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ABSTRACT

HORSESHOE-TYPE DIFFEOMORPHISMS WITH A HOMOCLINIC

TANGENCY AT THE BOUNDARY OF HYPERBOLICITY

By

Ulrich A. Hoensch

In 1979 Devaney and Nitecki showed that for certain parameters in the real Henon

family, the set of points with bounded orbits is hyperbolic, and the dynamics are

topologically equivalent to those of the full shift on two symbols. It was long known

that this set of parameters could be enlarged by considering the geometry given by

the invariant manifolds of one or both of the (hyperbolic) fixed points. In this paper

we use this approach to extend Devaney and Nitecki’s results, and also to illustrate

some methods and assumptions that are used in the process.

In Chapter 2, we give results concerning the geometry and position of these invariant

manifolds, in particular we investigate the situation before and at the first homoclinic

tangency, and establish some sufficient conditions for quadratic contact.

In Chapter 3, we illustrate the symbolic dynamics associated with the existence of a

topological “horseshoe”; this is the first part on symbolic dynamics. The second part

is given in Chapter 5, where we use a hyperbolicity condition to establish topological

equivalence of the dynamics to the full shift on two symbols.

Chapter 4 introduces an abstract class of maps - a class of maps that satisfy cer-

tain geometric and hyperbolicity conditions. Here we give the main definitions and

technical conditions needed; the strongest result in this chapter is that of proving

hyperbolicity of a return map.

Finally, Chapter 6 is devoted to applying the results of the previous chapters to the

Henon map. We state our main results in this chapter.
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1 Introduction

In their 1979 paper, R. Devaney and Z. Nitecki proved that the set A of points with

bounded orbits of the Henon map H(3:, y) = (rcc(1 — 1:) — by, 1:), b ¢ 0, is a hyperbolic

set, and that H | A is conjugate to the full shift (a, E) on two symbols (cf. sections 3

and 5 for an explanation of these terms), provided the parameters are chosen so that

r > (2 + J5)(1 + b) (cf. [DN]). Devaney and Nitecki’s method of proof uses real

geometry and extends to include C2-perturbations of the Henon maps considered.

These results involve only geometric estimates on the relative position of Q := [0, 1]”,

H(Q) and H“(62) - it turns out that A is actually equal to the largest H-invariant

set containing Q; i.e., A = fln E Z H"(Q).

On the other hand, for a diffeomorphism F, Smale’s homoclinic point theorem gives

a result about the existence of a (possibly small) hyperbolic set associated with the

occurrence of a transverse homoclinic point q of a hyperbolic saddle point p. The

hyperbolic set is the maximal FN-invariant set (for some possibly large N) of a

tubular neighbourhood R about part of the unstable manifold of p, and R contains

both p and q. Smale’s homoclinic point theorem relies on the geometry of the stable

and unstable manifolds of the saddle point p. It is important to note that if the

angle of intersection of the stable and unstable manifolds at q is small (q makes the

transition from a transverse homoclinic point to a homoclinic tangency), R must be

chosen to be very narrow.

Relating [DN]’s result to the geometry of the invariant manifolds, we note that the

main requirement would be that the homoclinic contact be quadratic, and - more

restrictvely - that the distance d between unstable and stable manifolds between the

two associated homoclinic intersections has to be rather large.

We introduce an abstract class of maps that bridges the gap between having a large

hyperbolic invariant set, but requiring that d be large, and allowing d to be small,

with the trade-off that the hyperbolic invariant set then shrinks to consist simply of



the hyperbolic saddle point and the orbit of the homoclinic point q. The abstract

class contains the Henon family H(as, y) = (rx(1 — :r) — by,:r), for O < b << 1, and

02-perturbations. For a map F in this class, we denote by A the set of points with

bounded orbits. We obtain hyperbolicity of a “return map” on A, which is a (possibly

high) iterate of H, depending on in which region of A the initial point lies. This allows

us to establish symbolic dynamics of F | A before and at the first tangency. The main

technical assumption is on the relative concavity of the stable and unstable manifolds,

related to their distance d.

We devote the rest of this section to introduce some of the concepts just mentioned.

We limit outselves to diffeomorphisms of R2 - the definitions and results can be

naturally extended to general euclidian spaces, and finite dimensional manifolds.

Hyperbolic saddle points, invariant manifolds, and homoclinic intersec-

tions

Let F be a Cr-diffeomorphism (r 2 1) of an open set U C IR2 onto V = F(U) C R).

A fixed point is a point p 6 U such that F(p) = p. We say that the fixed point p is

hyperbolic if none of the eigenvalues A1, A2 of the differential DFp has modulus 1; if

0 < |/\1| < 1 < |/\2|, then the fixed point is called a hyperbolic saddle point.

Given a hyperbolic saddle point p, we consider the sets

W“(p) 2: (q: Ip—F-"(q)| —>0 as n --)00}

and

W’(p) = {qr lp—F"(q)| —>Oas 71-wel-

Then W"(p) and W3(p) are injectively immersed Cr-curves containing p (cf. e.g.

[HK]). W"(p) is called the unstable manifold of the hyperbolic saddle point p, and

W’(p) is called the stable manifold of the hyperbolic saddle point p.



A homoclinic point is a point q ¢ p in the intersection of W“(p) and Ws(p). If the

angle of intersection is not zero, then q is a transverse homoclinic point; otherwise q

is called a homoclinic tangency.

Hyperbolic sets and the cone criterion

Let A be a compact F-invariant set; i.e., F(A) = A. Then A is called (uniformly)

hyperbolic, if there exist A > 1, C > 0, such that for each 19 E A, there is a splitting

TPIR2 = E; 69 E; such that:

the splitting is DF—invariant: DFP(E,',‘) 2 E2“) and DFp(Es) = E2“),
P

the splitting depends continuously on p E A,

ifv E E3, then IDF:(U)| 2 C - A” - |v| for all n > 0,

if v E E5, then IDFP‘”(U)| 2 C - A" - |v| for all n > 0.

If p is a hyperbolic fixed point, then A = {p} is a hyperbolic set. We also have

invariant manifolds for hyperbolic sets. Assume for instance that A is a hyperbolic

set of saddle type; i.e., dim(E;,‘) = dim(E;) = 1 for all p E A.

Now we consider the sets

W“(p) = {qr IF’”(p) - F"'(q)| -> 0 as n -> 00}

and

W’(P) = {61: IF"(p) - F"(€1)l-> 0 as n -> 00}-

Then W“(p) and W‘(p) are again injectively immersed C'-curves ([HK]). W“(p)

is called the unstable manifold of the point p E A, and W’(p) is called the stable

manifold of the point p E A.

In order to show that a given compact F-invariant set is a hyperbolic set, one can

use the following cone criterion.



A cone in R2 (or in TPR2) is a set of the form

C=C(u,v) =2 {au+,8v:afiz 0},

where u,'v E R2 (or u, v E TPRQ).

Cone Criterion

Suppose A is a compact, F-invariant set, and suppose there exists a A > 1, and for

each p E A there exists an unstable cone C; in Tle2 and a stable cone C; in TpR2

satisfying the conditions:

0 C; n C; = {0},

o the unstable cones are DF-invariant: DFP(C;,‘) C C'FRP)’

_1 . - , —1

the stable cones are DF -1nvar1ant. DFF(p)(Cfp(p)) C C5,

the cones depend continuously on p E A,

if v 6 C3, then IDFp(v)| 2 A- lvl,

0 if v E CISNP)’ then |DFE(;)(U)| Z A - lvl.

Then A is a hyperbolic set.



2 The Henon Map

2.1 Introduction

The Henon map we consider is given as

Hb,r($7y) = (T$(1_ 1‘) — by?$)?

For b 75 0, this is a diffeomorphism of the plane R2, and for b = 0, we have the logistic

map Ho,r(x, y) = (7‘17(1 - 3:),x).

In [DN], R. Devaney and Z. Nitecki use the following form for the Henon map:

hA,B($a y) = (1 + y — A$27 Bx),

whereas in [NY], H. Nusse and J. Yorke use the form

”p.423, 31) = (p - $2 + 031.22)-

All these maps are conjugate via affine coordinate changes; for A, B 75 0, let

7'

(2:1: — 1,2By — B)), and SA,B(:1:, y) 2 (Am, 3y).

Then for r ¢ 2 + 2b, b 75 O, and A, B ¢ 0, we have

Tr(r——2—2b) _bOHb,r = hr(r—2—-2b) _bOTr(r—2—2b) —b’ and SA,B°hA,B = ”Argos/1,3-

4 4 , 4 ’3

We want to investigate the dynamics of the map H(I, y) under iterates.

2.2 Fixed Points and Images of Curves

We note that for b ¢ 0, the inverse of the Henon map is

Hgflimy) = (y,%y(1- 31%;)-

Where convenient, we write H(:r, y) = (H1(:r, y), H2(a:, y)) = (ra:(1 - 2:) — by, x) and

thus omit the dependence on the parameters b and r.



Also,

r(1— 21‘) —b

DHW, = :

and

-1 _

DHHCMI) _

Note that the Jacobian determinant det DHb, = b. Throughout this paper, we

assume 0 < b < 1; i.e., that the Henon map is orientation-preserving and dissipative.

The following result is easily verified.

Proposition 2.1

(I) The Henon map Hb, has exactly two fixed points; namely, p0 = (0,0) and

( b+1 b+1)

P1 = 1 — 7,1 " -
 

T

(2) DHWIP0 has the two eigenvectors (A1,1) and (A2,1), where

7‘ :l: \/r2 — 4b

2

 
/\1,2 z

are the respective eigenvalues.

