

This is to certify that the

dissertation entitled AN ANALYSIS OF THE EXPRESSION, FUNCTION, AND EVOLUTION OF THE FTSZ PLASTID DIVISION GENES

presented by

KEVIN D. STOKES

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Plant Biology

evice Devijoeury Major professor

<u>2003</u> 28 Date

27:22:55

3 2003 547+9/39

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

DATE DUE	DATE DUE	DATE DUE

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

6/01 c:/CIRC/DateDue.p65-p.15

ANA

AN ANALYSIS OF THE EXPRESSION, FUNCTION, AND EVOLUTION OF THE FTSZ PLASTID DIVISION GENES

By

Kevin David Stokes

A DISSERTATION

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Plant Biology

2003

ANAN I. Mainten... cells, of: Chloropl event and became et division p: to assemb that encirc Ft-Z ring ... functional In c nuclear enc homologue companyolamily mer-नेगरिष्ट्राफ्ट ह

ABSTRACT

AN ANALYSIS OF THE EXPRESSION, FUNCTION, AND EVOLUTION OF THE FTSZ PLASTID DIVISION GENES

By

Kevin David Stokes

The photosynthetic capabilities of plants cells are dependent on the presence and maintenance of chloroplasts. The chloroplast complement of higher plant mesophyll cells, often very numerous, is maintained by division as cells differentiate and expand. Chloroplasts are evolutionarily derived from cyanobacteria through an endosymbiotic event and continue to bear several ancestral characteristics. The prokaryotic origins became even more evident when a chloroplast-targeted homologue of the bacterial cell division protein FtsZ was identified in plants. In bacteria, FtsZ is the first known protein to assemble at the division site. FtsZ has GTPase activity and polymerizes into a ring that encircles the cell at the cyoplasmic membrane surface. Following assembly of the FtsZ ring at the division site, several other proteins are recruited for assembly of a functional cell division apparatus.

In contrast to most bacteria that encode a single *FtsZ* gene, plants have multiple nuclear encoded FtsZ proteins that are localized to the chloroplast. The plant homologues have been grouped into two families, FtsZ1 and FtsZ2, based on sequence comparisons. Arabidopsis plants express three different FtsZ homologues: one FtsZ1 family member, AtFtsZ1-1, and two FtsZ2 family members, AtFtsZ2-1 and AtFtsZ2-2. Antisense repression experiments indicate members of both families are required for

chlorop	
abbata;	
I	
thiorop (
and evel [
proteins	
observed	
disrupti, -	
fusion co-	
Arabidup	
cDNA dix	
coordinate	
leaves, F.	
Population	
In	
Ne Derform	
COLING DATA	
Rollien	
alentino (
are con	
····)η····· ()	
er. ahboulus ،	
×veral regi	
willerences r	

chloroplast division, suggesting that chloroplasts have evolved a more complex division apparatus than is present in bacteria.

In an effort to better understand the role of the FtsZ1 and FtsZ2 proteins in chloroplast division, experiments were designed to investigate their function, expression, and evolution. To investigate some of the FtsZ functions in plastid division, the FtsZ proteins were overexpressed in Arabidopsis and the effects on chloroplast division were observed. The results indicate a stoichiometric balance is required for division and that disruption of that balance inhibits chloroplast division. Experiments with *promoter-GUS* fusion constructs were used to determine where and when FtsZ is expressed in Arabidopsis. Some of the FtsZ expression patterns were confirmed by measuring the cDNA distribution patterns. The results indicate the three *FtsZ* homologues are coordinately expressed in several plant tissues including roots, meristems, and young leaves. *FtsZ* expression occurs in tissue regions with rapidly dividing chloroplast populations and is consistent with the role of FtsZ in chloroplast division.

In an effort to understand when and why chloroplasts evolved two FtsZ families, we performed phylogenetic analyses, compared genetic structures, and compared conserved protein sequences. Phylogenetic analyses indicate the *FtsZ1* and *FtsZ2* sequences diverged before the split between the chlorophycean and charophycean green algal lineages and possibly earlier. Genetic structure comparisons reveal intron positions are conserved within the *FtsZ1* and *FtsZ2* family members but differ between them, also supporting an early divergence. Comparison of conserved protein sequences indicated several regions in which the FtsZ1 and FtsZ2 family members differ. These conserved differences may define functional differences between the FtsZ1 and FtsZ2 proteins.

opporta

have co-

through

the gate:

and trus-

1.

support a

friends th

these year

Fa

throughou

Wanting to

Lam proud

ACKNOWLEDGEMENTS

It is with deepest gratitude that I thank Dr. Katherine W. Osteryoung for the opportunity to work under her expert direction, without which this dissertation could not have come to fruition. For her time, patience, experience, and advice that guided me through my education and this body of work, opening to my view the world of plants and the gateway to a lifetime of exploration. I also want to thank her for just being a friend and trusting me beyond the laboratory.

I am also grateful to Drs. Dean DellaPenna, Barbara Sears, and Tao Sang for their support and guidance as part of my committee. Thanks to the numerous co-workers and friends that supported, encouraged, had patience, and never gave up on me throughout these years of work.

Finally, I am most grateful and indepted to my family for their love and support throughout my life. For their encouragement to follow my heart and dreams, always wanting to be a part of this incredible journey. They have been great examples to me and I am proud to be a part of their lives.

TABLE OF CONTENTS

LIST OF TABLES	xii
LIST OF FIGURES	xiii
KEY TO ABBREVIATIONS	XV
CHAPTER 1	1
FtsZ Ring Formation in Bacteria	2
Bacterial FtsZ Binds and Hydrolyzes GTP	
Bacterial FtsZ Proteins Form Polymers	
FtsZ and Tubulin Proteins are Structurally Similar	
Dynamics of Bacterial FtsZ Polymer Formation	
Other Bacterial Cell Division Proteins	
MinC, D, and E	
ZapA	14
FtsA	17
ZipA	17
FtsK	
FtsQ	
FtsL	19
FtsB (YgbQ)	
FtsW	21
FtsI	
FtsN	
Stiochiometric Ratios are Important Among Bacterial Cell Division	Components23

Du Th Ft. Fts. Ot Ex; Exp M_{11} Ft√ CHAPT Ahv Intro Resu T Di_{scu}, Fi C lni Pl D_{ij} Conclu

Developmental Patterns of Chloroplasts24
The Arc Mutants and Chloroplast Division
FtsZ Function in Chloroplast Division
FtsZ Rings in Chloroplasts
Other Potential FtsZ Functions
Expression of <i>FtsZ</i> in Cyanobacteria35
Expression of <i>FtsZ</i> in Plants
Mitochondrial Division and FtsZ
FtsZ Studies Reported Hereafter
CHAPTER 2
Abstract
Introduction
Results
FtsZ Proteins are Encoded by a Small Gene Family in Arabidopsis
AtFtsZ2-1 Is Not Imported into Isolated Chloroplasts
Expression of <i>AtFtsZ1-1</i> or <i>AtFtsZ2-1</i> Antisense Constructs Disrupts Chloroplast Division in Transgenic Arabidopsis
AtFtsZ1-1 and AtFtsZ2-1 Have Distinct Functions in Chloroplast Division60
Two Nuclear <i>FtsZ</i> Gene Families in Plants62
Discussion67
Functional Divergence of <i>FtsZ</i> Genes in Plants67
Concordance between Functional and Structural Studies
Implications of Transgenic Plant Phenotypes for Developmental Patterns of Plastid Division71
Different Division Mechanisms in Chloroplasts and Mitochondria?
Conclusion73

M . Ack Note CHAPTI Abat Intro. Resu Р 0 .1 T P· A T: S. A A:

Methods	74
Plant Material	74
cDNA Library Screening	74
Hybridization Analysis	75
Chloroplast Import Assays	75
Construction of Antisense Genes and Plant Transformation	75
Selection of Transgenic Plants	76
Analysis of Transgenic Phenotypes by Microscopy	76
RNase Protection Assays	77
Identification of Other Plant FtsZ Genes and DNA Sequence Analysis	
Acknowledgments	
Note Added In Proof	80
CHAPTER 3	81
Abstract	
Introduction	
Results	
	Z2-1 85
Production of Antibodies Specific for Recognition of AtFtsZ1-1 or AtFtsZ	
Production of Antibodies Specific for Recognition of AtFtsZ1-1 or AtFtsZ Overproduction of AtFtsZ1-1 Inhibits Chloroplast Division in Transgenic Arabidopsis	: 87
Production of Antibodies Specific for Recognition of AtFtsZ1-1 or AtFtsZ Overproduction of AtFtsZ1-1 Inhibits Chloroplast Division in Transgenic Arabidopsis The Severity of Chloroplast Division Inhibition Is Proportional to AtFtsZ Protein Level	:
 Production of Antibodies Specific for Recognition of AtFtsZ1-1 or AtFtsZ Overproduction of AtFtsZ1-1 Inhibits Chloroplast Division in Transgenic Arabidopsis The Severity of Chloroplast Division Inhibition Is Proportional to AtFtsZ Protein Level AtFtsZ1-1 Overexpression Produces a Novel Chloroplast Morphology in Transgenic Plants 	2
 Production of Antibodies Specific for Recognition of AtFtsZ1-1 or AtFtsZ Overproduction of AtFtsZ1-1 Inhibits Chloroplast Division in Transgenic Arabidopsis The Severity of Chloroplast Division Inhibition Is Proportional to AtFtsZ Protein Level AtFtsZ1-1 Overexpression Produces a Novel Chloroplast Morphology in Transgenic Plants Slight Overexpression of AtFtsZ2-1 Does Not Disrupt Chloroplast Divisi 	: .1-1 91 Some 95 on96

D١ Mat • Ackn Chap AtFr

CHAPTE

Ab_{str} Introc

2

l

!

F

I

Discussion
Correlation between AtFtsZ1-1 Accumulation and Plastid Number
Expression of the AtFtsZ2-1 Sense Transgene Does Not Produce a Plastid Division Phenotype
Aberrant Chloroplast Morphology Associated with High Levels of AtFtsZ1-1 Protein
Materials and Methods103
Construction of Sense Transgenes and Plant Transformation 103
Selection and Propagation of Transgenic Plants
Microscopic Analysis 104
Generation of Antipeptide Antibodies104
Immunoblotting Procedures105
Competition Binding Assays 107
AtFtsZ1-1 Quantification107
Acknowledgements108
Chapter 3 - Supplemental Data 109
AtFtsZ2-2 Cosuppression Inhibits Chloroplast Division
Background 109
Material and Methods 110
Preparation of AtFtsZ2-2 Overexpressing Construct
Plant Transformation and Screening for Kanamycin Resistant Plants 110
Results111
Discussion 113
HAPTER 4 114
Abstract 115
Introduction 116

Resu

M.

F

Discu

CHAPTE

Ahvir Introd Materi

Si

P:

T_e

Materials and Methods119
Determination of the FtsZ's 5'-UTR Using 5'-RACE
Construction of the FtsZ Promoter-GUS Constructs
Plant Transformation and Growth121
GUS Staining
Detecting GUS Transcript by RT-PCR122
Immunoblot Analysis of the FtsZ Proteins in Roots
Plant Material for Real-Time RT-PCR Analysis124
Nucleic Acid Isolation for Real-Time RT-PCR Analysis124
Real-Time RT-PCR Analysis124
Results126
The Structures of the 5'-UTR Differ Between the FtsZ Genes in Arabidopsis 126
GUS Reporter Gene Expression Patterns128
The GUS Reporter Gene Is Not Transcribed Under Control of the AtFtsZ1-1 Promoter
Arabidopsis Roots Express FtsZ Proteins135
Relative Expression Levels of the Arabidopsis <i>FtsZ</i> Genes Remain Constant Throughout Leaf Development
Discussion141
CHAPTER 5
Abstract
Introduction146
Materials and Methods150
Sequences and Their Alignment150
Phylogenetic Analyses 150
Testing Constraint Trees 152

Res

Disc

ļ

]

Ackr

CHAPTI

Suni

 $Ch_{a_{\tilde{I}}}$

i

APPENI

.....

APP

Relative Rate Test	153
Genetic Structure Comparisons	153
Protein Comparisons	154
Results	154
Phylogenetic Analysis of FtsZ Proteins from Photosynthetic Eukaryotes	154
Phylogenetic Analysis of FtsZ cDNA Sequences from Photosynthetic Eukaryotes	158
Testing for Differences in The FtsZ1 and FtsZ2 Evolutionary Rates	162
Genetic Structure Is Conserved Within the Plant FtsZ Clades	162
FtsZ1 and FtsZ2 Protein Comparisons	166
Discussion	169
Early Divergence of the FtsZ1 and FtsZ2 Families	169
Relationship of the FtsZ1 Clade to the Other Three Clades	169
Evolutionary Origins of the Chloroplastic FtsZ1 and FtsZ2 Sequences	171
Acknowledgements	174
CHAPTER 6	175
Summary	176
Chapter Summaries and Future Directions	177
Function of FtsZ1 and FtsZ2 Proteins in Chloroplast Division	177
Altered FtsZ1 or FtsZ2 Levels Disrupt Chloroplast Division	178
FtsZ1 and FtsZ2 Genes are Coordinately Expressed	180
FtsZ1 and FtsZ2 Sequence Comparisons Identify Potential Functional Differences	184
APPENDICES	187
APPENDIX A	188

AP

Al

LITER

FtsZ Protein Alignment	
APPENDIX B	
FtsZ cDNA Alignment	
APPENDIX C	
Conserved Residues of the FtsZ Proteins	
LITERATURE CITED	

Table 1

Table 1

Table 1

Table 2.

LIST OF TABLES

CHAPTER 1

CHAPTER 2

Table 1.	Percentage of Identity ^a between the Arabidopsis FtsZ Proteins and Those of	
	Several Prokaryotes5	51

CHAPTER 3

CHAPTER 4

CHAPTER 5

Table 1.	Accession	numbers f	or FtsZ	protein	and c	DNA	sequences	 151

Table 2. Comparison of <i>FtsZ</i> intron lengths	16	5.	5
--	----	----	---

CHAPTER 6

LIST OF FIGURES

CHAPTER 1

Figure 1.	The sequential assembly pathway of the cell division components at mid cell
	of <i>E. coli</i>

CHAPTER 2

Figure 1.	Alignment Showing Homology of AtFtsZ2-1 to AtFtsZ1-1 and Several Prokaryotic FtsZ Proteins
Figure 2.	Hybridization Analysis of AtFtsZ1-1 and AtFtsZ2-1 in Arabidopsis
Figure 3.	In Vitro Assay for Post-Translational Import of AtFtsZ2-1 to the Chloroplast55
Figure 4.	Phenotypes of Transgenic Plants Expressing Antisense Constructs of AtFtsZ1- 1 or AtFtsZ2-1
Figure 5.	Relationship between Mesophyll Cell Plan Area and Total Chloroplast Plan Area in Transgenic and Wild-Type Plants
Figure 6.	RNase Protection Assays of AtFtsZ1-1 and AtFtsZ2-1 Expression Levels in Independent Transgenic Antisense Lines
Figure 7.	Plant <i>FtsZ</i> Genes Can Be Grouped into Two Families on the Basis of Their Deduced Amino Acid Sequences
Figure 8.	Phylogenetic Relationships among Plant FtsZ Proteins
Figure 9.	A Tentative Model for FtsZ Localization and Function in Division of Higher Plant Chloroplasts

CHAPTER 3

Figure 1.	Specificity of AtFtsZ antipeptide antibodies	36
Figure 2.	Phenotypes of transgenic plants overexpressing AtFtsZ1-1 or AtFtsZ2-1	38
Figure 3.	Immunoblot analysis of plant extracts overexpressing AtFtsZ1-1	€€

Figure
Figure
Figure
Figure (
Figure 2
Figure 3
Figure 4
Figure 5.
5
rigure].
rigure 2.
^{rigure} 3.
^{rigure} 4.
Figure 5.
Figure 6.

