

£ 54360168

LIBRARY Michigan State University

This is to certify that the dissertation entitled

CHLORINATIVE REARRANGEMENTS OF BICYCLIC AND MONOCYCLIC CARBINOLS VIA THE ACTION OF BLEACH AND VINEGAR

presented by

Erik L. Ruggles

has been accepted towards fulfillment of the requirements for the

Doctoral	aegree in	Chemistry
Date	FE Mul	2
	Major Profes	ssor's Signature
	1/24/	['] 03

MSU is an Affirmative Action/Equal Opportunity Institution

Date

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

6/01 c:/CIRC/DateDue.p65-p.15

CHLORINATIVE REARRANGEMENTS OF BICYCLIC AND MONOCYCLIC CARBINOLS VIA THE ACTION OF BLEACH AND VINEGAR

Ву

Erik L. Ruggles

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

2003

ABSTRACT

CHLORINATIVE REARRANGEMENTS OF BICYCLIC AND MONOCYCLIC CARBINOLS VIA THE ACTION OF BLEACH AND VINEGAR

By

Erik L. Ruggles

Investigation into a NaOCl/AcOH induced exo-olefin insertion/ring expansion of bicyclic vinyl carbinols led to a systematic study of this rearrangement. This ring expansion/elimination reaction proceeds first through a chlorinative ring enlargement to form a β -chloroketone. Elimination of HCl follows to produce exocyclic enones in good yields and regioselectivity. Interestingly in the bicyclic [2.2.2] chlorinative ring expansions, each diastereomeric starting carbinol rearranges stereospecifically to produce bicyclic β -chloroketones. Other issues addressed include substrate scope, as well as the chemo-, regio-, and diastereoselectivity of these chlorinative ring expansions. Subsequent experimentation with other non-vinylogous carbinols led to the observation of a number of other chlorinative rearrangements. The information gleaned from this methodology is an important addition to the database of rearrangements in bicyclic and monocyclic carbinols.

To Me, Myself and I

ACKNOWLEDGMENTS

I would like to thank Professor Robert E. Maleczka, Jr. for his patience, guidance and encouragement during my studies at Michigan State. I could not have asked for a better mentor. I hope I can be as understanding and wise with my own students. I would also like to thank Professors Greg Baker, John McCracken, and Merlin Bruening for serving on my guidance committee. I wish to thank Professors William Reusch, Ned Jackson, and Babak Borhan for their helpful discussions over the years.

On a personal note, upon my arrival at MSU, I had only one family but upon my departure I have been blessed with a lovely wife, Ali, and son, Sayler. You both are the love of my life. I am forever grateful for Ali's gentle prodding over the years and her understanding of late nights and endless work, I will make it up. Also my heart sings for Sayler, whose smile, laughter, and antics have always lifted my spirits immeasurably. I must thank my family for their love and support throughout my long academic studies. In particular I thank my parents, Ed and Bev, for encouraging me to follow my dreams and my sister and brother, Whitney and Seth, for their encouragement and friendship. Last but not least, I want to also express thanks to my Mammaw Ruggles, Mammaw and Pappaw Morehead, Snook and Glenn, and Michael Riordan whom always have lent a compassionate ear and were always there to help out in any way. My family has been the wind behind my sails on this long voyage and I thank you all.

I also thank my colleagues from the Maleczka group for their friendship and help, especially Lamont Terrell, Joe Ward, Bill Gallagher and Andrea Pellerito. I also thank Lee Kelepouris, John Asara and the Woodworth brothers, Mike, Elliot, Shawn, and Adam, for all our many adventures and comic relief over the past six years.

TABLE OF CONTENTS

TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SCHEMES	x
LIST OF ABBREVIATIONS	xii
Chapter 1. Introduction of Ideas	1
Chapter 2. Radical Oxy-Cope Attempts	4
2.1. Introduction to the Radical oxy-Cope	4
2.2. Prior Art	5
2.3. Substrate Synthesis	6
2.4. Radical oxy-Cope	9
2.4.1. Lead	
2.4.2. Manganese	
2.4.3. Sulfenate Ester	
2.4.4. Hypoiodites	
2.4.5. Hypochlorites	
2.5. Conclusions	
Chapter 3. NaOCl/AcOH Promoted Ring Expansions	18
3.1. Introduction	18
3.2. Understanding the Reaction Conditions	
3.3. Proposed Mechanism	
3.4. Chlorinative [2.2.1] Ring Expansions	
3.4.1. Results and Structural Assignment	
3.4.2. Mechanistic Considerations	
3.5. Further Unsaturated [2.2.2] Substrate Synthesis	
3.6. Chlorinative Ring Expansions of "Vinyl" [2.2.2] Carbinols	
3.6.1. Results and Structural Assignment	
3.6.2. Mechanistic Considerations	
3.6.3. Rotomeric Carbinol Investigation	
3.6.4. Summary of Chlorinative [2.2.2] Bicyclic Expansions	
3.7. Chlorinative Ring Expansions of Monocyclic Vinyl Carbinols	
3.7.1. Results and Structural Assignment	
3.7.2. Mechanistic Considerations	
3.7.3. Summary of Chlorinative Monocyclic Expansions	
3.8. Exo-Olefin Insertion/One Carbon Ring Expansions	
3.6. LAG-Olerin Hiserroll/Olic Carbon King Expansions	

3.9. Saturated [2.2.1] and [2.2.2] Substrate Synthesis	41
3.10. [2.2.2] and [2.2.1] Exo-Olefin Insertion/One Carbon Ring Expansions	42
3.10.1. Results and Structural Assignment	
3.10.2. Mechanistic Considerations	42
3.11. Influence of Bridgehead Methyl Group in [2.2.2] Expansion	45
3.11.1. Substrate Synthesis	45
3.11.2. Results	46
3.11.3. Mechanistic Considerations	47
3.11.4. Summary of Bicyclic Exo-Olefin Insertion/One Carbon Expansions	48
3.12. Monocyclic Exo-Olefin Insertion Ring Expansions	48
3.12.1. Results and Discussion	48
3.12.2. Dilution Experiments	50
3.13. Conclusions	50
Chapter 4. Additional NaOCl/AcOH Promoted Chlorinative Rearrangements	52
ι.	
4.1. Introduction	52
4.2. Substrate Preparation	52
4.3. Rearrangement of Secondary Carbinols	53
4.3.1. Results and Structural Assignment	53
4.3.2. Mechanistic Considerations	56
4.4. Rearrangement of Methyl Substituted Tertiary Carbinols	56
4.4.1. Results and Structural Assignment	
4.4.2. Mechanistic Considerations	58
4.4.3. Summary of Methyl Carbinols	59
4.5. Rearrangements of Ethynyl Substituted Tertiary Carbinols	
4.5.1. Results and Structural Assignment	60
4.5.2. Mechanistic Considerations	
4.6. Conclusions	62
Chapter 5. Theoretical Investigation	64
5.1. Introduction	64
5.2. Theoretical Investigation of Chlorinative Ring Expansion	65
5.3. Theoretical Investigation of Chlorinative Transition State	68
5.4. Conclusions	69
Chapter 6 Future Synthetic Investigations	70
Chapter 6. Future Synthetic Investigations	/0
6.1. Nucleophilic Addition to Ring Expanded Enones	
6.2. Patchoulenes	
6.3. Pinocarvone	
6.4. Enone Diels-Alder Cycloadditions	
6.5. Increase in Substrate Scope	
6.6 Final Thoughts	75

Materials and Methods:	77
General Procedures:	
Specific Procedures and Spectral Data:	82

LIST OF TABLES

Table 1.	Temperature and Sequence of Reagent Addition Experiments ²³	0
Table 2.	Mechanistic Experiments ²³	2
Table 3.	Chlorinative Ring Expansions of [2.2.2] Bicyclics ²³	1
Table 4.	Chlorinative Ring Expansions of Saturated [2.2.2] Isopropenyl Carbinols ²³ 3	6
Table 5.	Chlorinative Expansions of Monocyclics ²³	8
Table 6.	Bicyclic <i>Exo</i> -Olefin Insertion One Carbon Expansion Results ²³ 4	3
Table 7.	[2.2.2] Backside Methyl Ring Expansion/Eliminations ²³ 4	6
Table 8.	Monocyclic <i>Exo</i> -Olefin Insertion One Carbon Expansion Results ²³ 4	8
Table 9.	Secondary Carbinol Rearrangements ²³ 5	5
Table 10	. Methyl Substituted 3°-Carbinol Rearrangements ²³ 5	8
Table 11	. Ethynyl Substituted 3°-Carbinol Rearrangements ²³ 6	1
Table 12	. Select Bicyclic Strain Energies (SE) and Heats of Formation (ΔH_f) 6	6
Table 13	. Chloroketone Carbinol ΔSE and ΔΔH _f Values6	7

LIST OF FIGURES

Figure 1. Methods for Generating Oxygen Centered Radicals	9
Figure 2. Sulfenate Ester Homolysis	12
Figure 3. Possible Radical Cyclizations	16
Figure 4. React-Ir Analysis of Irradiation	23
Figure 5. 1D-NOE Support of Johnson's Products	26
Figure 6. 1D-NOE Support of Chlorinative Diastereoselectivities	30
Figure 7. Rotomeric Constraints	33
Figure 8. Mechanistic Arguements	34
Figure 9. 1D-NOE Support of Methyl β-Chlorocyclohexanones 95:96	39
Figure 10. Predictive Diastereoselective Pneumonic	39
Figure 11. 1D-NOE Support of 110 , 112 , and 113	42
Figure 12. Molecular Orbital and Newman Representations	44
Figure 13. 1D-NOE Support of 167:168	54
Figure 14. 1D-NOE Support of 176 and 177	57
Figure 15. 1D-NOE Support of 183	60
Figure 16. Regio and Diastereo Discrepancies	64
Figure 17. Singe Point Energies (SPE) of Chloronium Transition States	68
Figure 18. Patchoulenes	70
Figure 19. Possible Substrates	75

LIST OF SCHEMES

Scheme 1. General Carbinol Cation Ring Expansion	1
Scheme 2. One Carbon Expansion Impetus	2
Scheme 3. Johnson and Paquette Expansions	2
Scheme 4. Radical Oxy-Cope Rearrangement	5
Scheme 5. Bulliard's Reaction	6
Scheme 6. Carvone Derived Substrates	7
Scheme 7. Anionic oxy-Cope Controls ²³	8
Scheme 8. Pb(OAc) ₄ Attempts	10
Scheme 9. Mn(pic) ₃ and Mn(OAc) ₃ Attempts	11
Scheme 10. Nitrophenyl Sulfenate Attempts ²³	13
Scheme 11. Phenyl Sulfenate Attempts ²³	14
Scheme 12. Hypoiodite Attempts	15
Scheme 13. Hypochlorite Attempts ²³	16
Scheme 14. Proposed Radical Mechanism	18
Scheme 15. Johnson's [2.2.1] Chlorinative Ring Expansion	19
Scheme 16. Standard Set of Conditions ²³	23
Scheme 17. Proposed Cationic and Concerted Mechanisms	24
Scheme 18. Synthesis of 9 ²³	25
Scheme 19. t-BuOCl vs. NaOCl in Johnson's System ²³	25
Scheme 20. Johnson Regio and Diastereoselectivity	27
Scheme 21. Secondary Cationic Mechanism	28
Scheme 22. "Vinyl" Substrate Synthesis ²³	28

Scheme 23.	Iso-propenyl Carbinol Secondary Mechanism	. 35
Scheme 24.	Synthesis of Saturated 80 and 81 ²³	. 36
Scheme 25.	Exo-Olefin Insertion/One Carbon Ring Expansion	. 40
Scheme 26.	Saturated [2.2.1] and [2.2.2] Substrate Synthesis ²³	.41
Scheme 27.	Synthesis of Paquette's [2.2.2] Backside Methyl System ²³	. 45
Scheme 28.	Ketal Carbinol Synthesis ²³	. 46
Scheme 29.	Possible Mechanism for 129.	. 47
Scheme 30.	Preparation of H(D), Me, and Alkynyl Carbinols ²³	. 53
Scheme 31.	Secondary Carbinol Cationic Mechanism	. 56
Scheme 32.	Anticipated 3°-Carbinol Rearrangement	. 57
Scheme 33.	Methyl Substituted 3°-Carbinol Cationic Mechanisms	. 59
Scheme 34.	Ethynyl Substituted 3°-Carbinol Cationic Mechanism	. 62
Scheme 35.	Differing Mechanistic Pathways	. 63
Scheme 36.	McNelis Expansion of [2.2.1] Alkynyl Carbinols	. 63
Scheme 37.	Vinyl Grignard Addition of 8	. 70
Scheme 38.	Proposed Synthetic Routes to β- and δ-Patchoulenes	.71
Scheme 39.	Proposed Synthetic Route to (+/-)-Pinocarvone	. 72
Scheme 40.	Diels-Alder Diene Participation of Enone 90 ²³	. 74
Scheme 41.	Diemerization of Enones	. 74

LIST OF ABBREVIATIONS

AcOH acetic acid

CH₂Cl₂ dichloromethane

CCl₄ carbon tetrachloride

CI chemical ionization

DAID diacetoxyiodobenzene

DHF dihydrofuranyl

DHP dihydropyranyl

DMF N,N-dimethylformamide

DMSO dimethyl sulfoxide

EI electric ionization

Et₂O diethyl ether

eq equation

FAB fast atom bombardment

g gram

h hour

HDA hetero Diels-Alder

HMPA hexamethyl phosphoramide

HPLC high performance liquid chromatography

H₂O water

HRMS high resolution mass spectrometry

IR infrared spectroscopy

LRMS low resolution mass spectrometry

LiAlD₄ lithium aluminum deuteride

min minute

mL milliliter

mmol millimole

MS molecular sieves

NaBH₄ sodium borohydride

NaOCl sodium hypochlorite

NBS N-bromosuccinimide

NMR nuclear magnetic resonance spectroscopy

NOE nuclear Overhauser effect

PhH benzene

i-Pr₂EtN di-*iso*-propyl ethyl amine

RCM ring closing metathesis

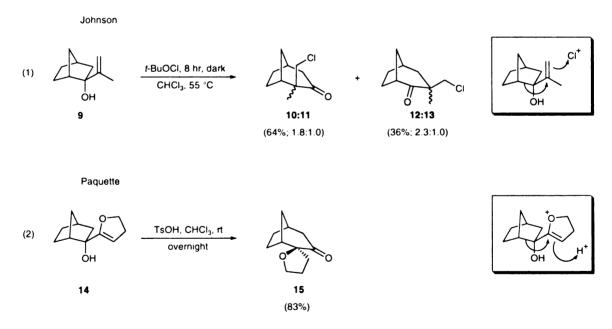
r.t. room temperature

THF tetrahydrofuran

Chapter 1. Introduction of Ideas

The ring enlargement of organic molecules by one carbon atom is a powerful transformation.¹ A common feature among the classic Pinacol,² Tiffeneau-Demjanov,³ and diazo methods,⁴ is the formation of a carbinol cation, 4, accompanying ring expansion, 2→4 (Scheme 1). These [1,2]-shifts can be broadly termed as Wagner-Meerwein rearrangements.⁵ Within this broad classification, the chemo-, regio-, and stereoselectivities observed are often dependent on various issues. Ring size, substitution

Scheme 1. General Carbinol Cation Ring Expansion


pattern, and/or reagents often dictate the observed selectivities.⁶ That being said, there are generalities among ring enlargements: (1) the ability to expand increases (a) as the donor ability of electrons adjacent to the carbocation increases, (b) as the size of the expanding ring decreases, and (c) as the ease of carbonium ion formation decreases; (2) upon examination of the migrating termini, the higher degree of alkyl substitution normally produces the regioselectivity observed.

During experimentation, originally aimed at the development of a radical oxy-Cope rearrangement, an interesting one-carbon ring expansion was observed (Scheme 2). Contrary to the aforementioned processes that expand *via* a leaving group, in our case (Scheme 2), the vinyl group attacks an electrophilic source prior to expansion. Both

Scheme 2. One Carbon Expansion Impetus

Johnson⁷ and Paquette⁸ have observed similar rearrangements in vinyl [2.2.1] carbinols (equations 1 and 2 respectively, Scheme 3). Johnson uses *t*-BuOCl as a source of electrophilic chlorine and proposes that it is the preferential orientation of the *iso*-propenyl substituent that imparts the observed diastereoselectivity, with bridgehead migration being favored. Paquette employs protonation of a vinyl group to evoke a similar ring expansion of hydrofuranyl carbinols. In this case, bridgehead migration is

Scheme 3. Johnson and Paquette Expansions

absolute. The observed diastereoselectivity arises from a proposed *anti* relationship between the hydroxyl and furanyl oxygens (Scheme 3).

As a result of the interesting nature of these rearrangements, it was decided to further examine the expansion of vinyl carbinols to understand the scope, mechanism and

synthetic utility of this reaction. The chapters that follow will delve into the chemo-, regio-, and diastereoselectivity observed in the NaOCl/AcOH mediated chlorinative ring expansion on a variety of substrates. However as the impetus of this ring expansion rests in our labors toward a radical oxy-Cope rearrangement, a discussion of these studies shall be presented first in Chapter 2.

Chapter 2. Radical Oxy-Cope Attempts

2.1. Introduction to the Radical oxy-Cope

Concerted rearrangements of organic molecules have long been exploited for their simplicity and ability to impart high levels of stereo and regiocontrol during transformations. As an example the oxy-Cope rearrangement has been used extensively for ring expansions as well as the elaboration of polycyclic backbones. The oxy-Cope is highly valued in these endeavors as a result of its ability to impart chirality at one or more centers during the concerted rearrangement. Although most radical carbon-carbon bond forming processes occur in a stepwise fashion, it is possible for the bond reorganization of such a sequence to resemble those observed in concerted reactions. Radical cyclizations do have the ability to impart regio- and stereoselectivity during the course of a reaction, and radical reactions have mimicked thermal concerted processes. However, the use of an oxygen-centered radical for the acceleration and/or genesis of an oxy-Cope rearrangement has, to the best of our knowledge, not yet been investigated.

The proposed radical oxy-Cope rearrangement requires first the formation of a suitable oxygen bond that could cleave homolytically under the right conditions, 16.¹⁷ The envisioned process begins with homolytic cleavage of the O-X bond to form alkoxy radical 17. Subsequent β-cleavage during carbonyl formation produces allylic radical 18a, and its resonance contributor 18b. Literature precedent would have the allylic radical to add from the least substituted carbon, 18b→19, in order to form the more substituted olefin center.¹⁸ After which, recombination produces an oxy-Cope product, 20, via a radical rearrangement.

This type of stepwise radical promoted oxy-Cope rearrangement could potentially

Scheme 4. Radical Oxy-Cope Rearrangement

complement its thermal and anionic counterparts. For example in contrast to a concerted reaction, a stepwise process may be stereoselective but independent of stereochemistry in the starting bicyclic vinyl alcohol. As illustrated above, upon reaching radical 18a, the stereochemistry in the starting substrate is inconsequential (Scheme 4). So either diastereomeric alcohol can be employed. This is quite unlike the thermal/anionic counterpart in which only one diastereomeric alcohol has the proper orbital alignment for sigmatropic rearrangement. Thus the vinyl Grignard addition can be non-selective in a radical initiated oxy-Cope. Secondly, radical rearrangements are considered neutral processes; hence substrates with base or thermal sensitive substituents could now be employed. There have also been theoretical estimates opening up the possibility of rate enhancement under these neutral conditions. ¹⁹ Finally there is also the prospect of a stereo outcome opposite that produced by traditional means. That is formation of 20 may, based on related radical cyclization, afford the trans fused product.²⁰ Given these possibilities and questions, the radical oxy-Cope was viewed as an intriguing complement to the traditional [3,3] sigmatropic rearrangement.

2.2. Prior Art

In the late 80's, Bulliard and coworkers published a rearrangement of carbinol 21.²¹ Upon treatment with SO₂Cl₂, 21 reportedly rearranged to give chloroketones, 22 and 23 as a 1:1 mixture (Scheme 5). Both products are described to be the product of

alkoxy fragmentation after hypochlorite formation followed by cyclization in either an exo, 22, or endo, 23, fashion. This literature report is troublesome, since product 23 is not what would be expected from endo cyclization. The expected product, 24, would have both the carbonyl and chloro substituents juxtaposed by one carbon. Moreover 24 could be viewed as arising from the first radical oxy-Cope rearrangement. However this was never claimed, nor were spectral data for the products detailed in the letter. Whether ketone 23 was truly constructed or merely a typo led us to try and reproduce Bulliard's work. However upon subjecting 21 to their conditions only ketone 22 was observed along with a number of other products. Attempts at reaching any of the three authors did not help in the elucidation of whether this truly was a radical oxy-Cope rearrangement. Our inability to repeat the reaction and less than clear correspondence with the authors led to the conclusion of this route.

Scheme 5. Bulliard's Reaction

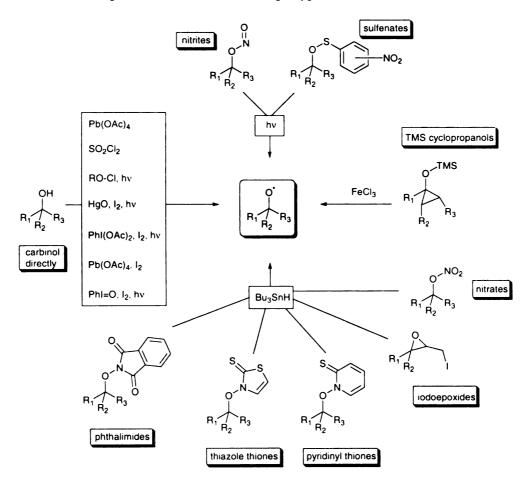
2.3. Substrate Synthesis

The beginning of the second-generation radical oxy-Cope investigation entailed the construction of a suitable carbinol that would undergo the standard oxy-Cope rearrangement. A [2.2.2] bicyclic construct was chosen since only one diastereomer has the proper orbital alignment for thermal or anionic rearrangement while under radical

conditions either diastereomer should react in the same fashion. Also, [2.2.2] carbinol systems can be somewhat sluggish toward [3,3]-sigmatropic rearrangement and often need to be transformed into their potassium salt prior to rearrangement making base sensitive substitutions problematic.²² Furthermore even under anionic acceleration, heat is often necessary for the rearrangement to proceed. It was hoped that radical conditions would provide a neutral way to accelerate such reactions and also be stereoconvergent with both carbinol diastereomers being able to rearrange similiarly. Thus the [2.2.2] system emerged as one of the most suitable substrates to address such questions.

Scheme 6. Carvone Derived Substrates²³

A short route to [2.2.2] systems has been developed by Srikrishna,²⁴ which utilizes carvone as a chiral starting synthon (Scheme 6). Use of *N*-bromosuccinimide (NBS) and methanol (MeOH) generates bromomethoxy carvone **25:26**. Treatment with base then provides the [2.2.2] core *via* an intramolecular substitution reaction. Vinyl Grignard addition provides the desired oxy-Cope precursors, **6:7** and **29:30**. Another easily accessible oxy-Cope substrate is **21**,²⁵ which is available from successive vinyl addition across α -chlorocyclohexanone.²⁶


To establish the spectroscopic and chemical properties of the starting materials and rearranged products, the starting carbinols were subjected to the standard oxy-Cope conditions (Scheme 7). First, the diastereomeric bicyclic carbinols, 6 and 7 were thermalized. After heating at either 80 °C or 180 °C for 24 hrs only starting material was recovered (equations 1 and 2, Scheme 7). Upon treatment with KH, all carbinols rearranged smoothly at 80 °C in 12 hrs to provide the predicted [4.4.0] bicycles, 31 and 32, along with recovered *endo* carbinols 7 and 30 (equations 3 and 4, Scheme 7). With the desired products isolated and identified spectroscopically the radical oxy-Cope could be investigated.

Scheme 7. Anionic oxy-Cope Controls²³

2.4. Radical oxy-Cope

The literature provides many ways to produce alkoxy radicals directly (Figure 1). The photolysis of nitrites;²⁷ carbinol oxidation *via* Pb(OAc)₄,²⁸ Pb(OAc)₄/Cu(OAc)₂,²⁹ Pb(OAc)₂/O₂,³⁰ Mn(2-pyridinecarboxylato)₃,³¹ and Mn(OAc)₃;^{31c,f,g} irradiation of sulfenates;³² action of FeCl₃ on fused cyclopropylsiloxanes;³³ treatment of alcohols with sulfuryl chloride;²¹ hypochlorite³⁴ and hypoiodite fragmentation;³⁵ as well as the tin hydride reduction of iodoepoxides,³⁶ nitrate esters,³⁷ pyridinyl thiones,³⁸ thiazole thiones,³⁹ and phthalimides⁴⁰ are all methods for the generation of such radicals.

Figure 1. Methods for Generating Oxygen Centered Radicals

Though the ways of alkoxy radical generation are numerous, not all cater to the allylic-homoallylic nature of the starting tertiary bicyclic carbinol. Pyridinyl and thiazole

thiones as well as phthalimides rely on substitution chemistry for their construction. The bicyclic tertiary nature of the system would require a S_N1 process, allowing for the possibility of products derived *via* cationic bicyclic rearrangements.⁴¹ As a result, these methods were not attempted. Generation of nitrate esters and their subsequent reduction was thought promising, however early attempts resulted in complete decomposition of the starting substrates. Thus further study of nitrate esters was avoided.

2.4.1. Lead

The use of Pb(OAc)₄ for decarboxylation and oxidative cyclization is well known. ^{28c} It also has been used to create oxygen radicals from secondary bicyclic and

Scheme 8. Pb(OAc)₄ Attempts

monocyclic carbinols as well.^{28ab} Unfortunately, with our substrates clean reactions were not observed when Pb(OAc)₄ mediated rearrangements were attempted at ambient or reflux temperatures (equations 1 and 2, Scheme 8). Recently, Rigby has shown that use of Cu(OAc)₂ as a catalytic additive can oxidize carbinols as well.^{29d} However these conditions proved even more harsh than Pb(OAc)₄ alone, rapidly providing a myriad of molecules (equation 3, Scheme 8). Lead (II) was studied next as the use of Pd(OAc)₂ in an oxygen atmosphere has triggered the oxidative ring cleavage of cyclobutanols.³⁰ However, as before, exposure of our substrate to standard Pb(II) conditions gave no reaction (equation 4, Scheme 8). This prompted the dismissal of lead based reagents.

2.4.2. Manganese

Tris-(2-pyridinecarboxylato)manganese(III) or Mn(pic)₃ has been used to generate alkoxy radicals of carboxylic acids,^{31b,g} as well as with cyclopropanols.^{31c-e,g,i}

Scheme 9. Mn(pic)₃ and Mn(OAc)₃ Attempts

This reagent can be easily synthesized from the readily available Mn(acac)₃ (equation 1, Scheme 9). Trisacetoxymanganese(III) or Mn(OAc)₃ has been used to generate carboxylic radicals as well, and also to produce alkyl radicals of β-ketoesters. Bicyclic carbinol 6 did not undergo the desired rearrangement and was recovered in low yield (equation 2, Scheme 9). Use of Mn(pic)₃ resulted in high recovery of starting material (equation 3, Scheme 9). Like the lead-based reagents, this method was abandoned.

2.4.3. Sulfenate Ester

The use of a sulfur-oxygen bond for the generation of oxygen-centered radicals began with Beckwith in the late 80's (Figure 2).^{32a} The ability to cleave a sulfur-oxygen bond homolytically makes sense since related peroxide bonds can be cleaved in this manner. Also it is known that Bu₃SnH can be used as an initiation reagent for alkyl radicals upon treatment with alkyl halogens (Cl, Br, I) and dialkyl chalcogenides (S, Se, Te),⁴² It naturally followed that the sulfur-oxygen bond could be cleaved in a homolytic fashion as well.

Figure 2. Sulfenate Ester Homolysis

Soon after Beckwith's work, Pasto discovered that sulfur-oxygen bonds not only cleave under Bu₃SnH conditions, but also by light when the S-O bearing groups are properly substituted (Figure 2).^{32b-d} Electron withdrawing groups, such as nitro, located on the aromatic ring enhance this desired homolytic fission.

Scheme 10. Nitrophenyl Sulfenate Attempts²³

OMe

OMe

OMe

OMe

OMe

OMe

Oxone

$$OMe$$
 OMe
 OMe

Unfortunately, in our hands, formation of the S-O bond was never observed (Scheme 10). Carbinol treatment with *p*-nitrophenylsulfenyl chloride and base⁴³ only resulted in addition across the vinylic portion of the substrate.^{44,45} This addition was thought to be a result of the enhanced polarization of the sulfur-chlorine bond due to the electron withdrawing nitro substituent. To rule out the possible sulfenate [2,3]-sigmatropic rearrangement,⁴⁶ both 33 and 35 were oxidized via oxone to produce sulfones 34 and 36 in low yield. In hopes to avoid the addition problem, unsubstituted phenyl sulfenyl chloride was used (equations 1 and 2, Scheme 11).⁴⁷ Treatment of the readily available diphenyl disulfide with sulfuryl chloride produced phenyl sulfenyl chloride in good yield.⁴⁸ However, as observed in the nitro case, addition across the vinyl olefin was the only observable product when Et₃N was used as the base.⁴⁹ Use of *n*-BuLi

as a base produced the [2,3]-sigmatropic product, 38, even at -78 °C. As a result, the sulfenate avenue for oxygen centered radical formation was abandoned.

Scheme 11. Phenyl Sulfenate Attempts²³

2.4.4. Hypoiodites

There are a number of ways to generate alkoxy radicals by way of hypoiodites. Heterolytic cleavage by HgO/I₂ was originally pioneered by Petrov and later by Barton, who developed methods for homolytic cleavage.^{35a,b,50} Hypoiodite fragmentation has also been observed with Pb(OAc)₄/I₂,⁵¹ and hypervalent iodine species have been used extensively by Suaréz and Suginome for the generation of anomeric alkoxy radicals in hemiacetals and other systems as well. ^{35c-1} The reaction of HgO/I₂ with carbinol 7 did not generate the oxy-Cope like product. Nor was the iodoepoxide observed, despite such species being previously reported to come from the hypoiodination of allylic alcohols.³⁶ Besides starting material the only product isolated, was believed to be iodo 39 (Scheme

12).⁵² Treatment with Pb(OAc)₄/I₂ provided a complex reaction mixture, as expected from the previous results (Scheme 8). Lastly, use of hypervalent iodines such as diacetoxyiodobenzene (DIAD)⁵³ and iodosylbenzene,⁵⁴ which is readily available from DIAD,⁵⁵ was uneventful with only starting material recovered (Scheme 12).

Scheme 12. Hypoiodite Attempts

2.4.5. Hypochlorites

In conjunction with hypoiodites, hypochlorites have been extensively used for alkoxy radical generation.³⁴ The reaction conditions can be quite simple with bleach (NaOCl) and vinegar (AcOH) being among the common reactants.⁵⁶ The first attempt at hypochlorite formation and fragmentation yielded enone **8** regardless of carbinol stereochemistry, albeit in low yield (Scheme 13). Importantly, as predicted earlier, the presumed stepwise sequence was selective with respect to product formation, but this selectivity was independent of the starting carbinol stereochemistry. The hypochlorite

conditions only yielded one product resultant from a 7-exo cyclization, 42, even though there are other more favorable cyclization modes (Figure 3). The fact that there were no

Scheme 13. Hypochlorite Attempts²³

products isolated from reaction by the allylic resonance form, including the "favored" 5-exo cyclization was surprising. If this reaction is proceeding via free radicals it would appear that after C-C homolysis, the vinyl sector is in an excellent position for attack by the newly formed radical center.

Figure 3. Possible Radical Cyclizations

2.5. Conclusions

Given the interesting features of the bleach/vinegar induced rearrangement, namely (1) the single mode of cyclization coupled with ready loss of HCl to produce an

exocyclic enone, and (2) the inexpensive and environmentally friendly, or "green", reagents used a more in-depth study of this reaction was undertaken.⁵⁷

Chapter 3. NaOCl/AcOH Promoted Ring Expansions

3.1. Introduction

The ability of simple reagents like NaOCl and AcOH to promote an *exo*-olefin ring expansion regardless of carbinol geometry was intriguing. Given the possible synthetic utility of such a transformation, studies aimed at optimization of the observed ring expansion/*exo*-olefin insertion were undertaken. In conjunction with these studies, mechanistic insight into this process was sought.

Initially the observed expansion was thought to be radical in nature (Scheme 14), as the conditions employed were those that have generated alkoxy radicals in the past.⁵⁸ One can envision after alkoxy radical formation and β -fragmentation, allylic radical 48 undergoing a 7-exo cyclization to generate radical 49. Subsequent propagation of the

Scheme 14. Proposed Radical Mechanism

radical chain, and loss of HCl would generate the observed enone **8**. The above Scheme is somewhat counter intuitive given what is known about free radicals. Generally allylic radicals add to give the more thermodynamically stable product, which was not observed, and 7-exo radical cyclizations are not favored when compared to 5-exo or even 6-endo cyclizations.

Scheme 15. Johnson's [2.2.1] Chlorinative Ring Expansion

The generation of β -chloroketones *via* a ring expansion of vinyl substituted carbinols are known. Johnson has described the chlorinative ring homologation of simple cyclobutanes, -pentanes, and -hexanes and isopropenyl [2.2.1]-heptanol, $9.^{59}$ As reported, treatment of a warm, *dark* solution of 9 with *t*-BuOCl afforded a mixture of [3.2.1]- β -chloroketones (Scheme 15). Though several mechanistic pictures were described for this rearrangement, both concerted and free radical sequences were ruled out. Since the experimental conditions were not free radical, i.e. running the reaction in the dark, it was argued that if 9 was being transformed into a hypochlorite prior to a concerted intramolecular rearrangement, a higher degree of diastereoselectivity would have been observed. Thus, Johnson surmised that a cationic mechanism was the most probable. Despite the relatively mild nature of the chlorinative rearrangement, experimentation with bicyclic substrates beyond the [2.2.1] system was not undertaken by Johnson or others.

It is interesting that Johnson observed ring expansion in the dark, conditions that should not allow for free radical formation while we observed similar enlargement, albeit without isolation of the pre-supposed chloroketone, under conditions that form free radicals. The ability for these bicyclic systems to undergo similar ring expansions in different environments, light vs. dark, while being subjected to hypochlorite forming

conditions led us to further investigate the necessary reagents and conditions for this reaction.

3.2. Understanding the Reaction Conditions

Refinement of the initial rearrangement and workup conditions allowed for significant improvement in enone isolated yield. It was assumed that the reaction was producing a β -chloroketone, 42, which was subsequently undergoing elimination. This process significantly simplified the rearrangement by avoiding the issue of the α -keto stereochemistry of 42. Use of triethylamine (Et₃N) buffered silica allowed for major strides in ease of purification, as well as helping the elimination process.

Table 1. Temperature and Sequence of Reagent Addition Experiments²³

Entry	Carbinol	Procedure	Product (yield) ^a
(1)	6 exo-OH; R ₁ =Me; R ₂ =OMe	Α	8 (28%) R ₁ =Me; R ₂ =OMe
(2)	7 endo-OH; R ₁ =Me; R ₂ =OMe	Α	8 (26%)
(3)	7	В	8 (26%)
(4)	6	С	8 (35%)
(5)	6	D	8 (28%)
(6)	6	E	8 (60%)

Procedure A: Addition of room temperature AcOH/substrate/CCl₄ solution to chilled (0 °C) NaOCl/H₂O solution. Procedure B: Addition of room temperature substrate/CCl₄ solution to chilled (0 °C) AcOH/NaOCl/H₂O solution. Procedure C: Addition of chilled (0 °C) substrate/CCl₄ solution to chilled (0 °C) AcOH/NaOCl/H₂O solution. Procedure D: Simultaneous addition of chilled (0 °C) substrate/CCl₄ solution and AcOH to chilled (0 °C) NaOCl/H₂O solution. Procedure E: Addition of chilled (0 °C) AcOH/substrate/CCl₄ solution to chilled (0 °C) NaOCl/H₂O solution.

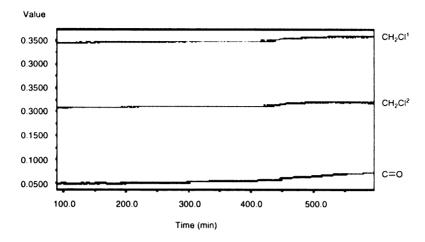
a Isolated vield.

Screening of the reagents revealed that the AcOH and NaOCl were absolutely necessary for the reaction to take place. If water (H₂O) or carbon tetrachloride (CCl₄) were excluded sharp decreases in yields were observed. With knowledge of the necessary ingredients, the temperature and sequence of addition were investigated, still under the presumption that a hypochlorite intermediate needed to be formed and irradiated (Table 1). We hypothesized, if reaction conditions were found to enhance hypochlorite formation then an increase in enone should also be observed. These data showed that the media of this biphasic reaction needed to be chilled prior to their combination (entries 1, 2, and 3 vs. entries 4 and 6, Table 1). Even if one of the components was not chilled, a decrease in yield was observed (entry 5, Table 1). The best yield of enone 8 thus far occurred when a chilled solution (0 °C) of substrate (1.00 eq) and AcOH (1.95 eq) in CCl₄ (0.6 M with respect to substrate) was added to a chilled solution (0 °C) of NaOCl (1.19 eq), in H₂O (0.6 M with respect to substrate) after irradiation and purification via Et₃N buffered silica chromatography (entry 6, Table 1).

The improvement is isolated enone yield was dependent on the temperature and sequence of reagent addition in the hypochlorite-forming first step of the three step sequence. The next set of experiments involved the use of free radical and non-free radical forming conditions to get an understanding of what intermediates, hypochlorite vs. cationic, were involved. It was believed that the stereochemistry of the methoxy bearing carbon was inconsequential to the rearrangement and both 6:7 and 29:30 were used interchangeably. The first experiment was to run the bleach/vinegar conditions in the presence of normal room light. The reaction proceeded without the formation of a large body of byproducts (entries 1 and 2, Table 2). The second set of experiments

enlisted a radical scavenger, di-tert-butylhydroxytoluene (BHT). The isolated yields were lower when BHT was an additive, however the reaction took place regardless of whether BHT was present in the first or second step (entries 3 and 4, Table 2). Ring expansion in ambient light and a radical scavenger points toward a reaction that is not

Table 2. Mechanistic Experiments²³


Entry Substrate Conditions Product (yield*) (1)b 6:7 A 8 (37%) (2)b 29:30 A 50 (48%) (3) 6:7 B 8 (41%) (4)b 29:30 C 50 (33%) (5)b 6 D 8 (45%) (6)b 7 D 8 (48%) (7)b 6:7 D 8 (53%) (8) 6:7 E 8 (62%)				
(2)b 29:30 A 50 (48%) (3) 6:7 B 8 (41%) (4)b 29:30 C 50 (33%) (5)b 6 D 8 (45%) (6)b 7 D 8 (48%) (7)b 6:7 D 8 (53%)	Entry	Substrate	Conditions	Product (yield ^a)
(3) 6:7 B 8 (41%) (4) ^b 29:30 C 50 (33%) (5) ^b 6 D 8 (45%) (6) ^b 7 D 8 (48%) (7) ^b 6:7 D 8 (53%)	(1) ^b	6:7	Α	8 (37%)
(4)b 29:30 C 50 (33%) (5)b 6 D 8 (45%) (6)b 7 D 8 (48%) (7)b 6:7 D 8 (53%)	(2) ^b	29:30	Α	50 (48%)
(5) ^b 6 D 8 (45%) (6) ^b 7 D 8 (48%) (7) ^b 6:7 D 8 (53%)	(3)	6:7	В	8 (41%)
(6) ^b 7 D 8 (48%) (7) ^b 6:7 D 8 (53%)	(4) ^b	29:30	С	50 (33%)
(7) ^b 6:7 D 8 (53%)	(5) ^b	6	D	8 (45%)
	(6) ^b	7	D	8 (48%)
(8) 6:7 E 8 (62%)	(7) ^b	6:7	D	8 (53%)
	(8)	6:7	E	8 (62%)

Reagents and Conditions: A: NaOCl (1.19 eq.), AcOH (1.95 eq.), H_2O (0.6 M), CCl₄ (0.6 M), 0 °C, 2.5 h. B: 1) NaOCl (1.19 eq), AcOH (1.95 eq), H_2O (0.6 M), CCl₄ (0.6 M), 0 °C, dark, 3 h. 2) BHT (1.6 eq), PhH (0.14 M), rt, hv. 8 h. C: 1) BHT (1.6 eq), NaOCl (1.19 eq), AcOH (1.95 eq), H_2O (0.6 M), CCl₄ (0.6 M), 0 °C, dark, 3 h. 2) PhH (0.14 M), rt, hv. 10 h. D: NaOCl (1.19 eq.), AcOH (1.95 eq.), H_2O (0.6 M), CCl₄ (0.6 M), 0 °C, dark, 3 h. E: 1) NaOCl (1.19 eq.), AcOH (1.95 eq.), H_2O (0.6 M), CCl₄ (0.6 M), 0 °C, dark, 3 h. E: 1) PhH (0.14 M), rt, hv. 10 h.

under free radical control. As a result, the likelihood of a hypochlorite intermediate seemed small. We became curious if there was any chemistry occurring during the irradiation step. Use of NMR and React-IRTM techniques, Figure 4, to follow the irradiation of the reaction suggests that very little chemistry was occurring at this stage of the process. Removal of the irradiation step provided proof that the rearrangement

^a Isolated yields. ^b Recovered starting material.

Figure 4. React-Ir Analysis of Irradiation

was occurring during the biphasic portion of the reaction, albeit in somewhat lower isolated yield (entries 5, 6, and 7, Table 2). The lower isolated yields when compared to entry 8 (Table 2), and recovery of starting carbinols were interpreted to be the result of not letting the reaction run to completion. Residual chlorinating agents in the irradiation step would explain why there was a slightly better yield for entry 8, Table 2. Indeed when the reaction time was extended to 6 hrs, yields improved from 37% to 92% (Scheme 16). The excellent isolated yield led to the understanding that the Scheme 16. Standard Set of Conditions²³

rearrangement was occurring during the biphasic portion, or step 1, of this multistep reaction and that these reactions could be run in the presence of normal laboratory lighting. As a result we adopted this set of conditions, as our "standard set of conditions" for all subsequent substrates studied.

3.3. Proposed Mechanism

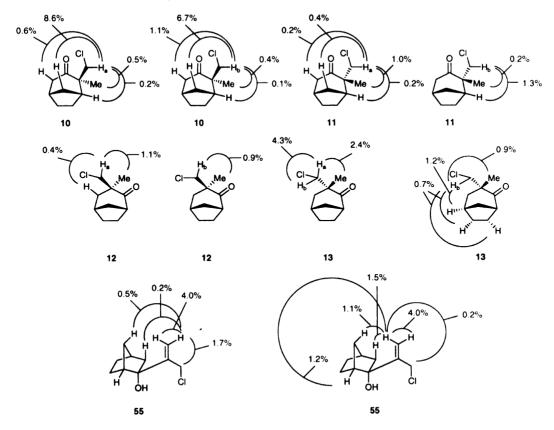
The previous experiments also gave some additional insight into the mechanism of this rearrangement. The fact that the product composition is not affected by the addition of radical scavenger nor by the presence or absence of light discredits the proposed radical mechanism (Scheme 14). Given these observations and other reports, a mechanism involving cationic character appears the most probable and is illustrated in Scheme 17. 59.60.61 The combination of NaOCl and AcOH is a source of Cl⁺. After Cl⁺ capture by the vinyl portion of the carbinol, a Wagner-Meerwein shift of the bridgehead produces carbinol cation 53. Loss of H⁺ would generate 42 and again, loss of HCl. One other possible mechanism would be the concerted rearrangement of an in-situ generated Though possible, this mechanism seems unlikely since a concerted hypochlorite. rearrangement should impart a higher level of stereoselectivity than that was observed in the products (Scheme 15). Also when hypochlorites are reacted in the presence of light, at least trace amounts of oxy-radical derived products are expected.⁵⁸ None were observed. Moreover, attempts to purposely prepare hypohalites of 6 or 7 by alternative methods (Chapter 2) never afforded enone 8 or its haloketone analogues. Lastly, use of

Scheme 17. Proposed Cationic and Concerted Mechanisms

React-IR™ showed no formation of an oxygen chlorine bond.⁶² These facts all support a cationic rearrangement.

3.4. Chlorinative [2.2.1] Ring Expansions

Scheme 18. Synthesis of 923

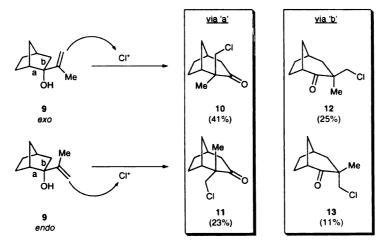

As stated in Chapter 1, a related chlorinative ring enlargement has been reported by Johnson in a number of *iso*-propenyl carbinols.⁵⁹ Given the similarities of both ring expansions, namely the vinyl carbinol substrate and use of a hypochlorite reagent, it was thought prudent to submit isopropenyl [2.2.1] carbinol **9** to both Johnson's and our Scheme 19. *t*-BuOCl vs. NaOCl in Johnson's System²³

conditions. Also with the advances in structural elucidation since the time of the original report, the structures of chloroketones 10-13 could be more firmly established. In addition, a preparative method needed to be developed so as to ascertain the isolated yields of these products.⁶³

3.4.1. Results and Structural Assignment

Isopropenyl carbinol 9 is readily available from Grignard addition across norcamphor in a ratio of 50:1 (Scheme 18). Treatment of 9 with Johnson's conditions gave a ratio of products similar to that described in the original report, plus the formation of a dichloro product, 54.⁶⁴ Johnson reported six products whose yields were obtained from gas-liquid phase chromatography (GLC). Only four of these products, 10-13, were

Figure 5. 1D-NOE Support of Johnson's Products



isolated. It is likely that one of the two unidentified products in Johnson's study was dichloroketone **54**. Exposure to the standard NaOCl/AcOH conditions derived above produced the same compounds that were observed under Johnson's conditions, plus a chlorinated carbinol, **55** (Scheme 19). All structural data, high-field NMR and one-dimensional nuclear Overhauser enhancement (1D-NOE), were in good agreement with the original assigned structures (Figure 5). Johnson used aromatic solvent-induced shifts, observed previously in methylcyclohexanones, to distinguish the stereochemical configurations of **10-13**. Use of 1D-NOE experiments also confirmed that **55** still retained the same carbinol geometry as **9**. Dichloro product **54** was ascertained by comparison with the other [3.2.1]-ketones with the diagnostic downfield shift of the methylenic protons adjacent to the carbonyl observed in **10** and **11**.

3.4.2. Mechanistic Considerations

Both reactions are slightly regionselective with the bridgehead carbon 'a' bond preferentially migrating vs. 'b' bond cleavage (Scheme 20). The diastereoselectivity results from the reacting rotomeric isopropenyl conformer. Orientation of the methylene in an exo fashion is preferred by ~2:1 over the endo.

Scheme 20. Johnson Regio and Diastereoselectivity

There also appears to be a secondary pathway to products **54** and **55**. The initial Cl⁺ capture occurs to generate cation **56**, which undergoes loss of H⁺ and generates **55**. Wagner-Meerwein shift occurs after a second abstraction of electrophilic Cl⁺ to produce dichloroketone **54**.