(3} DH(,,,|,,,1 has the two eigenvectors 011,1) and (112,1), where

H: f2-4b

2

 
”1,2 =

are the respective eigenvalues, and 7‘ 2: 2(b + 1) — r.

(4) [fr > 1 + b, then p0 = (0,0) is a hyperbolic saddle point with 0 < A2 < 1 < A1.

(5) [fr > 3(1+ b), then p1 = (1— “71,1— 2:1) is a hyperbolic saddle point

withu2< —1<u1 <0.



Note that the images (under Hm.) of vertical lines are horizontal lines, and that the

images (under Hb,,.) of horizontal lines are parabolas of the form t i—-> (rt(1 —t) +D, t).

Let I = [0, 1], and Q = 12. Then the image of Q is a ”horseshoe”, with the left and

right boundaries of Q being mapped to the bottom and top horizontal bounding lines

of Hb,,.(Q) (with length b), and the bottom and top boundaries of Q being mapped

to the left and right bounding parabolas of Hb,,(Q) (whose horizontal distance is b).

A picture of Hb,,(Q) with r = 4.5 and b = 0.2 is given below.

  
Picture2.1-0-2 0.2 0:41 0:6 0:8 i

The next two results show that there are certain invariant classes of curves.

Proposition 2.2 Suppose 7(t) = (rt(1 — t) + g(t),t) is a curve in R2 such that

2rlt— %l 2 1+ b for all t, and such that |g’(t)| S b and lg"(t)| g 12—32). Then

Hb,,('y(t)) can be written in the form (rs(1 — s) + h(s),s), where |h’(s)| S b and

We)! < 3‘31-- 1 — b.

Proof: We have that for s 2: s(t) :2 rt(1 — t) + g(t), Hb,,(7(t)) = Hb,,(s(t),t) =

(rs(1 — s) — bt, s), and

ds

d, = lr(1— 2t) + g’(t)l 2 2r
 

I

  



This means that s(t) has an inverse t(s). Letting h(s) = —b- t(s), we get Hb,,.('y(t)) :

    

  

        

 

 

 

dh dt

._1-— h d-—=b~——-<b-1=b.(m s) + (sis). an d8 d3 _

Also,

d2h d2t (#3 dt 3 2br 2br
——.——.—.-——-.—- <b-—2 ”t-13<b-2 = .El

(132 as? an as - ' ”gm - (T+1—b) 1—b

Proposition 2.3 Suppose 7(t) : (g(t), t) is a curve in R2 such that 2r t — g. 2 1+1)

2b2

for all t, and such that |g’(t)| S b and lg"(t)| g 1_;2. Then ngl(cy(t)) can be

2

written in the form (h(s),s), where |h'(s)| S b and if0 < b _<_ %, |h"(s)| S 123—23.

Furthermore, the signs of h’(s) and h"(s) are equal to the sign of;- -— t.

. 7 . ._ ._ T g(t) _1 _

Proof. We have that for s .— s(t) .— Et(1 — t) — T, Hb’r (7(t)) — (t, s(t)), and

ds 1 2r 1 1 1+ b 1
__—__. _ _’ >_ __ __ >__ =_d, , (ru 2t) g (o) _ b (2 t) ,(b) _ b 1 b.

, 1

d3 1 27‘ I 1 1+ b 1
___—_—_. _ ’ >_ __ __ >__ =_dt b (r(2t 1)+g(t))_b(t 2)+b( b)_ b 1 b’

, 1

1f2r(t—-—) _>_1+b.

2

In any case, filil Z %, and this means that s(t) has an inverse t(s). Letting h(s) =

_1 dh dt ,

t(s), we get Hm, (y(t)) = (h(s),s), and d—s = 3 gives 3 S b and the statements

  

about the sign of h’ (s).

3

The condition 0 < b g —1-— guarantees that E S 0; the formula fl = —id:§' (fl)

 

fl dt2 ds2 clt2 ds

gives

d2h d2: dZs dt 3 1 2b2r 2b2r
__=__=__._<_._ ” .3<b2.2 =____

(132 d3? dt2 ds "b ' “4’9“” b - (T+1—b2) 1—b2’        

and the statements about the sign of h”(s). Cl



We define the following sets:

  

  

 

828b,,.={(:1:,y):2r:r—§21+b},

I I 1

6 =£.,.={(x.y):2r 31—, 21M}.

1

8:85,,={(;r,y):2rx—§|Sl+b},

and

I I 1

S =Sb,,.={(a:,y):2ry—El51+b}.

 

Note that H(8 ) = 8 ’ and H(S) = S ’. Note also that 8b,, is a closed vertical strip

. 1 . . . .
about the line :1: = -2—, and that that S 3,, IS a closed horlzontal strip about the line

31:5-

We will be interested in the invariant set A = n H" (Q). We make the following

7162

observation regarding the relative positions of Q, H(Q), S and S '.

Lemma 2.1 Suppose 0 < b g 1.

{1) H(Q) flQ has two connected components if and only ifr > 4- (1 + b); i.e., A is

a “topological horseshoe ”.

(2) Let Sb =S'flQ. Then H(Q) r1822 2 0 ifand only ifr > (2+ «5) - (1 +b).

Proof: The left boundary of H(Q) is given by the parabola

I‘:=H({(x,1):OSer1})={(r:r(1—:r)—b,:r:):0§$g1}.

F intersects the right boundary of Q precisely when r 2 4(1+ b), and I‘ intersects 86

precisely when r 5 (2 + \/_5-)(1 + b). C]

We define:



1

bottom = {($,y)I2T(-2-—y) 2.1—Eb},

, , 1
top: (:r,y).2r y—§ 21+b.

r I

we also let QbottomJeft = Q n 8 bottom 0 Elefta and QtopJefta Qbottom,righti and Qtop,right

along the same lines. Then we have the following lemma.

Lemma 2.2 Suppose 0 < b S 1, and r 2 2(1 + 2b), then we have the following:

(a) H“1 (£16,; 0 Q) 0 Q consists of two connected components Cleft and (fright.

(b) Cleft l8 full-height m gleft (7 Q, and Cleft 2 1'1"1 (QbottomJeft) D Q

(C) Cright i3 f’UIl-hCZght Z71 Eright 0 Q; and Cright : H—l (Qtop,left) 0 Q

Proof: H“1 maps the left boundary of 6131'th to the parabola y +—> (y, %y(1 — y)),

the bottom boundary of £18”HQ to a vertical line {0} x [0, -—D], and the top boundary

of £18,, 0 Q to a vertical line {1} x [0, —D], for some D > 0. It remains to be checked

whether the pre—image H4(1) of the right boundary l of 518;; 0 Q avoids the region

{(x,y) :0 S y S 1, 2r < 1 +b}. Let 22* be such that 2r (% —a:*) = 1+b.

 

1-x
2 

Then I = (rat). 0 s t s 1, and H—‘(ll = (ti
t(l—t)—x—;).

_<_ 1 + b. Then we need to show that %t(1 —

1 2 r r2 — (1 +12)2
— — — — — >(t 2) , we get bt(1 t) _ 41” ,

1

Suppose that t is such that 2r 5 —t

  
*

t) - 3;)— 2 1. Using that t(l — t) =

and consequently

 

A
l
i
—
t

10



1t 2_ 2 __ 2_ __ 2
%t(1—t)—%—ZT (1+b) _r (1+b):r 2r b+1.

4br 2br 4br

  

We need r2 — 2r — b2 +12 4br. Since r 2 2(1+ 2b), we have r — (1+ 2b) 2 1+ 2b,

and then [r — (1 + 2b)]2 2 (1+ 2b)2. This means

r2—2r(1+2b)+(1+2b)22 (1+2b)2=1+4b+4b225b2+4b,

because b S 1. This gives r2 — 2r — b2 + 1 2 4br, as required. [I]

2.3 Invariant Manifolds

The two results that follow indicate the position of the stable and unstable manifolds,

given certain condtions on b and r. Let W3(p,-) denote the stable manifold of the fixed

point p,, and let W“(p,-) denote the unstable manifold of the fixed point p,, i = 0,1.

Recall that Q = I2 = [0,1]2, and let [in and If,2 be the first and second connected

component (resp.) of Ws(p0) O Q; let 13,1 and 1.3.2 be the first and second connected

component (resp.) of W’(p1) O Q.

Proposition 2.4 Suppose 0 < b g 1, and r 2 3(1 + b). Then we can write

(I) 1:1 I [011] -_) Q: y H (flq,l(y)iy)) 'LUIIB’I'C.’

(1a) 1111(0) = 0, o _<_ fan), and 2r (é — mm) 2 1+ b,

(1b) 0 s (ff,1)’(y) s b. and

1 3 ,, 2b2r

Q? then 0 5(f1,1)(y)31_b2-

(2) 112 : [0,1] -> Q, 11 *-> (fish/Ly), where:

 (1c) if0<b§

(2a) ff,2(y) s 1, and 2r (filo) — g) 2 1+ b,

no —b s army) 3 o, and

, 1 2b2r 3 ,,
(2c) if0 < b g —\/—_2., then —I—_—-b-2- S (f1,2) (31) S 0.

11



The following picture illustrates the general position of the first two connected com-

  

 

    

1

ponents of W’(p0) relative to the region SQ = {(15, y) E Q : 2r :1: — 5 g 1 + b}.

y /1:,1 (is

i

1

5Q

p0 1411} 
Picture 2.2 ]

Proof: For a fixed small 5 > 0, consider the curve 7(t) 2 (g(t), t) = (A2 - t, t), where

7mm
0 S t < 6 and A2 = 2 is the contracting eigenvector of DH”. If r > 1+b,

2b

r+\/r2—4b

r 2 3(1 + b), then r 2 2(1 + 2b). Thus, Proposition 2.3 and Lemma 2.2 give that the

 

then we have that 0 < A2 = < b _<_ 1. We note that if 0 < b S 1 and
 

first two connected components in Q of H‘1(7(t)) and of all subsequent pre—images

have the properties listed.

