conditions (H1), (H3).

Then we have the following resulting concerning the topological dynamics of F :
Theorem 5.1 Let $\Lambda_{\alpha}=\bigcap_{n \in \mathbf{Z}}\left(F_{\alpha}\right)^{n}(Q)$. (Q is defined in (G1), (G2)).
(1) If $\alpha>\alpha_{0}$, then there exists a homeomorphism $\psi_{\alpha}: \Lambda_{\alpha} \rightarrow \Sigma$ such that

$$
\left(\psi_{\alpha} \circ F_{\alpha}\right)(x)=\left(\sigma \circ \psi_{\alpha}\right)(x) \text { for all } x \in \Lambda_{\alpha}
$$

(Σ, σ) is the left-shift on two symbols, as described in section 3. ψ_{α} is the coding map. Also, the set Λ_{α} is hyperbolic.
(2) There exists a homeomorphism $\tilde{\psi}: \Lambda_{\alpha_{0}} \rightarrow \tilde{\Sigma}$ such that

$$
\left(\tilde{\psi} \circ F_{\alpha_{0}}\right)(x)=(\tilde{\sigma} \circ \tilde{\psi})(x) \text { for all } x \in \Lambda_{\alpha_{0}}
$$

$(\tilde{\Sigma}, \tilde{\sigma})$ is the factor of the left-shift on two symbols, obtained by identifying the two possible codings for homoclinic tangencies. Refer to section 3 for full details.

6 Application to the Henon Map

Recall that the Henon map is given by

$$
H_{b, r}(x, y)=H(x, y)=\left(H_{1}(x, y), H_{2}(x, y)\right)=(r x(1-x)-b y, x) .
$$

We want to show that $H(x, y)$ satisfies the assumptions used for proving Theorem 4.1.

6.1 Geometric Conditions

We observe that regarding the conditions (G1) and (G2), we need the following geometry for the invariant manifolds $W^{u}\left(p_{0}\right), W^{s}\left(p_{0}\right)$ and $W^{s}\left(p_{1}\right)$:

Recall that $l_{1}^{u}, l_{1,1}^{s}, l_{1,2}^{s}$ are parts of $W^{u}\left(p_{0}\right), W^{s}\left(p_{0}\right)$, and $l_{2,1}^{s}, l_{2,2}^{s}$ are parts of $W^{s}\left(p_{1}\right)$. The geometry we need is present when these invariant manifolds are defined; i.e., when both fixed points are hyperbolic saddles.

To make things precise, we let

$$
\begin{aligned}
& E_{1}=\left\{(x, y): f_{1,1}^{s}(y) \leq x \leq f_{2,2}^{s}(y), x \leq r y(1-y)+f_{1}^{u}(y), y \in[0,1]\right\}, \\
& Q_{0}=\left\{(x, y): f_{2,2}^{s}(y) \leq x \leq f_{2,1}^{s}(y), x \leq r y(1-y)+f_{1}^{u}(y), y \in[0,1]\right\}, \\
& E_{2}=\left\{(x, y): f_{2,1}^{s}(y) \leq x \leq f_{1,2}^{s}(y), x \leq r y(1-y)+f_{1}^{u}(y), y \in[0,1]\right\} .
\end{aligned}
$$

$\left(f_{i, j}^{s}(y)\right.$ parametrizes $l_{i, j}^{s}, r y(1-y)+f_{i}^{u}(y)$ parametrizes l_{i}^{u}; cf. section 2.$)$
Then

Proposition 6.1 If $r>3(1+b)$, and $r>r(b)$, then the map $F=H_{b, r}$ satisfies the conditions (G1) and (G2).

In the next sections, we proceed to verify the conditons (H1), (H2) and (K1).

6.2 The Region of (R, α)-Hyperbolicity

We use the sufficient conditions given in Lemma 4.3 to determine a region where $H(x, y)=H_{b, r}(x, y)$ will be (R, α)-hyperbolic, for some $R>1$, and some $0<\alpha<1$.

Note that

$$
H_{1 x}(x, y)=r(1-2 x) \quad H_{1 y}(x, y)=-b \quad H_{2 x}(x, y)=1 \quad H_{2 y}(x, y)=0 .
$$

Then the conditions (1)-(4) in Lemma 4.3 become:
(1) $1+\alpha^{2} \cdot b \leq \alpha \cdot 2 r\left|x-\frac{1}{2}\right|$,
(2) $2 r\left|x-\frac{1}{2}\right|-\alpha \cdot b \geq R$,
(3) $b+\alpha^{2} \leq \alpha \cdot 2 r\left|x-\frac{1}{2}\right|$,
(4) $2 r\left|x-\frac{1}{2}\right|-\alpha \geq b \cdot R$.

