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ABSTRACT

MODELING FLEXIBILITY IN PROTEIN-LIGAND RECOGNITION
By

Maria lldiko Zavodszky

The function of many proteins is to recognize and bind peptides and other small
molecules. Understanding the way these proteins work implies understanding the driving
forces of protein-ligand interactions. This, in turn, is necessary to find new, specific
ligands for proteins that are potential targets for disease therapy, or to help elucidate the
function of the increasing number of proteins with known structure, but yet unknown
function. Computational methods are well suited for analyzing the large amount of
existing experimental data to identify the underlying principles of protein-ligand
interactions. These principles, combined with efficient algorithms, are built into docking
and screening schemes used to predict binding orientations and interactions of partner
molecules providing a working hypothesis for further experiments. At the same time,
these computational tools facilitate screening of large databases for reducing the large
number of organic molecules to a smaller set of potential ligands to be tested for binding
to the target of interest.

SLIDE, the protein structure-based ligand docking and screening tool developed
in our laboratory, handles ligands and protein side chains flexibly and has the possibility
of taking water-mediated interactions into account. It is capable of screening a database

of 100 000 molecules in 1-2 days on a desktop computer. SLIDE was used to propose a



viable model of the ternary complex of R67 dihydrofolate reductase ¢ folate * cofactor,
taking into account existing experimental data. The results are in good agreement with
the predictions of another widely used docking tool, DOCK, and propose specific
interactions that can be tested by mutagenesis.

Improved representation of the binding site, using a knowledge-based approach,
coupled with the realistic modeling of protein side-chain and ligand flexibility in SLIDE
allowed the identification of new ligands for thrombin. This was achieved by screening
the Available Chemical Directory, followed by the experimental measurement of the
binding constants of the predicted top scoring ligand candidates using Isothermal
Titration Calorimetry. Two of the top scoring ligand candidates were found to have
binding affinities in the micromolar range for human thrombin.

As part of this thesis work, a new approach toward modeling main-chain
flexibility in docking was proposed: Flexibility analysis of the target protein was
performed using the graph-theoretic algorithm FIRST, followed by the generation of
alternative conformations for the predicted flexible regions with ROCK, a conformer
searching program based on a random walk sampling of the rotatable bonds. A
representative set of the conformational ensemble generated this way was used as targets
for docking with SLIDE. ROCK is uniquely suited for flexibly handling ring structures
and can be used to model the flexibility of large circular ligands, as well, as demonstrated
on the case of cyclosporin. The use of this combined method to perform fully flexible
docking is illustrated for cyclophilin A — cyclosporin, while addressing the question of
how much flexibility of the interacting molecules is tolerated without hindering

molecular recognition.
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Chapter 1

Introduction

1.1 Modeling Protein-Ligand Interactions

Life can be viewed as interconnecting series of specific binding steps. The molecular
organization of living matter implies the dependence of all biochemical processes on
molecular recognition, from protein-ligand interactions through macromolecular
associations to the intriguing process of protein folding. This thesis deals with modeling
the molecular recognition between proteins and small molecule ligands that is of great
practical significance for finding new specific ligands to proteins that are potential targets
for disease therapy. Detected patterns in binding preferences can also help elucidate the
function of the increasing number of proteins with known structures, yet unknown
functions.

Scientists have been puzzled by the specificity and accuracy of molecular
recognition since the beginning of modermn biochemistry. Advances in technology
facilitated rapid advancement in this area over the past few decades. Knowledge about

the features contributing to protein-ligand interactions is derived from experimental data,



most importantly from the exponentially increasing number of protein structures solved
by X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) and
deposited into the Protein Data Bank. (Berman et al., 2000). Calorimetric methods
(Jelesarov and Bosshard, 1999), often combined with mutagenesis, provide useful
information about the energetics of association of biomolecules. Reciprocal burial of
hydrophobic surface patches as well as shape and chemical complementarity of the
interacting partners along the interface are traditionally believed to be the critical
contributors to the specificity of the binding process (Halperin et al., 2002; Kuntz et al.,
1999; Sobolev et al., 1996). Nevertheless, proteins bind ligands even if their shapes in
free form do not seem to be optimized for complementing each other. The differences
observed between the ligand-free and ligand-bound structures of a number of proteins
(Betts and Sternberg, 1999) point to the importance of accounting for the flexible changes
occurring upon binding. According to the original concept of induced fit (Koshland,
1958), the match becomes perfect after these changes are induced in the protein by the
ligand itself. The newly emerging view of the pre-selection of a complementary
conformer, based on experimental and theoretical considerations (Bosshard, 2001; Ma et
al., 2002), is an alternative to the classical induced fit, arguing that all proteins exist in

ensembles of substates, presenting to the incoming ligand a range of binding shapes.

1.2 Computational Docking and Screening

A computational biochemist creating a docking program has to find solutions to the
following problems: (1) accurate representation of the shape, chemistry and flexibility of

the protein binding site and the ligand; (2) efficient search algorithm to explore the



orientational and conformational space of the ligand in the binding site, and (3) prediction
of the correct docked ligand orientation. In addition, when the goal is to identify new
ligands for a protein of interest, in which case the process is called screening, potential
ligands have to be separated from other molecules based on their estimated binding
affinity, providing a reasonably short list of ligand candidates for experimental testing.
These problems are strongly interrelated: predicting the correct binding orientation
depends on the proper representation of the binding site, and a list of plausible ligand
candidates could not be provided without a reasonable estimate of the binding affinity,
nor could the binding affinity be estimated without a reasonably correct prediction of
binding orientation.

Although every screening program includes a docking step, screening is different
from docking to some extent: the goal of screening is to identify ligands from a large
database of typically diverse molecules. When a large database of small molecules is
searched for potential ligands, the computational time spent on docking one molecule
must be very short. Current docking algorithms spend a relatively long time (ranging
from minutes up to hours) on docking one ligand with high accuracy. If only one minute
were spent on docking each ligand when searching through a database of about 100 000
molecules, such as the Cambridge Structural Database (CSD) (Allen, 2002), the
screening time would be more than two months. The most efficient way to overcome this
problem is to rule out the unfeasible ligand candidates as early as possible from the
screening process and spend the most time-consuming final docking step on promising
candidates. The computational intensity and relative ranking of different ligands are

problems that make screening a more challenging problem than docking.



1.3 Overview of Current Approaches in Docking

There are a number of excellent reviews in the literature summarizing the principles of
docking (Abagyan and Totrov, 2001; Halperin et al., 2002; Lengauer and Rarey, 1996)
and the different approaches used for screening large databases for lead generation
(Abagyan and Totrov, 2001; Klebe, 2000). This section is intended to give only a brief

overview of the main steps involved in the docking and screening processes.

1.3.1 Binding Site Representation

All-atom representation of both the binding site and the ligand is used throughout the
simulation only when docking is done with molecular dynamics (MD) simulation. The
protein is usually held fixed, while the orientational and conformational space of the
ligand is sampled with a Monte Carlo (Carlson et al., 2000) or a genetic algorithm (GA)
based method (Taylor and Burnett, 2000). The energy of the system is monitored, and a
docked ligand orientation is considered to be a possible solution when a local energy
minimum is found. These types of methods are the most accurate, but their high
computational cost makes them a non-practical alternative for screening.

While maintaining the all-atom representation for the small ligands, fast
docking programs use a reduced representation of the binding site in order to minimize
the cost of the conformational search that follows. Discrete representations come in
different flavors: geometric, with added chemical features, knowledge based or grid
based. There is a whole spectrum of binding site representations between the geometric

and the knowledge-based method, where a limited number of points are laid down to



trace the protein binding surface while the density of the points in certain areas is
determined by knowledge about favored hydrogen-bond geometry, for example. A more
detailed description of the currently used methods for binding site representation is

provided in Chapter 3.

1.3.2 Orientational and Conformational Search

A rigid-body transformation superimposes the ligand over the binding site in all possible
orientations that result in no deep interpenetrations between the molecules’ van der Waals
surfaces. When the molecules are represented by discrete points indicating the position
of atoms capable of participating in potentially key interactions, it is usually sufficient to
match three non-collinear points from the two molecules to perform the 3D alignment. A
triplet of non-collinear points bears just enough chemical and spatial information about a
molecule to indicate a possible nontrivial match to another molecule with a
complementary set of three points. In the same time, it is easier to match triplets of
points sets of four or more. The result is a large number of possible matches due to the
combinatorial complexity of matching every possible atom triplet from the ligand to
every possible triplet point describing the binding site. For example, assuming the
binding site is described by only 100 points and the ligand by 10 points, there are

100x99x98 = 970 200 possible protein triangles to be matched to 10x9x8 = 720 ligand
triplets, which would result in approximately 7x10° computations. Geometric hashing

algorithms are used to reduce the complexity of the problem by replacing the exhaustive
search of matching every property of an object A to every property of all the objects from

set B with a hierarchical search of matching one property at a time and eliminating



mismatches at each step. In the case of SLIDE, for example, all the possible template
point triangles describing the protein binding site are organized in index tables based on
individual simple properties like chemical labels attached to the points, length of shortest
side, length of longest side, and perimeter of the triangle. As a first step, the chemical
labels of one possible ligand interaction-point triplet are compared to the chemical labels
of all template triangles. Only template triangles with matching chemistry are kept for
the next step of matching the length of the shortest side, and during the third step, only
triangles with similar shortest sides are kept for comparing the length of the longest side,
and so on. The number of matches to be checked is reduced at each level of the index
table, resulting in much faster execution times compared to exhaustive matching.

There are two main forms of docking: redocking and predictive docking, with
redocking being far simpler. This is done by taking the ligand structure out of a
crystallographic complex, and docking it back into its target structure, with both
molecules initially possessing their favored conformation for binding to each other.
Predictive docking, in which the free structure of the ligand is docked into the unliganded,
apo structure of the target protein, is much more complex. In this case, the orientational
search of the ligand has to be complemented with the exploration of the internal
conformational space available for both the protein and the ligand to find the appropriate
conformers that complement each other the best. Most current methods treat the ligand
flexibly while keeping the protein rigid. The ligand is either incrementally built up in the
binding site, or internal dihedral rotations are used to fit the ligand into the rigid binding
site. Although better than completely rigid docking, the shortcoming of this approach is

unrealistically placing all the burden of induced conformational change onto the ligand.



Another method to take into account induced fit upon binding is by allowing a certain
amount of van der Waals overlap between protein side-chains and the ligand. This is
often called soft docking.

Analysis of conformational changes on complex formation for a representative set
of 39 pairs of ligand-free and ligand-bound structures (Betts and Sternberg, 1999)
showed that about 50% of the proteins undergo substantial main-chain and side-chain
conformational changes when binding ligands. This induced fit is often modeled by
selecting alternative side chain conformations for the binding-site residues from a
rotamer library or by performing directed rotations of rotatable bonds in the protein side
chains and flexible ligand portions to resolve collisions after the ligand is transformed
into the binding site. Inducing main-chain flexibility changes while performing the
docking is too expensive computationally, so efforts are directed toward generating a
conformational ensemble of the protein, and using this set as the target for the docking
instead of one single structure. This approach is also following the line suggested by a
number of theoreticians and experimentalists (Bosshard, 2001; Ma et al., 2002), who
argue that the idea of the ligand selecting a complementary conformer from the
preexisting native state ensemble of the protein is at least an alternative to the classical
induced fit, where ligand binding triggers the conformational changes in the binding
partners necessary to create a good steric complementarity. A more detailed analysis of
handling protein side-chain and main chain flexibility in docking is presented in Chapters

4 and 6.



133  Scoring

Docking programs usually return a number of possible docked orientations for
each ligand. A scoring function is employed to select the best docking among all. When
known ligands are docked to their targets, the scoring function is expected to give the
best score to the docking closest to the orientation of that ligand seen in the crystal or
NMR structure of the protein-ligand complex. Also, when multiple ligands are docked to
a single target, the scoring function should rank them according to their binding affinity.
Theoretically, free energy calculations combined with MD simulations were shown
provide reliable ranking for some systems, but they are too time-consuming, and as such,
nof a practical alternative (Miyamoto and Kollman, 1993; Pearlman and Charifson, 2001).
Instead of calculating the binding affinity from first principles, docking programs use
scoring functions to estimate the tightness of binding from structural parameters.
Empirical scoring functions estimate the free energy of binding as a sum of several terms,
each of them describing the contribution of one type of interaction to binding, such as van
der Waals interactions, hydrogen bonds, ionic interactions, etc. (Bohm, 1994; Rognan et
al., 1999; Schapira et al., 1999; Wang et al., 2002). Knowledge-based scoring functions,
on the other hand, use statistical preferences derived from pair-wise interatomic distances
and frequencies observed in crystal structures of protein-ligand complexes to determine
the contribution of individual ligand atoms to the final score (Gohlke et al., 2000;
Mitchell et al., 1999; Muegge and Martin, 1999). Scoring is one of the most challenging
problems in the field, and there is no existing scoring function that performs consistently
well across various systems (Halperin et al., 2002; Tame, 1999). The correct docking, or

the one closest to the crystal structure position, is usually near the top of the list, but



buried among the large number of false positives (poor or approximate dockings given
very favorable scores). Similarly, true inhibitors are often given smaller scores than
inactive compounds when a mixed database of known ligands and decoy molecules is
screened against a protein target. Consensus scoring has been suggested by several
authors as a feasible way to ease this problem, resulting in improvements of up to 65-

70% in hit rates (Bissantz et al., 2000; Charifson et al., 1999).

1.4 SLIDE

The docking and screening software SLIDE (Screening for Ligands by Induced-fit
Docking, Efficiently) developed in our laboratory (Schnecke et al., 1998; Schnecke and
Kuhn, 1999, 2000) models flexible protein-ligand interactions based on steric
complementarity combined with hydrogen bonding and hydrophobic interactions. SLIDE
efficiently reduces the large number of ligand candidates to a manageable number by
using geometry indexing and distance geometry filtering on discrete representations of
the protein and ligand candidates. Approximately 100,000 small molecules can be
screened and docked by SLIDE in one to two days on a typical desktop workstation.

A novel feature of SLIDE amongst geometric (rather than MD) methods is that it
can take into account solvation. Consolv, a k-nearest-neighbor classifier developed in our
laboratory (Raymer et al., 1997), is applied to predict conservation of binding site water
molecules upon ligand binding. Waters predicted to be conserved are included as part of
the binding site, although they can be displaced by a ligand atom at a later step if this

results in greater molecular complementarity.



SLIDE was the first method to balance protein and ligand flexibility in docking.
Due to this feature, it can identify and correctly dock diverse, known ligands into the
ligand-free conformation of the binding site for a variety of proteins, e.g., subtilisin,
cyclodextrin glycosyltransferase, uracil DNA glycosylase, rhizopuspepsin, HIV protease,
estrogen receptor, and Asn tRNA synthetase (Schnecke et al., 1998; Schnecke and Kuhn,
1999, 2000). Scoring of the docked protein-ligand complex by SLIDE is based on the
number of hydrogen bonds and the hydrophobic complementarity between the ligand and
its protein environment. The main steps involved in screening with SLIDE are shown in
Figure 1.

The purpose of the work described in this thesis was not only to enhance the
performance of SLIDE by improving the representation of the protein binding site and
including protein main chain flexibility into the docking process, but to apply it to

solving biologically relevant problems.
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Generate template with hydrogen bonding and hydrophobic interaction points
for the binding site of the protein of interest.
Determine interaction points of the prospective ligand candidates.
Create look-up tables indexing all possible template triangles by chemistry
(donor/acceptor/hydrophobic) labels and triangle geometry.