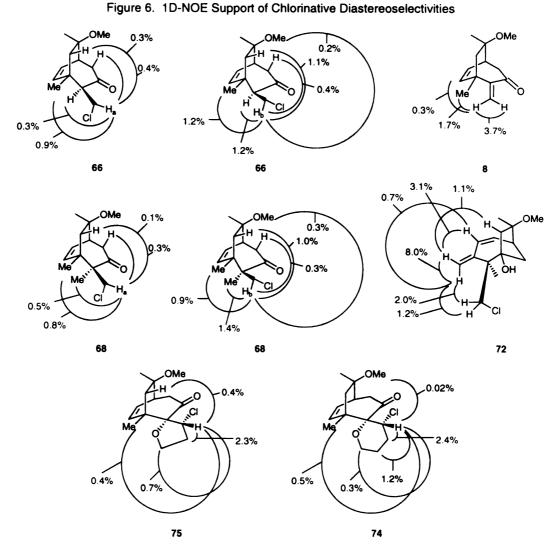
Scheme 21. Secondary Cationic Mechanism

3.5. Further Unsaturated [2.2.2] Substrate Synthesis

The conditions derived above mimicked Johnson's relatively well. Examination of the literature reveals little regarding cationic rearrangements of vinyl substituted [2.2.2] carbinols. To more fully appreciate the selectivity, scope and mechanism of this chlorinative rearrangement, a series of carvone-derived "vinyl" [2.2.2]-bicyclocarbinols were subjected to NaOCl and AcOH.

Scheme 22. "Vinyl" Substrate Synthesis²³

The substrate synthesis was fairly straightforward. *Iso*-propenyl, dihydropyranyl (DHP), and dihydrofuranyl (DHF) anions all added, rather cleanly, across Srikrishna's ketones **27** and **28** and the addition products were all isolated in reasonable yield (Scheme 22).⁶⁶ It should be noted that the methoxy group blocks the *exo* attack to some degree in **58** through **61**, achieving modest diastereoselectivity. The methyl group shields the *exo* face only slightly to yield some diastereomeric favoritism, **62** through **65**. The resultant allylic alcohols (**58** through **65**) were then subjected to the standard bleach and acetic acid chlorinative ring expansion conditions (Table 3).


3.6. Chlorinative Ring Expansions of "Vinyl" [2.2.2] Carbinols

3.6.1. Results and Structural Assignment

All vinyl carbinols investigated, Table 3, rearranged smoothly and surprisingly in a diastereoselective manner. The stereochemistry of the *exo*-carbinol vinyl, *iso*-propenyl, DHP and DHF rearrangement products, **8**, **66**, **68**, **72**, **74**, and **75**, were assigned on the basis of 1D-NOE experiments (Figure 6). In the chlorinative ring expansions the through space effects of note are between the CH₂Cl or CHCl protons and their interaction with hydrogens on the top face of the ring (Figure 6). The stereochemistry of the other diastereomeric chloroketones was assigned by default, since by 1 H-NMR all these species possessed the signature α -keto methylene protons thus establishing the regiochemistry of their rearrangement.

The vinyl carbinol set (entries 1-2, Table 1) revealed that the rearrangement is also diastereospecific. The *exo*-carbinol produced the *exo*-chloroketone, **66**, selectively while the *endo*-carbinol yields the *endo*-chloroketone, **67** (entries 1 and 2 respectively,

Table 3). The β -chloroketones, **66:67**, were prone to eliminate HCl, as can be seen from of enone **8**. It is possible that in both cases the minor chloromethyl diastereomers

are produced but not observed due to this elimination. Crude ¹H-NMR analysis of both exo- and endo-carbinols, 6 and 7, showed that these rearrangements were not completely diastereoselective with observed 66:67 ratios of 16:1 and 1:14 respectively. Iso-propenyl bearing substrates (entries 3-4, Table 3) were then studied since the rearrangement products of these species cannot eliminate. Like the vinyl bearing carbinols, 6 and 7, the iso-propenyl carbinols, 58:59 and 62:63, rearranged in a diastereospecific manner. Both diastereomers were isolated, supporting the previous notion of facile HCl

Table 3. Chlorinative Ring Expansions of [2.2.2] Bicyclics²³

Entry Substrate	Products (yield ^a ; ratio) ^b	
OMe OH	OMe OMe CI)
OMe OH	8 (48%) 66 (32%) OMe OMe CI)
7 R R' OH	8 (47%) 67 (36%) R R C C C C C C C C C C C C C C C C C	OMe CI OH
58 (R ₁ =Me; R ₂ =OMe) 62 (R ₁ =OMe; R ₂ =Me)	68:69 (86%; 20:1) 70:71 (78%; 15:1)	72 (10%)
(4)° OH	R R' R' CI	OMe
59 (R ₁ =Me; R ₂ =OMe) 63 (R ₁ =OMe; R ₂ =Me)	68:69 (82%; 1:12) 70:71 (76%; 1:11)	73 (16%)
OMe OH	OMe On: On: On: On: On: On: On: On: On: On:	
60	74 (90%)	
(6) OH	MeO MeO Out Out Out Out Out Out Out Out Out Ou)
64	75:76 (43% ; 7:1)	

Reagents and conditions: 1) NaOCI (1.19 eq), AcOH (1.95 eq), CCI₄ (0.6 M), H₂O (0.6 M), 0 °C, 6 h.

^a Isolated yields. ^b Ratios determined by ¹H-NMR. ^c Crude ¹H-NMR shows a 16:1 mixture of **66:67**. ^d Crude ¹H-NMR shows a 1:14 mixture of **66:67**. ^a Analagous [4.2.1]-carbinols were not isolated for 62 and 63.

elimination masking the diastereoselectivity of the rearrangements of 6 and 7. The *iso*-propenyl *exo*-carbinols, 58 and 62, were more selective than their *endo* counterparts, 59 and 63. The *exo*-carbinols generate α -exo-chloroketones, 68 and 70 preferentially, and vice versa for the *endo*-set, 69 and 71 (entries 3 and 4, Table 3).

3.6.2. Mechanistic Considerations

The greater selectivity observed by exo-carbinols 58 and 62 is believed to be a consequence of sterics. The iso-propenyl unit of 58 and 62, has a large degree of rotomeric freedom, with its exo- and endo-olefinic rotomers being nearly equivalent in energy (Figure 7). This freedom enables 58 to adopt the reactive cisoid conformer and achieve enhanced selectivity. On the other hand, 59 and 63 have a number of substituents to accommodate and thus the exo- and endo-olefinic species have significantly different environments. A constriction of rotomeric freedom allows for the reaction of the transoid conformer and the observed loss in selectivity. Accompanying each chloroketone was a [3.2.1]-bicyclocarbinol, 72 and 73, with the migrating carbon stereochemistry remaining intact. Surprisingly no other vinyl substrate investigated rearranged to produce this bicyclic skeleton. DHP and DHF carbinols were also investigated (entries 5-6, Table 3). They also follow this trend with both exo-carbinols resulting in the chlorocarbon exo to the ring.

Data on the rearrangements presented in Table 3 suggest that, in contrast to 10 (equation 1, Figure 8),⁵⁹ the [2.2.2]-bicycles rearrange *via* conformers that place the olefin and the hydroxyl *syn* to each other. Paquette has described a similar relationship during proton mediated ring expansions of DHF substituted [2.2.1]-carbinols,⁶⁰ pointing

to a

Figure 7. Rotomeric Constraints

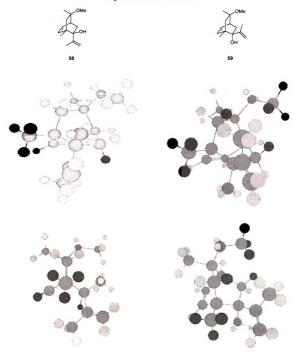
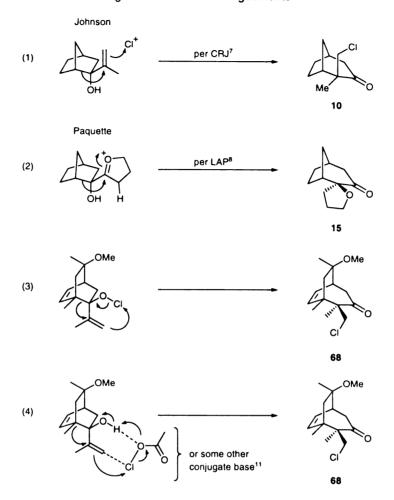



Figure 8. Mechanistic Arquements

preferred *anti* relationship between the ring oxygen and the hydroxyl (equation 2, Figure 8). However entries 1-4 (Table 3) suggest that, in our reactions, the heteroatom may not be the primary stereocontrol element. Furthermore, the resultant stereochemistry of the chlorine-bearing carbons in entries 5 and 6 (Table 3) indicates that the same conformer undergoes both chlorination and ring expansion. For reasons stated earlier it seems unlikely that the [2.2.2] systems are being converted to their hypochlorites prior to a concerted rearrangement (equation 3, Figure 8). It is possible that the Wagner-Meerwein shift is in concert with, or *via* a late transition state, chlorination by a hypochlorite species (equation 4, Figure 8). The rotomeric preference is possibly the result of hydrogen

bonding between the carbinol and hypochlorite, allowing for a predisposition of the reactive site to be on the exterior of the ring. In either event the facile nature of electrophilic Cl⁺ capture and Wagner-Meerwein shift would explain the observed diastereoselectivities.

Lastly, the generation of secondary rearrangement products, albeit only in the *iso*-propenyl case, *via* a subsequent alkyl [1,3]-shift points toward a cationic intermediate, 77 (Scheme 23). All these observations lead to the conclusion that this rearrangement, Scheme 23. *Iso*-propenyl Carbinol Secondary Mechanism

like Johnson's, is cationic in nature. Chlorination occurs via acetyl hypochlorite, or some other conjugate hypochlorite, ⁶⁷ and the carbinol's *cisoid* rotomeric geometry (equation 4, Figure 8). Wagner-Meerwein rearrangement ensues to produce the observed β -chloroketones. Furthermore, in terms of chemoselectivity, ether oxygens did not interfere with the expansion and, to reiterate, no reaction with the bridging olefin was observed during the rearrangement.

3.6.3. Rotomeric Carbinol Investigation

The observed diastereoselectivity of unsaturated [2.2.2] *iso*-propenyl carbinols was hypothesized to be the result of a preferred, more reactive *iso*-propenyl rotomer. The *iso*-propenyl unit of *exo*-carbinol **58** has more rotomeric freedom, than diastereomer Scheme 24. Synthesis of Saturated **80** and **81**²³

59. As a result, 58 can easily access the more reactive rotomer allowing for better diastereoselectivity. In order to explore this hypothesis, the internal olefin was saturated to produce compounds 80 and 81. Hydrogenation of 27 followed by addition of *iso*-propenyl Grignard produced the saturated *iso*-propenyl carbinols in good yield and reasonable diastereoselectivity (Scheme 24). If the diastereoselectivity was a result of the

Table 4. Chlorinative Ring Expansions of Saturated [2.2.2] Isopropenyl Carbinols²³

Entry	Carbinol	Products (y	ield\; ratio)
(1)	ОМе	OMe	OMe
	80	82 (82% 1	83
(2)	OH 81	82 (79%;	83

Reagents and conditions: 1) NaOCI (1.19 eq), AcOH (1.95 eq), CCI₄ (0.6 M), H₂O (0.6 M), 0 °C, 6 h. ^a Isolated yield. ^b Ratio determined by ¹H-NMR.

aforementioned rotomeric constraint, then a loss of selectivity would be observed in carbinol 80, as a result of the new hydrogen substituents, while a similar ratio of diastereomers would be observed for 81.

Upon treatment with the standard NaOCl/AcOH conditions, both *exo-* and *endo-*carbinols rearranged smoothly to produce chloroketones **82:83** in a diastereoselective manner (Table 4). Indeed, a loss of selectivity in the rearrangement of **80** was observed, while similar diastereoselectivity to that of **59** was observed with **81**. These data provide support for a preferred rotomeric carbinol and that the rotomeric environment can dictate the observed selectivity. This issue of rotomeric constriction could be explored further by submitting other alkyl substituted vinyl moieties to our standard set of conditions.

3.6.4. Summary of Chlorinative [2.2.2] Bicyclic Expansions

These examples establish bleach and acetic acid as effective promoters of chlorinative one-carbon ring expansions of [2.2.1]- and [2.2.2]-bicyclic molecules. Rearrangement of vinyl-, *iso*-propenyl-, DHF-, and DHP-substituted [2.2.2]-bicyclocarbinols were chemo-, regio-, and stereoselective, affording β -chloro-[3.2.2]-bicycloketones in respectable yields. The selectivity of these rearrangements appears to be derived from reaction of a preferred conformer in which the hydroxyl and the reacting vinyl groups are in a *syn* orientation.

3.7. Chlorinative Ring Expansions of Monocyclic Vinyl Carbinols

To emphasize the generality of this rearrangement, a set of simple vinyl cycloalkanols were selected and subjected to standard conditions. The substrates were readily available via vinyl Grignard addition across commercially available cyclopentanone, cyclohexanone and cycloheptanone with little product purification.

3.7.1. Results and Structural Assignment

Table 5. Chlorinative Expansions of Monocyclics²³

Entry	Carbinol ^a	Products (yield ^b)		
(1)	но	CI		
(2)	84 (98%) HO	89 (69%) O Cl	90 (10%) CI HOCI	
(3)	(quant)	(65%) O CI	(12%) CI HO CI	
(4) ^d	(97%) HO,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(62%) OCl, 95:96 (71%: 5:1)	(18%) O HO,,, CI 97 98 (10%) (<2%)	

Reagents and conditions: 1) NaOCI (1.19 eq), AcOH (1.95 eq), CCI₄ (0.6 M), H_2O (0.6 M), 0 °C, 6 hrs. * CH₂=CHMgBr,0 °C, 30 min, 80 °C, 1 hr. b Isolated yields. d Major isomer

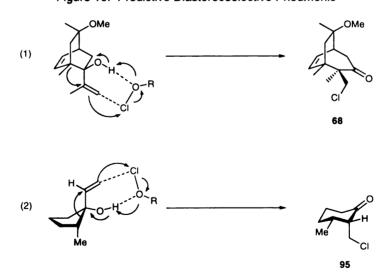

Indeed, all carbinols underwent expansion to produce their respective βchloroketones in reasonable yield (Table 5). Unfortunately accompanying the ring expansion in this series were chlorinated carbinols 92 and 94. Methyl vinyl cyclohexanol 87 rearranged smoothly to provide the β -chlorocyclohexanones, 95:96, in respectable yield and diastereoselectivity (entry 4, Table 5). The stereochemistry of 95 and 96 were determined by 1D-NOE experiments (Figure 9).

Figure 9. 1D-NOE Support of Methyl β-Chlorocyclohexanones 95:96

3.7.2. Mechanistic Considerations

Importantly, the mneumonic, described previously (Figure 10), holds true in this monocyclic case. The *cisoid* geometry, of the hydroxy and vinyl moiety, is again favored (5:1) in this simple system. There was also a small amount of elimination that had occurred prior to column chromatography to produce **97**. A minute amount of dichlorocarbinol **98** was also observed, however this compound was never cleanly isolated so its structure remains tentative.

Figure 10. Predictive Diastereoselective Pneumonic

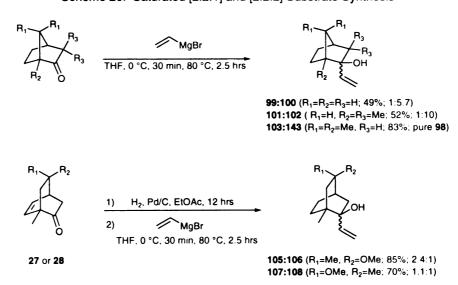
3.7.3. Summary of Chlorinative Monocyclic Expansions

These examples show how commercially inexpensive and environmentally benign NaOCl and AcOH can chlorinatively ring expand a variety of "vinyl" substituted

carbinols with excellent chemoselectivity, in reasonable regio and diastereoselectivity and in good yield. The β -chloroketones isolated can be transformed into a variety of species making this process synthetically attractive. One such process, which is quite facile for the vinyl carbinols, is the elimination of HCl to produce *exocyclic* enones.

3.8. Exo-Olefin Insertion/One Carbon Ring Expansions

Enones are found in a number of biologically active compounds.⁶⁸ Their chemical prowess has long been exploited as these compounds can be manipulated at either the α , β , or γ -positions. The construction of *exocyclic* enones can be accomplished in a number of ways. Eliminations of oxalates,⁶⁹ pyrrolidines,⁷⁰ β -selenyl ketones,⁷¹ α -methoxymethyl ketones,⁷² β -metallo ketones,⁷³ as well as dehydrosulfenylation,⁷⁴ and α -methenylation,⁷⁵ are all suitable methods. However these methods can suffer from a lack of regioselectivity, low yields, or intricate synthetic procedures. To the best of our knowledge a synthetic route to *exocyclic* enones *via* a one-carbon expansion protocol has not been established.⁷⁶ Thus we sought to optimize not only the observed chlorinative rearrangement, but also the facile elimination of the β -chloroketones, **66:67**, to generate an *exocyclic* enone, **8**, (Scheme 25). In doing so we also aimed to address other questions. Can this facile elimination be observed in other bicyclic and monocyclic systems? *Exocyclic* enones **8** and **50** could not internalize their olefinic moiety per

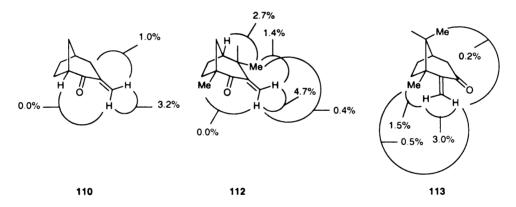

Scheme 25. Exo-Olefin Insertion/One Carbon Ring Expansion

Bredt's rule. Will this internalization occur in suitably substituted substrates? Both questions needed to be addressed.

3.9. Saturated [2.2.1] and [2.2.2] Substrate Synthesis

The vinyl [2.2.1] bicyclics were readily available from their respective commercially available ketones (Scheme 26). Quick purification *via* an alumina plug provided the substrates in good yield. The selectivity of the 1,2-addition observed in the [2.2.1] constructs complements the literature with the norcamphor and fenchone bicycles yielding primarily *endo*-carbinols, **100** and **102** respectively. The internally saturated [2.2.2] series mimicked what was previously observed (Scheme 6, Chapter 2) with the methoxy substituent being able to shield the *exo*-face of the carbonyl. However, the saturated bridging carbons block *endo* attack to some degree resulting in a loss of selectivity (6:7; 4:1 vs. **105:106**; 2.4:1).

Scheme 26. Saturated [2.2.1] and [2.2.2] Substrate Synthesis²³



3.10. [2.2.2] and [2.2.1] Exo-Olefin Insertion/One Carbon Ring Expansions

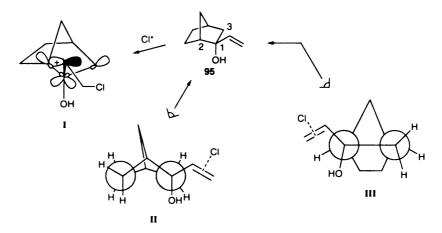
3.10.1. Results and Structural Assignment

All vinyl [2.2.1] and [2.2.2] carbinols examined rearranged smoothly to produce [3.2.1]- and [3.2.2]-bicycloenones respectively (entries 1-11, Table 6), with the regioisomeric enones being assigned by 1D-NOE through space couplings (Figure 11). The lack of regioselectivity observed in the [2.2.1] substrates was nominal, but not surprising considering similar rearrangements (entries 1-3, Table 6). Investigation into the homologous [2.2.2] systems (entries 4-5, Table 6) revealed complete regioselectivity, as observed by its unsaturated predecessor (entries 6-11, Table 6).

Figure 11. 1D-NOE Support of 110, 112, and 113

3.10.2. Mechanistic Considerations

The lack of regioselectivity observed in the [2.2.1] system has been attributed to anchimeric assistance following carbocation formation, as well as bond angle distortion present in both the substrate and intermediate.⁷⁷ The anchimeric assistance available to the cationic intermediate can be seen upon examination of the antibonding molecular orbitals found in the two possible migrating carbon-carbon bonds (C1-C2 and C1-C3; Figure 12). This cationic intermediate can effectively interact with either


Table 6. Bicyclic Exo-Olefin Insertion One Carbon Expansion Results²³

Entry Carbinol	Products (yield ^a ; ratio ^b)	Entry Carbinol	Product (yield ^a)
(1) OH	4.	(6) OH	ОМе
100	109:110 (82%; 1.0:1.6)	6 OMe	8 (92%)
(2) OH	# #	(7) OH	8 (88%)
102	111:112 (86%; 1.0:1.5)	7	
(3) OH	***************************************	(8) OH	MeO
103	113:114 (96%; 3.0:1.0)	29	50 (95%)
(4) OMe	OMe	(9) OH	50 (87%)
105:106 (1:1)	115 (90%)	30	
MeO OH	MeO	(10) 6:7	8 (95%)
107:108 (1:1)	/ 0 116 (88%)	(11) 29:30	50 (91%)

Reagents and conditions: 1) NaOCI (1.19 eq), AcOH (1.95 eq), CCI₄ (0.6 M), H₂O (0.6 M), 0 °C, 6 h. 2) 1% Et₃N/hexanes, SiO₂. A Isolated yields. B Ratios determined by ¹H-NMR.

antibonding orbital as depicted in **I**. Newman projections **II** and **III**, depict eclipsing interactions along the C1-C3 bond axis while a gauche interaction is present along the C1-C2 bond (Figure 12). This interaction can induce preferential migration of the C1-C3 bond to relieve this eclipsing strain. This influence is observed with both the norcamphor and fenchone derived carbinols, **100** and **102** (entries 1 and 2, Table 6). In these cases the

Figure 12. Molecular Orbital and Newman Representations

electronics slightly favor migration of the bridgehead carbon (hydro dialkyl vs. dihydro alkyl and methyl dialkyl vs. dimethyl alkyl). Yet the C1-C3 bond preferentially migrates. The camphor substrate, 103, enhances the migratory aptitude of the bridgehead carbon (methyl dialkyl vs. dihydro alkyl) which was observed preferentially (entries 3, Table 6). These examples demonstrate that the simple mneumonic of nucleophilicity and migration might not hold true for other ring systems and does not hold for the [2.2.1] bicyclic system (entries 1-3, Table 6).

To see if the loss of regioselectivity observed in the [2.2.1] system was an artifact of the missing internal olefin, the homologous [2.2.2] saturated system was explored (entries 4 and 5, Table 6). This system, though a diastereomeric mixture, rearranged with excellent regioselectivity. Selective migration of the bridgehead was observed in both cases with the ethereal unit surviving the reaction and workup conditions. Lastly, the original control substrates, 6:7 and 26:27, (entries 6-11, Table 6) were investigated under the optimized standard conditions. Again, as expected, both the *exo* and *endo* diastereomeric carbinols produce the same *exocyclic* enone with absolute regioselectivity.

3.11. Influence of Bridgehead Methyl Group in [2.2.2] Expansion

3.11.1. Substrate Synthesis

In order to test the electronics of migration further, the bridgehead methyl group needed to be transposed to the back-bridging olefin. Fashioning this in a simple system is not trivial, while the converse is true for a more complicated structure. Following a procedure of Paquette and Maleczka, tandem aldol/michael condensation generates 117 (Scheme 27). Subsequent Sakurai reaction, ozonolysis and another aldol generates the [2.2.2] skeleton, 121.80 Protection of the hydroxyl ensues followed by hydrazone formation and Shapiro reaction to install the olefin moiety with the backside Scheme 27. Synthesis of Paquette's [2.2.2] Backside Methyl System²³

methyl substituent in place, 124.⁸¹ Deprotection, oxidation, and vinyl Grignard addition produces carbinols 127:128 in a 3:1 mixture. The somewhat more manly ketal complex 130:131 was obtained by an intramolecular Diels-Alder reaction of masked benzoquinones in moderate yield and diastereoselectivity (Scheme 28).⁸²

Scheme 28. Ketal Carbinol Synthesis²³

3.11.2. Results

The expansion of vinyl carbinols **127:128** results in a 5:1 mixture of regioisomeric *exocyclic* enones, with no internalization of the olefin observed. It appears that the bridgehead methyl substituent is the important factor for the complete regioselective ring expansion of the [2.2.2] systems investigated thus far. The electronics

Table 7. [2.2.2] Backside Methyl Ring Expansion/Eliminations²³

Entry	Substrate	Products (yield ^a ; ratio ^b)
(1)	ОН	4.
	127:128 (3:1)	132 133 (81%; 5:1)
(2)	ОМе ОН	134 (42%)

Reagents and conditions: 1) NaOCl (1.19 eq), AcOH (1.95 eq), CCl₄ (0.6 M), H₂O (0.6 M), 0 °C, 6 h. 2) 1% Et₃N/hexanes, SiO₂.

a Isolated yield. b Ratios determined by H-NMR.

46

of the internal olefin do favor bridgehead migration, though somewhat less than the previous [2.2.2] examples. The rearrangement of **130** was very difficult to discern. After in-depth analysis of ¹H, ¹³C, DEPT, and mass spectroscopy, structure **134** was deemed most consistent with the data. This structure is tentative due to our inability to obtain 1D-NOE spectral data. It is believed that tetracycle **134** arises from Cl⁺ abstraction *via* the internal olefin (Scheme 29).

3.11.3. Mechanistic Considerations

Rearrangement of vinyl carbinol 130 is the first example where the bridging double bond prefers to capture Cl⁺. This olefin is more electron rich as a result of the methyl substituent, however this reaction path was not observed in carbinols 127:128. It is possible that the ketal portion of the molecule is having some effect here. Wagner-Meerwein shift of 135 generates cation 136, which is captured by the hydroxyl substituent to produce 137. Subsequent loss of a proton followed by loss of HCl generates 134.

Scheme 29. Possible Mechanism for 129

3.11.4. Summary of Bicyclic Exo-Olefin Insertion/One Carbon Expansions

These examples emphasize how this chemistry allows for an unselective Grignard addition prior to the selective rearrangement. As observed earlier, this rearrangement is generally chemoselective, with no observable products derived from the bridging olefinic moiety, except possibly **134**. For [2.2.2] systems a bridgehead substitution is necessary for complete regioselectivity, while the internal olefin is inconsequential. Lastly, [2.2.1] constructs tend to be only moderately selective, if selective at all.

3.12. Monocyclic Exo-Olefin Insertion Ring Expansions

3.12.1. Results and Discussion

Earlier in the monocyclic chlorinative ring expansion of 84, enone 90 was observed with no internalization of the olefinic moiety. To expand the scope of this rearrangement/elimination and to address the possibility of internalization a variety of homologous monocyclic carbinols were investigated. The ketone precursors for entries 1-7 (Table 8), are all commercially available. All carbinol substrates were obtained *via* vinyl Grignard addition across a suitable carbonyl in respectable yields with no purification necessary. The carbinols investigated rearranged to give their respective enones with moderate yields. The ring expansions and elimination of five, six, and seven membered carbinols (entries 1-3, Table 8) were facile, albeit they gave lower isolated yields than expected. The lower isolated yields, when compared to their chlorinated analogues (Table 5), may be a result of the enone's volatility. This would explain why the five to six expansion affords lower yields than both the six to seven, and seven to eight transformations. The expected ring size trend is observed in the larger ring systems (entries 4-6, Table 8). Of synthetic importance, there was no internalization of the

Table 8. Monocyclic Exo-Olefin Insertion One Carbon Expansion Results²³

Entry	Carbinol	Products (C	Condition A yield ^a ; Condition E	3 yield ^a)
(1)	HO	90 (Condition A: 56%) (Condition B: 67%)	(Condition A: 12%) (Condition B: 0%)	CI.
(2)	HO	142 (Condition A: 62%) (Condition B: 72%)	91 (Condition A: 10%) (Condition B: 0%)	CI HO CI 92 (Condition A: 16%) (Condition B: 3%)
(3)	HO 86	143 (Condition A: 60%) (Condition B: 70%)	93 (Condition A: 14%) (Condition B: 0%)	CI CI CI P4 (Condition A: 19%) (Condition B: 4%)
(4)	139	144 (Condition A: 42%)	145 (Condition A: 0%)	OH CI 146 (Condition A: 18%)
(5)	HO 140	(Condition B: 63%) 147 (Condition A: 28%)	(Condition B: 0%) C 148 (Condition A: 27%)	(Condition B: 6%) OH CI 149 (Condition A: 5%)
(6)	HO 141	(Condition B: 53%) 150 (Condition A: 26%)	(Condition B: 3%) 151 (Condition A: 31%)	(Condition B: 3%) CI HO 152 (Condition A: 8%)
(7)	HO,,,	(Condition B: 45%) 97 (Condition A:) (Condition B: 79%)	(Condition B: 4%) 95:96 (Condition A:) (Condition B: 0%)	(Condition B: 4%) CI HO, CI 98 (Condition A:) (Condition B: -2%)

Reagents and conditions: Conditions A: NaOCl (1.19 eq), AcOH (1.95 eq), CCl₄ (0.6 M), H₂O (0.6 M), 0 °C, 6 h. 2) 1% Et₃N/hexanes, SiO₂. Conditions A: NaOCl (1.19 eq), AcOH (1.95 eq), CCl₄ (0.6 M), H₂O (0.3 M), 0 °C, 6 h. 2) 2-3% Et₃N/hexanes, SiO₂. a Isolated yields.

olefinic moiety during the reaction or upon purification. The regioselectivity of this rearrangement still held when a methyl group was added to the five membered case (entry 7, Table 8). Only the enone from migration of the more nucleophilic carbon was isolated. This level of regioselectivity has been observed in [2.2.2] bicyclic systems (Table 3, entries 4-11 Table 6), but not in simple five membered arrays (entries 1-3, Table 6).

3.12.2. Dilution Experiments

As observed previously (Table 5), the monocyclic systems produced an intrusive amount of chlorinated carbinol resultant from Cl₂ addition across the substrate's vinyl portion. The chlorine addition is a bimolecular reaction, resulting first from its production from bleach and second, its subsequent addition across the olefin. Dilution of the aqueous phase could slow the production of Cl₂ and thus circumvent the byproduct chlorocarbinol's formation. Treatment under standard conditions, augmented by a two-fold dilution of the aqueous layer, resulted in a significant decrease in the production of chlorocarbinols in all ring sizes (all entries, Conditions B, Table 8). These monocyclic examples demonstrate that the tandem chlorinative ring expansion/elimination sequence is a general reaction of vinyl-substituted cyclocarbinols.

3.13. Conclusions

In summary; a one-carbon expansion of 'vinyl' bicyclocarbinols has been developed to yield β -chlorobicyclocarbinones in respectable yield. Utilizing a facile elimination to produce *exocyclic* enones has furthered this process. Bond migration in these ring expansions can be regioselective, but data suggest this is substrate dependent, e.g. [2.2.1] vs. [2.2.2]. The [2.2.2] system investigated was not only regioselective but

also diastereoselective. This diastereoselectivity results from the population of a preferred "vinyl" rotomeric species prior to the Wagner-Meerwein shift. In these cases a *cisoid* rotomer, between "vinyl" and hydroxyl, is preferred. This geometry seems to be optimal for rearrangement and can even be observed in simple ring systems. Clearly the scope of the rearrangement and synthetic utility of the products, be they chloroketone or enone, coupled with the inexpensive reagents all contribute to this reaction's synthetic appeal.

Chapter 4. Additional NaOCl/AcOH Promoted Chlorinative Rearrangements

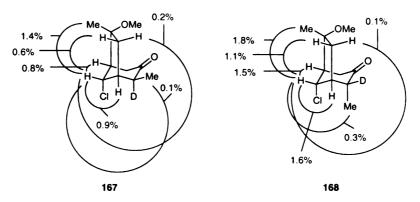
4.1. Introduction

Treatment of vinyl carbinols with NaOCl and AcOH promoted a one-carbon expansion to produce *exocyclic* enones (Chapter 3). To see how non-vinyl substitution at the carbinol carbon would affect its reactivity with the standard set of NaOCl/AcOH conditions, a series of secondary (2°), methyl-substituted tertiary (3°), and alkynyl substituted 3°-carbinols were constructed. These substrates would address a number of questions: 1) Without a vinyl substituent, would hypohalite formation result followed by free radical processes? 2) The chemoselectivity observed in substrate carbinols 6:7 and 29:30 was interesting in that reaction at the vinyl portion of the molecule superseded any at the bridging olefin. Would reactivity of the bridging olefin be observed? 3) Would the same chlorinative ring expansion, with or without elimination, be observed with alkynyl-substituted substrates?

4.2. Substrate Preparation

The necessary substrates were easily prepared *via* the carvone pipeline. Srikrishna's ketones **27:28** were again treated with the appropriate nucleophiles. The 2°-carbinols, **153** through **158**, were produced by hydride and deuteride reduction. Both reductions occurred in moderate yield to afford equal amounts of diastereomeric carbinols (Scheme 30). Treatment of **27** with ethynyl Grignard generated alkynyl carbinols, **161:162**, in good yield with slight diastereoselectivity. The methyl carbinols, **159:160**, were more diastereoselective and similarly available *via* methyl Grignard addition. These three nucleophilic additions demonstrate nicely how the selectivity of the Grignard reaction with **27** can increase as size of the nucleophile increases.

Scheme 30. Preparation of H(D), Me, and Alkynyl Carbinols²³


4.3. Rearrangement of Secondary Carbinols

4.3.1. Results and Structural Assignment

The 2°-carbinols, **153:154**, **155:156** and **157:158**, were treated with NaOCl and AcOH. These experiments showed that, despite our earlier results, the bicyclic olefin was not inert to the reaction conditions as the starting substrates were transformed into γ -chloro-[3.2.1]-ketones in moderate yields and diastereoselectivities (Table 9). There was no elimination of HCl after Et₃N buffered chromatography, which supports a bridging chlorocarbon. The stereochemistry at the chlorocarbon was determined by ¹H-NMR. There is a slight downfield shift of this proton upon comparison of **163** (4.37 ppm) to **165** (4.74 ppm). This results from the difference in the orientation of the methoxy substituent. If the stereochemistry at this position were reversed, there would be little if any change in these δ -values given their similar environments. The stereochemistry α to the ketone was also determined initially by ¹H-NMR. This methyl group in both **163** (0.96 ppm) and **165** (0.97 ppm) appear to be in similar environments. It has been

established that cyclohexanones with α -methyl substituents show distinct δ -values for axial and equatorial protons. This had been exemplified previously with the chlorinative ring expansions of Johnson's substrate, isopropenyl-[2.2.1]-cycloheptanol (Scheme 19, Section 3.4).⁸⁴ NMR data suggested that the carbonyl's α -methyl group was

Figure 13. 1D-NOE Support of 167:168

oriented in an up or equatorial position. Chloroketones 167 and 168 were also subjected to 1D-NOE experiments to further support the stereochemical assignment of the chlorocarbon (Figure 13). 85 Clearly the chlorocarbon's proton displays a through-space interaction with the left half of the bicyclic molecule but lacks interaction with the carbonyl's α -protons. Both observations support the stereochemical assignment.

At first it was unclear whether or not the reaction conditions were producing a hypochlorite. First, the reaction was run in ambient light (entries 1-3, Table 9). The reaction proceeded without a large body of byproducts to generate the [3.2.1]-ketones in good yield and modest diastereoselectivity, after lengthening the reaction time to 6 h. Similar yields, entry 1 vs. entries 4-6 (Table 9), were obtained when the first step of the reaction, NaOCl/AcOH, was carried out in a dark room followed by subsequent irradiation (entries 4-6, Table 9). However, only one diastereomer was isolated. Again, as in the vinyl ring expansions, we questioned whether irradiation was necessary.

Table 9. Secondary Carbinol Rearrangements²³

Entry	Carbinol	Conditions	Products (yield ^a ;ratio ^b)	Recovered Substrate (yield ^a ; ratio ^b)	
(1)	153:154 R ₁ =H; R ₂ =Me; R ₃ =OMe	Α	163:164 (35%; 3:1) R ₁ =H; R ₂ =Me; R ₃ =OMe	153:154 (39%; 1:2.3)	
(2)	155:156 R ₁ =H; R ₂ =OMe; R ₃ =Me	В	165:166 (52%; 3:1) R ₁ =H; R ₂ =OMe; R ₃ =Me	155:156 (12%; 1:2.3)	
(3)	157:158 R ₁ =D; R ₂ =Me; R ₃ =OMe	В	167:168 (60%; 2:1) R ₁ =D; R ₂ =Me; R ₃ =OMe	157:158 (7%; 1:1)	
(4) ^c	153:154	С	163 (45%)	153:154 (36%; 1:3)	
(5) ^c	155:156	С	165 (33%)	155:156 (42%; 1:2.4)	
(6)	157:158	С	167 (37%)	157:158 (32%; 1:3.2)	
(7)	157:158	D	167:168 (58%; 1.2:1)	157:158 (36%; 1:1)	
(8)	157:158	E	167:168 (45%; 1.5:1)	157:158 (26%; 1:1)	

Reagents and Conditions: A: NaOCI (1.19 eq), AcOH (1.95 eq), H_2O (0.6 M), CCI_4 (0.6 M), 0 °C, 3 h. B: NaOCI (1.19 eq), AcOH (1.95 eq), H_2O (0.6 M), CCI_4 (0.6 M), 0 °C, 6 h. C: 1) NaOCI (1.19 eq), AcOH (1.95 eq), H_2O (0.6 M), CCI_4 (0.6 M), 0 °C, dark, 3 h. 2) PhH (0.03 M), hv, rt, 7 h. D: NaOCI (1.19 eq), AcOH (1.95 eq), H_2O (0.6 M), CCI_4 (0.6 M), 0 °C, dark, 6 h. E: BHT (1.10 eq), NaOCI (1.19 eq), AcOH (1.95 eq), H_2O (0.6 M), CCI_4 (0.6 M), 0 °C, 6 h.

Upon subjection of **157:158** to the reaction conditions in the absence of light, no loss of isolated yield was observed (entry 7, Table 9).

The lower diastereoselectivity observed with conditions A, B, D and E is believed to arise from the prolonged reaction time. From the ratio of recovered starting material it appears that the *exo*-carbinol reacts in a more facile nature than its diastereomer though both rearrange. Interestingly, this rearrangement is somewhat hindered by the addition of BHT and a slight loss of stereoselectivity is observed when the reaction is carried out in

^a Isolated yields. ^b Ratios's determined by ¹H-NMR. ^c Minor product not isolated.

the dark. In both these cases there was also significant recovery of starting material (entries 8 and 7 respectively, Table 9). Furthermore, the stereochemistry α to the ketone goes from a 2:1 to a 1.2:1 mixture when the reaction is run dark (entry 3 vs. entry 7, Table 9). Thus, the mechanistic nature of this rearrangement is not completely understood.

4.3.2. Mechanistic Considerations

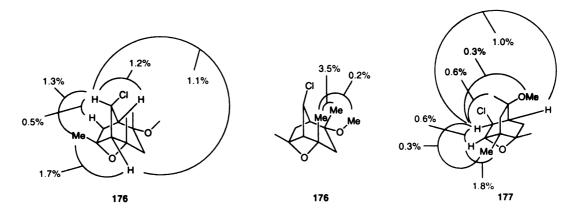
Even though there is not a full understanding of all the mechanistic paths, a cationic pathway is proposed for the formation of the [3.2.1] chloroketones. A cationic mechanism is apparent due to the ability of this rearrangement to proceed whether the reaction is run in the dark or in the presence of a radical scavenger. As with the vinyl substrates, electrophilic chlorine (Cl⁺) is likely captured by the double bond to generate

Scheme 31. Secondary Carbinol Cationic Mechanism

species 169 (Scheme 31). This initiates a [1,2] shift of the front bridging carbon to produce cation 170. A subsequent [1,2] shift of a hydrogen or deuterium atom generates carbinol cation 171 and loss of a proton generates the observed γ -chloro-[3.2.1]-bicycloketones 163:164.

4.4. Rearrangement of Methyl Substituted Tertiary Carbinols

In order to further explore possible involvement of the bicyclic olefin the 2°-carbinol was changed to a methyl substituted 3°-alcohol. This substrate lacks any protons for the putative [1,2]-shift. However a [1,2]-methyl migration would be


available. Thus, capture of Cl⁺ followed by two sequential [1,2] shifts would produce chloroketone 175. This was not the case.

Scheme 32. Anticipated 3°-Carbinol Rearrangement

4.4.1. Results and Structural Assignment

The formation of 175 or any ketonic structure was not observed. Instead one of two rearranged products, 176 and 177, were observed depending on which diastereomeric carbinol was subjected to the standard conditions (Table 10). The structures of the proposed rearrangement products were not easy to ascertain. Use of ¹³C-NMR coupled with DEPT spectroscopy elucidated the two 3°-carbons present in the oxetane substructure of 176. Similarly the 2°- and 3°-carbons of epoxide 177 were deduced. The use of 1D-NOE also supported the structure assignments. The stereochemistry of chlorocarbon 176 was also ascertained by the observation of through space interactions with the left half of the tricycle. There was also a strong methyl-methyl interaction

Figure 14. 1D-NOE Support of 176 and 177

indicative of the 1,3-diaxial orientation. Analysis of bicycle 177 also showed through space interactions that support the proposed structure. Carbinol 159 yielded an ethereal tricycle 176, which was accompanied by bicycle 177. Diastereomeric carbinol 160 also produced 177, but did not generate the tricyclic ether 176.

Entry Substrate Products (yield*: ratio*)

(1) CI OME

(1) CI OME

(2) CI OME

(34%)

(2) CI OME

(2) CI OME

(28%)

(1) CI OME

(28%)

(2) CI OME

(177 (28%)

(177 (178)

(177 (57%)

Table 10. Methyl Substituted 3°-Carbinol Rearrangements²³

Reagents and conditions: NaOCl (1.19 eq), AcOH (1.95 eq), CCl₄ (0.6 M), H_2O (0.6 M), 0 °C, 6 h. Isolated yields. ^b Ratios determined by ¹H-NMR. ^c Recovery of **160** (6%).

4.4.2. Mechanistic Considerations

The ability of both carbinols to produce the same rearranged epoxide, 176, coupled with the observation that only one of the alcohols produced tricycle 177 is interesting. This implies the operation of two mechanisms, one of which is stereospecific in relation to the hydroxyl carbon.

Tricycle 176 is envisioned to form *via* abstraction of Cl⁺ by the olefin (Scheme 33). Cation 178 undergoes an alkyl [1,2]-shift to produce 180 by way of a three coordinate non-classical cation. The 3°-cation 180 is in close proximity to the lone pair of electrons residing on the hydroxyl, and subsequent attack of the hydroxyl followed by loss of H⁺ produces 176. This sequence cannot occur with *endo*-carbinol 160 since

Scheme 33. Methyl Substituted 3°-Carbinol Cationic Mechanisms

the hydroxyl is on the bottom face of the bicycle and the oxygen's lone pair is to far removed from the cation. The putative mechanism shared by both carbinols is interesting, in that this sequence involves loss of H₂O. This has not been observed upon reaction of any other carbinol studied. Loss of H₂O followed by hydroxide capture would generate carbinol 160, which can undergo electrophilic capture of Cl⁺ to produce 181. Capture of the cation by the hydroxyl ensues, followed by loss of H⁺ to generate 177.

4.4.3. Summary of Methyl Carbinols

The ability of cations to undergo different rearrangement pathways is not new. 86 So it is not surprising that diastereomeric carbinols could rearrange *via* different routes. This makes the rearrangement of carbinol **159** unattractive since products from each pathway are formed. This prohibits the use of the convenient protocol of subjecting a diastereomeric mixture of carbinols, as in the case of the vinyl carbinols, to the conditions since mixtures would result. Thus separation is necessary at the carbinol stage. The

ability of *endo*-carbinol **160** to generate the chloroepoxide diastereomerically is appealing even with the modest yield. To further explore the cationic rearrangement that NaOCl/AcOH can evoke, alkynyl carbinols were next subjected to the standard conditions.

4.5. Rearrangements of Ethynyl Substituted Tertiary Carbinols

4.5.1. Results and Structural Assignment

Alkynyl substituted carbinols were employed to see if a ring expansion related to those observed previously with vinyl substituted alcohols, or another rearrangement would operate. Upon exposure to the standard conditions, a 1:1 diastereomeric mixture of 161:162 produced the familiar tricyclic ether 183 along with recovered *endo*- carbinol 162 (entry 1, Table 11). The geometry of 183 was established *via* NOE interactions with the left or cyclopentyl portion of the tricycle, while the aliphatic methyl substituents also showed a strong diaxial through-space interaction. This was reminiscent of the methyl carbinols, in that it appeared that only the *exo*-carbinol was rearranging to produce the four-membered ethereal unit. Treatment of 161 gave solely 183 in moderate yield with a small recovery of starting material. Exposure of 162 to NaOCl/AcOH only resulted in the recovery of starting material (entries 2 and 3, Table 11).

Figure 15. 1D-NOE Support of 183

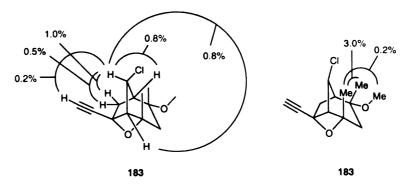


Table 11. Ethynyl Substituted 3°-Carbinol Rearrangements²³

Entry	Substrate	Products (yield ^a)
1	ОМе	OMe OH
	161:162 (1:1)	183 162 (39%) (36%)
2	OMe OH 161	183 162 (63%) (2%)
3	OMe OH 162	183 162 (not observed) (76%)

Reagents and conditions: NaOCl (1.19 eq), AcOH (1.95 eq), CCl₄ (0.6 M), H₂O (0.6 M), 0 °C, 6 h.

a Isolated yields.

4.5.2. Mechanistic Considerations

The fact that **162** is inert to the conditions is not completely understood. In all carbinol cases to this point, there was some rearrangement observed whether the alcohols were *exo* or *endo*. Be that as it may, the ability of **161** to produce only one product is synthetically appealing. Again, as in the methyl case, separation of the carbinols becomes an issue. However, the "other" carbinol does not taint the product composition, and the ether is easily separated from the unreactive alcohol.

The mechanism envisioned would be similar to that proposed for the methyl *exo*-carbinol (Scheme 33). Carbinol **161** undergoes Cl⁺ abstraction followed by an alkyl [1,2]-shift to generate cation **186**. Attack of the hydroxyl followed by loss of a proton

generates the tricyclic 183. Again, the hydroxyl geometry present at carbocation 163 is essential for heterocyclic ring closure.