Figure 4.	Relative levels of the 40-kD AtFtsZ1-1 polypeptide in plants expressing the <i>AtFtsZ1-1</i> transgene	94
Figure 5.	Immunoblot analysis of transgenic plant extracts expressing the <i>AtFtsZ2-1</i> transgene	97
Figure 6.	Immunoblot analysis of transgenic plant extracts expressing the <i>AtFtsZ2-2</i> transgene	12

CHAPTER 4

Figure 1.	Genetic structure of the 5'-UTR region of the three <i>FtsZ</i> genes	
Figure 2.	Histochemical localization of FtsZ-promoter activity during development of transgenic Arabidopsis	
Figure 3.	Detection of GUS expression in transgenic Arabidopsis seedlings with the <i>AtFtsZ1-1 promoter-GUS</i> fusions	
Figure 4.	Immunoblot detection of FtsZ protein in root, stem, shoot apex, and immature leaf extracts	
Figure 5.	Quantification of <i>FtsZ</i> mRNA in various Arabidopsis tissues	

CHAPTER 5

Figure 1.	Phylogenetic analysis of <i>FtsZ</i> proteins
Figure 2.	Phylogenetic analysis of <i>FtsZ</i> cDNA sequences159
Figure 3.	Testing the maximum likelihood tree against two constraint trees
Figure 4.	Comparison of <i>FtsZ1</i> and <i>FtsZ2</i> genetic structures
Figure 5.	Comparison of FtsZ proteins from photosynthetic organisms
Figure 6.	Two scenarios for the evolutionary origins of the plant <i>FtsZ</i> gene families. 172

CHAPTER 6

Ala
arc
ATP
ATPas
ВАС
BLAST
bp
C-termir
cDNA
cpm
CTP
d
d.ATD
dGTD
DYA
DTT
FDT
r?[
tMS
FAM
fts -

KEY TO ABBREVIATIONS

Ala	Alanine
arc	Accumulation and replication of chloroplasts
ATP	Adenosine triphosphate
ATPase	Adenosine triphosphotase
BAC	Bacterial artificial chromosome
BLAST	Basic local alignment search tool
bp	Base pair
C-terminus	Carboxy terminus
cDNA	Completmentary DNA
cpm	Counts per minute
СТР	Cytidine tripohosphate
d	Day
dATP	Deoxyadenosine triphosphate
dGTP	Deoxyguanosine triphosphate
DNA	Deoxyribonucleic acid
DTT	Dithiothreitol
EDTA	Ethylenediaminetetraacetic acid
EST	Expressed sequence tag
EMS	Ethyl methanesulfonate
FAM	6-carboxyfluorescein
fts	Filamentation temperature-sensitive

g
GDP
GFP
GTP
GTPane
GUS
HPLC
hr
IPTG
Kan'
kD or kL
L
М
mg
nin
πM
mRNA
MS
N-terminus
ng
וניט
PAGE
PCR

g	Gram
GDP	Guanosine diphosphate
GFP	Green fluorescence protein
GTP	Guanosine triphosphate
GTPase	Guanosine triphosphatase
GUS	β-glucuronidase
HPLC	High-performance liquid chromatography
hr	Hour
IPTG	Isopropylthio-β-galactoside
Kan ^r	Kanamycin resistant
kD or kDa	Kilodalton
L	Liter
М	Molar
mg	Milligram
min	Minute
mM	Millimolar
mRNA	Messenger RNA
MS	Murashige and Skoog
N-terminus	Amino terminus
ng	Nanogram
nm	Nanometer
PAGE	Polyacrylamide gel electrophoresis
PCR	Polymerase chain reaction

PD
Phe
R.ACE
RT
RNA
ŝ
SEDS
SDS
Suc
T-DNA
TBR
TAMRA
ίΤΡ
l TR
X-gluc

PD	Plastid dividing
Phe	Phenylalanine
RACE	Rapid amplification of cDNA ends
RT	Reverse transcription
RNA	Ribonucleic acid
S	Second
SEDS	Shape, elongation, division, and sporulation
SDS	Sodium dodecyl sulfate
Suc	Sucrose
T-DNA	Transfer DNA
TBR	Tree bisection-reconnection
TAMRA	6-carboxy-N,N,N',N'-tetramethylrhodamine
UTP	Uridine triphosphate
UTR	Untranslated region
X-gluc	5-brom o-4-chloro-3-indolyl-β-D-glucuronid

CHAPTER 1

Introduction
Cell division is a critical process for the proliferation of any organism. In 1968 Hirota et al. (1968) reported an experiment designed to decipher the molecular basis of bacterial cell division by isolation of bacterial mutants that were unable to divide at elevated temperatures. Due to their filamentous morphology, the mutants were called *fts* for *f*ilamentation *t*emperature-*s*ensitive. One of the proteins identified from the screen, FtsZ, has been shown to be a key component of the bacterial cell division machinery (Lutkenhaus et al., 1980). FtsZ proteins are structurally homologous to tubulins, have GTPase activity, and polymerize (Lutkenhaus and Addinall, 1997). FtsZ forms a ring at the cell division site and is an early step in the assembly of the cell division apparatus, which includes at least ten other components: ZapA, FtsA, ZipA, FtsK, FtsQ, FtsL, FtsB, FtsW, FtsI, and FtsN (Errington et al., 2003; Margolin, 2003). To date, only homologues of FtsZ have been identified in higher plants, where they have been shown to function in the division of chloroplasts.

FtsZ Ring Formation in Bacteria

Although the filamentous phenotype observed in bacterial mutant screens indicated FtsZ had a role in cell division, it was a report by Bi and Lutkenhaus (1991) that suggested FtsZ formed a ring at the division site. Immunoelectron microscopy experiments localized FtsZ protein to a region at the midcell of *Escherichia coli*, a position that correlated to the division site. Cross-sectional micrographs of bacterial cells indicated the protein formed a ring at the inner surface of the outer membrane, which remained at the leading edge of the septum throughout constriction. FtsZ rings seemed to form just prior to septal constriction, since localization was only observed in longer cells

and
Quar
in ea
the d
obser
Bacil
genex
indica
divisio
Bacter
other C
propon
ⁱⁿ the F
ex Perin
GTP
vingie n
expression and the second s
These for
in cell .a.
ATP _m

and not in shorter cells that had recently divided (Bi and Lutkenhaus, 1991).

Quantification by immunoblotting indicated there are about 5,000-20,000 FtsZ molecules in each *E. coli* cell, which is enough protein to encircle the bacterium about 20 times at the division site (Pla et al., 1991; Dai and Lutkenhaus, 1992; Lu et al., 1998). Similar observations of the FtsZ protein localizing to the division septum have also been made in *Bacillus subtilis* (Wang and Lutkenhaus, 1993). Mutations in other downstream division genes, like *ftsQ* and *ftsI*, produced cells with slightly constricted phenotypes and indicated FtsZ ring formation is one of the first steps that regulates the assembly of the division apparatus (Begg and Donachie, 1985).

Bacterial FtsZ Binds and Hydrolyzes GTP

Sequence comparisons identified motifs within the FtsZ protein that are similar to other GTP binding proteins. In eukaryotic tubulins the tubulin signature motif is proposed to be involved in GTP binding (Bourne et al., 1991) and this motif is conserved in the FtsZ protein (Erickson, 1995). Several groups used nucleotide-binding experiments to determine whether, like the tubulins, FtsZ also bound and hydrolyzed GTP (de Boer et al., 1992; RayChaudhuri and Park, 1992; Mukherjee et al., 1993). A single mutation in the tubulin signature motif significantly reduced GTP binding and cells expressing this mutant FtsZ protein failed to initiate division (de Boer et al., 1992). These findings indicated that GTP binding and hydrolysis are important for FtsZ function in cell division. Interestingly, this single mutation changed FtsZ from a GTPase to an ATPase, at least *in vitro* (RayChaudhuri and Park, 1994).

 $\overline{\mathbf{N}}$ thi inv fila This Wasi mutan that F1 Makha Thomp. filament L • whereas { • . Polymeri, Were texts Bramhi! Fizz prot important Polymeriz ²⁰⁰2: h]

Bacterial FtsZ Proteins Form Polymers

In addition to displaying GTPase activity, tubulins polymerize into multimeric structures (Weisenberg, 1972). Since FtsZ has protein sequences and GTPase activity that are similar to tubulins, the polymerization capabilities of bacterial FtsZ were investigated. After incubating purified FtsZ protein with Mg²⁺ and GTP, protein filaments were observed by electron microscopy (Mukherjee and Lutkenhaus, 1994). This filamentation was not observed when GTP was absent or when mutant protein that was unable to bind GTP was used in the assay. However, filaments were observed when mutant protein was used that could bind but not hydrolyze GTP. These results indicate that FtsZ polymerization is dependent on nucleotide binding but not hydrolysis (Mukherjee and Lutkenhaus, 1994). Similar conclusions were reported by Bramhill and Thompson (1994) who observed GTP-dependent polymerization of FtsZ protein filaments by electron microscopy.

Large, polymerized FtsZ protein structures will sediment by centrifugation whereas free protein will not. Using the amount of protein that sediments as a measure of polymerization, various nucleotide cofactors such as GTP, GDP, GTP γ S, dGTP, and ATP were tested for their ability to promote polymerization of FtsZ into large structures (Bramhill and Thompson, 1994). Only when both Mg²⁺ and GTP were incubated with FtsZ protein did significant sedimentation occur. These results indicated hydrolysis is important for polymerization into large structures (Bramhill and Thompson, 1994), but polymerization was later determined not to require hydrolysis (Scheffers and Driessen, 2002). It was reported that polymerization into these larger structures was enhanced by a

drop		
GTF		
unkr		
1996		
resolu		
enhan		
7.0. in		
large N		
filamer		
more of		
several		
The mir.		
sheets of		
^{curv} ed fi		
^{tub} ulin.		
tubulin 、	•	•.
These res		
et al., 19-1		
Ft _{sZ} and		
$\mathbf{A}_{\mathbb{C}}$		
reprinted R		

drop in the pH during the polymerization reaction (Erickson et al., 1996). Addition of GTP in the Bramhill and Thompson (1994) experiments actually lowered the pH and unknowingly enhanced formation of these large FtsZ polymer structures (Erickson et al., 1996).

Detailed analysis of these large FtsZ polymer structures was done with highresolution electron microscopy (Erickson et al., 1996). Although formation was enhanced at lower pH, large complexes were observed to form in the pH range of 5.5 to 7.0, in the presence of either GTP or GDP. In these polymerization experiments several large structures were reported. One of the simplest structures was a long, straight filament. More complex structures consisted of two-dimensional sheets made of two or more of these filaments. Even more complex tubular polymers that are composed of several filaments were observed. Filaments were also observed that formed minirings. The miniring curvature was also manifested as filaments spiraling away from polymer sheets or tubular structures. All these structures, including the long straight filaments, curved filaments and minirings, and filament sheets, are similar to structures formed by tubulin. In addition, optical diffraction and computer image reconstruction of FtsZ and tubulin sheets indicated the lattice spacing is very similar between the two proteins. These results supported the similarity between the tubulin and FtsZ structures (Erickson et al., 1996).

FtsZ and Tubulin Proteins are Structurally Similar

Additional support for tubulin and FtsZ functional and structural similarity was reported by de Pereda et al. (1996). The structures of α , β , and γ tubulin as well as FtsZ

were
ठाट्रम
regio
conta
protec
expension
FtsZ p
FtsZ to
determi
crystal -
The Fts
Methan
each pr
and Am
Ft.Z is
residua
and u
" ^{Ith} the i
lo one 🗤
^{domain} i:
proposed
¹⁹⁹ 8: No.5

were predicted using alignments of several sequences of each protein from various organisms. Although tubulin and FtsZ protein sequences overall are only slightly similar, regions of the predicted secondary structures were very similar, including the region containing the tubulin signature motif. To support these structural predictions, limited proteolysis experiments confirmed that regions of the tubulin proteins predicted to be exposed could be cleaved. Although proteolysis experiments were not done with the FtsZ protein, the predictions supported similar protein structures for both tubulin and FtsZ (de Pereda et al., 1996).

The similarity between FtsZ and tubulin was graphically demonstrated by the determination of their respective crystal structures. Nogales et al. (1998) determined the crystal structure of the $\alpha\beta$ tubulin heterodimers that had been polymerized into sheets. The FtsZ crystal structure was determined by Löwe and Amos (1998) using protein from Methanococcus jannaschii. Both the tubulin and FtsZ structures are very similar, with each protein consisting of two domains that are connected by a linker (Löwe, 1998; Löwe and Amos, 1998; Nogales et al., 1998; Nogales et al., 1998). The N-terminal portion of FtsZ is called the GTPase domain (Löwe, 1998; Löwe and Amos, 1998) and consists of residues 38-227 of the *M*. *jannaschii* protein that form a six-stranded β -sheet with two and three helices on either side. The arrangement of the β -sheet and helices is consistent with the Rossman-fold topology (Rossmann et al., 1974). The GTP nucleotide is bound to one side of the β -sheet and makes contact with six loops. Because the structure of this domain in FtsZ and tubulin were distinct from that in other classical GTPases, it was proposed that FtsZ and tubulin form a new family of GTP hydrolyzing enzymes (Löwe, 1998; Nogales et al., 1998). The extreme N-terminal residues of tubulin protrude from

the molecule and make important crystal contacts (Löwe and Amos, 1998). However, because this extension is highly variable among FtsZ proteins, being very short in *E. coli* FtsZ, it is unlikely to have a significant role in FtsZ polymerization.

The C-terminal domain of the FtsZ protein consists of residues 228-356 and is connected to the N-terminal domain by a long helix. This region has a parallel fourstranded central β -sheet with two helices supporting it on one side (Löwe, 1998; Löwe and Amos, 1998). This domain has sequence similarity to calmodulins that bind calcium, and make binding of calcium feasible in the FtsZ protein (Löwe and Amos, 1998). The residues at the extreme C-terminus protrude from the molecule and are disordered. Comparisons among the FtsZ proteins indicate the C-termini are very divergent among different organisms. In tubulin, the corresponding region forms two helices that sit on the surface of the molecule (Nogales et al., 1998) and are located outside of the microtubule (Wolf et al., 1996). It was proposed that this C-terminal region of tubulin contacted microtubule-associated proteins or motor proteins (Nogales et al., 1998). By analogy, the C-terminus of FtsZ is likely to be important for interactions with other proteins. The divergence of the C-terminal region in both tubulin and FtsZ may reflect differences in the contacts that are required in different organisms.

A region within the N-terminal domain of α -tubulin, called the T3 loop, makes important contacts with GTP. Specifically, the loop contacts the γ -phosphate of the GTP molecule (Nogales et al., 1998). Analysis of a molecular model of the microtubule, based on the crystal structure of the α , β -tubulin dimer (Nogales et al., 1998), indicates that a conformational change in the T3 loop might cause hydrolysis of the γ -phosphate (Nogales et al., 1999). A similar conformational change was predicted from molecular

mod	r	nodel
mut.	r	nutati
had	h	nad di
muta	m	nutate
or G	0	or GDI
mur	п	DETOU
that	 tł	hat our
Fts7	F	F1.7
dima		timon
Ener	E	Engler Fogler
r utti	n.	utner-
č F Frinkt	e Fr	Myme-
Scher the		Chetter
u:4[]	u;	liat 15 c.
D.	ħ	0.
ມາກສ	D	<i>∿</i> nami∂
De.	<i>i</i> ,	E
11996	11	19991
repre	Te	epressor
dimer	đi	imerize.
_{cybie}	ĉţ	*Pressed
beion	Ŀ.	ecome a
dimer	1	merize

models of the FtsZ T3 loop (Diaz et al., 2001). To test this prediction Diaz et al. (2001) mutated a threonine residue in the T3 loop to a typtophan, making an FtsZ protein that had different spectral characteristics when GTP or GDP were bound. Analysis of this mutated FtsZ protein indicate there is a change in the position of the T3 loop when GTP or GDP is bound (Diaz et al., 2001).

Analysis of the crystal structure of α , β -tubulin (Nogales et al., 1998) and microtubule modeling (Nogales et al., 1999) revealed a region that includes the T7 loop that contacted the GTP nucleotide bound to an adjacent monomer. The T7 loop region of FtsZ is also determined to be near the GTP nucleotide of an adjacent monomer by threedimensional reconstruction of FtsZ polymerized into sheets (Löwe and Amos, 1999). Furthermore, mutation of residues within the T7 loop region severely reduces both polymerization and GTP hydrolysis (Lu et al., 2001; Scheffers and Driessen, 2001; Scheffers et al., 2002). These results indicate that GTP hydrolysis occurs in an active site that is composed of two FtsZ monomers.

Dynamics of Bacterial FtsZ Polymer Formation

Evidence that FtsZ dimers are present *in vivo* was reported by Di Lallo et al. (1999). They constructed a chimeric gene that consisted of *FtsZ* and a portion of the λ repressor that is active only as a dimer. The repressor fragments alone were unable to dimerize, but functional repressor was present when the *FtsZ-repressor* chimera was expressed in *E. coli*. This indicated FtsZ formed dimers that allowed the repressor to become active. Using this as an assay, *FtsZ* mutants were isolated that could no longer dimerize. Mapping of the mutations provided insights into regions that were involved in

Ft	
ger	
pro	
GT	
with	
on t	
impo	
Lu c	
GTP	
Polyn	
coope	
strand,	
polyma	
Polyme	
uouou	
"the lon	
formatic	
Similar c	
measure	
lr.	
الانتاغيرية	
und inst.	

FtsZ dimerization (Di Lallo et al., 1999). In another study, point mutations within *FtsZ* genes were isolated that either affected GTP binding or polymerization of the FtsZ protein (Lu et al., 2001). The polymerization mutants had normal, or near normal, GTPase activity and filament assembly *in vitro*, but were unable to complement an *FtsZ* with a different temperature sensitive mutation. These results indicated mutations located on the lateral surface of FtsZ are not required for filament polymerization but are important for filament-to-filament interactions that make up the higher-order structures (Lu et al., 2001).

Several reports have investigated the dynamics of FtsZ polymer formation and GTP hydrolysis. One question has been whether FtsZ monomers are added to a growing polymer in a cooperative or isodesmic manner (Romberg et al., 2001). Assembly of cooperative polymers requires a nucleation event followed by rapid growth of a multistranded complex; the monomer concentration is critical in this type of assembly. The polymers also tend to be very long whereas isodesmic polymers are short. Isodesmic polymers are single-stranded, require no nucleation event, and require no critical monomer concentration. Using electron microscopy and light scattering measurements (the longer the polymer the more light is scattered) to analyze the kinetics of polymer formation, Romberg et al. (2001) suggested that FtsZ polymer formation is isodesmic. Similar conclusions were reached by Rivas et al. (2000) using sedimentation analysis to measure the kinetics of polymer formation.