\

DOCKING

v

Identify feasible template triangles for each triplet of ligand interaction points.
Dock ligand into the binding site by least-squares fit of ligand triangle onto

template triangle.
¢ MODELING INDUCED FIT
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Identify rigid anchor fragment (defined by matched interaction point triangle).
Identify flexible bonds in the ligand.
Resolve collisions between ligand anchor fragment and protein by iterative
ligand translations.
Resolve side chain collisions by directed rotations.

\

SCORING
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Score protein-ligand complex based on number of intermolecular H-bonds and
hydrophobic complementarity.

Figure 1.1. An overview of the SLIDE screening and docking algorithm.
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Chapter 2

Predicting the Ternary Complex of R67 DHFR -
NMN - Folate with SLIDE

The research presented in this chapter has been previously published in:

Howell, E.E., Shukla, U., Hicks, S.N., Smiley, R.D., Kuhn, L.A., Zavodszky, M.1. One
site fits both: a model for the ternary complex of folate + NADPH in R67 dihydrofolate
reductase, a D2 symmetric enzyme. J. Comput. Aided Mol. Des. 15:1035-52, 2001.

2.1 Introduction

R67 dihydrofolate reductase (DHFR) is a novel enzyme that confers resistance to the
antibiotic trimethoprim. The crystal structure of R67 DHFR displays a toroidal structure
with a central active-site pore. This homotetrameric protein exhibits 222 symmetry, with
only a few residues from each chain contributing to the active site, so related sites must
be used to bind both substrate (dihydrofolate) and cofactor (NADPH) in the productive

R67 DHFReNADPHedihydrofolate complex. Whereas the site of folate binding has
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been partially resolved crystallographically, an interesting question remains: how can the
highly symmetrical active site also bind and orient NADPH for catalysis? Since
computational docking tools are optimally suited for predicting such biologically
important protein-ligand complexes, I employed our docking program SLIDE to model
this ternary complex. Approaching a problem with different methods followed by a
comparison of the results has the potential of providing a more confident prediction by
supplying the complementary pieces of the whole puzzle. I compared the SLIDE results
with the model predicted by Dr. Elisabeth Howell using DOCK, another method for
docking flexible ligands into proteins using a quite different algorithm (Howell et al.,
2001). One of the strengths of SLIDE is the balanced protein-ligand flexibility modeling,
whereas DOCK explores the ligand conformational space more thoroughly. The two
programs also employ different scoring functions to rank the dockings.

Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF)
to tetrahydrofolate (THF) using NADPH as a cofactor. This enzyme is essential in folate
metabolism since tetrahydrofolate is required for the synthesis of thymidylate, purine
nucleosides, methionine, and other metabolic intermediates; thus, DHFR has been a
prime target for anticancer and antibacterial therapy. Whereas chromosomal DHFR has
been extensively studied and was one of the first successful targets for structure-based
drug design, the plasmid R67 encoded DHFR has only recently been characterized. R67
DHFR is of special interest because it can transfer resistance between bacteria against the
antibiotic trimethoprim. This DHFR has an entirely different sequence and fold from
chromosomal DHFR (Narayana et al.,, 1995). R67 DHFR is a homotetramer in which

each short chain forms a five-stranded B-barrel also found in SH3 domains (Narayana et
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al., 1995) and a variety of other proteins including the Tudor domain of human survival
motor neuron protein 1, ferredoxin thioredoxin reductase, nitrile h ydratase, two o fthe
50S ribosomal proteins, and HIV integrase (Holm and Sander, 1996).

Type 11 DHFR, typified by R67 DHFR, is a dimer of dimers as shown in Figure
2.1. The central pore forms the active site, and the high degree of symmetry means that
each of the four subunits contributes the same few residues to the binding surface. R67
DHFR is unlike the chromosomal enzyme in another respect. There are three different
ligand binding combinations available to its active site: 2 folate/DHF, or 2 NADPH, or 1
folate/DHF plus 1 NADPH (Bradrick et al., 1996). The latter is the productive ternary
complex. Thus, each half of the pore can bind either NADPH/NADP" or folate/DHF, a
very different binding strategy than observed for chromosomal DHFR.
Crystallographically defining the positions of bound ligands has proven especially
difficult for the plasmid encoded enzyme, as the four-fold symmetry within the pore
results in a four-fold dilution of the electron density. For example, if one ligand is bound,
there is an equal probability that this binding will be in any one of the four equivalent
sites within the pore for each of the individual protein copies in the crystal lattice. This
effectively dilutes the observed electron density to an average over these four states. The
symmetry and small size of the pore also means that the same residues (possibly from
different chains) must contribute to the binding of both folate and NADPH. Thus, R67
DHFR is a fascinating system for studying how evolution can select a limited number of
residues to co-optimize the catalytically productive binding of two quite different ligands,

folate and NADPH.
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Figure 2.1. Panel A: The structure of R67 DHFR is a homotetramer formed by a dimer
of dimers in which all four subunits (shown in red, yellow, blue, and green ribbons)
contribute equally to create the symmetry related binding sites for folate and NADPH.
The pteridine ring of the bound folate (shown in tubes in the central pore) and the side
chains of the residues lining the pore are also shown. The view is down a twofold
symmetry axis. Panels B and C describe a reverse image of the active site generated
using the SPHGEN subroutine of DOCK on the 1VIE DHFR coordinates from the PDB.
Water molecules were removed from the PDB file prior to running SPHGEN. Each
sphere point cor ds to a possible atom position for docked ligands. In Panel A, the
sphere cluster would fill the active site pore. Two perpendicular orientations of the
protein chains and sphere cluster are shown in panels B and C.




A previous model of the ternary complex was given in Narayana et al. (Narayana
et al., 1995). However, that model contained three bound ligands (2 folate + 1 NADPH),
inconsistent with more recent solution studies indicating only two ligands are bound
(Bradrick et al., 1996). Also the model by Narayana et al. positioned the productively
bound folate molecule parallel to and above the NADPH molecule. This would predict
numerous interligand NOEs, which are not observed in NMR experiments (Li et al.,
2001). H owever, the partial density available for folate in the binary c rystallographic
complex provides a valuable guide to its favored position within the pore. The possibility
that NADPH could interact in R67 DHFR in the same orientation relative to folate as it
does in the chromosomal DHFR crystal structures was evaluated. However, due to steric
limitations within the small pore of R67 DHFR, this binding mode is not feasible.
Because the chromosomal DHFR complexes do not explain how the substrate and
cofactor bind in R67 DHFR, and this ternary complex has so far proven
crystallographically inaccessible, docking methods were used to predict their interactions
in R67 DHFR. The predicted interaction of NADPH with folate in R67 DHFR were then
compared with their orientation in chromosomal DHFR, and related to the effects of site-

directed mutants on ligand binding.

2.2 Methods

DOCK v4.0 and SLIDE v1.1 were utilized to predict the binding modes of NADPH and
folate in the active-site pore of R67 DHFR. DOCK v4.0 uses van der Waals interactions
in its scoring and allows ligand flexibility (Ewing et al., 2001). SLIDE vl1.1 includes

protein side-chain flexibility, ligand flexibility, probabilistic inclusion of active-site
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bound water molecules, and a scoring function with hydrophobic interaction and
hydrogen bond terms (Schnecke and Kuhn, 2000). The structures of folate and NADPH

and their atom labeling conventions are given in Figure 2.2.

SLIDE (Schnecke and Kuhn, 2000) is described in Chapter 1, section 1.4.

CONSOLYV, a k-nearest-neighbor-based classifier (Raymer et al., 1997), was used to
identify b inding-site w aters likely to b e c onserved upon ligand b inding b ased on their
mobility and their favorable interactions with the protein. CONSOLV labeled each
bound water molecule in the 1VIF R67 DHFR structure according to its probability of
being conserved upon ligand binding, and these values were used by SLIDE to
appropriately incorporate bound water molecules or to penalize their displacement by

non-polar ligand atoms.

DRUGSCORE is a knowledge-based scoring function (Gohlke et al., 2000) that was
shown to discriminate efficiently between well-docked ligand-binding modes and
computer-generated artifacts. DrugScore was used in addition to the built-in scoring
function of SLIDE to score and rank all docked ligand orientations with a suitable
distance between the C4 atom of the NADPH nicotinamide ring and the C6 of the folate

pteridine ring (<5.0 A).

LIGPLOT (Wallace et al., 1995) was used to create the figures showing the protein-

ligand and ligand-ligand hydrogen bonds and hydrophobic interactions.
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Figure 2.2. The structures of folate and NADPH. Reduction of folate across the C7-N8
bond yields dihydrofolate. During catalysis, the A or re hydrogen (Hr) on C4 of the
nicotinamide ring faces the si face of the folate pteridine ring, which accepts a hydride at
C7. The hydride would approach the si face of the pteridine ring from beneath the plane
of the paper. The NMN moiety of NADPH is indicated by the bracket.
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The coordinates of apo R67 DHFR as well as a binary complex with 2 folates
bound are available as 1VIE and 1VIF (Narayana et al., 1995) at the PDB. In the present
study, the structure 1VIF was used. The coordinates of the NADPH molecule were taken
from the TRIPOS database for the DOCK experiment. SLIDE handles ligands as flexible
molecules, but it avoids large conformational changes compared to the starting
conformation. To include a broad range of energetically favorable starting conformations
in docking with SLIDE, 59 NADPH molecules were extracted from crystal structures of
various protein-NADPH complexes from the PDB. The nicotinamide ring is syn with
respect to the ribose ring in 14 of these NADPH conformations and it is anti in 45 of

them.

2.3 Results

2.3.1 Active Site Symmetry and Docking Constraints

A reverse image of R67 DHFR’s active site was generated using the DOCK subroutine,
SPHGEN. Two orientations of this image, given in Figure 2.1.B and C, show the
symmetry associated with the pore as well as its size. If the ligand were small with
respect to the binding site, four symmetry related sites could potentially be occupied. A
larger ligand would reduce the number of possible binding sites because of steric
hindrance. Binding of the ligand near the center of the pore, as is the case with Fol I
from the crystal structure, is expected to have a similar effect by breaking the 222
symmetry, limiting the number of possible bound molecules to at most two, which is

consistent with the experimental results (Bradrick et al., 1996).
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Several constraints obtained from experimental data were used in preparing the
docking experiments and in screening the docked ligand conformations to eliminate
unlikely binding modes:

1. Isothermal titration calorimetry (ITC) data show a total of two ligands bind
(Bradrick et al., 1996). The combinations are two folates or 2 NADPHs or 1 NADPH + 1
folate. Binding of two NADPH molecules shows negative cooperativity (24), suggesting
the first molecule binds at or near the center of symmetry and impedes binding of a
second molecule at a symmetry related site. Binding of two folate molecules shows
positive cooperativity, indicating there are interactions between the bound folate
molecules that enhance affinity.

2. Interligand NOE (ILOE) data from Li et al. (Li et al., 2001) show few ILOE’s,
suggesting the ligands are bound in extended conformations on opposite sides of the pore
and meet somewhere in the middle of the pore.

3. From fitting the electron density, two folate molecules were modeled in
asymmetric positions in 1VIF (Narayana et al., 1995). Fol I is bound productively with
its si face exposed, whereas Fol II has its si face against the side of the pore, making it
unavailable to receive a hydride. For this reason, Fol I was used to dock NADPH to the
binary complex of R67 DHFR-folate.

4. For docking of folate or its analogues, the docked pteridine ring should
conform to the observed electron density in the crystal structure (Narayana et al., 1995).
This flat density was observed at the center of the pore near the Gln 67 residues, which
form the “floor” and “ceiling” of the binding site. Density for the p-aminobenzoic acid-

Glu (PABA-Glu) tail was not observed in the crystal structure, indicating disorder.
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23.2 Docking of NMN into R67DHFReFol I Using SLIDE

All SLIDE dockings with a distance of 5 A or less between the C4 of the nicotinamide
ring of NMN and the C6 of the folate pteridine ring involved in hydride transfer were
analyzed. There are four possible orientations: the nicotinamide ring can be syn or anti
with respect to its ribose ring, and in both cases either the pro-R (A-side) or the pro-S (B-
side) hydrogen can point toward the pteridine ring. These orientations are named syn R,
syn S, anti R and anti S, respectively. Among the docked orientations, 39 adopted a syn
R conformation, 4 were in syn S, 20 in anti R, and 12 in anti S. This distribution
indicated a preference for the syn R orientation of NMN to interact with the R67 DHFR-
Fol I complex, especially given that there were about three times as many anti
conformers as syn conformers in the input data set of NADPH molecules. The syn R
orientation is the one most consistent with the experimental results (Brito et al., 1990; Li
et al., 2001)

In addition to the built-in scoring function of SLIDE, DrugScore (Gohlke et al.,
2000) was used to evaluate these NMN dockings. DrugScore calculates an empirical
intermolecular potential, with the best scores having the largest negative values, whereas
the best SLIDE scores have the largest positive values (greater hydrophobic
complementarity and number of intermolecular hydrogen bonds). Most of the high-
scoring ligand orientations (lower right in Figure 2.3) were in syn conformation with the
R-side hydrogen of the nicotinamide ring directed toward the folate. These orientations
had the best scores with both scoring functions, except for one anti R orientation, which
obtained an unusually high score with DrugScore. The available version of DrugScore

does not consider water-mediated interactions, and therefore preferred dockings of
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NADPH closest to the wall of the binding site such as this one. The anti S orientations,
which obtained high scores from SLIDE but not DrugScore, had a larger number of
hydrogen bonds formed between the P; of NMN and v arious p rotein r esidues, but the
nicotinamide ring formed at most one hydrogen bond with the protein. However, to have
a well-defined stereochemistry between NADPH, folate, and the protein, some specific
hydrogen b onding i s e xpected b etween the head o fthe N ADPH molecule and DHFR.
The docked NMN in syn R orientation best fulfills this requirement by forming three
hydrogen bonds between the O7 and N7 atoms of the nicotinamide head and the
backbone hydrogen and nitrogen of Ile 68A, as well as the backbone oxygen of Val 66A,
the latter being mediated by a water molecule (W 121A).

For waters bound in the DHFReFol I crystallographic complex, CONSOLV was
used to predict their probability of conservation upon NADPH binding, based on the
favorability of their interactions with the protein. After eliminating those water
molecules that were found to be too close (<2.5 A) to a protein or folate atom, only 11
water molecules were predicted to be more than 50% likely to be conserved inside the
pore. Performing the docking experiment with the conserved water molecules included
as part of the binding site did not result in significantly different dockings. The
preference for the syn R orientation of the docked NMN was slightly higher compared to
the dockings without waters, accounting for 62% of the docked conformations that have a
high SLIDE ranking.

A number of water molecules were found to be important in anchoring the docked
NMN to the protein (Figure 2.4.A), similarly to water molecules 121 and 124 (Figure

2.4.B) which have been suggested to form a bridge between the pteridine ring of folate
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and the backbone of the R67 DHFR (Narayana et al., 1995). However, these water

molecules were predicted to be only moderately conserved by CONSOLV. The

explanation of this finding origi in the sy y of the binding site: the
productively bound pteridine ring can occupy any of the four symmetry related positions
in the R67 DHFR tetramer structure, and by doing so it displaces different water
molecules in different tetramers in the crystal lattice. As a result, many water molecules
from the crystal structure of the R67 DHFR-folate complex (PDB entry 1VIF) have high

temperature factors. In predicting conserved waters, CONSOLV weighs temperature

factors heavily, so most of these waters were predicted to be only 28 - 55% conserved.
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Figure 2.3. Comparison of the scores for well docked NMN molecules (consistent with
experimental constraints and a distance of less than 5.0 A between C4 of NADPH and C6
of folate) obtained with two different scoring functions: those of SLIDE and DrugScore.
Because the currently available version of DrugScore does not include water-mediated
contacts, these dockings did not include water molecules from the binding site, though
similar dockings were found with water molecules included.
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Figure 2.4.A. Potein-ligand and ligand-ligand interactions from the R67 DHFReFol
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There is good agreement between the predictions of SLIDE and DOCK: both
predict syn R to be the most likely orientation of the NMN molecule relative to folate.
The position of the nicotinamide ring in the top scoring orientations (using SLIDE’s
scoring function) syn R is very similar to the top orientation produced using DOCK
(Figure 2.5). The largest differences are found in the position of the phosphate group of
NMN, which is understandable given the large space available and the absence of
constraints because of the missing tail of the NADPH. The non-hydrogen atom RMSD
between the top NMN orientations o btained with DOCK and SLIDE is 1.5 A (Figure
2.5). The SLIDE scores and DrugScore scores for these two top dockings are 28.8 and —
34,1300 for the DOCK docking and 36.4 and —32,2246 for the SLIDE docking.

