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ABSTRACT

STEADY STATE INVERSE THERMAL ANALYSIS

IN SUPERCOOLED ACCELERATOR CAVITIES

BY

AHMAD AIZAZ

A heat conduction problem in Super Conducting Radio Frequency (SRF) cavities has

been studied. The wall thickness is l-4mm niobium and a ‘point heating’ source on the

inner surface of the evacuated niobium cavity is assumed. Liquid helium acts as a coolant

on the outer surface of the cavity to make the niobium electrically super conducting

below its critical temperature. Using finite difference techniques, a computer program has

been developed to solve the direct steady-state heat conduction equation. To simulate the

actual thermal diagnostic setup at the Cyclotron Laboratory as closely as possible, the

geometry for this computer program is 3-dimensional with insulated thermal sensors

installed on the outer surface of the cavity. The insulated enclosures have different

thermal properties from those of the niobium.

The results obtained through the program are useful for understanding the

maximum sensor spacing, which allows detection of a 1 degree temperature rise at the

heated surface (inner side) of the cavity.

Code verification is done with results obtained through the exact solutions generated by

COND3D, developed for Sandia National Laboratory, and through the Kokopelli Finite

Element Method program developed for Los Alamos National Laboratory. The results are

discussed in detail with suggestions for future research.
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CHAPTER 1

INTRODUCTION

1.1 Superconducting Cavities

Superconductivity has become an important technology for particle accelerators.

Radio frequency superconducting cavities (SRF) have been operating routinely for

many years in a variety of accelerators for high-energy physics, low-energy to

medium-energy nuclear physics research, and free-electron lasers. A key component

of the modern particle accelerator is the device that imparts energy to the charged

particles. This is the electromagnetic cavity resonating at a microwave frequency at

very low temperatures Where the material of the cavity is electrically super-

conducting. For more information on super-conductivity refer to appendix 5.4 to this

report.

1.2 Thermal Breakdown

Thermal breakdown, commonly known as “Quench”, is a phenomenon that occurs in

the accelerating cavity due to a rise in the temperature of the cavity, in a small localized

region known as a “defect”. With the increase in If power, these sub-millimeter-sized

regions that have If losses substantially higher than the surface resistance of an ideal

superconductor, grows and become normal conducting regions. Hence, the result is

sudden loss of power in the accelerating field Em. The two most critical design features

of a super-conducting accelerating cavity are its average accelerating field, Em, and the

quality factor Q0, which is the intrinsic Q of the resonant cavity defined as the. ratio of

the energy stored (U) in the cavity to the energy lost (PC) in one If period. This thermal

breakdown (quench) is a mechanism that ultimately limits field strengths, Ease, in



superconducting cavities whose microwave performance is not affected by

multipactoring (a resonant process in which a large number of electrons build up within a

small region of the cavity surface) or field emission (emission of electrons from high

electric field regions of the cavity). [1]. It is now a well-known fact that this effect takes

place within a localized, point-like region of the cavity inner surface rather than over a

large fraction of the super-conducting areas. At these localized regions, therefore, the

temperature continues to rise with the increase in RF power input and could eventually

cross the critical temperature (TC), which may result in a quench condition [1].

1.3 Past Research

Thermal breakdown in superconducting RF cavities is one of the limiting factors in

achieving high values of average accelerating field (Eacc). Thermal breakdown originates

at sub-millimeter—size regions that have RF losses substantially higher than the surface

resistance of an ideal superconductor.

K.R. Krafft et al. have studied the mechanism of thermal-magnetic breakdown in

superconducting cavities by systematically investigating the two most important thermal

transport phenomena in the cavity-cooling bath system: the thermal conductivity of the

metal and heat transport across the metal to liquid helium interface. They concluded that

the thermal transport in super-conducting niobium cavities is determined by the interplay

of the temperature dependant functions of the surface resistance, thermal conductivity,

and the metal to liquid helium thermal boundary resistance [2].

H. Padamsee et al. have investigated the behavior of thermal breakdown through the

construction of a phenomenological model by considering it as a purely thermal effect.

They found that the factors influencing the production of heat at the defect are the defect



size and resistance. Also, the surface resistance of the metal determines the additional

power dissipated in the neighboring super-conducting niobium. They developed l-D

computer simulations to model thermal-magnetic breakdown by incorporating heat

production as well as heat transportation factors. Essentially, the program calculates the

temperature of the defect and vicinity for increasing RF field levels until the thermal

breakdown takes place [1].

R. Romijn, W.Weingarten and H.Piel have presented calibration measurement for the

temperature mapping system in use at European Organization for Nuclear Research

(CERN) for super-conducting acceleration cavities immersed in sub-cooled liquid

helium. They concluded, from their experiment, that the resistor thermometer response on

a heat source at the cavity interior surface could be described by turbulent convection

heat flow [4].

HP. Kramer et al have discussed the heat transfer from technical copper to flowing

He II for different heat fluxes and different flow velocities. They argued that since the

theory of Kapitza conductance can at best account for the heat transfer from specially

treated ultra-clean surfaces, heat transfer from “dirty” technical surfaces still has to be

described empirically. He found that the heat transfer coefficient of liquid helium H does

not depend on the flow velocity [3].



W

NUMERICAL SIMULATIONS

2.1 Model Definition

The SRF cavity is modeled as a rectangular parallelepiped 3D surface, as shown in

Figure 1

EXAMPLE REGION OF

-A/INIEREST

    
INTERIUR HEATED

SURFACE

—EXTERIUR SURFACE

COOLED BY LIQUID

HEI IUM

 

DETAILED VIEW OF

REGION OF INTEREST    

Figure 1 Region of interest on an elliptical super-conducting cavity

is modeled as a rectangular parallelepiped surface with

point of heat source on the interior surface and cooled by

the liquid helium on the exterior surface



This section of the cavity is chosen to be representative of the whole cavity. A more

elaborate View of this three dimensional surface with sensors installed on one face,

known as cold surface, is shown in Figure 2
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Figure 2 Rectangular parallelepiped surface has point of heat source

on face 1 and sensors installed on face 2 where liquid

helium is to cool down the whole cavity to the desired

operating temperature. x-axis is chosen in the direction of

thickness of the niobium metal.



2.2 Assumptions in Model

In order to describe the heat transfer behavior in the niobium cavities, mathematical

modeling is done to relate it with the actual physical phenomena. This mathematical

model is based upon certain underlying assumptions, which are discussed below:

Steady State Heat Conduction

Since thermal breakdown in SRF cavities is a phenomenon that limits the Eacc of

the cavity, accurately computing the steady state temperature distribution is of

prime importance. Also from a typical order of magnitude analysis, the transient

. . at . .

time constant, known as Fourier number (F0 = 2;), IS quite large, even for small

C

times of several milliseconds, and steady state conditions are reached very

cmz

 ),L
t“-

rapidly. In this relation, a is the thermal diffusivity of the niobium in (

sec

is the Characteristic length i.e. thickness of the niobium in (cm) and, t is time in

(sec). Moreover, Since the present study is focused upon finding the optimum

sensor Spacing as a function of detectable temperature rise above ambient, a

steady state solution to the problem is more desirable.

Since there is no heat being generated inside the niobium, the equation for

transport of heat across the niobium surface can be simplified. Point heating has

been assumed on the inner surface of the cavity. Since no finite heating source

can be described as point heating, a single grid point of heating is assumed to

model the point heating behavior.



Since the operating temperature of the cavities is below the critical

temperature of the niobium (TSTF) where Tc 5 9.2 ”k for niobium the Meissner

effect [12] dictates that the magnetic field does not affect heat conduction in the

niobium. Transport of heat out of the cavity through radiation is considered to be

negligible as compared with convective heat transfer through liquid helium.

Though the insulated sensor housings are made with several materials, the

main composition of the sensor that has any significant role in transportation of

heat is the casing of the sensor. This is made of 6-10 material, a kind of epoxy

filled fiberglass.

Due to the low thermal conductivity of the 0-10 sensor housing, the contact

resistance with the niobium is neglected. Moreover, this contact resistance is

further reduced by applying a thin film of varnish (IM-7031) that has low

electrical conductivity but high thermal conductivity at low temperatures. The use

of this varnish, thus allows us to neglect the interface resistance without

significant loss of accuracy.

2.3 Governing Differential Quation

Based upon the assumptions described above, the heat transport equation in the SRF

cavity material is described as:

WT+NT+NTz

8X2 8Y2 322

  

2.1

This differential equation in three dimensions, is commonly known as the ‘Laplace

Equation’ and is categorized as elliptical in nature.



The boundary conditions on each of the six faces are described with respect to the

faces identified in Figure 2. Since there are two distinct material surfaces in the problem,

i.e. niobium plate and the material of the sensor, the boundary conditions are described

accordingly.

2.3.1 Boundary Conditions on the Niobium Surface

(a) Face 1; at x=0. (Heated Page)

There are two boundary conditions (a mixed boundary condition) specified on

Face 1.

qu.z(Pt.heat) = User specified

ql y.z(exciptPt.heat) = 0

Heat flux is zero on all grid points except on one Single grid point (input by

the user) where flux q is specified in Watts / mmz.

(b) Face 2: at x: L ( cooled surface)

This face also has two types of boundary conditions i.e. mixed boundary

conditions: -

(i) Surface with no sensor

=h AT
No sensor conv, He 4

(ii) Surface with sensors

(JIM, = q

TNb

 Sensor

T
(131.“ = Sensor(i.j.k)

Here L is the thickness of the niobium plate.



(c) Faces 3 & 4:at y=O,W

ar_
——0

3y

Here, W is the width of the niobium plate

(d) Faces 5 & 6; at z=O,H

8: ._. 0
dz

Here, ‘H’ is the height of the niobium plate

2.3.2 BoundarlConditions on the Sensor

Since the whole sensor is assumed to be immersed in the liquid helium, a

convective boundary condition, as given below, is valid for the five sides of the

sensor.

sensor

AT
conv,He  q

The boundary condition on the sixth surface of the sensor i.e. at the interface with

the niobium surface is same as described for the niobium surface and is repeated here

for completeness.

qNb FL 2 qSensor X=L

TNb(i,j.k) = TSensor(i,j,k)

Here ‘L’ is the thickness of the niobium plate.