With the objective of choosing $\alpha \approx 1$ and $R \approx 1$, we recall the definition of the closed region

$$
\mathcal{E}=\mathcal{E}_{b, r}=\left\{(x, y): 2 r\left|x-\frac{1}{2}\right| \geq 1+b\right\} .
$$

The interior of \mathcal{E} is the complement of the closed vertical strip

$$
\mathcal{S}=\mathcal{S}_{b, r}=\left\{(x, y): 2 r\left|x-\frac{1}{2}\right| \leq 1+b\right\} .
$$

If $p=(x, y) \in \mathcal{E}$, we see that we can choose R and α close to 1 so that the conditions (1)-(4) above hold. This gives the following result:

Proposition 6.2 If \mathcal{R} is any (possibly disconnected) closed region such that $\mathcal{R} \cap$ $\mathcal{S}_{b, r}=\emptyset$, then there exist $R>1$ and $0<\alpha<1$ such that $H_{b, r}$ is (R, α)-hyperbolic on \mathcal{R}.

In conjunction with Lemma 2.1, part (2), this proposition gives an easy proof of [DN]'s results for the orientation-preserving case ($b>0$). It is actually not difficult to obtain the result for $|b|$ instead of b, using the same simple geometric arguments. We have:

Corollary 6.1 If $r>(2+\sqrt{5})(1+b)$, then there exists $R>1$ and $0<\alpha<1$ so that $H=H_{b, r}$ is (R, α)-hyperbolic on $Q \cap H^{-1}(Q)$. In particular, the set $\Lambda=$ $\bigcap_{n \in \mathbf{Z}} H^{n}(Q)$ (which is also the set of points with bounded orbits) is a hyperbolic set and $\stackrel{n \in \mathbf{Z}}{\left.H\right|_{\Lambda}}$ is topologically equivalent to the two-shift (Σ, σ).

Remark 6.1 This result uses the fact that for $r>(2+\sqrt{5})(1+b)$, the image $H(l)$ of the line $\{(x, 1): 0 \leq x \leq 1\}$ is to the right of the region $\left\{(x, y): 2 r\left|y-\frac{1}{2}\right| \leq\right.$ $1+b, 0 \leq x \leq 1\}$. It can be improved upon by considering the upper component l^{\prime} of $H(l) \cap Q$, and then estimating when $H\left(l^{\prime}\right)$ is to the left of this region. We omit the calculations and state only that by proceeding in this way, a better lower bound on r, valid for all $b>0$, than the one in the previous corollary can be obtained.

We also have the following corollary:

Corollary 6.2 There exists a $b_{0}>0$ an $R>1$, and $a 0<\alpha<1$ such that if $0<b \leq b_{0}$, and $r>3(1+b)$, then $H_{b, r}$ is (R, α)-hyperbolic on $E_{1} \cup E_{2}$.

6.3 Concavity Conditions

We verify condition (K1). Note that for $H(x, y)=(r x(1-x)-b y, x)$, we have that on $\mathcal{E}=\left\{(x, y): 2 r\left|x-\frac{1}{2}\right| \geq 1+b\right\}$,

$$
\left|H_{1 x}\right|=2 r\left|x-\frac{1}{2}\right| \geq 1+b>0, \quad \frac{\left|H_{2 x}\right|}{\left|H_{1 x}\right|} \leq \frac{1}{1+b}, \quad \frac{\left|H_{2 x}\right|}{\left|H_{1 x}\right|}=0, \text { and } \quad \frac{\left|H_{1 y}\right|}{\left|H_{1 x}\right|} \leq \frac{b}{1+b}
$$

Furthermore,

$$
H_{2 x}=1, \quad H_{2 y}=0, \quad H_{1 y y}=H_{2 y y}=0, \quad H_{1 x y}=H_{1 y y}=H_{2 x x}=H_{2 x y}=0
$$

on all of \mathbb{R}^{2}.
Now, we apply Proposition 4.5 with D a small open neighbourhood of $F(\mathcal{E}) \cap[0,1]^{2}$, and Proposition 4.6 with D a small open neighbourhood of $\mathcal{S} \cap[0,1]^{2}$ to get statement (b) and (a) (with $K=r$), respectively, of (K1), provided the lines l^{\prime} and κ^{\prime} intersect as in (K1) for $b>0$ small.

To see this intersection property, we make the following argument: as $b \rightarrow 0$, the $\operatorname{map} H(x, y)=H_{b, r}(x, y)=(r x(1-x)-b y, x)$ limits to the logistic map $\tilde{H}(x, y)=$ $\tilde{H}_{r}(x, y)=(r x(1-x), x)$. Also, as $b \rightarrow 0$, we see from Proposition 1 that the pre-image of any $K^{s}(\alpha)$-line κ will become a vertical line, whereas the image of any $K^{u}(\beta)$-line l will be a parabola $s \mapsto(r s(1-s), s)$. So the intersection property holds for \tilde{H}, and since we think of H as a C^{2}-perturbation of \tilde{H}, we have that this property also holds for $b>0$ small.