It is well known in the theory of invariant manifolds (cf. for example [81]) that for

some small 6 > 0, H‘”(I‘) —> W3(p0) as n —> 00, where I‘ = {7(t) : —6 < t < 6}. It

is easy to check that if q = 7(t) for t < 0, H’"(q) will not return to Q. D

We also have results on parts of the unstable manifold of po = (0,0). First, we

establish a set ’P of (b, r)-parameter values for which we have control over the unstable

manifold.

12



Lemma 2.3 Let t v—> (rt(1 —t) +g(t), t) be a curve such that g(0) = 0 and |g'(t)| S b.

Let t* be such that 2r (% — t") 2 1+ b, and let I" = rt* (1 — t*) + g(t‘).

Let

'P = {(b, r) : r (rt*(1 — t*) + bt‘) (1 + bt" — rt*(1—t*)) S (1+ b)t*}.

Then for every pair of parameters (b, r) E ’P, we have that

(x*,t*)e {(x,y):2r<x—%) 21+b}

H(x*,t*) e {(x,y) : 2r (i ~17) 2 1+b].

and

Proof: This is an elementary argument using that if (b, r) E ’P, then (z*,t*) is not

to the left of the image of the right boundary of {(17, y) : 2r 6 — 3:) Z 1 + b}. E]

The following is a picture of the (global) region of control 'P.

 
5

 

   
Picture 2.3

Let li be the first connected component of W“(p0) fl {(2, y) : 2r (y — %) S 1 + b} HQ

and let lg be the second connected component of W"(po)ri{(:r, y) : 2r [y — %] S 1 + b}fl

Q.

13



Proposition 2.5 SupposeO < b < 1, and (b, r) E ’P. Let y‘f be such that 2r (y;r — %) =

1 + b and let y; be such that 2r G — y3) = 1 + b. Then we can write

(1) 11‘ = [0411‘] -+ Q, y H (Ti/(1 - y) + my). .21), where:

(10) fi‘(0) =0,

(1’)) |(fi‘)'(y)| S b, and

u ,, 2br

(1c) Iv.) (y)! s H). 

{2) 133 = [yiay’fl -+ Q. v H (Til/(1— y) + f$‘(v).y), where:

{20) my) < my),

(21)) |(f$‘)’(y)l S b, and

u I!
2f)?"

(2c) |(f2) an s 1.1;- 

t

Proof: For a fixed small 6 > 0, consider the curve 7(t) = (t, A_) , where 0 S t < 6

1

r+\/r2—4b.

2

IS the expanding eigenvector of DHPO. The first image of 7(t) 
and A1:

t

is H(7(t)) = (rt(1 — t) — b- -)\—,t). Let g(t) = —b- 3‘2. If r 21+ b, then we have

1 1

b 2b

that |g'(t)|: /\—1: r+¢P——4_ Sb< 1.

It follows from Proposition 2.2 that for n 2 1, H"(7(t)) has properties (1a)-(1c), at

 

least as long as the y-range is within [0, yg]. If H"(7(t)) has y-range within [0,y3),

the y-range will strictly increase under iterates (% > 1 in the proof of Proposition

2.2). Using Lemma 2.3, we may assume that for some n 2 1, H"('y(t)) has 2:-

range [0,y’f], and hence H"+1(7(t)) has y-range [0,y‘f]. This proves part (1), since

H"(7(t)) -+ W"(po) as n —> 00-

Also, Lemma 2.3 and Lemma 2.2 give that H"+2(7(t)) has y-range contained in

[y§,y‘f], which proves part (2). Finally, it is again easy to check that if q = 7(t) for

t < 0, H"(q) will not return to Q. E]
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Picture 2.4

 

 

 

 

  
   

It follows from Propositions 2.4 and 2.5 that for each there exists a curve b +—> r(b)

with (b, r(b)) E ’P such that if (b, r) E ’P and r > r(b), the curves l3 and lig have two

transverse intersections, and for r = r(b), l3 and ti 2 are tangent.

The following pictures illustrate the previous results for r > r(b) and r = r(b).
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[121 ............

Picture 2.5
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   Picture 2.6

2.4 Quadratic Contact at the First Tangency

If we restrict the extent of the region P, we can verify that the contact between I};

and [$92 is quadratic.

m—l
Definition 2.1 Let P be as in Lemma 2.3, except that additionally 0 < b < 6

II

Proposition 2.6 Let 7“ : t 1—-> (g"(t),t) be a curve whose concavity K“ :2 (g“(t))

2br

satisfies ]K“ + 2r] S 1 , and let ’73 : t 1—> (gs(t),t) be a curve whose concavity

2b2 1 -—1

1_;2. Let0<b< £%—. Then K3 >K” for all

t in the common domain of 7“ and 78.

 

b

K” :2 (g3(t))” satisfies [K3] S 

The proof of the above Proposition is elementary. In particular, it gives us the

following.

Corollary 2.1 If (b, r(b)) E P (P as defined in Definition 2.1), then the tangency at

(b,r(b)) is quadratic.

We now investigate consequences of having a homoclinic tangency.

16



Suppose 7“(t) = t(l — t) + g"(t),t) and 73(t) = (gs(t),t) are two curves with
r

|(g“)'| S b and —b S (gs)’ S 0 such that '7“, 73 have a tangency at to; i.e.,

(*l rtrt(1-to)+ 9"(to) = 9300)

and

(**) r(l - 2150) + (9")'(to) = (9’)'(to)-

Let A(t) = 98(1) — g"(t), then mm 3 2b, and (**) implies 2r [to — i] = |A’(t0)| 3

2b, in particular, since we assume 0 < b S 1, we have 2r

 

1

to — 5] S 1+ b. This gives

the following result.

Proposition 2.7 If (b, r(b)) E P, then the tangency between I; and [in occurs in the

1 1We“, 2.9-9.114].

Now, we want to give estimates for the parameter r(b). Since rt0(1 — to) =

region

chnter,right = {(33, y) E Q I 21‘

 

A
l
‘
?

1 2 1
r (to - 5) , (*) and the equation 2r to — § 2 |A'(t0)| give

  

r2 — 4r/_\(t0) = [A’(t0)]2

where r = r(b) is understood to depend on to, the y-coordinate of the tangency. Note

that we know that A(1/2) = 1. Hence we must solve the initial value problem

[r(t)]2 — 4r(t)A(t) = [A’(t)]2 A(1/2) = 1,

(Now r depends on t; note that using this notation, r(1 /2) = 4.) Using the estimates

t

[A’(t)]2 2 0, A(t) 2 1+] A’ z 1 — 2b

1/2

1

t—§,and

   

t1<bwe et

2"r’ g

2

rZ4—87 ,or r22+2v1—2b2.

The following picture shows the curve b i——> (b, 2 + 2\/1 — 2b?) vs. the lower boundary

of P.

17



 

    
Picture 2.7

This justifies the following proposition.

Proposition 2.8 If0 < b < 0.07, then the tangency between 1‘; and 112 is quadratic.

18



3 Symbolic Dynamics (Part I)

We have established that for (b,r) E P, and r > r(b), the Henon map exhibits a

topological horseshoe, and for r = r(b), there is a first tangency between the stable

and unstable manifolds of the fixed point (0, 0). We will consider such maps in their

own right.

3.1 Orientation-Preserving “Horseshoe” Maps before the First

Tangency

Let F be a diffeomorphism of R2, and let p E R2 be a fixed hyperbolic saddle point

of F. Suppose the stable and unstable manifold W3(p) and W“(p) of F at p have

transverse homoclinic intersections only. Then F exhibits a “topological horseshoe”

which can be illustrated as follows (for orientation-preserving F).

 

 

 
   W“(p)

 

 
W509)

Picture 3.1
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Note that the dynamics of the points q,~, 3,, r,- and t,- in the picture above are given

by F(Qi) = (1m, F(Si) = 31+1, etc.

We want to define certain regions bounded by parts of the stable and unstable mani-

folds. We let Q be the region enclosed by the part of W" (p) connecting p and qo, the

part of W’(p) connecting qo and 31, the part of W"(p) connecting sl and q1, and the

part of W"(p) connecting ql and p. We use the notation

u s u s

QZP—‘MIO—isl —*(11 —>Pc

We also define the regions

a s u s

1=p-—>q-1—>t_1 —+q1—+p

and

u s u s
2=SO—>q0——>sl -—>r_1 —>so.

Note that _1_ U 2 = Q 0 F’1 (Q). We define the following regions (also called blocks):

For i1,i2,...,ik€ {1,2} and n1,n2,...,nk 6%, let

6221:1122" := {z e Q : F’W) E a1 S J' S k} = fl F442)
ISjSk

Then we get the following schematical pictures for certain blocks:

20



Picture 3.2 The blocks Q? = l and Q3 2 2.
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Picture 3.3 The blocks o2; = F—1(1') n 1'.
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We note the following.

Proposition 3.1 Let i_k, . ..,i_1,i0,i1, . ..,ik 6 {1,2}. Then:

(1) Each block R: Q0’-k1""" . is a full—height sub-rectangle of QOM“““ _ In partic-
to11-~,k 2011. .ikl 1

ular R is a full-height sub-rectangle of Q.