Scheme 34. Ethynyl Substituted 3°-Carbinol Cationic Mechanism

4.6. Conclusions

The examples discussed above demonstrate that the internal olefin present in the carbinol substrates is not chemically inert to the reaction conditions as observed in the vinyl substrates. The aforementioned rearrangements appear to be primarily cationic in nature. This double bond's reactivity and subsequent alkyl [1,2]-shift is sensitive to the nature of the hydroxyl's substitution. When there is no substitution, i.e. only hydrogen or deuterium, then migration of the 'a' bond is preferred due to abstraction of Cl⁺ from the bottom face of the olefin (Scheme 35). Conversely, with the methyl or ethynyl substitution migration of the 'b' bond is preferred. Now Cl⁺ abstraction occurs from the top face of the substrate followed by an alkyl [1,2]-shift of the 'b' bond. The mode of Cl⁺ abstraction seems to be influenced by the sterics of the bottom face of the bicycle. It appears that Cl⁺ capture occurs via the least sterically hindered face followed by all the above rearrangements the preferred rearrangment. In

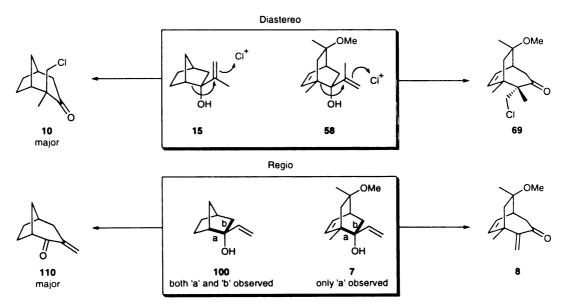
Scheme 35. Differing Mechanistic Pathways

migratory bond is the antiperiplanar one. It was somewhat surprising that the alkynyl substrates did not undergo the ring expansion observed previously in the vinyl series. Ethynyl carbinols have been ring expanded in [2.2.1] systems *via* suggested bromonium and iodium ion intermediates (Scheme 36).⁸⁷ These examples however lacked the

Scheme 36. McNelis Expansion of [2.2.1] Alkynyl Carbinols

examination of the cation intermediates. The 2°-cationic intermediate (*via* olefin) is more stable than the disubstituted vinyl carbocation (*via* alkyne) and as a result the alkene portion of the substrate is far more reactive than the alkyne.

These examples demonstrate the ability of the simple NaOCl/AcOH conditions to evoke a number of cationic rearrangements as long as there is an olefinic moiety present in the substrate and that such cationic intermediates can rearrange in a regio and diastereoselective manner.


Chapter 5. Theoretical Investigation

5.1. Introduction

The ring expansions of vinyl-substituted carbinols have been shown to be chemoregio- and diastereoselective (Chapter 3). However there have been some discrepancies.

Most notable is the preferred *anti* orientation in Johnson's [2.2.1] bicycle while the
carvone derived [2.2.2] bicycles prefer *syn*. As a result the ability to predict the stereooutcome of these chlorinative ring expansions is not absolute. Another discrepancy of
note is the ability for the [2.2.2] system to expand in a completely regioselective manner
while the [2.2.1] constructs respond unselectively. It is obvious that these differences

Figure 16. Regio and Diastereo Discrepancies

could be the result of the different systems, [2.2.1] vs. [2.2.2]. However it would be advantageous to be able to predict the regioselectivity of these ring expansions along with the diastereoselectivity as well.

Molecular force field calculations were made to estimate the relative strain energies (SE) present in these systems.⁸⁸ It was hoped that the difference in strain energies (Δ SE) between the substrate and products, and also between the regio- and

diastereomeric products would be predictive. All calculations were conducted using a Spartan program package (version 5.0, Wavefunction Inc.) on a SGI Indigo II machine. The minimum energy conformers were located with the Osawa searching method and were found within 3.0 kcal/mol of the global minimum.⁸⁹

5.2. Theoretical Investigation of Chlorinative Ring Expansion

The theoretical study began with the analysis of a few select vinyl substituted carbinols at the MMFF94 level (Table 12). The starting substrate's SE was compared to that of both regio and diastereomeric chloroketones. It would not be prudent to compare the carbinol to that of the enone, as it is the product of elimination and not expansion. In conjunction with the molecular mechanics study, a semi-empirical calculation was performed at the AM1 level on the MMFF94 conformers to get an idea of these compounds heat of formation (ΔH_f).

An interesting trend surfaces upon comparison of the starting substrates with the regiochemistry of the product ketones. It was observed previously that norcamphor, fenchone, and camphor derived vinyl carbinols were regiochemically unselective, when subjected to our standard set of bleach/vinegar conditions (entries 1-3, Table 6, Section 3.10.1). Analysis of the Δ SE and $\Delta\Delta$ H_f energies reveal that there is not a significant difference in Δ SE (>4.0 kcal/mole) between the two regiochemistries, which supports what was observed experimentally (entries 1-3, Table 13). The $\Delta\Delta$ H_f energies for the most part complement the Δ SE calculated. The Δ SE of entries 1 and 2, Table 13, favor migration of the 'b' bond which is what observed. In the camphor case, entry 3 Table 13, migration of the 'a' bond was preferred by 3:1 experimentally, but the Δ SE and $\Delta\Delta$ H_f energies favor 'b' bond migration. It appears in this case that the electronics of the ring

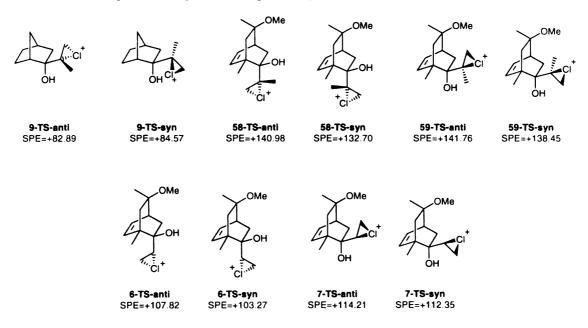
Table 12. Select Bicyclic Strain Energies (SE) and Heats of Formation (ΔH_{t})

Substrate	Product (Migr	ation of 'a')	Product (Migration of b')				
D) a OH	CI	CI	CI				
100 SE=+33.04 ΔH _r =-27.99	189 SE=+16.94 ΔH ₁ =-64.25	190 SE=+17.80 ΔH _I =-64.04	191 SE=+16.80 ΔH _t =-64.05	192 SE=+16.85 ΔH _I =-63 38			
OH	CI	CI	CI	CI			
102 SE=+62.94 ΔH _I =-31.44	193 SE=+42.36 ΔH _i =-66.81	194 SE=+44.29 ΔH _I =-65.99	195 SE=+41.69 ΔH ₁ =-66.18	196 SE=+45 71 ΔH ₁ =-62 71			
103 SE=+62.48 ΔH _I =-29.63	CI O 197 SE=+47.15 ΔH _I =-64.19	`O 198 SE=+49.93 ΔH _I =-62.90	СI 199 SE=+43.99 ΔH _I =-68.68	200 CI SE=+45.14 ΔH _I =-66.70			
OMe OMe OMe OH	OMe CI 66	OMe CI 67	OMe CI 201	OMe CI 202			
SE=+83.63 SE=+89.16 ΔH ₁ =-54.26 ΔH ₁ =-47.69	SE=+61.12 ΔH _I =-73.18	SE=+57.89 ΔH _I =-73.39	SE=+69.44 ΔH ₁ =-78.11	SE=+73 36 ΔH ₁ =-74 88			
ÖH 9 SE=+36.59 ΔH _I =-32.21	10 SE=+29.83 ΔH _I =-60.08	Cl 0 11 SE=+29.42 ΔH _I =-60.41	O CI 12 SE=+32.97 ΔH ₁ =-65.50	13 SE=+33.85 ΔH ₁ =-63.38			
OMe OMe	OMe	OMe	OMe	OMe			
58 59 SE=+98.46 SE=+92.72 ΔH ₁ =-50.87 ΔH ₁ =-52.00	68 SE=+74.43 ΔH ₁ =-67.17	69 SE=+71.63 ΔH _I =-70.31	203 SE=+82.90 ΔH _I =-74.24	204 SE=+86 35 ΔH _i =-73.40			

expansion are dictating migration and not the release of strain energy. The vinyl carbinol Δ SE calculations, entries 4 and 5 Table 13, clearly favor migration of the 'a' bond by \geq 8 kcal/mol, which was observed experimentally. Analyses of the isopropenyl substrates, entries 6 through 8 Table 13, also show preference for migration of the 'a' bond. In the

Table 13. Chloroketone Carbinol ΔSE and ΔΔH_f Values

Entry	Substrate	Produc	ct ASE	ΔΔH _f	Produ	ct ASE	ΔΔΗ	Produ	ct ASE	ΔΔΗ,	Produ	ct ASE	ΔΔΗ
(1)	100	189	-16.10	-36.26	190	-15.24	-36.05	191	-16.24	-36.06	192	-16.19	-35.39
(2)	102	193	-20.58	-35.37	194	-18.65	-34.55	195	-21.25	-34.74	196	-17.23	-31.27
(3)	103	197	-15.33	-34.56	198	-12.55	-33.27	199	-18.49	-39.05	200	-17.34	-37.07
(4)	6	66	-22.51	-18.92	67	-25.74	-19.13	201	-14.19	-23.85	202	-10.27	-27.19
(5)	7	66	-28.04	-25.49	67	-31.27	-25.70	201	-19.72	-30.42	202	-15.80	-27.19
(6)	9	10	-6.76	-27.87	11	-7.17	-28.20	12	-3.62	-33.29	13	-2.74	-31.17
(7)	58	68	-24.03	-16.30	69	-26.83	-19.44	203	-15.56	-23.37	204	-12.11	-22.53
(8)	59	68	-18.29	-15.17	69	-22.41	-18.31	203	-18.48	-22.24	204	-19.32	-21.40


 $[\]Delta$ = Chloroketone Energy - Substrate Energy (kcal/mol)

case of Johnson's substrate **9**, the ΔSE is not as great as in the [2.2.2] bicycles. This would predict a mixture of regioisomers with the 'a' bond migration predominating, which was indeed observed experimentally. The $\Delta\Delta H_f$ energies in entries 4 though 8, Table 13, do not complement the ΔSE energies calculated. This demonstrates that these ring expansions seem to be influenced by the release of strain energy coupled with the electronics of migration and not necessarily by the heats of formation. These examples demonstrate that the ΔSE at the MMFF94 level can be used to predict whether a ring expansion will give a mixture of regioisomers (< 4 kcal/mol) or be more selective (> 8 kcal/mol). However, such calculations are not exact in predicting which regiochemical isomer will predominate, entry 3 (Table 13).

5.3. Theoretical Investigation of Chlorinative Transition State

When considering the regioselectivities of these bicyclic ring expansions, the calculations can be predictive of whether the ring expansions will be regioselective or not. That being said, the actual diastereoselectivities observed experimentally do not agree with the calculations, upon comparison of the ΔSE or $\Delta \Delta H_f$ energies (entries 4 through 8, Table 13). This is understandable since the diastereoselectivity is likely derived from a transition structure. Thus the difference in energies of the transition states needed to be calculated. Though there is the question of the exact nature of the transition state, it was assumed to involve a chloronium ion. The single point energy (SPE) calculation on this transition state mimicked the diastereoselectivities observed. In every example the observed diastereoselectivity matches the minimum SPE calculation for the chloronium ion transition state. Of course this mneumonic relies on the assumption that a chloronium ion is being formed. With this assumption in mind, it does predict that Johnson's substrate should adopt a *transoid* conformation in this transitions state to orient

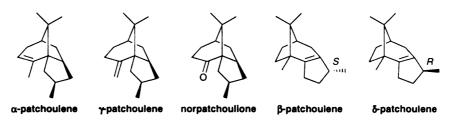
Figure 17. Singe Point Energies (SPE) of Chloronium Transition States

the chloromethyl substituent in an up position, which was observed (~2:1). The Δ SPE for 9-TS-anti and 9-TS-syn is only 1.68 kcal/mol. This small difference predicts a mixture of diastereomers, which is observed by the small (~2:1) ratio. Analysis of the *i*-Pr and vinyl transitions states, 58-TS-anti vs. 58-TS-syn and 59-TS-anti vs. 59-TS-syn; 6-TS-anti vs. 6-TS-syn and 7-TS-anti vs. 7-TS-syn, reveal that now a *cisoid* geometry is favored, which is also observed experimentally. The Δ SPE is much greater for the *exo*-carbinols 58 and 7 which carries over to the observed diastereoselectivities, 58 (20:1) vs. 59 (1:12) and 6 (16:1) vs 7 (1:14). Even though this pneumonic is based on certain assumptions it does mimic the observed diastereoselectivities by predicting the favored diastereomer.

5.4. Conclusions

The above calculations support what was observed in Chapter 3, though this theoretical investigation is just that, theoretical. It does however allow the chemist an idea of whether the desired chlorinative ring expansion will be regioselective or not, and also which diastereomer will be preferred. In the end of course, one needs to perform the reaction to determine the actual regio- and diastereoselectivity.

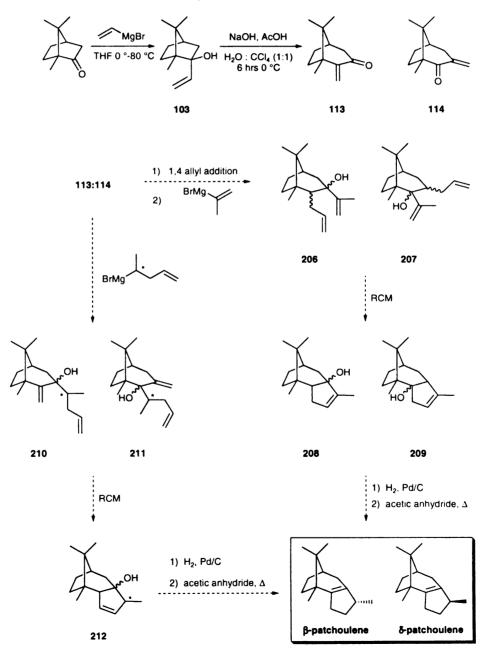
Chapter 6. Future Synthetic Investigations


6.1. Nucleophilic Addition to Ring Expanded Enones

Nucleophiles can add into enones in a variety of ways. Additions can occur in either a 1,2- or 1,4-manner. While electrophilic processes can occur the α,β , or γ positions. This enables enones to be transformed into a myriad of chemically Scheme 37. Vinyl Grignard Addition of 8

substituted species. To probe the reactivity of our rearrangement products, enone 8 was subjected to vinyl Grignard addition (Scheme 37). Interestingly the vinyl addition occurred in a 1,4-manner as opposed to a 1,2-addition. Additional effort should be expended to induce these *exocyclic* enones to undergo a 1,2-addition, since it appears that 1,4-additions are very facile.

6.2. Patchoulenes


Figure 18. Patchoulenes

The ease of 1,4 addition may make these rearrangement useful in the synthesis of natural bicyclics. One such class of compounds are the patchoulenes (Figure 18). For over the past 130 years, the patchoulenes have been of interest, largely due to their importance in the perfume industry. As such they have been the subject of total synthesis

and derivitization.⁹¹ The patchoulenes are also prized as key synthetic intermediates to other more complex natural products.⁹² The two earliest synthetic routes have begun with homocamphor, which already has the desired [3.2.1] construct installed. Our ring expansion would provide the [3.2.1] bicyclic core *via* the ring expansion of (+)-camphor. Vinyl addition across (+)-camphor generates **103**, which subsequently provides the

Scheme 38. Proposed Synthetic Routes to β - and δ -Patchoulenes

[3.2.1]-bicyclic enones 113:114 after ring expansion/elimination (entry 3, Table 6, Chapter 3). Subsequent transformations would allow for both β - and δ -patchoulenes to be realized. It has been previously observed that the [3.2.2] enones undergo facile 1,4-addition (Scheme 37). This type of reaction followed the addition of isopropenyl Grignard would produce ketones 206:207 in a mixture of diastereomers. Ring closing metathesis (RCM), followed by hydrogenation and elimination of H_2O would produce the desired patchoulenes after separation (Scheme 38). If a 1,2-addition could be optimized than use of chiral Grignard reagent would allow for the installation of either stereogenic center present in the fused cyclopentyl substructure. After carbinol separation, compound 210 would be subjected to RCM, followed by hydrogenation and elimination of H_2O , as in the first route, to produce either of the desired natural products. 93

6.3. Pinocarvone

Another natural product to be targeted is pinocarvone (Scheme 39).⁹⁴ Though commercially available through Interbioscreen Ltd. of Russia, pinocarvone is quite expensive (\$250/50 mg; \$390/100 mg; \$490/150 mg). The synthesis of this deceivingly

Scheme 39. Proposed Synthetic Route to (+/-)-Pinocarvone

simple molecule could begin with allyl Grignard addition across 3-methyl-2-butenal followed by oxidation to produce ketone **214** in reasonable yield. Irradiation of the ketone at high temperature should produced (+/-)-[2.1.1]-bicycle **215**. Subsequent 1,2-vinyl addition followed by use of the standard NaOCl/AcOH conditions, with basic purification, should produce (+/-)-pinocarvone. It is hoped that the rearrangement will be selective and occur *via* the bridgehead bond ('a'-route). The strained nature of the bicyclic substrate however, could produce poor regioselectivity.

6.4. Enone Diels-Alder Cycloadditions

Diels-Alder reactions have long been exploited for their ability to produce carbocyclic structures from relative simple alkene starting materials. While a Wittig reaction could transform the ring expanded *exocyclic* enone into a suitable *s-cis*-diene for cycloaddition, *s-cis* enones themselves have been used as dienophiles or dienes as well. This flexibility to react in a variety of ways allows our method for the construction of *s-cis*-enones to be synthetic starting point for a variety of carbo- and heterocyclic ring systems.

In conjunction with the Diels-Alder, the standard set of ring expansion/exo-olefin insertion conditions were explored. In order to obtain the desired exocyclic enones in a more rapid manner deviations in reaction time and workup were implemented. A shorter reaction time resulted in slightly lower isolated yields, however streamlined the workup and allowed for quick and clean isolation of the desired enone. In these examples, Scheme 40, workup consisted of addition of a cold aqueous solution 3% K₂CO₃ to the reaction followed by stirring for 5 min. Standard separation and concentration allowed for the enone to be quickly purified via a short silica plug while eluting with 1%

Et₃N/hexanes. The enone elutes first, compared to the chloroketone precursor, and was used directly in the Diels-Alder. These modifications allowed for the rapid transformation of simple cyclic vinyl carbinols into more complex moieties.

Scheme 40. Diels-Alder Diene Participation of Enone 90²³

In preliminary investigations 2-methylenecyclohexanone, **90**, was exposed to a dienophile. The anticipated intramolecular hetero Diels-Alder (HAD) was not observed for **90**. Instead enone **90** diemerized, in the presence of either norbornylene or styrene, *via* HAD to generate spiral **217** (Scheme 40). This type of thermal dimerization of enones has been observed in the literature. Given the inherent resonance structures of enones it was thought that an electron rich dienophile might aid in achieving the desired

Scheme 41. Diemerization of Enones

cycloaddition. However, use of *p*-methoxystyrene was unsuccessful. Though these are not promising results there is still much room for experimentation.

6.5. Increase in Substrate Scope

There is always room for broadening of the substrate scope. This study involved simple monocyclic, as well as [2.2.1] and [2.2.2] bicyclic systems. There are a number of other bicyclic systems, for example 224 and 225, which also could be investigated. More in-depth study of the chemoselectivity could be achieved by the addition of olefins, 222 and 223. Also study of sp² vs. sp³ migration could be achieved with substrates like 221, 226 and 227. Initial studies with 226 show that arene migration is preferred over sp³-hybridized methylene. A few of these substrates are shown below (Figure 19).

Figure 19. Possible Substrates

6.6. Final Thoughts

The research described herein has completed a broad investigation into the ability for bleach and vinegar to be able to generate a number of cationic rearrangements, which are often selective in some manner. A good understanding of the chemo-, regio-, and diastereoselectivity of the chlorinative ring expansion/elimination were gained along side

observations of other interesting rearrangements. The ability to ring expand general vinyl carbinols *via* simple conditions, coupled with the ability to transform the resultant chloroketones into more complex materials adds to the synthetic prowess of this protocol. Certainly this body of research has made a contribution to the area of cationic chemistry. Developing an understanding of these rearrangements and their synthetic subtleties has been most rewarding to myself.

Experimental Details

Materials and Methods:

All air or moisture sensitive reactions were carried out in oven- or flame-dried glassware under a nitrogen atmosphere unless otherwise noted. All commercial reagents were used without purification. All solvents were reagent grade. Diethyl ether (Et₂O) and tetrahydrofuran (THF) were freshly distilled from sodium/benzophenone under nitrogen. Benzene (PhH), dimethyl sulfoxide (DMSO) and diisopropylethylamine (i-Pr₂EtN) were freshly distilled from calcium hydride under nitrogen. Except as otherwise noted, all reactions were magnetically stirred and monitored by thin-layer chromatography with 0.25-mm precoated silica gel plates or capillary GC with a fused silica column. Flash chromatography was performed with silica gel 60 Å (particle size 230-400 mesh ASTM) or basic alumina (particle size ~150 mesh). High performance liquid chromatography (HPLC) was performed with Ranin component analytical/ semiprep system. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated. Melting points were determined on a Thomas-Hoover Apparatus, uncorrected. Infrared spectra were recorded on a Nicolet IR/42 spectrometer. Proton and carbon NMR spectra were recorded on a Varian Gemini-300, VXR 500 or INOVA 600 spectrometer. Chemical shifts for ¹H-NMR and 13 C-NMR are reported in parts per million (ppm) relative to CDCl₃ ($\delta = 7.24$ ppm for 1 H-NMR or $\delta = 77.0$ ppm for ¹³C-NMR). Optical rotations were measured with a Perkin-Elmer Model 341 polarimeter. High resolution mass spectra (HRMS) data were obtained at either the Michigan State University Mass Spectrometry Service Center or at the Mass Spectrometry Laboratory of the University of South Carolina, Department of Chemistry & Biochemistry. GC/MS were performed with a fused silica column (30 m by 0.25 mm i.d.).

General Procedures:

General Procedure I: Preparation of Bicyclic Vinyl and Iso-propenyl carbinols.

A vinyl or isopropenyl magnesium bromide/THF (1.0 M and 0.5 M respectively, 3.00 eq) solution was chilled to 0 °C prior to the dropwise addition of 27, or 28, (1.00 eq), in THF (~2.0 M). After complete addition the reaction was stirred at 0 °C for 0.5 hrs and then warmed to reflux (80 °C). Reflux was maintained for 3 hrs. The reaction was then cooled to 0 °C and quenched with an aqueous solution of NH₄Cl_(sat). After partitioning with Et₂O and separation, the ethereal layer was washed two times with an aqueous solution of NH₄Cl_(sat) and once with H₂O. The combined aqueous layers were extracted two times with Et₂O. The combined ethereal layers were dried over MgSO₄, filtered, and concentrated. The crude residue was purified *via* flash alumina chromatography with hexanes/EtOAc as the eluent (30 g basic alumina per 1 g compound; Activity III).

General Procedure II: Preparation of Bicyclic DHF and DHP Carbinols.

A solution of (5.00 eq) dihydrofuran or dihydropyran in 15 mL THF (1.8 M) was chilled to -78 °C prior to the dropwise addition of (5.05 eq) a *t*-BuLi/pentane (1.7 M) solution. After 15 min the reaction temperature was raised to 0 °C for 45 min Subsequent cooling to -78 °C was followed by the dropwise addition of 27, or 28, (1.00 eq) in THF (1.1 M). After 15 min the reaction temperature was raised to 0 °C and stirred for 5 hrs The reaction was quenched with the addition of an aqueous solution of NH₄Cl_(sat.) and partitioned with Et₂O. After separation, the ethereal layer was washed two

times with an aqueous solution of NH₄Cl_(sat.). The combined aqueous layers were extracted two times with Et₂O. The combined ethereal layers were washed once with brine and then dried over MgSO₄, filtered, and concentrated. The residue was purified *via* flash alumina chromatography with hexanes/EtOAc as the eluent (30 g basic alumina per 1 g cmpd; Activity III).

General Procedure III: Preparation of Monocyclic Vinyl Carbinols.

A vinyl magnesium bromide/THF (1.0 M, 3.00 eq) solution was chilled to 0 °C prior to the dropwise addition of ketone (1.00 eq) in THF (~2.0 M). After complete addition the reaction was stirred at 0 °C for 0.5 hrs and then warmed to reflux (80 °C). Reflux was maintained until the reaction was judged complete by TLC (1-3 hrs). The reaction was then cooled to 0 °C and quenched with an aqueous solution of NH₄Cl_(sat). After partitioning with Et₂O and separation, the ethereal layer was washed two times with an aqueous solution of NH₄Cl_(sat) and once with H₂O. The combined aqueous layers were extracted two times with Et₂O. The combined ethereal layers were dried over MgSO₄, filtered, and concentrated. If necessary the crude residue was purified *via* flash alumina chromatography with hexanes/EtOAc as the eluent (30 g alumina per 1 g compound; basic Activity III).

General Procedure IV: Preparation of Bicyclic 2°-Carbinols.

A solution of 27, or 28, (1.00 eq) in 30 mL 95% EtOH (0.37 M) was cooled to 0 $^{\circ}$ C, afterwhich NaBH₄ or LiAlD₄ (4.00 eq), was added in one portion. The reaction was kept at 0 $^{\circ}$ C for 30 min, then warmed to room temperature and stirred for 16 hrs. The reaction was then quenched with an aqueous solution of NH₄Cl_(sat) and further partitioned with Et₂O. After separation the ethereal phase was washed two consecutive times with

an aqueous solution of NH₄Cl_(sat). The combined aqueous layers were extracted two consecutive times with Et₂O. The combined ethereal layers were dried over MgSO₄, filtered, and concentrated to afford a ~1:1 mixture carbinols.

General procedure V: Rearrangements Induced by NaOCl and AcOH.

A solution of bicyclocarbinol (1.00 eq) in CCl₄ (0.6 M) was chilled to 0 °C. After 10 min at 0 °C, AcOH (1.95 eq) was added rapidly to the CCl₄ solution. This solution was stirred at 0 °C for an additional 5 min and then added rapidly to a 0 °C solution of NaOCl (0.75 M 1.19 eq) in H₂O (same volume as CCl₄). The biphasic reaction was vigorously stirred for 6 hrs at 0 °C. The reaction was then poured into a cold solution of 3% K₂CO₃ in H₂O and partitioned with the addition of room temperature CH₂Cl₂. After separation the organic layer was washed three times with a cold solution of 3% K₂CO₃ in H₂O. The combined aqueous washes were extracted three times with ambient CH₂Cl₂. The combined CH₂Cl₂ layers were then dried over MgSO₄, filtered, and concentrated. The residual was purified *via* flash silica chromatography with hexanes/EtOAc (chlorinative ring expansion) or 1% Et₃N/hexanes (ring expansion/*exo*-olefin insertion) as the eluent (10 g SiO₂ per 1 g cmpd).

General Procedure VI: Preparation of oxy-Cope Products.

A 35% wt/wt KH/oil suspension (1.37 eq) was washed three consecutive times with 1 mL hexanes prior to the dropwise addition of a solution containing a 1:1 mixture of 1:2, or 29:30, (1.00 eq) in 20 mL THF. After complete addition the reaction was heated to reflux (80 °C) and maintained overnight. Subsequent cooling to 0 °C and quenching with 25 mL NH₄Cl resulted in a biphasic solution. After partitioning with Et₂O and separation, the ethereal layer was washed two times with an aqueous solution of

NH₄Cl_(sat) and once with H₂O. The combined aqueous layers were extracted two times with Et₂O. The combined ethereal layers were dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified *via* flash alumina chromatography as the eluent (30 g basic alumina; Activity II; 30%Et₂O/hexanes).

General Procedure VII: Preparation of Chlorosulfides (sulfenate attempts).

The following experiments were carried out in a darkened hood and an aluminum wrapped round bottom flask. To a chilled (-78 °C) solution of 1, or 2, or 29 (1.00 eq) in 5.0 mL CH₂Cl₂ (0.24 M) was added Et₃N (2.00 eq). The reaction was stirred for 15 min, afterwhich p-NO₂PhSCl (1.11 eq) in 0.40 mL CH₂Cl₂ (4.0 M), was added dropwise *via* syringe. The reaction was stirred at -78 °C for 4 hrs and then partitioned with 10 mL CH₂Cl₂ and 10 mL 3% aqueous HCl. After separation the CH₂Cl₂ layer was washed once with 10 mL 3% aqueous HCl and two times with 10 mL H₂O. The CH₂Cl₂ layer was then dried over Na₂SO₄, filtered, and concentrated. After concentration the yellow oil was purified *via* prep-HPLC (Rainin si-80-199-C5 column; 10:1 hexanes/EtOAc, 60 min).

General Procedure VIII: Preparation of Sulfones (sulfide oxidation).

Oxone® (2.09 eq) in 2 mL H₂O (0.21 M), was buffered to a pH = 4 by addition of Na₂HPO₄ and subsequently chilled to 0 °C. Addition of 33, or 35, (1.00 eq) in 1mL MeOH (0.20 M) followed, with an additional 1 mL MeOH added to facilitate stirring of the resultant slurry. The reaction was warmed to room temperature and agitated for 12 hrs The reaction was partitioned with 15 mL CH_2Cl_2 and separated. The aqueous layer was extracted three times with 15 mL CH_2Cl_2 . The combined CH_2Cl_2 layers were washed two times with 15 mL H_2O and one time with 15 mL brine. The CH_2Cl_2 layer

was then dried over Na₂SO₄, filtered, and concentrated to afford a brown oil. The oil was purified *via* prep-HPLC (Rainin si-80-199-C5 column; 100% hexanes, 45 min; 10% EtOAc/hexanes, 60 min; 16% EtOAc/hexanes, 60 min).

Specific Procedures and Spectral Data:

 $(5R^*)$ -5-[$(1R^*)$ -1-bromomethyl-1-methoxyethyl]-2-methylcyclohexa-2-enone (25) and $(5R^*)$ -5-[$(1S^*)$ -1-bromomethyl-1-methoxyethyl]-2-methylcyclohexa-2-enone (26).

A solution of 20.00 g (133.1 mmol, 1.00 equivalent) (*R*)-(-)-carvone in 200 mL of a 3:2 CH₂Cl₂/MeOH solvent system was charged with N₂ and chilled to 0 °C. Over a period of 4 hrs, 29.36 g (164.9 mmol, 1.24 eq) of *N*-bromosuccinimide was added portion wise. Upon complete NBS addition the reaction was allowed to come to room temperature and stir for 16 hrs The reaction was then partitioned with 100 mL CH₂Cl₂ and 100 mL 2% NaOH_{aq}. The phases were separated, and the organic CH₂Cl₂ phase was subject to two more 100 mL 2% NaOH_{aq} washes and one subsequent 75 mL brine wash. The CH₂Cl₂ phase was dried with Na₂SO₄, filtered, and concentrated to afford an orange viscous oil. The epimeric oil was purified *via* flash silica chromotography (300 g; 10:1 hexanes/EtOAc) to quantitative yield a 1:1 mixture of **25:26**.

25: $R_f = 0.24$ (10:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.75 (m, 1 H), 3.43 (AB_q, J = 11.1, 4.2 Hz, 2 H), 3.22 (s, 3 H), 2.34 (series of m, 4 H), 1.75 (p, J = 1.2 Hz, 3 H), 1.24 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 199.2 (C), 145.0 (CH), 135.0 (C), 75.8

(C), 49.5 (CH₂), 40.8 (CH₂), 38.9 (CH₃), 36.5 (CH₃), 26.0 (CH₂), 17.9 (CH₃), 15.5 (CH); LRMS (EI) m/z 260.1 (M⁺), 262.2 (M⁺²), 228.1 (M⁺-MeOH), 230.1 (M⁺²-MeOH).

26: $R_f = 0.24$ (10:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.70 (m, 1 H), 3.40 (AB_q, J = 10.9, 4.9 Hz, 2 H), 3.19 (s, 3 H), 2.48 (m, 2 H), 2.23 (m, 2 H), 1.72 (m, 3 H), 1.21 (s, 3 H); LRMS (EI) m/z 260.1 (M⁺), 262.1 (M⁺²).

25:26: IR (CH₂Cl₂) 3250 (m), 3190 (s), 2950 (s), 1720 (s), 1670 (m), 1410 (s), 1395 (s), 1280 (s), 1150 (s), 930 (s), 780 (s), 590 (s) cm⁻¹.

For original synthesis see: Srikrishna, A.; Sharma, V. R.; Danieldoss, J.; Hemamalini, P. J. Chem. Soc. Perkin Trans. I 1996, 1305-1311.

 $(1S^*, 4S^*, 8R^*)$ -1,8-dimethyl-8-methoxybicyclo[2.2.2]oct-5-en-2-one (27) and (1S*, 4S*, 8S*)-1,8-dimethyl-8-methoxybicyclo[2.2.2]oct-5-en-2-one (28).

A solution containing 28.98 g (133.1 mmol) bromocarvone 25:26, in 300 mL ¹BuOH and 350 mL THF was chilled to 0 °C, and 17.50 g (155.9 mmol, 1.17 eq.) of ¹BuOK was added in portons. Upon complete addition of the base, the reaction was stirred at 0 °C for 10 min and then warmed to room temperature and stirred for 18 hrs The reaction was then poured into 300 mL of acidic brine (150 mL 3% HCl_{aq} / 150 mL brine). The aqueous mixture was partitioned with 150 mL Et₂O and separated. The ethereal solution was washed two additional times with 300 mL acidic brine. The ethereal layer was dried with Na₂SO₄, filtered and concentrated. The resultant brown oil was purified *via* flash silica chromotography (180 g; 4:1 hexanes/EtOAc) to yield 9.67 g

(40%) of **27**, 6.67 g (28%) of **28** and 4.79 g (20%) of **27:28**, as a 1:5 mixture of diastereomers, as a clear oils.

27: $R_{f=}0.53$ (4:1 hexanes/EtOAc); $[\alpha]_{D}^{20} = -383.8$ (c=1.49, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) $\delta=0.41$ (t, J=7.5 Hz, 1 H), 5.81 (d, J=8.1 Hz, 1 H), 3.15 (s, 3 H), 2.88 (m. 1 H), 2.50 (dd, J=18.0, 3.3 Hz, 1 H), 1.84 (dt, J=18.3, 3.3 Hz, 1 H), 1.73 (dd, J=13.5, 3.3 Hz, 1 H), 1.42 (dd, J=13.8, 3.3 Hz, 1 H), 1.23 (s, 3 H), 1.12 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) $\delta=0.20$ (C), 135.7 (CH), 134.4 (CH), 78.8 (C), 50.2 (C), 49.6 (CH₃), 45.9 (CH₂), 41.5 (CH), 34.6 (CH₂), 24.8 (CH₃), 17.1 (CH₃); IR (neat) 3090 (w), 2970 (m), 2930 (m), 2828 (w), 1724 (s), 1454 (w), 1371 (w), 1082 (m), 754 (w) cm⁻¹; LRMS (EI) m/z=180.6 (M⁺).

28: $R_f = 0.33$ (4:1 hexanes/EtOAc); $[\alpha]_D^{20} = -377.9$ (c 1.72, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.42 (t, J = 8.1 Hz, 1 H), 5.88 (d, J = 8.1 Hz, 1 H), 3.13 (s, 3 H), 2.97 (m, 1 H), 2.05 (m, 2 H), 1.61 (AB_q, J = 15.0 Hz, 2 H), 1.32 (s, 3 H), 1.14 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 212.8 (C), 135.7 (CH), 134.4 (CH), 78.8 (C), 50.2 (C), 49.6 (CH₃), 45.9 (CH₂), 41.5 (CH), 34.6 (CH₂), 24.8 (CH₃), 17.2 (CH₃); IR (neat) 3090 (w), 2970 (m), 2933 (m), 2826 (w), 1724 (s), 1452 (w), 1375 (w), 1132 (m), 1080 (m), 1012 (w), 920 (w), 848 (w), 748 (m) cm⁻¹; LRMS (EI) m/z 180.0 (M⁺).

For original synthesis see: Srikrishna, A., Sharma, V. R., Danieldoss, J., Hemamalini, P. J. Chem. Soc. Perkin Trans. I 1996, 1305-1311.

 $(1S^*, 2S^*, 4S^*, 8R^*)$ -1,8-dimethyl-2-ethenyl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (6) and $(1S^*, 2R^*, 4S^*, 8R^*)$ -1,8-dimethyl-2-ethenyl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (7).

Following general procedure I, the reaction of 1.2 g (6.7 mmol) of starting ketone 27, afforded 0.98 g (70%) of 6:7 as a 4:1 diastereomeric mixture after purification *via* flash alumina chromatography (60 g; 100:1 hexanes/EtOAc).

6: $R_{f=} 0.42 ext{ (5:1 hexanes/EtOAc)}; [\alpha]_{D}^{20} = -40.0 ext{ (c 1.19, CHCl}_{3}); ^{1}H-NMR ext{ (300 MHz, CDCl}_{3}) & 6.17 ext{ (t, $J=6.9 Hz, 1 H), 5.86 (d, $J=8.1 Hz, 1 H), 5.53 (dd, $J=16.8, 10.5 Hz, 1 H), 5.17 (dd, $J=17.1, 2.1 Hz, 1 H), 4.92 (dd, $J=10.8, 2.1 Hz, 1 H), 3.17 (s, 3 H), 2.85 (s, 1 H), 2.61 (m, 1 H), 1.92 (d, $J=14.1 Hz, 1 H), 1.82 (dd, $J=13.8, 3.0 Hz, 1 H), 1.47 (dd, $J=14.1, 2.4 Hz, 1 H), 1.09 (s, 3 H), 0.98 (d, $J=13.5 Hz, 1 H) 0.94 (s, 3 H); <math>^{13}$ C-NMR (75 MHz, CDCl}₃) & 144.2 (CH), 139.7 (CH), 133.5 (CH), 110.8 (CH2), 78.4 (C), 75.5 (C), 49.6 (CH3), 45.7 (CH2), 43.2 (C), 40.7 (CH2), 40.1 (CH), 24.5 (CH3), 18.8 (CH3); IR (neat) 3439 (br s), 3092 (w), 3042 (w), 2934 (s), 2831 (m), 1650 (w), 1454 (m), 1367 (m), 1116 (s), 1062 (s), 1003 (m), 918 (m), 844 (w), 740 (w-m) cm⁻¹; HRMS (EI) m/z 208.1465 [(M^+), calcd. for C13H20O2: 208.1463].

7: $R_{f} = 0.33$ (5:1 hexanes/EtOAc); $[\alpha]_{D}^{20} = -97.3$ (c 1.25, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.37 (t, J = 7.8 Hz, 1 H), 6.07 (dd, J = 17.7, 11.1 Hz, 1 H), 5.89 (d, J = 7.8 Hz, 1 H), 5.31 (dd, J = 17.7, 2.1 Hz, 1 H), 5.11 (dd, J = 10.5, 1.5 Hz, 1 H), 3.14 (s, 3 H), 2.57 (m, 1 H), 2.34 (dd, J = 13.8, 2.1 Hz, 1 H), 1.60 (d, J = 13.8 Hz, 1 H), 1.51 (s, 1 H), 1.19 (dd, J = 13.5, 3.3 Hz, 1 H), 1.09 (s, 3 H), 1.01 (d, J = 14.4 Hz, 1 H), 1.00 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 140.7 (CH), 137.9 (CH), 134.5 (CH), 113.2 (CH₂), 79.6 (C),

78.9 (C), 49.3 (CH₃), 44.3(CH₂), 43.4 (C), 40.3 (CH), 39.4 (CH₂), 24.7 (CH₃), 18.1 (CH₃); HRMS (EI) m/z 208.1461 [(M⁺), calcd. for C₁₃H₂₀O₂: 208.1463].

 $(1S^*, 2S^*, 4S^*, 8S^*)$ -1,8-dimethyl-2-ethenyl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (29) and $(1S^*, 2R^*, 4S^*, 8S^*)$ -1,8-dimethyl-2-ethenyl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (30).

Following general procedure I, the reaction of 0.8 g (4.6 mmol) of starting ketone **28**, afforded 0.61 g (63%) of **29:30** as a 1:1 diastereomeric mixture after purification *via* flash alumina chromatography (60 g; 100:1 hexanes/EtOAc).

29: $R_f = 0.25$ (5:1 hexanes/EtOAc); $[\alpha]_D^{20} = -69.3$ (c 1.45, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.25 (AB_q, J = 8.1, 1.8 Hz, 1 H), 5.93 (d, J = 8.4 Hz, 1 H), 5.77 (dd, J = 17.3, 10.8 Hz, 1 H), 5.12 (dd, J = 17.1, 1.2 Hz, 1 H), 4.97 (dd, J = 10.8, 1.2 Hz, 1 H), 3.13 (s, 3 H), 2.66 (m, 1 H), 2.00 (d, J = 13.5 Hz, 1 H), 1.69 (dd, J = 14.4, 2.4 Hz, 1 H), 1.60 (dd, J = 14.4, 3.3 Hz, 1 H), 1.58 (s, 1 H), 1.43 (s, 3 H), 1.17 (d, J = 13.5 Hz, 1 H), 0.95 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 146.2 (CH), 136.5 (CH), 133.4 (CH), 110.3 (CH₂), 79.1 (C), 77.7 (C), 48.9 (CH₃), 44.1 (CH₂), 43.0 (C), 40.2 (CH), 39.6 (CH₂), 21.9 (CH₃), 18.5 (CH₂); IR (neat) 3470 (m br), 3070 (w) 3020 (w), 2963 (s), 2936 (s), 2874 (s), 1726 (s), 1462 (s), 1371 (s), 1286 (s), 1147 (s), 1078 (s), 1001 (s), 918 (s), 733 (s) cm⁻¹; HRMS (EI) m/z 208.1461 [(M⁺), calcd. for C₁₃H₂₀O₂: 208.1463].

30: $R_f = 0.11$ (5:1 hexanes/EtOAc); $[\alpha]_D^{20} = -125.4$ (c 1.24, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.41 (AB_q, J = 6.6, 1.5 Hz, 1 H), 5.98 (d, J = 8.4 Hz, 1 H), 5.87 (dd, J = 17.1,

10.8 Hz, 1 H), 5.32 (dd, J = 17.4, 1.8 Hz, 1 H), 5.14 (dd, J = 10.5, 1.5 Hz, 1 H), 3.09 (s, 3 H), 2.67 (m, 1 H), 1.94 (dd, J = 15.3, 1.8 Hz, 1 H), 1.67 (s, 1 H), 1.43 (d, J = 13.8 Hz, 1 H), 1.42 (d, J = 15.3 Hz, 1 H), 1.29 (s, 3 H), 1.28 (d, J = 13.2 Hz, 1 H), 1.03 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 139.7 (CH), 136.3 (CH), 134.3 (CH), 114.2 (CH₂), 79.1 (C), 77.1 (C), 49.1 (CH₃), 44.9 (CH₂), 43.4 (C), 40.7 (CH₂), 39.9 (CH), 22.0 (CH₃), 18.4 (CH₃); IR (neat) 3470 (m br), 3070 (w) 3020 (w), 2963 (s), 2936 (s), 2874 (s), 1726 (s), 1462 (s), 1371 (s), 1286 (s), 1147 (s), 1078 (s), 1001 (s), 918 (s), 733 (s) cm⁻¹; HRMS (EI) m/z 208.1463 [(M⁺), calcd. for C₁₃H₂₀O₂: 208.1463].

31

$(8R^*, 9R^*, 10S^*)$ -6,8-dimethyl-8-methoxybicyclo[4.4.0]dec-5-en-2-one (31).

Following general procedure VI, the reaction of 0.49 g (2.4 mmol) of starting carbinols 1:2, as a 4:1 mixture, afforded 0.23 g (47%) of 31 after purification *via* flash alumina chromatography (30 g; neutral, Activity I, 30% Et₂O/hexanes).

31: $R_f = 0.33$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.27 (s, 1 H), 2.72 (br s, 1 H), 2.40-1.86 (series of m, 12 H), 1.63 (s, 3 H), 1.09 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 211.9 (C), 132.9 (C), 122.8 (CH), 75.6 (C), 42.6 (CH₂), 48.7 (CH), 40.5 (CH₃), 37.9 (CH₂), 37.5 (CH₃), 30.6 (CH), 30.4 (CH₃), 23.1 (CH₂), 21.3 (CH₂); IR (neat) 3015 (w), 1713 (s), 1580 (w), 1068 (s), 841 (m) cm⁻¹; HRMS (EI) m/z 208.1471 [(M⁺), calcd. for C₁₃H₂₀O₂: 208.1463].

32

$(8S^*, 9R^*, 10S^*)$ -6,8-dimethyl-8-methoxybicyclo[4.4.0]dec-5-en-2-one (32).

Following general procedure VI, the reaction of 0.47 g (2.3 mmol) of starting carbinols **29:30**, as a 1:1 mixture, afforded 0.24 g (50%) of **32** after purification *via* flash alumina chromatography (30 g; neutral, Activity I, 30% Et₂O/hexanes).

32: $R_f = 0.26$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.09 (s, 1 H), 3.13 (s, 3 H), 2.44 (m, 2 H), 2.40-1.60 (series of m, 8 H), 1.67 (s, 3 H), 1.17 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 212.8 (C), 134.2 (C), 122.1 (CH), 75.4 (C), 48.1 (CH), 42.4 (CH₂), 39.2 (CH₃), 38.8 (CH₂), 37.4 (CH₃), 33.3 (CH₃), 30.9 (CH), 23.3 (CH₂), 22.0 (CH₂); IR (neat) 3010 (w), 1714 (s), 1680 (m), 1060 (s), 910 (m); HRMS (EI) m/z 208.1455 [(M⁺), calcd. for C₁₃H₂₀O₂: 208.1463].

$(1S^*, 2S^*, 4S^*, 8R^*)$ -2-[1-chloro-2-(4-nitro-phenylsulfanyl)-ethyl]-8-methoxy-1,8-dimethyl-bicyclo[2.2.2]oct-5-en-2-ol (33).

Following general procedure VII, the reaction of 0.30 g (1.4 mmol) of starting carbinol 1, afforded 0.22 g (48%) of 33 as one isomer after purification *via* prep-HPLC (Rainin si-80-199-C5 column; 10:1 hexanes/EtOAc, 60 min).

33: ${}^{1}\text{H-NMR}$ (300 MHz, CDCl₃) δ 8.14 (d, J = 9.3 Hz, 2 H), 7.49 (d, J = 9.0 Hz, 2 H), 6.09 (t, J = 7.5 Hz, 1 H), 6.02 (d, J = 7.8 Hz, 1 H), 4.24 (dd, J = 14.8, 7.5 Hz, 1 H), 4.03 (br s, 1 H), 3.70 (dd, J = 14.8, 7.2 Hz, 1 H), 3.68 (s, 1 H), 3.23 (s, 3 H), 2.74 (m, 1 H), 1.99 (d, J = 13.8 Hz, 1 H), 1.81 (dd, J = 14.1, 3.6 Hz, 1 H), 1.52 (dd, J = 13.8, 3.1 Hz, 1 H), 1.14 (s, 3 H), 1.06 (s, 3 H), 0.97 (d, J = 13.5 Hz, 1 H); ${}^{13}\text{C-NMR}$ (75 MHz, CDCl₃) δ

146.1 (C), 145.5 (C), 141.5 (CH), 130.4 (CH), 127.9 (CH), 123.9 (CH), 78.4 (C), 77.3 (C), 55.3 (CH), 49.8 (CH₃), 47.9 (CH₂), 47.1 (CH₂), 44.2 (C), 39.9 (CH), 37.5 (CH₂), 24.5 (CH₃), 17.7 (CH₃); IR (NaCl, neat) 3431 (br s), 3047 (w), 2963 (s), 1577, (w), 670 (s); HRMS (FAB) *m/z* 397.1955 [(M⁺), calcd. for C₁₉H₂₄ClNO₄S: 397.1115].