Hence, we have so far established that for $b>0$ small, and $r>3(1+b)$, the Henon map satisfies conditions (G1), (G2), (H1) and (K1) of the Abstract Model. We
define the sets $E_{2, k}, \tilde{E}_{2, k}$ and $E_{k \pm}, k=0,1,2, \ldots$, as in the abstract case. Also, $\Phi: \bigcup_{k=0}^{\infty} E_{k \pm} \longrightarrow Q_{0}$ will be the first-return map as in Definiton 4.

Concerning (H2), note first that for the Henon map $H(x, y),\left|D H_{p}\left(v_{1}, v_{2}\right)\right| \geq\left|v_{1}\right|$, hence if $v \in K^{u}(1 / \alpha, p), 0<\alpha<1$, we have that $\left|D H_{p}\left(v_{1}, v_{2}\right)\right| \geq \alpha \cdot|v|$. This means that

$$
\beta=\inf \left\{\frac{\left|D F_{p}(v)\right|}{|v|}: v \neq 0, v \in K^{u}(1 / \alpha, p), p \in Q_{0}\right\} \geq \alpha
$$

and, since $\left|H_{1 x}\right| \geq r-2$ on $E=\left\{(x, y):\left|x-\frac{1}{2}\right| \geq \frac{1}{2}-\frac{1}{r}\right\}$, we have $\inf _{p \in E_{1} \cup E_{2}}\left|F_{1 x}(p)\right| \cdot \beta>$ 1.

To prove the second part of (H2), we need the following lemma to estmate the return time to Q_{0} :

Lemma 6.1 Let $l_{1}^{s}=l_{1,1}^{s}$ be the left and $l_{2}^{s}=l_{1,2}^{s}$ be the right branch of the stable manifold of the fixed point $(0,0)$. Then for $p \in \tilde{E}_{2, N}$ we have

$$
\operatorname{dist}\left(p, l_{2}^{s}\right) \geq \operatorname{dist}\left(H^{N+1}(p), l_{1}^{s}\right) \cdot\left(\frac{1}{r+b}\right)^{N+1}
$$

Proof: Let $v \in T_{(x, y)} \mathbb{R}^{2}$. Then $\left|D H_{(x, y)}\right|=\max \{1, r|1-2 x|+b\}$ and we have the estimate $\left|D H_{(x, y)}(v)\right| \leq\left|D H_{(x, y)}\right| \cdot|v|$, and hence $\left|D H_{(x, y)}(v)\right| \leq(r+b) \cdot|v|$.

The last inequality gives the following result:

$$
\operatorname{dist}\left(H^{i+1}(p), l_{1}^{s}\right) \leq \operatorname{dist}\left(H^{i+1}(p), H\left(l_{1}^{s}\right)\right) \leq(r+b) \cdot \operatorname{dist}\left(H^{i}(p), l_{1}^{s}\right)
$$

for $i=1, \ldots, N$, and

$$
\operatorname{dist}\left(H(p), l_{1}^{s}\right) \leq(r+b) \cdot \operatorname{dist}\left(p, H^{-1}\left(l_{1}^{s}\right)\right) \leq(r+b) \cdot \operatorname{dist}\left(p, l_{2}^{s}\right)
$$

Hence $\operatorname{dist}\left(H^{N+1}(p), l_{1}^{s}\right) \leq(r+b)^{N+1} \cdot \operatorname{dist}\left(p, l_{2}^{s}\right)$.

Now, let us complete the proof of (H2); we assume $b>0$ small, $r>r(b) \approx 4$, and we can choose $0<\alpha<1$ as close to 1 as necessary.

Suppose $p=(x, y) \in \tilde{E}_{2, k}$; i.e., $p \in E_{2}, H(p) \in E_{1}, \ldots, H^{k}(p) \in E_{1}, H^{k+1}(p) \in Q_{0}$ for some $k \geq 0$. Let $p_{0}=p=\left(x_{0}, y_{0}\right)$ and $p_{i}=H^{i}(p)=\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, k+1$.

