

j— =
54398197 LIBRARY
Michigan State
University

This is to certify that the
dissertation entitled

A SELF-MODERATING PEER-TO-PEER FILE SYSTEM

presented by
Boris Gelfand

has been accepted towards fulfillment
of the requirements for the

Ph.D. degree in Computer Science

——— furi /ey

jor Professor’s Signature
5/2/03

Date

MSU is an Affirmative Actiorn/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

AUG 2 9 2004

—or 5ot

6/01 c:/CIRC/DateDue.p65-p.15

A SELF-MODERATING PEER-TO-PEER FILE SYSTEM
By
Boris Gelfand

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Department of Computer Science and Engineering

2003

ABSTRACT
A SELF-MODERATING PEER-TO-PEER FILE SYSTEM
By
Boris Gelfand

Peer-to-peer systems have received much recent attention, starting with file shar-
ing systems such as Napster and Gnutella, and developing into true file systems such
as PAST and CFS. They demonstrate many benefits over central storage systems
including fault tolerance and load balancing as well as using idle resources to provide
service to others.

A breakthrough in more recent peer-to-peer file systems was the advancement of
lookup systems from centralized or broadcast-based search to directed search in which
the number of queries is logarithmic in the number of nodes in the system. Most of
the issues necessary to allow these systems to scale to internet-wide levels have been
addressed: efficient lookups, file security, throughput performance, fault tolerance
and reliability. However, one issue that has not been resolved in a true peer-to-peer
manner is that of resource allocation.

Early file sharing systems are notorious for their problems with free-riders, that
is, users who consume but do not contribute resources. These systems have not
provided any incentive for users to contribute other than by appealing to their sense
of altruism. Later approaches involve central authorities, as in the case of PAST, with
per-publisher quotas or, as in the case of CFS, simple per-internet address quotas.
While these quota systems partially address denial-of-service attacks, they are still
vulnerable to a user consuming far more than their “fair” share of resources. It is
clearly desirable to develop a self-regulating peer-to-peer quota system that does not
rely on any centralized trust or authority, yet still ensures a rigorous standard of

fairness within the system.

Table of Contents

LIST OF FIGURES v
1 Introduction 1
1.1 Personal Computing 1
1.2 Dataand ItsStorage 4
1.3 File Sharing and Replication 5
1.4 Problem Statement, 6

2 Literature Review 8
2.1 LocalFileSystems 8
2.2 Server-Based Systems L. 9
2.3 Peer-to-Peer File Systems 13
23.1 Napster e 14

232 gnutella 15

2.3.3 Other Peer-to-Peer File Replication Systems 15

2.4 Peer-to-Peer Virtual RAID Disk Systems 16
2.4.1 xFS and NOW (Network of Workstation) 18

24.2 Jetfile 18

243 Frangipanio L L 19

244 Farsite 19

2.5 Next Generation Peer-to-Peer Systems 19
251 CFS 20

2.5.2 Oceanstore 21

253 PAST e 21

2.6 Peer-to-Peer Trading Networks 22
2.7 Summary of Literature Review 23

3 System Description 25
3.1 System Overview 25
3.2 Self-Moderation, 30
33 Trading e 32

4 Storage Subsystem 34
5 Authentication and Authorization Subsystem 36
6 Agent Behavior 40
6.1 Agent Perceptions. 40
6.2 Agent Actions 41
6.3 Agent Utility 43
6.4 Learning Algorithm L. 44

iii

6.4.1 Traditional Q-learning

......................

6.4.2 Modified Q-learning Algorithm

7 System Evaluation Through Simulation and Emulation

7.1 Stability
7.2 Learning simulation
7.3 Long-Term Cheating
7.4 Emulated Peer-to-Peer System

8 Conclusions and Discussion
9 Future Work

BIBLIOGRAPHY

......................
......................
......................

iv

50
51
52
o4
56

58

61

63

10

11

12

13

14

15

List of Figures

Characteristics of external sharing systems 5
Alocalfilesystem 8
A server-based file replication system 10
A server-based network file system 12
A peer-to-peer file replication system 14
A peer-to-peer virtual file system 17
Overviewof A-DFS 27
Sample A-DFS Interactions 28
Disk space allocation immediately after joining A-DFS and after blocks

have beentraded oL o L. 29
Q-learning update rule state diagram 46
Convergence Results, 52
Frequency of trade and cheat actions over learning epochs. 53
Number of trades at each iteration of epoch 4000 54

Ratio of stolen blocks over learning epochs with 5% non-learning cheaters. 55

Frequency of cheat actions over learning epochs with 25% of the agents
incapable of cheating compared to all agents being capable of cheating. 56

Chapter 1: Introduction

In this document, we will discuss the current state of peer-to-peer file sharing sys-
tems and experimental distributed file systems and we will present a novel approach
to distributed data storage based on some of the features of these systems. This
novel approach, called An Agent-based Distributed File System (A-DFS), rests on the
introduction of agents which, despite a lack of trust between each other, cooperate to
perform in the best interests of their owner’s file storage needs. Each agent is respon-
sible for the management of both a user’s data and a portion of their personal hard
disk space. These agents can then interact and trade storage and service between
each other to increase the reliability and performance characteristics of the data with
which they are entrusted.

This approach is interesting because it does not rely on altruistic behavior nor on
monetary compensation on the part of the user and has the capacity to ensure fair-
ness because each agent is interested in its own user’s personal storage requirements.
This self-moderating approach can be extended to other peer-to-peer and agent-based
systems and should prove useful in other domains in addition to peer-to-peer file sys-

tems.

1.1 Personal Computing

Since their introduction in the 1970s, personal computers (PCs) have gained a strong
foothold in our way of life, especially since the inception of the Internet and its
accessibility via the World Wide Web. At first, only professionals used computers,
then hobbyists, and now most people cannot get by without one. Nearly every home
and office has some personal computer connected to the internet.

Computer manufacturers quickly caught on to the consumer nature of personal

computers. Demand for faster, cheaper, higher capacity, smaller sized systems and

components have driven production from a specialized manufacturing process to a
large-scale consumer industry. As with many consumer goods, quality and reliability
sometimes suffer as production and consumer costs decrease.

Consumers have become accustomed to this component failure rate because PCs
are treated as a disposable commodity; as faster processors, cheaper memory, and
larger disk storage becomes available, older PCs are very quickly retired, so a PC
is not expected to last very long. A key selling point with PCs and components is
price-quantity, with little regard for expected product life.

An example of this is exact trend is the growing popularity of 7200 RPM hard disk
drives. 5400 RPM drives have a slower spin speed and thus have slightly slower seek
and transfer times, but in general they have a considerably longer component life since
their slower spin speed generates less heat and puts less stress on their mechanical
components. This longer component life has had little effect on consumers’ habits
since they purchased 7200 RPM drives at nearly a 3:1 rate over 5400 RPM drives in
the year 2000, opting for negligible performance gain over reliability.