(2) Each block R = Q-‘kt’TkJ'lm”T1 is a full—width sub-rectangle on“1’1 . In
L—kfl-k-li-lnwz-l l- Ic+l1' li-l

particular R is a full-width sub-rectangle of Q.

(3) Consequently, each block Qk z: Q:k"""k- is non-empty.

(4) Since every block Qk is compact and non—empty, we have that given any sequence

(an) E {1,2}z, the set H F'" (a_,,) = n :2“,......"an is non-empty.

nEZ nEZ

3.2 A Coding for A = n F" (Q) before the First Tangency.

nEZ

We now consider the set A = O F" (Q). This is a non-empty F-invariant set. For

nEZ

each :1: E A, we define a sequence a = (an)n€Z, on = 1 or on = 2, via

uni:

I if F”(:1:)

2 if F”(:1:)

Let 2 denote the space of bi—infinite sequences of 1’s or 2’s; i.e., E = {1, 2}Z. Then

we have defined a map it : A —+ 2, 10(2) 2 (an). We define a metric d on 2 as

N

follows. If a = (on) ,b = (bu) e 23, then if a 7a b, we let d(a,b) = 5 , where

N is such that a1, = bn for In] < N, and an ¢ bn for n = N or n = —N. For

a = b, we let d(a,b) = 0. It is easy to check that this is a metric on 2. We

.N,,NC" ._
have that two sequences are close if they agree on a cylinder set CN := ,_ N,”M .—

{(a,,) E E : an = in for — N S n S N} for large N. The map 1/2 is called the coding

map or simply the coding of A. The next two results show that this map is continuous

and onto.

Lemma 3.1 The coding map 1b : A —> E is continuous.

24



Proof: Suppose N Z 0 and :r E A are given. Let (an) 2 112(2). For each n =

—N, . . . N, there exists a 6,, > 0 so that the (Sn-ball 36.. (F”(:1:)) around F"(:1:) satisfies

91m 3,, (F"(2:)) c 93. Let s(t) :2 n F‘" (3,, (F”(:1:))). This is a non-empty

InISN

open set containing :12. Now, if y E B(:1:), (w(:1:))n = (1/2(y))n for In] S N. [:1

Lemma 3.2 The coding map w : A —-> Z is onto.

Proof: This follows immediately from PrOposition 3.1, part (4). C]

We now define the left shift 0' : Z —-+ E, (o(a,,)),c = ak+1. It is easy to see that o is a

homeomorphism of Z, and that o o w = 1,1) 0 F.

We have therefore established the following.

Proposition 3.2 The map it : A —+ Z is a semi-conjugacy between the map F : A —>

A and 0‘ : Z —> Z. This means that the diagram

A L A

1M 1N

>3 i) 2:

commutes.

3.3 Orientation-Preserving “Horseshoe” Maps at the First

Tangency

We consider the same situation as in 3.1, except now the stable and unstable man-

ifold W‘(p) and W“(p) of F at p have a homoclinic tangency. Then F also ex-

hibits a “degenerate topological horseshoe” which can be understood as follows (for

orientation-preserving F).
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Again, the dynamics of the points q,, s,- and t, in the picture above are given by

F(Qz‘) = (1:41, F(Si) = Sm, etc.

Similar to what is done in 3.1, we define the regions

11 8 u 8

Q=p—->qo—>st—+q1—>p,

u s u s

1=p—+q—t—>t-1—>qt—>p

and

u s u s

Z=so—>qo—>sl—>t_1——+so.

We still have that _1_U 2 = Q 0 F‘1(Q). What is different from the situation in 3.1 is

that _1_ r1 2 = {L1}. We again define blocks exactly as before.

For i1,i2,...,i,c G {1,2} and n1,n2,...,n,c E Z, let

26



6233:3122" := {2: 6 Q : F’W) e 25.1 s j s k} = fl F‘"J'(z'.)
_ 195k —

These blocks look like the ones in 3.1, only with the points F"(r0) and F"(to) collapsed

to F"(to), for each n E Z.

Proposition 3.1 holds verbatim in the present situation.

Pl'OpOSitiOn 3.3 LEI i_k, . . . ,I_1,’Io, I1, . . . , ik E {1, 2}. Then:

(1) Each block R: QO’-k1""" - is a full-height sub-rectangle onO’,011...,1 In partic—
201111: 1

ular R is a full-height sub-rectangle of Q.

{2) Each block R = Q--’°’_~’k+1”"--l is a full-width sub-rectangle of Q“1""" _1 . In
1_k,t_k+1...,1_1 t_ k+1,. .,i_1

particular R is a full-width sub-rectangle of Q.

{3) Consequently, each block Qk:—— Q._k‘,‘"’k. is non-empty.

(4) Since every block Q), is compact and non-empty, we have that given any sequence

(on) E {1, 2}z, the set H F-" (£11) = n Q:,’,',T.’.’,lan is non-empty.

nEZ nEZ

3.4 A Coding for A = H F” (Q) at the First Tangency.

nEZ

Let Q be as in section 3.3. We let A = n F" (Q), a non-empty F-invariant set. Our

7162

first objective is to define a coding for A. Let Z = {1, 2}z. We define the equivalence

relation ~ on )3. We let t = (tn) 6 2 be the sequence such that t_3,t_4, . .. = 1,

t_2 ‘2 2, t..1 =1,t0 = 2, t1,t2, . . . = 1; 1.8.,

t: (...,1,1,2,1,2,1,1,...)

(the dot 0 denotes the 0th position). We also let

r= (...,1,1,2,2,§,1,1,...).

27



Now, we define that o"(t) ~ o"(r) and o”(r) ~ o”(t) for all n E Z, and a ~ a for all

a E 2. This is an equivalence relation. We denote by E the set of equivalence classes

of ~, and we let 71 : E —+ E, a 1—1 a be the canonical projection onto 23. Next, we let

0(t0) = {F”(t0) : n E Z}, and we define the map 1]} : A -—> I} as follows.

0 If :1: E A \ 0(t0), then define the sequence a = (on) E 2 by

a.and then let 1,5(23)

o If :1: = F"(t0) for some n E Z, then let 15(2) 2 o"(t).

Proposition 3.3 shows that 1b : A —> E is onto. To show the continuity of the map

1]), we make the assumption that there is a continuous transition from the situation

before the first tangency to the situation at the first tangency; more precisely, we

assume

(C) there exists a continuous, open and onto map r : A ——> A such that the diagram

commutes.

Using the quotient topology on I) (this means that a set G is open in E iff 7r‘l(G) is

Open in D), we see that then if) : A —-> D is continuous; namely, if G is open in D, then

71“1(G) is open in )3, and hence 10-1 on’1(G) = r‘1 o iii-1(0) is open in A. Applying

r to the left side of this equality gives that 1/3‘1(G) is open in A.

~

We define the left shift 6 on the quotient space I: simply by 6(a) = 0(a). It is easy

to check that o is well-defined, a homeomorphism of D, and that 6 o if; = 1L 0 F. We

have the following version of Proposition 3.2

28



Proposition 3.4 Under the assumption (C), the map if) : A ——> I? is a semi-conjugacy

between the map F : A ——) A and 6 : I} —> E. This means that the diagram

11 I. 1

«it it

13—0—12

commutes.
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4 The Abstract Model

4.1 Basic Definitions and Assumptions

Suppose that F(LL‘, y) = (F1(;1:,y),F2(:r,y)) is a C2 diffeomorphism of R2 onto its

image. For (2:, y) E R2, the differential map DFUny) : 711,,”le —> Tp(,,,y)R2 is

DF _ F1x(x1y) Fly/($13»

(1:, l ’ '

y F2$(:r1y) PEI/($13!)

Then the inverse of DFirv) is given by

(an. rape-1 =__1. . Fem) am)
,y F(Iay) JF(IE, y) —F2I(CU, y) Fla-(1:, y) 1

where Jp(2:, y) :2 det DEL,” = F1I(2:, y) . F2y(:r, y) — F242;, y) - F1y(:1:, y). We use the

maximum norm [(vl,v2)| = max{|v1|, [v2]} for (v1,112) E R2 or (v1,v2) E TPRZ. Then

we have

[DP—[1’3”]: max{|F11(:1:, 31)] + [F1y($1y)l1lF2I($1yll + [F2y(:c,y)]}.

Note that for v E T(I,y)lR2, [DF(,,,y)(v)| S [DF(I,y)|-|v|, and also that for w E TRIMRZ,

IDFIF(11;,y)(w)l Z ~|w|.

6551

Definition 4.1 Suppose a Z 0 and p E R2. We define

(a) the unstable a-cone at p to be K“(a,p) = {(vl,v2) E T,,lR2 : |v2| S alvll};

(b) the stable a-cone at p to be K‘(oz,p) = {(v1,v2) E Tle2 : [v1] S a|v2|};

(c) a K“(a)-curve is a curve 7(t) in such that ‘y(t) E K"(a,'y(t)) for all t;

(d) a K’(a)-curve is a curve 7(t) in such that fit) E K’(a,'y(t)) for all t;

(e) a K“(a)-line is a K“(a)-curve 7(t) such that curv(7)(t) = 0 for all t;

(f) a K‘(a)-line is a Ks(a)-curve 7(t) such that curv('y)(t) = 0 for all t.
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Definition 4.2 Let I = [0,1] C R, I = (0,1] C R, I = [0, 1) C R, or I = (0,1) C R

and let 12 = I x I C R2 (i.e. there are 4 x 4 = 16 choices for IQ). A C2-rectangle

Q is the image of I2 under a C2-difleomorphism \I'. We define bottom, top, left and

right boundaries of Q by

abottomQ = ‘1’“ x{0})1 atOPQ Z ‘1'“ X {1}):

aleftQ = 2({0} X 1), (11ng = ‘1’({1} X I)-

IfQ is a Cz-rectangle, then we say that R is a C2-subrectangle on ifR is itself a

Cz-rectangle, and if R C Q. Moreover, we say that R is a full-height subrectangle of

Q if dbottmnR C 01,0“an and ample C BtopQ; R is a full-width subrectangle of Q if

aleftR C aleftQ and 6,,ghtR C Brigth.