2.4 Discretization of the Differential Equation

The discretization of the differential equation is done using a finite difference

technique. The second order differentials in the equation are discretized at a point by



using the central difference with respect to the two neighboring grid points. Hence the

scheme is second order accurate.

Tm.” — 2T. + T

  

 

r.j.k i+l.j.k + Ti.j-1.k " 2Ti.j.k + Ti.j+l.k +

2 2

Ax Ay 22

T1,}.k—l— 2Ti.j.k + Ti,j.k+l __ 0

Az2

This discretized equation, which is now a simple algebraic equation, can be solved

through SOR (Successive Over Relaxation) iterative technique.

Solving for T13M , we get

1

Ti.j,k = 7[a(Ti-l.j.k + Ti+l.j.k ) + fl(Ti.j—l,k + Ti.j+l,k ) +

2.3

7(TI.),k—I + Ti,j.k+l)]

Where,

x = 2(Ax2Ay2 + AJCZAZZ + AzZAyz)

a = AyzAz2

,3 = Az2Ax2

y = AyzAx2

This equation is a Gauss-Seidel method representation of the Laplace equation.

Introducing the convergence acceleration parameter a), this equation converts to an SOR

representation of the three-dimensional Laplace equation.

1
n+l _ n +1

Ti,j,k — Ti,j.k + w[7{a(Tifl,j,k + Ti:l,j,k ) +

2.4

I n I n

fl<Tiflthk + Ti,nj+l.k ) + y(Ti.;k—l + Ti.j.k+l )} — Ti.nj.k]

10



Here the superscripts”n+1” is the current iteration number and ”n” is the

previously computed iteration number.

“to” varies between 1 and 2 and is determined through numerical experimentation to

enhance the convergence. For (0:1, the equation reduces to equation (2.3), the

Gauss-Seidel iterative method.

2.5 Implementation of Boundary Conditions

At the boundaries, since one of the two end surface grid points is not defined in the

central differencing scheme, a hypothetical point is assumed to exist beyond the surface

boundary. The relation for the hypothetical point is then derived from discretization of

the known boundary condition, which is then substituted into the equation (2.4) for that

point. It is also realized that except at the interface boundary of niobium plate with the

sensor, all boundary equations developed through this technique are similar to the ones

that can be obtained by applying finite control volume approach. In the following sub

paragraph, this principle is applied to implement the corresponding boundary conditions

and one boundary equation is derived from both these methods to illustrate this similarity.

2.5.1 On Hezged Facg

At Face 1 on the point of heating, the boundary condition is specified as:

8T
=—k __

‘1 Nb ax,

. . n+1 . . . . , , .

Here the grid pornt TH, 13;, IS the hypothetical pornt, as ‘I-l doesn t exrst on the

surface. To find the relation for this point, the above boundary condition can be

expressed algebraically with central difference as

11



k n+ n

q = _-2—XXL(7;HI _Ti—l)

2qAx
+1

01' 7‘:ng = —+Ti:1,j.k

Nb

Hence the complete boundary equation becomes

 

2"“ + 2T1...) +

Nb 2.5

n+1 n+l

fl(Ti,j—1,k + Tif1j+l,k) + y(Ti,j,k—l + Till/(+4)} _ Till/c]

n+ n 1

T1313}: : Tr,” + w[7{a(

Now applying the finite control volume approach to the same boundary point, we

get:-

AxAz AxAz

KNb (Z—Ay-XTIJHJI '— Tr.j.k ) + KNb (Hy—X13141: " Ti.j,k)

AxAy AxAy

KNb (E)(Ti.j.k+l — TIJJI ) + KNb (EXT-5.1-1 _ Ti.j.k)

A AZ

“(i—“TM —T.-.,-,. > + was: = 0

After simplification to solve for Ti.j.k , we get

2qAx
 

1 n
Ti,j,k = 7{a( + 2Ti+l,j,k)+

Nb

n+1 n n+1 n

1601,14,): + Ti,j+l,k ) + y(Ti,j,k—l + Ti,j,k+l)}

Here a , fl and y are the same as used in equation (2.4).

Hence it is seen that this equation is exactly the same as equation 2.5 once

assembled in SOR technique. This shows that the two methods of applying the

boundary conditions results in similar boundary equations.

Similarly, for the boundary points where heat flux is zero, the relation for a

hypothetical point is developed as:

12



=0=—k _
q NbaX

_ . n+l _ n

which results Into 71-1,” — Tm,”

2.5.2 Convective Boundary Condition

The convective boundary condition is given by working on the similar principle:

3T

q : ”ko— = hHe(TNb -T°°) ,

ax

Here TM is the temperature at the niobium-helium interface and To, is the known

bulk temperature of the liquid helium. When central differenced, the relation

becomes:

n n 2Axh ,

T- = T4" ——i"'—<T.. —T..>
ko

2.5.3 Boundary Condition at the Niobium-Sensor Interface

On the interface boundary between the niobium surface and the 6-10 material of

the sensor housing, as shown in figure 2, the boundary condition can be expressed

more easily with the help of a finite control volume approach and is expressed as:

 

I.j,k

AyAz AyAz

Ax (km; + kG—10)T' _ —Kx—(koTi—I.j.k + kG—10Ti+l,j.k ) +

AxAz AXAZ

17(ko + kG-IO )TiJJc — FUCM, + kG-lo)(Ti.j—1J€
+ TIJHJI ) +

  

AyAx AyAx

AZ (km; + [(0—10 )T - A (km, + k0_lo )(Ti,j,k—l + Ti.j,k+1) : 0
i,j,k

Z

Solving for T,‘ 1.1: and simplifying the equation we get,

13



  

,, 1 2k ,, 2k _
T131311: ._. _[a{( Nb )Ti-1.]j,k +( G 10 )

’1 ko + kG-IO ko + [(0—10 25

Ti:1,j,k } + fl(Ti.nj+-ll.k + Ti,"j+l,k ) + ),(Tif'jtlt—l + TIE-1+0]

Here 61,13 and y are the same as used in equation (2.4).

If a close look at this equation is made, it becomes evident that this equation is

quite similar to equation (2.4) except for the coefficients of the x-direction terms,

which now have the influence of the thermal conductivities of the two materials. This

can also be seen if we simplify this equation with the thermal conductivities of the

two materials is made equal, the equation becomes the same as equation 2.4 for one

homogeneous material. Hence a convenient and Simple logic is found to implement

this boundary condition along with the other boundary conditions into the computer

program.

2.5.4 Other Sides of Boundary Conditions On Sensor Housing

Since we are dealing with a three dimensional case, the sensor housing must have

five other surfaces in addition to the one mentioned in the case of Face 2. If the sensor

is not on any of the side edges then all other five faces shall have same type of

convective boundary condition as described above in 2.5.2 and is given as:

q = hue (T — Tm)

But if any sensor is modeled on the edge or comer of the niobium surface, then

this Side of the sensor shall have the insulated boundary condition. So, if the sensor is

aligned with the top or bottom surface, then the valid boundary condition imposed as:

(a) 8_T = 0 and,

3y

If the sensor is aligned with the edges of face 5 or face 6, then
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3T
b =0( ) I)?

2.5.5 Boundary Conditions on Face 3 and 4

These faces are modeled as insulated surfaces, and the boundary condition is

given as:

E=O,then

n+l

Ti,j—1,k=—T-n“.1k for face 3 and,

n+1 n+1

T”14.1 k :Tj—lk for face4.

2.5.6 Boundary Conditions on Face 5 and 6

These faces are also modeled as insulated surfaces, since no heat transfer takes

place across them. So the boundary condition is given as: -

£=0,then

az

n+1 n

7:31;,“ 1 =72)“, for faceSand

TMl =T"+,,_ 1 for face 6
1jk+l

2.6 Program Characteristics

2.6.1 Convergence

Numerical formulation of Laplace equation can be represented in a system of

linear algebraic equations. These algebraic equations can be written in the matrix

form with U representing the solution vector.

A U=E
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The solution of this system of equations exists and is unique if and only if A is

non-singular, in which case

U=A" E.

It may be shown that the following conditions are sufficient for the Gauss-Seidel

methods of iteration to converge [13]:

(a) The n x n matrix A is irreducible.

(b) 3,, >0

n

< . . . . . .

(c) Elaijl _ aii , wrth strict Inequality holding for at least one value of ‘r’.

i=1

jati

It is observed that the system of algebraic equations arising from the application

of equation 2.4 along with the boundary conditions described above in section 2.5

satisfy the above conditions of convergence.

Defining the value of epsilon sets the convergence criterion for the program. The

program scans the whole grid to find the absolute largest ‘difference value’ on the

entire grid between the previous value and the newly computed value at the

corresponding grid point. It then compares this largest ‘difference value’ with the user

defined epsilon value. If this largest difference value over the whole computational

domain is greater than the epsilon, the program continues for the next iteration

otherwise, it displays the indication of convergence. The value of epsilon is selected

by the user depending upon the number of significant digits to which the accuracy is

desired in the solution. Smaller values of epsilon would require a greater number of

iterations to converge and hence require more computing time. Also, it is important to

note that, if the solution already contains very small numbers, then the value of

16



epsilon must be selected such that it is significantly lower (depending upon accuracy

desired to the number of significant digits) than the smallest value expected in the

solution domain. This can be done through obtaining an initial-guess solution by test

running the program on a coarse grid with smaller domain size. From this guess-

solution, the smallest value in the solution is used to Figure out the value of epsilon

that shall provide the desired accuracy in the actual solution. The default value of

epsilon used in the program is 10*.

2.6.2 Post Processing

As shown in Figure 3, the highest temperature locations on the cooled surface are

the four comers where sensors are installed because of the relatively reduced cooling

effects of the liquid helium. Due to the relatively high thermal conductivity of

niobium at low temperatures, heat generated by a point source is conducted away

diffusively within the metal and a very low temperature rise is expected at the outer

surface of cavity. Moreover, the rise in temperature on the cooled surface to be

detected by the sensors is greatly influenced by the excellent cooling properties of

superfluid helium. Figure 8 shows the relation between the sensor efficiency and the

sensor spacing for different thickness Sizes of the niobium plate. Sensor efficiency is

a function of distance between the sensors (sensor spacing) and can be defined as the

ratio of temperature sensed by the sensor on the cooled surface and the maximum

temperature on the inner surface of the niobium cavity. The program is repeated for

each thickness of niobium plate i.e. 1mm and 4 mm and for each value of selected

bulk temperature of liquid helium i.e. 2 K and 4 K, for varying sensor spacing in each

C2186.
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Figure 3 Program output showing most heated spots at the four

comers under the sensor locations

2.6.3 Proggam Verification

Code verification is done with the results obtained through the exact solutions

generated by COND3D, developed for Sandia National Laboratory [15] and through

the Kokopelli Finite Element Method program developed for Los Alamos National

Laboratory [16]. As shown in Figure 8, the results obtained from all three programs

are in good agreement with each other and the error is within 1% of the exact

solution.