The protein-ligand interactions generated by LIGPLOT (Wallace et al., 1995) for
the R67 DHFReFol [eNMN ternary complex are shown in Figures 2.4.A and 2.4.B for
NMN and the pteridine ring, respectively. The position of the NMN molecule
corresponds to the top scoring NMN docking obtained with SLIDE, and the Fol I position
from the crystal structure is used. A comparison o f the c ontacts for NMN and folate
shows that symmetry related residues were involved in binding both ligands. For
example, Gln 67 from both the B and D subunits made several contacts with the pteridine
ring, while Gln 67 from the A and C subunits made several contacts with the
nicotinamide ring. Utilization of symmetry related residues during binding was also
observed for Ile 68. Fol I binding involved Ile 68 from the D subunit which interacted
with the pteridine ring, while Ile 68 from the A and D subunits interacted with the
nicotinamide and ribose groups. Numerous van der Waals contacts and a hydrogen bond

were also predicted between the ligands, as shown in Figures 2.4A and 2.4B. Positive
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Figure 2.5. The NMN portion of NADPH docked into the binding site of R67 DHFR in
syn R orientation next to the pteridine ring of folate (purple, at top). The solvent
accessible molecular surface of the binding site is colored according to atom type: carbon
is green, oxygen is red and nitrogen is blue. The top scoring orientation of NMN
obtained with SLIDE (obtained with the wat d plate and ranked 1 by
SLIDE and 3" by DrugScore) is shown in white and that obtained with DOCK is shown
in magenta. Hydrogen atoms are shown only for the C4 of NADPH, which donates the
hydride to reduce folate.

cooperativity has been previously observed between R67 DHFReNADPH and DHF
(Bradrick et al., 1996). The proposed interactions between NMN and Fol I may describe
how positive cooperativity between NADPH and folate is generated.

One of the significant differences between SLIDE and DOCK is that SLIDE
allows protein flexibility upon docking by balancing ligand and protein side chain
rotations to resolve van der Waals overlaps, whereas DOCK more thoroughly explores
ligand conformational space. In the case of R67 DHFR, there were only slight

movements of two Gln 67 residues from subunits A and C, resulting in displacements of
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less than 0.5 A away from the docked NMN molecule, maintaining the original

hydrogen-bonding pattern of the protein.

24 Discussion

24.1 How Can R67 DHFR Bind Both NADPH and Folate?

There are a number of cases in which the same site in a protein is designed to
accommodate binding of several different ligands. Binding of diverse peptides to the
major histocompatibility complex is achieved by having a number of specific binding
pockets available for different side chains as well as by making key interactions to the
peptides’ backbones (Fremont et al., 1992; Matsumura et al., 1992). Binding of different
unfolded protein chains to GroEL is proposed to be accomplished mainly by hydrophobic
interactions where more flexibility is allowed (Chen and Sigler, 1999). To bind various
sugars, the maltodextrin transport/chemosensory receptor uses aromatic rings to interact
with the sugar ring faces (Quiocho et al., 1997). Binding of various peptides to oppA, a
peptide transporter, utilizes numerous intermediary water molecules (Sleigh et al., 1999),
as does binding of various fatty acids to adipocyte lipid-binding protein (LaLonde et al.,
1994), binding of various sugars to arabinose binding protein (Quiocho et al., 1997), and
high-affinity binding of a proteinaceous inhibitor, BLIP, to B-lactamases with diverse
sequences (Strynadka et al., 1994). These are all mechanisms to facilitate numerous

binding modes.
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Hot spots for protein-protein interactions have been noted and evaluated by
mutagenesis and statistical analysis (Bogan and Thorn, 1998; DeLano et al., 2000; Hu et
al., 2000). A general trend proposed is the presence of residues that are amphipathic or
can make hydrophobic and hydrogen-bonding interactions. For example, Tyr, Trp and
Arg have a large hydrophobic component to their side chains as well as the ability to
provide polar interactions. The residues that provide binding contacts in the center of
R67 DHFR’s active site pore include Ser 65, Val 66, Gln 67, Ile 68 and Tyr 69. The side
chains of Ser 65 and GIn 67 are polar, while those of Val 66 and Ile 68 are hydrophobic.
However, since Val 66 and Ile 68 present both their hydrophobic side chains as well as
their backbone NH- and carbonyl groups for potential interactions, they can mediate both
hydrophobic and polar interactions on the active site pore surface. Similarly, the side-
chain methylene groups of Gln 67 also comprise part of the binding surface.

From Figures 2.4.A and 2.4.B, it is clear that the same residues are likely to be
involved in binding both NADPH/NMN and folate/DHF. Utilization of protein
symmetry is the mechanism by which this is achieved. For example, Gln 67 from
subunits A and C make contacts with the NMN moiety while Gln 67 from subunits B and
D make contacts with folate. This trend is also apparent with Val 66, Ile 68, Tyr 69, and
Lys 32 residues. When sy mmetry o perations are p erformed on the d ocked folate and
NMN conformers, it is clear that while the binding sites are not identical, they overlap to
a great extent. Three of the four symmetry related sites (generated by symmetry rotations)
are shown in Figure 2.6. Two of the symmetry related sites compare the Fol I and NMN
(top scoring conformer from DOCK) binding modes while the third compares NMN and

Fol II (the non-productively bound folate in 1VIF). The fourth symmetry related site is
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empty, precluding a comparison. Polar atoms that occupy similar positions in panel A
are NS5 of Fol I and N1 of the nicotinamide ring of NMN. In panel B, the C4 oxygen (Fol
I) and the carboxamide oxygen (NMN), the N1 (Fol I) and N1 (NMN) as well as the N3
(Fol I) and carboxamide nitrogen (NMN) atoms occupy similar positions. Finally in
panel C, the corresponding pairs of polar atoms that are close in space include: the C4
oxygen (Fol II) and the carboxamide oxygen (NMN) as well as the N1 (Fol II) and the
N1 (NMN) atoms. This comparison supports a variation of hot spot binding, in which a
few residues are responsible for most of the binding through making both polar and
hydrophobic interactions with a small molecule ligand, rather than a protein (DeLano et
al., 2000).

The number of similar docking orientations of the NMN fragment of NADPH
indicates some alternative possibilities for hydrogen bonding to DHFR. This is also
consistent with some mobility of bound NADPH, which in turn may explain the lower
catalytic efficiency of R67 DHFR(Dion-Schultz and Howell, 1997; Reece et al., 1991).
Because of the high degree of symmetry associated with the binding site of R67 DHFR,
the catalytically productive folateeNADPH complex can bind in four equivalent
positions, such that both molecules can be positioned at either side of the pore. The
position adopted by NADPH independent of folate might well be different from the
optimal p osition w hen folate i s present, for t wo reasons: b ecause folate creates a new
chemical and structural environment that can favor a different placement of NADPH, and
because the symmetry of the pore tells us that there may be several favored, overlapping
optimal placements for folate and NADPH (Figure 2.6). Therefore, it seems that co-

optimization of both ligands’ binding is important.
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Figure 2.6. Overlap ofthe NMN binding site with Fol I and Fol II sites. W hile two
molecules do not bind in the same site concurrently, the symmetry of R67 DHFR implies
that the same site must be used at different times for both NADPH and folate (in different
halves of the pore or in different copies of the protein). Here, the top-scoring orientation
of NMN from DOCK (Figure 3A) is compared (by symmetry operations) with the
crystallographic orientation of Fol I or Fol II in the same site. Their substantial overlap
corresponds to the region in which residues must be co-optimized for NADPH and folate
binding. NMN atoms are labeled in yellow while Fol I or Fol II atoms are shown in
white. In panel A, the closest protein atoms for interaction with the N1 (NMN) and N5
(Fol I) nitrogens are the carboxamide groups of the Q67 residues (3.69-4.46A distant). In
panel B, the closest protein atoms for interaction with the N1 ligand nitrogens are again
the Q67 carboxamide groups (3.68-3.93A). For interaction with the O4 (Fol I) or O7
(NMN) oxygens, the backbone NH from 168 lies nearby (3.07-3.25A). The N3 (Fol I) or
N7 (NMN) atoms come closest to the backbone oxygen of 168 (3.57-4.75A). In panel C,
the backbone NH of 168 is close (2.90-3.25A) to the O4 (Fol II) or 07 (NMN) oxygens
while the backbone oxygen of 168 could interact with the N5 (Fol II) or the N7 (NMN)
atoms (2.68-3.28 A). The closest protein atoms for interaction with the N1 nitrogens are
again the carboxamide groups from the Q67 pairs (3.68-4.37A). A similar comparison of
the overlap between the Fol I and Fol II sites is shown in Figure 4b of Narayana et al.
(Narayana et al., 1995).
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Figure 2.6.
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24.2  Relationship to Mutagenesis Results

Mutagenesis of R67 DHFR has been performed to evaluate the roles of many of the pore
residues in ligand binding: Lys 32, Ser 65, Gln 67, Ile 68 and Tyr 69 (Park et al., 1997,
Strader et al., 2001). The effects of mutations are consistent with the docked interactions
of NADPH and folate (Figure 2.4). Mutating Ser 65 to Ala does not affect catalytic
efficiency, suggesting it does not interact directly with the ligands. NMN docking by
SLIDE predicted the Ser 65 side chain hydrogen bonds to a water molecule that
participates in NMN binding; however, this water site is also stabilized by interactions
with Tyr 69 and could persist in the absence of interactions with Ser 65. GIn 67
hydrogen bonds directly with NMN and makes hydrophobic interactions with folate in
the docked ternary complex. Ile 68 makes direct hydrogen bond and hydrophobic
interactions with NMN, as well as water-mediated interactions with folate. Tyr 69
participates in water-mediated interactions with NMN. As shown in Table 1, mutations
at any of these residues (except S65) alter the Ky, values for both ligands. The changes in
Km vary over three orders of magnitude (from 100 fold tighter to 10 fold weaker),
however the ability of the mutations to preferentially alter NADPH vs. DHF binding
appears marginal (Park et al., 1997; Strader et al., 2001). These data support a dual role

for these active-site residues in binding both ligands.
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Table 2.1. A comparison of steady state kinetic values for R67 DHFR variants at pH 7.0.

DHFR Species Keat (s7) | T K NADPH)
(PH 7) M) (M)

Wt R67 DHFR*? 1.3 +£0.07 5.8+£0.02 3.0+ 0.06

S65A R67 DHFR® 1.1+£0.10 4.0+0.51 29+0.57

Q67H R67 DHFR (pH 8)°  0.022+ 0.003  0.16+0.01  0.028 + 0.001
168M R67 DHFR® 0.17 £ 0.03 2513.0 21+3.0

Y69F R67 DHFR" 2.5+ 0.04 44+2.1 66 2.6

? Values from reference Reece et al., 1991.
® Values from reference Strader et al., 2001.
¢ Values from reference Park et al., 1997.

243 A Model for Hydride Transfer

The picture emerging from the docking studies using SLIDE and DOCK (Howell et al.,
2001) is that folate and NADPH approach the catalytic site from the opposite ends of the
R67 DHFR binding pore, with the pro-R side of the nicotinamide ring of NADPH turned
toward the si face of the pteridine ring of folate. The hydride transfer distances between
C7 of the pteridine ring and C4 of the nicotinamide ring, which participate in the
reduction of folate (Figure 2.5) are predicted to be between 3.72 - 3.93 A. These
distances are longer than the 2.6-2.7 A predicted by ab initio calculations (Castillo et al.,
1999; Wu and Houk, 1987) and from a model of the transition state in E. coli DHFR

(Bystroff et al., 1990). No docking method would probably be able to reproduce the
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distances predicted by ab initio calculations for transition state complexes, but it is
possible to reproduce crystal structure orientations with differences in intermolecular
distances of approximately 0.2 A. When testing the capacity of SLIDE to reproduce the
crystal structure orientation of NADP* from a chromosomal DHFR in complex with
folate and NADP* (PDB code 1RA2), the docked orientation of NADP" closest to the
crystal structure position resulted in a C4-C7 distance of 3.45 A, comparable to the 3.21
A value found in that same crystal structure. The greater distances observed in the R67
DHFR dockings imply either a low rate of hydride transfer or an interligand chemical
attraction that shortens the distance.

Molecular dynamic studies suggest that in general, enthalpic contributions to
catalysis predominate over entropic contributions (Bruice and Benkovic, 2000).
However in R67 DHFR, a range of similar docking modes is predicted for the ligands, or
perhaps an unusual degree of mobility (Howell et al., 2001). Both these options likely
result from the use of symmetry related residues. The ability of the PABA-Glu tail of
folate and the 2°,5°-ADP tail of NADPH to remain flexible but still maintain favorable
electrostatic interactions may enhance binding through entropic as well as enthalpic
contributions. An additional consequence of alternate binding modes for the ligand tails
(or an enhanced mobility) might be to prevent binding of two molecules in one half of the

pore, and instead steer binding to one molecule in opposite sides of the pore.
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2.5 Conclusions

The evolution of catalytic activity is the focus of many recent research articles. One
perspective suggests new enzymes evolve by gene duplication followed by accumulation
of mutations. This approach takes advantage of structural and mechanistic similarities in
generating different catalytic activities and suggests a certain level of catalytic
promiscuity (Babbitt and Gerlt, 1997; O'Brien and Herschlag, 1999). In addition,
catalytic antibodies might be expected to provide insight into the process of enzyme
evolution. They appear to adopt predominately a lock and key strategy towards binding
transition state analogs. Also, a comparison of different catalytic antibodies that catalyze
the same reaction suggests they mostly converge to the same binding site motif
(Karlstrom et al., 2 000; Mader and B artlett, 1 997; S mithrud and B enkovic, 1997). In
contrast to these evolutionary strategies, the results of DOCK and SLIDE showing the
favored orientation of NADPH relative to folate in R67 DHFR indicate this enzyme has
adopted a novel, yet simple approach: the utilization of symmetry related residues to bind
both NADPH/NADP' and folate/DHF using a range of interaction types through a
limited number of amphipathic residues. This symmetry is used to generate a hot-spot

surface that accommodates numerous, different interactions.
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Chapter 3

Distilling the Essential Features of a Protein
Surface for Improving Protein-Ligand Docking,

Scoring, and Virtual Screening

The research presented in this chapter has been previously published in:

Zavodszky, M.1,, Sanschagrin, P.C., Korde, R.S., Kuhn, L.A. Distilling the essential
features of a protein surface for improving protein-ligand docking, scoring, and virtual
screening J. Comput. Aided Mol. Des. in press.