Since production is limited by profitability, low capacity systems are not as prof-
itable for the manufacturers to produce and market, so they push consumers to buy
increasingly larger capacity or faster components. The manufacturing cost for an
10GB hard disk is nearly the same as an 80GB disk considering that the manufactur-
ing processes are nearly identical, while the price-value of an 80GB disk to a consumer
may be as high as eight times as much. For all these reasons, new PCs are currently
sold with no less than a 30GB disk.

This problem of unreliable storage is compounded by the general unavailability
of adequate backup solutions in the same price range as primary storage. Consumer
backup systems tend to be less reliable than primary storage, and more importantly,
they are too small to be practical given today’s large disk sizes. These secondary

storage systems have not kept up with the size of hard drives, and have little chance

at doing so, since consumers are much more interested in size and value rather than
reliability and are not willing to pay for the costs of developing and producing quality
backup systems. This consumer market has fundamentally changed the model of
home computing.

The role of systems managers has shifted from taking care of servers to taking
care of users and the infrastructure required by those users. More often than not,
users now manage their own software and hardware. Even Unix, a very popular
server-oriented operating system has evolved to compete as a single-user desktop
operating system. This paradigm shift, while not necessarily efficient or beneficial
in all respects, is inevitable. If at all possible, people prefer to do things (and be
responsible for them) themselves, rather than relying on someone else to do them.

Examples of similar transitions from centralized systems to personalized systems
include public transportation to the automobile, one telephone per household to every
member of the family having their own mobile phone, and personal entertainment
in the form of radio and television as opposed to going to live shows, to name a
few. Exactly the same transition is happening with computing systems: centralized
processing and storage is being replaced by local processing and storage, despite its
many disadvantages. These disadvantages, of course, include security, reliability, and
maintainability, but despite this, people prefer having their own resources.

Given this trend of increasing individual ownership of resources and other trends,
predictions are that future computing systems will consist of interconnected au-
tonomous agents, each with their own processing, storage and other resources [13]
[63]. Efficient use of storage (as well as other resources) will become increasingly
more important in the future as demands and raw (as compared to managed) avail-

ability grow [31] (28] [43].

1.2 Data and Its Storage

The terms “data storage” and “user data” need to be defined. We will define user
data as the computer encoded information that a user generates, by any means, that
cannot easily be reproduced in an automated fashion. This could include documents,
photographs, spreadsheets, music, art, source code, practically anything that a user
might consider important and worth keeping. This probably would not include the
operating system, applications and miscellaneous temporary files. Data storage is the
practice of storing this user data in a convenient and hopefully reliable manner.

In a server-based data storage system, there is a shared storage space that is un-
der the control of an administrator. This might be the “root” account or some other
user with enough privileges to perform maintenance and other administrative opera-
tions. In contrast, most personal computer users today prefer to be their own storage
administrators. This would include managing disk allocation, upgrading disks, back-
ups, and general system maintenance.

Special consideration must be given to address issues of data backups. Hard
drives, being mechanical devices, are prone to failure, and are even more so in an
uncontrolled desktop environment. For this reason backups are an important but
often overlooked aspect of data storage.

Here are some possible data storage backup solutions:

e Get a second disk and use it to mirror files. A disadvantage is that backups

must stay on-site, and multiple backups are difficult.
e Use a hardware or software RAID. Same disadvantages as above.

e Tape backups for off-site storage. Disadvantages include cost and convenience,

since tape sizes do not scale well to disk sizes.

e Removable storage (Zip, Superdisk, etc). Even smaller sizes than tapes lead to

further inconvenience.

e Emergency disk recovery services, for when a disk does go bad. Obviously this

is expensive and very inconvenient.

It is unfortunately true that most users today do not perform adequate data
backups. The most common reasons for are cost and convenience — backing up a
40GB disk at regular intervals onto 5GB tapes is not very practical, particularly for a
home user. In most cases, users back files up in a haphazard fashion onto removable
media such as Zip disks or CD-Rs, if at all.

Usually one of the major advantages of a centralized storage system is that
expensive and otherwise inconvenient backups are performed, since the costs are

distributed among all users.

1.3 File Sharing and Replication

In addition to data storage and backup needs of users, shared file systems facilitate
sharing files by the use of user groups and access control lists, in addition to external
methods of sharing, meaning computer-to-computer sharing. In an isolated personal
computer model only external sharing is available since each user has his own file space
under his own domain. We’ll discuss these in further detail in the following chapter,
but essentially, there are two characteristics of external sharing as illustrated in Figure

1.3.

Replicated Shared |

[Server FTP, HTTP NF'S, Windows Shares
Peer-to-Peer | Gnutella, Napster xFS, CFS, PAST

Figure 1: Characteristics of external sharing systems

The first is characteristic is either “server-based” or “peer-to-peer”. In a server-

based system, a user who wishes to share files runs a specialized program whose

purpose is to export or make files available to other computers, and a user who
wishes to have access to those files runs a client program whose purpose is to access
files on a server. Peer-to-Peer is a nascent paradigm in which an application can act
as both a client and a server at the same time, sharing resources between the two
roles.

The second characteristic is whether the files are truly shared or replicated. In
a shared system, the exact same file (down to the bits on the disk) is accessed by all
parties, while in a replicating system, files are copied. Permissions are fundamentally
limited by file replication systems to upload and download privileges, while shared

systems are more sophisticated and include user-based access control and file locking.

1.4 Problem Statement

Our goal is to maximize reliable disk space use for individual users who do not want
to be part of a strict organization. We will extend ideas from peer-to-peer replication
systems and peer-to-peer storage systems by creating decision-making agents whose
goal it is to maximize reliability and usability of information for their owner.

Since each agent is responsible to a single user, there is no trust among agents,
and we should assume that there are “rogue” agents in the system who are actively
attempting to accumulate an unfair amount of resources for themselves. To this end,
a strong security model must be integral to the system.

We will design a basic agent template with the underlying mechanisms to act as
an intermediary between a user and his files, wherever they may be stored. This agent
should be adaptive enough to allow variances in user preference as well as adaptable
to changing external conditions and usage patterns.

Our basic line of discovery stems from the following observation: suppose there

are only two hosts in a peer-to-peer system and each host has some of the other’s

files. These two hosts can self-regulate and ensure that neither cheats the other out
of disk space by simply reciprocating malicious behavior once it is detected. We can
recognize the zero-sum nature of such storage systems this way: if one host consumes
too much of a resource, other hosts are hindered and should cut off access to the
abusive host; his gain is their loss, and vice-versa. Taking this line of reasoning to
a large-scale peer-to-peer system leads us to a somewhat paranoid model of data
storage, a model that we feel may be appropriate in an internet-wide distributed
storage system: each storage hosts will act as an autonomous agent solely interested
in preserving the storage space of its owner. These agents may interact to exchange
storage space among each other to increase performance and reliability of the data
with which they are entrusted, but there will be no implicit trust between any of the
agents. There should also be an expectation of “rogue” agents or agents that are

actively attempting to subvert storage space from other legitimate users.