 $(1S^*, 2S^*, 4S^*, 8R^*)$ -2-[1-chloro-2-(4-nitro-benzenesulfonyl)-ethyl]-8-methoxy-1,8-dimethyl-bicyclo[2.2.2]oct-5-en-2-ol (34).

Following general procedure VIII, the reaction of 40.0 mg (0.10 mmol) of starting sulfide **33**, afforded 11.8 mg (27%) of **34** after purification *via* prep-HPLC (Rainin si-80-199-C5 column; 100% hexanes, 45 min; 10% EtOAc/hexanes, 60 min; 16% EtOAc/hexanes, 60 min).

34: 1 H-NMR (300 MHz, CDCl₃) δ 8.39 (d, J = 9.0 Hz, 2 H), 8.08 (d, J = 9.3 Hz, 2 H), 6.29 (t, J = 7.8 Hz, 1 H), 6.18 (d, J = 8.4 Hz, 1 H), 4.22 (dd, J = 13.2, 1.5 Hz, 1 H), 4.05 (s, 1 H), 3.66 (dd, J = 12.9, 5.7 Hz, 1 H), 3.52 (dd, J = 4.5, 1.5 Hz, 1 H), 3.22 (s, 3 H), 2.75 (m, 1 H), 2.37 (dd, J = 14.4, 1.8 Hz, 1 H), 2.07 (d, J = 14.4 Hz, 1 H), 1.81 (dd, J = 13.8, 3.3 Hz, 1 H), 1.40 (s, 3 H), 1.16 (s, 3 H), 1.08 (d, J = 14.1 Hz, 1 H); LRMS (EI) m/z 429.1 (M⁺).

(1S*, 2R*, 4S*, 8R*)-2-[1-chloro-2-(4-nitro-phenylsulfanyl)-ethyl]-8-methoxy-1,8-dimethyl-bicyclo[2.2.2]oct-5-en-2-ol (35).

Following general procedure VII, the reaction of 0.30 g (1.4 mmol) of starting carbinol 2, afforded 0.11 g (32%) of 35 as one isomer after purification *via* prep-HPLC (Rainin si-80-199-C5 column; 10:1 hexanes/EtOAc, 60 min).

35: ¹H-NMR (300 MHz, CDCl₃) δ 8.09 (d, J = 9.0 Hz, 2 H), 7.54 (d, J = 9.0 Hz, 2 H), 6.37 (t, J = 6.6 Hz, 1 H), 5.81 (d, J = 7.5 Hz, 1 H), 4.32 (dd, J = 11.7 Hz, 3.0 Hz, 1 H), 3.93 (dd, J = 8.4, 3.0 Hz, 1 H), 3.75 (dd, J = 11.7, 8.7 Hz, 1 H), 3.23 (s, 1 H), 3.03 (s, 3 H), 2.55 (m, 1 H), 2.00 (d, J = 14.4 Hz, 1 H), 1.36 (dd, J = 13.8, 3.9 Hz, 1 H), 1.25 (s, 3 H), 1.22 (d, J = 14.7 Hz, 1 H), 1.13 (d, J = 14.7 Hz, 1 H), 1.09 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 147.6 (C), 145.4 (C), 139.3 (CH), 135.2 (CH), 128.0 (CH), 123.9 (CH), 79.5 (C), 78.8 (C), 59.8 (CH), 49.4 (CH₃), 47.9 (CH₂), 44.9 (C), 44.4 (CH₂), 40.8 (CH), 39.9 (CH), 24.6 (CH₃), 20.5 (CH₃); IR (NaCl, neat) 3440 (br s), 3035 (w), 2980 (s), 1575, (w), 665 (s); HRMS (FAB) m/z 397.2003 [(M⁺), calcd. for C₁₉H₂₄ClNO₄S: 397.1115].

 $(1S^*, 2R^*, 4S^*, 8R^*)$ -2-[1-chloro-2-(4-nitro-benzenesulfonyl)-ethyl]-8-methoxy-1,8-dimethyl-bicyclo[2.2.2]oct-5-en-2-ol (36).

Following general procedure VIII, the reaction of 80.5 mg (0.20 mmol) of starting sulfide **35**, afforded 19.5 mg (23%) of **36** after purification *via* prep-HPLC (Rainin si-80-199-C5 column; 100% hexanes, 45 min; 10% EtOAc/hexanes, 60 min; 16% EtOAc/hexanes, 60 min).

36: ¹H-NMR (300 MHz, CDCl₃) δ 8.40 (d, J = 9.0 Hz, 2 H), 8.16 (d, J = 9.0 Hz, 2 H), 6.34 (t, J = 6.9 Hz, 1 H), 5.79 (d, J = 7.8 Hz, 1 H), 4.38 (dd, J = 14.1, 1.2 Hz, 1 H), 4.06 (dd, J = 6.3, 1.2 Hz, 1 H), 3.84 (dd, J = 14.4, 6.3 Hz, 1 H), 3.17 (s, 1 H), 3.07 (dd, J = 14.1, 2.4 Hz, 1 H), 2.95 (s, 3 H), 2.59 (m, 1 H), 1.58 (d, J = 14.7 Hz, 1 H), 1.42 (dd, J = 14.1, 3.3 Hz, 1 H), 1.35 (s, 3 H), 1.15 (d, J = 14.1 Hz, 1 H), 1.09 (s, 3 H); LRMS (EI) m/z 429.1 (M⁺).

 $(1S^*, 2S^*, 4S^*, 8S^*)$ -2-(1-chloro-2-phenylsulfanyl-ethyl)-8-methoxy-1,8-dimethylbicyclo[2.2.2]oct-5-en-2-ol (37).

Following general procedure VII, the reaction of 0.10 g (0.51 mmol) of starting carbinol **29**, afforded 53.7 mg (33%) of **37** after purification *via* prep-HPLC (Rainin si-80-199-C5 column; 10:1 hexanes/EtOAc, 60 min).

37: 1 H-NMR (300 MHz, CDCl₃) δ 7.47 (m, 2 H), 7.28 (m, 3 H), 6.22 (AB_q, J = 7.8, 1.2 Hz, 1 H), 5.96 (dd, J = 7.8, 1.2 Hz, 1 H), 3.95 (dd, J = 11.7, 5.7 Hz, 1 H), 3.53 (dd, J = 7.2 Hz, 1 H), 3.39 (dd, J = 5.4 Hz, 1 H), 3.12 (s, 3 H), 2.70 (m, 1 H), 2.14 (d, J = ,1H), 1.82 (dd, J = 14.7, 2.1 Hz, 1 H), 1.66 (dd, J = 5.3, 4.5 Hz, 1 H), 1.62 (s, 1 H), 1.45 (s, 3 H), 1.22 (s, 3 H), 1.05 (d, J = 13.2 Hz, 1 H); 13 C-NMR (75 MHz, CDCl₃) δ 136.9 (CH), 135.5 (C), 132.9 (CH), 131.6 (CH), 131.6 (CH), 129.1 (CH), 127.5 (CH), 78.7 (C), 77.6 (C), 48.9 (CH₃), 46.1 (CH), 46.0 (CH₂), 44.3 (CH₂), 40.3 (CH), 37.7 (C), 21.5 (CH₃), 19.2 (CH₃); IR (NaCl, neat) 3425 (br s), 3010 (w), 2988 (s), 1590, (w), 675 (s); HRMS (FAB) m/z 352.1483 [(M⁺), calcd. for C₁₉H₂₅ClO₂S: 352.1264].

38

Preparation of $(1S^*, 4S^*, 5S^*)$ -7-(2-benzenesulfinyl-ethylidene)-5-methoxy-1,5-dimethyl-bicyclo[2.2.2]oct-2-ene (38).

The following experiment was carried out in a darkened hood, and an aluminum wrapped round bottom flask. To a chilled (-78 °C) solution of 0.10 g **29** (0.48 mmol, 1.00 eq) in 10.0 mL THF was added 0.28 mL of a 1.7 M *n*-BuLi/hexanes solution (2.00 eq). The reaction was stirred for 30 min, afterwhich 0.07 g PhSCl (0.50 mmol, 1.11 eq) in 5 mL THF was added dropwise *via* syringe. The reaction was stirred at -78 °C for 2 hrs, then warmed to 0 °C and quenched with aqueous NH₄Cl_(sat). The aqueous was extracted two times with 20 mL Et₂O. The combined ethereal layers were then dried over MgSO₄, filtered, and concentrated. After concentration the yellow oil was purified *via* prep-HPLC (Rainin si-80-199-C5 column; 10:1 hexanes/EtOAc, 60 min) to afford 39.5 mg (26%) of **38**.

38: ¹H-NMR (300 MHz, CDCl₃) δ 7.54 (m, 2 H), 7.48 (m, 3 H), 6.21 (m, 1 H), 5.87 (d, J = 8.1 Hz, 1 H), 5.06 (tt, J = 7.8, 2.4 Hz, 0.5H), 4.93 (tt, J = 7.8, 2.4 Hz, 0.75H), 3.48 (pd, J = 8.1 Hz, 1 H), 3.09 (s, 3 H), 2.71 (m, 1 H), 2.16 (dt, J = 16.8 Hz, 1 H), 1.82 (dd, J = 10.9, 3.3 Hz, 1 H), 1.79 (dt, J = 16.2 Hz, 1 H), 1.47 (d, J = 12.9 Hz, 1 H), 1.21 (d, J = 13.2 Hz, 1 H), 1.15 (s, 3 H), 1.12 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 151.9 (C), 135.4 (CH), 135.3 (C), 132.9 (CH), 131.0 (CH), 128.9 (CH), 124.4 (CH), 104.5 (CH), 78.9 (C), 56.5 (CH₂), 50.0 (CH₃), 49.1 (CH₂), 41.7 (C), 39.8 (CH), 29.6 (CH₂), 22.6 (CH₃), 21.2

(CH₃); IR (NaCl, neat) 3047 (w), 2963 (s), 1577, (w), 1180 (s); HRMS (FAB) m/z 316.11587 [(M⁺), calcd. for C₁₉H₂₄O₂S: 316.1497].

(1 S^* , 5 S^* , 9 R^*)-1,9-dimethyl-9-methoxy-2-methylenebicyclo[3.2.2]non-6-en-3-one (8).

Following general procedure V, the reaction of 0.11 g (0.52 mmol) of starting carbinols **1:2**, as a 4:1 mixture, afforded 0.10 g (93%) of **8** after purification *via* flash silica chromatography (1.2 g; 1% Et₃N/hexanes).

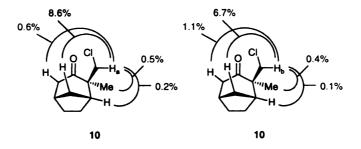
8: $R_f = 0.40$ (5:1 hexanes/EtOAc); $[\alpha]_D^{20} = -53.5$ (c 1.05, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.21 (AB_q, J = 8.1, 1.2 Hz, 1 H), 5.82 (d, J = 0.9 Hz, 1 H), 5.77 (d, J = 8.7 Hz, 1 H), 5.15 (d, J = 0.6, Hz, 1 H), 3.16 (s, 3 H), 2.99 (dd, J = 18.0, 3.6 Hz, 1 H), 2.59 (m, 1 H), 2.27 (dd, J = 18.3, 4.2 Hz, 1 H), 1.99 (d, J = 14.4 Hz, 1 H), 1.57 (d, J = 14.1 Hz, 1 H), 1.25 (s, 3 H), 1.23 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (75 MHz, CDCl₃) δ 202.2 (C), 154.4 (C), 137.4 (CH), 132.6 (CH), 116.9 (CH₂), 78.1 (C), 49.6 (CH₂), 49.3 (CH₃), 42.2 (CH₂), 40.0 (CH), 38.2 (C), 26.8 (CH₃), 26.4 (CH₃); IR (neat) 3040 (m), 2970 (s), 2965 (s), 2860 (m), 1710 (m), 1684 (s), 1599 (s), 1450 (s), 1371 (s), 1136 (s), 1064 (s), 960 (m), 765 (m) cm⁻¹; HRMS (EI) m/z 206.1298 [(M⁺); calcd. for C₁₃H₁₈O₂: 206.1307].

 $(1S^*, 5S^*, 9S^*)$ -1,9-dimethyl-9-methoxy-2-methylenebicyclo[3.2.2]non-6-en-3-one (50).

Following general procedure V, the reaction of 0.12 g (0.57 mmol) of starting carbinols **29:30**, as a 1:1 mixture, afforded 0.10 g (91%) of **50** after purification *via* flash silica chromatography (1.2 g; 1% Et₃N/hexanes).

50: $R_f = 0.26$ (5:1 hexanes/EtOAc); $[\alpha]_D^{20} = -84.6^\circ$ (c 1.57, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.22 (AB_q, J = 6.9, 0.24 Hz, 1 H), 5.84 (d, J = 8.7 Hz, 1 H), 5.78 (d, J = 0.9 Hz, 1 H), 5.15 (d, J = 0.6 Hz, 1 H), 3.11 (s, 3 H), 2.70 (d, J = 16.2, 3.6 Hz, 1 H), 2.67 (m, 1 H), 2.41 (d, J = 14.7 Hz, 1 H) 1.87 (d, J = 15.3 Hz, 1 H), 1.74 (d, J = 14.7 Hz, 1 H), 1.28 (s, 3 H), 1.27 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 202.4 (C), 154.5 (C), 136.3 (CH), 131.9 (CH), 117.0 (CH₂), 78.7 (C), 49.7 (CH₂), 49.3 (CH₃), 43.6 (CH₂), 38.3 (CH), 37.1 (C), 26.3 (CH₃), 23.8 (CH₃); IR (neat) 3070 (w), 2970 (s), 2937 (s), 2830 (m), 1695 (w), 1682 (s), 1510 (m), 1435 (m), 1375 (s), 1128 (s), 1080 (s), 940 (m), 758 (m-s) cm⁻¹; HRMS (EI) m/z 206.1304 [(M⁺); calcd. for C₁₃H₁₈O₂: 206.1307].

$(+/-)-(1R^*, 2R^*, 4S^*)-2$ -isopropenyl-bicyclo[2.2.1]heptan-2-ol (9).


Following general procedure I, the reaction of 5.1 g (46.3 mmol) of norcamphor, afforded 4.5 g (64%) of 9, as a 50:1 mixture of diastereomers, after purification *via* flash alumina chromatography (120 g; basic, Activity III; 100:1 hexanes/EtOAc).

9: $R_{f=}0.40$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 4.85 (s, 1 H), 4.72 (d, J=3.9 Hz, 1 H), 2.35 (m, 1 H), 2.14 (m, 1 H), 1.98 (d, J=0.9, Hz, 1 H), 1.86 (m, 2 H), 1.76 (s, 3 H), 1.46 (d, J=9.9 Hz, 1 H), 1.37-1.18 (series of m, 4 H), 1.12 (dd, J=13.2, 3.3 Hz, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 149.8 (C), 108.8 (CH₂), 80.8 (C), 44.6 (CH), 43.7 (CH₂), 38.7 (CH₃), 36.8 (CH), 28.6 (CH₂), 21.9 (CH₂), 18.4 (CH₂); IR (neat) 3366 (br s), 2088 (w), 2968 (s), 2872 (s), 1643 (m), 1454 (s), 1373 (m), 1307 (s), 1163 (s), 1147 (s), 1026 (s), 993 (s), 897 (s), 868 (m), 734 (m) cm⁻¹; HRMS (EI) m/z 152.1198 [(M⁺) calcd. for C₁₀H₁₆O: 152.1201].

For previous synthesis see: Johnson, C. R.; Herr, R. W. J. Org. Chem. 1973, 38, 3153-3159.

Rearrangement of i-propenyl[2.2.1]heptanol via Johnson's conditions.

A solution of 0.58 g (3.8 mmol, 1.00 eq) 9 in 19 mL (0.2 M) CHCl₃ was heated to 55 °C, in a dark room, prior to the addition of 0.45 mL (4.0 mmol, 1.05 eq) t-BuOCl. The reaction was heated (55 °C) for 8 h in a dark room. The reaction was concentrated and the crude oil was purified via flash silica chromatography (18 g; 50:1 hexanes/EtOAc) to afford 0.24 g (34%) 10, 0.16 g (23%) 11, 0.21 g (29%) 12, 0.05 g (7%) 13, 0.01 g (2%) 54.

 $(+/-)-(1R^*, 2S^*, 5S^*)-2$ -chloromethyl-2-methyl-bicyclo[3.2.1]octan-3-one (10).

Following general procedure V, the reaction of 0.52 g (3.4 mmol) of starting carbinol **9**, afforded 0.23 g (36%) of **10** after purification *via* flash silica chromatography (20 g; 50:1 hexanes/EtOAc).

10: R_f = 0.73 (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 3.71 (d, J = 6.6 Hz, 1 H), 3.52 (d, J = 6.6 Hz, 1 H), 2.49 (m, 2 H), 2.36 (m, 1 H), 2.21 (dm, J = 15.0 Hz, 1 H), 2.13 (d, J = 12.5 Hz, 1 H), 1.72-1.63 (series of m, 3 H), 1.52 (m, 1 H), 1.39 (m, 1 H), 1.15 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (125 MHz, CDCl₃) δ 212.0 (C), 54.9 (C), 50.7 (CH₂), 47.7 (CH₂), 43.6 (CH), 36.0 (CH₂), 33.7 (CH₂), 28.5 (CH), 25.0 (CH₂), 18.7 (CH₃); IR (neat) 2957 (s), 2878 (s), 1709 (s), 1462 (s), 1377 (s), 1290 (s), 1084 (m), 1041 (m), 964 (w), 916 (w), 881 (m), 733 (s) cm⁻¹; HRMS (EI) m/z 186.0807 [(M⁺) calcd. for C₁₀H₁₅O³⁵Cl: 186.0811].

$(+/-)-(1R^*, 2R^*, 5S^*)-2$ -chloromethyl-2-methyl-bicyclo[3.2.1]octan-3-one (11).

Following general procedure V, the reaction of 0.52 g (3.4 mmol) of starting carbinol 9, afforded 0.18 g (28%) of 11 after purification *via* flash silica chromatography (20 g; 50:1 hexanes/EtOAc).

11: $R_f = 0.61$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 3.78 (d, J = 7.2 Hz, 1 H), 3.68 (d, J = 6.9 Hz, 1 H), 2.61 (dm, J = 9.6 Hz, 1 H), 2.51 (series of m, 2 H), 2.12 (series of m, 2 H), 1.77-1.52 (series of m, 4 H), 1.23 (m, 1 H), 1.26 (s, 3 H); ¹H-NMR (500 MHz, C_6D_6) δ 3.86 (d, J = 11.7 Hz, 1 H), 3.66 (d, J = 11.7 Hz, 1 H), 2.30 (t, J = 4.4

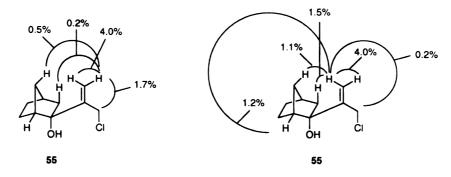
Hz, 1 H), 2.10 (dd, J = 12.6, 4.4 Hz, 1 H), 1.91 (t, J = 4.4 Hz, 1 H), 1.86 (d, J = 3.8 Hz, 1 H), 1.56 (d, J = 12.0 Hz, 1 H), 1.28 (m, 3 H), 1.04 (m, 1 H), 1.00 (m, 1 H), 0.96 (d, J = 0.9 Hz, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (125 MHz, CDCl₃) δ 214.3 (C), 53.0 (C), 50.1 (CH), 47.3 (CH₂), 41.7 (CH), 35.6 (CH), 33.6 (CH₂), 28.2 (CH₂), 24.8 (CH₂), 22.0 (CH₃); IR (neat) 2953 (s), 2878 (ms), 1703 (s), 1460(m), 1288 (m), 1066 (m), 981 (w), 887 (w), 713 (m) cm⁻¹; HRMS (EI) m/z 186.0808 [(M⁺) calcd. for C₁₀H₁₅O³⁵Cl: 186.0811].

$(+/-)-(1R^*, 3R^*, 5S^*)-3$ -chloromethyl-3-methyl-bicyclo[3.2.1]octan-2-one (12).

Following general procedure V, the reaction of 0.52 g (3.4 mmol) of starting carbinol 9, as a 4:1 mixture, afforded 0.12 g (19%) of 12 after purification *via* flash silica chromatography (20 g; 50:1 hexanes/EtOAc).

12: $R_f = 0.61$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 3.82 (d, J = 6.3 Hz, 1 H), 3.10 (d, J = 6.3 Hz, 1 H), 2.77 (t, J = 3.0 Hz, 1 H), 2.49 (m, 1 H), 2.32 (dd, J = 8.4, 2.7 Hz, 1 H), 1.94 (series of m, 4 H), 1.69 (series of m, 2 H), 1.58 (dt, J = 8.4, 1.5 Hz, 1 H), 1.20 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (125 MHz, CDCl₃) δ 214.8 (C), 53.1 (CH₂), 50.8 (CH), 47.7 (C), 40.8 (CH₂), 34.7 (CH), 34.3 (CH₂), 28.7 (CH₂), 28.3 (CH₃), 28.1 (CH₂); IR (neat) 2955 (s), 2876 (s), 1709 (s), 1448 (s), 1288 (s), 1068 (m), 960 (m), 918 (m), 736 (s) cm⁻¹; HRMS (EI) m/z 186.0801 [(M⁺) calcd. for $C_{10}H_{15}O^{35}Cl$: 186.0811].

$(+/-)-(1R^*, 3S^*, 5S^*)-3$ -chloromethyl-3-methyl-bicyclo[3.2.1]octan-2-one (13).


Following general procedure V, the reaction of 0.52 g (3.4 mmol) of starting carbinol 9, afforded 0.03 g (6%) of 19, based on ¹H-NMR. Compound 13 was never isolated in pure form and as a result spectral information is not available. It's isolation as a mixture with other regio and diastereomers allowed for its identification due to its inherent signature ¹H-NMR signals and 1-D NOE correlations. See Johnson, C. R.; Herr, R. W. *J. Org. Chem.* 1973, 38, 3153-3159.

$(+/-)-(1R^*, 5S^*)-2,2$ -bis-chloromethyl-bicyclo[3.2.1]octan-3-one (54).

Following general procedure V, the reaction of 0.52 g (3.4 mmol) of starting carbinol 9, as a 4:1 mixture, afforded 6.1 mg (~1%) of 54 after purification *via* flash silica chromatography (20 g; 50:1 hexanes/EtOAc).

54: $R_f = 0.59$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 4.18 (d, J = 7.5 Hz, 1 H), 4.00 (dd, J = 6.9, 0.9 Hz, 1 H), 3.85 (d, J = 6.9 Hz, 1 H), 3.64 (dd, J = 7.2, 0.9 Hz, 1 H), 2.59 (m, 3 H), 2.24 (dt, J = 8.7, 1.8 Hz, 1 H), 2.13 (d, J = 7.5 Hz, 1 H), 1.71 (m, 2 H), 1.58 (m, 2 H), 1.40 (m, 1 H); ¹³C-NMR (125 MHz, CDCl₃) δ 209.1 (C), 57.7 (C), 47.8 (CH₂), 45.0 (CH₂), 44.8 (CH₂), 40.9 (CH), 36.4 (CH), 33.6 (CH₂), 27.6 (CH₂), 25.2 (CH₂); IR (neat) 2959 (s), 2880 (m), 1714 (s), 1460 (m), 1439 (m), 1288 (m), 1190 (w),

1097 (w), 870 (w), 787 (s), 761 (s) cm⁻¹; HRMS (EI) m/z 220.0426 [(M⁺) calcd. for $C_{10}H_{14}O^{35}Cl_2$: 220.0422].

 $(+/-)-(1R^*, 2S^*, 4R^*)-2-(1-chloromethyl-vinyl)-bicyclo[2.2.1]heptan-2-ol (55).$

Following general procedure V, the reaction of 0.52 g (3.4 mmol) of starting carbinol 9, as a 4:1 mixture, afforded 0.06 g (10%) of 55 after purification *via* flash silica chromatography (20 g; 50:1 hexanes/EtOAc).

55: $R_f = 0.45$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 5.33 (s, 1 H), 5.26 (s, 1 H), 4.24 (d, J = 12.5 Hz, 1 H), 4.20 (d, J = 12.5 Hz, 1 H), 2.44 (m, 1 H), 2.38 (br s, 1 H), 2.23 (m, 1 H), 2.04 (dm, J = 5.1 Hz, 2 H), 1.60 (series of m, 2 H), 1.42 (dt, J = 7.5, 2.7 Hz, 1 H), 1.36 (m, 1 H), 1.30 (dp, J = 6.0, 1.2 Hz, 1 H), 1.22 (dd, J = 7.8, 2.1 Hz, 1 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (125 MHz, CDCl₃) δ 150.22 (C), 114.2 (CH₂), 81.0 (C), 45.7 (CH), 45.0 (CH₂), 44.8 (CH₂), 38.7 (CH₂), 37.0 (CH), 28.6 (CH₂), 21.9 (CH₂); IR (neat) 3428 (br m), 2959 (s), 2872 (m), 1690 (w), 1610 (w), 1454 (m), 1309 (m), 1163 (m), 1026 (m), 958 (m), 912 (m), 788 (s), 761 (s) cm⁻¹; HRMS (EI) m/z 186.0815 [(M⁺) calcd. for C₁₀H₁₅O³⁵Cl: 186.0811].

(1S*, 2R*, 4S*, 8R*)-1,8-dimethyl-2-isopropenyl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (58) and (1S*, 2S*, 4S*, 8R*)-1,8-dimethyl-2-isopropenyl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (59).

Following general procedure I, the reaction of 1.00 g (5.5 mmol) of starting ketone 27, afforded 0.91 g (81%) of 58:59, as a 4:1 diastereomeric mixture, after purification *via* flash alumina chromatography (25 g; basic Activity III, 50:1 hexanes/EtOAc).

58: $R_f = 0.42$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -50.1$ (c 0.63, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.11 (t, J = 6.6 Hz, 1 H), 5.94 (d, J = 7.2 Hz, 1 H), 5.11 (d, J = 2.4 Hz, 1 H), 4.78 (AB_q, J = 2.4, 1.2 Hz, 1 H), 3.19 (s, 3 H), 2.68 (m, 1 H), 2.24 (d, J = 13.8 Hz, 1 H), 1.98 (d, J = 13.8 Hz, 1 H), 1.76 (dd, J = 14.4, 3.3 Hz, 1 H), 1.66 (dd, J = 13.8, 2.4 Hz, 1 H), 1.58 (s, 3 H), 1.38 (s, 1 H), 1.11 (s, 3 H), 0.94 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 148.7 (C), 141.5 (CH), 131.7 (CH), 111.6 (CH₂), 78.7 (C), 77.6 (C), 49.8 (CH₃), 47.3 (CH₂), 43.7 (C), 40.6 (CH), 30.3 (CH₂), 24.7 (CH₃), 21.5 (CH₃), 18.7 (CH₃); IR (neat) 3493 (m), 3040 (w), 2961 (s), 2872 (m), 1680 (w), 1620 (w), 1452 (s), 1371 (s), 1101 (s), 1062 (s), 918 (m), 904 (m), 879 (w), 736 (m) cm⁻¹; HRMS (EI) m/z 222.1622 [(M⁺) calcd. for C₁₄H₂₂O₂: 222.1620].

59: R_f = 0.21 (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20}$ = -81.0 (c 0.65, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.33 (t, J = 6.9 Hz, 1 H), 5.83 (d, J = 7.8 Hz, 1 H), 5.20 (d, J = 1.8 Hz, 1 H), 4.99 (t, J = 1.8 Hz, 1 H), 3.10 (s, 3 H), 2.54 (m, 1 H), 2.53 (d, J = 12.6 Hz, 1 H), 1.86 (d, J = 14.1 Hz, 1 H), 1.82 (s, 3 H), 1.21 (s, 1 H), 1.14 (d, J = 14.4 Hz, 1 H), 1.12 (d, J = 13.8 Hz, 1 H), 1.07 (s, 3 H), 1.00 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 147.1 (C), 138.0 (CH), 135.0 (CH), 114.0 (CH₂), 79.8 (C), 79.4 (C), 49.2 (CH₃), 45.8 (C), 41.4 (CH₂),

41.0 (CH), 40.9 (CH₂), 24.9 (CH₃), 22.1 (CH₃), 19.5 (CH₃); IR (neat) 3501 (br m), 3090 (w), 2966 (s), 2932 (s), 2878 (m), 2826 (m), 1697 (m), 1664 (s), 1454 (s), 1367 (s), 1101 (s), 1072 (s), 939 (m), 810 (w), 690 (w) cm⁻¹; HRMS (EI) *m/z* 222.1624 [(M⁺) calcd. for C₁₄H₂₂O₂: 222.1620].

(1S*, 2R*, 4S*, 8S*)-1,8-dimethyl-2-isopropenyl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (62) and (1S*, 2S*, 4S*, 8S*)-1,8-dimethyl-2-isopropenyl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (63).

Following general procedure I, the reaction of 2.00 g (11.1 mmol) of starting ketone 28, afforded 1.93 g (78%) of 62:63, as a 2.5:1 diastereomeric mixture, after purification *via* flash alumina chromatography (60 g; basic Activity III, 50:1 hexanes/EtOAc).

62: $R_f = 0.64$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -64.2$ (c 0.80, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.19 (AB_q, J = 6.3, 1.8 Hz, 1 H), 5.96 (d, J = 7.8 Hz, 1 H), 4.99 (d, J = 1.2 Hz, 1 H), 4.81 (t, J = 1.5 Hz, 1 H), 3.13 (s, 3 H), 2.69 (m, 1 H), 2.06 (d, J = 12.9 Hz, 1 H), 1.73 (dd, J = 14.1, 3.3 Hz, 1 H), 1.63, (d, J = 0.6 Hz, 3 H), 1.62 (dd, J = 13.8, 3.0 Hz, 1 H), 1.46 (s, 3 H), 1.22 (s, 1 H), 1.10 (d, J = 12.9 Hz, 1 H), 0.947 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 151.2 (C), 137.5 (CH), 132.2 (CH), 111.3 (CH₂), 79.1 (C), 78.9 (C), 48.8 (CH₃), 45.7 (CH₂), 43.3 (C), 40.6 (CH), 39.2 (CH₂), 22.5 (CH₃), 21.6 (CH₃), 18.7 (CH₃); IR (neat) 491 (br m), 3040 (m), 2932 (s), 2824 (s), 1726 (s), 1710 (w), 1454 (s), 1373 (s).

1134 (s), 1080 (s), 991 (m), 897 (m), 733 (s) cm⁻¹; HRMS (EI) m/z 222.1624 [(M⁺) calcd. for $C_{14}H_{22}O_2$: 222.1620].

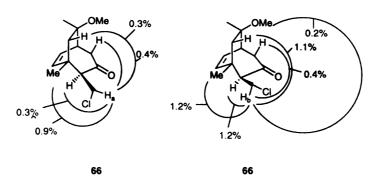
63: $R_f = 0.52$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -76.0$ (c 0.25, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.45 (AB_q, J = 6.3 Hz, 1 H), 5.91 (d, J = 7.2 Hz, 1 H), 5.04 (t, J = 1.5 Hz, 1 H), 4.87 (s, 1 H), 3.15 (s, 3 H), 2.99 (m, 1 H), 2.09 (d, J = 13.5 Hz, 1 H), 1.86 (d, J = 0.6 Hz, 3 H), 1.69 (dd, J = 14.7, Hz, 1 H), 1.42 (dd, J = 11.1, 2.1 Hz, 1 H), 1.34 (s, 3 H), 1.33 (s, 1 H), 1.22 (d, J = 12.9 Hz, 1 H), 1.16 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 136.8 (C), 135.4 (CH), 132.5 (CH), 113.0 (CH₂), 79.2 (C), 77.2 (C), 49.4 (CH₃), 46.3 (CH₂), 41.2 (CH), 40.5 (C), 36.2 (CH₂), 22.3 (CH₃), 19.8 (CH₃), 17.2 (CH₃); IR (neat) 3491 (s), 3090 (w), 2932 (s), 2824 (s), 1701 (s), 690 (w), 1454 (s), 1336 (s), 1115 (s), 1080 (s), 1010 (m), 897 (s), 680 (m-s) cm⁻¹; HRMS (EI) m/z 2222.1708 [M⁺) calcd. for $C_{14}H_{22}O_{2}$: 222.1620].

 $(1S^*, 2R^*, 4S^*, 8R^*)-2-(2,3)$ -dihyropyranyl-8-methoxy-1,8-dimethyl-bicyclo[2.2.2]oct-5-en-2-ol (60) and (1S*, 2S*, 4S*, 8R*)-2-(2,3)-dihyropyranyl-8-methoxy-1,8-dimethyl-bicyclo[2.2.2]oct-5-en-2-ol (61).

Following general procedure II, the reaction of 1.99 g (11.08 mmol) of starting ketone 27, afforded 2.19 g (75%) of 60:61, as a 10:1 diastereomeric mixture, after purification *via* flash alumina chromatography (60 g; basic Activity III, 50:1 hexanes/EtOAc).

60: $R_f = 0.50$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -51.0$ (c 0.19, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.07 (t, J = 7.5 Hz, 1 H), 5.93 (d, J = 7.8 Hz, 1 H), 4.96 (t, J = 3.6 Hz, 1 H), 3.88 (m, 2 H), 3.61 (s, 1 H), 3.21 (s, 3 H), 2.64 (m, 1 H), 2.02 (m, 2 H), 1.96 (d, J = 13.8 Hz, 1 H), 1.74 (m, 4 H), 1.12 (s, 3 H), 0.96 (s, 3 H), 0.95 (d, J = 13.8 Hz, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 152.7 (C), 138.2 (CH), 132.3 (CH), 98.8 (CH), 79.5 (C), 78.1 (C), 65.9 (CH₂), 49.1 (CH₃), 44.4 (C), 42.1 (CH₂), 40.6 (CH), 37.4 (CH₂), 24.9 (CH₃), 22.1 (CH₂), 20.2 (CH₂), 19.4 (CH₃); IR (neat) 3543 (br s), 3050 (w), 2937 (s), 2874 (m), 2830 (m), 1714 (s), 1458 (m), 1369 (m), 1284 (w), 1105 (s), 1066 (s), 796 (m), 680 (m) cm⁻¹; HRMS (EI) m/z 264.1719 [M⁺) calcd. for C₁₆H₂₄O₃: 264.1725].

61: R_f = 0.30 (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.25 (t, J = 7.8 Hz, 1 H), 5.82 (d, J = 7.8 Hz, 1 H), 5.19 (t, J = 3.9 Hz, 1 H), 3.95 (t, J = 5.4 Hz, 2 H), 3.15 (s, 3 H), 2.52 (m, 1 H), 2.40 (dd, J = 14.4, 1.8 Hz, 1 H), 2.04 (m, 2 H), 1.85 (d, J = 13.8 Hz, 1 H), 1.77 (m, 2 H), 1.37 (s, 1 H), 1.30 (dd, J = 14.4, 3.3 Hz, 1 H), 1.08 (s, 3 H), 0.98 (s, 3 H), 0.82 (d, J = 13.8 Hz, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 155.6 (C), 140.2 (CH), 134.5 (CH), 95.8 (CH), 80.1 (C), 78.6 (C), 66.4 (CH₂), 49.2 (CH₃), 45.3 (C), 42.2 (CH₂), 40.8 (CH), 37.6 (CH₂), 25.3 (CH₃), 22.9 (CH₂), 20.3 (CH₂), 19.9 (CH₃); IR (neat) 3439 (br s), 3044 (w), 2934 (s), 2872 (s), 2826 (m), 1709 (s), 1458 (s), 1365 (s), 1255 (m), 1085 (s), 1066 (s), 987 (w), 846 (w), 734 (m) cm⁻¹; HRMS (EI) m/z 264.1739 [M⁺) calcd. for C₁₆H₂₄O₃: 264.1725].


 $(1S^*, 2R^*, 4S^*, 8S^*)$ -1,8-dimethyl-2-(2,3)-dihydrofuryl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (64) and $(1S^*, 2S^*, 4S^*, 8S^*)$ -1,8-dimethyl-2-(2,3)-dihydrofuryl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (65).

Following general procedure II, the reaction of 0.97 g (5.3 mmol) of starting ketone **28**, afforded 0.79 g (75%) of **64:65**, as a 2.5:1 diastereomeric mixture, after purification *via* flash alumina chromatography (40 g; neutral Activity III, 30:1 hexanes/EtOAc).

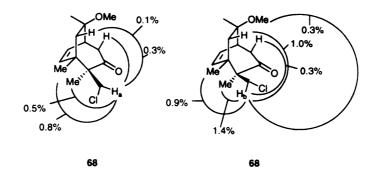
64: $R_f = 0.15$ (4:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -67.0$ (*c* 0.32, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.39 (AB_q, J = 8.1, 1.5 Hz, 1 H), 5.97 (d, J = 8.1 Hz, 1 H), 4.92 (t, J = 2.4 Hz, 1 H), 4.32 (t, J = 9.6 Hz, 2 H), 3.09 (s, 3 H), 2.68 (m, 1 H), 2.62 (td, J = 9.3, 2.7 Hz, 2 H), 2.23 (dd, J = 15.0, 1.5 Hz, 1 H), 2.04 (s, 1 H), 1.82 (d, J = 14.1 Hz, 1 H), 1.35 (s, 3 H), 1.21 (d, J = 9.3 Hz, 1 H), 1.13 (d, J = 9.3 Hz, 1 H), 1.09 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 159.4 (C), 136.1 (CH), 133.9 (CH), 97.2 (CH), 79.5 (C), 76.5 (C), 70.2 (CH₂), 48.9 (CH₃), 43.7 (CH₂), 43.4 (C), 39.9 (CH), 38.6 (CH₂), 29.9 (CH₂), 21.1 (CH₃), 19.3 (CH₃); IR (neat) 3466 (br m), 3090 (w), 2936 (s), 2872 (s), 2824 (m), 1707 (m), 1680 (w), 1456 (s), 1136 (s), 1080 (s), 970 (s), 941 (s), 830 (w), 731 (s) cm⁻¹; HRMS (EI) m/z 250.1568 [(M⁺), calcd. for C₁₅H₂₂O₃: 250.1569].

65: R_f = 0.31 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.30 (t, J = 7.2 Hz, 1 H), 5.85 (d, J = 8.1 Hz, 1 H), 5.08 (t, J = 2.4 Hz, 1 H), 4.32 (dt, J = 9.3, 3.3 Hz, 2 H), 3.17 (s, 3 H), 2.65 (series of m, 2 H), 2.55 (m, 1 H), 2.49 (dd, J = 13.8, 2.1 Hz, 1 H), 1.86 (d, J = 13.8 Hz, 1 H), 1.63 (d, J = 14.7 Hz, 1 H), 1.38 (dd, J = 14.4, 3.3 Hz, 1 H), 1.22 (s, 1 H), 1.11 (s, 3 H), 1.07 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 158.7 (C), 137.6 (CH), 133.0 (CH), 97.7 (CH), 79.3 (C), 76.1 (C), 69.8 (CH₂), 49.2 (CH₃), 44.0 (CH₂), 42.5

(CH), 40.4 (CH₂), 38.5 (C), 30.5 (CH₂), 24.8 (CH₃), 19.4 (CH₃); IR (neat) 3468 (br s), 3061 (m), 2974 (s), 1710 (m), 1651 (s), 1456 (s), 1365 (s), 1163 (s), 1070 (s), 1008 (s), 939 (s), 852, (m), 733 (s) cm⁻¹; HRMS (EI) *m/z* 250.1572 [(M⁺), calcd. for C₁₅H₂₂O₃: 250.1569].

 $(1S^*, 2S^*, 5S^*, 9R^*)$ -2-chloromethyl-1,9-dimethyl-9-methoxybicyclo[3.2.2]non-6-en-3-one (66).

Following general procedure V, the reaction of 0.35 g (1.4 mmol) of starting carbinol 1, afforded 0.11 g (32%) of 66 after purification *via* flash silica chromatography (3 g; 75:1 hexanes/EtOAc).


66: $R_f = 0.33$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -49.4$ (c 0.68, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.28 (AB_q, J = 7.8, 1.2 Hz, 1 H), 5.83 (d, J = 9.0 Hz, 1 H), 3.74 (dd, J = 11.4, 4.2 Hz, 1 H), 3.49 (dd, J = 11.4, 8.4 Hz, 1 H), 3.15 (s, 3 H), 2.79 (dd, J = 15.9, 5.4 Hz, 1 H), 2.64 (m, 1 H), 2.59 (dd, J = 8.4, 4.2 Hz, 1 H), 2.19 (dd, J = 13.2, 2.4 Hz, 1 H), 1.94 (d, J = 14.4 Hz, 1 H), 1.43 (d, J = 15.0 Hz, 1 H), 1.23 (s, 3 H), 1.17 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (75 MHz, CDCl₃) δ 208.5 (C), 136.1 (CH), 133.6 (CH), 78.5 (C), 66.6 (CH), 49.7 (CH₂), 49.3 (CH₃), 42.6 (CH₂), 41.3 (CH₂), 40.3 (CH), 36.5 (C), 29.6 (CH₃), 26.9 (CH₃); IR (neat) 3070 (w), 2961 (s), 2928

(s), 2855 (m), 1684 (s), 1599 (m), 1462 (s), 1371 (s), 1257 (m), 1134 (s), 1064 (s), 765 (m) cm⁻¹; HRMS (EI) m/z 242.1163 [(M⁺); calcd. for C₁₃H₁₉O₂³⁵Cl: 242.1074].

 $(1S^*, 2R^*, 5S^*, 9R^*)$ -2-chloromethyl-1,9-dimethyl-9-methoxybicyclo[3.2.2]non-6-en-3-one (67).

Following general procedure V, the reaction of 0.12 g (0.57 mmol) of starting carbinol 2, afforded 0.05 g (36%) of 67 after purification *via* flash silica chromatography (3.5 g; 5:1 hexanes/EtOAc).

67: $R_f = 0.26$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -20.0$ (c 0.14, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.28 (AB_q, J = 8.7, 1.1 Hz, 1 H), 5.84 (d, J = 9.3 Hz, 1 H), 3.74 (dd, J = 11.5, 3.9 Hz, 1 H), 3.50 (dd, J = 11.5, 8.2 Hz, 1 H), 3.16 (s, 3 H), 2.78 (dd, J = 15.3, 4.9 Hz, 1 H), 2.65 (m, 1 H), 2.60 (dd, J = 7.7, 3.3 Hz, 1 H), 2.19 (dd, J = 15.9, 2.7 Hz, 1 H), 1.93 (d, J = 14.2 Hz, 1 H), 1.35 (d, J = 14.3 Hz, 1 H), 1.18 (s, 3 H), 1.17 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 224.1 (C), 136.8 (CH), 132.2 (CH), 78.3 (C), 78.0 (CH), 50.0 (CH₃), 49.7 (CH₂), 41.0 (CH), 34.5 (CH₂), 29.9 (CH₂), 28.0 (CH₃), 24.3 (C), 22.6 (CH₃); IR (neat) 3023 (w), 2918 (s), 2849 (s), 1724 (w), 1603 (w), 1462 (m), 1379 (m), 1120 (ms), 1074 (m), 935 (w), 844 (w), 758 (m) cm⁻¹; HRMS (EI) m/z 242.1087 [(M⁺); calcd. for C₁₃H₁₉O₂³⁵Cl: 242.1074].

 $(1S^*, 2S^*, 5S^*, 9R^*)$ -2-chloromethyl-1,2,9-trimethyl-9-methoxybicyclo[3.2.2]non-6-en-3-one (68).

Following general procedure V, the reaction of 67.8 mg (0.30 mmol) of starting carbinol **58**, afforded 67.2 mg (86%) of **68:69**, as a 20:1 diastereomeric mixture, and 7.8 mg (10%) of **72** after purification *via* flash silica chromatography (1.0 g; 50:1 to 5:1 hexanes/EtOAc).

68: $R_f = 0.83$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -60.0$ (c 0.10, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 6.20 (AB_q, J = 8.8, 1.3 Hz, 1 H), 5.82 (d, J = 8.8 Hz, 1 H), 3.87 (d, J = 11.0 Hz, 1 H), 3.77 (d, J = 11.4 Hz, 1 H), 3.17 (s, 3 H), 2.94 (dd, J = 15.9, 3.9 Hz, 1 H), 2.63 (d, J = 15.4 Hz, 1 H), 2.54 (m, 1 H), 2.32 (dd, J = 15.9, 3.9 Hz, 1 H), 1.25 (d, J = 15.4 Hz, 1 H), 1.19 (s, 3 H), 1.15 (s, 3 H), 1.06 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (125 MHz, CDCl₃) δ 209.9 (C), 139.8 (CH), 132.7 (CH), 78.3 (C), 58.1 (C), 49.3 (CH₃), 47.2 (CH₂), 45.9 (CH₂), 40.8 (CH₂), 40.0 (CH), 39.4 (C), 27.1 (CH₃), 24.6 (CH₃), 21.2 (CH₃); IR (neat) 3034 (m), 2932 (s), 2828 (m), 1701 (s), 1458 (s), 1371 (s), 1277 (m), 1140 (s), 1064 (s), 916 (m), 738 (s), 680 (s) cm⁻¹; HRMS (EI) m/z 256.1238 [(M⁺); calcd. for C₁₄H₂₁O₂³⁵Cl: 256.1230].

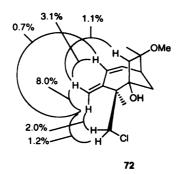
 $(1S^*, 2R^*, 5S^*, 9R^*)$ -2-chloromethyl-1,2,9-trimethyl-9-methoxybicyclo[3.2.2]non-6-en-3-one (69).

Following general procedure V, the reaction of 0.14 g (0.65 mmol) of starting carbinol **59**, afforded 0.13 g (82%) of **68:69**, as a 1:12 diastereomeric mixture, and 26.9 mg (16%) of **73** after purification *via* flash silica chromatography (1.0 g; 50:1 to 5:1 hexanes/EtOAc).

69: $R_f = 0.42$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -48.0$ (c 0.02, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.29 (AB_q, J = 8.7, 0.9 Hz, 1 H), 5.90 (d, J = 9.0 Hz, 1 H), 3.64 (d, J = 3.0 Hz, 2 H), 3.15 (s, 3 H), 2.82 (dd, J = 15.6, 5.1 Hz, 1 H), 2.57 (m, 1 H), 2.37 (dd, J = 15.6, 2.7 Hz, 1 H), 2.06 (d, J = 15.3 Hz, 1 H), 1.16 (s, 3 H), 1.15 (s, 3 H), 1.12 (d, J = 15.6 Hz, 1 H), 1.07 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 212.3 (C), 135.7 (CH), 134.4 (CH), 78.8 (C), 56.9 (C), 50.3 (CH₃), 49.6 (CH₂), 45.9 (CH₂), 41.6 (CH), 40.8 (CH₂), 34.6 (C), 29.6 (CH₃), 24.8 (CH₃), 22.6 (CH₃); IR (neat) 3093 (w), 2986 (s), 2804 (s), 2777 (s), 1728 (s), 1705 (m), 1458 (s), 1383 (s), 1298 (m), 1116 (s), 1076 (s), 935 (m), 844 (m), 752 (m) cm⁻¹; HRMS (EI) m/z 256.1233 [(M⁺); calcd. for C₁₄H₂₁O₂³⁵Cl: 256.1230].