A curve 7 is a full-height curve in Q if 7 C Q and '7 connects 61,0;th and BtOPQ; a

curve 7 is a full-width curve in Q if ”y C Q and '7' connects 6,8,,Q and a,,,,,,o.

Let Q be a C2-rectangle in R2, and suppose that Q can be written as the union

E1 U Q0 U E2, where E1, Q0, E2 are closed, full-height C2-subrectangles of Q with

disjoint interiors, and such that a.,-,,,,E, = 61,.”Q0, Brigtho = 81,,ftEg.

In all that follows, 0 < a < 1, R > 1 and K > c > 0 are fixed constants. We assume

the following geometric conditions for the map F.

(G1) Both F(El) and F(E2) are full-width Cz-subrectangles of E1 U Q0 such that

(a) F (abattomEl) : abottom (El U Q0),

(b) F (abattomE2) = atop(E1 U Q0),

(C) F(aleftEl) C aleftEla

(d) F(arightE2) C azeftEl.

(G2) F maps Q0 parabolically across E2. This means that the set F(Q0) 0E2 consists

of two connected components that are full-width subrectangles of E2 (this is the

situation “before the first tangency”), or F(Q0) 0 E2 consists of two full-width
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subrectangles of E2 that intersect in one single point, which we denote by pt

(this is the situation “at the first tangency”). Furthermore, there exists a full-

height curve 7 in Q0 such that F maps '7 outside of E2 (i.e., F(7) 0 E2 = 0), or

- in the situation at the first tangency - we have F(v) 0 E2 = {pt}.

We call such a curve 7 a critical curve. We also assume that

(a) F (abattomQO) D abottornlS‘2 U at0pE‘2a

(b) F(aleftQO) C aleftE2:

(C) F (arigthO) C aleftE'Q : arightCQO-

Definition 4.3 Suppose 0 < 01 < 1 and R > 1. We say a difieomorphism F is

(R, a)-hyperbolic on a set E, if for every p E E, we have:

(I) if v E K“(a,p), then DFp(v) E K“(a,F(p)) and IDFp(v)| Z Rlvl;

(2) ifv e K3(a,F(p)), then MENU) 6 1mg, 1;) and loF;(;,(v)| 2 mm.

The following lemma gives necessary conditions for (R, a)-hyperbolicity.

Lemma 4.1 If F(x, y) 2 (F1 (11:, y), F2(:1:, y)) is (R, a)-hyperbolic on E, then we have

the following estimates on E:

lFlyl _<_ 0, IFer SQ:

llel llel

. 1 u 1 F130?)

Proof: Let p E E. Smce E K ((1,1)) and hence DFp = E

0 0 F22: (P)

1

K“(oz,F(p)), we get |F2x(p)| g a|F1m(p)|. Also, |F1x(p)| = DFp ( 0 ) 2 R - 1.

. 0 s _1 0 1 —F1y(p)

Slnce ( 1 ) E K (a,F(p)) and hence DFF(p) ( 1 ) _ Jp(p) . ( le(p) ) E

Ks(a,p),weget |F1y(p)lsalF1x(p)|- Also, 'F‘IU’“: org, 0 212-1. a
UHF” p 1

|le| 2 R, and |F1$| 2 R- |Jpl.  
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We also have sufficient conditions. The proof of the first lemma is elementary; the

second lemma comes from [JN].

Lemma 4.2 Suppose O < a < 1 and R > 1. Suppose also that for all p E E, the

difieomorphism F satisfies the conditions:

(1) ifv ¢ K3(a,p), then IDFp(v)| 2 Rlvl; and

(2) ifu g K“(a, F(p)), then [131%)(v)l 2 R lul.

Then F is (R, a)-hyperbolic on E.

Lemma 4.3 Suppose O < a < 1 and R > 1. Suppose also that for all p E E, the

difieomorphism F satisfies the conditions:

(I) |F23(p)| + a|F2y(p)| + a2lF1y(p)l S a|F1x(p)l,

(2} |F1x(p)| - a|F1y(p)| 2 R,

(3) |F1y(p)l + alF2y(p)l + a2lF2x(p)| S alF1x(p)|,

(4) |F1x(p)| - Cr|F2x(.v)| Z Jp(p)R-

Then F is (R, a)-hyperbolic on E.

We suppose that the following hyperbolicity condition holds.

(H1) F is (R, a)-hyperbolic on E1 U E2.

We define the sets

E2,o = E2

E2,1= E2 0 F_1(E1)

Eg’k 2 E2 0 F_1(E1) fl . . . fl F_k(E1).

33



Then each E2)c is a full-height C2—subrectangle of E2. Also, each EUC :2 E2,k\E2,k+1

is full-height in E2, and we have E2 = U EN. u anyway.

k=0

 

  
 

Picture 4.1

We have that for each k 2 0, each of the two connected components of F‘1(E2,k) flQO

is full-height in Q0. We denote these components by Eki.

The following two pictures illustrate the geometry of these components.
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Picture 4.2 The region Q0 before the first tangency

E2+E2-

   I

1

E0_ E1_

 

 

 

       
l

l

l

l JHLI—
 

E1+ Eo+

     

 

     

35

L

        

  

1+ 130+

 
  



We make the following assumption on how certain curves intersect, and their concav-

ity.

(K1) If p E Eki, let q :2 F2(p) E F(EM). Then for every K"(1/a)-line l through

p there exists a K‘(a)-line it through q such that l’ = F(l) and n’ = F‘1(n)

intersect in exactly two points (one of them being F(p) = F‘1(q)).

Furthermore, between these two points of intersection,

(a) l’ can be parametrized as a curve (r(t), t), and —2K —e S :ii(t) g —2K+€

for all t;

(b) K.’ can be parametrized as a curve (g(t), t), and —e 3 g(t) S e for all t.

The maximal distance of l’ and K.’ between these points of intersection is denoted

by dp(n, l). Let

dp(l) = maxdp(K.,l) and dp = min dp(l).
K

We also let

 

1 ~

szinf{DF:+l( )‘-\/d;:PEE2,k}

0

fl = inf{|DFp(v)| :1) ¢ 0,2) 6 K"(1/a,p),p 6 Q0}

I’UI

We now assume

( 2) pegnsz |F11.(p)| fl > 1 and [1:3ng 06 [3 >1,

1U
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4.2 Hyperbolicity Results for |F2yl, |F1y| << IleI

We will be concerned with the situation when |F2yl, |F1y| are small when compared

with IF11.]. Then we have the following four results.

Proposition 4.1 Suppose (H1), a,fl > 0 and 015 < 1. Given 6 > 0, there exists a

F F

6 > 0 such that if :F2yl’ :Fly:

1:1: 1::

v E K’(fi,F(p)), then DF;(;)(v) E K3(e,p).

  
< 5 on E1 U E2, then we have that ifp E E1 U E2 and

Proof: Consider v = (v1,v2) E sz, F(p)), and let v’ = (v’1,v§) = DFI;(;)(v). Then

1

3: ' (—F21-'U1 + FIIUQ) .

I _ I _

’Ul — E -(F2yv1 — Fly’UQ) and U2 —

Hence

   
It’ll < lF‘Zvall + lFlva‘Zl < lFZylfl + lFlyI

I'U’zl — lFle'Uzl - |F2x||v1| _ Ilel - |F2x|i3

IFZII
 The (R, a)-hyperbolicity on E1 U E2 implies g a. This means

I III

WH<lBAB+UMI<6W+J)<
el]

|%|‘|FMK1—afi)_ 1—ae -

  

lFle lFlyl

—— and are small, then the le

llel llel ft

and right boundaries of E1 U E2 and the left and right boundaries of each E2)c are

 
Remark 4.1 Proposition 1 asserts that if

Cl-close to vertical lines.

F F

Proposition 4.2 Suppose 0 S c S 1, and 6 > 0. If |'F2y:’ :Flyl|

1:: 1::

then for each p E E1 U E2 and v E K‘(e,p), we have that IDFp(v)| S (6 + 6) -

Slip {lFlzla |F2rl} ' lvl

EIUEz

  

<60nE1UE2,

Proof: For v = (v1,v2) E K‘(e,p) (i.e., |v1| g elvgl), let v’ = (vi,v§) = DFp(v).

Then

I I

’01 = le’Ul + Flyvg ’02 = FQI'UI + ng'Ug.
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Hence

MI E lleKe + 6)l'v2| lvél S (Iszlf + |F1x|5)) |v2|-

Finally, note that lvl 2 |v2|. Cl

Proposition 4.3 Suppose (H1), 0,13 > 0 and afi < 1. Given M > 0, there exists a

F F

6 > 0 such that if :F2yl’ :Fly:

11' 1.7:

v E K3(fi,F(p)), then IDFE(;)(-v)' 2 AI- |v|

  
< (5 on E1 U E2, then we have that ifp E E1 U E2 and

Proof: For v = (v1,v2) E Ks(/3,F(p)) (i.e., |v1| _<_ fllvgl), let v’ = (vi,v§) =

DF;(;)(v). We have that

1

WI 2 I’Uél Z ——--(|F1x||v2| - lezllvlll,
IJFI

where F”, ng and Jp are evaluated at p E E1 U E2.