Chapter 2: Literature Review

In this chapter we will review the current state of data storage as it relates to file
systems, file sharing and peer-to-peer systems. We will first briefly discuss traditional
systems, including local file systems, server-based file replication and file sharing
systems. We will then proceed to the bulk of related work to our topic, peer-to-peer

storage systems.

2.1 Local File Systems

A file system is an integral part of all computing systems as it is the interface between

the operating system and the disk drives, see Figure 2.

HOST

Applications

Operating System

File System

Figure 2: A local file system

Two important but relatively disjoint features of file systems are the user interface
and file system implementation [57]. The user interface specifies how the user and his
applications interact with the files: how files are named, organized and accessed for
reading, writing and deletion from the user’s perspective. Implementation refers to
the methods used to optimize the allocation and deallocation of disk blocks, to keep
track of which disk blocks are used by which files and support any disk quota system
or security paradigm mandated by the operating system.

The most immediate type of file system is a local file system. In such file systems,
files are stored on the local storage medium. This allows a computer to operate as a
standalone system, without accessing remote systems for necessary operations. Local
file systems are by far the most prevalent among personal computer systems; they
are the norm in Windows, Macintosh, and personal Unix systems. Some examples of
such local file systems include FAT and its relatives, FFS [1] [5], and ext2fs [40]. More
advanced systems include ReiserF'S and Linux’s ext3fs which perform journalling to

further improve non-catastrophic failure recovery.

2.2 Server-Based Systems

Server-based file replication systems are systems in which client programs on a remote
machine explicitly request a file stored on a machine that is running a server program.
A client is a program that establishes connections to servers for the purpose of sending
requests and receiving their results. A server waits for client requests and processes
them as they come in. Both client and server run on top of their local file systems as
illustrated in Figure 3.

FTP, or File Transfer Protocol, is a very simple client-server system for copying
files across networks. It consists of a standalone server program that runs on a

machine with access to the local file system which contains the files to be replicated.

CLIENT

iy File Client
Operating System
File System

CLIENT

M File Client

Operating System
File System

Figure 3: A server-based file replication system

SERVER

. Poq
File Server <

Operating System

File System

The server’s access to files is limited by the user running the server and the underlying
local file permission scheme [45]. The client program connects explicitly to a specific
server. The client user must either have authentication on the server machine or may
sometimes connect with a special “anonymous” account which may have limited file
access.

FTP is designed to transfer data reliably between computers on an as-needed,
per-file basis, in which the user running the client must have a good idea about where
the files are located on the server. FTP neither provides a way to easily search within
a server for specific files nor to identify addresses of potential servers. FTP was first
proposed in 1971 and is still in in wide-spread use for transferring files manually
between computers.

HTTP (Hypertext Transfer Protocol) is a more sophisticated client-server system

10

designed as a general-purpose file transfer system in which meta-information about
the data transferred is included in both client requests and server responses [24].

Although its use is not limited to hypertext transfers, the primary use of HTTP
is for world-wide web hyper media information pages. In order to display web pages,
web browsers such as Opera or Netscape Navigator send requests using URL (uniform
resource location) identifiers which contain the location of the server and the location
of the requested resource within that server. Additionally, the client may include
extra information about itself or about the requested resource. The server replies
with the requested resource and possibly more information.

Server-based sharing systems differ from replication systems in that files accessed
by remote clients are accessed directly and are not copied over the network. The server
and client provide an application-transparent mechanism for the client machine to
work with the files remotely. Applications and users are not aware that the files they
use are not stored locally; file-related system calls (such as open, read, write, etc) are
interpreted differently by the operating system and translate into remote procedure
calls. Figure 4 illustrates a generic server-based file sharing scheme.

Sun Microsystems was among the first to provide a network shared file system.
In the 1985, Sun introduced NFS (Network Filesystem) to provide transparent remote
access to shared files [55] [49]. Since this was the first such system, it became the de
facto standard.

An NFS server generally runs on a dedicated host whose task is to store user
files. These files can then be accessed by any machine that is trusted as a client.
NFS is a convenient way of centralizing large scale storage for the purposes of user
space management and backups. This is particularly useful in environments in which
multiple users use multiple machines, for example in corporate or university settings.

The security scheme in NFS is fairly weak; NFS servers trust clients on a per-host

basis, and thus a single compromised client could compromise the entire file system

11

CLIENT

CLIENT
Applications Applications
Operating System Operating System
FS Client SERVER LFS Client
~FS Server
Operating System
File System
CLIENT
’ Applications
Operating System
\ES Client

Figure 4: A server-based network file system

that it has access to. NFS is generally used on Unix clients and servers (although
there are clients available for Microsoft operating systems).

AFS (Andrew File System) was designed at Carnegie Mellon University to ad-
dress the shortcomings of NFS in a very large, complex, heterogeneous environment.
AFS is more secure and reliable than NF'S, but requires even more infrastructure to
operate [50] [30].

Features of AFS that go beyond NFS include a good security model, cooperating
servers, and intelligent client-side caching. An interesting difference between AFS
and NFS is that AFS does not work on top of a local file system, like NFS does. An
AFS “cell” takes up a physical disk device and can only by accessed by a client-server
interaction, even from the same machine.

There are a number of other server-based file systems including Echo [10], Sprite

12

[42] [41], Coda, and Amoeba [59] that make many advances in areas such as reliability,
performance, logging, clustering [52], and disconnected operation [34] [51], usually at
the expense of complexity [50]. It is clear that performance in network file systems

has been a very active research topic for the past several decades [8].

2.3 Peer-to-Peer File Systems

By the late 1990s, personal computers had become ubiquitous; new systems shipped
with at least 10GB disk drives and most consumers had Internet access of some sort
(AOL and other dial-up Internet service providers, cable modems, DSL). When MP3
technology ! was unleashed, many consumers began MP3-encoding their music col-
lections since they had enough storage capacity on their local file systems to store
their own music. With so many MP3s stored on so many computers that were con-
nected to the internet, the situation was ripe for a convenient way of sharing them.
Naturally, the first sharing of all of these MP3s was done by adventurous individuals
who ran large FTP or HTTP servers that distributed MP3 files to anonymous or
semi-anonymous users. The ensuing legal repercussions to the individuals running
such copyright-infringing servers caused people to rethink their distribution model
and peer-to-peer file replication was born.

This type of peer-to-peer file replication relies on altruism from a portion of its
users. To function, such systems need their clients to act as servers as well; this is
generally accomplished by a default setting in the client configuration that forces the
client to, in turn, serve any files it has downloaded. The basic design is illustrated in

Figure 5

Impeg layer 3 (MP3) is a very efficient audio storage format. There are programs that auto-
matically “rip” a music compact disk into MP3s. MP3s can be played back on a computer or on a
standalone MP3-player.