2.6.4 Program Validation

The validity of the model is assured by comparing the results obtained

from the program with the experimental data. Since no past experiment with

similar boundary conditions is known to exist, an independent experiment was

performed at room temperature. Six thermocouples as shown in Figure 4, were

18



used to record the temperature of the cold surface of a 4mm thick niobium plate.

A thin foil heater of 12.7 mm diameter was used to act as the point heating source

for the problem. The bottom surface, the hot surface, was then insulated using two

G-lO sheets of different thicknesses. The thin sheet (approx 0.5-1.0mm) was

flexible enough to bear against the bottom surface of the niobium plate with the

heater sandwiched between the two. Then, the thick (approx 20-30 mm) sheet of

6-10 was placed under the thin sheet to further insulate the bottom of the niobium

surface. An insulation ‘duct’ tape was used to bond the three plates together

which also provided insulation to the side walls of the niobium plate to match the

boundary condition as close to the model as possible. The experimental data thus

obtained is then compared with the data obtained from the program. As shown in

Figure 4a, the two results are in agreement with each other. The standard

deviation in difference of the two results is 0.009427°C
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Figure 4 Experimental setup to validate the computational model.

Six sensors placed 1 cm apart over a 4 mm thick niobium

plate with heater installed on the bottom surface.
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Figure 4a Sensor efficiency ((1)) shown as a function of radial distance

(r). The relationship obtained from numerical computation

is compared with the one obtained from the experimental

setup at room temperature

2.6.5 Verification through Inverse Heat Conduction Calculations

To verify the results obtained from the program, yet another weapon in the

arsenal is the inverse heat conduction calculations through parameter estimation.

Here the parameters are the unknown temperature at the niobium surface right

under the heater and the ‘x’ and ‘y’ coordinates of the heater. Since in this

experiment we know the actual parameters before their estimation, the accuracy

of the results obtained from this technique may provide a good level of

confidence; especially, once it is applied during the actual operation of the cavity
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where these parameters would not be known a priori. The equation employed in

this method, and the result thus obtained, are described briefly below.

From the definition of sensor efficiency i.e. the ratio of temperature at the sensor

to the maximum temperature on the heated surface , we know that

(15(r): T(r) / Tmax

where, (D(r) is the sensor efficiency and is function of distance ‘r’ which itself is given

as

 

r = {Ur-X.)2 +(y-y.~)2

here, (x,y) is the unknown location of the heat source and (xbyi) is the known location

of the sensor ‘i’ over the plate

Ti, is the temperature at a distance ‘r’ measured by the sensor ‘i’, and

Tm is the unknown maximum temperature on the heated surface of the plate i.e. at

the point of source of heating.

In matrix form this equation can be written as

[11-]: Tm...[<I><r.->]

In this equation, as described above, Tmax, and the coordinates (xi,y,-) of the

heater (which determines the value of r,- ) are the unknowns. Now if we have, let us

say six temperature sensors installed on the top (cold) surface of the plate to detect

the heat produced by the heater on the bottom (hot) surface of the plate, then each

sensor shall have its efficiency curve as a function of its location ‘r’ away from the

point of heating. Such a curve for each sensor is obtained from the direct computation
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through the 3-D steady state program output. Thus from the above equation, we shall

have following six set of equations,

T1: Tmax ¢(71)

T2: Tmax $0.2)

T6: Tmax $06)

Now, in this set of six equations, we have just three unknowns. So we have an

over-defined set of equations whose unique solution doesn’t exist. However, through

parameter estimation software written by Dr Robert L. McMasters, unknown variables

with optimum best (least square sense) values can be obtained through a non—linear least

squares technique. These values (xi, yi and Tmax) can then be obtained using the

functional form of (PM) through the direct solution.

Thus the close agreement of the two results as shown in Table 1 validates the

potential of estimation of parameters through inverse heat conduction methods. The

values of estimated parameters are then used to calculate the temperature rise detected by

each sensor. The difference between the measured temperature rise from the sensor and

the calculated temperature rise is quite small with standard deviation of only 0.045

Kelvin.
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x y "“ng1Temp Estimate;Temp Error

1 0 3.5 3.43799008 -0.062

0 2 3.1 3.104853539 0.0048

3 0 3 3039895125 0.0399

0 4 2.9 2.899929045 -7.095E-05

5 0 2.8 2.863678044 0.0637

0 6 2.8 2.77476351 4 -0.0252

Std.Dev (K) 0.0449

Parameter

Estimated Experimental

Max

Temp 6.89735 6.9

Rise (K)

x (cm) 0.222 0

y (cm) -0.278 0

Tabla; Showing difference between actual temperature rise and estimated

temperature rise at sensor location by using estimated parameters;

24

 



2.7 Results and Discussion

The result shown in Figure 9 shows the variation of sensor efficiency with the

sensor spacing. At low sensor spacing for a particular sensor, high sensor efficiency can

be achieved. However, it has been previously stated [9] that a signal of 60 uK can be

resolved with a higher scanning time. So, from this result, we can assume a signal of 60

uK from which we can find a corresponding sensor spacing. For example, sensors on the

cooled surface of a 1 mm thick niobium plate and at bath temperature of 2 K can be

placed at a spacing 4 cm distance apart and will be able to detect a lK-temperature rise

anywhere in the material. Similarly, at 4 k the sensors on a 4 mm thick niobium plate can

be placed at a distance of almost 13 cm apart. The essential requirements to apply this

technique during the actual operation of the cavity have also been carried out and are

described in the subsequent chapters.
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CHAPTER 3

THERMAL PROPERTIES OBTAINED FROM THE LITERATURE

3.1 Literature Search

A significant amount of effort has been expended to extract thermal property data for

niobium metal and liquid helium at extremely low temperatures. Since very little

information is available about materials at such low temperatures in standard data books,

much of the information is obtained through research papers published in various journals

and other publications.

3.1.1 Thermal Conductivity of Niobium

As shown in Figure 5 [3], the thermal conductivity of niobium metal depends on

the RR value of niobium metal, which is a measure of metal purity. As the graph

shows, there is a sharp decrease in the curve below TC=9.2 K. However, the higher the

RRR value, the higher the thermal conductivity. As discussed in chapter 3 of

reference [9], the reason for these features is that electrons are the dominant carriers

of heat. Though, the phonons (lattice vibrations) also play a role in heat conduction,

but this is significant only at T<4 K. Below Tc, the thermal conductivity drops

sharply as more electrons condense into Cooper pairs. Because the depairing energy

is not available from random thermal motion, the pairs are not scattered by the lattice

vibrations and therefore cannot conduct heat from one part of the niobium to another.

At high temperatures (4 k < T < TC ), a significant, though small, fraction of electrons

is not frozen into Cooper pairs and can carry heat effectively, provided that the

electron-impurity scattering is low. As electrons condense into Cooper pairs,

electron-phonon scattering also decreases. Below about 4 K, the thermal conductivity
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from phonons dominates and begins to increase, leading to the phonon peak near 2 K.

With decreasing temperature, the number of phonons decreases oc T3. Ultimately the

value of the phonon conductivity maximum is limited by phonon scattering from

lattice imperfections, of which grain boundary density is the most important. If the

crystal grains of niobium are very large, because of annealing at high temperature,

one observes a large phonon peak, as shown in the thermal conductivity behavior of

the sample with RRR=250, which was annealed at 1400 °C [9].
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Figure 5 Thermal conductivity of niobium at low temperatures
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3.1.2 Thermal Conductivities of Common Cryogenic Materials

The thermal conductivity values of some commonly used materials are given in

Figure 6 for a wide range of temperatures from around 1 °C to 300 °C on a

logarithmic scale [5]. Thermal conductivity of G-lO, an epoxy filled fiberglass

material, is also shown in this Figure which is a poor conductor of heat at low

temperatures .
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3.1.3 Convection Heat Transfer Coefficient For Liquid Helium

Unlike thermal conductivity, the heat transport across a solid-liquid helium

interface is not well understood [9]. Kramer et al. have found the experimental value

of the convection heat transfer coefficient of liquid helium for a temperature range of

1.5 °K to 2.3 °K as shown in Figure 7 and 8 [3]. Figure 7 shows the variation of heat

transfer coefficient with temperature. An important conclusion drawn from this

Figure is that the heat transfer coefficient of helium H is the same for system

pressures 0.1 and 0.25 Mpa. Also, while crossing the lambda transition temperature of

helium i.e. the temperature at which phase change take place between normal liquid

helium and the superfluid helium (See appendix 5.2 for more details), the heat

transfer coefficient drops to about 30 % of its previous value.
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Figure 9 Sensor efficiency as a function of sensor spacing
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CHAPTER 4

EXPERIMENTAL STUDIES

4.1 Thermal Sensor Design and Manufacture

Since the operation of the SRF cavity is around 2 Kelvin, at which the liquid helium

is a super-fluid (liquid helium at temperatures below its phase transition i.e. 2.17 K,

doesn’t change to solid but remains a liquid known as super fluid. For more information

refer to appendix 5.2 to this report), it is important to have special design features, which

may enable the sensors to monitor the temperature rise above the bulk temperature of the

liquid helium. Previous studies at Cornell University [9] have demonstrated that a signal

of 60 1.1K above ambient can be resolved through a careful design of carbon resistor

temperature sensors. However, in the Cornell study, it is maintained that, because of the

excellent cooling characteristics of the superfluid helium in which the thermometers are

immersed, the efficiency of the sensors is greatly reduced from 100 % of the wall

temperature to about 20-30%. Here, again sensor efficiency is defined as the ratio of the

detected temperature increase to the actual rise in wall temperature. Consequently, they

used a large number of fixed thermometers to cover the whole cavity. Typically, for a 1.5

GHz single cell cavity almost 700 thermometers would be required [9]. The focus of the

present study, however, is to estimate the appropriate sensor spacing required to detect a

temperature rise of 1 °K above ambient anywhere on the inner surface of niobium cavity.