3.1 Abstract

For the successful identification and docking of new ligands to a protein target by virtual
screening, the essential features of the protein and ligand surfaces must be captured and
distilled in an efficient representation. Since the running time for docking increases
exponentially with the number of points representing the protein and each ligand

candidate, it is important to place these points where the best interactions can be made
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between the protein and the ligand. This definition of favorable points of interaction can
also guide protein structure-based ligand design, which typically focuses on which
chemical groups provide the most energetically favorable contacts. In this chapter, a
method of protein template and ligand interaction point design that identifies the most
favorable points for making hydrophobic and hydrogen-bond interactions by using a
knowledge base is presented. The knowledge-based protein and ligand representations
have been incorporated in version 2.0 of SLIDE and resulted in dockings closer to the
crystal structure orientations when screening a set of 57 known thrombin and glutathione
S—transferase (GST) ligands against the apo structures of these proteins. There was also
improved scoring enrichment of the dockings, meaning better differentiation between the
chemically diverse known ligands and a ~15,000-molecule dataset of randomly-chosen
small organic molecules. This approach for identifying the most important points of
interaction between proteins and their ligands can equally well be used in other docking
and design techniques. While much recent effort has focused on improving scoring
functions for protein-ligand docking, our results indicate that improving the
representation of the chemistry of proteins and their ligands is another avenue that can
lead to significant improvements in the identification, docking, and scoring of ligands.
This work is the result of a group effort. My roles were to develop the knowledge-based
hydrogen bonding template, design the experiments to test the new method, analyze the

results, and write the manuscript.
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3.2 Introduction

3.2.1  The Evolution of Protein Surface Representations in SLIDE

Two methods to generate a template for the binding site of interest were initially
implemented in SLIDE: small, biased, pharmacophore-like templates, and unbiased, grid-
based approaches. The biased template is based on known ligand binding modes and
consists of coordinates of ligand atoms making hydrogen bonds or engaging in
hydrophobic interactions with the protein of interest, as seen in crystal structures of
protein-ligand complexes. = This pharmacophore-like representation of binding
determinants is biased towards known ligands and is especially appropriate when the aim
is to identify other molecules that make similar interactions. When the goal instead is to
identify new classes of ligands or help define the ligand specificity for protein structures
with unknown functions, an unbiased, thorough representation of the potential ligand-
binding site is preferable. Therefore, SLIDE also has an option to automatically generate
an unbiased template based on a ligand-free structure of the protein. To generate an
unbiased template in version 1 of SLIDE, the binding site was filled with a large number
of points, initially located on a fine grid with a spacing of 0.3-0.7 A (Figure 3.1.A)
(Schnecke and Kuhn, 2000). Initial experiments with random placement of the points
showed significant under-representation of some areas in the binding site, so the grid-
based approach was adopted instead. Only points located 2.5 to 5.0 A from the nearest
protein atom were kept. Each point was then checked to determine if it could serve as a
hydrogen bond donor, acceptor, or form a hydrophobic interaction with the protein, and

was either labeled as such, or eliminated from the set. All points of the same class were
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then clustered using complete linkage clustering to reduce the number of template points

to 150 or fewer.

0000000000000000g 08,

Figure 3.1. Comparison of the grid-based (A) and knowledge-based (B) template
generation methods. Template points are generated on a grid in version 1 of SLIDE. The
method implemented in SLIDE, version 2, uses a knowledge base to define points where
optimal protein—ligand interactions can be made, based on points where the ligand could
make optimal hydrogen bonds and hydrophobic interactions with the protein. Template
points are colored according to their type: green for hydrophobic, red for acceptor, blue
for donor, and purple for donor and/or acceptor points.

Improving the success rate of docking known ligands to a protein structure that
does not already have correct side-chain conformations for that ligand (e.g., an “apo”
structure of the protein, solved in the ligand-free state) was the motivation for the present
work, which is aimed at defining protein templates that capture optimal points for
interacting with the protein. Knowledge bases of hydrogen-bonding geometry around
protein groups (Ippolito et al., 1990; McDonald and Thornton, 1994) allow us to focus
now on optimal (rather than just feasible) positions for hydrogen bonding. Significantly

hydrophobic positions at the protein surface can also be distinguished from the
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background level of solvent-exposed carbon atoms, based on the local enhancement of
hydrophobic atoms. Similarly, the interaction points on ligand candidates can be sampled
to have similar density and chemistry to the hydrophobic and hydrogen-bonding
assignments in the protein template. While this work has been driven by the aim to
improve the modeling of protein recognition through docking in SLIDE, this
representation of key interacting groups in proteins and ligand candidates is also expected
to be useful for other docking methods, and to provide a focus on optimal interactions to

make in structure-based protein and ligand design.

3.2.2 Other Approaches for Discrete Representation of Protein

Binding Sites

Reduced representations of protein binding sites have been developed by other groups for
use in modeling protein recognition. Typically, the protein’s binding site is discretized to
a set of 100 or fewer interaction points to enable fast comparison between the protein and
each ligand. Many of these methods use reduced representations to aid in matching the
protein and ligand surfaces. The initial, computationally complex search of the 6 degrees
of rotational and translational freedom of the ligand relative to the protein is reduced to a
problem of matching a set of N points on the ligand to the best-matching subset of N
points from M points on the protein. N and M typically must be small due to the factorial
complexity of the number of ways of matching N points to a larger set of M points. In
the case of SLIDE, 3-point subsets of N interaction points on the ligand are tested for
matching to all 3-point subsets of a set of typically 100-150 template points representing

the protein.
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In the case of DOCK (Kuntz et al., 1982), the earliest protein-ligand docking
technique, the binding site is filled with spheres, whose centers serve as possible ligand
atom positions. Chemical properties or other characteristics can be associated with the
spheres, and a sphere with a particular characteristic can only be matched with a ligand
atom of complementary character (Shoichet and Kuntz, 1993). Jones et al. (Jones et al.,
1995) identify solvent—accessible hydrogen—bond donor and acceptor atoms within the
active site of the protein and associate virtual points with each hydrogen and lone pair of
these atoms, enabling the genetic algorithm employed by GOLD (Jones et al., 1997) to
transform the ligand into the binding site by minimizing the least-square distance
between protein virtual points and similarly defined ligand virtual points. Ruppert et al.
(Ruppert et al., 1997) coat the protein’s binding site surface with probes of three types,
hydrophobic, acceptor and donor, which could potentially interact with the protein.
These probes can serve as potential alignment points for ligand atoms and are scored to
represent the probe's affinity for the protein. High affinity probe-clusters identify sticky
spots, or regions of strongest potential binding. This method can also be used to find
binding pockets on the surface of a protein. FlexX (Kramer et al., 1999) uses a multi-
layered representation of the binding site adopted from its predecessor LUDI (Bohm,
1992): interaction types are arranged on three levels depending on their directionality,
with H-bonds being the most directional at level three and hydrophobic interactions the
least directional at level one. [Each group capable of forming an interaction is
characterized by an interaction center and a surface, the latter being approximated by a
finite number of points. Ligand interaction centers are superimposed over these points

and aligned, giving preference to higher-level interaction points over lower-level ones. In
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an approach related to that of SLIDE, Fischer et al. (Fischer et al., 1993; Fischer et al.,
1995) describe the surfaces of the protein and ligand by a set of critical points and their
normals, then apply geometric indexing to dock the ligands into the protein by matching
the critical points and vectors.

Grid-based representations are also used to map favorable points of interaction
with proteins. In preparation for docking with AutoDock (Morris et al., 1998), the
protein binding site is placed in a grid. The protein-ligand pair-wise interaction energies
are precalculated at each grid point for each possible ligand atom type and are stored in a
look-up table for use during the docking simulation. The Grid technique developed by
Boobbyer et al. (Boobbyer et al., 1989) calculates for each grid point an empirical energy
designed to represent the interaction energy of a chemical probe group, such as a
carbonyl oxygen or an amine nitrogen atom, around the target molecule. This function is
used to determine the sites where ligands may bind to the target, such as a protein.

Finally, knowledge bases of the frequency of pair-wise atomic or functional group
interactions deduced from the crystallographic protein structures in the PDB (Berman et
al., 2000) and small organic molecule structures in the Cambridge Structural Database
(CSD) (Allen, 2002) can be used to map favorable sites for ligand interactions with
proteins. Relibase (Bergner et al., 2001), a database system of protein-ligand interactions
from the PDB, has been used to derive atomic potentials between protein and ligand atom
groups for use in DrugScore (Gohlke et al., 2000a). DrugScore can then calculate
“hotspots” for interactions with different ligand atom types, which are displayed as
contour maps within the binding site (Gohlke et al., 2000b). Similarly, the SuperStar

software (Verdonk et al., 2001), based on pair-wise interaction frequencies in the CSD
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database, can calculate hotspots for the binding of 16 probe atom types to proteins. A
recent paper analyzes how the interaction maps developed from PDB versus CSD data
complement each other (Boer et al., 2001). Another knowledge-based approach was
taken by Moreno and Leon (Moreno and Leon, 2002) to describe the binding site for
DOCK: templates of attached points or contact points are constructed for each amino acid
type, representing the geometry of the interactions observed in the different protein-
ligand complexes from the PDB.

In this chapter, it is shown how a knowledge-based approach for describing
favorable interaction sites on proteins and ligands can improve the performance of
SLIDE when a database of known ligands combined with a random selection of CSD
compounds is screened against two protein targets, thrombin and glutathione S-

transferase (GST).

3.3 Methods

33.1 Knowledge-Based Representation of Protein Binding Sites

Because grid placement of hydrophobic and hydrogen-bond points is not always optimal
with respect to protein interactions, here we describe the development of a knowledge-
based approach to placing points in an unbiased template. Geometrically favored
subsites for ligand hydrogen-bonding atoms are assigned based on the distance and angle
to protein hydrogen-bonding partners (Figure 3.1.B). After identifying the protein atoms
capable of hydrogen bonding, a number of template points are placed at and around the

optimal hydrogen bonding position for each of these atoms, using the geometries shown



in Figure 3.2. The template points belonging to one hydrogen-bonding protein atom are
separated by ~1 A and are placed at a distance of 2.9 A (for Asp, Glu, Lys, Thr and Tyr
side chains) or at 3.0 A (for all the other side chains and backbone oxygen and nitrogen)
from the protein donor or acceptor atom. The parameters for optimal hydrogen bonding
geometry were taken from the literature (Ippolito et al., 1990; McDonald and Thornton,
1994). The points are labeled as donors, acceptors or donor/acceptors, depending on the
role an atom at this position would have in hydrogen bonding to the protein. A donor
template point, for example, is located near an acceptor protein atom, such as a backbone
carbonyl oxygen, and represents a favorable placement for a ligand atom acting as an H-
bond donor. A donor/acceptor point is defined in two cases: when a ligand atom at that
point could make favorable hydrogen bonds with separate hydrogen-bond donor and
acceptor atoms in the protein, or when it could interact with a group that both donates and
accepts hydrogen bonds (e.g., -OH in the side chains of Ser, Thr, or Tyr). Template
points that overlap with those belonging to neighboring atoms (template points separated
by <1 A) are clustered and relabeled, and points closer than 2.5 A to a protein atom are
discarded. The clustering of hydrogen-bonding template points reduces the number of
points by about 10-25%. Points generated by the clustering of a donor and an acceptor
point are relabeled as donor/acceptors.

Hydrophobic template points are generated using a grid for initial point placement,
as before, but the criteria have been updated for which of these points should be included
to represent favorable sites for ligand interactions. Hydrophobic points are those grid
points with a hydrophobic enhancement score of at least 3. This score is defined as the

number of carbon atoms minus the number of hydrophilic atoms, such as oxygen or
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Figure 3.2. Panel A: Placement of optimal hydrogen-bonding template points in SLIDE.
For each polar side chain, the optimal placement of hydrogen-bond donor (D), acceptor
(A) and donor and/or acceptor (N) template points is shown with respect to the donor and
acceptor atom positions in the side chain. These template points represent positions
where a ligand atom matching the template point can form a hydrogen bond with the
protein. A ligand atom matching a donor/acceptor (N) template point must be either a
donor or acceptor, or both. These optimal distances and angles are consensus values
describing preferred geometries (Ippolito et al., 1990; McDonald and Thornton, 1994)
observed in high resolution protein structures from the PDB. The positions of hydrogen
atoms in the protein are not assumed in template point placement, since these positions
are not available in most crystal structures. Instead, the most favorable positions for
hydrogen-bonding partners is measured relative to the geometry of the covalent bonds in
the side chains (e.g., trans and gauche positions for Lys), as found from analysis of
crystallographic data (Ippolito et al., 1990; McDonald and Thornton, 1994). Panel B:
Three-dimensional example of template point placement relative to a Lys side chain. The
template points defined for minimal, sparse, and dense templates are shown, along with
the most-preferred distance and angle for hydrogen bonding, as shown above. The
default template specification in SLIDE is dense, and thus there are more possible H-
bond template point matches, each of which is shifted by a small amount relative to the
optimal position and still allows formation of a near-optimal hydrogen bond between the
matched ligand atom and the protein. Sparse and minimal hydrogen-bond templates are
alternatives that can be used to decrease the number of hydrogen-bond template points
when the complete template for a protein, including hydrophobic points, exceeds the
practical limit of about 150 points.
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nitrogen, within a spherical shell of radius 2.5-5.0 A from the template point in question.
The cutoff value of 3 was found to define the significantly hydrophobic protein surface
patches that complement the hydrophobic groups in ligands for a number of 3D protein-
ligand complexes.

After they are generated separately, the H-bonding and hydrophobic template
points are merged into one template that can be used for docking with SLIDE. If the total
number of template points is much larger than 150 (a practical upper limit given the
combinatorics of matching ligand interaction points with template points), then the
complete linkage clustering feature can be used to reduce neighboring points of the same
class to a single point, the cluster centroid. Complete linkage clustering has the desirable
features that the clusters can be defined to not exceed a certain diameter (helping control
the separation between centroids), and they are guaranteed to be the most densely
occupied set of clusters for that diameter (Sanschagrin and Kuhn, 1998). Typically we
use a clustering threshold of 4 A, resulting in hydrophobic template points separated by
about 2 A. When a clustering threshold of x A is used with complete linkage clustering
(where x is typically chosen between 2 and 4 A), the average distance between the final
template points (the centroids of each cluster) is very close to x/2. For any uniformly
distributed set of points clustered by complete linkage, the centroids of the clusters will
be separated by half the cluster diameter (called the clustering threshold in this work), on

average.
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3.3.2 Ligand Interaction Points

Hydrophobic ligand interaction points are assigned using a rule-based approach
summarized in Figure 3.3. These rules are designed to place an interaction p oint at
approximately every 1.5 hydrophobic carbon atoms in hydrophobic chains and around the

circumference of hydrophobic rings. This density of hydrophobic interaction points is

Methyl Group Isopropyl Group Tetrahedral Group
Hydrophobic Ring with Hydrophilic  Hydrophobic Ring with Single Hydrophobic Ring with Multiple
Substituent Hydrophobic Substituent Hydrophobic Substituents

Hydrophobic Rings with Shared Internal Hydrophobic Atom Triplet
Edges

Figure 3.3. Summary of rules for hydrophobic interaction point assignment. The goal is
to place a point at approximately every 1.5 carbon atoms, which is commensurate with
the default spacing of hydrophobic points in the template. Hydrophobic interaction
points are denoted by green spheres, carbon atoms by gray tubes, and nitrogen atoms,
representing hydrophilic atoms, by blue tubes.
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commensurate with the spacing of hydrophobic points in the protein template, using the
default clustering criteria. For this approach, carbon and sulfur atoms bonded only to
carbon, sulfur or hydrogen atoms are considered to be hydrophobic. Other atoms are
taken as hydrophilic. Hydrogen-bonding interaction points in the ligand are identified as
atoms capable of accepting or donating hydrogen bonds, based on the SYBYL atom types

in the mol2 file (described at http://www.tripos.com).