13

HOST

. Client<~:f—~ Serverf«d

Operating System
File System

Client=—= Serverre®

Operating System
File System

L
Y HOST gy
Client=—= Server|
Operating System
File System

Figure 5: A peer-to-peer file réplication system

2.3.1 Napster

Napster was one of the first peer-to-peer file replication systems developed. It was
specifically developed with the intent of allowing users to exchange MP3 files with
ease. A Napster program has both a client and a server rolled into one: it connects
to other servers and downloads files while at the same time provides those files to
others.

Napster uses a centralized index server to allow users to search for files by key-
word. The index server responds with the addresses of servers which have copies of
a given file. The server part of the Napster program periodically contacts the index
server and provides it with a list of files that it is serving.

This centralized index server allows users to easily find the locations of files while

still off-loading the heavy work of actually storing and transferring files to peers in

14

the system. This allows for a scalable, searchable system, but also leaves the system
vulnerable since it would not function at all without a centralized server. This is
in fact how Napster was shut down; legal suits were filed against the Napster index

server operators, even though they were not distributing illegal files themselves.

2.3.2 gnutella

In order to avoid the legal issues of running anything at all in a centralized manner,
gnutella [2] was developed to perform distributed searching as well as distributed file
serving.

To this end, each node in a gnutella network talks to a set of its rather arbitrary
“neighbors” and broadcasts search queries to its neighbors who, if they have a match,
respond. If not, they pass the query on to their neighbors, and so on. File transfers
themselves are still conducted in a point-to-point manner, but since there is no cen-
tralized indexing system, searching for files is less vulnerable to complete failure as
was the case with Napster. On the other hand, this broadcast-based searching scheme
carries a considerable amount of overhead and, in the long run, prevents gnutella from

scaling to anywhere near the levels Napster does.

2.3.3 Other Peer-to-Peer File Replication Systems

A number of peer-to-peer file replication systems have been developed, each with
a different emphasis, either on security, anonymity, meta-information, throughput,
fairness and a number of other factors.

Some of these systems include:

e Morpheus: addresses the scalability issues of gnutella by using dynamic “su-
pernodes” — nodes that have higher than average bandwidth act as Napster-like

indexing servers, but since these servers are dynamic and may come and go as

15

they please, are not bound by the legal issues that Napster index servers were

eventually shut down for(3].

Ohaha: a system that combines other file sharing systems into one, including

Napster and gnutella [4].

edonkey2000: a system similar to Morpheus but has the additional feature
of being able to download the same file from multiple sources for increased

download speed.

directconnect: a system designed to allow small- to mid-sized ad-hoc hubs for

sharing files and chatting.

filetopia: a system with goals of privacy and anonymity. All files in this system

are encrypted.

FreeNet: an advanced system outwardly similar to gnutella but with the prop-
erty that every file inserted into the system has a set of keywords associated with
it instead of a filename. Strong emphasis on privacy, security, and efficiency [14]

[15).

2.4 Peer-to-Peer Virtual RAID Disk Systems

The observation that server-based storage was expensive while local disk storage as

well as network bandwidth was abundant and cheap prompted the development of

serverless file sharing systems. This development is analogous to the development of

RAID storage systems 2 in light of the abundance cheap small disks as an alternative

to a single large disk.

2RAID (Redundant Array of Inexpensive Disks) is a common term for several schemes of software
and hardware disk apportionment that allow many small, inexpensive and possibly unreliable disks
to function as one large and reliable disk. Example include striping, mirroring, and bit-wise error
checking RAIDs known as RAIDO, RAID1 and RAID5 respectively.

16

A serverless network file system distributes storage, cache and control functions
across a number of peer-related workstations in order to provide server-like services
to each other or to other clients. Early peer-to-peer file sharing systems that will
be described in this section can be thought of as sophisticated network RAIDs since
their general goal is to emulate a single efficient and reliable network file server or

virtual disk as illustrated in Figure 6 [27].

Virtual Disk

- HOST \ HOST HOST
Applications Server Applicati Applicati Server Application Applications Server Application
Operating System | Operating System Operating System | Operating System Operating System | Operating System
TClient FS App. (File System) I Client FS App. (File System) Client FS App. (File System)

=

Figure 6: A peer-to-peer virtual file system

Advantages of these systems usually include efficient use of space, and per-
formance and reliability gains over local and server-based networked file systems.
These systems are intended to be used in a restricted environment requiring both fast
network connections between machines and kernel-level trust between participating

hosts.

17

2.4.1 xFS and NOW (Network of Workstation)

xFS is among the first serverless network file systems and uses many aspects of ad-
vanced network file systems such as cache consistency, cooperative caching and log
structure [42] in addition to network disk striping [27].

Every participant in an xF'S system runs a client, a storage server, a file manager,
a logger and a log cleaner [7]. Together, these subsystems form highly efficient and
reliable network RAID. Each host is responsible for a portion of a file, thus allowing
for higher throughput as more hosts are added to serve file requests.

Work on xF'S was incorporated into the NOW (Network Of Workstations) project.
NOW was a massively parallel super computing architecture consisting of hundreds

of workstations [6].

2.4.2 Jetfile

Jetfile is a light-weight serverless peer-to-peer file system that relies on peer-to-peer
communication over multicast channels to perform all high cost operations such as
file reads and writes [26].

Jetfile extensively uses hoarding and pre-fetching techniques. Clients hoard files
that are frequently used by their own system [37] and retrieve remote files that are
predicted to be used in the near future ahead of time. Each file managed by Jetfile
is associated with a multicast address that is used by other clients to request the
file; this makes network operations considerably more efficient than point-to-point
interactions. There is a centralized versioning server that is used for every file update
and is necessary due to the optimistic nature of Jetfile’s scalable reliable multicast

[25] paradigm.

18

2.4.3 Frangipani

Frangipani is a dual-layer approach in which the file system is built on top of a
virtual RAID [58]. Although similar to xFS in behavior and design, Frangipani has a
well-developed system recovery and reconfiguration scheme. The file system is meant
to be implemented within a shared environment with a unified user and resource

administration structure.

2.4.4 Farsite

Farsite is Microsoft’s peer-to-peer distributed file system that employs full file repli-
cation rather than a virtual RAID. The research on Farsite is mostly focused on
mathematically optimizing the file replica placement in order to optimize the effi-
ciency and reliability of the whole system [22] [12].

Work on Farsite includes very detailed real-world statistics on PC uptime and
reliability in the Microsoft corporate environment [21]. Farsite, while claiming to not
trust any of the local clients, still attempts to create a single large virtual disk that

is shared among all clients.