The basic design features of the sensors used in this research are essentially the same

as those developed at Cornell University [6] and manufactured in the same way.

However, the sensor installation procedure on the single cell cavity is somewhat modified

as described in the subsequent paragraphs.
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4.1.1 Sensor Selection

A sensor selection criterion is based upon the following considerations: -

0 High sensitivity especially at low temperatures.

Insulated from liquid helium.

o Insensitive to magnetic or ionization fields.

Simple in design and low cost.

Though the selection of 1/8 watt, 100 ohm Allen Bradley carbon resistor and its

housing (capsule) design is based upon the one already used at Cornell University [6],

the present study tries to quantify the sensor selection properties through thermal

analysis.

4.1.2 Sensor Manufacture

The sensor manufacturing procedure used in this research is also based on the

guidelines used at Cornell University and involves, typically, the following processes:

0 Manufacturing of sensor housing with G-lO material as shown in Figure 10.

0 Spot welding of resistor leads with 36 AWG ‘Manganin wire’.

0 Epoxy filling of the housing with resistor held in middle of the housing.

0 Observing the epoxy curing time.

0 Grinding the epoxy from the top of the housing to expose the heat sensitive

carbon element of the resistor.
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Figure 10 Drawing details of sensor housing
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4.2 Sensor Design Issues

The sensor selection and its manufacturing has been done on the basis of past

experiences of Cornell University, however, the order of magnitude analysis to estimate

the relative heat transfer from such a sensor into the surrounding liquid helium is

provided in the subsequent paragraphs.

4.2.1 Cooling Effects on Sen_sgr_'

Cooling of the carbon element inside the sensor housing can be attributed to the

two main sources i.e. cooling through the sides of the housing and cooling through

the manganin wires. The estimates for the cooling of the sensor are based on a 1 K

rise in temperature above the ambient temperature, which is a much larger

temperature rise than any actually encountered, providing a conservative estimate of

heat loss.

Manganin

Wire \‘

 

 

  
   

   (3-10 Housing/ 1

Carbon Element

38



4.2.2 Cooling of Sensor Through G-10 Housinfig

From Fourier's Law of heat conduction, we know that

AT
= 494...,

Q Ax

Where, Q is the heat transfer from the sensor to the liquid helium

AT is l K (i.e. one degree rise in temperature) above ambient.

‘K’ is the thermal conductivity of the G—lO material at 4 K

‘Ax’ is the wall thickness of the G-lO material

‘A’ is the surface area of the sidewall of (31-10 exposed to liquid helium.

So, the heat transfer from one surface, Q = 5.29><10‘4 Watts

Hence, the total heat transfer from all the 5 surfaces of the sensor that are exposed

to the liquid helium is, Q = 2.43x10'3 Watts.

4.2.3 Cooling Effect On The Sensor Through Manganin Wire

For simplicity and applying a more conservative approach, this problem is divided

into two parts:

(a) Assuming the whole portion of wire outside the G-lO housing is at the same

temperature as that of liquid helium. Hence, the effective temperature difference

(i.e. 1 degree difference in temperature) takes place on the length of wire between

the sensor and the edge of (31-10 housing.

For AWG-36 wire having diameter of 0.36 mm,

Q = 2.227x10‘5 Watts (2 Wires)

Q = 4.454x10" Watts (4 Wires)
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(b) Heat transfer from the length of the wire inside the liquid helium, can be taken

as a typical case of heat transfer through fins. The solution is available in

standard textbooks on heat transfer. Interestingly, the total heat transfer through

the wire of infinite length is

Q = 5.162E" Watts for 2 Wires, and

Q = 1.032E‘3 Watts for 4 Wires.

4.2.4 How much is infinite length?

For the conditions stated in part (b), the infinite length i.e. the length of fin at end

of which the heat transfer is effectively zero and temperature of the fin is the same as

the temperature of the fluid, is computed from the following fin equation [13]:

Q = JhPKAc (To —T,,)tanh[ ’12: L]

For infinite length tanh[ hP L] = 1

KA

Or tanh( hP L] E .99

V KA

L2 ’KAr

hP

Where k is the thermal conductivity of the wire.

 

 

 

 (2.65)

‘A’ is the cross sectional area of the wire.

‘h’ is the convective heat transfer coefficient of liquid helium.

‘P’ is the circumferential perimeter of the wire.

Substituting in the values for these parameters, we get, L 2 0.363 mm

This effective length of wire, in which any significant heat transfer is taking

place, is a small number. This is because, beside the extremely small cross sectional
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area of the manganin wire, liquid helium has a very high convective heat transfer

coefficient as compared to the low thermal conductivity of the manganin wire at 4 K.

Hence, nearly all the heat coming out of the wire from the edge of the G—lO housing,

is convected away within this length of wire. The rest of the length of wire has nearly

no effect on cooling the sensor.

In view of the two comparisons, we can observe that the cooling of the sensor

through the manganin wires is not significant as compared with the cooling of the

sensor from the G-lO sidewalls.

4.2.5 Ohmic Self Heating of the Senfl

For resistance temperature detector (RTD) type sensors, ohmic self-heating is a

known problem which occurs especially when using negative RTDs (resistor whose

resistance increases as temperature goes down). The monitoring instrument used in

the experiment is from LakeShore® Inc. model 218 and can display a maximum

resistance of 7.2 K52. Since the instrument provides a constant current of 10 uamps,

the maximum resistance of the sensor the instrument can display limits maximum

power dissipated inside the resistor. This power dissipation can be computed from the

following relation:

P = I 2 R

Where ‘P’ is the dissipated power

‘I’ is the current of the instrument, and

‘R’ is the resistance of the sensor.

Once the power is known, rise in sensor temperature due to this dissipated power

can be calculated from the relation:
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AT 2 Q/(h A),

Where, Q is the dissipated power,

‘h’ is the convective heat transfer coefficient of liquid helium, and

‘A’ is the surface area of the sensor.

From this relation, the estimates for rise in temperature of sensor due to self-

heating are given in table 2.

 

 

 

     
 

Helium Temp (K) Current Source Power ( [1 Watts) AT (”K )

(,U Amps)

4.0 10 .18 .59

2 10 .75 .98

Table 2 Thermal analysis of ohmic self-heating. Here, delta t is the rise in

sensor temperature due to self heating=

4.3 Sensor Instzflttion / Mounting System

4.3.1 The Tree

The installation procedure used in this experiment is fundamentally different than

the one used at Cornell. Instead of using pogo sticks on the sensors and using G-lO

board to map these sensors onto the contour of the cavity from the top iris to the

equator and to the bottom iris, a simple but more versatile design is used. This design,

as shown in Figure 11, has been specifically selected so that it can be applied to a

wide variety of shapes of cavities as well as on multi-cell cavities without any major

modification in the basic design. The sensors on this design pattern, called a Tree

pattern, are equally spaced in both radial and transverse directions. The ‘Tree’ can be

mounted on any one of twelve cavity support bars. Since these support bars are
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equally spaced at 30 degrees, a maximum of 12 such trees can be mounted for one

side (either the top or bottom) surface of the cavity. Each tree, then has two radial

rows of sensors, called the branches, with each having 4 to 5 sensors depending upon

the desired spacing between the sensors. As shown in Figure 12, manganin wires

from each sensor on the branch of a tree can be attached to their respective ‘D-type’

connectors installed for each branch on the tree.

4.3.2 Ribbon Cages

Normal ribbon cables take the temperature signal of the sensor from the D-

connectors to the ‘Feed Through’ on top of the cryogenic Dewar as shown in Figure

14.
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4.4 Sensor Measurements Technique

4.4.1 Four-Lead Measurement

The four-lead measurement technique eliminates the effect of lead resistance on

the measurement. If it is not accounted for, lead resistance causes errors in the

temperature measurements.

As shown in Figure 13, a two lead sensor is shown in a four lead measurement

technique. In this configuration, the current leads and voltage leads run separately to

the sensor. With separate leads, there is little current in the voltage leads so their

resistance does not enter into the measurement, whereas resistance in the current

leads will not change the current as supplied by the constant current source.

4.4.2 Measurement of Two-Lead Sensors

Due to limited space in a congested cryogenic environment, sometimes it is not

possible to have the luxury of having four wire measurement sensors as described

above. However, it is possible to use a four wire measurement technique on a sensor

with two leads coming out of the cryogenic dewar. Four-lead sensor measurement in

this situation, can be adopted by attaching the plus voltage to plus current and minus

voltage to minus current leads at the back of the vacuum feed through on top of the

cryogenic dewar. The error in such a resistive measurement is the resistance of the

lead wire run with current and voltage together inside the cryogenic dewar. This

resistance may have to be traded off using the two lead measurements for a greater

number of sensors inside the dewar.
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4.5 Design And Manufacture Of Vacuum Feed-Through.

Since the number of wires going into the cryogenic Dewar is always limited by the

capacity of the feed-through as well as the capacity of the pipe and passages from where

the bundle of wires has to pass, a good design for a Vacuum Feed —-Through is always

important. Many off-the-shelf vacuum feed-throughs are available from different

vendors, but none was considered sufficient to meet the specified requirements. For

example, a commonly used six-way multiple connector confiat® type vacuum feed—

through is not only expensive but also has a limited capacity of only 100 wires.

Moreover, it requires special connectors on the vacuum side wire connections, which

themselves may incur extra cost. It was for this reason an ingeniously designed feed-

through is used (Manufactured by Mr. Steve Bricker of NSCL) as shown in Figure 14.

This feed-through has a capacity of 240 wires in a conflat type vacuum seal. It has a

total of 10 connectors of 24-pin standard ‘CPC AMP’ type for the airside connections and

a D-type connector with ribbon cables on the vacuum side connections.
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Figure 14 Vacuum feed-through having ten amp—cpc connectors,

twenty—four pins each
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4.6 Design Criteria For Data Signal Cables.

The data signal cables used outside the cooling system can be much different from

those used inside. Between the instrument and the feed-through, heat leak is not a

problem. Error and noise pickup is minimized by the use of the following criteria for the

selection of data signal cables. The cable shall be

0 Twisted pair (to cancel out inductance noise)

0 Braided or foil shielded (to reduce noise pickup from external sources or

environment)

0 Larger conductor i.e. 22 to 28 AWG stranded copper wire. (flexible but

maintaining low resistance)

4.6.1 Grounding And Shielding Sensor Leads

Since the sensor input measurements are not isolated from ground, sensor lead

cables are not grounded with the outside chassis of the instrument [5]. Shielding the

data signal cables is important to keep external noise from entering the measurement.