So we can estimate

IFIxHU'zl — levall 2 |F1x||v2| — lexl ‘ 5' lvzl 2 llel ' (1 ‘ 05) ' l’Uzl

and

1 1

IFIxHWI — |F2xHU1| 2 llel ' E ' lvll — |F2$||v1| 2 llel ° 3 ‘ (1 — 05) ' I’Ull-

In both estimates we used |F23| 3 allel (cf. Lemma 4.1).

Now, |Jp| g 6 - Ilel2 + abllelz. Hence,

> min(1,1/fi) . (1 — afi)
 

 

I

I” l - 6-(1 +a) - |le| '7’"

Using that IleI is bounded on E1 U E2, we get m11;(.1(’11_/‘_’8;). (lF—lzlzm _>_ M if 6 is

small enough. El

Proposition 4.4 Suppose (H1) There exists a do > 0 such that if 0 < 6 S 60 and

F

:g2y:,:F1y: < 6 on E1 U E2, then we have that ifp E E1 U E2 and v E K“(1,p), then

1:: 11:

Dew) e Kuu, F(p)) and IDFp(v)l 2 (1— 5). |F13(p)|° lvl.
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Proof: If v = (v1,v2) is such that |v1| 2 |v2| and v’ = (vi,v§) :2 DFp(v), then

WI 2 lvil Z (lFixl - |F1y|)' It’ll Z (1 - 5) ° llel ° lvll = (1 - 5) ° |F1_.,| ‘ IUI,

 

and

lvgl S (|F2Il + |F2yI) ' Ivll S (a + 6) ’ llel ' lull:

Id! 1-6 . . 1—6
Hence -—, _>_ —. Since 0 < o < 1, we can find a 60 > 0 With 2 1 for all

|v2| a+6 a+6

0<6360. 1:!

We want to study the return map on Q0. We make the following definition:

Definition 4.4 Suppose p E Eki. Then the return time ofp to Q0 is N(p) z: k + 2,

00

and (I) := FH?‘ is the return map on Eki. This defines the return map (I) : U Eki ———>

k=0

Qa

For the next result we assume (G1), (G2), (K1) and (H1), (H2).

Theorem 4.1 There exists an ii with 1 > 6: > a, an R > 1, and there exists a 6 > O

|F2yl IFlyl
, < 6 on E1 U E2, then the map <I> is (R, (1)-hyperbolic.

Ilel lFlrrl

such that if
  

Proof: For Er, we may choose any number between 1 and a. We want to verify the

conditions (1) and (2) in Lemma 4.2 for (I).

(1) Let p E Eki, and suppose v E K3(&,p). We want to show that |D<I>p(v)| 2 Rlvl

for some R > 1.

Since v E K’(d,p), we have that v E K“(1/&,p) C K"(1/a,p). Let p’ =

F(p) E Em and let v’ = DFp(v) = (vi, vé). By the definition of ,8, we have that

|v’| 2 filvl. If fl > 1, then we are done; so we assume 0 < fl 3 1. We consider

the two cases:
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° lvil 2 MI-

Using (H2), we can choose A1 > A2 > 1 such that inf |F1x(p’)|-,8 2 A1.

P’EEiUEz

Since v1 2: v’ E K“(1, p’), Proposition 4.4 allows us to assume that vj :2

DFg(v) E K“(1,Fj(p)) for 2 S j S k + 2. Furthermore, for 6 > 0

sufficiently small, |vj+1| Z (1 —— 6)-|F1I(Fj(p))|-|v1|for1$ j g k +1.

/\

Ifbgl—i,wehave

A1

I I A I

W Z (1 - <5) - |F1x(p)| - Iv | 2 3f:- - |F12(p)| 13' lvl 2 A2 - lvl,

and also

1+1 A2 j 3- /\2 ,- j /\2 ,-

l’U l2 — - |F11(F (P))| ' I?) | Z 'lle(F (P))|'fl' Iv I Z — - lvl
A1 A15 5

for2gjgk+r

A ’“ ~
This means that |D<I>p(v)| = |vk+2| 2 (732—) '/\2 - |v| Z R- Ivl.

° I'U'1|< lvél-

Let e1 > 0, and let q = F2(p) = F(p’). Let u E K3(a,q) be such that for

the curves l : t I—> p + tv and K : t H q + tu, we have dp(Is:,l) 2 dp. Also,

let 1“) = DFq‘1(u). If 6 > O is chosen to be small, (H1) and Proposition

1 ~

4.1 give that v E Ks(el,p’). We can write v’ = wl ( + wgl-gla Note

0 v

~ ' t*

that |w2| = |v§| = |v’|. Using (K1), we can write Tg—I = y( ) and

1

, x(t*) , , x(t“)
v = w2- , where x(t), y(t) are as in (K1), and p = =

1 t*

y(t*) . , . ,
. Thus we have w2 -x(t ) = w1+ wg - g(t ).

t*
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The functions x(t) and g(t) satisfy the hypothesis of Lemma 4.4 below, so

we get that |i:(t*) — g(t*)| 2 C6 - \/dpr. Since |:i:(t*) - g(t*)| = +31%, we

2

have |w1| 2 C6 - \/dp/ - |w2| 2 Ce - ‘/dpr - |v’|. We have

1 -

|DF’$+1(v)|_>_|w1|-DF",+1 —|wg|-DF",+1 3’— .
0 P

l'i’l

Using (H2), we choose A1 > A2 > 1 such that ,1ng Rk - Ce - fl 2 A1.

k-l-l ~

”I“ (I:I)
(if 61,6 are chosen small). Hence we choose 61,6 such that

DF’i“ 3

l ” (IUI)<

Proposition 4.2 asserts that

  

may be chosen arbitrarily small

<)\1 — A2

2L3

 

 

Now,

 

1 __
lDF:-+-1(,UI| > Cc. \/d—p’ Ivll DFIC-l-l ( 0) _ lv’l . AIQ'BA2

 
Al — A2 I

> . — o

 2[Rk.C.-fi—’\1;A2]-lvl

 

Z [A1+A2

2 ].Iv|—ZR.|UI°

(2) Let p E Eki, and suppose v E K“(61,F"+2(p)), i..e v E K’(1/61,F"+2(p)). We

want to show that |D<I>;(1p)(v)| Z Rlvl. Let w—- DF;£:;;§(U) E Tp(p)IR2. Note

that we have that

lwl,

1
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where 1171 := sup {IleI + IFlyI, IszI + IngI}. Let IVI > NI. Proposition 4.3 al-

Q0

lows us to assume that Dng1+,(p)(v) Z M - IvI. Proposition 4.1 (with fl = i.)

gives that for 6 > 0 small, v1 z: Dng‘+,(p)(v) E Ks(a,F"+l(p)) and conse-

quently vi 2:: DF;3+2(p)(tI) E K3(a, F"‘j+2(p)) for 2 _<_ j _<_ k +1.

(R, a)-hyperbolicity on E1 U E2 gives |vj+1| Z R. |va for 1 g j g k.

 

F

Combining these results, we get I

1 1 1 M ~

Dd)"1 v >-—..-- w =—~- 21"“ >-—..—-R’°° v1 >—..—-R’“° v >R- v. C]I¢MM_MIIAIII_M II.M H- H

The following lemma gives an estimate for the angle between curves with certain glr

curvatures. This lemma is used in the proof of Theorem 4.1.

Lemma 4.4 Let 2K > e > 0, and let x(t).y(t) be a C2 functions on some interval

Ia, b] such that —2K — e S x(t) 3 -—2K + e and —e g y(t) S e for all t. Let to

be a t—value with x(to) = y(to), d 2: x(to) — y(to) Z 0, and x(t*) = y(t*) for some

t* E Ia, b]. Then

 

2K—26

\/K+6

Proof: If to = t*, then d = 0; so we may assume to 75 t*. We have

If(t”) - WWI 2

515(7') — y(T) . (tar _ to)?0=urqu2=xm0—Mmhr ,

x r — "

for some r between to and t*, or equivalently, d = ——(—)—?i(T—) - (t* — t0)2. This

\/c_l

\/K + 6.

On the other hand, x(t*) — y(t*) = (x(r) —- 37(7)) - (t* — to) for some other T between

2
K — 2

to and v, i.e. my) — g(t*)| (2K — 26) - |t* — tOI 2 l/IT—T: M3. L3

Next, we want to give sufficient conditions for (K1), conditions (a) and (b) to hold.

 

means It* — toI 2

 

Concerning (K1) (a) we have the following result:
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Proposition 4.5 Suppose 0 < a < 1. Let D be a bounded open subset of R2 and let

F(x, y) be a Cz-diffeomorphism of R2. Suppose that

(a) IleI > 0 on F‘1(D), and

(b) IF2xI S alleI 0” F’1(D).

Then for any 6 > 0 there is a (5 > 0 such that if

(c) IngI < 5IF1xI and IFlyI < 6IF13I on F’1(D), and

(d) IFlny < 6 and IF2ny < 6 on F’1(D),

then the pre-image F”(53) of every Ks(a)-line K C D can be parametrized as a curve

(y(s),8) with —e s 33(3) 3 5_

Proof: Let g = (x, y) and let Ii C D be a K5(a)-line through q; we may parametrize

K. as x(t) = (x + tu1,y+ t), where Iu1| g a.

Let g(t) = (F‘1)2(n(t)) = (F‘1)2 (x + tu1,y + t).

Then

' 1 ’ — a It’I9(t)I _>_m ' [|F1.(n(t))l IF2x( (tllll-

Conditions (a) and (b) imply that m := inf{IF13(z)| - aIF23(z)I : z E F_1(D)} > 0.