In a recent report however, Caplan and Erickson (2003) suggest that FtsZ polymer assembly is cooperative while disassembly is isodesmic. Caplan and Erickson (2003) used isothermal titration calorimetry to measure the heat of FtsZ self-association to

invest releas conce measu sedime change all of th FtsZ w Thereta when F require thermo: $F_{ts}Z_{po}$ formatic et al. (20 ÷ ي: remove : amount o Polymer, Measured p) droly sic GTP the F Was flawe

investigate the thermodynamics of FtsZ polymerization. When proteins interact, heat is released. By measuring the amount of heat generated in reactions with different FtsZ concentrations the total number of protein interfaces could be inferred and these measurements were not biased toward longer molecules, as were the light scattering and sedimentation experiments. When FtsZ and GDP are injected into the calorimeter, the change in heat followed an isodesmic model. Under the conditions that were used almost all of the GDP-bound FtsZ protein was in a polymerized form. When the polymerized FtsZ was injected into the calorimeter, the change in heat the calorimeter, the change in heat was due to disassembly. Therefore, the authors suggest disassembly of FtsZ polymers is isodesmic. However, when FtsZ and GTP were injected into the calorimeter, a critical FtsZ concentration was required for polymerization and an isodesmic process could not model the thermodynamics of polymer formation. Therefore, the authors concluded assembly of FtsZ polymers is apparently cooperative (Caplan and Erickson, 2003).

Understanding the exact role that GTP hydrolysis plays in FtsZ polymer formation has been difficult to determine, although progress has been made. Mingorance et al. (2001) incubated radiolabeled GTP with FtsZ protein, filtered the reaction to remove free nucleotide and protein, and collected polymerized protein. By analyzing the amount of bound radiolabel, they determined that most of the nucleotide in the FtsZ polymers was GTP. When labeled GTP was added to preformed polymers, they measured a rapid exchange of bound nucleotide. From these results it was suggested that hydrolysis of GTP destabilizes the polymers, but by quickly exchanging GDP with fresh GTP the polymers were restabilized (Mingorance et al., 2001). However, their method was flawed as it assumed the phosphate released by hydrolysis was rapidly removed from

the pr nucle nucles They they a proterr destab. polym This restabiliz. and stru and hyd Amos, ; likely ar whether cytosof a FtsZ ring tubular 🖓 2000). A dynamic . Using gre

the proteins (Scheffers and Driessen, 2002). Scheffers et al. (2000) performed similar nucleotide binding assays as Mingorance et al. (2001), but they extracted the bound nucleotide from the protein and analyzed the nucleotides by thin layer chromatography. They found that almost all of the bound nucleotide is hydrolyzed to GDP. In addition, they also found the phosphate released by the hydrolysis remains present in the FtsZ proteins. This indicated hydrolysis of GTP is very rapid and, by itself, does not destabilize polymers. In addition, Scheffers et al. (2000) found that GDP-containing polymers are stabilized by non-hydrolyzable GTP analogues in polymerization reactions. This result indicated that the FtsZ polymers, like tubulin, might have a GTP cap that stabilizes the polymerized structure.

Although several properties of FtsZ have been described, many of the functions and structures that are physiologically relevant are still unclear. FtsZ proteins bind GTP and hydrolysis occurs very rapidly upon dimerization or polymerization (Löwe and Amos, 1998; Scheffers and Driessen, 2002). Polymerization of FtsZ into filaments is likely an important step in the formation of the division ring. However, it is unclear whether the filaments form *de novo* at the site or whether short oligomers form in the cytosol and then aggregate at the division site (Stricker et al., 2002). The structure of the FtsZ ring is also unclear, but probably consists of linear filaments bundled together, since tubular structures have never been observed in bacteria by electron microscopy (Lu et al., 2000).

Although the structure of the FtsZ ring is still unresolved, it seems to be very dynamic with subunits being exchanged throughout its existence (Stricker et al., 2002). Using green fluorescent protein (GFP)-labeled FtsZ and fluorescence recovery after

			phote
			struct
			struct;
			with c
			Ft ₂ r
			FtsZ fi
			force-g
			the rear
			Emng
			Other
			MinC,
			Protein
			Protein
	•		MinC o
			Poles. H
			other re
			inhibiti
			A speci
			its attim
			Theve c

photobleaching, Stricker et al. (2002) observed that bleached signal in FtsZ ring structures recovers rather rapidly, even in constricting cells. This indicates that the ring structure, even during constriction, is dynamic with its components rapidly exchanging with cytoplasmic pools of FtsZ protein.

The force-generating component of the ring structure is unknown. However, the FtsZ ring itself has been implicated based on observations that GTP hydrolysis causes FtsZ filaments to favor a curved conformation (Lu et al., 2000). Whether FtsZ is the force-generating component or not, one important function of the FtsZ ring seems to be the recruitment or localization of other protein components to the cell division apparatus (Errington et al., 2003).

Other Bacterial Cell Division Proteins

MinC, D, and E

The positioning of the FtsZ ring at the division site involves the functions of three proteins that make up the *min* system, MinC, MinD, and MinE. In *E coli*, these three Min proteins are encoded by and expressed from a single operon (de Boer et al., 1989). When *MinC* or *MinD* is mutated, FtsZ ring formation occurs not only at midcell but also at the poles, but no ring forms when MinE is mutated (de Boer et al., 1989, 1992). These and other results (Rothfield et al., 1999) indicate that MinC and MinD act in a complex as inhibitors of FtsZ ring formation, while MinE acts as a topological inhibitor of MinCD. A specific mutation in MinC reduces the ability of the protein to inhibit division, reduces its affinity for FtsZ, and reduces the inhibition of FtsZ polymerization (Hu et al., 1999). These observations indicate MinC interacts directly with FtsZ to prevent polymerization.

	In fac
	Ft ₂ Z
	2000
	two-h
	2001
	verv di
	r from n
	Since
	therefo
	cell not
	MinC +
	kien th
	and da
	Station
	define
. •	
	for a se
	(c
	ع نەئلىلەر
	Deckw ₁
	order th

In fact, fusion experiments with domains of MinC indicated the N-terminus interacts with FtsZ while the C-terminus was involved in dimerization with MinD (Hu and Lutkenhaus, 2000). Interactions between MinC and MinD have also been observed with the yeast two-hybrid system (Huang et al., 1996) and by proteolysis experiments (Szeto et al., 2001).

The process by which the Min system regulates placement of the FtsZ ring is a very dynamic. Localization studies of GFP-labeled MinC indicate the protein oscillates from pole to pole (Hu and Lutkenhaus, 1999). The oscillation is dependent on MinD since its removal results in MinC becoming diffuse throughout the cytoplasm. MinD, therefore, seems to be the oscillating component that binds MinC to the membrane at the cell poles (Raskin and de Boer, 1999; Raskin and de Boer, 1999). The oscillation of MinC from pole to pole likely inhibits FtsZ ring formation. MinE, which functions to keep the MinCD protein complex from the mid-cell, is also localized to a ring (Raskin and de Boer, 1997). Careful analysis of GFP-tagged MinE indicates the ring is not stationary but oscillates from one side of mid-cell to the other. The oscillation seems to define a boundary beyond which MinCD is excluded. These results indicate there is a complex oscillating system that is important to properly place the FtsZ ring at mid-cell for cell division and keep FtsZ rings from forming at cell poles.

Following the placement and assembly of the FtsZ ring, at least ten other components of the cell division apparatus localize to the division site (Chen and Beckwith, 2001; Errington et al., 2003). Nine of the components assemble in a specific order that starts with ZipA and FtsA and is followed by FtsK, FtsQ, FtsL, FtsB, FtsW, FtsI, and FtsN. The tenth component, the recently discovered ZapA, is likely one of the

first		
uncle		
repre-		
functi		
the fo		
ZapA		
		ĩ
antage		
2002).		
abbatei		
division		
it is loc.		
Ft.Z. S		
domain.,		
promot _e		
function		
Propose :		
$F_{LZ} \tilde{n}_{la}$		
reason o.		
Althoust.		
many bac		
Gueirox-i		

first components to assemble following FtsZ ring formation, although the exact timing is unclear. The order of assembly of the cell division components and a schematic representation and their predicted membrane topology are diagrammed in Figure 1. The functions of each component of this intricately orchestrated assembly will be discussed in the following sections.

ZapA

ZapA was recently identified in a screen for genes whose overexpression could antagonize a MinD overexpression block on cell division (Gueiros-Filho and Losick, 2002). ZapA is not essential for division since knocking out the gene resulted in no apparent defect in septum formation. However, when FtsZ levels are reduced, cell division requires ZapA. Fluorescence microscopy of a GFP-tagged ZapA protein showed it is localized to the division site and affinity chromatography indicated it interacts with FtsZ. Structural predictions suggest ZapA is a cytoplasmic protein with a coiled-coil domain, which indicates it may dimerize. Polymerization studies showed that ZapA promotes assembly of FtsZ into bundled filaments in vitro, which indicated ZapA might function in binding filaments together in the FtsZ division ring. One mechanism proposed for inhibition of cell division by MinD is that MinD inhibits the association of FtsZ filaments. ZapA, however, induces association of FtsZ filaments, which may be the reason overexpression of ZapA antagonizes the effects of MinD overexpression. Although ZapA was originally identified in *Bacillus subtilis*, orthologues are present in many bacterial species, including one in E. coli that also localizes to the division site (Gueiros-Filho and Losick, 2002).

Figure 1. The sequential assembly pathway of the cell division components at mid cell of *E. coli*.

A, The dependency pathway for protein localization to the division site. Arrows point from proteins that are required before the protein is localized to the division site. B, Schematic representation of the 11 known *E. coli* cell division proteins and their predicted topology in the cell membrane. Components that have been shown to interact with FtsZ are diagramed in contact with the FtsZ ring. OM, outer memberane; PG, peptidoglycan; CM, cell memberane.

Α

Fts

Fts

Figure 1

FtsA
1
1968 [
only 1
not h.:
(Pla et
Fr.A. to
(Ma ar
been d
Aithou
downs
Lowe
interac
ZipĄ
Hale
site an
Polym
$d_{i_{V_{1\times i_{C}}}}$
1999.
ⁱ x ind _e
pottr. 1

FtsA

FtsA was identified in the initial screen for filamenting mutants (Hirota et al., 1968). Immunofluorescence microscopy showed that FtsA localizes to the division site only if FtsZ is located at the division site (Addinall and Lutkenhaus, 1996). FtsA does not have a membrane-spanning domain, but is associated with the cytoplasmic membrane (Pla et al., 1990). Mutations in the C-terminus of the FtsZ protein prevent localization of FtsA to the division site and indicate there is a direct interaction between the two proteins (Ma and Margolin, 1999). The crystal structure of FtsA from *Thermotoga maritima* has been determined and its structure resembles that of actin (van den Ent and Lowe, 2000). Although the function of FtsA is unknown, it is required for the recruitment of other downstream components of the division apparatus. Analysis of the crystal structure led Löwe and van den Ent (2001) to suggest a peptide located at the C-terminus of FtsA may interact with and be involved in the recruitment of the other cell division components.

ZipA

ZipA was identified in an affinity-blotting screen for proteins that bound FtsZ (Hale and de Boer, 1997). GFP-tagged ZipA localizes to the ring structure at the division site and is required for septum formation. Additional localization studies indicated FtsZ polymerization does not require ZipA, but without ZipA the other components of the division apparatus are not recruited to the septum (Hale and de Boer, 1999; Liu et al., 1999; Pichoff and Lutkenhaus, 2002). The localization of ZipA and FtsA to the FtsZ ring is independent, but recruitment of the other division components requires the presence of both. FtsZ polymerization studies indicated that ZipA stabilizes FtsZ filaments and even

pron of Z:: prote: doma to the doma a sma: amine in the domair for Zip FtsA h. them. FisK identific ¹⁹⁹⁸: Y and Fts, that is p homolo; indicate: division promotes bundling (RayChaudhuri, 1999). Furthermore, 143 residues at the C-terminus of ZipA are sufficient to induce bundling of FtsZ filaments (Hale et al., 2000). The ZipA protein has a flexible tether between a membrane-spanning domain and an FtsZ binding domain (Hale and de Boer, 1997; Ohashi et al., 2002), suggesting that ZipA anchors FtsZ to the cell membrane. Sequence comparisons indicate ZipA has microtubule binding domains (RayChaudhuri, 1999) and X-ray crystallography shows that ZipA interacts with a small fragment of FtsZ (Mosyak et al., 2000). Specifically, ZipA interacts with a 17 amino acid peptide that is located at the C-terminus of FtsZ. This C-terminal peptide is in the same region where FtsA binds to FtsZ. Although ZipA has a membrane-spanning domain but FtsA does not, a single amino acid change in FtsA bypasses the requirement for ZipA in cell division (Geissler et al., 2003). These results indicate both ZipA and FtsA have functional overlap although there are significant structural differences between them.

FtsK

By mapping a temperature-sensitive cell division mutant Begg et al. (1995) identified the gene *ftsK*. FtsK is localized to the division septum (Wang and Lutkenhaus, 1998; Yu et al., 1998) and its localization requires the prior localization of FtsZ, ZipA, and FtsA (Hale and de Boer, 2002; Pichoff and Lutkenhaus, 2002). FtsK has a domain that is predicted to span the membrane several times and a cytosolic domain that has homology to other nucleotide-binding domains (Begg et al., 1995). Several studies have indicated FtsK interacts with chromosomes and that this interaction is important for cell division (Liu et al., 1998; Yu et al., 1998; Steiner et al., 1999; Barre et al., 2000; Boyle et

			al., 2
			that F
			can tr
			be a ri
			Anoti
			appar.
			FtsQ
			FtsQ Ic
			2001: H
			micros
			divisio
			division
			obieri.
			Postula
- 2 2			Fiso nr
			to the la
			U
			Ftst
			~
			1

division

I

tagging ,

al., 2000). A recent report showed by analytical gel filtration and electron microscopy that FtsK proteins form multimers (Aussel et al., 2002). In addition, the FtsK multimers can translocate along DNA duplexes *in vitro* (Aussel et al., 2002) and indicate FtsK may be a motor protein that moves replicated chromosomes through the division septum. Another function of the FtsK-chromosome interaction may be to keep the division apparatus between the replicated chromosomes.

FtsQ

FtsQ was described by Begg et al. (1985) in a screen for cell division mutants. FtsQ localizes at the division septum in an FtsK-dependent manner (Chen and Beckwith, 2001; Hale and de Boer, 2002; Geissler et al., 2003) and immunofluorescence microscopy and GFP-tagging experiments confirmed FtsK is localized to a ring at the cell division site (Buddelmeijer et al., 1998; Ghigo et al., 1999). Although essential for division, the specific function of FtsQ is unclear (Chen et al., 1999). Various observations of the *B. subtilis* FtsQ homologue, DivIB, led Errington et al. (2003) to postulate DivIB recruites FtsL to the division site. In support of this hypothesis, when FtsQ proteins with site-specific mutations were expressed in cells, FtsL failed to localize to the division septum (Chen et al., 2002).

FtsL

FtsL was identified in a screen for envelope proteins that are required for cell division (Guzman et al., 1992). The protein has been localized to the septum by GFP-tagging experiments in an FtsQ-, but not FtsI-, dependent manner (Ghigo et al., 1999).

		The I
		perip
		Guzi
		protei
		stable
		FISL V
		coiled
		three o
		transm
		Beckw
		FtsB (y
		workin
		workin. Beckw:
		working Beekwa compute
ч к	u .,	working Beckwy compute Partner.
· •.	ъ.	working Beckwa compute Partner, et al., 20
· I.	••.	working Beckwy compute Partner, et al., 20 Beckwit
. к		workin, Beckwa compute Partner, et al., 20 Beckwit Septuma
· •.		working Beekwa compute Partner, et al., 20 Beekwin Septum i Such as P
· •.		workin. Beekwaa compute partner. et al., 20 Beekwait Septumaa Such as P were dep

в

The FtsL protein has a domain that is located in the cytosol, a domain located in the periplasm, and a membrane-spanning domain that separates the other two domains (Guzman et al., 1992). The periplasmic domain has a coiled-coil motif that indicates the protein may multimerize. Mutagenesis of the coiled-coil motif makes FtsL dimers less stable in SDS treatment (Ghigo and Beckwith, 2000). Experiments where the domains of FtsL were swapped with similar domains from other proteins (for example, swapping the coiled-coil domain of FtsL with a coiled-coil domain from another protein) indicated all three of the FtsL protein domains are required for function, even though the cytosolic and transmembrane domains are not required for localization or dimerization (Ghigo and Beckwith, 2000). However, the role of FtsL in septum formation is still unclear.

FtsB (YgbQ)

YgbQ was identified in two different laboratories at about the same time, one working in *Vibrio cholerae* and the other in *E. coli* (Buddelmeijer et al., 2002). The Beckwith laboratory predicted FtsL would not dimerize *in vivo* very well and did computer-based searches for a structurally similar protein as a possible dimerization partner. YgbQ was the most promising protein identified from the search (Buddelmeijer et al., 2002). The protein was renamed FtsB in a recent review (Buddelmeijer and Beckwith, 2002). GFP-tagging of FtsB showed the protein was localized to the division septum in an FtsQ-dependent manner, whereas mutations in downstream components, such as FtsW, did not disrupt FtsB localization (Buddelmeijer et al., 2002). When cells were depleted of FtsB, FtsL becomes unstable, which indicates that FtsB stabilizes FtsL and suggests that both assemble at the division site at about the same time.