2.5 Next Generation Peer-to-Peer Systems

The next three systems which we will describe are the latest developments in peer-
to-peer distributed file systems. Unlike previous systems, they separate the functions
of finding or locating files (lookups) from other file system functions. Each of these
file systems is built on top of a standalone peer-to-peer object-location system. They
are designed to be deployed at the Internet scale, and are therefore intended to scale
and perform well with a very large number of nodes.

The primary success of these systems is derived from their object-locating algo-

rithms. In each case, the object-locating system is quite similar in design and perfor-

19

mance: a query from a client is usually routed to the appropriate server which has the
the necessary information (in the form of either a file or a block) in O(log(n)) hops
between other nodes in the system before reaching the result. Such object-locating
systems are elegant and very efficient in identifying storage nodes.

Unfortunately, as with many peer-to-peer systems to date, these systems fail to

adequately address a fundamental question of fairness, which we will discuss later.

2.5.1 CFS

CFS is a peer-to-peer read-only storage system that provides very good guarantees
on efficiency and robustness in a decentralized network of storage nodes [20]. It is
build on top of Chord, a peer-to-peer scalable lookup service which allows CFS to
quickly locate where information is stored [54].

CFS creates a user-level virtual file system out of blocks, and distributes the
blocks among multiple CFS nodes. Each node in the system has a unique hash
associated with it based on the node’s IP address. The key to the locations of the
blocks is content-based hashing — the contents of the block are hashed into the same
domain as the node hashes, and each node receives a portion of the hashed blocks.
Each node maintains a list of (immediately) successive nodes and a list of shortcuts
to nodes farther along the hash space. When a lookup happens (based on the hash
of the block being searched for), a node can use its shortcut list to jump to what it
believes to be the nearest node that has the hashed block. That node repeats the
process, and so on, until the node holding the block is located. Without the shortcut
list, a search would be linear to the number of nodes, but by using the shortcut list,
the number of search hops is O(log(n)) of the number of nodes in the system.

A Unix file system is built on top of the blocks for a client, and the root directory
block is encrypted and stored in the system. This root directory contains the hashes of

subsequent blocks in the file system [19]. Quotas are enforced on a per-client-address

20

basis — in other words, each unique IP address can use only a certain amount of disk
space on each server. This quota system is clearly very crude and does not take into

account the amount of space each node contributes to the system.

2.5.2 Oceanstore

Oceanstore is intended as a commercial global-scale file system in which data resides
on a large, distributed set of servers and can be accessed efficiently and reliably
from anywhere in the world. Clients pay to store their data on these servers, and
Oceanstore guarantees the accessibility of their data.

Oceanstore uses very widespread distribution to combat potential data loss. Like
CFS, Oceanstore is built on top of an object-location system, similar to Chord in many
ways, called Tapestry [60]. Tapestry performs hashing on disk blocks, but instead of
hashing storage nodes on their IP address, it randomly assigns values to nodes and
then routes queries based on a modified hamming-distance algorithm between the bits
of the hash of the block in question and the current block’s neighbors. This locator
system also finds the proper location in O(log(n)) hops of the number of nodes in the
system.

Oceanstore performs very sophisticated caching and pre-fetching techniques, since
there is only a small semi-trusted set of servers on which the responsibility of storing
the blocks falls — all other nodes in the system serve as caching nodes. These servers
are financially responsible for keeping a user’s information, thus solving the issue of
fairness — a user “contributes” money, and receives a certain amount of storage space

in return [36).

2.5.3 PAST

PAST is in practice very similar to both CFS and Oceanstore. Past is built on top of

an O(log(n)) hop object location system called Pastry [47] which has minor differences

21

to Tapestry and Chord. One significant difference between PAST and the other two
systems is that it is file-based, instead of block-based. This means that load-balancing
works differently, since small files are balanced better while large files are distributed
more poorly [48] [23].

Pastry assigns randomized hashes to both nodes and files in the system, and the
routing algorithm maintains tables of “neighbors” to which it can intelligently forward
a search request, again, in O(log(n)) hops to find the appropriate node containing the
desired file. Since it is file-based and each file has a randomized hash, this architecture
is closest to FreeNet [14] [15]. PAST does implement a rudimentary quota system,
but it is again IP-address based with no accountability for how much a given node

contributes and how much it consumes from the system.

2.6 Peer-to-Peer Trading Networks

The idea of trading resources among peers has been used in computer and other
applications for quite some time. Usually, trades among people, organizations or
systems are verified and supervised by a human operator thereby providing protection
against many of the issues that might otherwise trouble a fully automatic system.
Recent work has been done by Cooper and Garcia-Molina at Stanford to explore
the idea of trading within the context of peer-to-peer storage systems [16] [17], though
there is very little emphasis on subversive behavior of peer agents in this work. Their
design incorporates a system of bidding for space among peers which is effective on
the assumption that the peers do not step outside the framework of the system. This
type of system is a good approach when all peers are indeed interested in the best
performance of the system as a whole. The system addresses poor bidding practices
(always bidding or never bidding, for example) but does not address the problem of

theft or dishonesty among the peers.

22

Experimental results show that trading groups with 10 peer trading members
or fewer are the most efficient, and larger groups become progressively less reliable.
This is due to the purely heuristic bidding approach taken and needs to be corrected
by an on-line learning mechanism. In addition, the system as designed has no way
of backing out of a trade, in the case of permanent loss of a peer or as would be
necessary if a peer were to steal services from others.

There are a number of bidding policies that can be designed within this frame-
work [18]. Deciding which will give better results depends on a number of dynamic
factors including total system capacity and bidding order. In this design, the sim-
plest type of bidding interaction is an algorithm called DEED_TRADING in which
peers trade deeds, or promises of space with various reliability metrics affecting the
relative sizes of the amount of space traded. All of these algorithms, however, can be
thought of as fixed policy heuristics that may be fundamentally flawed with regard

to unexpected situations.

2.7 Summary of Literature Review

The progression from server-based networked file systems to full peer-to-peer file
systems is quite striking. Several scalable, efficient and robust peer-to-peer Internet-
wide storage systems have been developed recently. Despite this, an agent-based
approach which considers the problems of fairness, accountability, and reliability from
a bottom-up point of view has not been previously considered. A peer-to-peer lookup-
service would be a very good feature to add on top of an agent-based file storage
system for the purposes of file sharing to other users, but we feel that there should
be some form of leverage that a block’s owner would have over blocks stored on other
nodes. A zero-sum system is a logical solution as an alternative to a complicated

quota-based system.

23

To make optimal decisions, the system needs to be able to adjust and dynamically
alter its policy based on a changing environment. While a fixed trading policy might
accommodate a certain set of conditions (for example, subversions or attacks), only a
dynamic on-line policy has a chance of countering the whole class of problems which

may arise from inappropriate agent behavior.

24

Chapter 3: System Description

3.1 System Overview

In this section, we give an overview of A-DFS, a peer-to-peer distributed file system
using an agent-based architecture. An agent provides a self-centered utility-based
view of file storage: the agents strive towards what is best for their owners. If the
agents are properly constructed, they can behave in such a way as to improve their
owner’s data storage characteristics without being exploited by any of the other agents
in the system.