So the function 3 = g(t) is invertible, and we can write F“1(I~:(t)) as (y(s), s), where

31(8) = (1W)l (Mg—1(3)» = (F"1)1($ + ul9‘1(8). y + 94(3)).

, d _1 _ 1

Smce d; (g ) (s) — m, we have that

. —1 —1 ‘1 “1 1y<s>=<F we <s>>>--—+<F MW Wat“)

 





1
_ ._1-.[ F’Z-V'ul-Fly

s(t) Jp
9

F12: " F22.- ' U1

 
F23; ° 11.1 —' Fly] 2

where JF and the partial derivatives of F are evaluated at F_1(Ic(g‘1(s))) : (y(s), s) E

F“(D).

At this point, it is good to note that conditions (b) and (c) imply that

IFQyI'a+IF1yI < (1+1

~6.

IFul - IF2xI - a ‘ 1- 02

  
Ii(3)I 3

Now, we want to investigate y(s):

y(9) = F2yxy(3)ul + F2yyul — Fling/(S) — Fllyy

le -' I:‘2xul

 

(F2y’ll'1 — IHy) ' (lexi/(S) + ley - FZIIQ(8)U’1 _ Feryul)

(F11: — F2xu1)2

 

Using that IleI — IngIoz 2 m on F“1(D), we have

lF2yrII3I(3)I(Y + IFnyIa +IFlyxlIl/(SII'I'lF1yi/I

m

 

|3}(S)| S

(Ill—1231'“ +IF1yI)’(IFIIrIIy(3)I+ IFIIyI+IF2IIIIy(3)Ia + IFQIyIa)

+ m2
 

a +18' . <
ince |y(s)I _ 1 _ 02

Iii(3)| S 6. C1

 - 6, and using conditions (a)-(d), we can find a 6 > 0 such that

Concerning (K1) (b) we have the following result:

Proposition 4.6 Suppose 0 < ,6. Let D be a bounded open subset of R2 and let

F(x, y) be a C2-difl’eomorphism of R2. Suppose that

(a) IFZxI — fiIngI > 0 on D.
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Then the image F(l) of every K“(/3)-line l C D can be parametrized as a curve

(x(s), s), and furthermore,

= lex + 2Pllxyv2 + Flyyvg _ (le + Flyv‘Z) ' (F2xx + 2F‘2xy’U2 + F2yyvg)

(F21 + Fsz2)2 (F2;- + ngv2)3

 
 x(s)

)

where v2 is the slope of the line 1.

Proof: Let p = (x, y) and let I C D be a K“(m-line through p; we may parametrize

l as l(t) = (x + t,y + tvg), where Iv2I g 5.

Let g(t) = F2(l(t)) = F2(x+t, y+tv2). Then g(t) = F2$(l(t)) +F2y(l(t)) -v2, and also

Ig(t)I Z IF2x(l(t))I _ [B ' IF2x(l(t))I

Condition (3) implies that the function 3 2 g(t) is invertible, and we can write F(l (t))

as (x(s), s), where x(s) = F1(l(g"1(s))) 2 F1 (x + g_1(s),y + wag-1(8)).

, d _1 _ 1

Smce a; (g ) (s) — m, we have that

__1_

g(t)

where the partial derivatives of F are evaluated at l(g’1(s)) E D.

”()2 _ F1$+F1y"02

+ F1y(l(g—1(8))) ' "gm — F23 + F23, - v2,

 

i3(8) = le(l(g-1(3)))'

Now,

: lex + 2Flxyv2 'I’ Flyyvg _ (F11: + Fly/02) ' (F2xx + 21'7‘2xyv2 'I' 1723,3103)

(F22.- + Fzyvz)2 (sz + Fzyvz)3

 
 . Cl115(8)
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5 Symbolic Dynamics (Part II)

5.1 Assumptions and Definitions

We look at the diffeomorphisms F : R2 ——> R2 as considered in section 3, only now

we will assume certain hyperbolicity conditions that assure that the coding maps

If) : (Inez F" (Q) =: A -—> Z (before the first tangency) and if} : flnez F" (Q) =: A —-> f)

(at the first tangency) are actually homeomorphisms.

We assume the the geometric conditions (G1), (G2) and the hyperbolicity condition

(H1), as formulated in section 4. Recall that there we had two “hyperbolic regions”

E1 and E2, and a “parabolic region” Q0. We defined the sets

E” = E2 0 F‘1(El) n . . . m F'k(El) and EN, := EN, \151,,,.+1

(k 2 0), which are full-height rectangles in Q, and for each k 2 0, we let

Ek_ denote the left component of F—1(E2’k) 0 Q0, and

EH denote the right component of F‘1(E2,k) (7 Q0.

Furthermore, we let E00- denote the left component of F"1((9ring2) 0 Q0, and E004,

denote the right component of F‘1(6,,~ghtE2) 0 Q0.

Then we have that Q0 (1 F‘1(E2) is “stratified” by the full-height (in Q) rectangles

Eki; 1.8.,

Q0 (7 F_1(E2) = U Ekzt U Eooj:

1:20

We have the return map <I> = Fk” : Eki —> Q0. We now assume that this return

map is uniformly hyperbolic; i.e., (I) is (R, (1)-hyperbolic, with the same R > 1 and

0 < or < 1 on each “stratum” Eki:

(H3) For all k 2 O, the map F"“‘2 : Eki —-> Q0 is (R, a)-hyperbolic.
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Note that we can write

621: EIUUEkwE..- and Q2 =E2uUEk.UE..+,

kZO kZO

and that in combination with (H1), (an appropriate power of) F can be thought

as being uniformly hyperbolic on each “stratum” of Q1 U Q2. More precisely, by

additionally letting (I) = F on E1 U E2 we have that (I) is (R, a)-hyperbolic on (Q1 U

Q2) \ E'00:}:-

We refer to the collection 8 := {E1,E2, EH: : k 2 0} as “strata”. For x E Q1 U Q2,

let Sz denote the S E 8 with x E S.

5.2 Stable and Unstable Curves

Forx E A: nF" (Q), let

nEZ

W3(x) = {y E Q1 U Q2 : SFn(x) = SFn(y) for all n 2 0}

and

W“(x) = {y E Q1 U Q2 : Sly—71cc) = SF—n(y) for all n 2 0}.

LEI} QU = E1 U (Q0 0 F(E1)) U E2 and QC 2 E1 U (Q0 0 F(El U E2». Then the

hyperbolicity assumptions (H1) and (H3) give us that for each x E A,

0 We have F(W3(x)) C W5(F(x)) and W‘(x) is a continuous, full-height curve

in Q, containing x, and it is a K3(a)-curve in QU. If y E W"(x), then

I<I>"(x) —- @"(y)I —> 0 as n —-> oo.

0 We have F’1(W"(F(x))) C W“(x) and W“(x) is a continuous, full-width curve

in Q, containing x, and it is a K“(a)-curve in QC. If y E W“(x), then

I<I>‘”(x) — <I>'"(y)I —+ 0 as n —> 00.

We are therefore justified in calling W‘(x) the stable curve of x E A, and W“(x) the

unstable curve of x E A.
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Furthermore, on QUflQC, W’(x)flW“(x) = {x}. By applying F, we get this prOperty

on all of Q.

Now if y E A has the same coding as x; i.e., w(x) = rt(y), this last property gives that

x = y. In other words, we now have that the coding map w : A -> E is one-to-one.

This lets us improve upon the results in section 3.

5.3 Topological Equivalence

We consider a family of Cl-diffeomorphisms Fa : R2 —> R2, a 2 do with the following

properties:

0 the family depends continuously on the parameter a,

0 each F0, 0 > do, satisfies the geometric conditions (G1), (G2) “before the first

tangency”,

0 Fan satisfies the geometric conditions (G1), (G2) “at the first tangency”,

a each Fa, a 2 do, satisfies the hyperbolicity conditions (H1), (H3).

Then we have the following resulting concerning the topological dynamics of F:

Theorem 5.1 Let A0 = H(Fa)"(Q). (Q is defined in (G1), (G2)).

nEZ

(1) Ifa > do, then there exists a homeomorphism we : Aa -—> 2 such that

We. 0 Fa) (x) = (o o wa) (x) for all x E A0,.

(2, o) is the left-shift on two symbols, as described in section 3. we, is the coding

map. Also, the set A0 is hyperbolic.

(2) There exists a homeomorphism 113 : Aao —> :3 such that

(I; 0 Fag) (17) = (5 0 II) (x) for all x E Aao.

(2,5) is the factor of the left-shift on two symbols, obtained by identifying the

two possible codings for homoclinic tangencies. Refer to section 3 for full details.
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6 Application to the Henon Map

Recall that the Henon map is given by

HIM-(37,31) : H(x,y) : (H1(.’L‘,y),H2($,y)) = (T1170. _ SB) - by,x).

We want to show that H(x, y) satisfies the assumptions used for proving Theorem

4.1.

6.1 Geometric Conditions

We observe that regarding the conditions (G1) and (G2), we need the following

geometry for the invariant manifolds W“(po), W‘(po) and W’(p1):

Picture 6.1

y /l:,1 ] \ In
I)

1 

  

 

  
 

1

8

[1,2
3 s

12,2 12,1

Recall that If, If,“ 1:3 are parts of W“(po), W‘(po), and 13,1, 13,2 are parts of W’(p1).

The geometry we need is present when these invariant manifolds are defined; i.e.,

when both fixed points are hyperbolic saddles.