3.33 Ligand Databases

A combined database of known ligands from the PDB and a subset of 14,691 randomly
selected CSD compounds was assembled for alpha-thrombin and n-class human GST.
The CSD database was prescreened to exclude molecules with excessive molecular
weight as well as those containing unusual atoms. The nonredundant subset of known
ligands for thrombin contained 42 molecules taken from thrombin-ligand complexes
available from the PDB. To screen for ligands to GST, 15 known ligands with PDB
crystal structures in complex with human GST were selected. For both thrombin and
GST, ligands from crystal structures with a resolution of 3.0 A or better were included in
the known ligand test set. If a ligand was found in multiple structures, the one with the
highest resolution was chosen. To ensure that SLIDE can appropriately model the side-
chain conformational changes necessary in nature when proteins bind their ligands,
structures of thrombin and n-GST determined crystallographically with ligand-free active
sites (apo structures) were used as the targets for screening and docking (PDB code 1vrl
for thrombin (Dekker et al., 1999) and PDB code 16gs for GST (Oakley et al., 1998)).

This also avoided the docking bias that is implicit in redocking experiments (when the
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ligand-bound structure of the protein, already conformationally biased for that ligand, is
used as the basis for docking). Because interactions in a mutant protein structure might
change the favored orientation of a ligand relative to its orientation in the wild-type
protein (and therefore not allow fair comparison of the docking with the crystallographic
complex), ligands from complexes containing a mutant version of n-GST were excluded
from the analysis. Four of the GST crystal complexes (PDB codes 13gs, 20gs, 21gs and
2gss (Oakley et al., 1997; Oakley et al., 1999)) contained two ligands: glutathione, and a
smaller hydrophobic ligand bound to the xenobiotic subsite of the active site. Only the
hydrophobic ligands from these structures were included in the screening dataset, and
glutathione from the GST—glutathione complex 1aqw (Prade et al., 1997) was used as the

single representation of this ligand in the screening set.

334 Key Template Points

In order to focus the large number of orientations that can result from the
screening/docking process on productive binding modes, selected template points can be
labeled as key points. Template points from parts of the binding site known to be critical
for tight and/or specific binding can be marked as key points, and any docking must then
include a match to one (not all) of these points. This ensures that docked molecules will
at least partially occupy the targeted site. For thrombin, points in the specificity pocket
within 5.0 A of the carboxyl oxygens of Asp 189 were selected as key points.
Assignment of key points in the GST binding site was more challenging, as it is made up
of two subsites, one for hydrophobic ligands and the other for glutathione, which is fairly

polar. SLIDE was run twice on the known ligands in the case of GST: initially with key
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hydrogen bonding points in a 5.0 A radius sphere around the side chain hydroxyl oxygen
of Ser 65 in the deepest pocket of the glutathione binding site, to capture ligands that can
bind to this polar site, then with key hydrophobic points in the area between Tyr 108 and
Phe 8, the xenobiotic (hydrophobic) binding site. Screening against the CSD ligands was
done using the first set of key points in the glutathione-binding pocket, which includes
both hydrophobic and hydrogen-bonding interactions.

Using key points is mainly a convenient way to ensure that ligands make
interactions in the deep pockets of the binding site, rather than making less favorable,
superficial interactions. Placing key points in the deepest pocket of the thrombin active
site would be useful, in the absence of any knowledge of thrombin ligand structure or
chemistry, to ensure the absence of a significant, destabilizing cavity in the complex.
Ensuring that deep pockets are filled is also a widely used approach in structure-based
drug design to increase ligand binding affinity and specificity. For GST, the use of key
points allows a convenient analysis of ligand binding to the hydrophobic binding site
versus binding to the glutathione site, without specifying which ligands favor which site,
or how they bind. We can therefore assess the accuracy of ligand specificity as well as
docking for GST: hydrophobic ligands should fit and score well in the hydrophobic site,
and score poorly if they also dock into the polar site (when key points are included there,
instead), and vice versa for the polar ligands. This allows a more sophisticated analysis
for GST, making use of both its binding sites. Key points can also hurt docking results,
because not all ligands may make one of the chosen interactions and therefore would
either not be docked at all, or would be forced to dock by making a non-native interaction.

Thus, using key points is only recommended for predicting the docking of ligands if there
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is a strong indication as to the location of a key binding pocket within the larger binding
site (as is obvious in the case of thrombin, which has a funnel-shaped active site).
Another appropriate occasion for including key points is in design applications, when the
intent is to control which pocket or binding site is to be probed by a database of ligand

candidates or fragments.

3.3.5  Evaluation of New Protein and Ligand Representations in

Ligand Screening end Docking

Templates for thrombin and GST were created both with the grid-based and the
knowledge-based template generation methods; the knowledge-based templates are
shown in Figures 3.4.A and B. Sets of interaction points for the known ligands and the
CSD compounds were also identified using both assignment methods. SLIDE was used
to screen the known ligands and the CSD compounds against thrombin and GST, first
using the grid-based template and the original ligand interaction points, and in a second
experiment using the knowledge-based template and the new ligand interaction points.
The two methods for representing the protein target and ligand candidates were evaluated
in two ways. First, they were evaluated based on how well SLIDE, using these protein
and ligand representations, could reproduce the known ligand positions in the structure of
the protein-ligand complex. This involved docking the ligands into an apo structure of
the protein, with side-chain positions not already optimized for the ligands. Secondly,
they were evaluated by how well known ligands and nonspecific molecules (in our case,
CSD compounds) could be differentiated. The heavy atom root-mean—square—deviation

(RMSD) was used to compare the docked ligand orientation with its crystal structure
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Figure 3.4. Examples of new knowledge-based templates. The Connolly solvent-
accessible molecular surfaces (Connolly, 1993) of the GST (A) and thrombin (B) active
sites are shown, color-coded according to atom type (green — carbon, blue — nitrogen, red
— oxygen, yellow — sulfur). Known ligands from PDB structures 2pgt (A) and 1aSg (B)
were docked into the binding site with SLIDE and are shown as tubes, also colored
according to atom type. The template points are rcpresented as spheres, wnh blue
representing hydrogen—bond donor points, red for
and green for hydrophobic interaction points.

P do P

54



position. Because scoring remains a major challenge in the field (Bissantz et al., 2000;
Charifson et al., 1999; Stahl and Rarey, 2001), and to ensure that the results were not
very dependent on the particulars of one scoring function, the dockings were also
evaluated using DrugScore as well as the SLIDE score. While SLIDE scores the protein-
ligand complex based on the number of hydrogen bonds and the hydrophobic
complementarity (Schnecke and Kuhn, 2000), DrugScore (Gohlke et al., 2000a)
calculates protein-ligand interaction energies employing a knowledge-based potential that
reflects the frequency of pair-wise atomic distances observed in protein-ligand complexes
from the PDB. The known ligands and CSD compounds were each docked, scored, and
sorted by score. Then, the enrichment in selecting known ligands from the random
database, based on scores, was calculated as the percentage of known ligands captured as
a function of the percentage of the database screened, where the top 1% of the database

represented the top scoring compounds.

34 Results

All four combinations of template and ligand interaction point design were evaluated:
grid-based template with original interaction points, grid-based template with new
interaction points, knowledge-based template with original interaction points, and
knowledge-based template with new interaction points. Both the knowledge-based
template design and the new interaction point assignments resul.ted in improvements
individually, but the most improvement was seen upon combining the two. For brevity,
only the results obtained with the two most relevant combinations are presented: grid-

based protein template with original ligand interaction point assignments (subsequently
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referred to as method 1, corresponding to the implementation in SLIDE v.1), and
knowledge-based template with new interaction points (method 2, as now implemented in

SLIDE v.2).

34.1 Thrombin

The 42 known thrombin ligands used in this study are listed in Table 3.1, along with the
PDB code of the crystallographic complexes from which they were obtained. SLIDE
docked 36 ligands into the binding site of thrombin using both methods. The ligands
with no scores listed could not be docked, due to unresolved steric overlaps with the apo-
active site thrombin structure (1vrl) except for the case of benzamidine (PDB code
1dwb), which was not docked, due to the unusual proximity of its three interaction points
(the two amide N’s, and any pair of its three benzene-ring hydrophobic points, were all <
2.5 A apart). This caused benzamidine dockings to not meet a default parameter setting
in SLIDE which ensures that the minimum edge of any triangle being matched is > 2.5 A.
This is intended to ensure that ligand dockings are complementary to more than a very
local region of the binding site. (If the binding site is small, or the goal is to find small
molecules that match very locally, this parameter can be changed easily.) Among the
docked ligands, 27 had a heavy atom RMSD smaller than 2.0 A compared to the crystal
structure orientation using method 1, while 33 such dockings were obtained with method
2. As shown in Figure 3.5.A, the dockings were generally closer to the crystal structure
position using method 2, as reflected by their lower RMSD values. The mean RMSD for

thrombin ligand dockings was 1.83 A using method 1, and 1.28 A using method 2. An
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example of the typical improvement in the quality of docking for thrombin ligands is
shown in Figure 3.5.

Enrichment plots of the percentage of known ligands docked as a function of the
percentage of the database screened (CSD plus thrombin ligands) are shown for SLIDE
scores (Figure 3.7) and DrugScores (Figure 3.8). Higher enrichment is gained with
method 2 compared to method 1, independently of the scoring function used (indicated
by a shift to the left of the new curve compared to the original one in panel A in Figures
3.7 and 3.8). This means that more known ligands are returned by SLIDE among the top
scoring CSD compounds. Based on the SLIDE score, for example, the percentage of the
known ligands that ranked among the top scoring 100 molecules increased from 38% (16
out of 42) to 64% (27 out of 42). The results are very similar when using DrugScores:
67% of the known molecules (28 of the 42) ranked among the top scoring 100 molecules
with method 2, compared to 33% (14 of the 42) using method 1.

The score distributions also show that the knowledge-based protein and ligand
representations provide a better separation between known ligands and randomly chosen
CSD compounds for both the SLIDE scores (Figure 3.7.B and C) and DrugScores (Figure
3.8.B and C). The difference between the mean SLIDE scores of the known ligands and
CSD compounds increased from 20.7 score units to 27.1 score units when method 1 was
replaced by method 2. DrugScore also mirrors a better discrimination between known

ligands and CSD compounds when the knowledge-based method is used.
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Figure 3.5. Comparing the docked orientations to the crystal structure position of a —
strand mimetic inhibitor (PDB code 1a46) in the binding site of thrombin. The crystal
structure position of the ligand is shown in white, and the docked orientation using the
knowledge-based method is in magenta (RMSD 1.03 A), while the docking obtained with
the grid-based method is shown in blue (RMSD 2.48 A). This is representative of the
improvement in docking quality observed for the thrombin and GST ligands in general.
The view into the thrombin active site is slightly shifted relative to that in the previous
panel.
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Figure 3.6. Comparing the RMS deviations between the docked orientations of known
ligands and their crystal structure positions resulting from the original (1) and the
knowledge-based (2) methods of template and ligand interaction point generation in the
case of thrombin (A) and GST (B). Ligands docked better (with lower RMSD) with the
knowledge-based method are represented by points below the diagonal line. The
significant outlier in (A) with RMSD ~11.3 A is a ligand with a neutral side chain
occupying the S1 specificity pocket of thrombin in the x-ray structure of the protein-
ligand complex (PDB code 1awf). This is a case in which the inclusion of key points can
lead to misdocking. The atypical lack of hydrogen-bonding atoms in the portion of the
lawf ligand that binds to the S1 specificity pocket led to the inability of SLIDE to match
this part of the molecule to at least one key point in the S1 pocket. The ligand was thus
rotated by SLIDE about 180° compared to its crystal structure position, in order to satisfy
the key point matching requirement by placing another, polar side chain into the Sl

pocket.
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Figure 3.7. Screening and enrichment improvements for thrombin using the knowledge-
based template and new ligand interaction point assignments, as reflected by SLIDE
scores (A), where a shift to the left of the curve corresponding to the new method
indicates slightly improved enrichment. The distributions of SLIDE scores obtained with
the grid-based method (B) and the knowledge-based method (C) show that the
knowledge-based method gives a better separation between the scores of known thrombin
ligands and random CSD compounds, reflected by a greater separation between the
means of their score distributions. Curves that do not reach 100% for the “Percent of
known ligands retrieved” reflect the fact that some ligands were not docked due to
unresolved steric overlaps with the protein or due to the unusual proximity of the ligand
interaction points (see text for further details).
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Figure 3.8. Significant improvement in enrichment for thrombin ligands, as reflected by
the scoring function DrugScore (A), where a leftwards shift of the curve corresponding to
the knowledge-based method indicates improved enrichment. The distributions of
DrugScore scores (divided by 104) obtained using the grid-based method (B) and the
knowledge-based method (C) show a much better separation between the scores of
known thrombin ligands and CSD compounds. This is reflected by a 10-unit increase in
separation between the mean DrugScore for ligands and the mean DrugScore for random
CSD compounds. Curves that do not reach 100% for the “Percent of known ligands
retrieved” indicate that some ligands were not docked.
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34.2 Glutathione S-Transferase

SLIDE was able to find a collision—free orientation for 14 of the 15 known ligands in the
active site of GST with method 2, while 13 were docked using method 1 (Table 3.2). The
ligand from the crystal complex 19gs could not be docked for the same reason described
for benzamidine in the previous section, whereas the reason for failure of chlorambucil
(21gs) to dock was the existence of unresolved steric clashes with the protein. Method 2
resulted in better dockings (lower RMSD values), as illustrated in Figure 3.6.B by the
majority of points falling under the diagonal. Only one of the 14 docked ligands had a
lower RMSD when method 1 was used, two were docked about equally well, while 10
were docked closer to their crystal structure position with method 2. The number of
known ligands docked with an RMSD less than 2.0 A doubled from five to ten, and the
mean RMSD between crystal structure and docked positions decreased from 2.15 A to
1.00 A upon introducing the knowledge-based method. The four hydrophobic ligands,
shown by the crystal complexes to bind to the hydrophobic subsite of GST (13gs, 20gs,
21gs, 2gss), were docked incorrectly (RMSD > 5.0 A) when polar template points were
used as key points. This is not surprising given that these ligands must make interactions
in a region different from where the key points were assigned. However, their docking
improved substantially when hydrophobic key points were used in the second run with
either method of template generation and interaction point assignment. Hydrophobic
template points can be used as key points for docking smaller sets of ligands to a protein,
but this is not a practical alternative when screening large databases. Since matching
three template points is sufficient for docking with SLIDE, using hydrophobic key points

when screening a large database can result in docking a very large number of small,
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relatively nonspecific, hydrophobic molecules. They could later be eliminated based on
their scores, of course, but this would still result in a considerable increase of the running
time and output volume.

Only the results of the first run (with hydrogen bonding key points) were used to
construct the enrichment plots for GST (Figure 3.9.A). For brevity, only the enrichment
plot for DrugScores is shown; the results were substantially similar using SLIDE scores.
DrugScores indicate that more of the known ligands were retrieved among the top
scoring molecules (Figure 3.9.A), meaning improved enrichment was achieved with
method 2 compared to method 1 for GST. When the SLIDE scoring function was used,
73% of the known ligands (11 out of 15) were ranked among the top scoring 100 of all
docked molecules when using method 2, compared to 60% (9 out of 15) among the top
100 with method 1. Using DrugScore, the percentage of the known ligands ranking
among the top scoring 100 of all the docked molecules increased from 33% (5 out of 15)
to 60% (9 out of 15).