(1S*, 2S*, 5S*, 9S*)-2-chloromethyl-1,2,9-trimethyl-9-methoxybicyclo[3.2.2]non-6-en-3-one (70).

Following general procedure V, the reaction of 0.30 g (1.3 mmol) of starting carbinol **62**, afforded 0.27 g (78%) of **70:71**, as a 15:1 diastereomeric mixture, after purification *via* flash silica chromatography (1.0 g; 50:1 to 5:1 hexanes/EtOAc).


70: R_f = 0.25 (4:1 hexanes/EtOAc); $[\alpha]_{546}^{20}$ = -72.0 (c 0.15, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.28 (AB_q, J = 7.2, 1.5 Hz, 1 H), 5.87 (d, J = 9.0 Hz, 1 H), 3.91 (d, J = 11.4 Hz, 1 H), 3.57 (d, J = 12.0 Hz, 1 H), 3.08 (s, 3 H), 2.96 (m, 1 H), 2.57 (d, J = 15.6 Hz, 1 H), 2.48 (d, J = 13.8 Hz, 1 H), 1.72 (d, J = 14.7 Hz, 1 H), 1.56 (d, J = 15.3 Hz, 1 H), 1.21 (s, 3 H), 1.19 (s, 3 H), 1.03 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 211.1 (C), 138.2 (CH), 132.5 (CH), 79.2 (C), 58.1 (C), 49.4 (CH₃), 46.3 (CH₂), 46.1 (CH₂), 41.2 (CH), 37.7 (C), 36.2 (CH₂), 23.9 (CH₃), 23.1 (CH₃), 17.2 (CH₃); IR (neat) 3090 (w), 2972 (s), 2934 (s), 2826 (m), 1724 (s), 1697 (s), 1454 (m), 1375 (m), 1134 (s), 1082 (s), 848 (w), 750 (s), 682 (m) cm⁻¹; HRMS (EI) m/z 256.1240 [(M⁺); calcd. for C₁₄H₂₁O₂³⁵Cl: 256.1230].

(1*S**, 2*R**, 5*S**, 9*S**)-2-chloromethyl-1,2,9-trimethyl-9-methoxybicyclo[3.2.2]non-6-en-3-one (71).

Following general procedure V, the reaction of 0.32 g (1.4 mmol) of starting carbinol 63, afforded 0.28 g (76%) of 70:71, as a 1:11 diastereomeric mixture, after purification *via* flash silica chromatography (1.0 g; 50:1 to 5:1 hexanes/EtOAc).

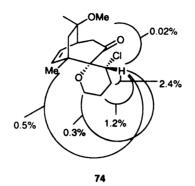
71: $R_f = 0.42$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -53.0$ (c 0.06, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.44 (AB_q, J = 6.3, 1.8 Hz, 1 H), 5.90 (d, J = 7.2 Hz, 1 H), 3.45 (d, J = 12.6 Hz, 1 H), 3.38 (d, J = 12.0 Hz, 1 H), 3.14 (s, 3 H), 2.96 (m, 1 H), 2.56 (d, J = 17.4 Hz, 1 H).

2.45 (d, J = 14.1 Hz, 1 H), 1.33 (s, 3 H), 1.21 (s, 3 H), 1.18 (d, J = 16.2 Hz, 1 H), 1.15 (s, 3 H), 1.11 (d, J = 15.6 Hz, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 212.3 (C), 135.4 (CH), 131.8 (CH), 79.3 (C), 69.3 (C), 65.8 (CH₂), 49.1 (CH₃), 46.8 (CH₂), 41.9 (CH₂), 38.3 (CH), 35.0 (C), 22.3 (CH₃), 22.0 (CH₃), 15.2 (CH₃); IR (neat) 3090 (w), 2972 (s), 2934 (s), 2826 (m), 1724 (s), 1697 (s), 1454 (m), 1375 (m), 1134 (s), 1082 (s), 848 (w), 750 (s), 682 (m) cm⁻¹; HRMS (EI) m/z 256.1248 [(M⁺); calcd. for C₁₄H₂₁O₂³⁵Cl: 256.1230].

 $(1R^*, 2R^*, 6R^*, 9R^*)$ -2-chloromethyl-2,9-dimethyl-9-methoxy-3-methylene-bicyclo[4.2.1]non-4-en-1-ol (72).

Following general procedure V, the reaction of 67.8 mg (0.30 mmol) of starting carbinol **58**, afforded 67.2 mg (86%) of **68:69**, as a 20:1 diastereomeric mixture, and 7.8 mg (10%) of **72** after purification *via* flash silica chromatography (1.0 g; 50:1 to 5:1 hexanes/EtOAc).

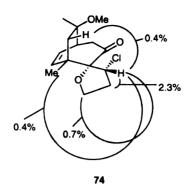
72: $R_f = 0.35$ (5:1 hexanes/EtOAc); $[\alpha]_D^{20} = -15.9$ (c 0.33, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.24 (t, J = 7.7 Hz, 1 H), 5.98 (d, J = 7.7 Hz, 1 H), 5.34 (d, J = 1.1 Hz, 1 H), 5.29 (s, 1 H), 4.17 (dd, J = 13.2, 1.1 Hz, 1 H), 4.05 (dd, J = 13.2, 1.1 Hz, 1 H), 3.52 (s, 1 H), 3.22 (s, 3 H), 2.72 (m, 1 H), 1.99 (d, J = 13.7 Hz, 1 H), 1.97 (dd, J = 14.3, 3.3 Hz, 1 H), 1.79 (dd, J = 13.7, 2.2 Hz, 1 H), 1.14 (s, 3 H), 0.98 (s, 3 H), 0.97 (d, J = 13.7 Hz, 1 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (75 MHz, CDCl₃) δ


150.1 (C), 140.3 (CH), 133.4 (CH), 115.4 (CH₂), 78.5 (C), 76.8 (C), 49.7 (CH₃), 46.9 (CH₂), 45.5 (CH₂), 44.6 (C), 43.4 (CH₂), 40.7 (CH), 24.6 (CH₃), 18.8 (CH₃); IR (NaCl, neat) cm⁻¹ 3560 (br m), 3015 (w), 2961 (s), 2934 (s), 2871 (m), 1728 (s), 1630 (w), 1590 (w), 1462 (m), 1379 (m), 1286 (s), 1124 (s), 1124 (s), 1072 (s), 962 (w), 918 (w), 742 (m); HRMS (EI) *m/z* 256.1219 [(M⁺); calcd. for C₁₄H₂₁ClO₂: 256.7680].

 $(1R^*, 2S^*, 6R^*, 9R^*)$ -2-chloromethyl-2,9-dimethyl-9-methoxy-3-methylene-bicyclo[4.2.1]non-4-en-1-ol (73).

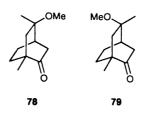
Following general procedure V, the reaction of 0.14 g (0.65 mmol) of starting carbinol **59**, afforded 0.13 g (82%) of **68:69**, as a 1:12 diastereomeric mixture, and 26.9 mg (16%) of **73** after purification *via* flash silica chromatography (1.0 g; 50:1 to 5:1 hexanes/EtOAc).

135b: $R_f = 0.42$ (5:1 hexanes/EtOAc); $[\alpha]_D^{20} = -14.0$ (c 0.17, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.40 (t, J = 7.7 Hz, 1 H), 5.89 (d, J = 8.2 Hz, 1 H), 5.71 (s, 1 H), 5.60 (s, 1 H), 4.33 (d, J = 12.6 Hz, 1 H), 4.20 (d, J = 12.6 Hz, 1 H), 3.18 (s, 3 H), 2.62 (m, 1 H), 2.57 (d, J = 14.8 Hz, 1 H), 1.77 (d, J = 14.8 Hz, 1 H), 1.56 (s, 1 H), 1.40 (dd, J = 14.8, 3.8 Hz, 1 H), 1.12 (s, 3 H), 1.02 (s, 3 H), 0.92 (d, J = 14.8 Hz, 1 H) ¹³C-NMR (75 MHz, CDCl₃) δ 147.2 (C), 137.6 (CH), 135.2 (CH), 118.6 (CH₂), 80.1 (C), 79.4 (C), 49.3 (CH₃), 46.3 (CH₂), 45.2 (C), 42.0 (CH₂), 41.7 (CH₂), 41.0 (CH₂), 24.9 (CH₃), 19.2 (CH₃); IR (NaCl, neat) cm⁻¹ 3544 (br w), 3015 (w), 2980 (s), 2932 (s), 2860 (s), 1706 (w), 1623


(w), 1458 (s), 1383 (s), 1350 (s), 1278 (m), 1124 (s), 1072 (s), 933 (m), 844 (m), 724 (m); HRMS (EI) m/z 256.3248 [(M⁺); calcd. for C₁₄H₂₁ClO₂: 256.7680].

(1 S^* , 2 R^* -(3 R^*), 5 S^* , 9 R^*)-2-(3-chloro)-spiropyranyl-1,9-dimethyl-9-methoxybicyclo[3.2.2]non-6-en-3-one (74).

Following general procedure V, the reaction of 0.12 g (0.48 mmol) of starting carbinol **60**, afforded 0.13 g (90%) of **74**, after purification *via* flash silica chromatography (1.0 g; 50:1 to 5:1 hexanes/EtOAc).


74: $R_f = 0.08$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = +24.0$ (c 0.20, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 6.16 (t, J = 6.6 Hz, 1 H), 6.02 (d, J = 6.6 Hz, 1 H), 4.96 (dd, J = 8.7, 3.8 Hz, 1 H), 3.65 (t, J = 5.5 Hz, 2 H), 3.21 (s, 3 H), 2.75 (m, 1 H), 1.95 (dd, J = 13.7, 3.3 Hz, 1 H), 1.93 (d, J = 14.2 Hz, 1 H), 1.86-1.75 (series of m, 4 H), 1.70 (dd, J = 13.7, 2.7 Hz, 1 H), 1.62 (m, 1 H), 1.13 (s, 3 H), 0.97 (s, 3 H), 0.94 (d, J = 14.2 Hz, 1 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (125 MHz, CDCl₃) δ 208.0 (C), 140.1 (CH), 131.3 (CH), 82.3 (C), 78.3 (C), 61.9 (CH₂), 57.4 (C), 49.7 (CH₃), 46.2 (CH₂), 43.7 (C), 42.2 (CH₂), 40.3 (CH), 29.1 (CH₂), 29.0 (CH₂), 24.4 (CH₃), 18.5 (CH₃); IR (neat) 3049 (w), 2932 (s), 1724 (s), 1643 (w), 1460 (s), 1367 (s), 1334 (s), 1286 (s), 1224 (s), 1169 (s), 1105 (s), 1062 (s), 910 (s), 846 (m), 756 (m), 731 (m), 704 (m), 667 (s) cm⁻¹; HRMS (EI) m/z 298.1244 [(M⁺); calcd. for C₁₆H₂₃O₃³⁵Cl: 298.8047].

(1 S^* , 2 R^* , 5 S^* , 9 S^*)-2-(3-chloro)-spirofuranyl-1,9-dimethyl-9-methoxybicyclo[3.2.2]non-6-en-3-one (75).

Following general procedure V, the reaction of 0.35 g (1.4 mmol) of starting

carbinol **64**, afforded 0.17 g (43%) of **75:76**, as a 7:1 diastereomeric mixture, after purification *via* flash silica chromatography (1.0 g; 50:1 to 5:1 hexanes/EtOAc). **75**: $R_f = 0.56$ (4:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = -91.0$ (*c* 0.16, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.32 (AB_q, J = 8.3, 1.9 Hz, 1 H), 5.82 (d, J = 7.3 Hz, 1 H), 4.06 (m, 2 H), 3.03 (s, 3 H), 3.00 (t, J = 5.8 Hz, 1 H), 2.71 (dd, J = 7.3, 2.9 Hz, 2 H), 2.65 (m, 1 H), 2.42 (dd, J = 14.1, 7.3 Hz, 1 H), 2.33 (dd, J = 15.1, 2.44 Hz, 1 H), 1.91 (d, J = 14.6 Hz, 1 H), 1.33 (d, J = 14.6 Hz, 1 H), 1.29 (s, 3 H), 1.06 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (75 MHz, CDCl₃) δ 208.5 (C), 135.2 (CH), 133.4 (CH), 111.6 (C), 85.4 (CH), 67.9 (C), 65.7 (CH₂), 43.8 (CH₃), 38.4 (CH₂), 37.2 (CH₂), 34.9 (C), 33.7 (CH), 25.9 (CH₂), 24.4 (CH₃), 19.0 (CH₃); IR (neat) 3110 (w), 2932 (s), 1721 (m), 1705 (m), 1454 (s), 1369 (s), 1300 (s), 1242 (s), 1217 (s), 1174 (s), 1082 (s), 925 (s), 879 (s), 781 (m), 756 (m), 734 (mw), 677 (mw) cm⁻¹; HRMS (EI) *m/z* 284.1205 [(M⁺); calcd. for C₁₅H₂₁O₃³⁵Cl: 284.1179].

(1S*, 4R*, 8R*)-1,8-dimethyl-8-methoxybicyclo[2.2.2]octan-2-one (78) and (1S*, 4R*, 8S*)-1,8-dimethyl-8-methoxybicyclo[2.2.2]octan-2-one (79).

A solution containing 1.01 g (5.6 mmol, 1.00 eq) **27:28** and a spatula tip of Pd/C in 150 mL EtOAc was purged *via* an aspirator and subsequently charged with H₂. The reaction was stirred at room temperature for 16 hrs. The reaction was then gravity filtered through celite and concentrated. The resultant oil was purified *via* flash silica chromatography (15 g; 4:1 hexanes/EtOAc) to afford 0.52 g (51%) of saturated **78** and 0.47 g (47%) of saturated **79** both as clear oils.

78: $R_f = 0.75$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 3.01 (s, 3 H), 2.2-1.2 (series of m, 9 H), 1.04 (s, 3 H), 0.72 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 216.1 (C), 74.6 (C), 49.1 (CH₃), 45.9 (CH₂), 43.5 (C), 40.7 (CH), 35.9 (CH₂), 28.8 (CH₂), 22.7 (CH₃), 20.5 (CH₂), 19.6 (CH₃); IR (neat) 2934 (s), 2820 (m), 1720 (s), 1454 (s), 1454 (s), 1346 (s), 1134 (s), 1076 (s), 981 (w), 844 (w), 790 (m) cm⁻¹; HRMS (EI) *m/z* 182.1302 [(M⁺), calcd. for C₁₁H₁₈O₂: 182.1307].

79: $R_f = 0.50$ (4:1 hexanes/EtOAc); $[\alpha]_D^{20} = -8.0$ (c 0.12, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 2.93 (s, 3 H), 2.40 (dt, J = 18.9, 2.7 Hz, 1 H), 2.01 (t, J = 3.0 Hz, 1 H), 1.77 (dd, J = 18.6, 2.7 Hz, 1 H), 1.48 (d, J = 13.8 Hz, 1 H), 1.34 (d, J = 14.4 Hz, 1 H), 1.7-1.4 (series of m, 4 H), 1.14 (s, 3 H), 0.71 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 215.5 (C), 74.3 (C), 48.7 (CH₃), 45.6 (CH₂), 43.2 (CH₂), 40.3 (CH), 35.6 (C), 28.5 (CH₂), 22.3 (CH₃), 20.2 (CH₂), 19.3 (CH₃); IR (neat) 2930 (s), 2828 (m), 1722 (s), 1456 (m), 1375

(m), 1174 (m), 1086 (s), 981 (w), 947 (w), 868 (w) cm⁻¹; HRMS (EI) m/z 182.1310 [(M⁺), calcd. for C₁₁H₁₈O₂: 182.1307].

 $(1S^*, 2R^*, 4S^*, 8R^*)$ -2-isopropenyl-5-methoxy-1,5-dimethyl-bicyclo[2.2.2]octan-2-ol (80) and $(1S^*, 2S^*, 4S^*, 8R^*)$ -2-isopropenyl-5-methoxy-1,5-dimethyl-bicyclo[2.2.2]octan-2-ol (81).

Following general procedure I, the reaction of 2.2 g (12.3 mmol) of starting ketone 78, afforded 0.91 g (81%) of 80:81, as a 2.5:1 diastereomeric mixture, after purification *via* flash alumina chromatography (25 g; basic Activity III, 50:1 hexanes/EtOAc).

80: R_f = 0.42 (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.07 (d, J = 2.0 Hz, 1 H), 4.74 (d, J = 2.0, Hz, 1 H), 3.15 (s, 3 H), 2.64 (m, 1 H), 2.20 (d, J = 13.4 Hz, 1 H), 1.93 (d, J = 13.4 Hz, 1 H), 1.78 (dd, J = 14.2, 3.5 Hz, 1 H), 1.62 (dd, J = 13.4, 2.0 Hz, 1 H), 1.60 (s, 3 H), 1.40 (s, 1 H), 1.13 (s, 3 H), 1.11 (s, 1 H), 1.05 (series of m, 4 H), 0.98 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 148.0 (C), 110.5 (CH₂), 77.9 (C), 77.4 (C), 50.0 (CH₃), 47.8 (CH₂), 43.3 (C), 41.2 (CH), 30.8 (CH₂), 30.6 (CH₂), 25.7 (CH₃), 22.1 (CH₃), 21.9 (CH₂), 17.9 (CH₃); LRMS (EI) m/z 224.1 (M⁺³⁵Cl), 226.1 (M⁺³⁷Cl).

81: $R_f = 0.21$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 4.98 (d, J = 1.7 Hz, 1 H), 4.80 (t, J = 1.7 Hz, 1 H), 3.12 (s, 3 H), 2.69 (m, 1 H), 2.14 (d, J = 12.2 Hz, 1 H), 1.69 (d, J = 14.4 Hz, 1 H), 1.65 (s, 3 H), 1.55 (m, 1 H), 1.48 (s, 3 H), 1.17 (s, 1 H), 1.15 (d, J = 14.4 Hz, 1 H), 1.10 (series of m, 4 H), 1.09 (d, J = 12.8 Hz, 1 H), 0.96 (s, 3 H); ¹³C-

NMR (75 MHz, CDCl₃) δ 146.2 (C), 115.3 (CH₂), 79.6 (C), 79.1 (C), 49.8 (CH₃), 46.1 (C), 42.1 (CH₂), 40.9 (CH), 40.6 (CH₂), 24.9 (CH₂), 23.9 (CH₃), 22.9 (CH₂), 22.7 (CH₃), 19.3 (CH₃); LRMS (EI) *m/z* 224.1 (M⁺), 226.1 (M⁺³⁷Cl).

202:203: IR (neat) 2958 (s), 2880(s), 1720 (s), 1620 (w), 1452 (s), 1371 (s), 1110 (s), 1064 (s), 920 (m), 899 (m), 856 (w), 720 (m) cm⁻¹.

 $(1S^*, 2S^*, 5S^*, 9R^*)$ -2-chloromethyl-1,2,9-trimethyl-9-methoxybicyclo[3.2.2]non-3-one (82).

Following general procedure V, the reaction of 80.5 mg (0.35 mmol) of starting

carbinol **80**, afforded 74.0 mg (82%) of **82:83**, as a 10:1 diastereomeric mixture, after purification *via* flash silica chromatography (1.0 g; 50:1 to 5:1 hexanes/EtOAc). **82**: $R_f = 0.65$ (5:1 hexanes/EtOAc); 1 H-NMR (300 MHz, CDCl₃) δ 3.85 (d, J = 10.7 Hz, 1 H), 3.75 (d, J = 10.7 Hz, 1 H), 3.19 (s, 3 H), 2.76 (dd, J = 16.0, 4.0 Hz, 1 H), 2.64 (d, J = 14.4 Hz, 1 H), 2.55 (m, 1 H), 2.34 (dd, J = 16.0, 4.0 Hz, 1 H), 1.27 (d, J = 14.4 Hz, 1 H), 1.20 (s, 3 H), 1.18 (series of m, 4 H), 1.17 (s, 3 H), 1.08 (s, 3 H); 13 C-NMR (75 MHz, CDCl₃) δ 209.7 (C), 78.5 (C), 58.4 (C), 49.7 (CH₃), 47.6 (CH₂), 46.2 (CH₂), 40.6 (CH₂), 40.1 (CH), 39.8 (C), 28.2 (CH₂), 27.6 (CH₃), 24.9 (CH₂), 24.8 (CH₃), 21.6 (CH₃); IR (neat) 3034 (m), 2932 (s), 2828 (m), 1701 (s), 1458 (s), 1371 (s), 1277 (m), 1140 (s), 1064 (s), 916 (m), 738 (s), 680 (s) cm⁻¹; HRMS (EI) m/z 258.6305 [(M⁺); calcd. for $C_{14}H_{23}O_{2}^{35}$ Cl: 258.7842].

 $(1S^*, 2R^*, 5S^*, 9R^*)$ -2-chloromethyl-1,2,9-trimethyl-9-methoxybicyclo[3.2.2]non-3-one (83).

Following general procedure V, the reaction of 81.2 mg (0.36 mmol) of starting carbinol **81**, afforded 73.4 mg (79%) of **82:83**, as a 14:1 diastereomeric mixture, after purification *via* flash silica chromatography (1.0 g; 50:1 to 5:1 hexanes/EtOAc). **83**: $R_f = 0.38$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 3.62 (d, J = 2.8 Hz, 2

83: $R_f = 0.38$ (S:1 nexanes/EtOAc); 'H-NMR (300 MHz, CDCl₃) 8 3.62 (d, J = 2.8 Hz, 2 H), 3.17 (s, 3 H), 2.85 (dd, J = 15.4, 5.0 Hz, 1 H), 2.59 (m, 1 H), 2.39 (dd, J = 14.9, 3.0 Hz, 1 H), 2.08 (d, J = 14.9 Hz, 1 H), 1.51 (dd, J = 15.2, 4.9 Hz, 1 H), 1.39 (dd, J = 8.9, 4.9 Hz, 1 H), 1.18 (s, 3 H), 1.14 (s, 3 H), 1.12 (series of m, 3 H), 1.09 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) 8 210.9 (C), 78.4 (C), 57.0 (C), 51.1 (CH₃), 49.8 (CH₂), 45.7 (CH₂), 41.3 (CH), 41.2 (CH₂), 34.9 (C), 29.9 (CH₃), 29.7 (CH₂), 25.5 (CH₂), 25.1 (CH₃), 23.0 (CH₃); IR (neat) 3093 (w), 2986 (s), 2804 (s), 2777 (s), 1728 (s), 1705 (m), 1458 (s), 1383 (s), 1298 (m), 1116 (s), 1076 (s), 935 (m), 844 (m), 752 (m) cm⁻¹; HRMS (EI) m/z 258.7513 [(M⁺); calcd. for C₁₄H₂₃O₂³⁵Cl: 258.7842].

1-vinyl-cyclopentanol (84).

Following general procedure III, the reaction of 2.10 mL (23.8 mmol) of cylcopentanone, afforded 2.61 g (98%) of **84** with no need of purification.

84: $R_f = 0.48$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.00 (dd, J = 17.1, 10.5 Hz, 1 H), 5.24 (dd, J = 17.4, 1.5 Hz, 1 H), 5.00 (dd, J = 10.8, 1.2 Hz, 1 H), 1.80 (m, 3 H), 1.65 (series of m, 6 H); ¹³C-NMR (75 MHz, CDCl₃) δ 144.4 (CH), 111.0 (CH₂), 82.1 (C), 40.2 (2 CH₂), 23.6 (2 CH₂); IR (neat) 3372 (br s), 3088 (w), 2961 (s), 2874 (s), 1641 (m), 1439 (m), 1415 (m), 1321 (m), 1228 (m), 1192 (m), 1064 (m), 993 (s), 916 (s) cm⁻¹; LRMS (EI) m/z 112.1 (M⁺).

For previous syntheses see: (a) Johnson, C. R.; Cheer, C. J.; Goldsmith, D. J. Org. Chem. 1964, 29, 3320-3323. (b) Marcou, A.; Normant, H. Bull. Soc. Chim. France 1965, 3491-3494.

1-vinyl-cyclohexanol (85).

Following general procedure III, the reaction of 1.06 mL (10.1 mmol) of cylcohexanone, afforded 1.28 g (quantitative) of **85** with no need of purification.

85: $R_{f=} 0.42$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.94 (dd, J=17.4, 10.6 Hz, 1 H), 5.24 (dd, J=17.1, 1.2 Hz, 1 H), 5.02 (dd, J=10.8, 1.5 Hz, 1 H), 1.53 (series of m, 11 H); ¹³C-NMR (75 MHz, CDCl₃) δ ¹³C-NMR (75 MHz, CDCl₃) δ 145.9 (CH), 111.4 (CH₂), 71.5 (C), 37.5 (CH₂), 25.4 (2 CH₂), 21.9 (2 CH₂); IR (neat) 3385 (br s), 3086 (m), 3007 (m), 2934 (s), 2858 (s), 1652 (m), 1448 (s), 1352 (m), 1265 (m), 1175 (m), 1053 (s), 993 (s), 962 (s), 922 (s), 852 (m) cm⁻¹; LRMS (EI) m/z 126.0 (M⁺).

Commerically available or for original synthesis see: Marcou, A.; Normant, H. Bull. Soc. Chim. Fr. 1965, 3491-3494.

1-vinyl-cycloheptanol (86).

Following general procedure III, the reaction of 1.50 mL (12.7 mmol) of cylcoheptanone, afforded 1.72 g (97%) of **86** with no need of purification.

86: R_f = 0.57 (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.93 (ddd, J = 17.4, 10.8, 1.8 Hz, 1 H), 5.09 (dd, J = 17.4, 1.5 Hz, 1 H), 4.87 (dd, J = 10.8, 1.5 Hz, 1 H), 1.95 (m, 1 H), 1.60 (series of m, 6 H), 1.39 (series of m, 6 H); ¹³C-NMR (75 MHz, CDCl₃) δ 146.4 (CH), 109.9 (CH₂), 75.3 (C), 40.8 (2CH₂), 29.3 (2CH₂), 21.9 (2CH₂); IR (neat) 3379 (br s), 3084 (w), 3007 (w), 2939 (s), 2858 (s), 1625 (w), 1460 (s), 1415 (m), 1344 (m), 1203 (m), 1089 (m), 1030 (s), 995 (s), 954 (m), 918 (s), 844 (m) cm⁻¹; LRMS (EI) m/z 140.2 (M⁺).

For original synthesis see: Marcou, A.; Normant, H. Bull. Soc. Chim. Fr, 1965, 3491-3494.

$(1S^*, 2S^*)$ -2-methyl-1-vinyl-cyclopentanol (87) and $(1R^*, 2S^*)$ -2-methyl-1-vinyl-cyclopentanol (88).

Following general procedure III, the reaction of 2.00 g (20.3 mmol) of methylcyclopentanone, afforded 2.21 g (86%) of **87:88**, as a 10:1 mixture of diastereomers, after purification *via* flash alumina chromatography (60 g; basic Activity III, 50:1 hexanes/EtOAc).

87: $R_f = 0.43$ (4:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 5.78 (dd, J = 17.2, 10.6 Hz, 1 H), 5.19 (d, J = 17.2 Hz, 1 H), 5.01 (d, J = 11.0 Hz, 1 H), 1.71 (series of m, 4 H), 1.58 (m, 1 H), 1.43 (m, 2 H), 0.80 (d, J = 6.6 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 143.7 (CH), 111.9 (CH₂), 82.4 (C), 43.4 (CH), 40.2 (CH₂), 31.5 (CH₂), 21.3 (CH₂), 11.7 (CH₃); IR (neat) 3453 (br s), 3088 (w), 2963 (s), 2974 (s), 1722 (s), 1456 (s), 1375 (m), 1155 (m), 1045 (m), 999 (m), 947 (m), 916 (m), 734 (m) cm⁻¹; LRMS (EI) m/z 126.1 (M⁺).

88: $R_f = 0.67$ (4:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 5.63 (dd, J = 17.2, 10.6 Hz, 1 H), 5.05 (dd, J = 17.2, 1.7 Hz, 1 H), 4.85 (dd, J = 11.0, 1.3 Hz, 1 H), 1.84 (m, 2 H), 1.54 (series of m, 4 H), 1.05 (m, 1 H), 0.62 (d, J = 7.0 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 141.1 (CH), 111.6 (CH₂), 82.0 (C), 44.7 (CH), 37.5 (CH₂), 31.2 (CH₂), 20.5 (CH₂), 15.9 (CH₃); IR (neat) 3447 (br s), 3092 (w), 2961 (s), 2874 (s), 1732 (m), 1456 (m), 1375 (m), 1109 (m), 995 (s), 949 (s), 918 (s), 734 (m) cm⁻¹; LRMS (EI) m/z 126.1 (M⁺).

For original synthesis see: Battioni, J. P.; Capmau, M. L.; Chodkiewicz, W. Bull. Soc. Chim. Fr. 1969, 976-981.

89

2-chloromethyl cyclohexanone (89).

Following general procedure V, the reaction of 0.25 g (2.2 mmol) of **84**, afforded 0.23 g (69%) of **89**, and 0.025 g (10%) **90** after purification *via* flash silica chromatography (12 g; 10:1 hexanes/EtOAc).

89: $R_f^{=0.46}$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 3.84 (dd, J = 11.5, 4.9 Hz, 1 H), 3.41 (dd, J = 11.5, 7.6 Hz, 1 H), 2.62 (dt, J = 7.6, 4.9 Hz, 1 H), 2.37 (m, 2 H), 2.28 (m, 1 H), 2.07 (m, 1 H), 1.90 (m, 1 H), 1.65 (m, 2 H), 1.42 (m, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 222.8 (C), 56.8 (CH), 39.2 (CH₂), 38.6 (CH₂), 36.1 (CH₂), 26.3 (CH₂), 20.2 (CH₂); IR (neat) 3056 (w), 2930 (s), 2860 (s), 1707 (s), 1448 (s), 1373 (m), 1267 (m), 1130 (m), 1074 (m), 974 (w), 951 (w), 734 (m) cm⁻¹; HRMS (EI) m/z 146.0508 [(M⁺); calcd. for $C_7H_{11}^{-35}$ ClO: 146.0498].

For original synthesis see: Portnyagin, Y. M.; Chernysh, O. N. Zh. Org. Khim. 1974, 10, 2117-2119.

2-methylene-cyclohexanone (90).

Following general procedure V, the reaction of 0.51 g (4.6 mmol) of **84**, afforded 0.28 g (56%) of **90** after purification *via* flash silica chromatography (15 g; 1% Et₃N/hexanes).

90: $R_f = 0.67$ (5:1 hexanes/EtOAc); 1H -NMR (500 MHz, CDCl₃) δ 5.80 (d, J = 1.5 Hz, 1 H), 5.10 (d, J = 1.5 Hz, 1 H), 2.55 (t, J = 6.0 Hz, 1 H), 2.42 (t, J = 6.5 Hz, 1 H), 1.87 (t, J = 6.5 Hz, 1 H), 1.83 (m, 1 H), 1.74 (t, J = 6.5 Hz, 1 H), 1.70 (m, 1 H), 1.59 (m, 1 H), 1.50 (m, 1 H); 13 C-NMR (125 MHz, CDCl₃) δ 211.9 (C), 145.3 (C), 120.1 (CH₂), 40.7 (CH₂), 34.6 (CH₂), 32.8 (CH₂), 25.2 (CH₂); IR (neat) 3012 (w), 2932 (s), 2862 (s), 1718 (s), 1654 (m), 1446 (m), 1377 (m), 1269 (m), 1120 (s), 1068 (s), 1047 (m), 999 (m), 960 (m), 906 (m), 887 (m) cm⁻¹; HRMS (EI) m/z 110.0726 [(M⁺) calcd. for $C_7H_{10}O$: 110.0732].

For previous syntheses see: (a) Muehlstaedt, M.; Herzschuh, R. *J. Prakt. Chem.* 1963, 20, 20-34. (b) Muehlstaedt, M.; Zach, L.; Becwar-Reinhardt, H. *J. Prakt. Chem.* 1965, 29, 158-172. (c) Ksander, G. M.; McMurry, J. E.; Johnson, M. *J. Org. Chem.* 1977, 42, 1180-1185.

2-chloromethyl cycloheptanone (91).

Following general procedure V, the reaction of 0.36 g (2.9 mmol) of **85**, afforded 0.30 g (65%) of **91** and 68.6 mg (12%) of **92** after purification *via* flash silica chromatography (14 g; 10:1 hexanes/EtOAc).

91: $R_f = 0.52$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 3.76 (dd, J = 10.9, 6.0 Hz, 1 H), 3.45 (dd, J = 10.9, 7.1 Hz, 1 H), 2.86 (m, 1 H), 2.48 (m, 2 H), 1.85 (m, 4 H), 1.64 (m, 2 H), 1.43 (m, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ 212.8 (C), 53.8 (CH), 45.2 (CH₂), 43.7 (CH₂), 29.2 (CH₂), 29.0 (CH₂), 28.8 (CH₂), 23.6 (CH₂); IR (neat) 2930 (s), 2855 (s), 1699 (s), 1452 (m), 1331 (w), 1221 (w), 1143 (w), 1107 (w), 939 (w), 835 (w) cm⁻¹; HRMS (EI) m/z 160.0652 [(M⁺) calcd. for C_8H_{13} ³⁵ClO: 160.0655].

For original synthesis see: Ryu, I.; Ogawa, A.; Sonoda, N. Nippon Kagaku Kaishi 1985, 442-444

1-(1,2-dichloro-ethyl)-cyclohexanol (92).

Following general procedure V, the reaction of 0.36 g (2.9 mmol) of **85**, afforded 0.30 g (65%) of **91** and 68.6 mg (12%) of **92** after purification *via* flash silica chromatography (14 g; 10:1 hexanes/EtOAc).

92: $R_f = 0.40$ (5:1 hexanes/EtOAc); ${}^{1}H$ -NMR (500 MHz, CDCl₃) δ 4.06 (dd, J = 11.9, 3.0 Hz, 1 H), 3.98 (dd, J = 8.8, 3.0 Hz, 1 H) 3.66 (dd, J = 11.9, 8.8 Hz, 1 H), 2.01 (s, 1 H), 1.75 (d, J = 12.8 Hz, 2 H), 1.68 (d, J = 13.2 Hz, 2 H), 1.55 (m, 6 H); ${}^{13}C$ -NMR (125 MHz, CDCl₃) δ 73.3 (C), 72.3 (CH), 45.8 (CH₂), 34.8 (CH₂), 34.0 (CH₂), 25.3 (CH₂), 21.6 (CH₂), 21.4 (CH₂); IR (neat) 3456 (br s), 2936 (s), 2858 (s), 1448 (m), 1377 (m), 1319 (m), 1261 (m), 1149 (m), 1041 (m), 981 (m), 902 (m), 852 (w), 765 (m), 727 (m) cm⁻¹; HRMS (EI) m/z 196.0425 [(M⁺) calcd. for $C_8H_{14}{}^{35}Cl_2O$: 196.0422].

2-chloromethyl cyclooctanone (93).

Following general procedure V, the reaction of 0.42 g (3.2 mmol) of **86**, afforded 0.35 g (62%) of **93** and 0.12 g (18%) of **94** after purification *via* flash silica chromatography (15 g; 10:1 hexanes/EtOAc).

93: $R_f = 0.56$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 3.70 (dd, J = 10.4, 8.7 Hz, 1 H), 3.33 (dd, J = 10.4, 5.4 Hz, 1 H), 3.04 (m, 1 H), 2.39 (ddd, J = 14.8, 7.1, 3.2 Hz, 1 H), 2.29 (ddd, J = 14.8, 10.9, 3.2 Hz, 1 H), 2.01 (m, 1 H), 1.83 (ddd, J = 13.7, 6.5, 3.2 Hz, 1 H), 1.72 (m, 1 H), 1.60 (m, 1 H), 1.48 (m, 4 H), 1.34 (m, 1 H), 1.00 (m, 1 H); 13 C-NMR (125 MHz, CDCl₃) δ 216.5 (C), 51.4 (CH), 44.8 (CH2), 44.0 (CH₂), 31.9 (CH₂), 27.8 (CH₂), 24.5 (CH₂), 24.3 (CH₂), 23.3 (CH₂); IR (neat) 2928 (s), 2856 (s), 1701

(s), 1484 (s), 1448 (s), 1332 (m), 1199 (m), 1084 (m), 962 (w), 850 (w), 717 (s) cm⁻¹; HRMS (EI) m/z 174.0853 [(M⁺) calcd. for C₉H₁₅³⁵ClO: 174.0811].

1-(1,2-dichloro-ethyl)-cycloheptanol (94).

Following general procedure V, the reaction of 0.42 g (3.2 mmol) of **86**, afforded 0.35 g (62%) of **93** and 0.12 g (18%) of **94** after purification *via* flash silica chromatography (15 g; 10:1 hexanes/EtOAc).

94: $R_f = 0.44$ (5:1 hexanes/EtOAc); 1H -NMR (500 MHz, CDCl₃) δ 4.02 (dd, J = 5.7, 3.9 Hz, 1 H), 3.96 (d, J = 6.1 Hz, 2 H), 2.33 (s, 1 H), 1.97 (dd, J = 14.5, 9.7 Hz, 1 H), 1.81 (dd, J = 14.1, 9.2 Hz, 1 H), 1.65 (m, 4 H), 1.56 (m, 4 H), 1.40 (m, 2 H); ${}^{13}C$ -NMR (125 MHz, CDCl₃) δ 77.3 (C), 72.6 (CH), 64.0 (CH₂), 38.3 (CH₂), 38.3 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 22.2 (CH₂); IR (neat) 3449 (br m), 2928 (s), 2858 (s), 1460 (s), 1317 (m), 1253 (m), 1192 (m), 1120 (m), 1049 (m), 929 (m), 707 (m) cm⁻¹; HRMS (EI) m/z 210.0563 [(M⁺) calcd. for $C_9H_{16}^{35}Cl_2O$: 210.0578].

2-chloromethyl-3-methyl-cyclohexanone (95).

Following general procedure V, the reaction of 0.90 g (7.1 mmol) of **87**, afforded 0.81 g (71%) of **95:96**, as a 5:1 diastereomeric mixture, 88.6 mg (18%) of **97**, and (<2%) **98** after purification *via* flash silica chromatography (20 g; 10:1 hexanes/EtOAc). **95**: $R_f = 0.67$ (5:1 hexanes/EtOAc); 1 H-NMR (300 MHz, CDCl₃) δ 3.78 (dd, J = 11.5, 6.0 Hz, 1 H), 3.37 (dd, J = 11.5, 8.7 Hz, 1 H), 2.79 (dt, J = 8.7, 5.4 Hz, 1 H), 2.61 (m, 1 H), 2.25 (m, 2 H), 1.86 (m, 2 H), 1.68 (m, 1 H), 1.01 (m, 1 H), 0.74 (d, J = 7.1 Hz, 3 H); 13 C-NMR (75 MHz, CDCl₃) δ 208.2 (C), 57.7 (CH), 41.0 (CH₂), 39.9 (CH₂), 35.7 (CH₂), 33.3 (CH₂), 24.8 (CH), 19.9 (CH₃); IR (neat) 2932 (s), 2870 (s), 1709 (s), 1456 (s), 1377 (m), 1267 (w), 1155 (m), 1126 (w), 1080 (w), 1047 (w), 1016 (w), 991 (w), 951 (w), 736 (m) cm⁻¹; HRMS (EI) m/z 160.0655 [(M⁺) calcd. for $C_8H_{13}{}^{35}$ Cl₂O: 160.0655].

97

3-methyl-2-methylene-cyclohexanone (97).

Following general procedure V, the reaction of 0.90 g (7.1 mmol) of **87**, afforded 0.81 g (71%) of **95:96**, as a 5:1 diastereomeric mixture, 88.6 mg (18%) of **97**, and (<2%) **98** after purification *via* flash silica chromatography (20 g; 10:1 hexanes/EtOAc). **97**: $R_f = 0.61$ (5:1 hexanes/EtOAc); ${}^{1}H$ -NMR (300 MHz, CDCl₃) δ 5.66 (s, 1 H), 5.01 (s, 1 H), 2.45 (m, 1 H), 2.38 (dt, J = 16.8, 5.4 Hz, 1 H), 2.25 (ddd, J = 5.9, 10.2, 5.1 Hz, 1 H), 1.74 (series of m, 4 H), 1.02 (d, J = 6.6, 3 H); ${}^{13}C$ -NMR (75 MHz, CDCl₃) δ 202.3 (C), 151.0 (C), 117.5 (CH₂), 40.3 (CH₂), 36.3 (CH), 32.3 (CH₂), 21.7 (CH₂), 19.1 (CH₃); IR (neat) 3055 (w), 2932 (s), 2868 (s), 1707 (s), 1635 (m), 1458 (s), 1377 (s), 1265 (s), 1188 (s), 1124 (s), 1051 (s), 1018 (s), 968 (s), 920 (s), 736 (s) cm⁻¹; HRMS (EI) m/z 124.0890 [(M⁺) calcd. for $C_8H_{12}O$: 124.0888].

$(+/-)-(1R^*, 2R^*, 4S^*)-2-vinyl-bicyclo[2.2.1]heptan-2-ol (100).$

Following general procedure I, the reaction of 2.15 g (19.5 mmol) of norcamphor, afforded 0.93 g (49%) of **99:100**, as a 1:5.7 diastereomeric mixture, after purification *via* flash alumina chromatography (60 g; basic, Activity III; 20:1 hexanes/EtOAc).

100: R_f = 0.44 (5:1 hexanes/EtOAc); 1 H-NMR (300 MHz, CDCl₃) δ 5.97 (ddd, J = 17.4, 10.8, 0.9 Hz, 1 H), 5.10 (dt, J = 17.4, 1.2 Hz, 1 H), 5.91 (dt, J = 10.8, 1.2 Hz, 1 H), 2.16 (br s, 1 H), 2.03 (br s, 1 H), 1.97 (m, 1 H), 1.86 (br s, 1 H), 1.79 (dAB_q, J = 13.2, 4.5, 1.5 Hz, 1 H), 1.49 (dq, J = 13.9, 8.1 Hz, 1 H), 1.47 (d, J = 10.2 Hz, 1 H), 1.40-1.18 (series of m, 3 H), 1.12 (dd, J = 12.9, 3.6 Hz, 1 H); 13 C-NMR (75 MHz, CDCl₃) δ 145.4 (CH), 110.1 (CH₂), 79.0 (C), 47.1 (CH), 44.6 (CH₂), 38.1 (CH₂), 37.0 (CH), 28.7 (CH₂), 21.7 (CH₂); IR (neat) 3370 (br s), 3070 (w), 2955 (s), 2872 (s), 1630 (w), 1454 (m), 1410 (m), 1307 (s), 1163 (m), 1072 (m), 1054 (m), 993 (s), 981 (s), 916 (s), 881 (w), 844 (w), 734 (m) cm⁻¹; HRMS (EI) m/z 138.1042 [(M⁺) calcd. for C₉H₁₄O: 138.1045].

For previous synthesis see: Sundararaman, P.; Fallis, A. G. J. Org. Chem. 1977, 42, 813-819.

(+/-)-(1R*, 2S*, 4S*)-1,3,3-trimethyl-2-vinyl-bicyclo[2.2.1]heptan-2-ol (102).

Following general procedure I, the reaction of 2.02 g (13.2 mmol) of fenchone, afforded 1.14 g (52%) of **101:102**, as a 1:10 diastereomeric mixture, after purification *via* flash alumina chromatography (60 g; basic, Activity III; 50:1 hexanes/EtOAc).

102: $R_f = 0.67$ (5:1 hexanes/EtOAc); 1H -NMR (300 MHz, CDCl₃) δ 5.91 (dd, J = 17.1, 10.8 Hz, 1 H), 5.10 (dd, J = 17.1, 1.8 Hz, 1 H), 4.95 (dd, J = 10.5, 1.8 Hz, 1 H), 1.90 (m, 1 H), 1.66 (d, 1 H), 1.64 (m, 2 H), 1.42-1.30 (series of m, 2 H), 1.10 (d, J = 9.0 Hz, 1 H), 0.95 (dd, J = 12.9, 3.9 Hz, 1 H), 0.88 (s, 3 H), 0.85 (s, 3 H), 0.84 (s, 3 H); ${}^{13}C$ -NMR (75 MHz, CDCl₃) δ 142.7 (CH), 110.0 (CH₂), 82.2 (C), 52.0 (C), 48.3 (CH), 44.2 (C), 40.5 (CH₂), 29.1 (CH₂), 28.5 (CH₃), 25.4 (CH₂), 21.8 (CH₃), 17.1 (CH₃); IR (neat) 3507 (br w), 3086 (w), 2961 (s), 2934 (s), 2876 (m), 1670 (w), 1460 (m), 1385 (m), 1319 (w), 1261 (w), 1169 (w), 1134 (m), 1099 (m), 1080 (m), 1022 (w), 995 (m), 912 (m) cm⁻¹; HRMS (EI) m/z 180.1355 [(M⁺) calcd. for C₁₂H₂₀O: 180.1514].

For previous synthesis see Keegan, D. S.; Midland, M. M.; Werley, R. T.; McLoughlin, J. I. J. Org. Chem. 1991, 56, 1185-1191.

$(+/-)-(1R^*, 2R^*, 4R^*)-1,7,7$ -trimethyl-2-vinyl-bicyclo[2.2.1]heptan-2-ol (103).

Following general procedure I, the reaction of 11.2 g (0.07 mol) of camphor, afforded 11.0 g (83%) of **103** after purification *via* flash alumina chromatography (300 g; basic, Activity III; 100:1 hexanes/EtOAc).

103: $R_f = 0.59$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.01 (dd, J = 17.1, 10.8 Hz, 1 H), 5.19 (dd, J = 17.4, 1.2 Hz, 1 H), 5.03 (dd, J = 10.8, 1.5 Hz, 1 H), 2.31 (dt,

J = 18.3, 3.6 Hz, 1 H), 1.92 (m, 2 H), 1.89 (d, J = 18.6 Hz, 2 H), 1.47 (s, 1 H), 1.32 (m, 2 H), 1.10 (s, 3 H), 0.79 (s, 3 H), 0.78 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 143.8 (CH), 112.0 (CH₂), 81.4 (C), 60.3 (C), 42.9 (C), 31.1 (CH₂), 29.8 (CH), 26.9 (CH₂), 19.7 (CH₂), 14.1 (CH₃), 9.6 (CH₃), 9.2 (CH₃); IR (neat) 3508 (br s), 3058 (w), 2972 (s), 1625 (m), 1454 (s), 1398 (s), 1371 (s), 1325 (m), 1275 (s), 1069 (s), 999 (m), 972 (m), 918 (s), 736 (s) cm⁻¹; LRMS (EI) m/z 180.1 (M⁺).

For previous synthesis see: Capman, M. L.; Chodkiewicz, W.; Cadiot, P. *Tetrahedron Lett.* 1965, 1619-1624. Keegan, D. S.; Midland, M. M.; Werley, R. T.; McLoughlin, J. I. *J. Org. Chem.* 1991, 56, 1185-1191.