To make things precise, we let
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E1={(:v,y)= 5,1(y)5xsf§,2(y),x3ry(1— y)+f1“(21,.)y€[01]}

Q0 = {($1.71) 3 §,2(3/) S 33 S f§,1(3/)117 S 7'3/(1‘31)+f1()y E [01]}

E2 = {(1830 3 f28,1(3/) S 33 S ff,2(y)a$ S T.7/(1"3I)"f‘ f1(y)y E l0 1]}

(-3j(y) parametrizes lfj,ry(1 — y) + f,“(y ) parametrizes l“; cf. section 2.)

Then

Proposition 6.1 Ifr > 3(1 + b), and r > r(b), then the map F = Hg”. satisfies the

conditions (G1) and (G2).

In the next sections, we proceed to verify the conditons (H1), (H2) and (K1).

6.2 The Region of (R, (1)-Hyperbolicity

We use the sufficient conditions given in Lemma 4.3 to determine a region where

H(x y): Hb,(x, y) will be (R, a)-hyperbolic, for some R > 1, and some 0 < a < 1.

Note that

H1$(x,y) = r(1— 2x) H1y(x,y) = —b H23(x,y) =1 H2y(x,y) = 0.

Then the conditions (1)-(4) in Lemma 4.3 become:

(1)1+a2~b§a-2r 2

 

:"l’

(2) 2r

 

1

x—EI—a-bZR,

(3) b+a2ga-2r III—5',
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(4) 2r

 

x—é—I-aZb-R.

With the objective of choosing a z 1 and R z 1, we recall the definition of the closed

region

 

1

——>1b.x2_+}8 = 8b,, = {(x,y) : 2r

 

The interior of 8 is the complement of the closed vertical strip

 

1

——<1b.x2_+}S = 8b,, = {(x,y) : 2r

 

If p = (x, y) E 5, we see that we can choose R and a close to 1 so that the conditions

(1)-(4) above hold. This gives the following result:

Proposition 6.2 If R is any (possibly disconnected) closed region such that ’R n

85,,- = (b, then there exist R > 1 and O < a < 1 such that Hg, is (R, a)-hyperbolic on

R.

In conjunction with Lemma 2.1, part (2), this proposition gives an easy proof of

[DN]’s results for the orientation-preserving case (b > 0). It is actually not difficult

to obtain the result for |bI instead of b, using the same simple geometric arguments.

We have:

Corollary 6.1 If r > (2+ «5) (1+b), then there exists R > 1 and 0 < a < 1

so that H = H5, is (R, a)-hyperbolic on Q (I H‘1(Q). In particular, the set A =

n H"(Q) (which is also the set of points with bounded orbits) is a hyperbolic set and

nEZ

H IA is tapologically equivalent to the two-shift (Z, 0).

Remark 6.1 This result uses the fact that for r > (2 -+- \/fi) (1 + b), the image H(l)

of the line {(x,1) : 0 S x S 1} is to the right of the region {(x, y) : 2r|y — %I S

1 + b, O S x S 1}. It can be improved upon by considering the upper component l’ of

H(l) D Q, and then estimating when H(l’ ) is to the left of this region. We omit the

calculations and state only that by proceeding in this way, a better lower bound on r,

valid for all b > 0, than the one in the previous corollary can be obtained.
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We also have the following corollary:

Corollary 6.2 There exists a be > 0 an R > 1, and a 0 < a < 1 such that if

0 < b S b0, and r > 3(1 + b), then Hg“. is (R, a)-hyperbolic on E1 U E2.

6.3 Concavity Conditions

We verify condition (K1). Note that for H(x, y) = (rx(l — x) — by,x), we have that

on E ={(x,y):2rIx—%I 21+b},

IHsz 1 IH2II _ IHlyl _b_

|Hlx| " 1+ b'

 

1

IH1$I=2TIIE— §I21+b>0,

Furthermore,

H21: :1: H2y = 0) Hlyy : H2yy : 0: Hlxy : Hlyy : H2xx : H2xy = 0

on all of R2.

Now, we apply Proposition 4.5 with D a small open neighbourhood of F(8 ) fl [0, IV,

and Proposition 4.6 with D a small open neighbourhood of 8fl [0, 1]2 to get statement

(b) and (a) (with K = r), respectively, of (K1), provided the lines I’ and It’ intersect

as in (K1) for b > 0 small.

To see this intersection property, we make the following argument: as b —-) O, the

map H(x, y) = Hb,r(x, y) = (rx(l — x) — by, x) limits to the logistic map H(x, y) =

H,(x, y) = (rx(1—x), x). Also, as b —> O, we see from Proposition 1 that the pre—image

of any K’(a)-line K. will become a vertical line, whereas the image of any K“(fl-line

I will be a parabola s I—> (rs(1 - s), 3). So the intersection property holds for H, and

since we think of H as a 02-perturbation of II, we have that this property also holds

for b > 0 small.

Hence, we have so far established that for b > 0 small, and r > 3(1 + b), the Henon

map satisfies conditions (G1), (G2), (H1) and (K1) of the Abstract Model. We
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define the sets EM, EM and Eki, k = 0,1,2,..., as in the abstract case. Also,

00

(I) : U EMc —> Q0 will be the first-return map as in Definiton 4.

1:20

Concerning (H2), note first that for the Henon map H(x,y), IDHp(v1,v2)I 2 Ivll,

hence ifv E K“(1/a,p), 0 < a < 1, we have that IDHp(v1,v2)I Z a - IvI. This means

that

DF

a = imp—HQ : v ¢ 0.11 e K"<1/a,p),p e on} .>_ a,

and, since IHlxI 2 r—2 on E = {(x,y) : |x—%I 2

1.

—%},we have ianE IFiz(P)I'fl>

1

2 P631

To prove the second part of (H2), we need the following lemma to estmate the return

time to Q0:

Lemma 6.1 Let If 2 l1, be the left and l; 2 fig be the right branch of the stable

manifold of the fixed point (0, 0). Then for p E E“; we have

1 N+1

dist(p,l§) 2 dist(HN+l(P),li)' (7. + b)

Proof: Let v E T“MIR? Then IDH($,y)| = max{1,r|1 — 2x| + b} and we have the

estimate IDH(x,y)(v)I S IDH(,,,y)I - IvI, and hence IDH(x,y)(v)I S (r + b) - IvI.

The last inequality gives the following result:

dist(H’+1(P), (i) S dist(H’+1(p), HUD) S (7‘ + b) 'di8t(H’(P), 1?)

fori=1,...,N, and

dist(H(p), li’) S (r + b) - dist(p, H‘1(l‘i’)) S (r + b) - dist(p,l§).

Hence dist(HN+1(p), If) S (r + b)”’+1 -dist(p, 1;) C]

Now, let us complete the proof of (H2); we assume b > 0 small, r > r(b) z 4, and

we can choose 0 < o: < 1 as close to 1 as necessary.
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suppose p : ($13,) 6 E2,kii'e'1p E E21H(p) E El: ° ' ,Hk(p) E Elin+l(p) 6 Q0 for

some I: Z 0. Let p0 = p = (x0,y0) and p,- = H‘(p) = (x,,y,-) for i = 1,...,k +1.

We may make the following estimates:

1 I

$0+dp20.99, 27” TO—gI—b'027.8'(§"dp)a

 

and fori=1,...,k,

as,- g (41)" - (1,, 2r

 

1 1 ,.

 

1 1 k+1 1 Ic+2
. - = > _ . _ > —Usmg Lemma 4 W1th N k, we get that (1,, _ 4 (4.1) _ (4.1) , or

" log(4.1)

_ log(dp)

Let m(d,,) — Floor I log(4.1) 2], and let

m(dp) .

p(dp) = log(7.8(0.5 — dp)) + Z [log(7.8(0.5 — (4.1)‘ - dp))] + log(\/d_p).

i=1

Letting ((x) = p(x) +log(2-1.9), we need only show that inf{((x) : O S x S 0.3} > O,

to show (H2).

The graph of C (x) (for 0 S x S 0.3) is shown below:

5 .

4 .

\

li/I/T’

ofos 0:1 0.15 0:2 o.‘25 0:3

 

  

Summarizing the results of this section gives:
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Proposition 6.3 There exists an O < a < 1, an R > 1, and there exists a be > 0

such that ifO < b < b0 and r 2 r(b), then the return map <I> to Q0 of the Henon map

Hg, is (R, (1)-hyperbolic.

6.4 Main Results for Henon Maps

For each b > 0, there exists a unique value of the parameter r, denoted by r(b), such

that for r > r(b), the invariant curves of p = (0,0) intersect transversely, whereas for

r = r(b), they have their first homoclinic tangency.

Let A = fl F”(Q) denote the set of (x, y) e R2 with bounded orbits.

1162

Now we state our results:

Theorem 6.1 Let H(x, y) = (rx(l — x) — by,x) be the Henon map.

Then there exists a b0 > 0 such that for all 0 < b S b0, we have the following:

(1) If r > r(b), then there exists a homeomorphism w : A —~> 2 such that the diagram

A if» A

III (Di

:3 is 2

commutes. Futhermore, the set A is hyperbolic.

(2) If r = r(b), then there exists a homeomorphism w : A -—> :3 such that the diagram

H
A ——+ A

i I i l

f: a i

commutes.

Where:
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o (a, 2): the full shift on two symbols;

0 w : A —> Z: the coding map of points x E A;

o ([7, :3): the quotient of (a, 2), obtained by identifying the two ambiguous codings

for homoclinic tangencies;

o ib : A —> L‘: the coding map of points x E A - sending each x to its equivalence

class in E.

Theorem 6.2 The results in the previous theorem also hold for CZ-perturbations of

the Henon maps considered.
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