The distribution of scores obtained for the docked known ligands and CSD
compounds to GST are shown in Figures 3.9.B and C. The difference between the mean
scores of the GST ligands and randomly selected GST molecules increased due to the
introduction of the knowledge-based method, independently of the scoring function
applied: the means were separated by an additional 7.5 score units using SLIDE scores,
and by an additional 9.4 X 10* units using DrugScore. Although the standard deviations
of the DrugScores and SLIDE scores also increased, the increased separation of the

means was roughly three times greater than the increase in standard deviations.
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Figure 3.9. Enrichment for glutathione S—transferase ligands, as reflected by the scoring
function DrugScore (A), where the significant leftwards shift of the curve corresponding
to the knowledge-based method indicates greater enrichment. The distributions of the
scores (divided by 10*) obtained using the original grid-based method (B) and the
knowledge-based method (C) again show a better separation between the scores of
known GST ligands and CSD compounds, indicated by the large increase of 10 units
between the means of these two classes of compounds. Given the smaller sample size
(15) of GST ligands, this score distribution is less well defined than those for thrombin
(Figures 3.7 and 3.8). However, the same trends in improvement are found for both
proteins and both scoring functions. Curves that do not reach 100% for the “Percent of
known ligands retrieved” indicate that some ligands were not docked. This percentage
decreased with use of the knowledge-based template.
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3.5 Discussion

3.5.1 The Influence of Accurate Binding Site Representation on

Docking and Scoring

Because the computation time increases nearly exponentially with the size of the
template, a compromise must be reached such that the most important features of the
binding site are captured with the smallest possible number of template points. Using a
knowledge-based approach for identifying the most favorable hydrogen-bonding
subsites in the binding site of the protein proved to be superior over grid—based sampling
followed by the selective retention of points where ligand atoms could act as hydrogen—
bond donors or acceptors. More known ligands could be docked closer to their known
crystal structure positions for both thrombin and GST using the knowledge-based
method of template and ligand interaction point generation.

Docking experiments usually return multiple docked orientations per ligand.
Ideally, the scoring function will indicate the one closest to the crystal structure by giving
it the highest score. Also, when a large database is screened, the scoring function should
be able to discriminate between promising ligand candidates and artificial hits. Using the
assumption that most CSD compounds are unlikely to be ligands of thrombin and of
GST, the ability of SLIDE scores and DrugScores to discriminate between known ligands
and CSD compounds was tested. The enrichment plots calculated with both scoring
methods showed improvement upon replacing the grid-based template with the
knowledge-based one, and the separation of scores between ligands and CSD compounds

also increased. The reason for this is the ability of SLIDE to dock ligands better with the
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knowledge-based method, with better dockings receiving higher scores, whereas the
CSD compounds received roughly the same scores using both methods.

Precise computational prediction of the binding affinities of a series of ligands for
an arbitrary protein target cannot be routinely achieved by any method at this time.
Particular challenges remain in the handling of interfacial solvation and protein and
ligand flexibility, so scoring functions perform best when the details of the protein—ligand
complex are well-resolved. Thus, docking presents a particularly hard case for scoring,
and consensus scoring by combining several scoring functions has been suggested to
enhance hit rates (Bissantz et al., 2000; Charifson et al., 1999, Stahl and Rarey, 2001).
To compensate for the shortcomings of using a single scoring function, a second,

independent scoring function, DrugScore, was also used to score the ligands docked by
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Figure 3.10. Correlation between SLIDE scores and DrugScores of known thrombin
ligands with the grid-based (A) and the knowledge-based method (B). The negative
DrugScore scores are shown with positive sign for ease of comparison, so that correlation
rather than anticorrelation between DrugScores and SLIDE scores is measured.
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SLIDE. For thrombin and GST, the two scoring functions showed similar results:
increased screening enrichment for known ligands, due to better separation of the ligands
from CSD compounds. The correlation between the SLIDE scores and the DrugScores of
known ligands also increased (Figure 3.10). This could be due to both scoring functions
being trained on correctly positioned ligands from known protein—ligand complexes.
They both perform quite well when the ligand is docked correctly, but may show less
consistent performance on slightly misdocked molecules. In fact, our analysis on the
relationship between RMSD and score (unpublished results) indicates that as a ligand is
shifted from its optimal position, the correlation between RMSD and score is quickly lost.
Once the ligand is slightly misdocked (say, due to a 1.5 A shift from its optimal position),
its score may be indistinguishable from a that of a poor docking due to misalignment of
key hydrogen bonds and hydrophobic interactions. Thus, the score may not suggest that
the docking is close to being correct. This problem would be difficult to solve by
focusing on improving the scoring function, since even a perfect scoring function would
be quite sensitive to a 1.5 A shift between the interacting protein and ligand groups.
However, this problem can be addressed by improving the sampling of orientational
space and the modeling of flexibility in docking. Better sampling and flexibility
modeling result in testing more accurate dockings, increasing the probability that the
correct interactions between protein and ligand will be measured and result in high scores.
The SLIDE scoring function and flexibility modeling remained the same in versions 1
and 2. Therefore, the improvements in the sampling and representation of protein and
ligand chemistry alone account for the significant improvements observed in the scores

and docking RMSD values with the new version of SLIDE (see Figures 3.6-3.9).

73



Both SLIDE score and DrugScore performed significantly better using the
knowledge-based protein representation than with the original grid-based template.
Regularizing the sampling of hydrophobic interaction points on ligands (another change
in version 2 of SLIDE, relative to version 1) also resulted in docking and scoring
improvements. One explanation for the observed improvements in scoring could be that
neither scoring method was optimized to work with a grid—based template, in which the
distances measured between interacting atoms could be non—optimal due to rounding off
to the nearest grid point. However, this brings up the important point that the protein
template and ligand interaction points in SLIDE are used only for the initial docking of
the ligand, whereas scoring by either method is done using the full-atom representation
of the ligand docked to the protein, after flexibility modeling (and without reference to
the template or interaction points). Thus, improving the quality of the initial docking,
through improving the representation of the protein and ligand, is what results in the
significant improvements in docking accuracy and scoring observed here. These
improvements are apparently independent of the scoring function used (DrugScore and
SLIDE score were developed using different paradigms, as discussed below) or on the
particulars of the protein and its ligands (thrombin and GST are structurally and
chemically quite different).

We have no definitive explanation for why SLIDE score and DrugScore results
are apparently so correlated for the thrombin ligands (R = 0.80; Figure 3.10.B).
DrugScore is derived from the extent to which a given protein—ligand complex shows
favored distances between the protein and ligand atoms. Favorability is gauged from

pair-wise atomic distance distributions derived from a large set of protein-ligand
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complexes from the Protein Data Bank. The SLIDE scoring function is a weighted sum
of two terms. The first measures hydrophobic complementarity, calculated as the
complementarity in atomic hydrophobicity values of atoms in the ligand with protein
atoms that are within a certain radius. This radius was chosen to include the first shell of
protein atoms within van der Waals contact of the ligand atom. The atomic
hydrophobicity values came from a prior study of the tendency of protein surface atoms
to bind water molecules in crystallographic structures (Kuhn et al., 1995). The second
term in the SLIDE scoring function, counting intermolecular hydrogen bonds, is based on
others’ studies of the favored geometries of hydrogen bonds involving protein atoms.
Despite counting interactions somewhat differently, SLIDE score and DrugScore are both
based on knowledge derived from the geometry of interactions within protein
crystallographic structures. This may be the fundamental basis for the observed

correlation in their values for the thrombin complexes.

3.5.2  The Role of Flexibility in Docking to Thrombin and GST

Modeling protein flexibility is also very important to accurate docking. Often, validation
studies test redocking, in which the ligand is removed from the co—crystal structure, and
the separated protein and ligand structures are used to test the docking program’s ability
to identify the correct ligand binding orientation in the protein. In that case, the protein is
guaranteed to be in the correct conformation for the ligand. This simplifies the docking
problem, such that only orientational sampling for the ligand is needed. It also assumes
that the correct protein conformation is known for that ligand, which is not true when

predicting a protein-ligand complex or designing a new ligand. Only 9 of the 42
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thrombin ligands could be docked into the apo structure without conformational change
in the protein or ligand (data not shown), whereas with SLIDE flexibility modeling of the
protein and ligand, 36 of 42 (86%) of the ligands could be docked. For GST, 93% of
ligands could be docked with flexibility modeling, but only 60% without. Thus, SLIDE
models flexibility appropriately, allowing correct docking of the majority (~90%) of
thrombin and GST ligands, as well as discriminating well between ligands and non—
ligands in screening. Without protein flexibility modeling, for most ligands docking
requires using the pre—conformed protein structure for that ligand, or forcing unnatural,

additional flexibility within the ligand.

353 Previous Docking and Screening Validation Studies on

Thrombin and GST

A number of groups have done docking and screening method validations on thrombin
(Baxter et al., 2000; Fox and Haaksma, 2000; Fradera et al., 2000; Jones et al., 1997,
Knegtel et al., 1999; Kramer et al., 1999; Murray et al., 1999; Sotriffer et al., 2002; Stahl
and Rarey, 2001), with a focus on how the docking and scoring methods affect the
results. In particular, Stahl and Rarey (Stahl and Rarey, 2001) present a detailed analysis
of four different scoring functions in combination with the docking tool FlexX, using
thrombin as one of their targets. Depending on the scoring function used, 20-70% of the
67 known thrombin ligands are among the top ranking 10% of their screening database of
about 10000 compounds. This percentage improves to 80% when using a combined
scoring function. Baxter et al. (Baxter et al., 2000) test the docking accuracy of

PRO_LEAD on 70 protein-ligand complexes including 6 thrombin structures, resulting
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in 79% of the ligands being docked within 2.0 A RMSD. This program also provides a
reasonable separation between the docked scores of the 43 known thrombin ligands and
10000 random molecules from the screening database, with 84% of the known ligands
ranking among the top scoring 10% of docked molecules. Knegtel et al. (Knegtel et al.,
1999) compare the performance of DOCK 4.0 and FlexX 1.5 by docking 32 known
ligands to thrombin. For ~40% of the ligands, fully flexible docking yields orientations
within 2 A of the known binding modes. This increased ligand conformational sampling
in DOCK is found to be comparable to rigid docking of about 800 conformers per ligand
and increases the docking accuracy somewhat, at the expense of an additional 20
minutes’ run time per compound. In another study, Knegtel et al. (Knegtel and Wagener,
1999) use DOCK 4.0 to identify thrombin inhibitors from a database of 32 known
inhibitors, ten chemically similar but inactive compounds, and 1000 corporate database
compounds. The performance is again scoring—function dependent, with 78-94% of
actives being ranked among the 10% best scoring molecules, but neither scoring function
gave a good differentiation between actives and inactives among the top scoring
compounds. In the results presented here, SLIDE screening on the ~15,000 molecules of
the combined thrombin ligand and random CSD compound database identified 64-67%
of thrombin ligands (depending on whether SLIDE score or DrugScore was used as the
metric) within the top 0.7% of screened compounds. The runtime was about 17 hours for
this screening. Although the runtime is determined primarily by the template size, other
factors like ligand size and number of rotatable single bonds are also influential. While it

is risky to compare methods using different ligand database sizes and degrees of
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molecular diversity (as described above), these results give some idea of the state of the
art for molecular screening and docking of ligands for thrombin and GST.

Other groups have also investigated the influence of protein or ligand
representation on docking results. Fradera et al. (Fradera et al., 2000) test two ligand
similarity—driven flexible docking approaches by modifying DOCK 4.0 to include the
molecular—field matching program MIMIC (Mestres et al., 1997). The modified methods
outperform DOCK by improving the quality of the 31 thrombin ligand dockings by 1 A
RMSD on average and by identifying 1.5-2 times more active molecules among the top—
ranked 10% of molecules, for each of the three screening databases used. Their results
with MIMIC/DOCK tend to be better than results of DOCK alone and take far less time,
but prove to be rather dependent on the choice of the reference ligand. Fox and Haaksma
(Fox and Haaksma, 2000) test their approach of combining GRID (Boobbyer et al., 1989)
to map the binding site of thrombin and UNITY (TRIPOS, Inc.) to do a flexible 3D
database search for benzamidine-based thrombin inhibitors, using a database of in—house
thrombin inhibitors and a subset of ACD compounds. The method provides accurate
docking orientations for 90% of the x-ray conformations of the known inhibitors,
although the docking accuracy drops considerably in the case of CORINA-generated
conformers (Sadowski and Gasteiger, 1993).

Glutathione S—transferase has been less widely studied as a docking and screening
target, although it has been included in some larger docking validations (Chen and Ung,
2001; Jones et al., 1997; Kramer et al., 1999). There are at least 11 different GST
isozymes with different substrate specificities, which complicates the comparisons.

Koehler et al. (Koehler et al., 1997) use an interesting approach to decipher the key
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determinants of GST isozyme selectivity. Based on finding that glutathione (GSH) binds
to all isozymes in a single bioactive conformation, they superimpose the available GST
x—ray structures from the PDB using the bound ligands rather than the protein backbones
to compare their binding sites. Their conclusion that the shape and surface
hydrophobicity of the binding site are the key determinants of differences in ligand
specificity between GST isozymes can be exploited in finding new, more isozyme—
specific inhibitors by virtual screening. Such isozyme-specific differences would appear
directly in SLIDE’s knowledge-based protein templates for different GST isozymes,
providing a convenient way to screen for ligands that bind well to one template/isozyme

but not another.

3.6 Conclusions

Our results show that improving the representation of hydrogen—bonding and
hydrophobic interaction points on the ligand and protein by a knowledge-based approach,
as implemented in SLIDE, can significantly improve both the quality of docking and the
docking scores of known ligands relative to randomly-selected molecules. The resulting
unbiased protein template can also provide significant insights into the binding and
specificity determinants of the protein, and thus provide a structure-based design

template for optimizing ligand functional groups.
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Chapter 4

Side-Chain Flexibility in Docking with SLIDE:
Testing the Minimal Rotation Hypothesis

4.1 Introduction

It is widely accepted that flexibility is indispensable for protein function. The questions
are: how much flexibility is needed, in general, for protein-ligand interactions, and how
does this flexibility partition between the protein and its ligand? The high computational
cost of handling both the ligand and the protein as totally flexible entities requires
compromises in modeling protein-ligand recognition, namely including only a certain
degree of flexibility in the docking process to maintain a reasonable computational time.
The first docking tools, the most widely known of them being DOCK (Kuntz et al., 1982),
were designed based on the key-and-lock mechanism of protein-ligand recognition,
handling both the ligand and the protein as rigid bodies. Superior to the rigid body

docking are the methods holding the protein rigid while allowing ligand flexibility
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(Burkhard et al., 1998; Ewing et al., 2001; Goodsell et al., 1996; Kramer et al., 1999;
Taylor and Burnett, 2000). DOCK has evolved to become more realistic, too, by
handling ligands totally flexibly in its latest 4.0 version (Ewing et al., 2001). The
rationale behind this treatment is that ligands are usually much smaller than the protein,
so it is computationally less expensive to handle them flexibly. On the other hand,
studies of conformational changes accompanying protein-protein (Betts and Sternberg,
1999) and protein-ligand (Najmanovich et al., 2000) associations show that even in the
case of proteins with conserved main-chain conformations across crystallographic
complexes with various ligands, there are significant side-chain conformational changes
in at least 60% of the cases upon ligand binding. These studies provide a conservative
estimate of side chain flexibility involved in the recognition process, since side chain
conformations were considered to be different only if they were in different low energy
states also called rotamers. Nevertheless, they point toward the necessity of also
modeling protein flexibility in docking.

Docking and screening tools reach various levels of sophistication trying to achieve
this goal. Soft docking (Jiang and Kim, 1991) handles protein flexibility implicitly by
allowing a certain degree of interpenetration between the protein and the docked ligand,
making the reasonable assumption that the exactly correct conformers of the protein and
ligand are not sampled. The docking tool GOLD (Jones et al., 1997) allows rotation of
terminal hydrogen atoms on the proteins to optimize fit and hydrogen bonding. The next
level of sophistication is reached by using rotamer libraries (Dunbrack, Jr. and Karplus,
1993; Lovell et al., 2000; Tuffery et al., 1991) to sample the low energy conformations

available to each side chain while optimizing the shape complementarity between the
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protein and the docked ligand (Kallblad and Dean, 2003; Leach, 1994; Leach and Lemon,
1998). Schaffer and Verkhiver (Schaffer and Verkhivker, 1998) improve the rotameric
side-chain conformations with an optimization procedure using the dead-end elimination
algorithm following the docking which could be an affordable method for fine docking
but not for screening. Assuming that crystal structures show the protein side-chains in
favorable conformations, an alternative approach to sample the available side-chain
conformational space is the use of side-chain conformers from multiple x-ray structures
(Claussen et al., 2001; Knegtel et al., 1997). A similar approach was taken by the group
of Goodsell to account for protein side-chain motions by combining multiple target
structure within a single grid-based look-up table of interaction energies for docking with
AutoDock (Osterberg et al., 2002).