The proposed system is in essence a peer-to-peer personal distributed file system.
In other words, information will be distributed among multiple physical disks, but a
user will retain sole ownership and a strong degree of control over their own files.

This personal nature of the A-DFS will be expressed by a strong encryption
mechanism and a high degree of autonomy in each individual node or agent in the
system. This autonomy between nodes means that while some assumptions of good
faith may be taken, there is to be no trust between nodes in the system, since it
is each node’s goal to gain the very most for its owner in terms of disk space and
reliability. An exchange of services should only be performed by agents if it is in the
better interests of both to do so.

The desired goals of such a system are as follows:

e Scalability.
The system should scale well and maintain performance and other characteris-

tics as the number of users and computers involved increases.

e Personal Administration.
There should be no higher authority for a user’s files than that user himself. In

other words, there is no “trusted” administrator who has access to all files.

25

Security.
The system should be secure, in that no unauthorized access or denial of service

can take place.

e Reliability.
The system should be failsafe and reliable in events of loss of connectivity or

hardware failure.

e Reasonable Performance.
The system should perform at acceptable speeds, and in particular, at speeds

no less than a local file system.

e Mobility.

The user should be able to access the same file space from multiple locations.

e Anonymity.
If desired, the user should be able to retain a fair degree of anonymity with

respect to his files. He should feel safe storing his file in the system.

With these goals in mind, the system has been designed as follows. We will
give an overview of how the overall systems works, with following chapters focusing
on the detailed components of the system, namely how information is stored, how
authentication and authorization takes place, and lastly, how the agents will make
their decisions for which actions to take.

Each user who chooses to participate in A-DFS allocates some of their local
disk space for their use in the A-DFS. This allocated local disk space is broken
up into chunks, or blocks, that are for efficiency and fairness reasons considered
single indivisible units within A-DFS, similar to a disk block. Each of these blocks
is “owned” by the user who created them and managed by the agent running on a

workstation belonging to that user. It is quite possible that blocks initially belonging

26

to a user are physically located on multiple disks (and on multiple machines) that are
all owned by the user; this could be the case if a user has several machines, at home
and/or at the office, all participating in the A-DFS. In this case, all of the agents on
these machines would have a shared pool of blocks under their collective control.

A virtual file system is built on top of all of a user’s blocks, and files are written
to and from the virtual file system by the client side of the agent as illustrated in
Figure 7. These A-DFS blocks are the basic unit in which A-DFS agents interact

with each other; they are traded one-for-one.

Virtual File System

Client

Operating System

S/

Server Server

Operating System Operating System

File System File System

Both servers are owned by the
same user as the client

Figure 7: Overview of A-DFS

As illustrated in Figure 8, a user, or block owner, may have blocks which belong

27

to them on many different machines not under their immediate control, but the total
number of blocks that they own is exactly the same as what it started at when all of
the blocks were on their own machine. Of course, the block owner can do whatever
they wish with the blocks, either use all of them to store files or split them up, perhaps

mirroring some of their space.

Applications Applications Applications
Operating System Operating System Operating System
Client C1 Client C2 Client C3

l

Virtual File System

Virtual File System

Virtual File System
VFS1

Server Server Server
Operating System Operating System Operating System
File System File System File System

Figure 8: Sample A-DFS Interactions

Let’s look at a specific example, as illustrated by Figure 9. Owner A decides to
use 1GB of space, and at 1MB/block, this gives A’s agent 1000 blocks to work with.
Owner B decides to use 2GB of space, which gives B’s agent 2000 blocks. Owner C
decides to use 3GB of space, for 3000 blocks.

At their starting points, A’s agent directly controls all 1000 of A’s blocks, B’s
agent holds all 2000 of B’s, and so forth. Owner A decides to use no backups, Owner
B decides to back up his blocks 1:1, and Owner C decides to be really safe and back

28

(IOOOA) (20003) (3oooc)
7N

(ZOOA 300B 5009 1000B| 300A 7009 GOOA 700B 18009

Figure 9: Disk space allocation immediately after joining A-DFS and after blocks
have been traded

keep two backup copies of each block he owns. Each user then has 1000 ‘usable’
blocks from their own point of view, but 1000, 2000, and 3000, respectively, from
their system’s point of view.

Based on the trading model, which will be discussed in a later section, Agent
A trades some blocks with Agents B and C, B trades with A and C, and C trades
with A and B. At some later time, each is holding blocks “belonging” to A, B, and C.
When B needs to access some of his blocks, his agent locates the nearest appropriate
block and requests that block from the remote agent charged with holding it [44].

All blocks are encrypted, and unless their owner decides to share the decryption
keys, no one other than the block owner’s agent may access the information in the
block even though the encrypted block contents may certainly be read by anyone on

the machine that the block is physically located on, as well as anyone snooping the

29

network during transfers.

In addition, each block has an owner identity associated with it in the form of a
digital signature, so that only the legitimate owner can write to the block on a remote
storage host [9]. This signature is a variation of a one-way content hash of the block
in question.

The authentication and authorization scheme employed needs to be powerful
enough to do the following: prevent unauthorized access to information stored within
blocks, prevent unauthorized writes to blocks, and to detect “cheaters” or rogue
agents who do not act in good faith in terms of preserving the blocks with which they
have been entrusted. Examples of such cheating are discarding blocks or allowing
them to become corrupted or overwritten in an unauthorized fashion, in other words,
double-booking their disk space.

However, a number of interesting features are available for sharing access to
blocks. If a user were to distribute the public key associated with a set of blocks then
other users would be able to decrypt and thus read the files stored in these blocks
[39]. This will allow for sharing of data without replication. Also, empty blocks can
be effectively compressed by giving them a special designation; this will allow the
agent entrusted with storing a block to “borrow” space from these blocks to use as a
cache for other frequently used blocks that would otherwise have to be retrieved from
possibly remote locations. This would establish a proximity cache as space allows.
When the owner of the borrowed blocks requests allocation of that space, the cache

would simply be flushed.

3.2 Self-Moderation

Central to A-DFS is the ability of each agent to make its own decisions. If properly

implemented, this ensures that no agent takes advantage of another. To this end, it

30

is important that each agent have a view of their “world” state and some idea of the
state of other agents in order to be able to make intelligent decisions about which
actions to take. An agent’s state consists of both internal and external information.
An agent’s internal information is straight-forward: its own network parameters, its
bitmap of blocks and its usage patterns. External information is more difficult to
gather. An agent should have an idea of how it might expect other agents to act. In
other words, there should be some sort of information sharing between agents, but
not in a trusted manner.

Information shared between agents should be consistent — in other words, agent
A’s idea of agent X’s behavior should closely correspond to agent B’s view of the same
agent X. This problem is very related to the classic Byzantine Generals Problem [38]
in which a number of generals who may have traitors in their midst must exchange
information and come to identical conclusions. This can only be the case if the non-
traitorous generals each have the same information.