FtsV		
local		
requi		
Wang		
when		
with a		
1998.		
the rex		
Khatta		
lt w _{ax} .		
asiemt		
and \mathbf{W}_{1}		
destah:.		
that Ft.		
and Bec	 24 . .	
Pneume,		
extracy.		
f _{oundin-1}		
family ()		
a transport		
a tran puj		

FtsW

FtsW was identified in a mutagenesis screen for cell division mutants and is localized to the *mra* region of the *E. coli* chromosome (Ishino et al., 1989). FtsW is required for cell division and is localized to the division septum (Boyle et al., 1997; Wang et al., 1998). Although Khattar et al. (1997) observed the presence of FtsZ rings when one mutant FtsW protein was expressed, the FtsZ ring was not always observed with all the different FtsW mutants (Boyle et al., 1997; Khattar et al., 1997; Wang et al., 1998). Therefore, the exact point at which FtsW localized to the septum was unclear, but the results suggested that it might be quite early in the assembly of the division apparatus. Khattar et al. (1997) also identified two different polypeptide products of the *ftsW* gene. It was suggested that one of these products might be involved in the early steps of assembling the division apparatus and that it stabilizes the FtsZ ring. However, Mercer and Wiess (2002) disputed this finding because they found that FtsW mutantions did not destabilize the FtsZ ring, at least not significantly. Furthermore, GFP-tagging indicated that FtsW is recruited to the septum after FtsL and FtsB, but before FtsI (Buddelmeijer and Beckwith, 2002; Mercer and Weiss, 2002). Structural analysis of the Streptococcus pneumoniae FtsW protein indicates it has 10 membrane-spanning segments and a large extracytoplasmic domain (Gerard et al., 2002). FtsW, along with RodA and SpoVE, are founding members of the SEDS (shape, elongation, division, and sporulation) protein family (Henriques et al., 1998) and each SEDS protein seems to work in conjunction with a transpeptidase (Matsuhashi et al., 1990). Since FtsW and FtsI, a transpeptidase, are
expr.
sugg.
Fici
151
antibi
be iden
inverte
temint
1989).
localiza
et al., 1
cell pol
unknow
Denri, J.
1999.
replatio
F _{tsN}
ł
mutation
Ft.L. an
a noncla

expressed from the same operon (Ishino et al., 1989; Boyle et al., 1997) it has been suggested that FtsW may function in conjunction with FtsI (Mercer and Weiss, 2002).

FtsI

FtsI was purified based on its ability to bind Cephalexin, a penicillin-type antibiotic (Tamura et al., 1980). Because it bound penicillin and was the third protein to be identified with this property, FtsI was originally called PBP-3. Proteolyic digestion of inverted membranes suggested FtsI is anchored to the cell membrane at the amino terminus with the bulk of the protein located in the periplasmic space (Bowler and Spratt, 1989). Wang et al. (1998) showed that FtsI localizes to the division septum and that localization is dependent on the previous localization of FtsL to the division site (Weiss et al., 1999). In addition to septum localization, FtsI was also observed to localize at the cell poles by immunofluorescence microscopy, although the significance of this was unknown (Weiss et al., 1997). The PBP proteins, to which FtsI belongs, are peptidoglycan transpeptidases and synthesize murein (Spratt, 1977; Goffin and Ghuysen, 1998). Specifically, synthesis of septal peptidoglycan by FtsI is required during cell septation but not during cell elongation (Botta and Park, 1981).

FtsN

FtsN was identified in a screen for suppressors of an *ftsA* temperature-sensitive mutation (Dai et al., 1993). A late recruit to the division site, FtsN requires FtsK, FtsQ, FtsL, and FtsI for localization to the septum (Chen and Beckwith, 2001). The protein has a noncleavable hydrophobic sequence that binds it to the membrane (Dai et al., 1993).

The f
anne.
septu
Stioc
maint;
of cell
of fun
ותו תא.
level ₈
and Lu
cell _{S at}
non-v ₁ ,
cell d ₁ ,
level
Coul.4
1665
¹⁷⁹ -).
concor.
the con
balance
ľ

The function of FtsN is unclear, but it does have sequence similarity to cell wall amidases. Because of this similarity, Errington et al. (2003) suggested that FtsN allows septum constriction by hydrolyzing certain bonds in the cell wall.

Stiochiometric Ratios are Important Among Bacterial Cell Division Components

One important factor in the functionality of the cell division machinery is the maintanance of stoichiometric ratios among the different protein components. Inhibition of cell division in the FtsZ mutant (Lutkenhaus et al., 1980) is due to decreased amounts of functional protein, which causes an imbalance in the ratio of the division components. An imbalance can also occur when protein expression is increased. When FtsZ protein levels were slightly increased, the number of initiated division events increased (Ward Jr and Lutkenhaus, 1985). This increase was manifested by constriction and separation of cells at both the cell center and at abnormal positions near the cell poles that resulted in non-viable minicells. However, dramatically increasing FtsZ protein levels inhibited all cell division and resulted in a filamentous phenotype similar to that observed when FtsZ levels were reduced. The inhibition of cell division observed with high FtsZ expression could be rescued by simultaneous overexpression of FtsA protein (Dai and Lutkenhaus, 1992). Overexpression of ZipA also inhibits cell division, but division can be rescued by concomitant overexpression of FtsZ (Hale and de Boer, 1997). These results suggest that the components of the bacterial cell division machinery are in a strict stoichiometric balance and that disruption of that balance is detrimental to cell division.

Developmental Patterns of Chloroplasts

The chloroplast complement of a mature mesophyll cell results from both proplastid (undifferentiated plastids) and chloroplast division. Proplastids are located in the root and shoot meristems. Proplastids that have constricted centers have been observed in shoots of spinach as well as in the roots of spinach, pea, barley, tomato, maize, lettuce, pine, watermelon, and wheat (Chaly and Possingham, 1981). The constrictions are likely an indication that the proplastids they are undergoing division. Further support for proplastid division comes from microscopic observations of Arabidopsis *arc6* mutant plants (Robertson et al., 1995). The chloroplasts in the *arc6* mutants are very large, and only one or two are present in each mesophyll cell. Electron micrographs of the shoot apex from the *arc6* mutant plants reveal very few and large proplastids in each cell, whereas proplastids in the shoot apex of wild-type Arabidopsis plants are smaller and more numerous. This indicates proplastid division is severely reduced in the *arc6* mutant plants.

During leaf development, mesophyll cells differentiate and expand. While the cells expand, the chloroplasts (differentiated proplastids) divide. Possingham and Lawrence (1983) summarized several studies that reported the number of chloroplasts in cells at different developmental stages. In spinach, beet, pea, bean, and wheat as mesophyll cells expand there is an increase in the number of chloroplasts in each cell (Possingham and Smith, 1972; Boffey et al., 1979; Lamppa et al., 1980; Scott and Possingham, 1980; Whatley, 1980; Tymms et al., 1983). In addition, measurements of cell size and chloroplast number in Arabidopsis and tobacco mesophyll cells indicate that the bigger the cell, the more chloroplasts it contains (Boasson et al., 1972; Kameya, 1972;

Pyk or to as d Smit chlor Kass whil expai the le leave of cell There Arahi chloro the div ą) Smith. leaves. also ha microg obvervi occur ti Pyke and Leech, 1992; Pyke et al., 1994; Robertson et al., 1996). When cultured spinach or tobacco leaf disks are treated with cytokinin the size of the mesophyll cells increases, as does the number of chloroplasts in each cell (Boasson et al., 1972; Possingham and Smith, 1972; Possingham et al., 1988). This relationship between cell size and chloroplast numbers has also been observed in *Polytrichum* moss cells (Paolillo and Kass, 1977). This increase in chloroplast numbers indicates the chloroplasts are dividing while the mesophyll cells expand and suggest there is a close relationship between cell expansion and chloroplast division.

In the monocot wheat, chloroplast division occurs in a relatively small region of the leaves where cell expansion is greatest (Pyke, 1997). Microscopic examination of the leaves of Arabidopsis, a dicot, indicates chloroplast division occurs over a longer period of cell development and expansion than in wheat (Pyke and Leech, 1992; Pyke, 1997). Therefore, the region where most chloroplast division occurs is less pronounced in Arabidopsis leaves, and other dicot leaves, than it is in wheat leaves. However, a chloroplast division gradient is still observed in dicots from leaf base to tip, with most of the division occurring in the basal portion of the Arabidopsis leaf (Possingham and Smith, 1972; Possingham, 1973; Leech et al., 1981; Pyke et al., 1991). Besides young leaves, cells in the rapidly expanding cotyledons and the basal stock of developing petals also have numerous chloroplasts undergoing division (Pyke, 1997; Pyke and Page, 1998).

Dividing chloroplasts with several different shapes have been observed in electron micrographs (Leech et al., 1981; Leech, 1986; Leech and Pyke, 1988). From these observations, predictions have been made regarding the morphological changes that occur to the chloroplasts during division. The first proposed morphological change is a

conv
ends
1981
harte
e de la
exter.
studic
dividi
(PD)
Hash
which
single
and in
ring lo
chloro
reveal.
mid dj.
Ň
Preven
ab's.
and to
the stro
Miyagi

constriction at the center of the plastid, followed by twisting around this constriction that ends with separation of the two daughter chloroplasts (Chaly et al., 1980; Leech et al., 1981). The constriction suggests chloroplasts divide by binary fission, similar to bacteria. The significance of the chloroplast twisting is unknown, but may be a result of external forces encountered by the chloroplast near the end of division. Ultrastructural studies in ferns identified the presence of electron-dense rings at the constriction of dividing chloroplasts (Duckett and Ligrone, 1993). These rings, called plastid dividing (PD) rings, have also been observed in red algae, green algae, and angiosperms (Hashimoto, 1986; Kuroiwa, 1989; Oross and Possingham, 1989; Ogawa et al., 1994), which indicates they may be ubiquitous in all plants.

Although most of the observed PD rings in the various plants appear to be singlets, a double-ring structure was observed in *Avena sativa* (barley) (Hashimoto, 1986) and in the red alga *Cyanidioschyzon merolae* (Miyagishima et al., 1998), with one PD ring located on the cytosolic surface and a second on the stromal surface of the chloroplast membrane. Careful studies of the unicellular red alga *Cyanidium caldarium* revealed not only the double PD ring structure, but the presence of a third PD ring (the middle PD ring) located in the intermembrane space (Miyagishima et al., 1998).

Although the PD rings have been identified in many plants, following their presence throughout chloroplast division has been difficult. Kuroiwa et al. (1998) were able to observe PD ring formation, contraction, and dispersion throughout the entire division process using synchronized cultures of the red alga *C. caldarium*. Formation of the stromal PD ring occurs first, followed by formation of the middle and outer PD rings (Miyagishima et al., 1998, 1998; Miyagishima et al., 1999; Miyagishima et al., 2001;

Miyagishima et al., 2001). Disassembly of the three rings is just the reverse of their formation. Throughout chloroplast division, the PD rings remain associated with the leading edge of the constricting plastid until dispersal upon chloroplast separation (Kuroiwa et al., 1998; Kuroiwa et al., 2002). It should be noted that the presence of a middle PD ring has been questioned, due to difficulty in resolving the inner and outer leaflets of the membrane (Hashimoto, 2003). Even so, the presence of an inner and outer PD ring suggests at least two complexes are involved in chloroplast division.

It had been hypothesized that the stromal PD ring could be at least partly composed of FtsZ protein, because both the PD and FtsZ rings form at the stromal surface of the inner chloroplast envelope membrane (Miyagishima et al., 1998; McAndrew et al., 2001). However, careful examination of the FtsZ and PD rings in C. *merolae* by Miyagishima et al. (2001) determined they are separate and distinct structures. Furthermore, analysis indicates the FtsZ ring forms first and is followed by the formation of the stromal and cytoplasmic PD rings. In the late stages of chloroplast division, just prior to separation, the FtsZ ring disappears before the two PD rings (Miyagishima et al., 2001). Electron microscopic observations in *Pelargonium zonale* (geranium) also indicate the FtsZ ring forms before the stromal or cytoplasmic PD rings and disappear in the late stages of chloroplast division in higher plants (Kuroiwa et al., 2002). Measurements of the diameter of the rings indicate the thickness of the outer PD ring increases while the FtsZ and inner PD ring diameters remain constant throughout division (Kuroiwa et al., 2002). From these observations the authors suggested that the FtsZ and inner PD rings decompose (lose components) throughout division while the

out
ind
ind.
lmn
oute
(Miy
micro
stron
struct
Drot.
Freici
The A
^a set o
mut _{ut.}
and Le
M_{arriv}
are t
culo ^{ro;}
mut _{un}
and Le.
arch n:

outer PD ring does not. They also suggest that the thickening of the outer PD ring might indicate it generates the force for chloroplast constriction (Kuroiwa et al., 2002).

Although the composition of the cytoplasmic PD ring is unknown, isolation of intact outer PD rings from *C. molerae* has allowed for some protein characterization. Immunoblot analysis failed to detect FtsZ protein in samples enriched in the isolated outer PD rings, providing evidence that the outer PD ring is not composed of FtsZ protein (Miyagishima et al., 2001; Kuroiwa et al., 2002). Furthermore, immuno-electron microscopy with FtsZ antibodies determined the FtsZ ring is located in the chloroplast stroma and not the cytoplasm. Negative staining of isolated outer rings revealed the structure is a bundle of 5-nm filaments and SDS-PAGE analysis indicated a 56-kDa protein is a major component (Miyagishima et al., 2001).

The Arc Mutants and Chloroplast Division

The first evidence for a genetic control of chloroplast division was the isolation of a set of *arc* (*accumulation and replication of chloroplasts*) mutants in Arabidopsis. These mutants were isolated through a screen of T-DNA- and EMS-mutagenized plants (Pyke and Leech, 1992; Pyke et al., 1994; Robertson et al., 1995; Robertson et al., 1996; Marrison et al., 1999) and show a range of defects in chloroplast division. Plants with the *arc1* mutation have an increase in the number of chloroplasts, while the size of those chloroplasts are reduced (Pyke and Leech, 1992). In contrast, the *arc2*, *arc3*, and *arc6* mutant plants have increased chloroplast size but decreased chloroplast number (Pyke and Leech, 1992; Pyke et al., 1994). The most severe chloroplast division mutant is the *arc6* mutant, which has one or two greatly enlarged chloroplasts in each mesophyll cell.

Ano
chlo
chlo
of the
1992
chlor
chlor
mesoj
mutat
increa
are no
Leech
divisio
are in:
acts or
gene 、
all hav
arch F
not pr
e _{stima} ,
douhJe [

Another interesting mutant is *arc5*, which also has reduced numbers of enlarged chloroplasts that are constricted in the center and seem to be arrested in the final stage of chloroplast division (Robertson et al., 1996).

Several reports describe a strong correlation in the *arc* mutants between the size of the mesophyll cell and the number of the chloroplasts they contain (Pyke and Leech, 1992; Pyke et al., 1994; Robertson et al., 1996; Marrison et al., 1999). As the number of chloroplasts in a cell decreases, the chloroplast size increases. This keeps the total chloroplast area within the cells constant. Compared to the 80 chloroplasts in a mature mesophyll cell of wild-type Arabidopsis plants, for instance, plants with the *arc6* mutation have one greatly enlarged chloroplast, while plants with the *arc1* mutation have increased numbers of smaller chloroplasts. These results suggest the *arc* gene products are not involved in maintaining the chloroplast volume during cell expansion (Pyke and Leech, 1992; Pyke et al., 1994; Robertson et al., 1996; Marrison et al., 1999).

Studies with the *arc* mutants have provided insights into the process of plastid division. Double mutants of *arc1* with *arc3*, *arc5*, *arc6*, or *arc11* have phenotypes that are intermediate between the two parental mutant plants, suggesting that the *ARC1* gene acts on a pathway independent of the other genes (Marrison et al., 1999). The *ARC6* gene seems to function upstream of *ARC3*, *ARC5*, and *ARC11* since the double mutants all have one or two enlarged chloroplasts in the mesophyll cells, similar to the parental *arc6* phenotype. The ARC3 protein is predicted to have a role in chloroplast division, but not proplastid division, since *arc3* mutant plants have about 16 chloroplasts, which is the estimated number of proplastids that differentiate into chloroplasts. Most of the *arc5* double mutant crosses resulted in chloroplasts that have a constricted phenotype and

		pro
		divi
		S
		Sequ
		origi
		chlor
		deser
- i		the o
		at the
		buse
		cill <u>O</u> L
		may H
		2003
		ARTI
		ances,
	1994) 	Simil
		1 01111. ⁰
		ւաար.
		membr
		inner e
		Irans),
		chi _{orr-}
		Protest

provided further support that the ARC5 gene affects the final stages of chloroplast division.