A shield is most effective when it is near the measurement potential. The instrument

used in this experiment is Model 218 from LakeShore® Inc. and offers a shield that

stays close to the measurement potential. Therefore, the shield pin in the connector of

the data signal cable is connected to the input connector shield pin of the model 218

instrument. However, the other end of this shield pin in the data signal cable is not

connected to ground or to the instrument chassis or in the cooling system.

4.7 S'gnal Processing

Signal processing is done within the instrument model 218. The instrument has two

groups of eight input channels. Each group must have the same input type. The
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instrument has 8 (one for each input channel) constant current sources to provide an

excitation current of 10 u Amperes for each sensor. It employs four-lead differential

measurement for each input channel and the measurement of this experiment from the

RTD sensor is displayed in ohms. The range the instrument can display is 0 to 7500

ohms.

The instrument has two AID converters to provide 16 new readings per second.

Therefore the display rate is twice each second. Though the measurement resolution of

the unit is 50m but the display resolution is limited to 100 m9.

4.8 Data Logging

Data logging is done on a standard IBM compatible PC with the help of a serial

interface connection with the instrument model 218. A program has been under use at

NSCL (developed by Alberto Rodriguez) to log data from each sensor onto the hard disk

of the computer. A file can be generated either in Microsoft Excel or HTML file format

to save the data. The program has a user selectable data logging rate which can log the

data as fast as approximately 237 ms, which is faster than the data acquisition rate of the

temperature monitor.

4.9 Sensor Calibration.

The accuracy of a sensor relates to how closely the measurement of resistance can be

converted to temperature relative to some recognized temperature scale. Understanding

how the accuracy of temperature sensors is specified begins with the definition of the

response curve, i.e. Resistance vs. Temperature for the carbon resistor sensor. Though

some sensors follow a known standard response within a given tolerance, carbon resistor
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sensors must be calibrated to determine their response curve. Therefore, the carbon

resistor sensors are not interchangeable or at least require calibration after installation.

We know that the accuracy of a sensor is determined by the stability of the sensor and

the system in which it is calibrated. Calibration of carbon resistor sensors, in this

experiment, is done with respect to a standard Germanium resistor sensor that is pre-

calibrated from factory standard settings (ITS-90) and can be traced back to NTST.

In the calibration procedure, data is collected for the variation in resistance of the

carbon sensors with respect to the change in temperature recorded by the Ge sensor as

shown in Figure 15. Since the fitted curve is very close to the experimental curve,

therefore no significant variation in the two curves can be seen in Figure 15. However,

Figure 16 shows the residuals present in the polynomial fit to the calibration curve. The

fourth order polynomial

T = A+ BR" + CR’2 + DR‘3 + ER‘4

is then fitted to the experimental data.

The parameters A, B, C, D, and E are computed to fit the experimental data and hence

yield a standard deviation of 0.003789 Kelvin.

Now, once the relation is known, other pertinent relation for data analysis can be

obtained very easily. For example the sensitivity of the carbon sensor can be obtained by

differentiating the above equation as: -

d—T- = —BR‘2 - 2CR‘3 — 3BR" — 4ER'5

dR

The relation used at Cornel University is given as:

T: l 

Aln(R) + + C
 

ln(R)
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This relation requires only 3 unknown parameters to be found, but is not trivial to

solve since it is a non-linear relation, especially once sensitivity calculations require the

differential of this relation.
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of temperature based on a germanium sensor
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Figure 16 Residual of polynomial fit to the calibration data

4.10 Sensor Sen_sitivityand Mgsurement Resolution.

A typical calculation is performed on sample data, as shown in Table 3, which is

obtained from the calibration curve of a carbon resistor. The comparison of sensitivity

between the Germanium and the Carbon resistor shows that, at low temperatures, the

Carbon resistor is more sensitive than the Ge resistor especially once the temperature

goes down from 4 °K to 2 °K. The chart also indicates that the Carbon sensor at 2 K, with

the given monitor display resolution, is sensitive enough to resolve a heat signal of 9.4

11K.
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Sensor Type Germanium Carbon

Temperature Coefficient Negative Negative

Monitor Display Resolution 100 m9 100 m9

Sensor Sensitivity at 4 K -1 16.98Q/K -572 (UK

2 K -930.04 Q/k -10537.8 Q/k

Monitor Display 4 K 854 [K 174 [K

Resolution w.r.t. 100 m9 2 K 107.52 “K 9.4 ”K

W Sensor sensitivity and display resolution of the sensor monitor
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5.1 Program Description

5.1.1 User Graphigrl Interface (UGI)

To simulate the thermal model of the super conducting cavity into a computer

program, ‘Visual Basic’ as a programming language is used. The advantage of this

language over other high level languages is that Visual Basic, besides being as fast as

others, has a system by which a graphical interface can be generated much more

easily. This added advantage of a better graphical interface results in providing a

professional appearance to the program and provides a more ‘user friendly’

environment. The first window, where the user interacts with the program, commonly

known as user graphical interface or simply the UGI, has some text boxes along with

some option buttons for the input by the user. Two command buttons allow the user

to either execute the program with a ‘Start’ button, or abort the program with a

‘Cancel’ button.

5.1.2 Input Text Boxes of UGI

Input text boxes of UGI are the places where the user can describe the dimensions

of the model. These dimensions include the configuration of the niobium plate i.e.

thickness (x overall dimension), height (y overall dimension) and, length (2 overall

dimension) and the configuration of the sensors installed on the cold surface of the

niobium plate i.e. thickness of the sensor (height), length and width of the sensor.

Moreover, flexibility in the design for the placement of sensors is also incorporated.

This is done by allowing the user to define the distance, as per design requirement,

between the base of the niobium plate and the bottom surface of the first sensor. This
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distance is zero in case the two surfaces i.e. base of the niobium plate and the bottom

surface of the sensor, are in-line with each other.

Depending upon the number of grid points required by the user in the numerical

problem, values of delta x, delta y and, delta 2 can also be prescribed in this UGI.

The UGI not only facilitates the user to define material properties required by the

program such as thermal conductivities and heat transfer coefficient of the materials

involved, but also allows for prescribing the location and the amount of point heating

flux on to the heated surface of niobium plate, so that physically correct boundary

conditions can be implemented in the program

Flexibility of choosing the desired accuracy for the convergence of the solution is

also built into the program by allowing the user to prescribe the value of epsilon in

one of the input text boxes. The default value is 10"").

During the program execution, iteration numbers are displayed with an increment

of 20 iterations, to indicate the processing of the program.

5.1.3 Option Boxes of the UGI

Option for applying SOR to the scheme is left at the discretion of the user by

providing an option button. This button is checked for SOR by default and if

unchecked the scheme will become an ordinary Gauss-Seidel iterative procedure. If

the SOR option is utilized, value of omega=l.8 is used to accelerate the convergence

of the program. It is estimated that, in using this option, the program can reduce the

number of iterations to almost one fifth of the time required by the ordinary Gauss-

Seidel iterative method with no loss of accuracy.
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Since the sensors are rectangular in shape, their orientation with respect to the

niobium plate coordinates can also be prescribed. The user can optionally choose the

orientation of the sensors by placing the width of the sensor to be either aligned with

the y-direction or with the z-direction.

A word of note is also displayed on the GUI, at the bottom right comer of the

screen; to remind the user for selecting consistent units while designing the input

values for the problem. The results would be meaningless if units for different

dimensions are not kept consistent.

5.1.4 Program Listing

The computer program code developed in Visual Basic® is given below to

implement the mathematical model described in chapter 2.
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Option Explicit

'3-D STEADY STATE HEAT CONDUCTION PROBLEM IN A PARRALLELPIPED

‘DOMAIN WITH POINT HEATING ON HEATED SURFACE AND SENSORS

‘INSTALLED ON THE SURFACE COOLED BY LIQUID HELIUM.

Dim Lx As Single 'Overall dimension in the x direction

Dim Ly As Single 'Overall dimension in the y direction

Dim Lz As Single 'Overall dimension in the z direction

Dim omega As Double

Dim Dx As Single rDelta x

Dim Dy As Single 'Delta y

Dim Dz As Single 'Delta 2

Dim strMyDataString As String

Dim strInputDataString As String

Dim blnsensel As Boolean

Dim seldec As Integer

Dim txtll As String

 

Dim txt12 As String

Dim tloop As Integer

Dim consttl As Double ' Defined as = dt/(rho*cp*dx) for left b.c (congant flux)

Dim constt2 As Double ‘Defined as = 2*alpha*dx*h/k for right b.c (convective)
 

Dim KNb, KglO, Hf, Tf 'constants of thermal conductivity, convective heat coefficient

‘of fluid, Fluid temperature T(infinity),(Rho, Spht not requried)

 

Dim Alpha, Beta, Gama, Nue 'Computed Constant Coefficients in all three dimensions

Dim Index As Integer

Dim q As Double

Dim YinQ, ZinQ, sor As Integer

Dim imx As Integer 'Mx limit if no sensor found in x-dir

Dim imax As Integer 'Mx limit if sensor found in x-dir

Dim jmax As Integer

Dim krnax As Integer

Dim postopO As Single

Dim poslft() As Single

' Dimensions of sensors

Dim Hs, Ls, Ws As Double

Dim Ytotsen, Ztotsen As Integer

Dim Zbase, Ybase, ytop, ztop As Double

Dim Zgap, ygap As Double
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Dim qygp, ngp As Integer

Dim YSize, ZSize, intfac As Double

Dim Nygps, Nygpg, Nygpb, Nzgps, Nzgpg, Nzgpb, YsenNUM, ZsenNUM As Integer

Dim zsentbl() As Integer

Dim ysentbl() As Integer

Dim Ysensr, Zsensr, flag As Boolean

Dim ZsLL, ZsUL, YsLL, YsUl As Integer

Dim itr As Integer

Dim Errmx As Double

Dim Error As Double

Dim Epsilon As Double

Dim wid As Single

Dim Hht As Single

'Dynamic Array of Temperature distribution according to the user i/p

Dim Tmp() As Double

Private Sub Commandl_Click()

Dim k, j As Integer

txtll = ""

txt12 = ""

Text9.Enabled = False

Inputblock 'Gets the input from the user form 1

strMyDataString = ""

jmax=Ly/Dy+l

kmax=Lz/Dz+1

qygp = YinQ / Dy + 1

ngp = ZinQ / Dz +1

If (Checkl.Value = 1) Then ' To enable SOR techniqumlculations

Dim sigma, pi As Double

pi = 22 I 7

omega = 1.8
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Else

omega 2 1

End If

Text30.Text = Str(omega)

' To define the orientation of sensors installed on the cooled surface.