A reasonable solution to this scenario is a single authenticated broadcast channel
shared by all the agents. Such a multicast channel is lightweight relative to other
network costs involved and ensures that each agent has a voice which other agents
can hear — but it will be their decision to ignore or pay attention to the information
other agents would propagate. Since each agent can cryptographically sign their
messages, only dishonest agents can forge each others message and no honest agent’s
messages can be forged.

In a system of 3m + 1 agents in which there are at most m traitorous agents,
non-broadcast solutions to this problem exist, but they are recursive in the number of
possibly traitorous agents in the system. Essentially, each agent takes a vote among
its peers to ensure that it is indeed receiving each bit of information correctly from a
specific peer, and this process must be repeated m recursive steps to ensure the top

level of information is transmitted without interference.

31

3.3 Trading

Block trading is a zero-sum system; once in the system, blocks are neither created
nor destroyed, but simply moved around between different agents.

At its most basic level, block movement can be thought of in terms of a simple
trade from each agent’s point of view: an agent must decide which block it should
offer up for trade to its neighbor, and whether it should accept a given block in return.

There are a number of factors that affect block trading policy both adversely
and positively. First and foremost, an agent must weigh the consequence of a possiblg
trade against the resulting reliability of the blocks it is entrusted with. Such reliability
factors include having multiple identical (mirrored) blocks owned by the same user.
The intention of distributed identical blocks is to avoid catastrophic failure and loss
of data; this should be accomplished by widely dispersing identical blocks and thus
a receiving agent should not accept duplicate blocks. In addition, a storage agent
should not accept blocks from a known cheater (see Security Model section below).
Trading blocks with a cheater will likely result in data loss.

Overall performance of the A-DFS is another concern that should govern trading
policy, and so a way to encourage agents to help their neighbors must be devised.
Blocks that are often used in a given local network neighborhood should be attracted
into that neighborhood. Caching achieves similar results, but congregation of fre-
quently use blocks to their users will tune A-DF'S for better performance by lowering
network overhead [35].

The trading schedule (how frequently a block is traded) should be proportional
to the aggregate of how much an agent wants to trade all of its blocks. For example,
at the initial state of a new A-DFS member, when all mirrored blocks reside on the
local disk, the aggregate “desire to trade” is very high — the agent should want to
offload as many of its mirrored blocks as possible. A probabilistic model can be used

in this case; the mean period between trades should increase as the agent stabilizes

32

its reliability and performance characteristics.
The next three chapters go into detail describing the following subsystems: stor-
age, communication (authentication, authorization, and feedback), and internal agent

design.

33

Chapter 4: Storage Subsystem

In this section, we will discuss how the actual storage of information takes place —
how to implement the user-level and OS-interactions. While straightforward, these
specifics would be necessary to implement in any such working system and should
therefore be provided to aid in development of such a system.

There are two possible user interfaces for such a system. First, there should be
a command-line interface that portrays remotely stored files as normal local files and
provides with the same file operations as with normal files. On top of such a command-
line interface, a graphical user interface might be constructed that provides an icon-
based view of the same files. Essentially, what is necessary is a set of file operations
that mimic the standard set of file calls, such as fopen(), fclose(), fseek(), and so
forth. These function calls could either be implemented as a shell process, much like
the Samba file system shell or as a separate file system which would be implemented
as a kernel module. For a first implementation, taking the husk of the smbfs (Samba
File System) shell and modifying it to this purpose would be considerably easier. To
implement each of these calls, several operations must happen.

First, since the agents in the system deal with each other at the block level, sets
of files must be mapped to set of blocks. To do this, an abstract or virtual file system
must be built on top of all of an agent’s allocated blocks. This can be done in a
number of ways, but it would be easiest to re-use an already developed and mature
filesystem such as FFS, and only point it at a set of blocks (within an otherwise larger
filesystem) instead of a physical disk. FreeBSD 4-STABLE is an operating system
which runs on the Intel CPU-based architecture [1] and FreeBSD has exactly this
capability. This is known as a vnode file structure and allows a file to be treated
as a raw device. This allows an easy (although perhaps inefficient) way of creating

a prototype A-DFS system between FreeBSD nodes. A normal FFS file system is

34

created via a vnode device within a single large file, and this single large file is then
shared by a user-level A-DFS agent.

This single large file is then broken up into the virtual A-DFS blocks and this
then leads to the second issue of transferring these blocks between nodes in A-DFS.
This is implemented by having a single master-agent process have this file open with
write access perpetually. Then it would use a utility similar to netcat or, perhaps, its
own sockets-based transfer mechanism to transfer blocks between hosts.

To increase performance by decreasing network overhead, numerous mature cach-
ing and hoarding techniques [29] [37] [11] could be implemented. Both the Oceanstore
and PAST systems use locality-based caching and data migration techniques which
could easily be adapted to such a system. At the moment though, our interests lie
in exploring an agent-based paradigm and not seeking out optimizations on existing
techniques, so our efforts in this area will be minimal in order to obtain a reasonable
level of performance.

Rudimentary benchmarks for transferring 1MB-blocks between point-to-point or
switched networked hosts via the netcat utility and reading and writing from them
via a vnode device structure yield comparable results to transferring the same amount
of information via NFS. This leads to an expected performance framework roughly

in the same ballpark as typical server-based filesystem.

35

Chapter 5: Authentication and Authorization Sub-

system

In order for A-DFS to function as if it were a local file system from the user’s point
of view, the user has to be certain that he is the only person who has administrative
access to his blocks. In addition, a scheme must be devised to ensure that cheaters
(rogue agents that do not adhere to guidelines) are caught and are not permitted to
abuse other people’s resources.

This first part, block-level security, is done through an application of public-key
encryption, in which a block owner uses the private key to encrypt the block upon
writing, then the public key is used to decrypt it [32]. In this way, the owner can
share the public key with others, thereby giving them read access. If he wants to
share write access, he can also share the private key for that block.

We will briefly outline RSA, a public-key cryptosystem defined by Rivest, Shamir,
and Adleman [46]. In RSA, keys are quadruples (p, g, e, d), with p a large prime num-
ber, ¢ a large prime number, and d and e large numbers with (de — 1) divisible by
(p — 1)(g — 1). The encrypting function is Ex(P) = P° mod pq , and decrypting
function Dg(C) = C? mod pq where P is the plain-text and C is the encrypted mes-
sage. All quantities are readily computed from classic and modern number theoretic
algorithms (Euclid’s algorithm for computing the greatest common divisor yields an
algorithm for the encrypting and decrypting functions, and newly explored computa-
tional approaches to finding large ‘probable’ primes, such as the Fermat test, provide
the the key quadruple generation algorithms). Ej is easily computed from the pair
(pq, €) — but, as far as anyone knows, there is no easy way to compute Dk from the
pair (pg,e). So, whoever generates K can publish (pg, e). Anyone can send a secret
message to him; he is the only one who can read the messages.