The gene encoding *ARC5* was identified and reported by Gao et al. (2003). Sequence analysis indicated the gene codes for a dynamin-like protein of eukaryotic origin, since no prokaryotic homologues were identified. These results indicate the chloroplast divison apparatus is composed of proteins of both prokaryotic and eukaryotic desent. Chloroplast import assays indicate ARC5 is located on the cytoplasmic surface of the outer chloroplast envelope, and studies with GFP-tagged ARC5 localized it to a ring at the division site (Gao et al., 2003). Although the exact function of ARC5 is unclear, based on studies with other dynamin proteins it may function in constriction of the chloroplast, possibly as a force generating protein (Sweitzer and Hinshaw, 1998), or it may be a molecular switch (Sever et al., 2000; Gao et al., 2003; Miyagishima et al., 2003).

Another recently identified protein that is required for chloroplast division was ARTEMIS (Fulgosi et al., 2002). In contrast to ARC5, ARTEMIS was of prokaryotic ancestry. When the cyanobacterial homologue is mutated, bacterial division is inhibited. Similarly, in Arabidopsis *ARTEMIS* mutants, chloroplast division is inhibited. Immunoelectron analysis, immunoblot analysis of isolated envelopes and thylakoid membranes, and envelope extraction experiments indicated ARTEMIS is an integral inner envelope membrane protein. ARTEMIS has some sequence similarity to translocases, which led the authors to suggest ARTEMIS may not have a direct role in chloroplast division but may influence the translocation of other chloroplast division proteins (Fulgosi et al., 2002).

A		
ct		
rir		
ide		
оп		
וח נ.		
One		
chlo		
filan		
prote		
typic.		
co-ch		
stabili		
FtsZ I		
		·. ·
ch] _{Ort}		
bjaut b		
Express		
Proteir		
compa:		
Protein		

The gene encoding ARC6 has also been recently identified (Vitha et al., in press). ARC6 is located in the inner envelope membrane and has a large domain that faces the chloroplast stroma. In addition, an ARC6-GFP fusion protein localizes to the division ring. Although ARC6 homologues are present in cyanobacteria, they have not been identified in other bacteria (Vitha et al., in press). This indicates ARC6 and its orthologues may be unique to photosynthetic organisms. Chloroplast division is inhibited in *arc6* mutants and in plants overexpressing an *ARC6* transgene, resulting in plants with one or two chloroplasts per mesophyll cell. Immunofluorescent microscopy of chloroplasts from the *arc6* plants shows that FtsZ1 and FtsZ2 proteins form short filaments, while plants overexpressing wild-type ARC6 have long FtsZ1 and FtsZ2 protein filaments. Also, sequence comparisons identified a J-domain in ARC6 that is typical of DnaJ co-chaperones. The microscopy results along with sequence similarity to co-chaperones indicates ARC6 might have a role, either directly or indirectly, in stabilizing FtsZ rings in chloroplasts (Vitha et al., in press).

FtsZ Function in Chloroplast Division

Identification of an FtsZ homologue in plants indicated the proteins involved in chloroplast division have a prokaryotic origin (Osteryoung and Vierling, 1995). The first plant FtsZ homologue was identified in Arabidopsis through a homology search of the Expressed Sequence Tag database dbEST (Newman et al., 1994) using the *E. coli* FtsZ protein as a query sequence. Of the known prokaryotic FtsZ proteins, sequence comparisons indicated the plant homologue is most closely related to cyanobacterial FtsZ proteins, which is consistent with chloroplasts being ancestors of a cyanobacterial

еſ
wl
ch
fol
chl
and
in r
out :
un.ti
chlar
is si-
100m
1998
reduc
each
Arahi
differ
divisi
Plant.
livee (
of the

I.

that A

endosymbiont (McFadden, 2001). The *FtsZ* gene is located in the eukaryotic nucleus, which suggests it was transferred from the cyanobacterial endosymbiont during chloroplast evolution (Osteryoung and Vierling, 1995). Chloroplast import assays followed by protease digestion demonstrated that the plant FtsZ protein is localized to the chloroplast stroma, where it is processed by removal of the transit peptide (Osteryoung and Vierling, 1995).

Proof that plant FtsZ proteins function in chloroplast division came from studies in moss and Arabidopsis. Strepp et al. (1998) used homologous recombination to knock out an *FtsZ* gene in the moss *Physcomitrella patens*, which resulted in cells with large, undivided chloroplasts. The large chloroplasts have diameters similar to wild-type chloroplasts, but their lengths were much longer. This lengthened chloroplast phenotype is similar to the filamentous phenotype observed in bacterial *FtsZ* mutants (Strepp et al., 1998). In Arabidopsis, antisense repression of either of two nuclear-encoded *FtsZ* genes reduces chloroplast numbers from 100 to as few as one greatly enlarged chloroplast in each cell (see Chapter 2: Osteryoung et al., 1998). Sequence comparisons of the two Arabidopsis FtsZ proteins with other plant FtsZ homologues indicate they belong to two different families, called FtsZ1 and FtsZ2. These results established that chloroplast division requires members of two FtsZ families.

To further investigate the functional properties of the FtsZ proteins, transgenic plants were constructed with transgenes that overexpress either *AtFtsZ1-1* or *AtFtsZ2-1* (see Chapter 3; Stokes et al., 2000). Immunoblot analyses and microscopic examination of the chloroplasts indicate increased AtFtsZ1-1 levels inhibits chloroplast division, and that AtFtsZ1-1 levels are directly correlated with the severity of the division defect.

Slig	
200	
othe	
used	
the c	
A:Ft	
et al.	
all th	
Yosh	
deter	
additt	
high (
incret	
l prot	
Ft、Zi	
stoict	
FtsZ I	
that th	
proten:	
ध ब. ₍₎	
show :	
ł	

Slight increases in AtFtsZ2-1 levels do not inhibit chloroplast division (Stokes et al., 2000). However, analysis of the genomic AtFtsZ2-1 sequence, and comparisons with other plant *FtsZ* sequences that had become available, indicated the *AtFtsZ2-1* cDNA used in the overexpression study was truncated, missing the amino terminus containing the chloroplast import signal. Therefore, I isolated a full-length cDNA clone for AtFtsZ2-1 as well as for a second Arabidopsis FtsZ2 homologue, AtFtsZ2-2 (McAndrew et al., 2001). Import assays using the full-length Arabidopsis FtsZ proteins indicate that all three are localized to the chloroplast stroma (McAndrew et al., 2001). Fujiwara and Yoshida (2001) independently isolated cDNA clones for AtFtsZ2-1 and AtFtsZ2-2 and determined that both proteins, tagged with GFP, are targeted to tobacco chloroplasts. In addition to localization studies, McAndrew et al. (2001) observed that overexpressing high levels of full-length AtFtsZ2-1 protein inhibits chloroplast division, whereas slight increases do not inhibit division. These results indicate that both AtFtsZ1-1 and AtFtsZ2-1 proteins have similar properties when their expression is increased. Overexpression of FtsZ1 or FtsZ2 proteins probably inhibits chloroplast division by disrupting a stoichiometric balance that is required among the division proteins.

FtsZ Rings in Chloroplasts

Using an FtsZ1 protein from *Pisum sativum* (pea), Gaikwad et al. (2000) showed that the plant FtsZ protein can polymerize, *in vitro*, to form multimers. The pea FtsZ protein can also complement a mutant *E. coli* FtsZ protein (Gaikwad et al., 2000). Mori et al. (Mori et al., 2001) used fluorescence microcopy and immunogold localization to show that FtsZ1 protein assembles into a ring structure in *Lilium longiflorum*

chlo
nng
whe
over
gerai
the n
the F
They
but ti
two c
Othe
(
form
form.
form, in ch: Other
form, in ch: Other filam,
form, in ch: Other filam, overe
form, in ch: Other filam, overc et al.,
form, in ch. Other filam, overe et al.,
form, in ch: Other filam; overe et al., AtFt,
form, in ch. Other filam; overc et al., AtFts2 chlor
form, in ch: Other filam; overe et al., AtFts; chlor role in

chloroplasts. In Arabidopsis plants, Vitha et al. (2001) observed both FtsZ1 and FtsZ2 rings that colocalize at the chloroplast midpoint. Colocalization is also observed in plants where chloroplast division is inhibited due to overexpression of *AtFtsZ1-1*, overexpression of *AtFtsZ2-1*, or mutations in *arc6*. In their studies on the PD rings in geranium, Kuroiwa et al. (2002) not only determined that the FtsZ ring is distinct from the inner and outer PD rings but that antibodies against FtsZ1 and FtsZ2 proteins react to the FtsZ ring, providing further evidence that the ring was composed of both proteins. These studies indicate that plant FtsZ proteins can polymerize, like the bacterial protein, but that chloroplast division involves a complex ring structure that is composed of at least two different FtsZ proteins.

Other Potential FtsZ Functions

Besides rings and filaments, FtsZ protein has also been observed in other complex formations in plant cells. One structure is a cytoskeleton-like network of FtsZ filaments in chloroplasts of *P. patens* overexpressing an FtsZ2 protein (Kiessling et al., 2000). Other researchers (Vitha et al., 2001) have also observed these networks of FtsZ filaments in Arabidopsis. However, the network is likely an artifact of FtsZ overexpression since it is only observed in plants overexpressing FtsZ protein (Kiessling et al., 2000; Fujiwara and Yoshida, 2001; Vitha et al., 2001).

During analysis of FtsZ-GFP fusion experiments, Vitha et al. (2001) noticed that AtFtsZ1-1 could be detected in "stromules", which are thin connections between two chloroplasts (Köhler et al., 1997). Plant FtsZ proteins, therefore, could have a structural role in the formation of these thin chloroplast-to-chloroplast connections. However,

A pro ma con Tan cell · · . asso prote requ be ur chior funct devei (mari ŧ., chlor. trans prote Expre 0<u>07.</u>]

AtFtsZ1-1 was only detected in the stromules of plants overexpressing the AtFtsZ1-1 protein and not in wild-type plants. Therefore, the localization of FtsZ to the stromules may also be an artifact of high AtFtsZ1-1 levels.

Another piece of evidence that FtsZ may function outside of plastid division comes from the isolation of a *L. longiflorum* cDNA from generative cells (Mori and Tanaka, 2000). Generative cells have no plastids and isolation of *FtsZ* cDNA from these cells indicated to the authors that the *FtsZ* genes might have functions that are not associated with plastid division. Since the experiments only detected *FtsZ* cDNA and not protein, the transcript may be produced but not translated. Further experiments will be required to determine if FtsZ protein is present in the generative cells that lack plastids.

FtsZ1 and FtsZ2 rings have also been observed in chloroplasts that do not seem to be undergoing division in mature leaf mesophyll cells (Vitha et al., 2001). If the chloroplasts are not dividing, do the FtsZ proteins have other, as yet unidentified function? In addition, the amount of FtsZ1 transcript increased in abundance during petal development and was higher in yellow and orange varieties of *Tegetes erecta* L. (marigold) than in white varieties (Moehs et al., 2000). Although the presence of chloroplasts in the petals, especially at the base, cannot be ruled out, the increase in FtsZ transcript as petals develop and in the yellow and orange marigold varieties suggests FtsZ proteins may have a function in chromoplasts.

Expression of *FtsZ* in Cyanobacteria

FtsZ expression in *Prochlorococcus*, a cyanobacterium, has been shown to be coordinated with cell division (Holtzendorff et al., 2001; Holtzendorff et al., 2002). Cell

div the Ņ and of s exp exp stud (Ho mR. in th divic been difte Expr ٠, El-S FLZ

coinc

ōh.e.

le_{áve},

division of *Prochlorococcus sp.* strain PCC 9511 cultures becomes synchronized when they are grown in a turbidostat with 12 hour day and night cycles. When the cultures are synchronized under these light conditions DNA replication occurs in the late afternoon and is followed by cell division at night (Holtzendorff et al., 2001). Immunoblot analysis of samples removed from the turbidostat over a three-day period indicates *FtsZ* expression is at a minimum during the day and maximum at night. Therefore, FtsZ expression seems to be correlated with the cell cycle. These results are supported by studies of naturally occurring synchronous *Prochlorococcus* populations in the Red Sea (Holtzendorff et al., 2002). In these natural populations, the amount of expressed *FtsZ* mRNA was measured by real-time reverse transcriptase-polymerase chain reaction. As in the previous experiment, *FtsZ* expression is maximal at night when the cells are dividing, and at a minimum during the day. Differential expression of FtsZ has also been observed in *Anabaena*, where vegetative cells express FtsZ, but terminally differentiated heterocysts do not (Kuhn et al., 2000).

Expression of *FtsZ* in Plants

A few studies have investigated the regulation of *FtsZ* gene expression in plants. El-Shami et al. (2002) used a synchronized culture of *Nicotiana tabacum* cells to study FtsZ expression during the cell cycle. They observed oscillations of *FtsZ* expression that coincide with the cell cycle. In another set of experiments, Gaikwad et al. (2000) observed that the highest levels of a *P. sativum FtsZ* gene is in young leaves while old leaves have significantly less *FtsZ* expression. These expression results, along with the

cyanobacterial studies, suggest FtsZ expression in plants correlates with the cell cycle, but there may also be other factors that affect expression.

Light and the growth hormone cytokinin are two other factors that may have a role in regulating FtsZ expression. When cultured spinach leaf disks were incubated with cytokinin not only was cell expansion induced, but chloroplast division was also induced (Possingham et al., 1988). Measurements of transcript amount indicate *FtsZ* expression is increased in excised cytokinin treated cucumber cotyledons, but not auxin treated cotyledons (Ullanat and Jayabaskaran, 2002). Also, Ullanat and Jayabaskaran (2002) observed increased *FtsZ* expression in light-treated cucumber cotyledons. Similarly, Gaikwad et al. (2000) noted that FtsZ expression increases when pea seedlings are exposed to light. Although informative, the plant studies only investigated the expression of a subset of the FtsZ genes encoded in these plants. In fact, only one FtsZl gene was analyzed in the *P. sativum* study (Gaikwad et al., 2000) even though FtsZ2 protein has been detected in peas (McAndrew et al., 2001). The N. tabacum study only investigated one of at least four *FtsZ1* and one of at least two *FtsZ2* genes (El-Shami et al., 2002). And the expression of only one of at least three *FtsZ2* genes was analyzed in the cucumber study (Ullanat and Jayabaskaran, 2002). Analysis of the expression of all FtsZ genes in a plant is required before it can be concluded that all *FtsZ* genes are regulated in the same manner. The expression pattern of the three Arabidopsis FtsZ genes is the subject of chapter 4.

	Mit
	end
	et al
	Mal
	chlo
	200h
	close
	whic
	al., 2
	in the
	(Beel
	mite
	Sa_{CC}
	Arab
· · · ·	gen _o ,
	funct:
	orgar.
	Veant
	dyn _{är} ,
	Se _{naky}
	highly

Mitochondrial Division and FtsZ

Mitochondria are thought to have originated from an α -proteobacterial endosymbiont, rather than a cyanobacterium as has been proposed for chloroplasts (Gray et al., 2001). Two FtsZ proteins have been described in the golden-brown alga Mallomonas splendens and the red alga Cyanidioschyzon merolae: one localizing to the chloroplast and the other localize to the mitochondria (Beech et al., 2000; Takahara et al., 2000). Sequence comparisons indicate that the mitrochondrial FtsZ proteins are more closely related to α -proteobacterial FtsZ proteins than to the cyanobacterial proteins, which is in accordance with the presumed mitochondrial endosymbiotic origin (Gray et al., 2001). Although FtsZ proteins that localized to the mitochondria have been identified in these algae and protists, they are the exception rather than the rule among eukaryotes (Beech and Gilson, 2000; Beech et al., 2000; Gilson and Beech, 2001). In fact, few mitochondria actually use FtsZ for organellar division. For example, the yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and plants like Arabidopsis thaliana do not encode an FtsZ protein in their nuclear or mitochondrial genomes (Goffeau et al., 1996; Osteryoung, 2000). These results indicate that FtsZ did function in mitochondrial division anciently, but was lost during the evolution of the organelle.

Instead of an FtsZ-based apparatus, mitochondrial division in plants, animals, and yeast involves systems where dynamins perform critical roles. In yeast, Dnm1 is a dynamin-like protein that is required for mitochondrial division (Bleazard et al., 1999; Sesaki and Jensen, 1999). In mutant *dnm1* cells, mitochondria aggregate into networks or highly branched structures. Dnm1 is localized to the cytoplasmic surface of the

mitochondria, either at the site of constriction in dividing mitochondria or at the ends, if the mitochondria have recently divided. These results indicate Dnm1 functions in mitochondrial division. In addition to Dnm1, several other proteins required for mitochondrial division have now been identified, including Fzo1, Mdv1p, and Fis1p (Bleazard et al., 1999; Sesaki and Jensen, 1999; Fekkes et al., 2000; Mozdy et al., 2000; Tieu and Nunnari, 2000; Cerveny et al., 2001; Tieu et al., 2002). Besides yeast, dynamin-like proteins involved in mitochonrial division have been identified in the protozoan *Dictyostelium discoideum* (Wienke et al., 1999), *Caenorhabditis elegans* (Labrousse et al., 1999), humans (Smirnova et al., 1998; Pitts et al., 1999), and Arabidopsis (Arimura and Tsutsumi, 2002). These results indicate that in fungi, animals, and plants dynamin-like proteins, and not FtsZ, are involved in mitochondrial division.