 $(1S^*, 2S^*, 4R^*, 8R^*)$ -1,8-dimethyl-2-ethenyl-8-methoxybicyclo[2.2.2]octan-2-ol (105) and $(1S^*, 2R^*, 4R^*, 8R^*)$ -1,8-dimethyl-2-ethenyl-8-methoxybicyclo[2.2.2]octan-2-ol (106).

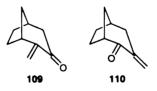
Following general procedure I, the reaction of 0.52 g (2.8 mmol) of starting ketone 78, afforded 0.51 g (85%) 105:106, as a 2.5:1 diastereomeric mixture, after purification *via* flash alumina chromatography (3 g; basic, Activity III; 100:1 hexanes/EtOAc).

105: $R_f = 0.37$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.88 (dd, J = 17.1, 10.8 Hz, 1 H), 5.27 (dd, J = 17.4, 2.4 Hz, 1 H), 5.05 (dd, J = 10.8, 2.1 Hz, 1 H), 3.18 (s, 3 H), 1.89 (m, 1 H), 1.80 (dd, J = 12.9, 1.8 Hz, 1 H), 1.79 (m, 1 H), 1.73 (m, 1 H), 1.63 (dd, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.22 (s, 3 H), 1.10 (d, J = 14.4, 2.1 Hz, 1 H), 1.48 (series of m, 3 H), 1.29 (br s, 1 H), 1.24 (series of m, 3 H), 1.25 (series of m, 3 H)

15.0 Hz, 1 H), 0.69 (s, 3 H); 13 C-NMR (75 MHz, CDCl₃) δ 141.2 (CH), 112.4 (CH₂), 76.5 (C), 73.5 (C), 49.3 (CH₃), 45.3 (CH₂), 39.3 (CH₂), 36.8 (C), 33.8 (CH), 29.2 (CH₂), 23.5 (CH₂), 22.2 (CH₃), 21.3 (CH₃); IR (NaCl, neat) 3458 (br m), 3015 (w), 2949 (s), 2870 (m), 2829 (w), 1740 (w), 1450 (m), 1373 (m), 1140 (m), 1064 (s), 989 (m), 945 (w), 920 (m) cm⁻¹; HRMS (EI) m/z 210.1629 [(M⁺), calcd. for C₁₃H₂₂O₂: 210.1620]. 106: R_f = 0.25 (5:1 hexanes/EtOAc); 1 H-NMR (300 MHz, CDCl₃) δ 6.10 (dd, J = 17.4, 10.8 Hz, 1 H), 5.16 (dd, J = 17.1, 1.5 Hz, 1 H), 5.01 (dd, J = 10.8, 1.5 Hz, 1 H), 3.09 (s, 3 H), 2.14 (dt, J = 14.1, 3.0 Hz, 1 H), 1.76 (m, 2 H), 1.59 (dd, J = 14.2 Hz, 2 H), 1.51 m, 1

10.8 Hz, 1 H), 5.16 (dd, J = 17.1, 1.5 Hz, 1 H), 5.01 (dd, J = 10.8, 1.5 Hz, 1 H), 3.09 (s, 3 H), 2.14 (dt, J = 14.1, 3.0 Hz, 1 H), 1.76 (m, 2 H), 1.59 (dd, J = 14.2 Hz, 2 H), 1.51 m, 1 H), 1.31 (s, 1 H), 1.25 (dd, J = 14.4, 3.3 Hz, 1 H), 1.21 (s, 3 H), 1.10 (d, J = 14.4 Hz, 1 H), 0.88 (s, 1 H), 0.64 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 143.7 (CH), 111.2 (CH₂), 76.0 (C), 74.7 (C), 48.6 (CH₃), 46.0 (CH₂), 38.2 (CH₂), 36.7 (C), 33.8 (CH), 27.6 (CH₂), 23.9 (CH₃), 22.3 (CH₂), 20.9 (CH₃); IR (NaCl, neat) 3466 (br s), 3084 (w), 2947 (s), 2826 (m), 1722 (m), 1639 (w), 1450 (m), 1373 (m), 1271 (m), 1167 (m), 118 (m), 1066 (m), 991 (m), 945 (w), 918 (m) cm⁻¹; HRMS (EI) m/z 210.1614 [(M⁺), calcd. for C₁₃H₂₂O₂: 210.1620].

 $(1S^*, 2S^*, 4R^*, 8S^*)$ -1,8-dimethyl-2-ethenyl-8-methoxybicyclo[2.2.2]octan-2-ol (107) and $(1S^*, 2R^*, 4R^*, 8S^*)$ -1,8-dimethyl-2-ethenyl-8-methoxybicyclo[2.2.2]octan-2-ol (108).

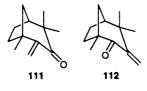

Following general procedure I, the reaction of 0.75 g (4.1 mmol) of starting ketone 79, afforded 0.61 g (70%) 107:108, as a 1.1:1 diastereomeric mixture, after

purification via flash alumina chromatography (3 g; basic, Activity III; 100:1 hexanes/EtOAc).

107: $R_f = 0.44$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.95 (dd, J = 17.1, 10.8 Hz, 1 H), 5.13 (dd, J = 16.5, 1.5 Hz, 1 H), 4.97 (dd, J = 11.1, 1.5 Hz, 1 H), 3.07 (s, 3 H), 2.20-1.23 (series of m, 9 H), 1.22 (s, 3 H), 1.13 (s, 1 H), 0.61 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 143.9 (CH), 111.4 (CH₂), 75.5 (C), 74.8 (C), 48.7 (CH₃), 45.5 (CH₂), 40.3 (CH₂), 36.4 (C), 34.2 (CH), 28.6 (CH₂), 22.6 (CH₃), 21.0 (CH₃), 20.4 (CH₂); HRMS (EI) m/z 210.1615 [(M⁺), calcd. for C₁₃H₂₂O₂: 210.1620].

108: $R_f = 0.37$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.87 (dd, J = 16.8, 10.8 Hz, 1 H), 5.13 (dd, J = 16.5, 0.9 Hz, 1 H), 4.97 (dd, J = 10.8, 1.5 Hz, 1 H), 3.08 (s, 3 H), 2.20-1.23 (series of m, 9 H), 1.12 (s, 3 H), 0.82 (s, 1 H), 0.59 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 143.1 (CH), 111.7 (CH₂), 75.7 (C), 75.0 (C), 49.1 (CH₃), 44.0 (CH₂), 39.9 (CH₂), 36.1 (C), 33.8 (CH), 27.4 (CH₂), 22.8 (CH₃), 21.1 (CH₂), 19.7 (CH₃); HRMS (EI) m/z 210.1622 [(M⁺), calcd. for C₁₃H₂₂O₂: 210.1620].

107:108: IR (neat) 3460 (br s), 3084 (w), 2934 (s), 2826 (m), 1637 (m), 1456 (s), 1373 (s), 1246 (s), 1076 (s), 995 (s), 920 (s) cm⁻¹.


(+/-)- $(1R^*, 5S^*)$ -2-methylene-bicyclo[3.2.1]octan-3-one (109) and (+/-)- $(1R^*, 5S^*)$ -3-methylene-bicyclo[3.2.1]octan-2-one (110).

Following general procedure V, the reaction of 0.51 g (3.6 mmol) of 100, afforded 0.41 g (82%) 109:110, as a 1:1.6 regioneric mixture, after purification *via* flash silica chromatography (15 g; 1% Et₃N/hexanes).

109: $R_f = 0.56$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.94 (s, 1 H), 5.15 (s, 1 H), 2.75 (t, J = 2.7 Hz, 1 H), 2.51 (m, 1 H), 2.39 (series of m, 2 H), 1.93-1.45 (series of m, 6 H); ¹³C-NMR (75 MHz, CDCl₃) δ 203.1 (C), 142.4 (C), 122.5 (CH₂), 49.7 (CH), 39.2 (CH₂), 35.6 (CH₂), 34.1 (CH), 28.8 (CH₂), 28.2 (CH₂); IR (neat) 3092 (w), 2955 (s), 2874 (s), 1697 (s), 1612 (m), 1450 (m), 1286 (m), 1188 (m), 1107 (s), 1057 (m), 981 (w), 939 (m), 916 (m), 734 (s) cm⁻¹; LRMS (EI) m/z 136.0 (M⁺).

110: $R_f = 0.57$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 5.66 (d, J = 2.0 Hz, 1 H), 4.98 (d, J = 1.5 Hz, 1 H), 3.04 (t, J = 4.5 Hz, 1 H), 2.51 (d, J = 2.5 Hz, 1 H), 2.43 (m, 1 H), 2.38 (dd, J = 7.5, 4.0 Hz, 1 H), 1.85 (m, 2 H), 1.77 (d, J = 12.0 Hz, 1 H), 1.71 (m, 1 H), 1.55 (m, 1 H), 1.49 (m, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 201.6 (C), 151.4 (C), 117.1 (CH₂), 49.3 (CH), 42.7 (CH), 37.3 (CH₂), 34.0 (CH₂), 31.4 (CH₂), 29.3 (CH₂); IR (neat) 3092 (w), 2955 (s), 2874 (s), 1697 (s), 1612 (m), 1450 (m), 1286 (m), 1188 (m), 1107 (s), 1057 (m), 981 (w), 939 (m), 916 (m), 734 (s) cm⁻¹; HRMS (EI) m/z 136.0887 [(M⁺) calcd. for C₉H₁₂O: 136.0888].

For original synthesis of **105** see: Keenan, M.; Rocco, V. P.; Takeuchi, K.; Tupper, D. E.; Vixien, V. Patent GB2367554. **2002**.

(+/-)- $(1R^*, 5S^*)$ -1,4,4-trimethyl-2-methylene-bicyclo[3.2.1]octan-3-one (111) and (+/-)- $(1R^*, 5S^*)$ -1,4,4-trimethyl-3-methylene-bicyclo[3.2.1]octan-3-one (112).

Following general procedure V, the reaction of 0.50 g (3.0 mmol) of 102, afforded 0.43 g (86%) 111:112, as a 1:1.5 regioneric mixture, after purification *via* flash silica chromatography (15 g; 1% Et₃N/hexanes).

111: $R_f = 0.71$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.74 (s, 1 H), 5.09 (s, 1 H), 1.98 (d, J = 12.6 Hz, 2 H), 1.83 (series of m, 2 H), 1.55-1.27 (series of m, 3 H), 1.10 (s, 3 H), 1.07 (s, 3 H), 0.98 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 205.4 (C), 173.5 (C), 114.4 (CH₂), 57.5 (C), 42.6 (C), 40.0 (CH), 35.0 (CH₂), 34.3 (CH₂), 30.3 (CH₂), 21.8 (CH₃), 19.8 (CH₃), 19.3 (CH₃); IR (NaCl, neat) 3081 (w), 2968 (s), 2874 (s), 1695 (s), 1610 (m), 1462 (s), 1385 (m), 1267 (m), 1051 (s), 1030 (m), 935 (m), 908 (m), 736 (s) cm⁻¹; LRMS (EI) m/z 178.2 (M⁺).

112: $R_f = 0.74$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 5.54 (d, J = 1.5 Hz, 1 H), 5.02 (d, J = 1.5 Hz, 1 H), 2.02 (m, 1 H), 2.00 (s, 1 H), 1.98 (d, J = 11.7 Hz, 1 H), 1.77 (series of m, 2 H), 1.51 (m, 2 H), 1.24 (s, 3 H), 1.10 (s, 3 H), 1.04 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 207.9 (C), 154.8 (C), 114.5 (CH₂), 48.7 (C), 46.8 (C), 45.5 (CH), 41.5 (CH₂), 37.4 (CH₂), 26.5 (CH₂), 26.4 (CH₃), 23.2 (CH₃), 23.1 (CH₃); IR (NaCl, neat) 3081 (w), 2968 (s), 2874 (s), 1695 (s), 1610 (m), 1462 (s), 1385 (m), 1267 (m), 1051 (s), 1030 (m), 935 (m), 908 (m), 736 (s) cm⁻¹; HRMS (EI) m/z 178.1358 [(M⁺) calcd. for C₁₂H₁₈O: 178.1358].

 $(1R^*, 5R^*)$ -1,8,8-trimethyl-2-methylene-bicyclo[3.2.1]octan-3-one (113) and $(1R^*, 5R^*)$ -1,8,8-trimethyl-3-methylene-bicyclo[3.2.1]octan-2-one (114).

Following general procedure V, the reaction of 0.50 g (2.7 mmol) of 103, afforded 0.47 g (96%) 113:114, as a 3:1 regiomeric mixture, after purification *via* flash silica chromatography (15 g; 1% Et₃N/hexanes).

113: $R_f = 0.63$ (5:1 hexanes/EtOAc); $[\alpha]_D^{20} = -46.8$ ° (c 1.40); ¹H-NMR (500 MHz, CDCl₃) δ 5.63 (m, 1 H), 4.86 (m, 1 H), 2.46 (dm, J = 9.6 Hz, 1 H), 2.01 (dq, J = 11.1, 1.8 Hz, 2 H), 1.78 (t, J = 2.7 Hz, 2 H), 1.50-1.30 (series of m, 2 H), 0.66 (s, 3 H), 0.59 (s, 3 H), 0.53 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 203.9 (C), 141.8 (C), 121.1 (CH₂), 46.0 (C), 44.6 (C), 42.5 (CH₂), 42.4 (CH), 29.2 (CH₂), 26.4 (CH₂), 19.1 (CH₃), 18.5 (CH₃), 8.6 (CH₃); IR (NaCl, neat) 3098 (m), 2910 (s), 2868 (s), 1615 (m), 1462 (s), 1387 (s), 1282 (s), 1236 (s), 1130 (s), 1086 (s), 1016 (s), 995 (s), 960 (s), 918 (s), 740 (m) cm⁻¹; HRMS (EI) m/z 178.2701 [(M⁺) calcd. for C₁₁H₁₈O: 178.2707].

114: $R_f = 0.58$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 5.48 (d, J = 0.9 Hz, 1 H), 4.79 (d, J = 0.6 Hz, 1 H), 2.36 (ddd, J = 11.1, 2.7, 1.5 Hz, 1 H), 2.10 (dt, J = 9.6, 0.6 Hz, 2 H), 1.63 (t, J = 2.3 Hz, 2 H), 1.20-1.09 (series of m, 2 H), 0.71 (s, 3 H), 0.67 (s, 3 H), 0.59 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 201.1 (C), 154.2 (C), 115.2 (CH₂), 56.8 (C), 45.9 (C), 44.5 (CH), 36.2 (CH₂), 35.4 (CH₂), 34.3 (CH₂), 23.5 (CH₃), 16.5 (CH₃), 12.9 (CH₃); IR (NaCl, neat) 3098 (m), 2910 (s), 2868 (s), 1615 (m), 1462 (s), 1387 (s), 1282 (s), 1236 (s), 1130 (s), 1086 (s), 1016 (s), 995 (s), 960 (s), 918 (s), 740 (m) cm⁻¹; LRMS (EI) m/z 178.1 (M⁺).

 $(1S^*, 5R^*, 9R^*)$ -1,9-dimethyl-9-methoxy-2-methylenebicyclo[3.2.2]nonan-3-one (115).

Following general procedure V, the reaction of 0.10 g (0.48 mmol) of starting carbinols **105:106**, as a 1:1 mixture, afforded 90.3 mg (90%) of **115** after purification *via* flash silica chromatography (3 g; 1% Et₃N/hexanes).

115: $R_f = 0.38$ (5:1 hexanes/EtOAc); $[\alpha]_D^{20} = -24.3$ (c = 0.38); 1H -NMR (300 MHz, CDCl₃) δ 5.75 (d, J = 0.9 Hz, 1 H), 5.17 (d, J = 0.9 Hz, 1 H), 3.17 (s, 3 H), 3.15 (d, J = 12.0 Hz, 1 H), 2.66 (dt, J = 18.9, 3.3 Hz, 1 H), 2.53 (dd, J = 19.5, 4.8 Hz, 1 H), 2.11 (m, 1 H), 1.87 (dd, J = 15.0, 3.6 Hz, 1 H), 1.75 (dd, J = 15.3, 0.9 Hz, 1 H), 1.52 (dd, J = 17.1, 1.5 Hz, 1 H), 1.50 (m, 1 H), 1.49 (dd, J = 17.4, 2.4 Hz, 1 H), 1.17 (s, 3 H), 1.12 (s, 3 H); 13 C-NMR (75 MHz, CDCl₃) δ 205.1 (C), 158.1 (C), 118.4 (CH₂), 75.0 (C), 49.0 (CH₃), 46.5 (CH₂), 46.4 (CH₂), 34.7 (C), 34.3 (CH), 33.4 (CH₂), 29.4 (CH₃), 23.7 (CH₂), 29.4 (CH₃); IR (neat) 3090 (w), 2928 (s), 2826 (m), 1722 (s), 1684 (s), 1464 (s), 1375 (s), 1118 (s), 1078 (s), 981 (w), 943 (m), 916 (m), 823 (w) cm⁻¹; HRMS (EI) m/z 208.1468 [(M⁺); calcd. for C₁₃H₂₀O₂: 208.1463].

(1 S^* , 5 R^* , 9 S^*)-1,9-dimethyl-9-methoxy-2-methylenebicyclo[3.2.2]nonan-3-one (116).

Following general procedure V, the reaction of 0.13 g (0.63 mmol) of starting carbinols **107:108**, as a 1:1 mixture, afforded 0.11 g (88%) of **116** after purification *via* flash silica chromatography (3 g; 1% Et₃N/hexanes).

116: $R_f = 0.44$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.89 (d, J = 1.2 Hz, 1 H), 5.17 (d, J = 0.9 Hz, 1 H), 3.11 (d, J = 14.4 Hz, 1 H), 3.06 (s, 3 H), 2.95 (dd, J = 1.2 Hz, 1 H), 3.06 (s, 3 H), 2.95 (dd, J = 1.2 Hz, 1 H), 3.06 (s, 3 H), 2.95 (dd, J = 1.2 Hz, 1 H), 3.06 (s, 3 H), 2.95 (dd, J = 1.2 Hz, 1 H), 3.11 (d, J = 1.4.4 Hz, 1 H), 3.06 (s, 3 H), 2.95 (dd, J = 1.2 Hz, 1 H), 3.11 (d, J = 1.4.4 Hz, 1 Hz)

18.3, 5.7 Hz, 1 H), 2.31 (dd, J = 18.3, 2.4 Hz, 1 H), 2.10 (p, J = 2.7 Hz, 1 H), 1.72 (d, J = 15.0 Hz, 1 H), 1.68 (d, J = 16.2 Hz, 1 H), 1.54 (series of m, 2 H), 1.45 (d, J = 14.4 Hz, 1 H) 1.23 (s, 3 H), 1.12 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 202.5 (C), 156.2 (C), 118.1 (CH₂), 76.1 (C), 48.8 (CH₃), 46.4 (CH₂), 44.3 (CH₂), 37.4 (CH), 34.7 (C), 32.5 (CH₂), 29.6 (CH₂), 24.7 (CH₃), 24.6 (CH₃); IR (neat) 3090 (w), 2928 (s), 2826 (s), 1722 (s), 1684 (m), 1597 (w),1464 (s), 1375 (s), 1118 (s), 1078 (s), 981 (m), 943 (m), 916 (m), 823 (w) cm⁻¹; HRMS (EI) m/z 208.1463 [(M⁺); calcd. for C₁₃H₂₀O₂: 208.1463].

1-(2-methyl-propenyl)-piperidine (117).

To a stirring chilled, 0 °C, heterogeneous solution of 12.04 g K₂CO₃ (87.1 mmol, 35 mol%) in 58 mL piperidine (586.4 mmol, 2.36 eq), was added 22.6 mL *iso*-butryaldehyde (248.8 mmol, 1.00 eq) in a dropwise manner over 1.5 hrs. After complete addition the reaction was stirred at 0 °C for 3 hrs, then warmed to room temperature and agitated an additional 8 hrs. The reaction was gravity filtered, dried over MgSO₄, filtered, and concentrated to produce a yellow oil. The oil was purified *via* short path distillation at room temperature under aspirator pressure. To prevent severe foaming, 5 mL silicon oil was added to the distillation mixture. The distillation produced 27.12 g (78%) of the desired piperidine enamine, **117**, as a water white oil.

117: bp = 22 °C (15 mmHg); 1 H-NMR (300 MHz, CDCl₃) δ 5.30 (q, J = 1.2 Hz, 1 H), 2.75 (t, J = 5.1 Hz, 2 H), 2.50 (t, J = 5.1 Hz, 2 H), 1.62 (s, 3 H), 1.55 (d, J = 1.2 Hz, 3 H), 1.52-1.36 (series of m, 6 H); 13 C-NMR (75 MHz, CDCl₃) δ 136.1 (CH), 120.8 (C), 54.0 (CH₂), 47.2 (CH₂), 27.0 (CH₂), 25.7 (CH₂), 24.0 (CH₂), 22.2 (CH₃), 17.3 (CH₃); IR (neat)

3010 (w), 2932 (s), 2853 (m), 27m), 1089 (m), 2737 (m), 1678 (w), 1441 (m), 1386 (m), 1269 (w), 1180 (m), 1111 (m), 1035 (m), 987 (w), 862 (m) cm⁻¹; LRMS (EI) m/z 139.2 (M⁺), 140.2 (M⁺ +H), 124.1 (M⁺ -Me).

(2, 4, 4)-trimethylcyclohexanes-2-en-1-one (118).

Enamine 117 was chilled to 0 °C and 25.0 mL ethyl vinyl ketone (251.1 mmol, 1.01 eq) was added dropswise *via* addition funnel over a period of 45 min. After complete addition the reaction was warmed to room temperature and stirred for 24 hrs. The addition of 300 mL of an aqueous 15% HCl solution followed with aggitation for an additional 48 hrs at room temperature. The reaction was then brought to reflux (110 °C) for 1 hr and then cooled to room temperature. The reaction was partitioned with brine and the reaction mixture was extracted four times with 50 mL Et₂O. The combined ethereal layers was dried over MgSO₄, filtered, and concentrated to produce a yellow oil. The oil was distilled *via* the short-path at aspirator pressure (15 mmHg) with heating to produce 20.92 g (60%) of 118 as a water-white oil.

118: bp = 74-76 °C (15 mm Hg); 1 H-NMR (300 MHz, CDCl₃) δ 6.32 (s, 1 H), 2.36 (t, J = 6.6 Hz, 2 H), 1.74 (t, J = 6.6 Hz, 2 H), 1.64 (d, J = 1.5 Hz, 3 H), 1.04 (s, 6 H); 13 C-NMR (75 MHz, CDCl₃) δ 199.6 (C), 155.0 (CH), 132.3 (C), 36.2 (CH₂), 34.3 (CH₂), 32.8 (C), 27.8 (CH₃), 15.8 (CH₃); IR (neat) 3300 (w), 2926 (s), 2868 (s), 1716 (m), 1678 (s), 1448 (s), 1361 (s), 1176 (s), 1087 (s), 1023 (s), 981 (w), 916 (m), 883 (m) cm⁻¹, 752 (w); LRMS (EI) m/z 139.0 (M⁺¹), 138.0 (M⁺); HRMS (EI) m/z 138.1044 [(M⁺), calcd. for C₉H₁₄O: 138.1045].

For previous synthesis see: Paquette, L. A.; Oplinger, J. A. Tetrahedron 1989, 45, 107-124.

$(+/-)-(2S^*, 3S^*)-3$ -allyl-(2, 4, 4)-trimethylcyclohexanone (119).

A solution of 13.30 g 118 (96.2 mmol, 1.00 eq) in 180 mL CH₂Cl₂ was chilled to -78 °C. To this solution, 15.0 mL TiCl₄ (136.7 mmol, 1.42 eq) was added in a dropwise manner slowly turning the solution from clear to dark red and finally to a bright yellow slurry. After the complete addition of TiCl₄ the reaction was kept at -78 °C for an additional 10 min To this, 14.77 mL allyltrimethylsilane (92.9 mmol, 0.96 eq) in 20 mL CH₂Cl₂ was added dropwise turning the solution a ruddy red The reaction temperature was kept at -78 °C after the silanes complete addition for 3 hrs The reaction was warmed to 0 °C, quenched with H₂O and partitioned with 100 mL Et₂O. After separation the aqueous layer was extracted two times with 100 mL Et₂O. The combined ethereal layers were washed once with 100 mL H₂O and once with 150 mL brine. The organics were dried over MgSO₄, filtered, and concentrated to afford a clear oil. The oil was purified *via* flash silica chromotography (400 g; 30:1 hexanes/EtOAc) to provide 11.27 g (65%) of racemic diastereomer 119 as a transparent oil.

119: 1 H-NMR (300 MHz, CDCl₃) δ 5.71 (ABsext, J = 17.1, 10.2, 6.9 Hz, 1 H), 4.91 (dd, J = 17.1, 1.5 Hz, 1 H), 4.84 (dd, J = 10.2, 1.5 Hz, 1 H), 2.35 (td, J = 14.1, 6.6 Hz, 1 H), 2.23 (dq, J= 14.6, 6.3 Hz, 1 H), 2.18 (m, 2 H), 1.98 (dt, J = 15.3, 6.9 Hz, 1 H), 1.55 (dd, J = 6.3, 3.0 Hz, 1 H), 1.50 (dd, J = 13.8, 4.8 Hz, 1 H), 1.19 (dt, J = 11.4, 5.1 Hz, 1 H), 0.96

(s, 3 H), 0.94 (d, J = 6.6 Hz, 3 H), 0.90 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 212.8 (C), 138.4 (CH), 115.0 (CH₂), 52.9 (CH), 46.2 (CH), 41.1 (CH₂), 37.8 (CH₂), 34.4 (CH₂), 34.1 (C), 29.4 (CH₃), 19.8 (CH₃), 12.5 (CH₃); IR (neat) 3076 (m-w), 2970 (s), 2937 (s), 2872 (s), 1714 (s), 1678 (s), 1639(m), 1469 (s), 1437 (m), 1390 (m), 1369 (m), 1311 (m), 1248 (w), 1153 (m), 1010 (m), 995 (m), 910 (s) cm⁻¹; HRMS (EI) m/z 180.1507 [(M⁺), calcd. for C₁₂H₂₀O: 180.1514].

For previous synthesis see: Paquette, L. A.; Oplinger, J. A. Tetrahedron 1989, 45, 107-124.

120

$(+/-)-(2S^*, 3S^*)-(2,2,6-trimethyl-5-oxo-cyclohexyl)$ -acetaldehyde (120).

A solution of 11.8162 g 119 (65.5 mmol, 1.00 eq) in 250 mL CH₂Cl₂ was charged with N₂ at -78 °C. Ozone was bubbled into the reaction until a clear blue solution was produced, ~2 hr. Nitrogen was then bubbled through the reaction, to removing excess ozone, until a water white solution was generated. The reaction was worked up in a reductive manner by the dropwise addition of 51.95 g Ph₃P (198.0 mmol, 3.02 eq) in 200 mL CH₂Cl₂. After overnight stirring, 12 hrs, at room temperature the yellow green heterogeneous solution was gravity filtered and concentrated to afford a yellow white solid. The solid was taken up in 200 mL Et₂O and gravity filtered onto a silica column and purified *via* flash silica chromotography (200 g; 20%EtOAc/hexanes) to provide 11.81 g (98%) of the desired aldehyde 120 as a white solid.

120: mp = 115-120 °C; ¹H-NMR (300 MHz, CDCl₃) δ 9.75 (dd, J = 2.1, 0.9 Hz, 1 H), 2.90-2.15 (series of m, 4 H), 2.05-1.95 (series of m, 1 H), 1.80-1.60 (series of m, 2 H),

1.04 (s, 3 H), 0.97 (d, J = 6.3 Hz, 1 H), 0.94 (s, 3 H), 0.92 (d, J = 6.6 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 211.6 (C), 201.3 (CH), 45.4 (CH), 40.9 (CH), 40.6 (CH₂), 38.0 (CH₂), 35.8 (CH₂), 33.7 (C), 29.4 (CH₃), 19.6 (CH₃), 12.6 (CH₃); HRMS (EI) m/z 182.1302 [(M⁺), calcd. for C₁₁H₁₈O₂: 182.1307].

For previous synthesis see: Maleczka, Jr., R. E. Ph.D. Dissertation, Ohio State University, 1992.

$(+/-)-(1R^*, 3R^*, 4S^*, 6S^*)-6$ -hydroxy-3,8,8-trimethylbicyclo[2.2.2]oct-2-one (121).

A solution of 98.0 mL AcOH (1.7 mols, 26.1 eq) in 125 mL THF was prepared, to which 11.94 g 120 (major) (65.5 mmol, 1.00 eq) was added. The reaction was refluxed (95 °C) for 10 hrs and then partitioned with 75 mL Et₂O and 75 mL of an aqueous 1 M NaOH solution. After separation the ethereal layer was washed two times with 75 mL of an aqueous 1 M NaOH solution. The combined aqueous layers were extracted two times with 50 mL Et₂O. The combined ethereal layers were dried over MgSO₄, filtered, and concentrated to produce a white solid. The solid was purified *via* alumina chromatography (300 g; basic Activity III; 30:1 hexanes/EtOAc) to yield 8.9486 g (75%) of racemic diasteromer 121 as a white solid.

121: mp = 92-94 °C; ¹H-NMR (300 MHz, CDCl₃) δ 4.22 (dt, J = 9.3, 3.6, 1 H), 2.61 (AB_q, J = 7.2, 5.1, 2.1 Hz, 1 H), 2.40 (dAB_q, J = 9.3, 2.1, 1.2 Hz, 1 H), 2.30 (q, J = 3.0 Hz, 1 H), 1.63 (br s, 1 H), 1.60 (q, J = 2.4 Hz, 1 H), 1.52 (dd, J = 6.6, 3.0 Hz, 2 H), 1.48 (q, J = 3.0 Hz, 1 H), 1.17 (d, J = 7.5 Hz, 3 H), 1.09 (s, 3 H), 1.05 (s, 3 H); ¹³C-NMR (75

MHz, CDCl₃) δ 219.2 (C), 69.0 (CH), 53.1 (CH), 45.0 (CH), 42.7 (CH), 36.0 (CH₂), 30.6 (C), 30.5 (CH₃), 29.3 (CH₃), 28.0 (CH₂), 12.9 (CH₃); IR (neat) 3431 (br s), 2966 (s), 2872 (s), 1724 (s), 1452 (s), 1388 (s), 1294 (m), 1170 (m), 1103 (s), 1032 (s), 1005 (m), 916 (m), 733 (s) cm⁻¹; HRMS (EI) *m/z* 182.1307 [(M⁺), calcd. for C₁₁H₁₈O₂: 182.1307]. For previous synthesis see: Paquette, L. A.; Maleczka, Jr., R. E.; Qiu, F. *J. Org. Chem*.

1991, *56*, 2455-2461.

122

(+/-)- $(1R^*, 3R^*, 4S^*, 6S^*)$ -6-methoxymethoxy-3,8,8-trimethylbicyclo[2.2.2]oct-2-one (122).

A solution of 8.9486 g **121** (49.0 mmol, 1.00 eq) in 30 mL THF was cooled to 0 °C. To this chilled solution, 9.40 mL ⁱPr₂NEt (54.0 mmol, 1.01 eq) was added in a dropwise manner. After complete addition the reaction was stirred at 0 °C for 15 min which was followed by addition of 4.3 mL methoxymethylchloride (56.6 mmol, 1.15 eq) in 20 mL THF. Upon complete addition the reaction was warmed to room temperature and stirred for 30 hrs The reaction was taken up in 30 mL Et₂O and partitioned with 30 mL H₂O. After separation the ethereal layer was washed three times with 30 mL H₂O. The combined aqueous layers were extracted once with 30 mL Et₂O. The combined organics were dried over MgSO₄, filtered, and concentrated to provide a pale yellow oil. The oil was purified *via* flash silica chromatography (250 g; 4:1 hexanes/EtOAc) to yield 8.31 g (75%) of **122**.

122: $R_f = 0.57$ (4:1 hexanes/EtOAc); ${}^{1}H$ -NMR (300 MHz, CDCl₃) δ 4.43 (d, J = 6.6 Hz, 1 H), 4.42 (d, J = 6.6 Hz, 1 H), 3.87 (m, 1 H), 3.15 (s, 3 H), 2.44 (m, 1 H), 2.28 (m, 1 H), 2.21 (m, 1 H), 1.54 (dt, J = 9.0, 1.8 Hz, 1 H), 1.37 (dd, J = 11.7, 1,8 Hz, 1 H), 1.32 (m, 2 H), 1.00 (d, J = 4.5 Hz, 3 H), 0.95 (s, 3 H), 0.89 (s, 3 H); ${}^{13}C$ -NMR (75 MHz, CDCl₃) δ 216.2 (C), 94.5 (CH₂), 73.7 (CH), 54.9 (CH₃), 49.6 (CH), 44.7 (CH), 42.2 (CH), 36.3 (CH₂), 30.5 (CH₃), 30.2 (C), 29.0 (CH₃), 26.1 (CH₂), 12.8 (CH₃); IR (neat) 2963 (s), 2824 (m), 2788 (w), 1724 (s), 1456 (m), 1369 (m), 1217 (m), 1145 (s), 1101 (s), 1037 (s), 918 (m), 883 (w), 733 (m), 648 (m) cm⁻¹; HRMS (EI) m/z 226.1568 [(M⁺), calcd. for $C_{13}H_{22}O_3$: 226.1569].

For previous synthesis see: Paquette, L. A.; Maleczka, Jr., R. E.; Qiu, F. J. Org. Chem. 1991, 56, 2455-2461.

(+/-)- $(1R^*, 3R^*, 4S^*, 6S^*)$ -6-methoxymethoxy-3,8,8-trimethylbicyclo[2.2.2]oct-2-one tosylhydrazone (123).

To a room temperature stirring solution of 8.31 g 122 (36.7 mmol, 1.00 eq) in 50 mL MeOH, was added 8.26 g tosylhydrazide (44.3 mmol, 1.21 eq). The reaction was stirred at room temperature for 36 hrs. After concentration and PhH azeotrope, the residue was taken up consecutively in cold (0 °C) ether and filtered. The filtrate was then concentrated to produce 14.45 g (quantitative yield) of 123 as a white gel like material. Only one isomer was observed *via* NMR.

123: 1 H-NMR (300 MHz, CDCl₃) δ 8.47 (br s, 1 H), 7.80 (d, J = 8.1 Hz, 2 H), 7.23 (d, J = 7.8 Hz, 2 H), 4.46 (AB_q, J = 4.5, 6.0 Hz, 2 H), 3.80 (m, 1 H), 3.22 (s, 3 H), 3.01 (q, J = 3.0 Hz, 1 H), 2.38 (s, 3 H), 2.12 (m, 1 H), 1.35 (m, 2 H), 1.29 (dd, J = 5.1, 2.4 Hz, 1 H), 1.25 (dd, J = 4.8, 2.4 Hz, 1 H), 1.20 (m, 1 H), 1.02 (s, 3 H), 1.01 (s, 3 H), 0.98 (d, J = 6.0 Hz, 3 H); 13 C-NMR (75 MHz, CDCl₃) δ 165.5 (C), 143.2 (C), 135.7 (C), 128.9 (CH), 128.1 (CH), 97.1 (CH₂), 78.7 (CH), 54.8 (CH₃), 44.8 (CH), 37.4 (CH), 36.1 (CH₂), 35.3 (CH), 30.5 (CH₃), 30.4 (C), 29.1 (CH₃), 26.4 (CH₂), 21.5 (CH₃), 16.0 (CH₃); IR (neat) 3500 (br m), 3123 (s), 2966 (s), 1915 (w), 1736 (s), 1645 (s), 1599 (s), 1495 (s), 1334 (s), 1163 (s), 943 (s), 814 (s), 760 (s), 730 (s), 705 (s) cm⁻¹; HRMS (EI) m/z 394.1918 [(M⁺), calcd. for C₂₀H₃₀N₂O₄S: 394.1926].

For previous synthesis see: Paquette, L. A.; Maleczka, Jr., R. E.; Qiu, F. J. Org. Chem. 1991, 56, 2455-2461.

(+/-)- $(1R^*, 4S^*, 6S^*)$ -6-methoxymethoxy-3,8,8-trimethylbicyclo[2.2.2]oct-2-ene (124).

To a cold (0 °C) magnetically stirred solution of 3.51 g 123 (8.9 mmol, 1.00 eq) in 40 mL PhH, 22.3 mL *n*-BuLi (1.6 M/hexanes, 4.01 eq) was added in a dropwise manner. After complete addition the reaction was stirred at 0 °C for 3 hrs. The reaction was quenched with an aqueous solution of NH₄Cl_(sat) and stirred at room temperature for 2 hrs. The reaction was separated and the aqueous layer extracted once with 50 mL Et₂O. After separation the ethereal layer was washed three times with 40 mL of an aqueous soluton of NH₄Cl_(sat). The combined aqueous layers were extracted once with 50 mL Et₂O. The

combined organics were was washed once with 30 mL brine, then dried over MgSO₄, filtered, and concentrated to produce an oil. The oil was purified *via* flash silica chromatography (25 g; 10%EtOAc/hexanes) to yield 1.2496 g **124** (67%) as an oil.

124: R_f = 0.61 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.68 (d, J = 6.3 Hz, 1 H), 4.62 (d, J = 6.9 Hz, 1 H), 4.58 (d, J = 6.9 Hz, 1 H), 3.82 (dt, J = 8.7, 3.3 Hz, 1 H), 3.31 (s, 3 H), 2.59 (sextet, J = 2.7 Hz, 1 H), 2.27 (ddd, J = 13.8, 8.4, 3.0 Hz, 1 H), 1.83 (s, 3 H), 1.81 (m, 1 H), 1.12 (m, 2 H), 1.03 (m, 1 H), 0.95 (s, 3 H), 0.79 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 145.0 (C), 120.3 (CH), 94.7 (CH₂), 75.5 (CH), 55.1 (CH₃), 47.7 (CH), 39.6 (CH₂), 36.8 (CH), 31.8 (CH₂), 31.5 (C), 31.0 (CH₃), 29.3 (CH₃), 22.0 (CH₃); IR (NaCl, neat) cm⁻¹ 3015 (w), 2930 (s), 2864 (m), 2822 (w), 1464 (w), 1444 (w), 1363 (w), 1143 (m), 1101 (s), 1043 (s), 1027 (m), 991 (w), 945 (w), 918 (m), 802 (w); HRMS (CI) m/z 228.1976 [(M⁺ NH₄), calcd. for C₁₃H₂₂O₂: 228.1964].

For previous synthesis see: Paquette, L. A.; Maleczka, Jr., R. E.; Qiu, F. J. Org. Chem. 1991, 56, 2455-2461.

125

(+/-)-(1R, 2S, 4S)- 5,8,8-trimethyl-bicyclo[2.2.2]oct-5-en-2-ol (120).

To a stirring solution of 0.5575 g **124** (2.6 mmol, 1.00 eq) in 30 mL MeOH was added three drops of an aqueous 12 M HCl solution. The reaction was heated at 70 °C for 5 hrs, afterwhich the reaction was cooled to room temperature and concentrated. The residue was purified *via* flash chromotography (5 g; 5% EtOAc/hexanes) to provide 0.32 g (72%) of **125** as a white solid.

125: mp = 58-60 °C R_f = 0.32 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.64 (dd, J = 6.3, 1.2 Hz, 1 H), 3.84 (m, 1 H), 2.49 (sext, J = 3.0 Hz, 1 H), 2.32 (ddd, J = 19.5, 8.1, 2.7 Hz, 1 H), 1.82 (d, J = 1.8 Hz, 3 H), 1.79 (m, 1 H), 1.38 (br s, 1 H), 1.09 (m, 2 H), 0.93 (s, 3 H), 0.85 (dt, J = 14.1, 3.0 Hz, 1 H), 0.78 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 146.5 (C), 119.6 (CH), 70.2 (CH), 48.0 (CH), 39.8 (CH), 39.2 (CH₂), 34.7 (CH₂), 32.0 (C), 30.9 (CH₃), 29.2 (CH₃), 22.0 (CH₃); IR (KBr) cm⁻¹ 3356 (br s), 3038 (m), 2945 (s), 2864 (s), 1623 (m), 1444 (s), 1361 (s), 1155 (m), 1130 (m), 1082 (s), 1060 (s), 1035 (m), 962 (m), 814 (m), 802 (m); HRMS (EI) m/z 166.1353 [(M⁺), calcd. for C₁₁H₁₈O: 166.1358].

For previous synthesis see: Paquette, L. A.; Maleczka, Jr., R. E.; Qiu, F. J. Org. Chem. 1991, 56, 2455-2461.

(+/-)-(1R, 4S)-5,8,8-trimethyl-bicyclo[2.2.2]oct-5-en-2-one (126).

CrO₃•pyridine Oxidation: To a stirring solution of 0.395 mL pyridine (4.8 mmol, 1.20 eq) in 25 mL CH₂Cl₂, 0.2497 g CrO₃ (2.4 mmol, 61 mol%) was added. The reaction was stirred for 15 min afterwhich, 0.6758 g 125 (4.0 mmol, 1.00 eq) in 6 mL CH₂Cl₂ was added dropwise. The reaction was stirred for an additional 15 min, then partitioned with the addition of 30 mL of an aqueous 1 M NaOH solution. After separation the CH₂Cl₂ phase was washed once with 30 mL of an aqueous 1 M NaOH solution, two times with 30 mL of an aqueous 1 M HCl solution, and two times with 30 mL of an aqueous solution of NaHCO_{3(sat)}. The CH₂Cl₂ phase was dried over MgSO₄, filtered and concentrated. The residue was purified *via* flash chromotography (7 g;

5%EtOAc/hexanes) to provide 0.2403 g (36%) of **126** as well as 0.2302 g (34% recovery) of **125**.

Dess-Martin Oxidation: To a stirring solution of 48.3 mg 125 (0.29 mmol, 1.00 eq) in 2.5 mL CH₂Cl₂, was added 0.1519 g Dess-Martin periodinane (0.35 mmol, 1.23 eq). The reaction was stirred at room temperature for 7 hrs and then partitioned with 5 mL CH₂Cl₂ and 6 mL of a 1:1 10% aqueous solution of Na₂S₂O₃/NaHCO_{3(sat)}. The biphasic reaction was stirred for 1 hr. After separation the aqueous layer was extracted twice with 15 mL CH₂Cl₂. The combined CH₂Cl₂ layers was dried over MgSO₄, filtered and concentrated to afford an oil. The oil was purified *via* flash chromotography (1 g; 5% EtOAc/hexanes) to provide 17.8 mg (38%) of 126 as well as 16.9 mg (35% recovery) of 125.

Dess-Martin Periodinane: (a) Martin, J. C.; Dess, D. B. J. Org. Chem. 1983, 48, 4155-4156. (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.

Swern Oxidation: A solution of 0.051 mL oxalyl chloride (0.5 mmol, 1.20 eq) in 2 mL CH₂Cl₂ was chilled to -78 °C, afterwhich 0.076 mL DMSO (1.0 mmol, 2.20 eq) was added in a dropwise manner. The reaction was stirred for 15 min before the dropwise addition of 81.0 mg 125 (0.48 mmol, 1.00 eq) in 1 mL CH₂Cl₂. After complete addition the reaction was stirred an additional 15 min before the dropwise addition of 0.34 mL ⁱPr₂EtN (2.4 mmol, 5.00 eq). After its complete addition the reaction was warmed to room temperature and partitioned with the addition of 10 mL Et₂O and 10 mL H₂O. After separation the ethereal layer was washed two times with 10 mL H₂O. The combined aqueous layers were washed two times with 20 mL Et₂O. The combined ethereal layers were dried over MgSO₄, filtered and concentrated. The residue was

purified *via* flash chromotography (1 g; 5% EtOAc/hexanes) to provide 33.6 mg (42%) of the desired **126** as well as 22.2 mg (27% recovery) of **125**.

Swern Oxidation: Swern, D.; Mancuso, A. J. Synthesis 1981, 165-184.

126: R_f = 0.56 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.69 (d, J = 3.0 Hz, 1 H), 2.87 (p, J = 2.4 Hz, 1 H), 2.29 (dd, J = 18.3, 2.1 Hz, 1 H), 2.15 (m, 1 H), 1.89 (dd, J = 18.6, 3.0 Hz, 1 H), 1.85 (d, J = 1.8 Hz, 3 H), 1.56 (dd, J = 13.2, 2.4 Hz, 1 H), 1.40 (dd, J = 13.2, 3.3 Hz, 1 H), 1.06 (s, 3 H), 0.94 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 213.6 (C), 147.7 (C), 118.5 (CH), 49.9 (CH), 49.5 (CH), 38.7 (CH₂), 36.2 (CH₂), 33.5 (C), 31.1 (CH₃), 28.4 (CH₃), 22.1 (CH₃); LRMS (EI) m/z 164.0 (M⁺), 165.1 (M⁺¹).

For previous synthesis see: Paquette, L. A.; Maleczka, Jr., R. E.; Qiu, F. J. Org. Chem. 1991, 56, 2455-2461.

(+/-)- $(1R^*, 2R^*, 4S^*)$ -2-ethenyl-5,8,8-trimethyl-bicyclo[2.2.2]oct-5-en-2-ol (127) and $(1R^*, 2S^*, 4S^*)$ -2-ethenyl-5,8,8-trimethyl-bicyclo[2.2.2]oct-5-en-2-ol (128).

Following general procedure I, the reaction of 0.12 g (0.76 mmol) of starting ketone 126, afforded 0.11 g (76%) of 127:128, as a 3:1 diastereomeric mixture, after purification *via* flash silica chromatography (1.5 g; basic Activity III; 5% EtOAc/hexanes).

127: $R_f = 0.60$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.88 (dd, J = 17.4, 10.5 Hz, 1 H), 5.67 (dt, J = 6.6, 1.5 Hz, 1 H), 5.08 (dd, J = 17.4, 1.5 Hz, 1 H), 4.87 (dd, J = 10.5, 1.5 Hz, 1 H), 2.18 (dt, J = 6.6, 2.7 Hz, 1 H), 1.92 (dd, J = 12.6, 2.4 Hz, 1 H), 1.83

(dd, J = 17.7, 2.4 Hz, 1 H), 1.81 (s, 1 H), 1.76 (d, J = 1.5 Hz, 3 H), 1.41 (dd, J = 17.1, 2.4 Hz, 1 H), 1.39 (d, J = 11.1 Hz, 1 H), 1.14 (s, 3 H), 0.92 (d, J = 12.6 Hz, 1 H), 0.81 (s, 3 H); 13 C-NMR (75 MHz, CDCl₃) δ 147.9 (CH), 144.1 (C), 122.8 (CH), 109.2 (CH₂), 75.6 (C), 48.7 (CH), 43.7 (CH), 36.7 (CH₂), 35.3 (CH₂), 32.3 (C), 31.7 (CH₃), 28.0 (CH₃), 21.8 (CH₃); HRMS (EI) m/z 192.1521 [(M⁺); calcd. for C₁₃H₂₀O: 192.1514].