SLIDE models flexibility by allowing protein side-chain rotations and full ligand
flexibility, assuming that both the protein and the ligand change their unbound
conformation as little as necessary to result in an overlap-free docked orientation of the
ligand in the protein binding site (Schnecke and Kuhn, 1999; Schnecke and Kuhn, 2000).
This hypothesis was tested on a number of different proteins which do not undergo major
main-chain conformational change upon ligand binding but show alternative side-chain

positions in crystal complexes with different ligands.

4.2 Methods

To examine whether or not side-chain flexibility as modeled by SLIDE is necessary for
successful docking, a set of known ligands were docked into the unliganded, apo

structure of thrombin (PDB code 1vrl) both by rigid and flexible docking. The two
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approaches were evaluated by comparing the number of successful dockings retrieved
with and without flexibility, where a successful docking was defined as one with a root
mean square deviation (RMSD) of 2.5 A or less from the crystal structure orientation.

To evaluate the realism of induced fit modeling by SLIDE, the side-chain
rotations produced by SLIDE upon docking known ligands into the apo structures of their
target proteins were compared to the dihedral-angle differences calculated between
corresponding ligand-free and ligand-bound x-ray structures of the proteins. A set of 35
human thrombin (Table 4.1) and 14 human glutathione S-transferase (Table 4.2)
crystallographic complexes with known ligands were used in addition to the ligand-free
(in the active site) structure of thrombin (PDB code 1vrl) and of GST (PDB code 16gs).
In order to avoid a possible bias that could arise from studying only one or two cases, and
to ensure the validity of the conclusions across a wide range of proteins, a dataset of
18 ligand-free protein structures with corresponding ligand-bound complexes was also
assembled (Table 4.3). Only structures with resolutions of 2.5 A or better were used.
Since this study focused on modeling side-chain flexibility in systems with no significant
backbone changes following ligand binding, only ligand-bound and ligand-free protein
pairs with backbone superposition RMSD values of < 0.5 A, and pair-wise backbone
atom positional deviations of < 1 A were used. To exclude possible errors in determining
side chain positions, only protein-ligand crystal complexes with resolution of 2.5 A or

better were included in the analysis.
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Table 4.1. Thrombin crystallographic complexes used in testing the minimal rotation
hypothesis. The names of the ligands are listed in Table 3.1. Some of the best RMSD
values for the dockings differ from those listed in Table 3.1 because a different SLIDE
run with slightly different parameter values was performed for this study. The parameter
set used in this study was found to allow more known ligands to be correctly docked
without increasing the computational time considerably. All the SLIDE parameter values
used in the flexible and rigid docking were the identical, except for the number of
allowed side-chain rotations, which was set to zero in the rigid docking run. The “-” sign
indicates that the ligand could not be docked with RMSD < 2.5 A using these parameters;
note that many more ligands could not be docked with rigid docking than with flexible
docking.
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Table 4.1.

Best RMSD (A)
# PDB code (Resolution| Flexible Rigid
(A) docking | docking |
1 1a2c 2.1 - -
2 1a3b 1.8 0.30 0.76
3 1a3e 1.9 - -
4 1246 2.1 0.35 0.88
5 1adw 1.8 0.52 -
6 1a5g 2.1 0.97 0.97
7 1a61 2.2 0.96 -
8 1ad8 2.0 0.78 -
9 1ae8 2.0 0.65 0.31
10 1afe 2.0 1.05 -
11 1aht 1.6 0.81 1.11
12 1ai8 1.9 - -
13 1aix 2.1 1.40 -
14 1awf 2.2 2.1 -
15 1ay6 1.8 0.71 -
16 1b5g 2.1 0.40 -
17 1ba8 1.8 0.51 -
18 1bb0 2.1 0.65 0.65
19 1bcu 2.0 2.16 2.16
20 1bhx 2.3 0.53 0.78
21 1fpc 2.3 0.90 -
22 1lhc 2.0 0.67 0.75
23 1lhd 2.3 0.74 -
24 1lhe 2.2 0.71 0.74
25 1lhg 2.2 1.30 -
26 inrs 2.4 0.75 -
27 1ppb 1.9 0.71 -
28 1tbz 2.3 1.10 -
29 1tmb 2.3 1.00 -
30 1tmt 2.2 0.54 0.77
31 1tom 1.8 0.74 -
32 1uma 2.0 0.94 0.94
33 3hat 2.5 0.89 -
34 7kme 2.1 0.38 -
35 8kme 2.1 0.79 1.09
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Table 4.2. GST crystallographic complexes used in testing the minimal rotation
hypothesis. The names of the ligands are listed in Table 3.2.

# PDB code |Resolution |(Best RMSD
(A) (A
1 10gs 2.2 0.36
2 12gs 2.1 0.36
3 13gs * 1.9 1.78
4 18gs 1.9 0.64
5 1aqv 1.9 0.44
6 1aqw 1.8 0.46
7 1aqx 2.0 0.78
8 1pgt 1.8 0.53
9 20gs * 2.5 0.52
10 21gs * 1.9 4.21
11 2gss * 1.9 2.25
12 2pgt 1.9 0.54
13 3gss 1.9 0.52
14 3pgt 2.1 0.59

* Ligands that are mainly hydrophobic in character and bind to the hydrophobic subsite of GST. These
ligands were docked in a second run, when hydrophobic template points from their respective binding
subsite were selected as key points. In docking the other ligands for GST, which bind in the glutathione site,
hydrogen bonding template points were selected as key points. Using key points is a convenient way to
reduce the number of docked orientations by keeping only those that bind in the correct region within the
active site.
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Table 4.3. Ligand-free structures and their corresponding ligand-bound complexes used
in testing the minimal rotation hypothesis.

PDB code Protein/Ligand Complex IRaoXutlon Best RMSD Template
Free |Bound A (A) Size

1ahc iahb |alpha-momorcharinfformycin 5'- 2.02.2 0.94 88
monophosphate

1ajz 1aj2 dihydropteroate 2.0/2.0 0.75 79
synthase/dihydropterine-diphosphate

3cox icoy |cholesterol oxydase/3-beta-hydroxy-5- 1.8/1.8 1.61 74
androsten-17-one

igmq |[igmr |RNase SA/guanosine-2'- 1.8/1.8 1.28 87
monophosphate

3grs 1gra glutathione reductase/glutathione 1.5/2.0 0.69 139
disulfide

1kem 1kel catalytic antibody 28B4 FAB fragment 22119 0.46 74
/AAH*

2hvm  |1llo hevamine(endochitinase)/N-acetyl-D- 1.8/1.9 0.67 150
allosamine

insb insc |neuraminidase/N-acetyl neuraminic 2211.7 0.40 74
acid(sialic acid)

1swa 1swd streptavidin/biotin 2.0/1.9 0.62 37

2ptn 1tps trypsin/inhibitor A90720A 1.5/1.9 0.93 143

1xib 1xid D-xylose isomerase/l-ascorbic acid 1.6/1.7 2.28 45

1ydc 1ydb [carbonic anhydrase ll/acetazolamide 2.011.9 1.42 50

2chs 2cht chorismate mutase/endo-oxabicyclic 1.9/2.2 1.02 39
inhibitor

2apr 3apr acid proteinase/reduced peptide 1.8/1.8 0.54 1563
inhibitor

1tli 3tmn |thermolysin/Val-Trp 2.01.7 0.99 75

2ctv Scna |concanavalin A/alpha-methyl-D- 2.0/2.0 1.99 57
mannopyranoside

2sga 5sga |proteinase Aitetrapeptide Ace-Pro-Ala- | 1.5/1.8 0.59 126
Pro-Tyr

6taa 7taa fam. 13 alpha amylase/modified 2.1/2.0 0.82 133
acarbose hexasaccharide

* AAH = 1-[N-4'-nitrobenzyl-N-4'-carboxybutylaminomethylphosphonic acid
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4.3 Results

Thrombin

The template describing the binding site of ligand-free thrombin consisted of 139 points,
with 24 of these points assigned as key points. Key points were selected as template
points at a distance of 6.5 A or less from the CG side-chain carbon atom of Asp189 from
the specificity pocket of thrombin (Figure 4.1). From the set of 35 known thrombin
ligands, only 13 could be successfully docked (RMSD < 2.5 A) with rigid docking, while
32 could be docked when the protein side chains and ligand were considered flexible
(Table 4.1). Most of the side chain rotations performed by SLIDE upon docking these 32
known ligands to thrombin are small (Figure 4.2). As many as 58% of these rotations are
15° or less, and 90% of them are 45° or less (Figure 4.3.A). The dihedral angle
differences between protein side chains from the ligand-free and ligand-bound crystal
structures of these ligands have a very similar distribution (Figure 4.3.B), with 66% of all
dihedral angle differences being 15° or less, and 84% of the differences being 45° or less.
Thus, SLIDE is making appropriate magnitudes of rotations for active-site side chains

upon ligand binding.
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Figure 4.1. T he active
site of thrombin filled
with template points
colored according to
type: blue for donor,
red for acceptor, white
for donor/acceptor,
green for hydrophobic.
The template points
from the bottom of the
S1 specificity pocket
(circled in figure) were
marked as key points,
meaning that each
docked ligand must
match at least one of
these points.

Figure 4.2. Side chains
rotated by SLIDE
(shown in green) in the
active site of thrombin
upon docking a known
ligand (red spheres).
The original positions
of the side chains in the
ligand-free crystal
structure  (lvrl) are
shown in white.

89



*SAMIONS [BISAID punoq-puedi| pue 3313-puedi] Usam1aq PIAISSqO SIOUSIYJIP J[3ue [eIpayIp 3y (g) 03 paredwiod ‘([IA] Ipod gdd)
UIQUIOIY) JO 3)IS 2ANIE 321-puedi| 2y ojul spuedi| umowy 7€ Sunjoop uodn (v) GAI'TS 49 pauLoyad SUONEIOL UTBYD-OPIS € '# 24nB1

(saunyonys Ael-x) sebueyd s|bue |eipauig (3ans) sebueyo ajbue [eipayiq

081 mm.r 06 14 0 08t gel 06 Sy 0
ISNEN; 0 N IS S N N 0
VI3
0s
9 " g
Ssainjonuis uiquioly) zg 00l § S8INJONJIS UIqUIOIY) ZE S
0o¢
0S1L
or
%8 IBI[eWS 10 Gi SUOREIOY %06 J|[EWS 10 G SUONEIOY
%99 :JI[BWS 10 G| SUOREIOY q o %8G JBI[BWS IO G| SUOKEIOY v o

90



GST

The template representing the binding site of GST consisted of 120 template points, with
25 key points (16 hydrogen bonding key points used for ligands binding in the
glutathione site and 9 hydrophobic key points used for ligands binding in the
hydrophobic site), as described in the Methods of Chapter 3. Of the 14 known GST
ligands (Table 4.2), 13 were docked successfully into the binding site of the ligand-free
crystal structure (PDB code 16gs). The side chain rotations performed by SLIDE for the
13 successful dockings are shown in Figure 4.4.A. Only 4% of the angles rotated by
SLIDE were larger than 45°, with 89% of them being smaller than 15°. This result was
very similar to the crystal structure dihedral angle differences of the side chains from the
binding site of the ligand-free protein and corresponding ligand-bound complexes (Figure
4.4.B), where 85% of the angle differences were 45° or smaller and 96% of them were

15° or smaller.

Eighteen Pairs of Ligand-free and Ligand-bound Proteins

The templates used to represent the binding sites of this diverse set of proteins varied in
size from 37 to 153 points. No key points were assigned for these cases. Similarly to
thrombin and GST, most side chains (92%) from the binding sites of the apo structures
were rotated by SLIDE with 45° or less, with 69% or the rotations being smaller than 15°
(Figure 4.5.A). The distribution of the SLIDE-performed side-chain rotations was found
to be very similar to the distribution of dihedral-angle differences observed between the
apo and ligand-bound crystal structures (Figure 4.5.B), out of which 94% were 45° or

smaller and 83% were 15° or smaller.
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44 Discussion

When measuring side-chain dihedral angle differences of ligand-bound and ligand-free
proteins, only protein side-chains in direct contact with the ligand in the ligand-bound
were taken into account. This was done to ensure that only ligand-induced changes were
considered. There is a very good qualitative agreement between the pattern of side-chain
rotations that occur upon ligand binding provided by SLIDE and the picture that emerges
from comparing ligand-free and ligand-bound protein structures. On average, about 85-
90% of side chain rotations are smaller than 45°. Studies of ligand-induced changes in
side-chain conformations in protein binding sites usually count only differences larger
than 45°, or even 60 or 75° (Betts and Sternberg, 1999; Najmanovich et al., 2000), that
would correspond to changes in rotameric states of the side chains. Heringa and Argos
on the other hand, observed that ligand binding induces non-rotamericity in the preferred
side-chain conformations (Heringa and Argos, 1999). The model of protein side-chain
flexibility implemented in SLIDE provided results that are in good agreement with these
latter observations. Not only were most of the rotations too small to allow changes in
rotameric states, but they were necessary to correctly dock the ligand in about 60% of the
thrombin ligands. Even when docking could be achieved with a rigid protein structure,
the resulting docked orientation was farther from the correct position in many cases,
compared to the orientation resulting from flexible docking.

Comparing the A and B panels of the plots showing the distributions of side chain
rotations (Figures 4.3, 4.4, and 4.5) it is noticeable that SLIDE is somewhat more
parsimonious than nature by producing a smaller number of rotations in the protein upon

binding the ligand. One reason for this is that the larger the number of side chains

94



allowed to be rotated by SLIDE, the larger the possibility of creating new intramolecular
overlaps in the protein. This would ultimately lead to an increase in computational time,
limiting the usefulness of the program in screening large databases. Another reason for
the above mentioned quantitative discrepancy could be that SLIDE does move side
chains away to resolve collisions but does not move them toward the ligand to make new

interactions. This is a future improvement to be implemented in SLIDE.

4.5 Conclusions

The assumption that both protein side chains and ligands move as little as necessary in
order to achieve a collision-free complex proved to be both reasonable and sufficient to
dock most of the known ligands into the binding sites of their target proteins for the
systems tested in this study. The results of the ligand-free and ligand-bound crystal
structure comparisons underscore that side chain conformational changes are typically

not rotameric, but instead involve modest (<15°) changes in side-chain angles.
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Chapter 5

Using SLIDE to Find New Ligands for Thrombin

5.1 Introduction

Increase in efficiency and reliability of computational tools has enabled virtual screening
to become a valuable method in the pharmaceutical drug discovery process,
complementing high-throughput screening (Good, 2001; Schneider and Bohm, 2002;
Shoichet et al., 2002; Waszkowycz, 2002). Novel inhibitors have been identified for
thrombin (Fox and Haaksma, 2000; Massova et al., 1998), protein tyrosine phosphatase-
1B (Doman et al., 2002), various nuclear hormone receptors (Schapira et al., 2000, 2001),
human carbonic anhydrase (Gruneberg et al., 2002), and thymidylate synthase (Shoichet
et al., 1993) by in silico screening of compound databases.