If (Option1.Value = True) Then

YSize = Ws

ZSize = Ls

Else

YSize = Ls

ZSize = Ws

End If

Nygps = YSize / Dy + 1 '# of Y-dir grid points in a sensor

Nzgps = ZSize / Dz + l '# of Z-dir grid points in a sensor

Nygpg = ygap / Dy - l '# of Y-dir grid points in a Gap

Nzgpg = Zgap / Dz - 1 '# of Z-dir grid points in a Gap

Nygpb = Ybase / Dy '# of Y-dir grid points in a Base

Nzgpb = Zbase / Dz ' # of Z-dir grid points in a Bag;

 

Ytotsen = jmax / Nygps + 1 'Guess value of total sensors in y-dir

Ztotsen = kmax / Nzgps + 1 'Guess value of total sensors in z-dir

ReDim ysentbl(l To Ytotsen, 1 To 3)

ReDim zsentbl(l To Ztotsen, 1 To 3)

' Create sensor locaLtion table; one for y-dir

Dim templ, temp2 As Integer

Dim ii As Integer

ysentbl(l, l) = 1

ysentbl(l, 2) = Nygpb + l

ysentbl(l, 3) = ysentbl(l, 2) + Nygps - 1

For ii = 2 To Ytotsen

templ = ysentbl(ii - 1, 3) + Nygpg + l

temp2 = templ + Nygps - 1

If (templ < jmax And temp2 <= jmax) Then

ysentbl(ii, l) = ii ' Sets the Y-index # for the sensor

ysentbl(ii, 2) = templ ' Sets the lower limit of a particular sensor

ysentbl(ii, 3) = temp2 ' Sets the upper limit of a particular sensor

Ytotsen = ii

Else

GoTo 41

End If

Next ii
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' Crgrte sensor locfiation table; one for z-dir

41 zsentbl(l, 1) = l

zsentbl(l, 2) = Nzgpb + l

zsentbl(l, 3) = zsentbl(l, 2) + Nzgps - 1

For ii = 2 To Ztotsen

templ = zsentbl(ii - l, 3) + Nzgpg + 1

temp2 = templ + Nzgps - 1

If (templ < kmax And temp2 <= kmax) Then

zsentbl(ii, l) : ii ' Sets the Z-index # for the sensor

zsentbl(ii, 2) =temp1 ' Sets the lower limit ofaparticular sensor

zsentbl(ii, 3) = temp2 ' Sets the upper limit of a particular sensor

Ztotsen = ii

Else

GoTo 51

End If

Next ii

51 ytop = jmax - ysentbl(Ytotsen, 3)

ztop = kmax - zsentbl(Ztotsen, 3)

imx=(Lx+Hs)/Dx+l

Alpha = (Dy * Dz) ." 2

Beta = (Dx * Dz) " 2

Gama = (Dx * Dy) " 2

Nue = 2 * (Alpha + Beta + Gama)

intfac = Lx / Dx + 1

ReDim Tmp(l To imx, 1 To jmax, 1 To kmax) As Double

initializ ' Setan initial eduacated guessat liquid helium temp.

tlevel

'5 Unload Form2

End Sub

Sub Domenlmt()

Dim i As Integer

For i = 2 To nez

kmin(i) = kmax(i - 1) +1

kmax(i) = kmin(i) + kmax(l) - 1

Next i

jmin(1) = l

jmax(l) = Ly / ney
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For i = 2 To ney

jmin(i) = jmax(i - 1) + l

jmax(i) = jmin(i) + jmax(l) - 1

Next i

tmx = (ToT / Dt) +1

imx = (Lx / Dx) + 1

End Sub

Sub Inputblock()

Lx = Val(Text1.Text)

Ly = Val(Text2.Text)

L2 = Val(Text3.Text)

Dx = Val(Text5.Text)

Dy = Val(Text6.Text)

Dz = Val(Text7.Text)

KNb = Val(Text16.Text)

Kg10 = Val(Text15.Text)

Ls = Val(Text4.Text)

Ws = Val(Text8.Text)

Hs = Val(Text9.Text)

Zbase = Val(Tex112.Text)

Ybase = Val(Text23.Text)

Zgap = Val(Text19.Text)

ygap = Val(Text24.Text)

Epsilon = Val(Text28.Text)

q = Val(Text25.Text)

YinQ = Val(Text26.Text)

ZinQ = Val(Text27.Text)

Hf = Val(Text17.Text)

Tf = Val(Text18.Text)

End Sub

Private Sub tlevel()

Dim i, k, j, tind As Integer

Dim cnt As Integer

itr=l

me=1
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While (Errmx > Epsilon)

xyswpnge ' 3D Laplace equation solving scheme.i.e. sweep on

'xy face with paging in z-direction

cnt = itr/ 20

1f (itr = cnt * 20) Then

Text29.Text = Str(itr)

Textl3.Text = Str(Errmx)

Forrnl .Refresh

End If

itr = itr + l

Wend

Text29.Text = Str(itr)

Text30.Text = Str(omega)

' Output Format Section of the Program

5 Forj= l Tojmax

Fork=1Tokmax

strMyDataString = strMyDataString & Str(Format(Tmp(intfac, j, k),

"##.00000000")) & vbTab

Next k

strMyDataString = strMyDataString & vbCr

Next j

' Calling Output file for the storage of the computed data

pstproc

End Sub

Private Sub initializ()

' This provides temperature initiaiconditions

Dim i As Integer

Dim j As Integer

Dim k As Integer

' Note!

' A RECTANGULAR DOMAIN (INCLUDING THE SENSORS IN IT) IS

‘ASSUMED FOR APPLYING UNIFORM INITIAL GUESS VALUES. BUT THE

‘POINTS OUTSIDE THE ACTUAL DOMAIN SHALL NOT BE COMPUTQ

' IN THE MAIN PROGRAM.
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Fori = 1 To imx

For j = 1 To jmax

For k = 1 To kmax

Tmp(i, j, k) = Tf ' Initial Guess temp equal to fluid temp Tf

Next k

Next j

Next i

End Sub

Public Sub Ysenloc(jk)

Dim ii As Integer

Ysensr = False

For ii = 1 To Ytotsen

If (jk >= ysentbl(ii, 2) And jk <= ysentbl(ii, 3)) Then

Ysensr = True

YsenNUM = ii

YsLL = ysentbl(ii, 2)

YsUl = ysentbl(ii, 3)

GoTo 5

End If

Next ii

5 End Sub

Public Sub Zsenloc(jk)

Dim ii As Integer

Zsensr = False

For ii = 1 To Ztotsen

If (jk >= zsentbl(ii, 2) And jk <= zsentbl(ii, 3)) Then

Zsensr = True

ZsenNUM = ii

ZsLL = zsentbl(ii, 2)

ZsUL = zsentbl(ii, 3)

GoTo 5

End If

Next ii

5 End Sub

Public Sub xyswpnge()

Dim i, j, k, SC As Integer

Dim AMn, AMx, BMn, BMx, CMn, CMx, tempo As Double
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Dim kk As Double

Dim constt, constl, const2, const3, const2y, const3z As Double

Errmx = 0

flag = False

For k = 1 To kmax

Call Zsenloc(k)

For j = 1 To jmax

Call Ysenloc(j)

If (Ysensr = True And Zsensr = True) Then

flag = True

Else

flag = False

End If

If (flag = False) Then

imax = Lx IDx + l

kk = KNb

Else

imax = imx

kk = KglO

End If

constt=6*Hf/ ll lkk

constl = l + constt * Dx

const2 = l + constt * Dy

const2y = 1 - constt * Dy

const3 = 1 + constt * Dz

const32 = 1 - constt * Dz

For i = 1 To imax

IMPLEMENTATION OF X-DIRECTION BOUNDARY CONDITIONS

' Inside the computational domain when not on anyof the boundary

If (i <> 1 And i <> intfac Andi <> imax) Then

AMn = Tmp(i - l,j, k)

' On the Heated surface excludingpoint heating

ElseIf (i = 1 And (j 0 qygp Or k <> ngp)) Then

AMn = Tmp(i+1,j, k)‘

' On the Heated surface at the point of heating
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ElseIf (i = 1 And j = qygp And k = ngp) Then AMn = 2 * Dx * q / KNb + Tmp(i

+ l,j, k)

' At the interfape of Niobium and the Sensor

ElseIf (imax <> intfac And i = intfac) Then AMn = 2 * KNb / (KNb + Kg10) *

Tmp(i - l,j, k)

' At the cooled surfac_a

ElseIf(i =imax) Then AMn =l/const1 *(2/11 * Tmp(i - 3,j, k) - 9/11*

Tmp(i - 2, j, k))

End If

' Inside the computational domain when not on any of the boundary

If (i < imax And i <> intfac) Then AMx = Tmp(i + 1, j, k)

' At the cooled surfrg

If (i = imax) Then AMx =1/const1 *(18/11* Tmp(i - l,j, k) + constt * Dx *

Tf)

' At the interface of Niobium and the Sensor

If (flag = True Andi = intfac) Then AMx = 2 * KglO / (KNb + Kg10) * Tmp(i +

l, j, k)

' Implementation of Y and Z Direction boundary conditiona

If (i <= intfac) Then ' when i is in Niobium computationaldormip

If (i = 1) Then

BMn = Tmp(i,j + 1, k)

BMx = Tmp(i,j + l, k)

ElseIf (j = jmax) Then

BMn = Tmp(i,j - l, k)

BMx = Tmp(i,j - l, k)

Else

BMn = Tmp(i,j - l, k)

BMx = Tmp(i,j + 1, k)

End If

If (k = 1) Then

CMn = Tmp(i,j, k +1)

CMx = Tmp(i,j, k +1)