128: R_f = 0.48 (4:1 hexanes/EtOAc); 1 H-NMR (300 MHz, CDCl₃) δ 6.09 (dd, J = 17.0, 10.4 Hz, 1 H), 5.79 (dt, J = 6.0, J = 1.6 Hz, 1 H), 5.35 (dd, J = 17.5 Hz, 1.6 Hz, 1 H), 5.12 (dd, J = 10.9 Hz, 1.6 Hz, 1 H), 2.35 (m, 1 H), 2.22 (dd, J = 14.9 Hz, 2.2 Hz, 1 H), 1.84 (d, J = 1.6 Hz, 3 H), 1.37 (dd, J = 14.2 Hz, 1.6 Hz, 1 H), 1.22 (br s, 1 H), 1.21 (dd, J = 14.8, 2.7 Hz, 1 H), 1.11 (d, J = 7.1 Hz, 1 H), 0.99 (s, 3 H), 0.96 (d, J = 8.7 Hz, 1 H), 0.81 (s, 3 H); 13 C-NMR (75 MHz, CDCl₃) δ 146.7 (CH), 142.7(C), 121.4 (CH), 113.3 (CH₂), 75.3 (C), 48.7 (CH), 37.9 (CH), 36.2 (CH₂), 36.1 (CH₂), 34.7 (C), 32.5 (CH₃),

31.3 (CH₃), 28.1 (CH₃); HRMS (EI) m/z 192.1521 [(M⁺); calcd. for C₁₃H₂₀O: 192.1514].

129

(+/-)- $(1S^*, 3R^*, 6S^*, 7R^*)$ -3-methoxy-8-methyl-4-oxa-tricyclo[4.3.1.0^{3,7}]dec-8-en-2-one (129).

A solution of 4.92 mL 2-propenol (72.3 mmol, 5.00 eq), 5.59 g diacetoxyiodobenzene (17.3 mmol, 1.20 eq) in 25 mL CH₂Cl₂ was stirred at room temperature for 10 min afterwhich 1.83 mL p-cresol (14.4 mol, 1.00 eq) in 25 mL CH₂Cl₂ was added dropwise over the course of an hour. After complete addition the reaction was stirred at room temperature for 48 hrs The reaction was then concentrated and the

residual purified *via* flash silica chromatography (80 g; 30% EtOAc/hexanes) to provide 2.0552 g (73%) of **129** as a clear oil.

129: R_f = 0.19 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.86 (dt, J = 6.9, 1.8 Hz, 1 H), 4.05 (dd, J = 7.8, 3.6 Hz, 1 H), 3.70 (d, J = 7.8 Hz, 1 H), 3.44 (s, 3 H), 3.09 (dd, J = 4.2, 2.1 Hz, 1 H), 3.00 (dt, J = 6.6, 2.7 Hz, 1 H), 2.45 (m, 1 H), 1.83 (d, J = 1.5 Hz, 3 H), 1.70-1.80 (series of m, 2 H); ¹³C-NMR (75 MHz, CDCl₃) δ 201.7 (C), 139.1 (C), 122.5 (CH), 100.7 (C), 73.8 (CH₂), 51.0 (CH₃), 47.1 (CH), 45.1 (CH), 34.9 (CH), 31.2 (CH₂), 21.1 (CH₃); IR (NaCl, neat) cm⁻¹ 3090 (w), 2947 (m), 1743 (s), 1442 (m), 1375 (m), 1298 (m), 1246 (s), 1167 (m), 1087 (ms), 1049 (ms), 1006 (m), 960 (ms), 916 (m), 827 (m), 765 (m), 733 (ms); HRMS (EI) m/z 194.1021 [(M⁺); calcd. for C₁₁H₁₄O₃: 194.0943].

For previous synthesis see: Liao, C.; Chu, C.; Lee. T.; Rao, P. D.; Song, L. J. Org. Chem. 1999, 64, 4111-4118.

(+/-)- $(1S^*, 2S^*, 3R^*, 6S^*, 7R^*)$ -3-methoxy-8-methyl-2-vinyl-4-oxa-tricyclo[4.3.1.0^{3,7}]dec-8-en-2-ol (130) and (+/-)- $(1S^*, 2R^*, 3R^*, 6S^*, 7R^*)$ -3-methoxy-8-methyl-2-vinyl-4-oxa-tricyclo[4.3.1.0^{3,7}]dec-8-en-2-ol (131).

Following general procedure I, the reaction of 2.05 g (10.5 mmol) of starting ketone 129, afforded 1.32 g (56%) of 130:131, as a 10:1 diastereomeric mixture, after purification *via* flash silica chromatography (80 g; basic Activity III; 25:1 hexanes/EtOAc).

130: R_f = 0.35 (4:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 6.27 (dd, J = 17.4, 10.8 Hz, 1 H), 5.97 (dt, J = 6.6, 1.8 Hz, 1 H), 5.48 (dd, J = 17.4, 2.4 Hz, 1 H), 5.18 (dd, J = 10.8, 2.1 Hz, 1 H), 3.98 (dd, J = 7.5, 3.3 Hz, 1 H), 3.64 (d, J = 7.5 Hz, 1 H), 3.38 (s, 3 H), 2.81 (dd, J = 4.2, 1.2 Hz, 1 H), 2.72 (s, 1 H), 2.48 (dt, J = 6.6, 2.7 Hz, 1 H), 2.17 (m, 1 H), 1.85 (d, J = 1.5 Hz, 3 H), 1.61-1.51 (series of m, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ 138.1 (CH), 133.6 (C), 127.0 (CH), 113.1 (CH₂), 109.6 (C), 79.0 (C), 72.0 (CH₂), 50.9 (CH₃), 46.3 (CH), 41.8 (CH), 34.6 (CH), 30.6 (CH₂), 20.5 (CH₃); LRMS (EI) m/z 222.0 (M⁺), 223.2 (M⁺¹); HRMS (EI) m/z 222.1260 [(M⁺); calcd. for C₁₃H₁₈O₃: 222.1256].

131: $R_f = 0.19$ (4:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 5.87 (m, 2 H), 5.37 (dd, J = 17.2, 2.2 Hz, 1 H), 4.94 (dd, J = 10.6, 2.2 Hz, 1 H), 3.97 (dd, J = 7.5, 3.5 Hz, 1 H), 3.84 (s, 1 H), 3.67 (d, J = 7.5 Hz, 1 H), 3.25 (s, 3 H), 2.84 (d, J = 5.7 Hz, 1 H), 2.19 (m, 1 H), 2.16 (m, 1 H), 1.77 (d, J = 1.7 Hz, 3 H), 1.46-1.28 (series of m, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ 140.0 (CH), 138.9 (C), 127.4 (CH), 111.6 (CH₂), 108.50 (C), 80.0 (C), 72.9 (CH₂), 50.6 (CH₃), 47.1 (CH), 43.9 (CH), 35.7 (CH), 29.8 (CH₂), 21.0 (CH₃); LRMS (EI) m/z 222.1249 [(M⁺); calcd. for $C_{13}H_{18}O_3$: 222.1256].

130:131: IR (neat) 3550 (br m), 3500 (br m), 3091 (w), 3020 (m), 2945 (s), 2874 (s), 1675 (w), 1625 (w), 1439 (s), 1329 (s), 1284 (s), 1253 (s), 1149 (s), 1081 (s), 1037 (s), 999 (s), 958 (s), 920 (s), 825 (s), 733 (s) cm⁻¹.

(+/-)- $(1S^*, 5R^*)$ -6,9,9-trimethyl-2-methylene-bicyclo[3.2.2]non-6-en-3-one (132) and (+/-)- $(1S^*, 5R^*)$ -6,9,9-trimethyl-3-methylene-bicyclo[3.2.2]non-6-en-2-one (133).

Following general procedure V, the reaction of 0.50 g (2.6 mmol) of starting carbinols 127:128, as a 3:1 mixture, afforded 0.40 g (81%) of 132:133, as a 5:1 regiomeric mixture, after purification *via* flash silica chromatography (4.5 g; 1% Et₃N/hexanes).

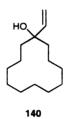
132: $R_f = 0.52$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.86 (m, 1 H), 5.58 (d, 7.1 Hz, 1 H), 5.20 (m, 1 H), 3.01 (t, J = 7.6 Hz, 1 H), 2.91 (dd, J = 17.0, 4.4 Hz, 1 H), 2.82 (dd, J = 17.2, 4.4 Hz, 1 H), 2.54 (q, J = 2.7 Hz, 1 H), 1.91 (d, J = 7.7 Hz, 1 H), 1.83 (d, J = 1.6 Hz, 3 H), 1.20 (d, J = 7.1 Hz, 1 H), 1.13 (s, 3 H), 0.94 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 213.8 (C), 154.2 (C), 147.9 (C), 118.8 (CH), 116.0 (CH₂), 50.0 (CH), 48.3 (CH), 39.2 (CH₂), 36.8 (CH₂), 34.2 (C), 30.1 (CH₃), 28.9 (CH₃), 21.2 (CH₃); HRMS (EI) m/z 190.1347 [(M⁺); calcd. for C₁₃H₁₈O: 190.1358].

133: $R_f = 0.48$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.77 (d, J = 7.1 Hz, 1 H), 5.72 (d, J = 2.2 Hz, 1 H), 5.03 (d, J = 2.2 Hz, 1 H), 3.10 (t, J = 7.1 Hz, 1 H), 2.48 (q, J = 2.7 Hz, 1 H), 2.31 (dd, J = 19.2, 3.8 Hz, 1 H), 1.89 (d, J = 7.7 Hz, 1 H), 1.81 (d, J = 1.6 Hz, 3 H), 1.66 (dd, J = 19.5, 3.8 Hz, 1 H), 1.01 (d, J = 7.1 Hz, 1 H), 1.04 (s, 3 H), 0.96 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 215.1 (C), 153.1 (C), 148.2 (C), 119.1 (CH), 116.4 (CH₂), 54.0 (CH), 52.7 (CH), 39.5 (CH₂), 35.9 (CH₂), 31.5 (C), 29.4 (CH₃), 22.5 (CH₃), 20.5 (CH₃); LRMS (EI) m/z 190.1 (M⁺).

132:133: IR (neat) 3041 (m), 2975 (s), 2962 (s), 1715 (s), 1680 (m), 1448 (s), 1373 (s), 1130 (s), 958 (m), 760 (m) cm⁻¹.

(+/-)- $(1S^*, 2R^*, 7R^*, 8S^*, 10S^*)$ -(2, 10)-epoxy-7-methoxy-9-methylene-10-vinyl-6-oxa-tricyclo[5.2.1.0^{1,10}]dec-3-en-10-ol (134).

Following general procedure V, the reaction of 0.14 g (0.65 mmol) of starting carbinols 130, afforded 60.4 mg (90%) of 134 after purification *via* flash silica chromatography (3 g; 1% Et₃N/hexanes).


134: $R_f = 0.48$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.29 (dd, J = 17.4, 10.8 Hz, 1 H), 5.44 (dd, J = 17.1, 1.8 Hz, 1 H), 5.42 (s, 1 H), 5.29 (s, 1 H), 5.26 (m, 1 H), 5.21 (dd, J = 11.1, 1.5 Hz, 1 H), 3.95 (dd, J = 7.2, 3.0 Hz, 1 H), 3.58 (d, J = 7.5 Hz, 1 H), 3.35 (s, 3 H), 3.06 (m, 1H), 2.83 (d, J = 4.2 Hz, 1 H), 2.63 (m, 1 H), 2.46 (dm, J = 10.8 Hz, 1 H), 2.11 (q, J = 3.0 Hz, 1 H) ¹³C-NMR (125 MHz, CDCl₃) δ 142.8 (C), 137.7 (CH), 118.6 (CH₂), 114.2 (CH₂), 107.9 (C), 78.7 (C), 74.1 (CH₂), 56.4 (CH), 49.8 (CH₃), 44.8 (CH), 43.4 (CH), 36.0 (CH), 23.6 (CH₂); HRMS (EI) m/z 220.1186 [(M⁺); calcd. for $C_{13}H_{16}O_3$: 220.2643].

1-vinyl-cyclooctanol (139).

Following general procedure III, the reaction of 2.0 g (15.8 mmol) of cyclooctanone, afforded 2.19 g (90%) of **139** after purification *via* flash silica chromatography (60 g; basic Activity III; 20:1 hexanes/EtOAc).

139: $R_f = 0.25$ (9:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 5.94 (dd, J = 17.5, 10.5 Hz, 1 H), 5.15 (dd, J = 17.5, 1.5 Hz, 1 H), 4.94 (dd, J = 10.5, 1.5 Hz, 1 H), 2.33 (m, 1 H), 1.80 (m, 1 H), 1.70 (m, 2 H), 1.58 (m, 6 H), 1.44 (m, 4 H); ¹³C-NMR (75 MHz, CDCl₃) δ 145.8 (CH), 111.1 (CH₂), 125.0 (C), 41.7 (CH₂), 36.0 (2CH₂), 28.1 (2CH₂), 21.8 (2CH₂); IR (neat) 3420 (br s), 3065 (w), 3015 (w), 2926 (s), 2856 (s), 1693 (m), 1473 (m), 1448 (m), 1414 (m), 1334 (w), 1242 (w), 1161 (w), 1093 (w), 995 (s), 918 (s), 734 (m) cm⁻¹; LRMS (EI) m/z 152.2 (M⁺).

Commerically available or for original synthesis see: Marcou, A.; Normant, H. Bull. Soc. Chim. Fr. 1965, 3491-3494.

1-vinyl-cyclododecanol (140).

Following general procedure III, the reaction of 2.0 g (10.9 mmol) of cyclododecanone, afforded 2.03 g (88%) of **140** after purification *via* flash silica chromatography (60 g; basic Activity III; 20:1 hexanes/EtOAc).

140: $R_{f} = 0.12$ (95:5 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 5.93 (dd, J = 17.5, 11.0 Hz, 1 H), 5.17 (dd, J = 17.5, 1.5 Hz, 1 H), 4.97 (dd, J = 11.0, 1.5 Hz, 1 H), 1.59 (m, 2 H), 1.40 (m, 4 H), 1.31 (m, 17 H); ¹³C-NMR (75 MHz, CDCl₃) δ 145.3 (CH), 111.0 (CH₂), 73.3 (C), 34.6 (2CH₂), 26.3 (2CH₂), 25.9 (2CH₂), 22.5 (2CH₂), 22.1 (2CH₂), 19.5 (CH₂); **IR** (neat) 3414 (br s), 3092 (w), 2939 (s), 2853 (s), 1620 (m), 1471 (s), 1448 (s), 1348 (m), 1365 (m), 1170 (m), 1062 (s), 997 (s), 918 (s), 738 (s) cm⁻¹; LRMS (EI) m/z

210.0 (M⁺). For original synthesis see: Marcou, A.; Normant, H. Bull. Soc. Chim. France 1965, 3491-3494.

1-vinyl-cyclopentadecanol (141).

Following general procedure III, the reaction of 2.0 g (8.9 mmol) of cyclopentadecanone, afforded 1.75 g (78%) of **141** after purification *via* flash silica chromatography (60 g; basic Activity III; 20:1 hexanes/EtOAc).

141: $R_{f=} 0.50 \text{ (9:1 hexanes/EtOAc); }^{1}\text{H-NMR (500 MHz, CDCl}_{3}) \delta 5.96 \text{ (dd, } J = 17.5, 11.0 \text{ Hz, } 1 \text{ H), } 5.21 \text{ (d, } J = 17.5 \text{ Hz, } 1 \text{ H), } 5.03 \text{ (d, } J = 11.0 \text{ Hz, } 1 \text{ H), } 1.51 \text{ (m, } 4 \text{ H), } 1.36 \text{ (m, } 25 \text{ H); }^{13}\text{C-NMR (75 MHz, CDCl}_{3}) \delta 145.4 \text{ (CH), } 111.4 \text{ (CH}_{2}), 75.1 \text{ (C), } 38.2 \text{ (2CH}_{2}), 27.7 \text{ (2CH}_{2}), 26.9 \text{ (2CH}_{2}), 26.7 \text{ (2CH}_{2}), 26.7 \text{ (2CH}_{2}), 26.3 \text{ (2CH}_{2}), 21.8 \text{ (2CH}_{2}); IR \text{ (neat) } 3377 \text{ (br m), } 3084 \text{ (w), } 3011 \text{ (w), } 2932 \text{ (s), } 2858 \text{ (s), } 1639 \text{ (w), } 1458 \text{ (m), } 1412 \text{ (w), } 1350 \text{ (w), } 1280 \text{ (w), } 1155 \text{ (w), } 1133 \text{ (w), } 995 \text{ (m), } 918 \text{ (s), } 734 \text{ (s) cm}^{-1}; \text{ HRMS (EI)}$ $m/z 252.2453 \text{ [(M+) calcd. for C}_{17}\text{H}_{32}\text{O}: } 252.2453 \text{].}$

2-methylene-cycloheptanone (142).

Following general procedure V, the reaction of 0.21 g (1.6 mmol) of starting carbinol **80** and afforded 0.15 g (72%) of **142** after purification *via* flash silica chromatography (3 g; 2% Et₃N/hexanes).

142: $R_f = 0.53$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.92 (d, J = 2.1 Hz, 1 H), 5.22 (d, J = 2.1 Hz, 1 H), 2.57 (d, J = 11.1 Hz, 2 H), 2.46 (d, J = 9.6 Hz, 2 H), 1.66 (series of m, 6 H); ¹³C-NMR (75 MHz, CDCl₃) δ 203.6 (C), 148.3 (C), 122.4 (CH₂), 43.4 (CH₂), 33.8 (CH₂), 31.2 (CH₂), 30.4 (CH₂), 25.2 (CH₂); IR (neat) 3065 (w), 2928 (s), 2858 (s), 1703 (s), 1610 (w), 1452 (s), 1317 (w), 1230 (m), 1167 (m), 1135 (m), 1105 (m), 1049 (m), 978 (m), 943 (m), 748 (w) cm⁻¹; HRMS (EI) m/z 124.0890 [(M⁺) calcd. for $C_8H_{12}O$: 124.0888].

For previous syntheses see: (a) Muehlstaedt, M.; Herzschuh, R. *J. Prakt. Chem.* **1963**, 20, 20-34. (b) Muehlstaedt, M.; Zach, L.; Becwar-Reinhardt, H. *J. Prakt. Chem.* **1965**, 29, 158-172. (c) Ksander, G. M.; McMurry, J. E.; Johnson, M. *J. Org. Chem.* **1977**, 42, 1180-1185.

2-methylene-cyclooctanone (143).

Following general procedure V, the reaction of 0.25 g (1.7 mmol) of starting carbinol 81 and afforded 0.15 g (70%) of 143 after purification *via* flash silica chromatography (3 g; 2% Et₃N/hexanes).

143: $R_f = 0.51$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.75 (d, J = 2.4 Hz, 1 H), 5.12 (d, J = 2.1 Hz, 1 H), 2.48 (m, 2 H), 1.67 (m, 2 H), 1.50 (series of m, 6 H), 1.35 (m, 2 H); ¹³C-NMR (75 MHz, CDCl₃) δ 206.6 (C), 148.4 (C), 121.8 (CH₂), 39.2 (CH₂), 31.0 (CH₂), 30.5 (CH₂), 28.8 (CH₂), 28.9 (CH₂), 25.2 (CH₂); IR (neat) 2928 (s), 2856 (s), 1701 (s), 1466 (s), 1373 (m), 1240 (s), 1172 (w), 1128 (s), 1087 (w), 1047 (m), 935 (w), 910 (w), 733 (w) cm⁻¹; HRMS (EI) m/z 138.1055 [(M⁺) calcd. for C₉H₁₄O: 138.1045].

For previous syntheses see: (a) Muehlstaedt, M.; Herzschuh, R. J. Prakt. Chem. 1963, 20, 20-34. (b) Muehlstaedt, M.; Zach, L.; Becwar-Reinhardt, H. J. Prakt. Chem. 1965, 29, 158-172. (c) Ksander, G. M.; McMurry, J. E.; Johnson, M. J. Org. Chem. 1977, 42, 1180-1185.

2-methylene-cyclononanone (144).

Following general procedure V, the reaction of 0.29 g (1.4 mmol) of starting carbinol 139 and afforded 0.19 g (53%) of 144 and 26.5 mg (6%) 146 after purification via flash silica chromatography (3 g; 2% Et₃N/hexanes).

144: $R_f = 0.74$ (4:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 5.43 (d, J = 0.8 Hz, 1 H), 5.34 (d, J = 0.8 Hz, 1 H), 2.59 (m, 2 H), 2.42 (td, J = 6.1, 0.8 Hz, 2 H), 1.79 (p, J = 6.1 Hz, 2 H), 1.49 (series of m, 4 H), 1.36 (series of m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 210.8 (C), 152.2 (C), 118.5 (CH₂), 41.5 (CH₂), 32.6 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 24.3 (CH₂), 24.2 (CH₂), 22.4 (CH₂); IR (neat) 3088 (w), 3065 (w), 2932 (s), 2874 (m). 1682 (s), 1620 (w), 1469 (m), 1444 (m), 1361 (w), 1298 (w), 1267 (w), 1205 (w), 1147 (w), 1113 (w), 1089 (w), 1039 (w), 922 (m), 908 (m), 736 (m) cm⁻¹; HRMS (EI) m/z 152.1201 [(M⁺) calcd. for C₁₀H₁₆O: 152.1201].

For previous syntheses see: (a) Muehlstaedt, M.; Herzschuh, R. J. Prakt. Chem. 1963, 20, 20-34. (b) Muehlstaedt, M.; Zach, L.; Becwar-Reinhardt, H. J. Prakt. Chem. 1965, 29, 158-172. (c) Ksander, G. M.; McMurry, J. E.; Johnson, M. J. Org. Chem. 1977, 42, 1180-1185.

1-(1,2-dichloro-ethyl)-cyclooctanol (146).

Following general procedure V, the reaction of 0.29 g (1.4 mmol) of starting carbinol 139 and afforded 0.19 g (53%) of 144 and 26.5 mg (6%) 146 after purification via flash silica chromatography (3 g; 2% Et₃N/hexanes).

146: $R_f = 0.42$ (4:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 4.04 (m, 2 H), 3.67 (AB_q, J = 12.8, 3.0 Hz, 1 H), 1.90 (m, 3 H), 1.77 (m, 1 H), 1.60 (series of m, 7 H), 1.35 (series of m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 76.4 (C), 71.7 (CH), 46.1 (CH₂), 34.5 (CH₂), 33.9 (CH₂), 28.6 (CH₂), 27.1 (CH₂), 25.0 (CH₂), 22.1 (CH₂), 22.0 (CH₂); IR (neat) 3462 (br m), 2924 (s), 2856 (m), 1471 (m), 1367 (m), 1251 (m), 1068 (m), 1016 (m), 939 (m), 734 (m) cm⁻¹; HRMS (EI) m/z 224.0721 [(M⁺) calcd. for C₁₀H₁₈O³⁵Cl₂: 224.0735].

2-methylene-cyclotridecanone (147).

Following general procedure V, the reaction of 0.29 g (1.4 mmol) of starting carbinol 140 and afforded 0.15 g (53%) of 147, 10.4 mg (3%) 148 and 11.9 mg (3%) 149 after purification *via* flash silica chromatography (3 g; 3% Et₃N/hexanes).

147: $R_f = 0.78$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.93 (s, 1 H), 5.68 (s, 1 H), 2.70 (m, 1 H), 2.31 (m, 1 H), 1.95 (m, 2 H), 1.65 (m, 2 H), 1.53 (m, 2 H), 1.24 (series of m, 14 H); ¹³C-NMR (75 MHz, CDCl₃) δ 204.2 (C), 149.4 (C), 125.3 (CH₂),

37.1 (CH₂), 31.0 (CH₂), 26.6 (CH₂), 26.3 (CH₂), 26.2 (CH₂), 26.0 (CH₂), 25.8 (CH₂), 25.3 (CH₂), 24.7 (CH₂), 24.5 (CH₂), 24.1 (CH₂); IR (neat) 2932 (s), 2862 (s), 1716 (m), 1672 (m), 1462 (m), 1444 (m), 1360 (w), 1267 (w), 1111 (w), 1070 (w), 933 (w), 733 (m) cm⁻¹: LRMS (EI) m/z 208.1 (M⁺).

For previous syntheses see: Muehlstaedt, M.; Remane, H.; Graefe, J. Z. Chem. 1969, 9, 303-305. (b) Muehlstaedt, M.; Koehler, H. J.; Porzig, D.; Scholz, M. J. Prakt. Chem. 1970, 312, 292-299. (c) Marshall, J. A.; Audia, v. H. J. Org. Chem. 1985, 50, 1607-1611.

2-chloromethyl-cyclotridecanone (148).

Following general procedure V, the reaction of 0.29 g (1.4 mmol) of starting carbinol **140** and afforded 0.15 g (53%) of **147**, 10.4 mg (3%) **148** and 11.9 mg (3%) **149** after purification *via* flash silica chromatography (3 g; 3% Et₃N/hexanes).

148: $R_f = 0.80$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 3.67 (dd, J = 11.0, 9.2 Hz, 1 H), 3.39 (dd, J = 10.6, 5.3 Hz, 1 H), 2.88 (m, 1 H), 2.72 (ddd, J = 18.1, 10.1, 3.0 Hz, 1 H), 2.37 (ddd, J = 18.1, 6.6, 3.5 Hz, 1 H), 1.94 (m, 1 H), 1.51 (m, 2 H), 1.26 (series of m, 17 H); ¹³C-NMR (125 MHz, CDCl₃) δ 212.1 (C), 54.1 (CH), 44.4 (CH₂), 42.7 (CH₂), 30.1 (CH2), 26.3 (CH₂), 26.2 (CH₂), 26.1 (CH₂), 24.8 (CH₂), 24.4 (CH₂), 24.0 (CH₂), 23.8 (CH₂), 23.4 (CH₂), 21.6 (CH₂); IR (neat) 2930 (s), 2858 (s), 1709 (s), 1462 (s), 1410 (s), 1371 (m), 1286 (m), 1168 (m), 1115 (m), 1087 (m), 1030 (m), 916 (m), 733 (s) cm⁻¹; HRMS (EI) m/z 244.1623 [(M⁺) calcd. for C₁₄H₂₅³⁵ClO: 244.1594].

1-(1,2-dichloro-ethyl)-cyclododecanol (149).

Following general procedure V, the reaction of 0.29 g (1.4 mmol) of starting carbinol **140** and afforded 0.15 g (53%) of **147**, 10.4 mg (3%) **148** and 11.9 mg (3%) **149** after purification *via* flash silica chromatography (3 g; 3% Et₃N/hexanes).

149: $R_f = 0.35$ (5:1 hexanes/EtOAc); ${}^{1}H$ -NMR (500 MHz, CDCl₃) δ 4.09 (dd, J = 13.2, 6.1 Hz, 1 H), 3.96 (m, 2 H), 2.33 (br s, 1 H), 1.78 (m, 2 H), 1.54 (dt, J = 11.9, 4.8 Hz, 1 H), 1.34 (series of m, 19 H); ${}^{13}C$ -NMR (125 MHz, CDCl₃) δ 77.5 (C), 70.8 (CH), 64.1 (CH2), 33.3 (CH₂), 31.7 (CH₂), 26.4 (CH₂), 26.2 (CH₂), 25.9 (CH₂), 22.5 (CH₂), 22.4 (CH₂), 22.1 (CH₂), 22.0 (CH₂), 19.6 (CH₂), 19.1 (CH₂); IR (neat) 3372 (br s), 2930 (s), 2862 (s), 1471 (s), 1444 (m), 1348 (w), 1265 (w), 1161 (w), 1076 (m), 1032 (m), 736 (m) cm⁻¹; HRMS (EI) m/z 280.1360 [(M⁺) calcd. for $C_{14}H_{26}O^{35}Cl_2$: 280.1361].

2-methylene-cyclohexadecanone (150).

Following general procedure V, the reaction of 0.35 g (1.4 mmol) of starting carbinol **136** and afforded 0.16 g (45%) of **150**, 16.1 mg (4%) **151** and 18.1 mg (4%) **152** after purification *via* flash silica chromatography (3 g; 3% Et₃N/hexanes).

150: $R_f = 0.53$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 5.92 (s, 1 H), 5.69 (s, 1 H), 2.72 (ddd, J = 18.6, 10.2, 3.0 Hz, 1 H), 2.62 (m, 1 H), 2.32 (m, 1 H), 1.92 (m, 1

H), 1.65 (series of m, 3 H), 1.51 (series of m, 3 H), 1.25 (series of m, 18 H); ¹³C-NMR (75 MHz, CDCl₃) δ 204.2 (C), 149.4 (C), 125.3 (CH₂), 42.7 (CH₂), 37.1 (CH₂), 30.9 (CH₂), 25.8 (CH₂), 25.3 (CH₂), 24.8 (CH₂), 24.7 (CH₂), 24.5 (CH₂), 24.4 (CH₂), 24.1 (CH₂), 24.0 (CH₂), 23.8 (CH₂), 23.4 (CH₂), 21.6 (CH₂); IR (neat) 3056 (w), 2943 (s), 2868 (s), 1720 (s), 1675 (w), 1478 (s), 1442 (s), 1364 (m), 1262 (m), 1105 (m), 1072 (m), 928 (w), 744 (s) cm⁻¹; LRMS (EI) m/z 250.1 (M⁺).

For previous syntheses see: (a) Muehlstaedt, M.; Koehler, H. J.; Porzig, D.; Scholz, M. J. Prakt. Chem. 1970, 312, 292-299. (b) Marshall, J. A.; Audia, v. H. J. Org. Chem. 1985, 50, 1607-1611

2-methylene-cyclohexadecanone (151).

Following general procedure V, the reaction of 0.35 g (1.4 mmol) of starting carbinol **136** and afforded 0.16 g (45%) of **150**, 16.1 mg (4%) **151** and 18.1 mg (4%) **152** after purification *via* flash silica chromatography (3 g; 3% Et₃N/hexanes).

151: $R_f = 0.43$ (95:5 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 3.66 (d, J = 10.5 Hz, 1 H), 3.43 (dd, J = 11.0, 6.0 Hz, 1 H), 2.90 (m, 1 H), 2.55 (m, 1 H), 2.41 (m, 1 H), 1.74 (m, 1 H), 1.63 (m, 2 H), 1.47 (m, 4 H), 1.26 (series of m, 19 H); ¹³C-NMR (125 MHz, CDCl₃) δ 211.9 (C), 53.8 (CH), 44.3 (CH₂), 43.0 (CH₂), 30.3 (CH₂), 27.8 (CH₂), 27.5 (CH₂), 27.3 (CH₂), 27.0 (CH₂), 26.6 (CH₂), 26.5 (CH₂), 26.4 (CH₂), 26.2 (CH₂), 26.1 (CH₂), 25.6 (CH₂), 21.8 (CH₂); IR (neat) 2928 (s), 2855 (s), 1716 (s),

1458 (s), 1369 (w), 1284 (w), 1091 (w), 908 (m), 733 (s) cm⁻¹; HRMS (EI) m/z 287.2145 [(M⁺) calcd. for C₁₇H₃₁O³⁵Cl: 286.2063].

152

1-(1,2-dichloro-ethyl)-cyclopentadecanol (152).

Following general procedure V, the reaction of 0.35 g (1.4 mmol) of starting carbinol **136** and afforded 0.16 g (45%) of **150**, 16.1 mg (4%) **151** and 18.1 mg (4%) **152** after purification *via* flash silica chromatography (3 g; 3% Et₃N/hexanes).

152: $R_f = 0.26 (95:5 \text{ hexanes/EtOAc}); {}^1H\text{-NMR} (500 \text{ MHz}, \text{CDCl}_3) \delta 4.03 (m, 2 \text{ H}), 3.70 (t, <math>J = 10.0 \text{ Hz}, 1 \text{ H}), 1.78 (\text{br s}, 1 \text{ H}), 1.65 (m, 2 \text{ H}), 1.62 (m, 1 \text{ H}), 1.50 (m, 1 \text{ H}), 1.34 (m, 24H); {}^{13}\text{C-NMR} (125 \text{ MHz}, \text{CDCl}_3) \delta 223.8 (C), 76.4 (C), 71.2 (CH), 46.0 (CH₂), 37.3 (CH₂), 34.8 (CH₂), 27.5 (CH₂), 27.4 (CH₂), 26.8 (CH₂), 26.5 (CH₂), 26.5 (CH₂), 26.4 (CH₂), 26.3 (CH₂), 25.9 (CH₂), 25.8 (CH₂), 21.7 (2 CH₂); IR (neat) 3464 (br w), 2934 (s), 2858 (s), 1460 (m), 1350 (w), 1259 (w), 1151 (w), 1091 (w), 1047 (w), 908 (s), 734 (s) cm⁻¹; HRMS (EI) <math>m/z$ 322.1855 [(M⁺) calcd. for $C_{17}H_{32}O^{35}Cl_2$: 322.1830].

 $(1S^*, 2R^*, 4S^*, 8R^*)$ -8-methoxy-1,8-dimethylbicyclo[2.2.2]oct-5-en-2-ol (153) and $(1S^*, 2S^*, 4S^*, 8R^*)$ -8-methoxy-1,8-dimethylbicyclo[2.2.2]oct-5-en-2-ol (154).

Following general procedure IV, the reaction of 2.02 g (11.2 mmol) of starting ketone 27, afforded 1.16 g (57%) of 153:154, as a 1:1 diastereomeric mixture, with no purification necessary.

153: $R_f = 0.45$ (5:1 hexanes/EtOAc); $[\alpha]_{00}^{\infty} = -26.2$ (c 0.36, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.11 (t, J = 8.1 Hz, 1 H), 5.69 (d, J = 7.8 Hz, 1 H), 3.33 (dm, J = 9.3 Hz, 1 H), 3.09 (s, 3 H), 2.43 (m, 1 H), 2.09 (br s, 1 H), 1.79 (d, J = 13.8 Hz, 1 H), 1.61 (dd, J = 1.09) 13.5, 2.7 Hz, 1 H), 1.21 (d, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.05 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.00 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.00 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.02 (s, 3 H), 0.80 (dt, J = 13.5 Hz, 1 H), 1.09 (s, 3 H), 1.00 (s, 3 H), 1 13.5, 3.0 Hz, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 134.9 (CH), 134.0 (CH), 78.8 (C), 71.4 (CH), 49.3 (CH₃), 42.3 (CH₂), 40.5 (C), 39.2 (CH), 32.9 (CH₂), 24.5 (CH₃), 21.2 (CH₃); IR (neat) 3439 (br s), 3040 (m), 2930 (s), 2828 (m), 1579 (w), 1516 (w), 1456 (s), 1365 (s) 1323 (m), 1259 (m), 1194 (m), 1165 (m), 1089 (s), 1070 (s), 995 (w), 922 (w), 846 (w), 723 (m), 704 (s) cm⁻¹; LRMS (EI) m/z 150.0 (M⁺ -MeOH); HRMS (EI) m/z182.1303 [(M^{+}); calcd. for $C_{11}H_{18}O_{2}$: 182.1307]. **154**: $R_f = 0.36$ (5:1 hexanes/EtOAc); $[\alpha]_{sm}^{sm} = -98.0$ (c 0.14, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 6.25 (t, J = 8.1 Hz, 1 H), 5.76 (d, J = 8.1 Hz, 1 H), 3.54 (dm, J = 8.4 Hz, 1 H), 3.05 (s, 3 H), 2.45 (m, 1 H), 2.09 (br s, 1 H), 1.79 (d, J = 13.8 Hz, 1 H), 1.53 (dt, J = 13.8, 2.7 Hz, 1 H), 1.21 (d, J = 13.5 Hz, 1 H), 1.04 (s, 3 H), 1.00 (s, 3 H), 0.88 (dd, J = 13.5, 1.5 Hz, 1 H); 13 C-NMR (75 MHz, CDCl₃) δ 138.6 (CH), 133.9 (CH), 78.7 (C), 73.4 (CH), 49.3 (CH₃), 46.6 (CH₂), 40.7 (C), 39.4 (CH), 33.9 (CH₂), 24.2 (CH₃), 21.0 (CH₃); IR (neat) 3441 (br s), 3042 (m), 2934 (s), 2826 (m), 1579 (w), 1516 (w), 1460 (m), 1367 (m), 1325 (w), 1246 (w), 1196 (w), 1159 (w), 1101 (m), 1066 (s), 995 (w), 902 (w), 843 (w), 727 (m), 704 (w), 677 (w) cm⁻¹; LRMS (EI) m/z 149.8 (M⁺ -MeOH); HRMS (EI)

m/z 182.1312 [(M⁺); calcd. for C₁₁H₁₈O₂: 182.1307].

 $(1S^*, 2R^*, 4S^*, 8S^*)$ -8-methoxy-1,8-dimethylbicyclo[2.2.2]oct-5-en-2-ol (155) and $(1S^*, 2S^*, 4S^*, 8S^*)$ -8-methoxy-1,8-dimethylbicyclo[2.2.2]oct-5-en-2-ol (156).

Following general procedure IV, the reaction of 2.07 g (11.4 mmol) of starting ketone 28, afforded 1.66 g (79%) of 155:156, as a 1:1 diastereomeric mixture, with no purification necessary.

155: R_f = 0.12 (25:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.21 (AB_q, J = 6.3, 2.1 Hz, 1 H), 5.88 (d, J = 8.1 Hz, 1 H), 3.45 (dt, J = 9.9, 2.4 Hz, 1 H), 3.10 (s, 3 H), 2.56 (m, 1 H), 2.00 (s, 1 H), 1.83 (d, J = 13.2 Hz, 1 H), 1.79 (d, J = 13.2 Hz, 1 H), 1.37 (s, 3 H), 1.30 (dt, J = 14.1, 2.7Hz, 1 H), 1.13 (dd, J = 13.5Hz, J = 1.5 Hz, 1 H), 1.09 (s, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 136.0 (CH), 133.9 (CH), 79.5 (C), 48.9 (CH₃), 41.5 (CH₂), 40.3 (C), 39.4 (CH), 32.8 (CH₂), 25.5 (CH₂), 21.9 (CH₃), 21.1 (CH₃); IR (neat) 3445 (br s), 3040 (m), 2970 (s), 2824 (m), 1550 (m), 1460 (s), 1371 (s) 1325 (m), 1259 (m), 1190 (m), 1126 (s), 1099 (s), 1074 (s), 997 (m), 968 (m), 918 (s), 897 (m), 702 (s), 677 (m) cm⁻¹; HRMS (EI) m/z 182.1302 [(M⁺); calcd. for C₁₁H₁₈O₂: 182.1307].

156: R_f = 0.22 (25:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.38 (AB_q, J = 6.6, 1.8 Hz, 1 H), 5.88 (d, J = 5.1 Hz, 1 H), 3.49 (m, 1 H), 3.09 (s, 3 H), 2.62 (m, 1 H), 2.17 (ddd, J = 4.94, 3.29, 1.09 Hz,, 1 H), 1.39 (d, J = 13.5 Hz, 1 H), 1.26 (s, 1 H), 1.25 (s, 3 H), 1.19 (s, 3 H), 1.07 (d, J = 13.8 Hz, 1 H), 0.98 (dt, J = 14.7, 3.3 Hz, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 134.2 (CH), 133.4 (CH), 78.9 (C), 74.2 (CH), 49.3 (CH₃), 47.2 (CH₂), 40.9 (C), 39.3 (CH), 35.9 (CH₂), 22.8 (CH₃), 21.2 (CH₃); IR (neat) 3437 (br s).

3034 (s), 2932 (s), 2831 (s), 1610 (w), 1454 (s), 1369 (s), 1344 (s), 1307 (s), 1273 (s), 1192 (s), 1136 (s), 1076 (s), 955 (s), 881 (m), 850 (s), 819 (m), 756 (s), 731 (s), 657 (w) cm⁻¹; HRMS (EI) m/z 182.1301 [(M⁺); calcd. for $C_{11}H_{18}O_2$: 182.1307].

 $(1S^*, 2R^*, 4S^*, 8R^*)$ -8-methoxy-1,8-dimethylbicyclo[2.2.2]oct-5-en-2-ol (157) and $(1S^*, 2S^*, 4S^*, 8R^*)$ -8-methoxy-1,8-dimethylbicyclo[2.2.2]oct-5-en-2-ol (158).

Following general procedure IV, the reaction of 2.00 g (11.1 mmol) of starting ketone 27, afforded 1.00 g (49%) of 157:158 as a 1:1 diastereomeric mixture, with no purification necessary.

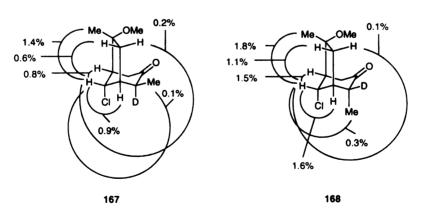
157: ¹H NMR (300 MHz, CDCl₃) δ 6.19 (AB_q, J = 8.1 Hz, J = 1.2 Hz, 1 H), 5.77 (d, J = 8.1 Hz, 1 H), 3.17 (s, 3 H), 2.53 (m, 1 H), 2.48 (d, J = 14.4 Hz, 1 H), 1.87 (s, 1 H), 1.67 (m, 1 H), 1.61 (dd, J = 13.5, 2.7 Hz, 1 H), 1.16 (s, 3 H), 1.10 (s, 3 H), 0.86 (dd, J = 13.5, 2.7 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 134.9 (CH), 134.5 (CH), 78.9 (C), 77.5 (CD), 49.4 (CH₃), 42.7 (CH₂), 40.5 (C), 39.4 (CH), 33.5 (CH₂), 24.6 (CH₃), 21.2 (CH₃); IR (neat) 3433 (br s), 3040 (m), 2934 (s), 2870 (s), 2826 (m), 1458 (s), 1385 (s), 1325 (m), 1280 (m), 1221 (m), 1145 (s), 1109 (s), 1076 (s), 947 (m), 920 (m), 890 (m), 723 (s), 700 (m), 673 (m) cm⁻¹; HRMS (EI) m/z 183.1342 [(M⁺); calcd. for C₁₁H₁₇DO₂: 183.1369]. **158**: ¹H NMR (300 MHz, CDCl₃) δ 6.33 (t, J = 7.2 Hz, 1 H), 5.85 (d, J = 7.8 Hz, 1 H), 3.13 (s, 3 H), 2.53 (m, 1 H), 1.83 (s, 1 H), 1.72 (m, 1 H), 1.61 (dd, J = 13.5, 2.7 Hz, 1 H), 1.29 (d, J = 13.5 Hz, 1 H), 1.12 (s, 3 H), 1.08 (s, 3 H), 0.97 (d, J = 13.5 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ 138.8 (CH), 134.3 (CH), 78.8 (C), 76.4 (CD), 49.5 (CH₃), 46.6

(CH₂), 40.8 (C), 39.5 (CH), 34.0 (CH₂), 24.3 (CH₃), 21.1 (CH₃); HRMS (EI) m/z 183.1378 [(M⁺); calcd. for C₁₁H₁₇DO₂: 183.1369].

163

 $(1R^*, 2S^*, 5S^*, 6S^*, 8R^*)$ -2-8-chloro-6-methoxy-2,6-dimethyl-bicyclo[3.2.1]octan-3-one (163).

Following general procedure V, the reaction of 0.93 g (5.1 mmol) of **153:154**, as a 1:1 diastereomeric mixture, afforded 0.49 g (45%) of **158** after purification *via* flash silica chromatography (15 g, 1% Et₃N/hexanes).


163: R_f = 0.31 (4:1 hexanes/EOtAc); ¹H-NMR (300 MHz, CDCl₃) δ 4.37 (td, J = 4.5, 1.2 Hz, 1 H), 3.08 (s, 3 H), 2.93 (m, 1 H), 2.68 (ddd, J = 16.2, 3.6, 0.9 Hz, 1 H), 2.46 (ddd, J = 15.9, 2.7, 1.2 Hz, 1 H), 2.39 (m, 1 H), 2.28 (m, 1 H), 1.77 (d, J = 14.7 Hz, 1 H), 1.60 (ddd, J = 9.3, 6.9, 1.5 Hz, 1 H), 1.29 (s, 3 H), 0.97 (d, J = 6.9 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 209.5 (C), 80.6 (C), 61.1 (CH), 51.0 (CH), 50.8 (CH₃), 45.5 (CH), 43.8 (CH), 38.4 (CH₂), 37.5 (CH₂), 25.7 (CH₃), 11.8 (CH₃); IR (neat) 2974 (s), 2939 (s), 2874 (m), 2829 (m), 1714 (s), 1690 (w), 1450 (m), 1412 (m), 1379 (s), 1323 (m), 1215 (m), 1161 (s), 1149 (s), 1086 (s), 1053 (s), 912 (s), 819 (m), 805 (m), 785 (m), 733 (s) cm⁻¹; HRMS (EI) m/z 216.0913 [(M⁺); calcd. for C₁₁H₁₇ClO₂: 216.0917].

165

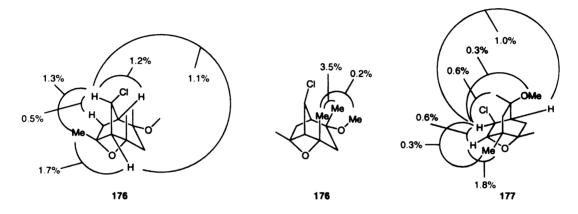
 $(1R^*, 2S^*, 5S^*, 6R^*, 8R^*)$ -8-chloro-6-methoxy-2,6-dimethyl-bicyclo[3.2.1]octan-3-one (165).

Following general procedure V, the reaction of 1.00 g (5.4 mmol) of **155:156**, as a 1:1 diastereomeric mixture, afforded 0.38 g (33%) of **165** after purification *via* flash silica chromatography (13 g, 1% Et₃N/hexanes).

165: R_f = 0.36 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 4.74 (td, J = 6.3, 1.5 Hz, 1 H), 3.11 (s, 3 H), 3.08 (m, 1 H), 2.89 (ddd, J = 15.0, 4.2, 1.2 Hz, 1 H), 2.50 (m, 1 H), 2.32 (m, 1 H), 2.22 (dq, J = 15.9, 1.5 Hz, 1 H), 1.95 (dd, J = 14.4, 6.9 Hz, 1 H), 1.46 (d, J = 14.7 Hz, 1 H), 1.17 (s, 3 H), 0.96 (d, J = 6.6 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 210.9 (C), 82.1 (C), 62.0 (CH), 49.6 (CH₃), 49.4 (CH), 45.5 (CH), 44.2 (CH), 39.7 (CH₂), 38.1 (CH₂), 20.0 (CH₃), 11.8 (CH₃); IR (neat) 2970 (s), 2941 (s), 2750 (m), 1710 (s), 1462 (m), 1421 (m), 1379 (s), 1325 (m), 1209 (m), 1147 (m), 1095 (s), 1086 (s), 1053 (m), 908 (s), 890 (s), 829 (m), 788 (m), 760 (m), 733 (s) cm⁻¹; LRMS (EI) m/z 216.0 (M⁺), 218.0 (M⁺²); HRMS (EI) m/z 216.0918 [(M⁺); calcd. for C₁₁H₁₇ClO₂: 216.0917].

 $(1R^*, 2S^*, 5S^*, 6S^*, 8R^*)$ -2-deutero-8-chloro-6-methoxy-2,6-dimethyl-bicyclo[3.2.1]octan-3-one (167) and $(1R^*, 2R^*, 5S^*, 6S^*, 8R^*)$ -2-deutero-8-chloro-6-methoxy-2,6-dimethyl-bicyclo[3.2.1]octan-3-one (168).