Relating private and public keys to blocks is a straight-forward process: a group

36

of blocks with the same read/write permissions will have a unique public/private key
pair associated with them. Read permission is granted all who have the public key,
and write permission is granted to those who have the private key.

If the owner wants to make a block world readable, he can openly distribute
the public key along with the block or on a common white-board-type server that
facilitates file sharing on a large scale. In this way, the owner of the blocks remains
anonymous while retaining write access to the blocks, since he is the only one able to
produce the proper private key to perform a write operation.

Although ensuring access control is a fairly straight-forward application of public
key éncryption as outlined above, the detection of cheaters is a bit trickier. The basic
operation is similar to determining whether another server (and its corresponding
stored blocks that belong to you) are off line. The added complication is that we
must assume that the agent entrusted with storing the block is attempting to cheat.
A reasonable system that will (eventually, after a period of time) detect cheaters
involves spot checks, or periodic challenge-response queries that can only be answered
by an agent that indeed still has the block being verified [9].

We will start by analyzing a simple base case from which more complicated cases
can be further understood. A and B are nodes in the system which have traded blocks
with each other; node A has given one of its own blocks to node B and node B has
given one of its blocks to node A. Suppose that B is a cheater that does not retain
blocks that have been given to it, and that B wishes to fool A into thinking that it
still has A’s block. Node B might extract some information from A’s block before
discarding it, hoping to use this information if node A ever requests a verification.

If A retains a copy of the block it gave to B (for example, if A is using B as
a backup mirror), then this checking is fairly straight forward: A can request that
B perform a randomly seeded checksum on A’s block which A can then verify by

performing the same operation on its own copy.

37

However, if A does not have a local copy of the block it wishes to check, then
the verification process becomes more difficult. One method of cheat detection in
this situation is to store pre-computed checksums. Prior to transmitting the block
to B, A would compute and store a checksum value for that block. A can then
periodically request the blocks from B and verify that the checksum of the received
block matches A’s stored checksum. Although this solution guarantees that A will
detect any dishonest behavior from B, the overhead involved in transmitting entire
blocks just to ensure fair play is undesirable.

At first glance, a potential optimization might be to request for B to calculate
a checksum on the block in question and transmit just the checksum result for com-
parison. However, this (and variations on this) does not work because upon receiving
the original block, B can calculate the checksum and discard the entire block, thus
fooling A into believing that the block is safely stored in subsequent check-ups.

If A is not going to store a local copy of the block, then an adequate solution is
for A to pre-compute a series of challenge-response pairs and store them for future
checkups on B. These challenge-response pairs consist of a random phrase symmet-
rically encrypted by an arbitrary portion of the block. A will subsequently send a
cha.llenge'to B in the form of a block id, an encrypted phrase and an offset within
that block, and B will have to respond with the propér decrypted phrase. B decrypts
the challenge by using a portion of A’s block as a key to the challenge phrase. If B’s
response does not match the original phrase, A can conclude that B does not have a
legitimate copy of the block.

If A is storing any of B’s blocks and A has detected that B is a cheater, then
a clear solution is for A to discard B’s block in retaliation (reclaiming its local disk
space by a forced trade) and cease further trading activity with B. The information
in the lost block can be recovered either from a local copy or requested from another

host storing it.

38

In addition any retaliatory block dropping, A should notify other A-DFS mem-
bers of B’s rogue tendencies. While there are point-to-point relaying methods for
doing this, the communication overhead is too high. A viable alternative is to im-
plement a single multicast channel which all agents will monitor. Each message sent
along this broadcast line needs to be attributable to the sender, otherwise a rogue
agent might fabricate accusations in order to confuse the situation for others. Like all
other communication between agents, each message will be cryptographically signed
by the sender with their private key and can be authenticated with their readily
available public key. To minimize the computational resources necessary to encrypt
and decrypt these messages, key size can be kept relatively low by embedding source
address information and cycling keysets on an as-needed basis.

The effect of this broadcast information on agents’ behavior is a separate issue.
For one, since there is no way of identifying the validity of each given accusation,
it is safest to consider an accusation from A to B as detrimental to both A and B
and to expect that probabilistically whichever one was indeed misbehaving would be
identified by a number of other accusations as well, while the one who was truthful
would only have a slightly downgraded public opinion, along with all of his fellow
co-accusers or co-accusees, as the case might be. This public opinion should have a
time element to it as well, since agents should be allowed to change their behavior
or recover from crashes. We will refer to this public opinion as an agent’s reputation

rating and its calculation will be discussed in the next chapter.

39

Chapter 6: Agent Behavior

In this section we will discuss how to organize agent perceptions and actions in order to
allow them to act in the most beneficial manner with respect to the their individual
storage characteristics. In a large, complex system such as this, there are quite a
number of factors to consider. Since the number of states each agent could possibly
be in is very large, agents need to be able to adapt to a changing environment. This
suggests that an on-line learning algorithm be a part of the agent decision process.
As with any learning system, in order to minimize the complexity of the learning, we
will include certain heuristic simplifications in the form of quantization of input data
as well as attempt a partial mapping between certain states and utilities. This partial
mapping will allow us to decide whether agents are acting reasonably by looking at

their states and actions while the learning system should pin-point optimal behavior.

6.1 Agent Perceptions

Each agent is able to gather information about itself and its environment, including

other agents, and base its actions on the following:

e Block map
Each agent records the location of its blocks, whether they are stored on the
local disk or have been traded away to other storage agents. Along with each
block is a set of information including frequency of read and write access as well

as latency and bandwidth estimates from the storage host to the owner.

e Characteristics of blocks it is hosting
Each agent should keep track of the owners of its blocks and their network

properties as well access frequencies of the blocks.

40

e Network properties of peers
Each agent should be aware of its network connection properties, such band-

width and latency to a set of its near neighbors.

e Reputation
By monitoring the multicast channel each agent may keep track of its own
reputation as well as the reputations of other agents in the system. Specifically,
we will impose a heuristic scale for reputation. A zero reputation is unblemished,
in that there have been no complaints lodged by or against a given agent. As a
“mark” against an agent is perceived, its negative reputation score is increased
by 1— z where z is the z-score of the agent’s reputation on a normal distribution
relative to the normalized distribution of all the reputation scores of all the
agents in the population. This is capped, of course, at a distance of 1 — ¢
standard deviations for a minimum of slightly higher than zero and maximum
of 2. Thus, an agent with already exactly average reputation would have their
negative reputation increase by a value of 1, while an agent that is one half of
a standard deviation better than the mean population reputation would only
drop by a value of 0.5. This scaling accounts for the chances that an agent with
a good reputation is more likely to be honest relative to an agent who already

has a bad reputation.

We<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>