ElseIf (k = kmax) Then

CMn = Tmp(i,j, k - 1)

CMx = Tmp(i,j, k - l)
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Else

CMn = Tmp(i,j, k - l)

CMx = Tmp(i,j, k +1)

End If

Else ' when i is in sensor computational domain

' For Y-Direction Bouniary Conditions

If (j <> YsLL And j 0 YsUl And j <> 1 And j 0jmax) Then

BMn = Tmp(i,j - 1, k)

BMx = Tmp(i,j + l, k)

ElseIf (j = 1) Then

BMn = Tmp(i,j + l, k)

BMx = Tmp(i,j+1, k)

Elself (j = YsLL And j <> 1) Then

BMn = 1/const2y *(18/11 * Tmp(i,j-+1, k) - 9/11 * Tmp(i,j + 2, k))

BMx = l lconst2y * (2/ 11 * Tmp(i,j + 3, k) - constt * Dy * Tf)

Elself (j = YsUl And j <> jmax) Then

BMn = l /const2 *(2/11 * Tmp(i,j - 3, k) -9/ 11 * Tmp(i,j — 2, k))

BMx = l/const2 *(18/11 * Tmp(i,j - l, k) + constt * Dy * Tf)

ElseIf (j = jmax) Then

BMn = Tmp(i,j - l, k)

BMx = Tmp(i,j - 1, k)

End If

' Similarly for conditions in Z-Direction

If (k <> ZsLL And k <> ZsUL And k <> 1 And k <> kmax) Then

CMn = Tmp(i,j, k - l)

CMx = Tmp(i,j, k +1)

ElseIf (k = 1) Then

CMn = Tmp(i,j, k + 1)

CMx = Tmp(i,j, k + 1)

ElseIf (k = ZsLL And k 0 1) Then

CMn = 1 lconst3z *(18/11* Tmp(i,j, k+ 1) - 9/11 * Tmp(i,j, k+ 2))

CMx = l /const3z * (2/ 11 * Tmp(i,j, k + 3) - constt * Dz * Tf)

ElseIf (k = ZsUL And k 0 kmax) Then

CMn = l /const3 *(2/11*Tmp(i,j, k-3)-9/11* Tmp(i,j,k- 2))

CMx = l lconst3 *(18/11* Tmp(i,j, k -1)+ constt * Dz * Tf)

ElseIf (k = kmax) Then

CMn = Tmp(i,j, k — 1)

CMx = Tmp(i,j, k - 1)

End If

End If

tempo = Tmp(i, j, k)
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Tmp(i, j, k) = Tmp(i, j, k) + omega * ((1 / Nue * (Alpha * (AMn + AMx) + Beta *

(BMn + BMx) + Gama * (CMn + CMx))) - Tmp(i, j, k))

' Monitor the Absolute Error at each grid point

Error = Abs(Tmp(i, j, k) - tempo)

' Trap the maximum error in each itration

If (Error > Ernnx) Then Errrnx = Error

Next i

Next j

Next k

End Sub

Private Sub Command2_Click()

End

End Sub

Private Sub Form_Load()

Text9.Enabled = False

End Sub

Sub pstproc()

'this program :-

'1. checks to see if there is a folder on C drive called "C:\DataResult "

'2. If finds it then Ok, if not then creates a folder.

'3. Then checks to see if there is a file named C:\DataResult\MyDataFile-l.xls

'4. If found then cheks to see if there is a file named C:\DataResult\MyDataFile-2.xls

'5. Keeps trying till it finds a name that is not in use in that folder.

'6. Creates a file at the location found in step 5.

'7. Everytime run this program it will create a new file.

Dim objFSO As New Scripting.FileSystemObject

Dim objTextStream As Scripting.TextStream

Dim strCompletePath As String

Dim strFolderName As String

Dim strFileName As String

Dim strFileExtension As String

strFolderName = "C:\DataResult\"
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strFileName = "MyDataFile"

strFileExtension = ".xls"

Dim blnFileNameFound As Boolean

Dim intFileNameCount As Integer

strCompletePath = strFolderName & strFileName

' first Check to see if the folder exists if it doesnt then create one

If objFSO.FolderExists(strFolderName) = False Then

'folder doesnt exist so create one

objFSO.CreateFolder strFolderName

End If

'check to see if folder wcrezflea

If objFSO.FolderExists(strFolderName) = False Then

'folder doesnt exist so create one

MsgBox "Failed to create a folder at : " & strFolderName

GoTo DestroyObjects

End If

blnFileNameFound = False

Do While blnFileNameFound = False ' Means keep looping till grew filewe is

‘decided

intFileNameCount = intFileNameCount + 1

strCompletePath = strFolderName & strFileName & "-" & intFileNameCount &

strFileExtension

If objFSO.FileExists(strCompletePath) = False Then

' File name is unique exit

blnFileNameFound = True

End If

Loop

If Len(strMyDataString) > 0 Then

Set objTextStream = objFS0.0penTextFile(strCompletePath, ForWriting, True,

TristateUseDefault)

objTextStream.Write strMyDataString

objTextStream.Close

Else

MsgBox "There was no data provided so file was not created"

End If

If objFSO.FileExists(strCompletePath) = True Then

MsgBox "Data file was successfully created at " & strCompletePath

Else

71



MsgBox "Data file was NOT created"

End If

DestroyObjects:

' Set flobiects to nothing otherwise they will my in the memory

Set objFSO = Nothing

Set objTextStream = Nothing

End Sub
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5.2 Properties Of Litrpid Helium

5.2.1 Backggound

Janssen first discovered traces of helium during the solar eclipse of 1868 in the

solar spectrum of which he detected a new line. Kaerlingh Onnes in his laboratory

first achieved liquification of helium in 1908 by using liquid hydrogen pre-cooling in

a Joule-Thomson liquefier.

5.2.2 Isotopes of Helium

Helium has two isotopes, known as helium-3 and helium-4. The helium-4 is a

more common isotope, which consists of two electrons surrounding a nucleus of two

neutrons and two protons. The helium-3 atom consists of two electrons surrounding a

nucleus of two protons plus one neutron.

5.2.3 Liquid Helium

As described above, helium-4 is the most common of the two isotopes. Ordinary

helium gas consists of about 1.3x10'4 percent helium-3, so usually when reference is

made to liquid helium or helium, generally helium-4 is being referred to. It has a

molecular weight 4.0026.

5.2.4 General Properties of Helium

Liquid helium~4 is odorless and colorless and sometimes difficult to see in a

container. Table 4 lists some of its properties [10].
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Boiling point temperature 4.224 K

 

Density at normal boiling point

Liquid

Vapor

124.96 kg/m3 or 0.03122 Mycm3

16.89 kg/m3 or 0.00422 Wycm3

 

Heat of vaporization at normal boiling

point

10.73 kJ/kg

 

Solidification point at normal atmospheric

pressure

Doesn’t exist even if temperature is

reduced to absolute zero

 

 Index of refraction n1-  1.02

 

Table 4

5.2.5 Unigue Promrties of Liquid Helium

General properties of liquid helium

Liquid helium has number of unique properties, which are not present in many

other liquids. One of the first properties of liquid helium that attracted great attention

is the absence of solid-liquid-vapor triple point. The most amazing properties,

however, are those shown by liquid helium at temperatures below 2.17 k. As the

liquid is cooled below this temperature, instead of solidifying, it changes to a new

liquid phase hence marking another distinct transitional line on the phase diagram.

This transitional line separates the two phases of liquid helium. Liquid helium above

this transitional line is known as helium-I and liquid helium below this transitional
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line is known as helium-II. Properties of helium-II are remarkable as it does not obey

normal laws. Helium-H expands on cooling: its conductivity for heat is enormous and

is as high as 86,500 W/m K — much higher than that of pure copper at room

temperature [1]. In fact, measurement of true values of thermal conductivity below

the transition point, known as lambda point, is very hard to make. As an estimate, k

for He H below the transition point is about 80,000 W/m-K between 1.4 and 1.75 K

and it might go as high as 340,000 W/m-K at 1.92 K. These values are the highest

conductivities known of copper, silver, and diamond [11].

5.3 Temperature Measurements

5.3.1 DefiningTemperature Measfurement [5]

Temperature is not a directly measurable quantity, but rather inferred from other

measurements, which can be made directly. All measurements have an associated

uncertainty, u, which depends on the statistical nature of the measurement. The

choice of resolution, precision or, accuracy as the important statistical feature of the

measurement can be important. Good resolution is easiest to achieve and good

accuracy is hardest to achieve. Selecting an inappropriate statistical measure either

adds cost to or decreases the value of a measurement. As an example, resolution is the

most important statistical measure if small temperature changes must be measured,

but the absolute temperature either is not important or can be measured

independently. Precision is most important when successive measurements under

identical conditions must return the same value, but the true value of the quantity is

not required. An example might be a temperature control system, which must run

successive samples through identical temperature cycles, but the actual temperatures
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are less important than the repeatability of the cycles. Accuracy is most important

when absolute temperature must be known.

It is always true that the accuracy is worse than the precision, and precision is

worse than the resolution of a measurement.

No temperature sensor operates by itself. The expected resolution, precision and

accuracy of a temperature measurement depend not only on the properties of the

temperature sensor, but also on the measurement system and the sensor’s thermal

environment.

5.3.2 Uncertainty Conversions Using Dimensionless Sen_sitivities

A sensor produces some output signal such as a voltage, frequency, resistance or

capacitance, which is measured by the instrumentation.

Uncertainties in the measured quantity are not in units of temperature and must be

converted. In the case of a temperature sensor with an output Resistance R, the

temperature “T uncertainty is related to the resistance uncertainty uR by the

dimensionless formula

m/ uV

34;- R = R 5.1_ dR _

T (T/Rx /dT) 51

Where 5, = (T/R)(dR/dT) is defined as the dimensionless temperature

sensitivity. The dimensionless sensitivity is also equal to d(log R)/d(log T), the slope

of the resistance verses temperature curve on a log-log plot. There are advantages to

this form of the equation. First, the dependence of the resolution upon the excitation

is now explicit rather than implicit in the sensitivity. Second, the dimensionless nature

of equation 5.1 allows its application to thermometers based on other temperature
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dependant properties (capacitance, voltage, or pressure) by replacing R with C, V, or

P as appropriate. This allows for easier comparison of calculation of resolutions based

on different temperature-dependent properties.