We may make the following estimates:

$$
x_{0}+d_{p} \geq 0.99, \quad 2 r\left|x_{0}-\frac{1}{2}\right|-b \cdot \alpha \geq 7.8 \cdot\left(\frac{1}{2}-d_{p}\right)
$$

and for $i=1, \ldots, k$,

$$
x_{i} \leq(4.1)^{i} \cdot d_{p}, \quad 2 r\left|x_{i}-\frac{1}{2}\right|-b \cdot \alpha \geq 7.8 \cdot\left(\frac{1}{2}-(4.1)^{i} \cdot d_{p}\right) .
$$

Using Lemma 4 with $N=k$, we get that $d_{p} \geq \frac{1}{4} \cdot\left(\frac{1}{4.1}\right)^{k+1} \geq\left(\frac{1}{4.1}\right)^{k+2}$, or $k \geq-\frac{\log \left(d_{p}\right)}{\log (4.1)}-2$.
Let $m\left(d_{p}\right)=$ Floor $\left[-\frac{\log \left(d_{p}\right)}{\log (4.1)}-2\right]$, and let

$$
\rho\left(d_{p}\right)=\log \left(7.8\left(0.5-d_{p}\right)\right)+\sum_{i=1}^{m\left(d_{p}\right)}\left[\log \left(7.8\left(0.5-(4.1)^{i} \cdot d_{p}\right)\right)\right]+\log \left(\sqrt{d_{p}}\right) .
$$

Letting $\zeta(x)=\rho(x)+\log (2 \cdot 1.9)$, we need only show that $\inf \{\zeta(x): 0 \leq x \leq 0.3\}>0$, to show (H2).

The graph of $\zeta(x)$ (for $0 \leq x \leq 0.3$) is shown below:

Summarizing the results of this section gives:

Proposition 6.3 There exists an $0<\alpha<1$, an $R>1$, and there exists a $b_{0}>0$ such that if $0<b<b_{0}$ and $r \geq r(b)$, then the return map Φ to Q_{0} of the Henon map $H_{b, r}$ is (R, α)-hyperbolic.

6.4 Main Results for Henon Maps

For each $b>0$, there exists a unique value of the parameter r, denoted by $r(b)$, such that for $r>r(b)$, the invariant curves of $p=(0,0)$ intersect transversely, whereas for $r=r(b)$, they have their first homoclinic tangency.

Let $\Lambda=\bigcap_{n \in \mathbf{Z}} F^{n}(Q)$ denote the set of $(x, y) \in \mathbb{R}^{2}$ with bounded orbits.
Now we state our results:

Theorem 6.1 Let $H(x, y)=(r x(1-x)-b y, x)$ be the Henon map.
Then there exists $a b_{0}>0$ such that for all $0<b \leq b_{0}$, we have the following:
(1) If $r>r(b)$, then there exists a homeomorphism $\psi: \Lambda \rightarrow \Sigma$ such that the diagram

commutes. Futhermore, the set Λ is hyperbolic.
(2) If $r=r(b)$, then there exists a homeomorphism $\tilde{\psi}: \Lambda \rightarrow \tilde{\Sigma}$ such that the diagram

commutes.

Where:

- (σ, Σ) : the full shift on two symbols;
- $\psi: \Lambda \rightarrow \Sigma$: the coding map of points $x \in \Lambda$;
- $(\tilde{\sigma}, \tilde{\Sigma})$: the quotient of (σ, Σ), obtained by identifying the two ambiguous codings for homoclinic tangencies;
- $\tilde{\psi}: \Lambda \rightarrow \tilde{\Sigma}$: the coding map of points $x \in \Lambda$ - sending each x to its equivalence class in $\tilde{\Sigma}$.

Theorem 6.2 The results in the previous theorem also hold for C^{2}-perturbations of the Henon maps considered.

References

[BS] Bedford, E., Smillie, J.: Real Polynomial Diffeomorphisms with Maximal Entropy: Tangencies, http://front.math.ucdavis.edu/math.DS/0103038, 2001
[D1] Devaney, R.: An Introduction to Chaotic Dynamics, Addison-Wesley, 1989
[DN] Devaney, R., Nitecki, Z.: Shift Automorphisms in the Henon Mapping, Commun. Math. Phys. 67, 137-146 (1979)
[HK] Hasselblatt, B., Katok, A.: Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995
[JN] Jakobson, M., Newhouse, S.: Asymptotic Measures for Hyperbolic Piecewise Smooth Mappings of a Rectangle, Asterisque 261 (2000), 103-159
[NY] Nusse, H., Yorke, J.: Dynamics: Numerical Explorations, Springer Verlag, 1998
[PT] Palis, J., Takens, F.: Hyperbolicity \& sensitive chaotic dynamics at homoclinic bifurcations, Cambridge studies in advanced mathematics 35, 1995
[PY] Palis, J., Yoccoz, J.-C.: Implicit Formalism for Affine-Like Maps and Parabolic Composition, Global Analysis of Dynamical Systems, Inst. of Phys., IOPLondon, (67-87), 2001
[S1] Shub, M.: Global Stability of Dynamical Systems, Springer Verlag, 1987