FtsZ Studies Reported Hereafter

The primary aim of the work described in this thesis is to better understand the function, expression, and phylogenetic relationships of the plant FtsZ proteins. Work by Osteryoung and Vierling (1995) reported an FtsZ homologue in Arabidopsis is imported into the chloroplast. From this result it was hypothesized that the Arabidopsis FtsZ protein is involved in chloroplast division. Chapter 2 describes the isolation of a second Arabidopsis FtsZ homologue. Sequence comparisons indicate that the two Arabidopsis FtsZ proteins are grouped into different families, FtsZ1 and FtsZ2. To investigate whether the two *FtsZ* genes are required for chloroplast division, plants expressing antisense constructs of each gene were analyzed. Microscopic examination of the mesophyll cells from these transgenic plants revealed that chloroplast numbers were

greatly reduced and enlarged. The results from this chapter indicate that members of both the FtsZ1 and FtsZ2 family are required for chloroplast division.

Further investigation into the functions and relationships of the FtsZ1 and FtsZ2 proteins are described in chapter 3. In bacteria, increasing FtsZ protein levels inhibited cell division (Bi and Lutkenhaus, 1990). We postulated that increased FtsZ1 or FtsZ2 protein levels in Arabidopsis plants would inhibit chloroplast division. To test this hypothesis, transgenic plants were prepared with constructs that overexpress the Arabidopsis *FtsZ* genes. Microscopic examinations in combination with immunoblot analysis indicated greatly increased AtFtsZ1-1 levels inhibit chloroplast division. In plants with the *AtFtsZ2-1* overexpressing transgene, only slight increases of AtFtsZ2-1 expression were observed and chloroplast division did not seem to be affected in these plants. Inhibition of chloroplast division was observed in some AtFtsZ2-1 gene was reduced, not increased.

Transgenic plants with constructs designed to overexpress the AtFtsZ2-2 gene have now been prepared and are described in the final section of chapter 3. However, the transgenic plants did not overexpress AtFtsZ2-2. Most transgenic plants had a wild-typelike chloroplast phenotype and immunoblot analysis indicated FtsZ protein levels were similar to those in wild-type plants. A few transgenic plants did have severely reduced chloroplast division, but instead of overexpressing the protein, the level of both AtFtsZ2-1 and AtFtsZ2-2 protein were reduced. This AtFtsZ2-2 overexpression data were not available at the time the AtFtsZ1-1 and AtFtsZ2-1 overexpression studies were published, but are now included at the end of chapter three.

The work in chapter 4 investigates the expression of the three Arabidopsis FtsZ genes. Because FtsZ1 and FtsZ2 proteins are both required for chloroplast division, we postulated that the three Arabidopsis FtsZ genes are expressed in tissues where chloroplasts are dividing. To investigate expression of the FtsZ genes in Arabidopsis, transgenic plants with the *GUS* reporter gene fused to the promoters for the Arabidopsis FtsZ genes were prepared. Histochemical staining of these plants indicated that both FtsZ2 genes are coordinately expressed in many tissues, especially in tissues where chloroplast division is common. Very little staining was observed in the plants with the *AtFtsZ1-1 promoter-GUS* fusion construct and evidence is discussed that there are sequences after the start codon that are required for AtFtsZ1-1 expression. However, measurements of RNA indicated all three Arabidopsis FtsZ genes are coordinately expressed at a constant stoichiometric ratio throughout leaf development, and this ratio may be important for chloroplast division.

Most bacteria encode a single *FtsZ* gene, while plants encode multiple homologues that belong to two families. In an effort to better define the differences between the FtsZ1 and FtsZ2 family members, phylogenetic and sequence comparisons were performed and the results are reported in chapter 5. Phylogenetic analysis of FtsZ protein or cDNA sequences supports the grouping of the plant proteins into the FtsZ1 and FtsZ2 families and indicates the two families diverged before the chlorophycean and charophycean green algae lineages split. Genetic structure comparison indicated that the intron positions are conserved within, but not between, the FtsZ1 and FtsZ2 family members. These results further support an early divergence of the two FtsZ families.

Finally, we determined the amino acid residues that are conserved among the members of the FtsZ1 and FtsZ2 families. The residues that are conserved in each family, but that differ between them, may define their functional differences and will guide future work to determine why plants have two FtsZ families.

CHAPTER 2

Osteryoung KW, Stokes KD, Rutherford SM, Percival AL, Lee WY (1998)

Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial *ftsZ*. Plant Cell **10**: 1991-2004
Abstract

The division of plastids is critical for viability in photosynthetic eukaryotes, but the mechanisms associated with this process are still poorly understood. We previously identified a nuclear gene from Arabidopsis encoding a chloroplastlocalized homolog of the bacterial cell division protein FtsZ, an essential cytoskeletal component of the prokaryotic cell division apparatus. Here, we report the identification of a second nuclear-encoded FtsZ-type protein from Arabidopsis that does not contain a chloroplast targeting sequence or other obvious sorting signals and is not imported into isolated chloroplasts, which strongly suggests that it is localized in the cytosol. We further demonstrate using antisense technology that inhibiting expression of either Arabidopsis *FtsZ* gene (AtFtsZI-1 or AtFtsZ2-1) in transgenic plants reduces the number of chloroplasts in mature leaf cells from 100 to one, indicating that both genes are essential for division of higher plant chloroplasts but that each plays a distinct role in the process. Analysis of currently available plant FtsZ sequences further suggests that two functionally divergent *FtsZ* gene families encoding differentially localized products participate in chloroplast division. Our results provide evidence that both chloroplastic and cytosolic forms of FtsZ are involved in chloroplast division in higher plants and imply that important differences exist between chloroplasts and prokaryotes with regard to the roles played by FtsZ proteins in the division process.

Introduction

A number of metabolic pathways crucial for plant growth and development are housed in plastids. Among the various types of plastids present in plants, chloroplasts have been studied most extensively because of their role in photosynthesis. However, plastids also synthesize various amino acids, lipids, and plant growth regulators and so are assumed to be essential for viability of all plant cells (Mullet, 1988). For plastid continuity to be maintained during cell division and for photosynthetic tissues to accumulate the high numbers of chloroplasts required for maximum photosynthetic productivity, plastids must divide. Most of the available information concerning the process of plastid division is based on morphological and ultrastructural observations of dividing chloroplasts. During division, chloroplasts exhibit a dumbbell-shaped appearance in which the division furrow becomes progressively narrower. It is therefore generally agreed that chloroplast division occurs by a binary fission mechanism involving constriction of the envelope membranes (Leech, 1976; Possingham et al., 1988; Whatley, 1988).

In plastids from a variety of higher plant and algal species, an electron-dense "plastid dividing ring" of unknown composition has been described in association with the zone of constriction. The electron-dense material often can be resolved into two concentric rings, one on the stromal face of the inner envelope and one on the cytosolic face of the outer envelope (Hashimoto, 1986; Oross and Possingham, 1989; Duckett and Ligrone, 1993; Kuroiwa et al., 1998). Little else is known regarding the structure of the division apparatus. Valuable information on the plasticity and genetic complexity of plastid division has been obtained from study of the *arc* mutations (for <u>a</u>ccumulation and

ĪG 1 Π 0 U di ho ftsi that forn tem appu Marj ŝite 199 • ev()] 1997 dira R₄₁₍ Muk

adl

<u>replication of chloroplasts</u>) in the model plant system Arabidopsis (Pyke and Leech, 1992, 1994; Robertson et al., 1996; Pyke, 1997). These mutations define at least seven nuclear genes important in the control of plastid number in higher plants. However, none of the *arc* loci has as yet been isolated, and until recently, the molecular events underlying chloroplast division in plants have remained entirely undefined.

A significant development in understanding the mechanistic basis for chloroplast division was the discovery that the nuclear genome of Arabidopsis encodes a eukaryotic homolog of the bacterial cell division protein FtsZ (Osteryoung and Vierling, 1995). The *ftsZ* gene was originally identified in a temperature-sensitive mutant of *Escherichia coli* that formed bacterial filaments at the restrictive temperature due to incomplete septum formation (Lutkenhaus et al., 1980), hence the designation fts (for <u>f</u>ilamenting <u>t</u>emperature-<u>s</u>ensitive). FtsZ is a rate-limiting cytoskeletal component of the cell division apparatus in prokaryotes (Ward Jr and Lutkenhaus, 1985; Baumann and Jackson, 1996; Margolin et al., 1996; Wang and Lutkenhaus, 1996), assembling at the nascent division site into a contractile ring just inside the cytoplasmic membrane (Bi and Lutkenhaus, 1991; Lutkenhaus and Addinall, 1997).

Recent studies have revealed that FtsZ is a structural homolog and possibly the evolutionary progenitor of the eukaryotic tubulins (Erickson, 1995; de Pereda et al., 1996; Erickson et al., 1996; Erickson, 1998; Löwe and Amos, 1998), and it can undergo dynamic GTP-dependent assembly into long polymers in vitro (de Boer et al., 1992; RayChaudhuri and Park, 1992; Mukherjee et al., 1993; Bramhill and Thompson, 1994; Mukherjee and Lutkenhaus, 1994; Bramhill, 1997; Yu and Margolin, 1997; Mukherjee and Lutkenhaus, 1998). In a previous study (Osteryoung and Vierling, 1995), we

h

ťu

P

tr,

M

identified an *FtsZ* gene (*AtFtsZ1-1*) from Arabidopsis whose putative product exhibited between 40 and 50% amino acid identity with most of its prokaryotic counterparts. We further demonstrated that the gene product is synthesized as a precursor in the cytosol and post-translationally targeted to the chloroplast by virtue of an N-terminal chloroplast transit peptide. These findings provided direct evidence that the chloroplast division machinery in photosynthetic eukaryotes evolved from the endosymbiotic ancestor of chloroplasts and led us to hypothesize that this chloroplast-localized FtsZ has a function analogous to that of FtsZ in prokaryotes, that is, that it is a key structural component of the chloroplast division apparatus in plants (Osteryoung and Vierling, 1995).

A role for a plant FtsZ in the division of chloroplasts was recently confirmed by Strepp et al. (1998), who reported that a targeted knockout of *PpFtsZ*, an *FtsZ* homolog from the nonvascular plant *Physcomitrella patens*, resulted in severe disruption of chloroplast division in that organism. The localization of the *PpFtsZ* gene product was not investigated; however, the finding that it differs from the previously published Arabidopsis FtsZ in that it lacks an N-terminal extension that could function as a chloroplast transit peptide is an interesting observation. In this report, we describe the isolation of an additional cDNA from Arabidopsis encoding an FtsZ protein that also lacks a potential chloroplast targeting sequence. In addition, we provide experimental evidence that this protein is not localized in the chloroplast and demonstrate that both the chloroplast-targeted and nontargeted forms of Arabidopsis FtsZ are critical for the division of higher plant chloroplasts. Finally, we propose that plant *FtsZ* genes can be grouped into two families whose products are localized in different subcelluar **Figure 1**. Alignment Showing Homology of AtFtsZ2-1 to AtFtsZ1-1 and Several Prokaryotic FtsZ Proteins.

Identical amino acids are boxed. Asterisks indicate residues conserved among tubulins and FtsZ proteins (Erickson, 1998); double underlining indicates the tubulin signature motif (de Boer et al., 1992); dots indicate gaps in the alignment. The alignment was performed using CLUSTAL W 1.7 (Thompson et al., 1994). GenBank accession numbers for the proteins in the alignment are as follows: *Bacillus subtilis*, M22630; *Staphylococcus aureus*, U06462; *Anabaena* sp, U14408; AtFtsZ1-1, U39877; AtFtsZ2-1, AF089738; *E. coli*, AE000119; and *Rhizobium meliloti*, L25440.

Figu

AtFtsZ2-1 Anabaena AtFts21-1 MAIIPLAQINELTISSSSSSFLTKSISSHSLHSSCICASSRISQFRGGFSKRRSDSTRSK 60 E. coli

 AtftsZ2-1
 NRLOIGKELTRGLGAGGNPEIGANAARESKEVIEEALYGSDM EVTAGYGGGTCIGAAFV144

 Anabaena
 SRLOIGSKLTRGLGAGGNPAIGSKAAPESKEVIEEALYGSDM EVTAGYGGGTCIGAAFV144

 Anabaena
 SRLOIGSKLTRGLGAGGNPAIGSKAAPESKEVIEEALYGSDM EVTAGYGGGTCIGAAFV144

 AtftsZ1-1
 NPLOIGELITRGLGIGGNPLIGEQAAPESKDAIANALLGSDLVFITAGYGGGTCIGAAFV178

 B. subtilis
 VKMOIGAKITRGLGAGANPEVCKKAAPESKEQIEEALAGADM EVTAGYGGTCIGAAFV168

 S. aureus
 SKI0IGSKLTRGLGAGANPEVCKKAAPESREQIEDAIGGADM EVTSGYGGTCIGAAFV116

 E. coli
 QTI0IGSGITKGLGAGANPEVGRNAADESREQIEDAIGGADM EVTSGYGGTCIGAAFV116

 E. coli
 QTI0IGSGITKGLGAGANPEVGRNAADESREQIEDAICGADM EVTSGYGGTCIGAAFV115

 R. meliloti
 RRI0IGAAIFEGIGAGSVEDIGNAAAGFSIDEIMDHLGCTHMCHVTAGYGGGTCIGAAFV118

***** * AtftsZ2-1IASIAKAMGI LIVSIATIPESEEGRETVOAQEGLASIRDNUTTINTENDKLLTAVSQS 204AnabaenaVAEVAKEMGA LIVSVUTRPEVEEGRERTSGAEQGIEGLKSRUTTINTENNKLLEVIPEQ 179AtftsZ1-1VADISKDAGY LIVSVUTRPEVEGRERTSGAEQGIEGLKSRUTTINTENNKLLEVIPEQ 238B. subtilisIADIAKDLGA LIVSVUTRPENEGRER ROLOAAGGISAMKEAN TITINTENDRILLIVDKN 176S. aureusVAKIAKEMGA LIVSVUTRPESEEGRER QUOAAGGISAMKEAN TITINTENDRILLIVDKN 176E. coliVAKIAKEMGA LIVSVUTRPESEGRER QUOAAGGISAMKEAN TITINTENDRILLIVDKN 176B. subtilisIADIAKDLGA LIVSVUTRPESEGRER QUOAAGGISAMKEAN TITINTENDRILLIVDKN 176S. aureusVAKIAKEMGA LIVSVUTRPESEGRER QUOAAGGISAMKEAN TITINTENDRILLIVDKN 176B. coliVAKIAKEMGA LIVSVUTRPESEGRER QUOAAAGVEAMKAAN TITINTENDRILLIVDKN 176B. coliVAKIAKEMGA LIVSVUTRPESEGRER QUOAAGVEAMKAAN TITINTENDRILLIVDKN 176B. coliVAKIAKEMGA LIVSVUTRPESEGRER ROTAAAGVEAMKAAN TITINTENDRILLIVDKN 176B. coliVAKIAKEMGA LIVSVUTRPESEGRER ROTAAAGVEAMKAAN TITINTENDRILLINDKN 176B. coliVAKIAKEMGA LIVSVUTRPESEGRER ROTAALGVEALAKAN TITINTENDRILLINDKN 176B. coliVAKIAKEMGA LIVSVUTRPESEGRER ROTAALGVEALAKAN TITINTENDRILLINDKN 178R. melilotiIAEAARRAGI LIVAVUTKPESESEGORRMOTAELGVERLRESATINTINTENDAK 178

 Atfts22-1
 TPVTEAENLADDIL RQGVRGISDITTIEGLVNVDFADV RALMANAGSSIMGIGTATGKSE
 264

 Anabaena
 TPVQBAERYADDVL RQGVQGISDITTIEGLVNVDFADV RALMANAGSSIMGIGTATGKSE
 239

 Atfts21-1
 TPLQDAELLADDVL RQGVQGISDITTIEGLVNVDFADV RAVMADAGSALMGIGVSSSKNE
 298

 B. subtilis
 TPMLPAEREADNVL RQGVQGISDITTIEGLVNVDFADV KAVMKDSGTAMIGVGVSSSKNE
 236

 S. aureus
 TPMLPAEREADNVL RQGVQGISDITATEGLINIDFADV KTIM SNKGSALMGIGVSSGENE
 236

 E. coli
 ISLLDAFGAANDVL KGAVQGISDITATEGLINN DFADV KTIM SNKGSALMGIGVSSGENE
 236

 R. meliloti
 TTFADAEMIADRVL KGAVQGISDITATEGLINN DFADV KTIM SNKGSALMGIGVSSGENE
 236

Atfts22-1ARDAALNALQSPLLD.IGIERALGIVWNITGGSDLTLEBVNAAAEVIYDLVDPTANLIHG323AnabaenaAREAAIANISSPLLE.CSIEGARGVVFNITGGSDLTLBVNAAAETIYEVVDPNANIIHG298Atfts21-1AEFAAECATLAPLIG.SSIQSALGVVYNITGGKDITLDVNRVSQVVTSLADPSANIIHG357B. subtilisAAEAAKAISSPLLE.AAIDGAIGVLMNITGGTNLSLBVQEAADIVASASDQDVNMIHG295S. aureusAVEAAKKAISSPLLE.TSIVGAIGVLMNITGGESLSLEBAQEAADIVQDAADEDVNMIHG295B. coliAEFAAEMISSPLLE.TSIVGAIGVLMNITGGESLSLEBAQEAADIVQDAADEDVNMIHG295R. melilotiAMIAAEAAIANPILDEVSMRGAAGVLVSISGGMDMTHBVDEAATRIREEVYDEADIVC298 AtFtsZ2-1 TSLDPDMNDELRVTVVATGIGMDK...RPEITLVTNKQVQQPVMDRYQQHGMAPLTQEQKP 353 **E**. coliPSSSFRESGSVEIPEFLKKKGSSRYPRV... 397 AtFtsZ2-1 Anabaena .TPLTNSPAPTPEPKEKSGLDIPDFLQRR...RPPKN... 379 AtFtsZ1-1ENKGMSLPHQKQSPSTISTK..SSSPRRLFF 433 B. subtilis EPQQQNTVSRHTSQPADDTLDIPTFLRNR.NKRG..... 382 S. aureus NAQATDSVSERTHTTKED. . DIPSFIRNR. EERRSRTRR 390 E. coli

Figure 1

ce d Re Fts NC. COI, ch. for rer j sub. hon EST chai Arat to is pom Poly यानु । bacte These compartments and suggest a model for the functional role of plant FtsZ proteins in the division of chloroplasts that takes all of these findings into account.