Following general procedure V, the reaction of 0.18 g (0.98 mmol) of **157:158**, as a 1:1 diastereomeric mixture, afforded 0.12 g (60%) of **167:168**, as a 2:1 diastereomeric mixture, after purification *via* flash silica chromatography (5 g, 10:1 hexanes/EtOAc). **167:** R_f = 0.56 (4:1 hexanes/EtOAc); $[\alpha]_{546}^{20}$ = +40.0 (*c* 0.23, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 4.40 (dt, J = 4.5, 1.5 Hz, 1 H), 3.12 (s, 3 H), 2.71 (dd, J = 15.9, 3.9 Hz, 1 H), 2.51 (ddd, J = 16.2, 3.0, 1.5 Hz, 1 H), 2.43 (m, 1 H), 2.31 (m, 1 H), 1.81 (d, J = 14.4 Hz, 1 H), 1.64 (dd, J = 14.4, 6.6 Hz, 1 H), 1.32 (s, 3 H), 1.00 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (75 MHz, CDCl₃) δ 209.7 (C), 80.7 (C), 61.2 (CH), 51.1 (CH), 50.9 (CH₃), 48.5 (CD), 45.5 (CH), 38.6 (CH₂), 37.6 (CH₂), 25.8 (CH₃), 11.8 (CH₃); IR (neat) 2974 (s), 2937 (s), 1714 (s), 1450 (s), 1412 (m), 1379 (s), 1323 (m), 1226 (s), 1153 (s), 1078 (s), 918 (s), 852 (m), 798 (m), 733 (s) cm⁻¹; HRMS (EI) m/z 217.7186 [(M⁺); calcd. for C₁₁H₁₆DO₂³⁵Cl: 217.7192].


168: $R_f = 0.31$ (5:1 hexanes/EtOAc); $[\alpha]_{546}^{20} = +18.0$ (c 0.08, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 4.26 (t, J = 3.3 Hz, 1 H), 3.14 (s,3H), 2.78 (dd, J = 10.8, 2.7 Hz, 1 H), 2.68 (ddd, J = 10.8, 1.5, 0.6 Hz, 1 H), 2.45 (m, 1 H), 2.39 (m, 1 H), 1.83 (m, 2 H), 1.34 (s, 3 H), 1.32 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (125 MHz, CDCl₃) δ 208.5 (C), 80.0 (C), 59.4 (CH), 50.9 (CH₃), 50.4 (CH), 49.3 (CD), 45.0 (CH₂), 44.6 (CH), 37.1 (CH₂), 26.0 (CH₃), 19.8 (CH₃); IR (neat) 2970 (s), 2937 (s), 1709 (s), 1454 (m), 1377 (m), 1325 (m), 1226 (m), 1167 (m), 1084 (m), 1064 (s), 929 (m), 790 (m) cm⁻¹; HRMS (EI) m/z 217.7190 [(M⁺); calcd. for C₁₁H₁₆DO₂³⁵Cl: 217.7192].

159 160

 $(1S^*, 2R^*, 4S^*, 8R^*)$ -8-methoxy-1,2,8-trimethyl-bicyclo[2.2.2]oct-5-en-2-ol (159) and $(1S^*, 2S^*, 4S^*, 8R^*)$ -8-methoxy-1,2,8-trimethyl-bicyclo[2.2.2]oct-5-en-2-ol (160).

To 5.3 mL (27.7 mmol, 5.00 eq) of a chilled (0 °C) 3.0 M methyl magnesium bromide/THF solution was added, 0.99 g (5.2 mmol, 1.00 eq) 27 in 5 ml THF dropwise. After complete addition, the reaction was stirred at 0 °C for 2 hrs and then at room temperature for 5 hrs. Upon cooling back to 0 °C, the reaction was quenched with an aqueous solution of NH₄Cl_(sat), warmed to room temperature and then stirred for 2 hrs. After separation the ethereal layer was washed two times with an aqueous solution of NH₄Cl_(sat), afterwhich the combined aqueous layers were extracted once with 20 ml Et₂O. The combined organics were dried over MgSO₄, filtered, and concentrated to afford a yellow oil. The residual was purified via flash alumina chromatography (30 g; basic, Activity III; 50:1 Hex/EtOAc) to 0.74 g (73%) of **159:160** as a 1:1 mixture. **159**: $R_f = 0.26$ (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.17 (t, J = 8.1 Hz, 1 H), 5.92 (d, J = 7.8 Hz, 1 H), 3.23 (s, 3 H), 2.78 (br s, 1 H), 2.63 (m, 1 H), 1.93 (dd, J =13.9, 3.0 Hz, 2 H), 1.32 (dd, J = 13.5, 2.1 Hz, 1 H), 1.15 (s, 3 H), 1.09 (s, 3 H), 1.08 (s, 3 H), 1.02 (d, J = 14.1 Hz, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 140.1 (CH), 133.1 (CH), 78.7 (C), 72.5 (C), 49.6 (CH₃), 46.2 (CH₂), 43.5 (C), 41.6 (CH₂), 40.2 (CH), 26.9 (CH₃), 24.5 (CH₃), 18.1 (CH₃); IR (neat) 3512 (br s), 3043 (m), 2970 (s), 2936 (s), 2874 (s), 2828 (m), 1610 (w), 1452 (s), 1363 (s), 1286 (s), 1159 (s), 1109 (s), 1093 (s), 1086 (s), 906 (m), 885 (s), 744 (s), 680 (s) cm⁻¹; LRMS (EI) m/z 196.1 (M₊), 197.2 (M₊₁); HRMS (EI) m/z 196.1462 [(M⁺); calcd. for $C_{12}H_{20}O_2$: 196.2860].

14.0, 2.0 Hz, 1 H), 1.58 (d, J = 14.5 Hz, 1 H), 1.23 (dd, J = 13.5, 2.5 Hz, 1 H), 1.22 (s, 3 H), 1.09 (s, 3 H), 1.07 (s, 3 H), 1.04 (d, J = 14.0 Hz, 1 H); ¹³C-NMR (125 MHz, CDCl₃) δ 138.0 (CH), 134.6 (CH), 79.2 (C), 74.7 (C), 49.3 (CH₃), 44.8 (CH₃), 43.6 (C), 40.8 (CH₂), 40.4 (CH), 24.6 (CH₃), 22.3 (CH₃), 18.2 (CH₃); IR (neat) 3445 (br s), 3095 (m), 2964 (s), 2934 (s), 2874 (m), 1512 (w), 1460 (s), 1365 (s), 1251 (m), 1147 (s), 1099 (s), 1070 (s), 925 (m), 841 (m), 744 (s), 680 (m) cm⁻¹.

 $(1R^*, 3S^*, 5R^*, 6R^*, 7R^*, 8S^*)$ -7-chloro-5-methoxy-1,3,5-trimethyl-1-oxatricyclo[4.2.1.0^{1,2}]nonane (176) and 6-chloro-4-methoxy-1,2,4-trimethyl-8-oxatricyclo[3.3.1.0^{2,7}]nonane (177).

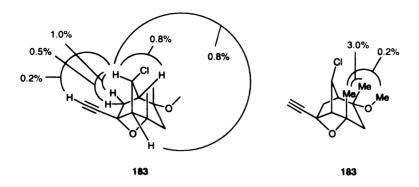
Following general procedure V, the reaction of 98.5 mg (0.50 mmol) of 159, afforded 39.3 mg (34%) of 177 and 32.3 mg (28%) of 176 after purification *via* flash silica chromatography (5 g, 10:1 hexanes/EtOAc).

176: $R_f = 0.33$ (5:1 hexanes/EtOAc); ¹H-NMR (500 MHz, CDCl₃) δ 4.15 (t, J = 4.4 Hz, 1 H), 3.18 (s, 3 H), 2.38 (m, 1 H), 2.35 (d, J = 15.3 Hz, 1 H), 2.24 (d, J = 13.7 Hz, 1 H), 1.96 (t, J = 4.9 Hz, 1 H), 1.81 (dd, J = 15.3, 6.5 Hz, 1 H), 1.38 (dd, J = 13.7, 7.1 Hz, 1 H), 1.31 (s, 3 H), 1.30 (s, 3 H), 1.22 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (125 MHz, CDCl₃) δ 78.9 (C), 62.8 (C), 60.8 (CH), 58.6 (C), 50.7 (CH₂), 48.5 (CH₃), 46.0 (CH), 36.3 (CH), 27.7 (CH₂), 27.1 (CH₃), 21.6 (CH₃), 19.9

(CH₃); IR (neat) 2930 (s), 2855 (m), 1458 (m), 1379 (m), 1321 (w), 1234 (w), 1132 (w), 1066 (m), 910 (w), 893 (m), 787 (m) cm⁻¹; HRMS (EI) m/z 231.1152 [(M⁺¹); calcd. for $C_{12}H_{19}O_2^{35}Cl$: 230.1074].

177: R_f = 0.12 (5:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 4.93 (d, J = 1.1 Hz, 1 H), 4.22 (s, 1 H), 3.91 (d, J = 4.4 Hz, 1 H), 3.25 (s, 3 H), 2.74 (m, 1 H), 2.03 (d, J = 15.4 Hz, 1 H), 1.89 (t, J = 1.65 Hz, 1 H), 1.81 (d, J = 14.8 Hz, 1 H), 1.41 (s, 3 H), 1.13 (d, J = 1.1 Hz, 3 H), 0.90 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (125 MHz, CDCl₃) δ 77.6 (C), 75.0 (C), 63.0 (CH), 60.0 (CH), 49.3 (CH₃), 47.6 (C), 44.8 (CH₂), 44.7 (CH), 41.6 (CH₂), 27.8 (CH₃), 25.1 (CH₃), 19.0 (CH₃); IR (neat) 3424 (br s), 2987 (s), 2934 (s), 2874 (s), 1608 (m), 1462 (s), 1379 (s), 1257 (ms), 1230 (ms), 1172 (s), 1115 (s), 1066 (s), 952 (ms), 925 (s), 893 (s), 871 (ms), 781 (ms) cm⁻¹; HRMS (EI) m/z 231.1163 [(M⁺+H); calcd. for C₁₂H₁₉O₂³⁵Cl: 230.1074].

 $(1S^*, 2S^*, 4S^*, 8S^*)$ -1,8-dimethyl-2-ethynyl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (161) and $(1S^*, 2R^*, 4S^*, 8S^*)$ -1,8-dimethyl-2-ethynyl-8-methoxybicyclo[2.2.2]oct-5-en-2-ol (162).


To 55.5 mL (27.7 mmol, 5.00 eq) of a chilled (0 °C) 0.5 M ethynyl magnesium bromide/THF solution, was added 1.00 g 27 (5.54 mmol, 1.00 eq) in 10 mL THF dropwise *via* syringe. The reaction was kept at 0 °C for 10 min and then heated to reflux (80 °C), which was maintained for 2.5 hrs The reaction was cooled to 0 °C and quenched with an aqueous solution of NH₄Cl_(sat) and then partitioned with 30 mL Et₂O. After

separation the ethereal layer was washed two times with 30 mL of an aqueous solution of NH₄Cl_(sat). The combined aqueous layers were extracted three times with 20 mL Et₂O. The combined ethereal layers were washed once with 30 mL brine, dried over MgSO₄, filtered, and concentrated to afford a yellow oil. The oil was purified *via* flash alumina chromatography (30 g; basic, Activity III; 30:1 hexanes/EtOAc) to afford 0.77 g (68%) of **161:162** in a 2.8:1.0 mixture.

161: $R_f = 0.33$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.23 (t, J = 7.5 Hz, 1 H), 5.90 (d, J = 8.1 Hz, 1 H), 3.14 (s, 3 H), 2.74 (s, 1 H), 2.57 (m, 1 H), 2.34 (s, 1 H), 2.12 (dd, J = 13.8, 2.7 Hz, 1 H), 1.90 (d, J = 13.8 Hz, 1 H), 1.88 (dd, J = 13.5, 2.7 Hz, 1 H), 1.22 (s, 3 H), 1.09 (s, 3 H), 0.99 (d, J = 14.1 Hz, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 138.5 (CH), 133.8 (CH), 88.2 (C), 78.4 (C), 72.7 (C), 71.0 (CH), 49.5 (CH₃), 43.8 (CH). 43.2 (CH₂), 41.6 (CH₂), 40.9 (C), 24.5 (CH₃), 19.0 (CH₃); HRMS (EI) m/z 206.1308 [(M⁺), calcd. for C₁₃H₁₈O₂: 206.1307].

162: $R_f = 0.29$ (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 6.30 (t, J = 7.2 Hz, 1 H), 5.78 (d, J = 7.8 Hz, 1 H), 3.13 (s, 3 H), 2.69 (dd, J = 13.8, 2.4 Hz, 1 H), 2.51 (m, 1 H), 2.44 (s, 1 H), 2.07 (s, 1 H), 1.40 (dd, J = 13.8, 3.3 Hz, 1 H), 1.23 (s, 3 H), 1.15 (d, J = 14.1 Hz, 1 H), 1.07 (s, 3 H), 1.02 (d, J = 13.8 Hz, 1 H); ¹³C-NMR (75 MHz, CDCl₃) δ 135.4 (CH), 134.2 (CH), 85.9 (C), 78.7 (C), 72.7 (C), 71.1 (CH) 49.3 (CH₃), 41.0 (CH), 40.8 (C), 40.2 (CH₂), 39.6 (CH₂), 24.5 (CH₃), 18.9 (CH₃); HRMS (EI) m/z 206.1306 [(M⁺), calcd. for $C_{13}H_{18}O_2$: 206.1307].

161:162: IR (KBr) 3400 (br s), 3300 (s), 3090 (m), 2998 (s), 2990 (s), 2975 (s), 2670 (m), 2620 (m), 2030 (w), 1699 (w), 1420 (m), 1345 (s), 1110 (m), 1080 (s), 1015 (m), 920 (m), 910 (m), 850 (m), 760 (s) cm⁻¹.

 $(1R^*, 3R^*, 4R^*, 6S^*, 7R^*, 8S^*)$ -6-chloro-1-ethynyl-4-methoxy-2,4-dimethyl-8-oxatricyclo[3.3.1.0^{1,2}]nonane (183).

Following general procedure V, the reaction of 0.30 g (1.4 mmol) of **156**, afforded 0.14 (39%) of **183** after purification *via* flash silica chromatography (3.5 g, 1% Et₃N/hexanes).

140: R_f = 0.44 (4:1 hexanes/EtOAc); ¹H-NMR (300 MHz, CDCl₃) δ 4.15 (t, J = 4.8 Hz, 1 H), 3.16 (s, 3 H), 2.65 (d, J = 15.6 Hz, 1 H), 2.50 (t, J = 5.7 Hz, 1 H), 2.18 (dd, J = 15.6, 6.6 Hz, 1 H), 2.16 (d, J = 13.8 Hz, 1 H), 2.01 (t, J = 5.1 Hz, 1 H), 1.49 (s, 3 H), 1.37 (dd, J = 13.5, 7.2 Hz, 1 H), 1.26 (d, J = 15.9 Hz, 1 H), 1.22 (s, 3 H); For 1-D NOE correlations see figure shown above; ¹³C-NMR (75 MHz, CDCl₃) δ 82.5 (C), 78.6 (C), 71.8 (C), 64.2 (C), 59.4 (CH), 52.8 (C), 50.6 (CH₃), 48.1 (CH), 45.2 (CH), 36.1 (CH₂), 27.1 (CH₃), 27.0 (CH₂), 22.8 (CH₃); IR (neat) 3300 (m), 3090 (w), 3966 (s), 2939 (s), 2810 (m), 2100 (w), 1498 (m), 1379 (m), 1319 (m), 1234 (m), 1188 (m), 1159 (m), 1136 (s), 1064 (s), 895 (s), 814 (m), 738 (s), 679 (m) cm⁻¹; HRMS (EI) m/z 240.0919 [(M⁺); calcd. for C₁₃H₁₇³⁵ClO₂: 240.7256].

217

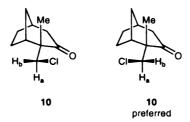
Preparation of Diels-Alder Adduct (217).

A typical ring expansion/*exo*-olefin insertion procedure, reaction time shortened to 1 hr, was performed on 0.50 g (4.5 mmol) **84** and afforded 0.19 g (40%) of **90**. Enone **90** was immediately dissolved in 6.5 ml (0.28 M) PhH. To this solution was added 0.85 g (9.1 mmol, 5.00 eq) norbornylene. The reaction was refluxed (80 °C) for 12 hrs, cooled to room temperature and concentrated. The oil was purified *via* flash silica chromatography (4 g, 20:1 hexanes/EtOAc) to afford 0.32 g (82%) **217**. **217**: $R_f = 0.57$ (5:1 hexanes/EtOAc); ${}^{1}H$ -NMR (300 MHz, CDCl₃) δ 2.70 (td, J = 12.0, 5.4 Hz, 1 H), 2.22 (dt, J = 12.6, 5.4 Hz, 1 H), 2.09 (m, 2 H), 1.98 (series of m, 5 H), 1.80 (m, 3 H), 1.58 (series of m, 8 H); ${}^{13}C$ -NMR (75 MHz, CDCl₃) δ 211.9 (C), 144.5 (C), 104.7 (C), 80.4 (CH₂), 39.5 (CH₂), 38.7 (CH₂), 28.8 (CH₂), 28.3 (CH₂), 27.6 (CH₂), 27.4 (CH₂), 23.0 (CH₂), 22.7 (CH₂), 22.7 (CH₂), 20.7 (CH₂); IR (neat) 2960 (s), 2949 (s), 1710 (s), 1555 (m), 1498 (m), 1322 (m), 1244 (m), 1180 (m), 1161 (m), 1136 (s), 1068 (s), 895(m), 758 (s), cm⁻¹; HRMS (EI) *m/z* 220.2156 [(M⁺); calcd. for C₁₄H₂₀O₂: 220.1463].

REFERENCES AND NOTES

- Ring enlargement review: (a) Gutsche, C. D.; Redmore, D. Carbocyclic Ring Expansion Reactions, Hart, H.; Karabatsos, G. J., ed.; Academic Press Inc., New York, 1968, Chapters 2-4. (b) Hesse, M. Ring Enlargement in Organic Chemistry VCH, New York, 1991, Chapter 2.
- 2 Pinacol review: Collins, C. J. Quart. Rev. 1960, 14, 357-377.
- 3 Tiffeneau-Demjanov review: (a) Smith, P. A. S.; Baer, D. R. Org. React. 1960, 11, 157-188. (b) Ridd, J. H. Quart. Rev. 1961, 15, 418-441.
- Diazo review: (a) Gutsche, C. D. Org. React. 1954, 8, 364-429. (b) Gutsche, C.;
 Chang, C. T. J. Am. Chem. Soc. 1962, 84, 2263-2264. (c) Gutsche, C. D.; Chang,
 C. T. D.; Djerassi, C.; Burrows, B. F.; Overberger, C. G.; Takekoshi, C. D. J. Am.
 Chem. Soc. 1963, 85, 949-950.
- Wagner-Meerwein review: (a) Pocker, Y. Molecular Rearrangements, ed. Mayo P. D.; Interscience Publishers, New York, 1963, part 1, pp. 1-25. (b) Karlsruhe, R. C. Angew. Chem. Int. Ed. Engl. 1966, 5, 331-434. (c) Eberlin, M. N.; Moraes, L. A. B. Chem. Eur. J. 2000, 6, 897-905.
- 6 Selectivity of cation rearrangements reviews: (a) Berson, J. A. in *Molecular Rearrangements* (ed. P. D. Mayo), Interscience, New York, 1963, part 1, pp. 111-231. (b) Krow, G. R. *Tetrahedron* 1987, 43, 3-38.
- 7 Isopropenyl systems and t-BuOCl: Johnson, C. R.; Herr, R. W. J. Org. Chem. 1973, 38, 3153-3159.
- 8 Dihydrofuranyl systems and H+: Paquette, L. A.; Andrews, J. F. P.; Vanucci, C.; Lawhorn, D. E.; Negri, J. T.; Rogers, R. D. J. Org. Chem. 1992, 57, 3956-3965.
- 9 Oxy-Cope reviews: (a) Paquette, L. A. Synlett 1990, 67-73. (b) Paquette, L. A. Angew. Chem. Int. Ed. Engl. 1990, 29, 609-626. (c) Paquette, L. A. Tetrahedron 1997, 53, 13971-14020.
- 10 Free radical reviews: (a) Heusler, K.; Kalvoda, J. Angew. Chem. Int. Ed. Engl. 1964, 3, 525-596. (b) Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon Press, New York, 1986. (c) Curran, D. P. Synthesis 1988, 417-489. (d) Curran, D. P. Synthesis 1988, 489-513. (e) Giese, B. Angew. Chem. Int. Ed. Engl. 1989, 28, 969-1146. (f) Giese, B.; Curran, D. P.; Porter, N. A. Acc. Chem. Res. 1991, 24, 296-304. Curran, D. P. Synlett. 1991, 63-72. (g) Curran, D. P.; Jasperse, C. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237-1286. (h) Dowd, P.; Zhang, W. Chem. Rev. 1993, 93, 2091-2115. (i) Yet, L. Tetrahedron 1999, 55, 9349-9403.

- Cation-radical Diels-Alder: (a) Bauld, N. L.; Bellville, D. J.; Harirchian, B.; Lorenz, K. T.; Pabon, R. A.; Reynolds, D. W.; Wirth, D. D.; Chiou, H-S.; Marsh, B. K. Acc. Chem. Res. 1987, 20, 371-378. (b) Bauld, N. L. Tetrahedron 1989, 45, 5307-5363.
- 12 Cation-radical Claisen: Dhanalekshmi, S.; Venkatachalam, C. S.; Balasubramanian, K. K. J. Chem. Soc. Chem. Commun. 1994, 511-512.
- 13 Cation-radical Cope: (a) Guofei, C.; Williams, F. J. Chem. Soc. Chem. Commun. 1992, 670-672. (b) Ikeda, H.; Takasaki, T.; Takahashi, Y.; Miyahi, T. J. Chem. Soc. Chem. Commun. 1993, 367-369.
- 14 Cation-radical sigmatropic reactions: Bauld, N. L. *Tetrahedron*, **1989**, 45, 5307-5363.
- Anion-radical [3,3] sigmatropic: (a) Enholm, E. J.; Moran, K. M.; Whitley, P. E.; Battiste, M. A. J. Am. Chem. Soc. 1998, 120, 3807-3808. (b) Curran, D. P.; Nishii, Y. J. Am. Chem. Soc. 1999, 121, 8955-8956. (c) Enholm, E. J.; Battiste, M.; Gallagher, M.; Moran, K. M.; Alberti, A.; Guerra, M.; Macciantelli, D. J. Org. Chem. 2002, 67, 6579-6581.
- One oxy-Cope product *via* radicals has been found in the literature. However there was no mention of a "radical oxy-Cope rearrangement", nor was there spectral proof. Bulliard, M.; Balme, G., Gore, J. *Tetrahedron Lett.* **1989**, *30*, 2213-2216.
- 17 There are numerous constructs and reagents used for the formation of alkoxy radicals, see Section 2.4.
- Regioochemistry of allylic radicals: Walling, C.; Thaler, W. J. Am. Chem. Soc. 1961, 83, 3877-3844.
- (a) Murdoch, J. R. J. Am. Chem. Soc. 1983, 105, 2660-2667. (b) Curran, D. P.;
 Nishii, Y. J. Am. Chem. Soc. 1999, 121, 8955-8956.
- (a) Pattenden, G.; Hitchcock, S. A. Tetrahedron Lett. 1992, 33, 4843-4846. (b) Pattenden, G.; Smithies, A. J.; Tapolczay, D.; Walter, D. S. J. Chem. Soc. Perkin Trans I 1995, 7-19. (c) Begley, M. J.; Pattenden, G.; Smithies, A. J.; Tapolczay, D.; Walter, D. S. J. Chem. Soc. Perkin Trans I 1995, 21-29. (d) Pattenden, G.; Chen, L.; Gill, G. B.; Simonian, H. J. Chem. Soc. Perkin Trans I 1995, 31-43. (e) Pattenden, G.; Batsanov, A.; Chen, L.; Gill, G. B.; Simonian, H. J. Chem. Soc. Perkin Trans I 1995, 45-55. (f) Pattenden, G.; Blake, A. J.; Hollingworth, G. J. Synlett 1996, 643-644. (g) Pattenden, G.; Houldsworth, S. J.; Pryde, D. C.; Thomson, N. M. J. Chem. Soc. Perkin Trans I 1997, 1091-1093. (h) Takahashi, T.; Tomida, S.; Sakamoto, Y.; Yamada, H. J. Org. Chem. 1997, 62, 1912-1913.
- 21 SO2Cl2: Bulliard, M.; Balme, G., Gore, J. Tetrahedron Lett. 1989, 30, 2213-2216.
- Sodium and Lithium bases have also been used. For review of oxy-Copes: (a) Paquette, L. A. Synlett 1990, 67-73. (b) Paquette, L. A. Angew. Chem. Int. Ed. Engl. 1990, 29, 609-626. (c) Paquette, L. A. Tetrahedron 1997, 53, 13971-14020.


- The structure assigned to each new compound is in accordance with its infrared, 300 or 500 MHz 1H NMR, and 75 or 125 MHz 13C NMR spectral data, as well as appropriate ion identification by high-resolution mass spectrometry. Stereochemical assignments were supported by NOE NMR experiments. See Experimental Appendix for details.
- 24 Prior synthesis of 23-25: Srikrishna, A.; Sharma, V. R.; Danieldoss, J.; Hemamalini, P. J. Chem. Soc. Perkin Trans. I 1996, 1305-1311.
- Wilson, S. R. Organic Reactions, Paquette, L. A. Ed.; Wiley, New York, 1993, Vol 43, pp 93-249.
- 26 Holt, D. A. Tetrahedron Lett. 1981, 22, 2243-2246.
- Nitrites: (a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1960, 82, 2640-2641. (b) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1961, 83, 4076-4082. (c) Doyle, M. P.; Terpstra, J. W.; Pickering, R. A.; LePoire, D. M. J. Org. Chem. 1983, 48, 3379-3382. (d) Alonso, R.; Paredes, M. D. J. Org. Chem. 2000, 65, 2292-2304.
- Pb(OAc)4: (a) Partch, R. E. J. Org. Chem. 1963, 28, 276-277. (b) Cope, A. C.; Gordon, M.; Moon, S.; Park, C. H. J. Am. Chem. Soc. 1965, 87, 3119-3121. (c) Mihailović, M. L.; Čeković, Ž. Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.; Wiley, New York, 1995; Vol. 5, pp 2949-2954.
- Pb(OAc)4/Cu(OAc)2: Ogibin, Y. N.; Katzin, I.; Nikishin, G. I. Synthesis 1974, 889-890. (b) Kochi, J. K.; Bacha, J. D. J. Org. Chem. 1968, 33, 2746-2754. (c) Heiba, E. I.; Dessau, R. M. J. Am. Chem. Soc. 1971, 93, 524-527. (d) Mihailović, M. L.; Čeković, Ž. Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.; Wiley, New York, 1995; Vol. 5, pp 2954-2956. (e) Rigby, J. H.; Payen, A.; Warshakoon, N. Tetrahedron Lett. 2001, 42, 2047-2049.
- 30 Pb(OAc)2/O2: Nishimura, T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 2645-2646.
- Mn(pic)3 and Mn(OAc)3: (a) Ray, M. M.; Adhya, J. N.; Biswas, D.; Poddar, S. N. Aust. J. Chem. 1966, 19, 1737-1740. (b) Narasaka, K.; Miyoshi, N.; Iwakura, K.; Okauchi, T. Chem. Lett. 1989, 2169-2172. (c) Iwasawa, N.; Hayakawa, S.; Isobe, K.; Narasaka, K. Chem. Lett. 1991, 1193-1196. (d) Iwasawa, N.; Funahashi, M.; Hayakawa, S.; Narasaka, K. Chem. Lett. 1993, 545-548. (e) Iwasawa, N.; Funahashi, M.; Narasaka, K. Chem. Lett. 1994, 1697-1700. (f) Snider, B. B. Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.; Wiley, New York, 1995; Vol. 5, pp 3221-3223. (g) Narasaka, K. Pure Appl. Chem. 1997, 69, 601-604. (h) Melikyan, G. G. Alcdrichimica Acta 1998, 31, 50-64. (i) Iwasawa, N.; Funahashi, M.; Hayakawa, S.; Ikeno, T.; Narasaka, K. Bull. Chem. Soc. Jpn. 1999, 72, 85-97.

- Sulfenates: (a) Beckwith, A. L. J.; Hay, B. P.; Williams, G. M. J. Chem. Soc. Chem. Commun. 1989, 1202-1203. (b) Pasto, D. J.; L'Hermine, G. J. Org. Chem. 1990, 55, 5815-5816. (c) Pasto, D. J.; L'Hermine, G. Tetrahedron 1993, 49, 3259-3272. (d) Pasto, D. J.; Cottard, F.; Picconatto, C. J. Org. Chem. 1994, 59, 7172-7177. (e) Guindon, Y.; Denis, R. C. Tetrahedon Lett. 1998, 39, 339-342.
- 33 FeCl3: Saegusa, T.; Ito, Y.; Fujii, S. J. Org. Chem. 1976, 41, 2073-2074.
- Hypochlorites: (a) Cairns, T. L.; Englund, B. E. J. Org. Chem. 1956, 21, 140. (b) Denney, D. B.; Beach, W. F. J. Org. Chem. 1959, 24, 108-109. (c) Greene, F. D. J. Am. Chem. Soc. 1959, 81, 2688-2991. (d) Wilt, J. W.; Hill, J. W. J. Org. Chem. 1961, 26, 3523-3525. (e) Walling, C.; Thaler, W J. Am. Chem. Soc. 1961, 83, 3877-3884. (f) Greene, F. D.; Savitz, M. L.; Osterholtz, F. D.; Lau, H. H.; Smith, W. N.; Zanet, P. M. J. Org. Chem. 1963, 28, 55-64. (g) Cope, A. C.; Bly, R. S.; Martin, M. M.; Petterson, R. C. J. Am. Chem. Soc. 1965, 87, 3111-3117. (h) Walling, C.; Clark, R. T. J. Am. Chem. Soc. 1974, 96, 4530-4534. (i) Čeković, Ž.; Djokić, G. Tetrahedron 1981, 37, 4263-4268. (j) Kim, S. S.; Kim, H. R.; Kim, H. B.; Youn, S. J.; Kim, C. J. J. Am. Chem. Soc. 1994, 116, 2754-2758.
- Hypoiodites: (a) Barton, D. H. R.; Akhtar, M. J. Am. Chem. Soc. 1964, 86, 1528-35 1536. (b) Macdonald, T. L.; O'Dell, D. E. J. Org. Chem. 1981, 46, 1501-1503. (c) Suárez, E.; Concepcion, J. I.; Francisco, C. G.; Freire, R.; Hernandez, R.; Salazar, J. A. Tetrahedron Lett. 1984, 25, 1953-1956. (d) Suginome, H.; Yamada, S. J. Org. Chem. 1985, 50, 2489-2494. (e) Suárez, E.; Freire, R.; Marrero, J. J.; Rodriquez, M. S. Tetrahedron Lett. 1986, 27, 383-386. (h) Suárez, E.; Concepción, J. I.; Francisco, C. G.; Hernandez, R.; Salazar, J. A. J. Org. Chem. 1986, 51, 402-404. (i) Suárez, E.; Francisco, C. G.; Freire, R.; Rodriguez, M. S. Tetrahedron Lett. 1987, 28, 3397-3400. (j) Suginome, H.; Yamada, S. Tetrahedron 1987, 43, 3371-3386. (k) Yamamoto, H.; Kaino, M.; Naruse, Y.; Ishihara, K. J. Org. Chem. 1990, 55, 5814-5815. (1) Suárez, E.; Armas, P.; Francisco, C. G. Angew. Chem. Int. Ed. Engl. 1992, 31, 772-774. (m) Inanaga, J.; Sugimoto, Y.; Yokoyama, Y.; Hanamoto, T. Tetrahedron Lett. 1992, 33, 8109-8112. (n) Suginome, H.; Kondoh, T. J. Chem. Soc. Perkin Trans. 1 1992, 3119-3124. (o) Suárez, E.; Armas, P.; Francisco, C. G. Tetrahedron Lett. 1993, 34, 7331-7334. (p) Lusztyk, J.; Courtneidge, J. L.; Pagé, D. Tetrahedron Lett. 1994, 35, 1003-1006. (q) Suárez, E.; Francisco, C. G.; Freire, R.; Gonzalez, C. C.; Leon, E. I. J. Org. Chem. 2000, 66, 1861-1866. (r) Suárez, E.; Gonzalez, C. C.; Kennedy, A. R.; Leon, E. I.; Riesco-Fagundo, C. Angew. Chem. Int. Ed. Engl. 2001, 40, 2326-2328. (s) Suárez, E.; Francisco, C. G.; Freire, R.; González, C. C.; León, E. I.; Riesco-Fagundo, C. J. Org. Chem. 2001, 66, 1861-1866.
- 36 Iodoepoxides: Galatsis, P.; Millan, S. D.; Faber, T. J. Am. Chem. Soc. 1993, 58, 1215-1220.
- 37 Nitrate esters: Fraser-Reid, B.; Vite, G. D. Synth. Commum. 1988, 18, 1339-1342.

- Pyridinyl thiones: (a) Barton, D. H. R.; Togo, H.; Zard, S. Z. Tetrahedron 1985, 41, 5507-5516. (b) Barton, D. H. R.; Crich, D.; Kretzschmar, G. J. Chem. Soc. Perkin Trans. 1 1986, 39-53. (c) Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1988, 110, 4415-4416. (d) Beckwith, A. L. J.; Davison, I. G. E. Tetrahedron Lett. 1991, 32, 49-52. (e) Barton, D. H. R.; Jaszberenyi, J. C.; Morrell, A. I. Tetrahedron Lett. 1991, 32, 311-314.
- 39 Thiazole thiones: Hartung, J.; Schwarz, M. Synlett. 1997, 848-850.
- 40 Phthalamides: (a) Kim, S.; Lee, T. A.; Song, Y. Synlett. 1998, 471-472. (b) Newcomb, M.; Crich, D.; Huang, X. Org. Lett. 1999, 1, 225-227.
- Bicyclic cationic rearrangements: (a) Berson, J. A. Molecular Rearrangements, Mayo, P., Ed.; Interscience Publishers: New York, 1963, pp 111-232. (b) Bartlett, P. D. Nonclassical Ions, W. A. Benjamin, New York, 1965. (c) Gutsche, D.; Redmore, D. Carbocyclic Ring Expansion Reactions, Hart, H. and Karabatsos, G. J. Ed.; Academic Press, New York, 1968, pp 1-95. (d) Hesse, M. Ring Enlargement in Organic Chemistry, VCH Publishers, New York, 1991 pp 1-34.
- 42 Radicals via Bu3SnH: Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon Press, New York, 1986.
- 43 Sulfenate procedure (p-NO2): Pasto, D. J.; Cottard, F.; Horgan, S. J. Org. Chem. **1993**, 58, 4110-4112.
- Polar S-Cl addition across olefins: Fallis, A. G.; Tuladhar, S. M. *Tetrahedron Lett.* **1987**, 28. 523-526.
- In the isolation of sulfides 33, 35, and 37, only one diastereomer was isolated in each case. Due to the unsatisfactory results the more in depth question of diastereoselectivity was not pursued.
- Sulfenate [2,3]-sigmatropic rearrangement: (a) Mislow, K., Rayner, D. R., Miller, E. G., Bickart, P., Gordon, A. J. J. Am. Chem. Soc. 1966, 88, 3138-3139. (b) Mislow, K., Miller, E. G., Rayner, D. R. J. Am. Chem. Soc. 1966, 88, 3139-3140. (c) Baldwin, J. E., Hackler, R. E., Kelly, D. P. J. Chem. Soc. Chem. Commun. 1968, 538-539. (d) Mislow, K., Tang, R. J. Am. Chem. Soc. 1970, 92, 2100-2104. (g) Brown W. L., Fallis, A. G. Can. J. Chem. 1987, 1828-1837.
- 47 PhSCl: Zelćans, G. Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.; Wiley, New York, 1995; Vol. 1, pp 272–277.
- Phenyl sulfenyl chloride procedure: Hursthouse, M. B.; Malik, K. M. A.; Hibbs, D. E.; Roberts, S. M.; Seago, A. J. H.; Šik, V.; Storer, R. J. Chem. Soc. Perkin Trans. 1 1995, 2419-2425.

- 49 Sulfenate procedure (phenyl): Guindon, Y.; Denis, R. C. Tetrahedron Lett. 1998, 39, 339-342.
- HgO/I2: Iwasa, S.; Rawal, V. H. Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.; Wiley, New York, 1995; Vol. 5, pp 3261-3263.
- 51 Pb(OAc)4/I2: Mihailović, M. L.; Čeković, Ž. Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.; Wiley, New York, 1995; Vol. 5, 2956–2958.
- 52 Since the desired radical oxy-Cope product was not observed, compound 39 was not fully characterized as a result of other possible avenues of investigation.
- 53 DAID: Moriarty, R. M.; Chany II, C. J.; Kosmeder II, J. W. Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.; Wiley, New York, 1995; Vol. 2, 1479-1484.
- 54 Iodosylbenzene: Moriarty, R. M.; Kosmeder II, J. W. Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.; Wiley, New York, 1995; Vol. 4, 2846-2850.
- 55 PhIO synthesis: Sharefkin, J. G.; Saltzman, H. Organic Syntheses Coll. Vol. V, 1973, 658. 00
- 56 NaOCl: Glavin, J. M.; Jacobsen, E. N. Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A., Ed.; Wiley, New York, 1995; Vol. 7, 4580-4585.
- 57 The optimization of this reaction can be found in Chapter 3.
- Hypochlorite formation: (a) Greene, F. D.; Savitz, M. L.; Osterholtz, F. D.; Lau, H. H.; Smith, W. N.; Zanet, P. M. J. Org. Chem. 1963, 28,55-64. (b) Walling, C.; Thaler, W. J. Am. Chem. Soc. 1961, 83, 3877-3884. (c) Walling, C.; Clark, R. T. J. Am. Chem. Soc. 1974, 96, 4530-4534.
- 59 Chlorinative ring expansions: (a) Johnson, C. R.; Herr, R. W. J. Org. Chem. 1973, 38, 3153-3159. (b) See also Johnson, C. R.; Cheer, C. J.; Goldsmith, D. J. J. Org. Chem. 1964, 29, 3320-3323.
- Dihydrofuranyl ring expansions: Paquette, L. A.; Andrews, J. F. P.; Vanucci, C.; Lawhorn, D. E.; Negri, J. T.; Roger, R. D. J. Org. Chem. 1992, 57, 3956-3965.
- Bridged bicyclic ring expansion of ketones: (a) Krow, G. R. Tetrahedron 1987, 43, 3-38. (b) Djuardi, E.; Bovonsombat, P.; McNelis, E. Tetrahedron Lett. 1994, 50, 11793-11802.
- The oxygen chlorine bond vibration was deduced from the IR spectrum of t-BuOCl.

- 63 Johnson and Herr (reference 7) reported GC yields.
- Johnson and Herr report this reaction generates six products by GC analysis. Only the four present in Scheme 15 were identified.
- This analysis also supports Johnson's conclusion of a preferred CH_2Cl rotomer present in [3.2.1]-ketone 10. The methyl substituent appears as a doublet (J = 0.6 Hz), resultant from W-coupling with the CH_2Cl protons making two conformers possible. Johnson used aromatic solvent induced shifts of 10 to deduce the preferred conformer shown below. NOE data is consistent with this model. (For aromatic solvent induced shifts see Bhacca, N. S., Williams, D. H. In Applications of NMR Spectroscopy in Organic Chemistry, Holden-Day: San Francisco, CA, 1964, Chapter 7.)

- 66 Srikrishna's ketones: Srikrishna, A.; Sharma, V. R.; Danieldoss, J.; Hemamalini, P. J. Chem. Soc. Perkin Trans. I 1996, 1305-1311.
- 67 Hypohalite review: Anbar, M.; Ginsburg, D. Chem. Rev. 1954, 54, 925-958.
- Biologically active enones: Miller, J. A.; Ullah, G. M.; Welsh, G. M.; Mallon, P. Tetrahedron Lett. 2001, 42, 2729-2731.
- 69 McMurry, J. E.; Ksander, G. M.; Johnson, M. J. Org. Chem. 1977, 42, 1180-1185.
- 70 (a) Tamura, R.; Watabe, K.; Hatayama, H.; Suzuki, H.; Yamamoto, Y. J. Org. Chem. 1990, 55, 408-410. (b) Tamura, R.; Watabe, K.; Ono, N.; Yamamoto, Y. J. Org. Chem. 1992, 57, 4895-4903.
- 71 Liotta, D.; Zima, G.; Barnum, C. J. Org. Chem. 1980, 45, 2737-2739.
- 72 Shono, T.; Nishiguchi, I.; Komamura, T.; Sasaki, M. J. Am. Chem. Soc. 1979, 101, 984-987.
- 73 (a) Ryu, I.; Murai, S.; Sonoda, N. *J. Org. Chem.* **1986**, *51*, 2391-2393. (b) Nakahira, H.; Ryu, I.; Ikebe, M.; Oku, Y.; Ogawa, A.; Kambe, N.; Sonoda, N.; Murai, S. *J. Org. Chem.* **1992**, *57*, 17-28.
- 74 Trost, B. M.; Salzmann, T. N.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 4887-4902.

- 75 (a) Gras, J. L. Tetrahedron Lett. 1978, 2111-2114; 2955-2958. (b) Kellog, R. M.; Kruizinga, W. H. J. Am. Chem. Soc. 1981, 103, 5183-5189.
- 76 This type of elimination has been suggested by, Johnson, C. J.; Cheer, C. J.; Goldsmith, D. J. J. Org. Chem. 1964, 29, 3320-3323.
- 77 Notion of anchimeric assistance and bond angle distortion: Berson, J. A.; Willner, D. J. Am. Chem. Soc. 1964, 86, 609-616.
- Synthetic route to 126: (a) Paquette, L. A.; Oplinger, J. A. Tetrahedron 1989, 45, 107. (b) Paquette, L. A.; Maleczka, Jr., R. E.; Qiu, F.; J. Org. Chem. 1991, 56, 2455-2461. (c) Maleczka, Jr., R. E. Ph.D. Dissertation, Ohio State University, 1992.
- 79 Compound 117: Yanagita, M.; Inayama, S. J. Org. Chem. 1954, 19, 1724-1733.
- 80 Sakurai Reaction: Sakurai, H.; Hosomi, A. J. Am. Chem. Soc. 1977, 99, 1673-1675.
- 81 For Shapiro reaction: (a) Shapiro, R. H.; Heath, M. J. J. Am. Chem. Soc. 1967, 89, 5734-5735. (b) Barrett, A. G. M.; Adlington, R. M. Acc. Chem. Res. 1983, 16, 55-59.
- Intramolecular Diels-Alder reaction of masked benzoquinones: Liao, C.; Chu, C.; Lee. T.; Rao, P. D.; Song, L. J. Org. Chem. 1999, 64, 4111-4118.
- 83 Srikrishna's ketones: Srikrishna, A.; Sharma, V. R.; Danieldoss, J.; Hemamalini, P. J. Chem. Soc. Perkin Trans. I 1996, 1305-1311.
- 84 1H-NMR comparison of α-methylcyclohexanones: Johnson, C. R.; Cheer, C. J.; Goldsmith, D. J. J. Org. Chem. 1964, 29, 3320-3323.
- 85 The structure of **167** was also verified *via* X-ray crystallography.
- Bicyclic cationic rearrangements: (a) Berson, J. A. Molecular Rearrangements, Mayo, P., Ed.; Interscience Publishers: New York, 1963, pp 111-232. (b) Bartlett, P. D. Nonclassical Ions, W. A. Benjamin, New York, 1965. (c) Gutsche, D.; Redmore, D. Carbocyclic Ring Expansion Reactions, Hart, H. and Karabatsos, G. J. Ed.; Academic Press, New York, 1968, pp 1-95. (d) Hesse, M. Ring Enlargement in Organic Chemistry, VCH Publishers, New York, 1991, pp 1-34.
- 87 Ethynyl carbinol ring expansions: Djuardi, E.; Bovonsombat, P.; McNelis, E. *Tetrahedron* **1994**, *50*, 11793-11802.
- Halgren, T. A. J. Comput. Chem. 1996, 17, 490-519 and references cited therein.

- 89 (a) Osawa, E.; Goto, H. J. Chem. Soc. Perkin Trans. 2 1993, 187-198. (b) Osawa, E.; Goto, H. Tetrahedron 1993, 49, 387-396.
- Nucleophilic enone chemistry: (a) Boyd, G. V. The Chemistry of Enones, Patai, S.;
 Rappoport, Z., Ed.; Wiley, New York, 1989, pp 282-291. (b) Duval, D.; Géribaldi,
 S. The Chemistry of Enones, Patai, S.; Rappoport, Z., Eds.; Wiley, New York,
 1989, pp 356-456.
- (a) Buchi, G.; Erickson, R. E.; Wakabayashi, N. J. Am. Chem. Soc. 1961, 83, 927-938.
 (b) Bates, R. B.; Slagel, R. C. J. Am. Chem. Soc. 1962, 84, 1307-1308.
 (c) Buchi, G.; MacLeod Jr, W. D. J. Am. Chem. Soc. 1962, 84, 3205-3206.
 (d) Buchi, G.; MacLeod Jr, W. D.; Padilla O, J. J. Am. Chem. Soc. 1964, 86, 4438-4444.
 (e) Tsubaki, N.; Nishimura, K.; Hirose, Y. Bull. Chem. Soc. Jpn. 1967, 40, 597-600.
 (f) Leriverend, P.; Conia, J. M. Bull. Soc. Chim. Fr. 1970, 1060-1066.
 (g) Paknikar, S. K.; Veeravalli, J. Indian J. Chem. Sect. B 1980, 19B, 432.
- 92 Holton, R. A.; Juo, R. R.; Kim, H. B.; Williams, A. D.; Harusawa, S.; Lowenthal, R. E.; Yogai, S. J. Am. Chem. Soc. 1988, 110, 6558-6560
- Separation necessary since carbinol **212** places the methyl substituent at the wrong position after ring closing metathesis.
- (a) Banthorpe, D. V.; Whittaker, D. Chem. Rev. 1966, 66, 643-656.
 (b) Bessfere-Cheetien, Y. Bull. Soc. Chim. Fr. 1971, 2591.
 (c) Jefford, C. W.; Boschung, A. F.; Moriarty, R. M.; Rimbault, C. G.; Laffer, M. H. Helv. Chim. Acta. 1973, 56, 2649-2659.
- (a) Woodward, R. B.; Katz, T. J. Tetrahedron 1959, 5, 70-89. (b) Sustmann, R.; Sauer, J. Angew. Chem. Int. Ed. Engl. 1980, 19, 779-807. (c) Craig, D. Chem. Soc. Rev. 1987, 16, 187-238. (d) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007-1019.
- 76 Thermal diemerization of acrolein: Smith, C. W.; Norton, D. G.; Ballard, S. A. J. Am. Chem. Soc. 1951, 73, 5267-5272.