As described in the previous chapters, SLIDE is a computational tool which can
efficiently screen databases of hundreds of thousands of molecules to identify feasible

ligand candidates for a target protein with known three dimensional structure (Schnecke
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and Kuhn, 1999; Schnecke and Kuhn, 2000). The realistic modeling of protein side-
chain and ligand flexibility, combined with the improved representation of the binding
site by knowledge-based template design has allowed a better discrimination between
true ligands and non-specific compounds (Zavodszky et al., 2003). Since experimental
testing is a useful complement to modeling, a screening experiment was designed to test
the predictive power of SLIDE. After screening the Available Chemicals Directory
(ACD; MDL Information Systems, Inc.) to identify new ligands for thrombin, binding
affinities were measured for the top scoring candidates using isothermal titration

calorimetry (ITC).

The Target: Thrombin

Thrombin is a key player in the blood coagulation cascade: it catalyzes the proteolytic
cleavage of the soluble plasma protein fibrinogen to produce fibrin. The linear fibrin
monomers are then cross-linked by factor XIII, producing insoluble blood clots. Factor
XIII is a transglutaminase, the last enzyme of the coagulation cascade, which is itself
activated by thrombin. Thrombin is also a potent platelet activator. Activated platelets
adhere to the site of vascular injury, aggregate, and form a plug to reduce blood loss. The
coagulant activity of thrombin is kept under control by thrombomodulin, a thrombin
binding protein on the surface of endothelial cells. When too much thrombin is generated,
thrombomodulin binds to thrombin, dramatically altering its specificity. The complex
rapidly cleaves the protein C zymogen to form the anticoagulant, activated protein C.
Complex formation between thrombin and thrombomodulin also prevents thrombin from

cleaving fibrinogen. Numerous efforts to control the blood clotting process are directed
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toward thrombin because of its pivotal role in maintaining the intricate balance between
hemostasis and thrombolysis (Davie et al., 1991; Esmon, 1995).

Thrombin is a trypsin-like serine protease with the characteristic Ser-His-Asp
catalytic triad at the active site. Its specificity is also similar to that of trypsin,
preferentially binding substrates with Lys or Arg residues in its specificity pocket. Two
additional binding sites (the fibrinogen binding exosite and the heparin binding site), and
the ability to use different combinations of these elements allow thrombin to play a key
role in a variety of blood coagulation related processes (Tulinsky, 1996). Biochemical
modeling studies are greatly aided by the extent of structural data on thrombin that has
become available during the last few years (Stubbs and Bode, 1993; Stubbs and Bode,

1995).

5.2 Methods

5.2.1 Screening the ACD with SLIDE

SLIDE (described in more detail in Chapter 1, section 1.4 and Chapter 3, section 3.3) was
used to screen the Available Chemicals Directory (ACD) to identify new ligands for
thrombin. After eliminating compounds with fewer than 6 or greater than 200 non-
hydrogen atoms, the ligand database contained 214,713 small organic molecules.
DrugScore (Gohlke et al., 2000) was used to rescore the top dockings returned by

SLIDE. A short description of DrugScore is provided in Chapter 2, section 2.2.
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5.2.2  Isothermal Titration Calorimetry

Isothermal Titration Calorimetry (ITC) is a particularly suitable technique to follow the
energetics of an association reaction between macromolecules (Jelesarov and Bosshard,
1999), allowing the measurement of the enthalpy as well as the entropy changes of such
interactions. The experiment is performed at a constant temperature by titrating the
ligand into the protein solution in the sample cell of the calorimeter. After each step of
adding a small aliquot of the ligand, the heat exchange in the sample cell is determined
by measuring the electrical power necessary to keep the small temperature difference
between the sample cell and the reference cell constant. The integrated heat changes
plotted against the molar ratios of the binding reaction show the characteristic sigmoidal
curve of the binding reaction. For a single set of identical binding sites, the total heat of

the reaction Q can be calculated from the following equation:

2
Q%NIP]AHV[H—)& ‘ -J(1+X+ ‘ )_4)"}

N NK[P] N NK[P]] N

where N is the number of binding sites, [P] the total protein concentration, AH the
enthalpy of the binding, V the volume of the calorimetric cell, X the ligand/protein molar
ratio, and K the binding constant. Least square fitting of the equation describing the
binding process to the experimental data allows determination of the enthalpy of the
binding (AH), the association constant (K), and the stoichiometry, which reflects the
number of ligands binding to one protein molecule (N). The other thermodynamic
parameters, the Gibbs free energy (AG) and entropy change (AS), for the interaction can

be calculated from the relationship:
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AG = -RTInK = AH - TAS

where R is the universal gas constant, and T is the absolute temperature.

Measurements were carried out using an MCS_ITC instrument from MicroCal
(Northampton, Massachusetts). Human a-thrombin (Enzyme Research Laboratories,
South Bend, Indiana) was dialyzed overnight at 4°C against TRIS buffer (S0OmM TRIS,
100 mM NaCl, 0.1% PEG800, pH 7.8) with the buffer changed twice to remove salts and
impurities. The third dialyzate was saved and used for making the protein and ligand
dilutions. Protein concentrations in the sample cell were in the 0.39 - 0.85 mg/ml range.
The ligands were added to the protein solution using a 100pl syringe, with concentrations
ranging from 0.4 to ImM. All the experiments were carried out at 30°C, with both the
protein and ligand solutions degassed before measurements. The reference cells
contained deionized and degassed water. As a negative control, a buffer-run was
performed with each ligand candidate, when the ligand was titrated into the buffer
without thrombin. A known thrombin ligand, 4-aminobenzamidine, was used as a
positive control. Data analysis was performed with the Origin software supplied with the

instrument.

5.3 Results

The ACD screening run to identify potential new ligands for thrombin was completed in
approximately two days on a double processor desktop workstation. SLIDE returned
15,474 docked molecules, with an average of two orientations per compound that fit the

active site. The top 3000 orientations were rescored with the knowledge—based scoring
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function, DrugScore, and these compounds were then ranked according to their
consensus score, calculated as the normalized sum of the SLIDE score and DrugScore

score:

SLIDE _score DrugScore_score

Consensus _score =
Max_SLIDE _score Min_ DrugScore_score

The largest SLIDE score and the smallest DrugScore were used to calculate the
normalized scores because SLIDE scores are positive numbers with larger being better,
while DrugScore calculates energy-type scores with negative values, where the smaller
the value is the better the score. Seven compounds were selected based on their
consensus scores (Figure 5.1), excluding closely related molecules and compounds that
were difficult to obtain. Molecules that were obviously dyes were also excluded, because
they tend to bind to a wide variety of biological macromolecules non-specifically. Eight
other compounds were selected based on molecular graphics inspection of shape and
chemical complementarity of the ligand with the protein (Figure 5.2). These 15
compounds were chosen to be assayed for binding affinity by ITC. Of the 11 out of 15
compounds that proved to be soluble, two, morelloflavone and new fuchsin, showed

micromolar binding affinity to human thrombin and are novel ligands for this protein

(Figure 5.3).
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Morelloflavone 172.46 Sennoside 157.71

Carbobenzyloxy-L-tyrosyl-L-
leucine methyl ester 152.42

Cefsulodin 147.48

Z-Arg-P-nitrobenzyl
ester HC1 142.17

Trans-(E)-ﬂupenthlxol A~ _OH
150.96
)‘L
,/o

Figure 5.1. ACD compounds selected for testing based on their scores. The numbers
next to the ligand names are consensus scores, a normalized sum of SLIDE score and
DrugScore, where higher is more favorable.
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N-alpha-trityl-L-Arg 133.68 3-aminobenzenesulfonic (6-(fluoro-SO2-)-1-Me-
2-Ph-4(1H)-quinolydine) hydrazide 133.62

N

D-glucose dibenzyl
mercaptal 133.17

2,2-bis[4-(4-

\mg aminophenoxy)
° , phenyl] propane
| 131.46
4,4’-(alpha,4-dichlorobenzylidene)bis N H
[2,2’-(phenylimino)diethanol] 131.81 y
Rutin hydrate
H 129.27

D0

2,4,6-tris-(hydroxyl-phenyl)-pyranylium

New fuchsin 129.27

-

Figure 5.2. ACD compounds selected for testing based on molecular graphics inspection
of their docked complexes with thrombin. The numbers next to the ligand names are
consensus scores, where higher is more favorable.
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Figure 5.3. The recorded heat changes upon successive injections of the ligand into the
buffer (negative control, top panel) and the protein solution (middle panel) are shown for
each ligand. Morelloflavone and new fuchsin produced larger heat changes (heat of
dilution) when injected into the buffer compared to 4-aminobenzamidine, due to the
small percentage of DMSO that had to be used to solubilize the first two compounds,
while 4-aminobenzamidine was directly soluble in the working buffer. For each ligand,
the heat of dilution was subtracted from the corresponding heat of the binding reaction.
The integrated heat values plotted against the molar ratios are shown in the lower panels.
The red lines represent the least square fitting of the one-binding—site per protein model
(N=1) to the experimental data. The parameters calculated from this fitting are the
association constant (K, in M), the enthalpy (AH in cal/mol) and the entropy change
(AS in cal/mol'K) of the binding reaction. The dissociation constant (K4 in M) is the
inverse of K. The shape of the fitted curve depends on the protein concentration, binding
constant, and the stoichiometry of the binding reaction.
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The predicted binding oril ions of these newly identified thrombin ligands mimic the

binding modes of known thrombin ligands but have a different molecular scaffold (Figure

5.4).

Figure 5.4. Docked ori ion of 1lofl (A) and new fuchsin in
blue (B) in the binding site of thrombin (PDB code lvr]) The molecules colored by atom
types are known thrombin inhibitors from X-ra; pl (PDB codes 1dwd and 1aht,

respectively), showing that known thrombin ligands sample similar regions of the binding
pocket.

54 Discussion

Given the time constraints imposed by the large number of compounds in screening
libraries, virtual screening tools can only afford to perform a relatively rough,
approximate docking and employ a simple and quick scoring function instead of highly

detailed hanics/molecul. hani Iculations to score the hits. Under




these conditions, finding low affinity binders with novel scaffolds is a realistic
expectation from screening random compounds. Micromolar affinity is typical of lead
compounds identified by high throughput combinatorial library screening for drug
discovery. These leads can then be further modified, with functional groups added or
deleted to develop tight and specific inhibitors for the given target protein.

Two of the 11 soluble ligand candidates tested for binding turned out to be
micromolar binders to human thrombin. This success rate for identifying new ligands
based on SLIDE virtual screening is comparable to the best results reported by other
groups (Doman et al., 2002; Fox and Haaksma, 2000; Gruneberg et al., 2002; Massova et
al., 1998; Schapira et al., 2000; Schapira et al., 2001; Shoichet et al., 1993), and is about
1000-fold more effective than in vitro high-throughput screening, which typically has a
success rate of ~0.02% (Doman et al., 2002). SLIDE also explicitly predicts the binding
mode between the protein and ligand (Figure 5.4), which will aid in optimizing the new
ligands for higher affinity and protein selectivity (e.g., binding to thrombin over other

coagulation and digestive serine proteases).
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Chapter 6

Modeling Protein Main-Chain Flexibility in
Docking

6.1 Introduction

Analysis of conformational changes on complex formation for a representative set of 39
pairs of ligand-free and ligand-bound structures (Betts and Sternberg, 1999) showed that
about 50% of the proteins undergo substantial main-chain and side-chain conformational
changes when binding the ligand. In another study, focused mainly on evaluating the
average number and the type of protein side-chains that undergo major rearrangements
upon ligand binding, aside from ubiquitous side-chain movements, Najmanovich and co-
workers found backbone displacements larger than 1 A in 25% of the cases
(Najmanovich et al.,, 2000). This means that in many instances the protein-ligand
recognition process cannot be correctly described unless protein main-chain flexibility is
taken into account. Excellent reviews have been published recently (Carlson, 2002;

Halperin et al., 2002) summarizing the state of the art in flexible docking. Except for
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limited cases — simple hinge motions (Sandak et al., 1998), crystallographically
determined alternative conformations (Claussen et al., 2001), or small-scale motions
typical of molecular dynamics simulations (Carlson et al., 1999; Lin et al., 2002) — main-
chain flexibility has not been considered in docking. The various approaches to model
side-chain flexibility published in the literature are summarized in Chapter 4, followed by
the analysis of how induced fit is modeled for side-chains in SLIDE. This chapter
introduces a new and generally applicable method including main-chain flexibility in
modeling protein-ligand recognition.

Inducing changes in the protein main chain while performing docking is too
expensive computationally, so efforts are directed toward generating a representative
conformational ensemble of the protein and using this set as targets for the docking
instead of a single structure. This approach is also following the line suggested by a
number of theoreticians and experimentalists who argue that the idea of selection of a
naturally occurring, fitting conformer is closer to reality than the classical induced fit
model (Bosshard, 2001; Carlson and McCammon, 2000; Ma et al., 2002). According to
this paradigm, the protein exists in a number of conformations in solution. Ligands of
various shapes and sizes can bind to any conformation of the unbound protein, not only to
the one with the lowest free energy. A ligand that binds to a less populated
conformational state of the receptor with very high affinity can be a stronger binder than
one that binds to the lowest energy conformation of the target with lower affinity.
Nevertheless, this ligand would be missed if only the lowest energy conformer of the

receptor or the average of several low energy structures was used as docking targets.
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The set of multiple protein conformers usually come from NMR studies, x-ray
structures of the same protein with various ligands, or MD simulations. In their
groundbreaking work, Kuntz and co-workers (Knegtel et al., 1997) use ensembles of
NMR and x-ray protein structures as targets for docking with DOCK. The binding site is
placed on a grid, and intermolecular force field values are calculated at the grid points.
Variations among different observable conformations are taken into account by
calculating the average of the force field values at each grid point. Two types of
averaging are used: energy weighted, and geometry weighted. The first method involves
calculating the contribution of each atom from each structure to the potential energy, then
calculating a weighted potential by averaging over all structures. Geometry weighted
averaging means that the averaging is performed at the structural level by calculating a
mean position for every atom of the protein. Although this approach does not include
receptor flexibility in a dynamic sense, the composite grid representing the interaction
energies of the docked ligands with the different protein conformers is shown to
outperform many of the grids derived from individual structures in identifying known
inhibitors for the cases studied. Claussen and co-workers use FlexE, an extention of
FlexX (Kramer et al., 1999), to dock ligands into a united protein description generated
from the superimposed structures of the x-ray srtucture ensemble of the target protein
(Claussen et al., 2001). While averaging the similar backbone and side-chain positions,
the regions with larger variations are retained in form of conformational libraries. New
conformations of the receptor are created by combining compatible conformations of the
various flexible regions of the binding site. The method can handle several side-chain

conformations and smaller loop (up to three or four amino acid) movements but not
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motions of larger backbone segments. Nevertheless, docking into the united protein
description with FLEXE did not provide considerably better dockings than docking into
the individual crystal structures with FLEXX for the proteins studied.

The use of multiple experimental structures limits the conformational sampling to
already observed and existing conformations. Some proteins do not have multiple x-ray
structures or are too large or flexible for NMR structure determination. MD simulations
can provide novel protein conformers to be used as targets for docking, however, they
generate smaller scale movements than may be observed in nature due to their high
computational cost. The development of a dynamic pharmacophore model for HIV-1
integrase is described by Carlson et al. by using snapshots of MD simulations and the
multi-copy minimization method MUSIC to determine binding regions for probe
molecules in the dynamic binding site (Carlson et al., 2000). The drawback of MD
simulations is the long time (from weeks to months) required to achieve a good sampling.
In fact, it is almost impossible to get beyond microsecond timescale motions.

In this chapter, a new and relatively efficient approach to modeling main-chain
flexibility in docking and screening is described. Flexibility analysis from a single
conformation of the target protein was performed using the graph-theoretic algorithm
FIRST (Jacobs et<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>