Results

FtsZ Proteins are Encoded by a Small Gene Family in Arabidopsis

We identified the first eukaryotic *FtsZ* gene from Arabiodpsis in the expressed sequence tag (EST) database (Newman et al., 1994) on the basis of its high degree of conservation with bacterial *ftsZ*. *Because the gene product was imported into chloroplasts, we originally referred to it as cpFtsZ. However, in keeping with guidelines for a standard nomenclature for plant genes (Lonsdale and Price, 1997), we have now renamed this gene <i>ARATH;FtsZ1-1*, which we henceforth designate as *AtFtsZ1-1*.

The existence of at least one additional nuclear *FtsZ* gene in Arabidopsis was subsequently indicated by the appearance in the database of a second EST with partial homology to both *AtFtsZ1-1* and prokaryotic *FtsZ* genes. Because the sequence of this EST suggested that the cDNA from which it was derived was rearranged, a polymerase chain reaction fragment containing the region of homology with *FtsZ* was amplified from Arabidopsis genomic DNA and used to screen an Arabidopsis cDNA library in an effort to isolate a nonrearranged clone. Three identical full-length cDNAs encoding a second homolog of Arabidopsis FtsZ were isolated. Comparisons between the encoded polypeptide, designated AtFtsZ2-1, and several other FtsZ proteins are shown in Figure 1 and Table 1. The amino acid sequence exhibits ~50% identity to both AtFtsZ1-1 and to bacterial FtsZ proteins and contains all of the features conserved among FtsZ proteins. These include the tubulin signature motif involved in GTP binding (de Boer et al., 1992;

Table 1. Percentage of Identity^a between the ArabidopsisFtsZ Proteins and Those of Several Prokaryotes

Species	AtFtsZ1-1 ^b	AtFtsZ2-1 ^b
Anabaena sp	64.5	62.3
Bacillus subtilis	54.1	60.5
Staphylococcus aureus	59.9	58.4
E. coli	51.0	51.0
Rhizobium meliloti	49.5	45.9

^aCalculated in pairwise comparisons by using the SIM local alignment algorithm (Huang and Miller, 1991) with the default parameters specified on the ExPASy Molecular Biology Server, Swiss Institute of Bioinformatics (http://expasy.hcuge.ch/sprot/sim-prot.html). Accession numbers are provided in the legend to Figure 1. ^bAtFtsZ1-1 and AtFtsZ2-1 share 59.4% identity.127 RayChaudhuri and Park, 1992; Mukherjee et al., 1993), other residues conserved among tubulins and FtsZ proteins, and a stretch near the N terminus that is highly conserved among all FtsZ proteins (Figure 1). Among the prokaryotic FtsZ sequences, AtFtsZ2-1 is most closely related to that of the cyanobacterial species *Anabaena* (Table 1). This suggests that like *AtFtsZ1-1*, *AtFtsZ2-1* probably had an endosymbiotic origin. However, a notable difference between the two Arabidopsis FtsZ proteins is that AtFtsZ1-1 contains a long extension at its N terminus relative to most prokaryotic FtsZ proteins that was shown previously to function as a chloroplast transit peptide (Osteryoung and Vierling, 1995). AtFtsZ2-1 lacks an N-terminal extension.

To investigate whether additional *FtsZ* genes exist in Arabidopsis, we probed DNA and RNA gel blots at moderate stringency with either the *AtFtsZ1-1* or *AtFtsZ2-1* cDNA. On both DNA and RNA gel blots, *AtFtsZ1-1* hybridized with a single band, as shown in Figures 2A and 2B (lanes 1), indicating that AtFtsZ1-1 in Arabidopsis is likely encoded by a single gene. In contrast, *AtFtsZ2-1* hybridized with two bands, which were distinct from those recognized by *AtFtsZ1-1* (lanes 2). These results indicate the existence of at least three genes encoding FtsZ proteins in Arabidopsis: one encoding AtFtsZ1-1, one encoding AtFtsZ2-1, and one encoding a protein that is closely related to AtFtsZ2-1. Recent sequence data from the Arabidopsis genome project have confirmed this conclusion (described below).

AtFtsZ2-1 Is Not Imported into Isolated Chloroplasts

To test whether AtFtsZ2-1 could be targeted to the chloroplast, we performed an in vitro chloroplast import experiment identical to that conducted previously for AtFtsZ1-

Figure 2. Hybridization Analysis of AtFtsZ1-1 and AtFtsZ2-1 in Arabidopsis.

Hybridizations with either the AtFtsZl-1 (1-1) cDNA (lanes 1) or the AtFtsZ2-1 (2-1) cDNA (lanes 2) were conducted at moderate stringency. Length markers in kilobases are indicated at right.

(A) DNA gel blot. Genomic DNA $(1.5 \,\mu g)$ was digested with BamHI, separated on a 0.7% agarose gel, and transferred to a nylon membrane for hybridization. The signal shown for the faster migrating fragment in lane 2 disappeared when the blot was washed at high stringency (data not shown).

(B) RNA gel blot. Poly(A)* RNA was isolated from leaf tissue, and 1.5 μg was separated on a 1.5% agarose gel containing formaldehyde and transferred to a nylon membrane for hybridization. 1 (Osteryoung and Vierling, 1995). The results are shown in Figure 3. A full-length radiolabeled AtFtsZ2-1 translation product was synthesized in vitro (Figure 3A, lane 1). The addition of isolated pea chloroplasts failed to effect import or proteolytic processing of the translation product (Figure 3A, lane 2). In a control reaction run at the same time, the AtFtsZ1-1 translation product was imported and processed (Figure 3B, lanes 1 and 2), and the import product could be protected from degradation during a postimport treatment with protease (Figure 3B, lane 3), as has been shown previously (Osteryoung and Vierling, 1995). Thus, the chloroplasts used for the experiment were import competent and intact.

These results indicate that AtFtsZ2-1 cannot be posttranslationally targeted to the chloroplast in vitro as is AtFtsZ1-1, which is consistent with the apparent absence of a transit peptide at its N terminus. Neither could AtFtsZ2-1 be imported into isolated yeast mitochondria (R. Jensen, personal communication). Analysis of the amino acid sequence by PSORT, a computer algorithm designed to identify potential intracellular sorting signals (Nakai and Kanehisa, 1992), did not predict other targeting sequences. We conclude from these findings that AtFtsZ2-1 is probably not localized in chloroplasts or mitochondria in vivo but is likely a cytosolic protein.

Expression of AtFtsZ1-1 or AtFtsZ2-1 Antisense Constructs Disrupts Chloroplast Division in Transgenic Arabidopsis

We previously hypothesized a role for AtFtsZ1-1 in chloroplast division based on its high degree of conservation with the bacterial FtsZs and the demonstration that it is localized in the chloroplast (Osteryoung and Vierling, 1995). To test whether AtFtsZ1-1

Figure 3. In Vitro Assay for Post-Translational Import of AtFtsZ2-1 to the Chloroplast.

In vitro transcription and translation reactions were performed to obtain full-length, radiolabeled translation products (lanes 1; full-length products indicated by diamonds). Chloroplasts isolated from pea seedlings were incubated with the translation products for 30 min and then reisolated by centrifugation through Percoll to remove unimported radioactivity (lanes 2). Reisolated chloroplasts were dissolved in SDS sample buffer, and import products were analyzed by SDS-PAGE and fluorography. Equal amounts of chloroplast extract, as determined by chlorophyll measurements, were loaded on the gel (Chen et al., 1994). Molecular mass standards are indicated at right in kilodaltons. Tr indicates translation products; Im indicates import products.

(A) Import assay for AtFtsZ2-1. No radioactivity was recovered with the chloroplasts after reisolation, indicating that none of the radiolabeled translation product was imported.

(B) Control import assay for AtFtsZ1-1. As shown previously (Osteryoung and Vierling, 1995), the radiolabeled precursor (lane 1) was processed upon import (lane 2), and the import product (asterisk) was protected from proteolysis by thermolysin (lane 3). Im+P indicates import product protected from proteolysis.

and AtFtsZ2-1 function as chloroplast division proteins, we conducted experiments to determine whether expression of antisense versions of either gene in transgenic Arabidopsis plants would inhibit chloroplast division, yielding plants with reduced numbers of chloroplasts. Antisense genes were constructed in the binary vector pART27 (Gleave, 1992), which incorporates the constitutive cauliflower mosaic virus 35S promoter to drive transgene expression as well as a selectable marker conferring plant resistance to kanamycin. Seeds were collected from vacuum-infiltrated (Bechtold et al., 1993; Bent et al., 1994) individuals, and transformants were selected by germination on kanamycin-containing media. Kanamycin-resistant (Kan^r) seedlings were transferred to soil for subsequent growth and analysis.

To analyze chloroplast number and size, tissue samples from the first fully expanded leaves from multiple transgenic lines were prepared to allow visualization of individual leaf mesophyll cells under the microscope (Pyke and Leech, 1991). In both the *AtFtsZ1-1* and *AtFtsZ2-1* antisense plants, a significant proportion of the Kan^r T₁ individuals exhibited drastically reduced numbers of chloroplasts. The phenotypes of these plants fell into two distinct classes, shown in Figure 4. The most commonly observed phenotypic class consisted of plants in which the mesophyll cells contained between one and three greatly enlarged chloroplasts, indicating that chloroplast division was severely disrupted. Indeed, the cells in most of these plants appeared to contain only a single enormous chloroplast (Figures 4A and 4C), compared with ~100 smaller chloroplasts in mature mesophyll cells from wild-type plants (Figures 4E and 4F). The other phenotypic class consisted of plants having between 10 and 30 chloroplasts of intermediate size in mature mesophyll cells (Figures 4B and 4D). Within an individual

Figure 4. Phenotypes of Transgenic Plants Expressing Antisense Constructs of AtFtsZ1-1 or AtFtsZ2-1.

Tissue from the first leaves of 23-day-old plants was prepared for visualization of individual mesophyll cells by using Nomarski interference contrast optics, as described by (Pyke and Leech, 1991).

(A) and (B) Cells from transgenic plants expressing the AtFtsZ1-1 antisense gene.

(C) and (D) Cells from transgenic plants expressing the AtFtsZ2-1 antisense gene.

(E) and (F) Cells from wild-type Arabidopsis.

Bars in (A) to (F) = $25 \mu m$.

Images in this dissertation are presented in color.

transformant, most of the mesophyll cells appeared to be affected to the same extent. Interestingly, a continuous series in numbers of chloroplasts was not observed among the antisense plants, as might be expected from variations in transgene expression (Hooykaas and Schilperoort, 1992). Of 184 T_1 plants showing reduced chloroplast numbers in the two antisense experiments, 165 had one to three chloroplasts and 19 had 10 to 30 chloroplasts.

In all plants exhibiting reduced numbers of chloroplasts, visual inspection suggested that the reduction in chloroplast number was closely compensated for by a corresponding increase in chloroplast size (Figure 4). This observation was confirmed by measurements of chloroplast plan area (Pyke and Leech, 1992) as a function of mesophyll cell size in several transgenic lines having the most severe phenotypes. The data shown in Figure 5 demonstrate that the relationship between total chloroplast plan area and cell size over a wide range of cell sizes was almost the same in the transgenic and wild-type plants. These data indicate that despite the presence of only a single chloroplast in most of the mesophyll cells, the total chloroplast compartment volume was conserved. Similar results have been reported for several of the *arc* mutants (Pyke and Leech, 1992).

DNA gel blot analysis on a subset of plants from both antisense experiments yielded distinct hybridization patterns, confirming that the reduced chloroplast numbers in different transgenic lines were the result of independent T-DNA insertion events (results not shown). Most of the transgenes segregated as single loci based on analysis of segregation for Kan^r in the T_2 and T_3 generations. The phenotypes have remained heritable through the T_4 generation, although in some lines a proportion of the Kan^r

Chloroplast plan areas were measured over a wide range of cell sizes in several AtFtsZl-1 (1-1, filled boxes) and AtFtsZ2-1 (2-1, filled triangles) antisense and wild-type (WT, open circles) plants. The slopes and R^2 values calculated from linear regressions are shown.

progeny in each generation have reverted to wild type with regard to chloroplast number, suggesting the possibility of transgene silencing in those individuals (Matzke and Matzke, 1998). Despite the greatly reduced numbers and enlarged sizes of the chloroplasts in the antisense plants, their outward appearance under the conditions used in this study did not differ noticeably from the wild type. Flowering, seed production, and seed viability appeared normal for all transgenic plants, although subsequent analysis may reveal small variations, as has been observed for *arc6*, which grows somewhat more slowly than the wild type (Pyke et al., 1994).

AtFtsZ1-1 and AtFtsZ2-1 Have Distinct Functions in Chloroplast Division

A significant result of the transgenic plant experiments was that chloroplast numbers were reduced in plants expressing antisense copies of either *AtFtsZ1-1* or *AtFtsZ2-1*. An important question arising from these findings was whether in each experiment this phenotype was due to downregulation of only the gene targeted for antisense suppression or whether expression of both genes was inhibited. To address this issue, we performed ribonuclease protection assays to investigate levels of *AtFtsZ1-1* and *AtFtsZ2-1* RNA in several transgenic lines showing the most severe phenotypes. In the *AtFtsZ1-1* antisense plants, the levels of *AtFtsZ1-1* RNA were reduced significantly below those present in the wild type, as shown in Figure 6A (lanes 1 to 3). However, *AtFtsZ2-1* RNA levels in these same plants were unaffected (Figure 6B, lanes 1 to 3). Similarly, in the *AtFtsZ2-1* antisense lines, only *AtFtsZ2-1* RNA levels were reduced (Figure 6B, lanes 4 and 5); *AtFtsZ1-1* RNA remained at wild-type levels (Figure 6A,

Figure 6. RNase Protection Assays of *AtFtsZ1-1* and *AtFtsZ2-1* Expression Levels in Independent Transgenic Antisense Lines.

Total RNA was isolated from 18-day-old plants exhibiting one to three large chloroplasts in mesophyll cells and hybridized with a radiolabeled RNA probe specific for either AtFtsZ1-1 (A) or AtFtsZ2-1 (B) RNA. After treatment with RNase, the protected fragments were separated on a sequencing gel and detected by autoradiography. Lanes 1, wild type (WT); lanes 2 and 3, two independent AtFtsZ1-1 antisense lines; and lanes 4 and 5, two independent AtFtsZ2-1 antisense lines. Arrows indicate positions of fully protected fragments.

(A) RNase protection of AtFtsZ1-1 RNA.

(B) RNase protection of *AtFtsZ2-1* RNA.

lanes 4 and 5). These results confirm that chloroplast division could be inhibited in the transgenic plants by downregulation of either *AtFtsZ1-1* or *AtFtsZ2-1*.

Taken together, the results from the antisense experiments establish that *AtFtsZ1-I* and *AtFtsZ2-1* are not functionally redundant with regard to their roles in chloroplast division. Expression of both genes is necessary to achieve wild-type numbers of mesophyll cell chloroplasts in Arabidopsis.

Two Nuclear *FtsZ* Gene Families in Plants

Recently, a candidate for the second AtFtsZ2 gene whose existence was predicted from hybridization studies (Figure 2) was revealed as a consequence of the Arabidopsis genome sequencing program. In a BLAST sequence similarity search (Altschul et al., 1990), we identified two independent genomic clones derived from different bacterial artificial chromosome (BAC) libraries that had overlapping end sequences with significant homology to AtFtsZ2-1. Further sequence analysis of these BAC clones yielded a partial amino acid sequence sharing 83% identity with AtFtsZ2-1 in the region of overlap, confirming the existence of a second gene closely related to AtFtsZ2-1 in Arabidopsis. We designate this newly identified gene as AtFtsZ2-2.

Six nuclear *FtsZ* genes from four plant species representing dicots, monocots, and lower plants, including the three Arabidopsis sequences described above, are currently documented in the database. Their deduced amino acid sequences are aligned in Figure 7A, and the percentages of amino acid and DNA identity in pairwise comparisons among them are presented in Figure 7B. Both AtFtsZ2-1 and AtFtsZ2-2 share >75% amino acid identity with PpFtsZ from the moss *P. patens. In* contrast, these three proteins share

Figure 7. Plant *FtsZ* Genes Can Be Grouped into Two Families on the Basis of Their Deduced Amino Acid Sequences.