A dimensionless sensitivity in the 0.1 to 10 range is usually best for property

measurements over a wide range, although other factors such as physical size or

sensitivity to environmental conditions can be much more important. A large

dimensionless sensitivity allows good relative temperature resolution, but the

temperature range becomes limited if the value of the property measured becomes too

large or small to be determined accurately.

5.3.3 Resolution

Resolution is given the symbol r and has the same units as the quantity measured.

The smallest distinguishable change in a temperature measurement is termed the

temperature resolution, 7'7 . The temperature resolution is often determined by some

limiting factor in the measurement system. The resolution of a digital system is

typically determined by the smallest unit change, which can be displayed and is

usually a fixed value for a given range. In the simple case of a temperature readout

displaying three digits to the right of the decimal, the temperature resolution is 0.001

times the temperature unit (e.g. K or "C ).

As an example, consider an instrumentation system consisting of an Ohmmeter

with a 5-digit display capable of displaying 0 to 99999 counts. If the smallest range is

0-10 mg , then the best resistance resolution, Q is 9.9999 mSZ/99999=0.l #92. A

resistance 10 mg or larger must be read on another scale with poorer resolution. The

resulting temperature resolution can be calculated using
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5.2
rT

_ rR

01%”)

where I} is the temperature resolution, Q is the resistance resolution, and dR/dT

is the sensitivity of the sensor. Note that the sensitivity (1de is a function of both

temperature and excitation while “R is fixed by the instrument design for a given

range. The relative resolution is defined as the temperature resolution divided by the

absolute temperature and can be calculated using dimensionless quantities as

1;: 6%) _(%) 5.3

T (T/Rx‘1%T)_ 57

Hence, in general, the sensor with the best resolution will depend on the

measurement system and considerations other than the resolution can be very

important in selection of a sensor.

5.3.4 Precision And Accuracy

The probable precision or accuracy of a temperature measurement is never better

than the resolution of and typically depends on several additional factors. Estimating

the precision or accuracy of a measurement involves the following steps

0 Identify the relevant sources of measurement uncertainty.

0 Change the units of all uncertainties to temperature, and

0 Combine all of the uncertainties using the root sum of squares method as

described later.

Examples of source of measurement uncertainties affecting the accuracy, but not

the precision of a measurement include offset voltages and calibration uncertainties.
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5.3.5 Sources Of Measurement Uncertainty

The following sections discuss specific sources of temperature measurement

uncertainty and how to estimate their magnitudes.

(a) Instrumentation Measurement Uncertainty. The manufacturer normally

specifies the accuracy of the instrument measuring the output of a temperature

sensor. The accuracy of a digital meter is usually specified as a percentage of

reading plus a number of counts of the least significant digit. The percent

accuracy is calculated as a function of the actual reading, not full scale as done for

analog meters. For example, a digital accuracy specification of i(0.05%+l

count) for 4-1/2 digit meter reading 3.000 mg on a 20 m9 range equals a

resistance uncertainty “R of i(0.0015+0.001) mSZ=i2.5 ,u 52. Equation 1 is

again used to translate to temperature uncertainty.

(b) Sensor Self-Heating. Any difference between the temperature of the
 

sensor and environment the sensor is intended to measure produces a temperature

measurement error or uncertainty. Dissipation of power in the temperature sensor

will cause its temperature to rise above that of the surrounding environment.

Power dissipation in the sensor is also necessary to make a temperature

measurement. Minimization of the temperature measurement uncertainty thus

requires balancing the uncertainties due to self-heating and output signal

measurement. Attempting to correct for ‘self heating’ errors by calculation or

extrapolation is not considered good practice. An estimate of the ‘self heating’

errors should be included in the total uncertainty calculation instead.
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(c) Thermal (Johnson) Noise Thermal energy produces random motions of the

charged particles within a body, giving rise to electrical noise. The minimum root

mean square (rms) noise power available is given by P" = 4kTAf,l , where k is the

Boltzmann constant and Afn is the noise bandwidth. Peak-to-peak noise is

approximately five times greater than the rrns noise. Metallic resistors approach

this fundamental minimum, but other materials produce somewhat greater thermal

noise. The noise bandwidth is not necessarily the same as the signal bandwidth,

but is approximately equal to the smallest of the following [Low Level

Measurements, Keithley Instruments, Inc., Cleveland, Ohio, USA (1993).]

o n/2times the upper 3 db frequency limit of the analog DC measuring

circuitry, given as approximately 1/(4 Re); Cm) where Reflis the effective

resistance across the measuring instrument (including the instrument’s input

impedance in parallel with the sensor resistance and wiring) and Cm is the

total capacitance shunting the input;

0 0.55/t, where tris the instrument’s 10%-90% rise time;

o 1 Hz if an analog panel meter is used for readout; or

0 One half the conversion rate (readings per second) of an integrating digital

voltmeter.

(d) Thermoelectric And Zero Offset Volargg Voltages develop in electrical

conductors with temperature gradients when no current is allowed to flow

(Seeback effect). Thermoelectric voltages appear when dissimilar metals are
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joined and joints are held at different temperatures. Typical thermoelectric

voltages in cryogenic measurement systems are on the order of microvolts.

A zero offset is the signal value measured with no input to the measuring

instrument. The zero offset can drift with time or temperature and is usually

included in the instrument specifications. Thermoelectric voltages and zero offsets

can be eliminated from voltage measurements on ohmic resistors by reversal of

the excitation current and use of the formula:

V: (V+ - V_ )/2

Where V+ and V_ are the voltages with respectively positive and negative

excitation currents. Alternating current (AC) excitation can also be used with

ohmic sensors to eliminate zero offsets. The sum of the thermoelectric voltages

and zero offset can be calculated as

V0=(V+ + V_)/2

Note that the resolution of Vois practically limited by the resolution of the

measured system. The value of V0 can be expected to vary little in a static system,

but may change during a thermal transient under study. The value of V0 should be

rechecked as often as practical. The offset voltage V0 is best measured by

reversing the current through a resistor. Measurement of V0 with zero excitation

current is also possible, but large resistances can produce excessive time constants

for discharge of any capacitances in the circuit, requiring long waiting times

before V0 can be measured accurately.
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(e) Environmental Effects Temperature sensors can be affected by changes in

the environment. Examples include magnetic fields, ionizing radiation, or changes

in the pressure, humidity, or chemistry of environment.

(f) Ground Loops. Improper grounding of instruments or grounding at

multiple points can allow current flows which result in small voltage offsets. One

common problem is the grounding of cable shields at both ends. The current flow

through ground loops is not necessarily constant, resulting in a fluctuating

voltage.

(g) Electromagnetic Noise Electromagnetic pickup is a source of additional

noise. Alternating current noise is a serious problem in sensors with nonlinear

current-voltage characteristics. Measurement of the AC noise across the terminals

of the reading instrument can give a quick indication of the magnitude of this

noise source (thermal noise will be included in this measurement). Twisting wire

pairs, using coaxial cables, adding shielding, or shortening the wires can reduce

electromagnetic pickup.

5.3.6_C_alibration Uncertainty

Commercially calibrated sensors should have calibrations traceable to

international standards. The calibration uncertainty typically increases by a factor of 3

to 10 between successive devices used to transfer a calibration. An algorithm for

selecting the number and spacing of calibration points is given by Nara, et al [6].

5.3.7 Combining Measurement Uncerflinties

The expected uncertainty of a measurement is expressed in statistical terms. As

stated in the guide to the expression of uncertainty in measurement: [7].
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“The exact values of the contributions to the error of the measurement arising

from the dispersion of the observations, the unavoidable imperfect nature of the

corrections, and incomplete knowledge are unknown and unknowable, whereas

the uncertainties associated with these random and systematic effects can be

evaluated........the uncertainty of a result of a measurement is not necessarily an

indication of the likelihood that the measurement result is near the value of the

measurement; it is simply an estimate of the likelihood of neamess to the best

value that is consistent with presently available knowledge.”

The uncertainty, u, has the same units as the quantity measured. The

combined uncertainty “c arising from several independent uncertainty sources

discussed above can be estimated by assuming a statistical distribution of

uncertainties, in which case the uncertainties are summed in quadrature according

to

 

uc = Juf +u;2 +...+u,.2 +...+uff 54

Both random and systematic uncertainties are treated in the same way. The

justification for this practice is given in Annex E of Reference [7]. Note that both

sides of equation 4.4 can be divided by the measurement quantity to express the

measurement uncertainty in relative terms. Finding statistical data suitable for

addition by quadrature can be a problem; instrument and sensor specification

sometimes give maximum or typical values for uncertainties. Two approaches

may be taken to dealing with maximum uncertainty specifications. The

conservative approach is to use the specification limit value in the combined

uncertainty calculation. The less conservative approach is to assume a statistical
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distribution within the specification limits and assume the limit is roughly three

standard deviations, in which case one third of the specification limit is used in

uncertainty calculations. Practical recommendations and procedures for problems

related to the estimation of measurement uncertainties are discussed in greater

detail by Rabinovich [8].
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5.4 Super-Conductivity

Super-conductivity was first observed by Kamerlingh Onnes in 1911. It is a state

when electrical resistivity of a material suddenly drops to zero at a temperature known as

the critical temperature. This state is found in many materials and it occurs when the

material is sufficiently cooled, often to temperatures in the liquid helium range.

In the simple free electron picture for the behavior of a metal, electrons in the outer

shells of atoms in a metal are easily detached from the core and wander away from the

parent ions that define the solid lattice and are responsible for the excellent electrical and

thermal conductivity of metals.

At temperatures above the critical temperature, these atoms are not organized and

remain disordered. However, the electrons are ordered at temperatures below the

transition temperature. Thus the transformation from the normal state to the super-

conducting state may be considered to be a phase change involving the electronic state

while not affecting the crystal structure of the material [12].

It has been stated that the super-conducting state is an ordered state. Super-

conductivity can be considered as arising from the coupling between pairs of electrons

and vibrating atoms. In the super-conducting state, pairs of electrons develop an attractive

interaction by simultaneously interacting with vibrating atoms. When one electron of the

electron pair is scattered, the other responds so that there is no net effect on the motion of

the pair. If the thermal energy of the atom is sufficient it will disrupt the coupling. Thus

super-conductivity is only observed at very low temperatures where the thermal energy of

the atom will be insufficient to destroy the electron pair coupling.
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