GenBank accession numbers for the proteins used in these analyses are as follows: AtFtsZ2-1, AF089738; AtFtsZ2-2, B25544+B96663 (overlapping BAC clones); PpFt $s\mathbb{Z}$, AJ001586; AtFtsZ1-1, U39877; PsFtsZ, Y15383; and rice EST, C27863. (A) Alignment of the deduced amino acid sequences of six plant *FtsZ* genes currently represented in the databases, performed using CLUSTAL W 1.7 (Thompson et al., 1994). Identical residues within the FtsZ1 family are boxed in gray. Identical residues within the FtsZ2 family are boxed in black. AtFtsZ2-2 and the rice EST are partial sequences. Asterisks indicate identity among all plant FtsZ proteins shown at that position in the alignment. Dots represent gaps in the alignment.

(B) Amino acid and DNA sequence identities in pairwise comparisons among six plant FtsZ genes. Percentages of identity were calculated as described in Table 1. Darker shading indicates amino acid sequence comparisons. Lighter shading indicates DNA sequence comparisons. Boxed groupings at left and right, respectively, show identities within the FtsZ2 and FtsZ1 families. Asterisks indicate partial sequences. Dashes indicate partial sequences that could not be compared because they do not overlap.

A	AtFts21-1 PsFts2 AtFts22-2 AtFts22-1 PpFts2	THUGOTELING SPITCH SELLING SELLING SERVICES SELLING SE
	AtFts21-1 PsFts2 AtFts22-2 AtFts22-1 PpFts2	KOSCU JEINE IAAI IN VIGOO MANNEL SE TAYAN INTO ALA DIS 1118 S. M. ATTAYAN IN VIGOO MANNEL SE TAYAN INTO ALA DIS 119 LAITHETTAAI IN MI GOO AMANGHO SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO INGGO MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO ALA DIS 11979 MANNEL SE TAYAN INTO ALA DIS 11970 MANNEL SE TAYAN INTO
	AtFtsZ1-1 PsFtsZ AtFtsZ2-2 AtFtsZ2-1 PpFtsZ	NY LOCAL VIEWELLA CORTINA COMPARENTAL VIEWELLA CONTROL PARAGONAL DE LA DE 177 LA TRET L'INCOLTRA CONTROL COMPARENTAL CONTROL PARAGONAL DE LA DE 168 LA TRET CINCLINA DE LA DEL CONTROL DE LA DELLA DE LA DELLA DE LA DELLA DEL
	AtFtsZ1-1 PsFtsZ AtFtsZ2-1 PpFtsZ	NACIONAL TVAN SUPERIA EL ON PETER A L'UN TUTUTION L'UNE L'UNE VAL DOUESTVAN SUPERA L'UN TUTUTION L'UNE 228 L'EL FRANK L'UNE DEFENSIONE L'UNE DU TUTUTIONE L'UNE 228 L'EL ROUELLY EN DEFENSIONE L'UNE DU TUTUTIONE L'UNE 228
	Rice EST AtFtsZ1-1 PsFtsZ AtFtsZ2-1 PpFtsZ	CIBLICICOURSE AND
	Rice EST AtFtsZ1-1 PsFtsZ AtFtsZ2-1 PpFtsZ	RACHANSA PILO TRANSVILLE AND
	Rice EST AtFtsZ1-1 PsFtsZ AtFtsZ2-1 PpFtsZ	AVIDE
	AtFts21-1 PsFts2 AtFts22-1 PpFts2	ST& TISTKSSE: PACE 433 F& WISSEPPE 423 F 421 F106: CTPRV. 397 # 421 F106: CTPRV. 397

	AtFtsZ2-1	AtFtsZ2-2*	PpFtsZ	AtFtsZ1-1	PsFtsZ	EST *
AtFtsZ2-1		82	68	60	61	61
AtFtsZ2-2*	83		68	58	62	
PpFtsZ	77	76		59	59	58
AtFtsZ1-1	59	61	57		78	79
PsFtsZ	59	57	57	86		80
Rice EST*	57		57	91	90	
	AtFtsZ2-1 AtFtsZ2-2* PpFtsZ AtFtsZ1-1 PsFtsZ Rice EST*	AtFtsZ2-1 AtFtsZ2-2* 83 PpFtsZ 77 AtFtsZ1-1 PsFtsZ Rice EST* 57	AlFb3Z-1 AlFb3Z-2* Alfb3Z-2* 83 Alfb3Z-2* 83 PpFb2 77 Alfb3Z-1 59 Alfb3Z-5 59 Rice EST* 57	AlFb32-1 AlFb32-2* PpFb32 Alfb32-2* 83 68 Alfb32-2* 83 68 PpFb32 77 76 Alfb32-1 59 61 57 PaFb32 59 57 77 Rice EST* 57 - 57	Atfb22-1 Atfb22-2* Ppfb2 Atfb21-1 Atfb22-1 83 68 60 Atfb22-2* 83 68 58 Ppfb2 77 76 59 Atfb22-1 59 61 57 Pafb2 59 61 57 Rice EST* 57 - 57	AtFtsZ2-1 AtFtsZ2-2* PpFtsZ AtFtsZ2-1 ReftsZ AtftsZ2-2* 83 68 60 61 AtftsZ2-2* 83 68 58 62 PpFtsZ 77 76 59 59 AtFtsZ1-1 59 61 57 76 PsFtsZ 59 57 57 86 Rice EST* 57 - 57 91 90

Figure 7

 \leq 61% identity with AtFtsZ1-1. However, the proteins encoded by *PsFtsZ*, a full-length *FtsZ* cDNA from pea (*Pisum sativum*), and by a partial rice cDNA identified in the EST database (rice EST) share >85% identity with AtFtsZ1-1 (Figure 7B). Furthermore, like AtFtsZ1-1, PsFtsZ has an obvious N-terminal extension (Figure 7A), with all of the hallmarks of a chloroplast targeting sequence (Von Heijne et al., 1991), but neither PsFtsZ nor the partial rice protein exhibit >61% identity with either AtFtsZ2-1 or AtFtsZ2-2. Comparisons of DNA sequences among the six plant FtsZ sequences show similar trends (Figure 7B).

The comparative data shown in Figures 7A and 7B provide evidence that the existing plant FtsZ sequences can be classified into two distinct families on the basis of their overall amino acid sequence similarities. This proposal is strongly supported by the results of parsimony analysis for phylogenetic relatedness, shown in Figure 8. One FtsZ family appears to comprise precursor proteins with N-terminal extensions (Figure 7A) that are synthesized in the cytosol and post-translationally delivered to the chloroplasts where the transit peptide is processed. Based on sequence comparisons (Figures 7A and 7B) and parsimony analysis (Figure 8), AtFtsZ1-1 and PsFtsZ are both members of this family, as is the partial protein defined by the rice EST. We designate this group the FtsZ1 family. The other family, which we designate FtsZ2, includes AtFtsZ2-1, AtFtsZ2-2, and PpFtsZ. None of the FtsZ2 family members contains an obvious extension at the N terminus (Figure 7A) that would suggest localization in the chloroplasts, which is consistent with the inability of AtFtsZ2-1 to be imported into isolated chloroplasts in vitro (Figure 3). These data suggest that the FtsZ2 proteins so far identified are localized in the cytosol.

Figure 8. Phylogenetic Relationships among Plant FtsZ Proteins.

Weighted maximum parsimony analysis was performed with PAUP 3.1.1 (Swofford, 1998), using the exhaustive search option. Gaps were treated as missing. A single most parsimonious tree was produced. Horizontal branch lengths are proportional to amino acid step differences. Numbers above the horizontal branches indicate bootstrap confidence limits (>50%) supporting each clade of 1000 branch-and-bound replicates. The *Anabaena* sp (GenBank accession number Z31371) and *Synechocystis* sp (GenBank accession number D90906) sequences were defined as the outgroup.

Despite the apparent localization of the FtsZ1 and FtsZ2 family members in different subcellular compartments, our antisense experiments with transgenic plants clearly establish that members of both families, AtFtsZ1-1 and AtFtsZ2-1, play critical roles in the division of chloroplasts in Arabidopsis. Based on these findings, in conjunction with previous ultrastructural observations of plastid dividing rings both inside and outside the chloroplast (Kuroiwa et al., 1998), we propose that chloroplast division in higher plants is mediated by at least two functionally distinct forms of FtsZ: one represented by AtFtsZ1-1, which is localized inside the chloroplast and functions on the stromal surface of the inner envelope, and one represented by AtFtsZ2-1, which is localized in the cytosol and functions on the cytosolic surface of the outer envelope.

Discussion

Functional Divergence of FtsZ Genes in Plants

Our discovery that multiple *FtsZ* genes are present in the Arabidopsis nuclear genome provided the first clue that the FtsZ family in plants is functionally more complex than in prokaryotes. In prokaryotes, FtsZ is almost always encoded by a single gene (Lutkenhaus and Addinall, 1997). The amino acid sequence data derived from the four full-length cDNAs available from Arabidopsis (AtFtsZ1-1 and AtFtsZ2-1), pea (PsFtsZ), and moss (PpFtsZ) and the two partial sequences available from Arabidopsis (AtFtsZ2-2) and rice (rice EST) provide evidence that plant FtsZ proteins from evolutionarily divergent species can be grouped into two families—FtsZ1 and FtsZ2. Within each family, the proteins analyzed thus far share amino acid sequence identities ranging from 76 to 91%, whereas between families, the amino acid identities drop to \leq 61%. The antisense experiments demonstrating similar phenotypes in plants that underexpress members of either family reveal that both FtsZ families contribute to and are essential for chloroplast division in higher plants but indicate that they have unique functions in that process.

Further analysis suggests that the functional distinction between the two FtsZ families in plants is at least partially a consequence of their differential subcellular localizations. At least two members of the FtsZ1 family, AtFtsZ1-1 and PsFtsZ, possess extensions at their N termini when compared with most prokaryotic FtsZ proteins, whereas at least three members of the FtsZ2 family, AtFtsZ2-1, AtFtsZ2-2, and PpFtsZ, have no such extensions. This correlation is evident even though the parsimony analysis producing the two clades was based only on regions of overlap and therefore excluded the poorly conserved N termini. Consistent with the presence of N-terminal extensions in FtsZ1 proteins, our in vitro chloroplast import results indicated that AtFtsZ1-1 can be imported into isolated chloroplasts (Osteryoung and Vierling, 1995). In addition, the database entry for PsFtsZ (GenBank accession number Y15383) indicates that this protein also is localized in the chloroplast. In contrast, AtFtsZ2-1 lacks an N-terminal extension and cannot be imported into isolated chloroplasts, despite its demonstrated role in chloroplast division. PpFtsZ, which we have assigned to the FtsZ2 family, also lacks an N-terminal extension but has been shown to function in chloroplast division (Strepp et al., 1998). We have been unable to find convincing evidence in the literature of nuclearencoded chloroplast proteins that lack N-terminal targeting sequences. Therefore, although definitive localization of the plant FtsZ proteins awaits further experimentation, it seems probable that the FtsZ2 family members, which clearly function in chloroplast

division, are localized in the cytosol, whereas the FtsZ1 family members are localized in the chloroplast.

Concordance between Functional and Structural Studies

Many ultrastructural studies of chloroplast division have reported the appearance of an electron-dense ring, termed the plastid dividing ring, in the zone of constriction before separation of the daughter plastids (reviewed in Kuroiwa et al., 1998). A similar electron-dense ring in dividing bacteria has been shown to contain FtsZ (Bi and Lutkenhaus, 1991). In algae and land plants, the plastid dividing ring can be resolved into two concentric rings that appear to reside on opposite sides of the chloroplast envelope (Hashimoto, 1986; Oross and Possingham, 1989; Duckett and Ligrone, 1993; Kuroiwa et al., 1998). A simple model incorporating these cytological observations with our findings on the role of FtsZ proteins in the division of chloroplasts is depicted in Figure 9. The model predicts that chloroplast-localized FtsZ1 is a component of the inner plastid dividing ring, which is localized in a position analogous to that of the FtsZ ring in dividing bacteria. Although our in vitro import data indicated that newly imported AtFtsZ1-1 protein was in the soluble chloroplast fraction (Osteryoung and Vierling, 1995), we expect to find that during plastid division in vivo at least a portion of the protein is localized to the inner envelope surface. This is consistent with the finding that the FtsZ ring in bacteria is able to undergo assembly and disassembly in vivo (Addinall et al., 1997; Pogliano et al., 1997). With regard to the composition of the outer plastid dividing ring, several reports have described the appearance of fine filaments around the isthmus of dividing chloroplasts (Chida and Ueda, 1991; Ogawa et al., 1994; Kuroiwa et

Figure 9. A Tentative Model for FtsZ Localization and Function in Division of Higher Plant Chloroplasts.

The model predicts that (1) FtsZ1 family members are post-translationally targeted to the stroma, where they assemble at the surface of the inner chloroplast envelope to become a component of the inner plastid dividing ring; (2) FtsZ2 family members remain in the cytosol and assemble at the surface of the outer envelope to become a component of the outer plastid dividing ring; and (3) the two FtsZ containing rings function together on opposite sides of the chloroplast envelope to effect constriction of the organelle. Other molecules, such as actin, may also participate.

al., 1998), supporting the idea that cytoskeletal elements participate in chloroplast division at the cytosolic surface.

There has been some speculation that actin may be a component of the outer ring, although the evidence is inconclusive (Kuroiwa et al., 1998). Our model predicts that the outer ring is composed at least partially of FtsZ2, although actin could also be a component or may interact with it. The fact that both chloroplast and putative cytosolic forms of FtsZ are required for chloroplast division suggests that the two FtsZ-containing plastid dividing rings proposed in the model function together in some way to accomplish constriction of the chloroplast. Whether FtsZ proteins in plants or bacteria are themselves force generating or whether other molecules, such as motor proteins, provide the motive force necessary for division remains unknown. Experiments to test and further refine this model are under way.

Implications of Transgenic Plant Phenotypes for Developmental Patterns of Plastid Division

An interesting observation from our antisense experiments is that reduced expression of the *FtsZ* genes does not yield a continuum in the number of mesophyll cell chloroplasts present in different transgenic lines, as might be expected from variations in transgene expression (Hooykaas and Schilperoort, 1992). Rather, the phenotypes fall into two discrete classes in which the cells contain either one to three large chloroplasts or 10 to 30 intermediate-sized chloroplasts. Analysis of plastid division patterns in several species indicates that division of proplastids in the shoot apical meristem is sufficient to maintain the proplastid population at 10 to 20 per cell, whereas increased division of

developing or fully differentiated chloroplasts results in the proliferation of mesophyll cell chloroplasts that normally accompanies leaf maturation (Pyke, 1999). Consequently, we infer from the phenotypes of the transgenic plants that both proplastid and chloroplast division are inhibited in plants with the most severe phenotypes, whereas plants with intermediate phenotypes are apparently inhibited primarily in division of differentiated chloroplasts. Because similar phenotypes are observed among *AtFtsZ1-1* and *AtFtsZ2-1* antisense lines, these findings further imply that both of these genes function in proplastid as well as in chloroplast division. In addition, the lack of a continuum among the observed phenotypic classes suggests that threshold levels of FtsZ expression may be necessary for plastid division, possibly for complete formation of the plastid dividing rings, and that constriction of a few small plastids in the meristem and young leaf cells may require lower levels of FtsZ than does constriction of larger chloroplasts later in leaf development. These conjectures can be investigated by further analysis of the transgenic plants for FtsZ expression levels and plastid numbers in different cell types.

Different Division Mechanisms in Chloroplasts and Mitochondria?

It seems reasonable to suppose that chloroplasts and mitochondria, both of which presumably evolved from eubacterialike endosymbionts (Gray, 1989, 1993), would divide by similar mechanisms. Therefore, it is surprising that BLAST searches to date have failed to identify FtsZ homologs in the recently completed *Saccharomyces cerevisiae* nuclear or mitchondrial genomes or in the genomes of any other nonphotosynthetic eukaryote (K.W. Osteryoung, unpublished results). These findings suggest that the mechanism of mitochondrial division differs fundamentally from that of

chloroplasts and bacteria. Because *FtsZ* is an ancient gene family, predating the split between the eubacteria and archaebacteria (Margolin et al., 1996; Wang and Lutkenhaus, 1996), this observation further implies that an FtsZ-based division apparatus may have been present early in the evolution of mitochondria but was supplanted over evolutionary time by a different system. Perhaps studies of primitive eukaryotes will eventually reveal remnants of a prokaryotically derived mitochondrial division apparatus.

Conclusion

The data presented here confirm that the mechanism of chloroplast division in higher plants has its evolutionary origins in the mechanism of prokaryotic cell division, as was first suggested by the discovery of a chloroplast-localized form of FtsZ. Evidence already exists that some additional components of the chloroplast division machinery are also of prokaryotic origin. For example, homologs of *MinD*, a gene involved in the positioning of the FtsZ ring in bacteria (de Boer et al., 1991; de Boer et al., 1992), are present in the plastid genome of the unicellular green alga *Chlorella vulgaris* (Wakasugi et al., 1997) and the nuclear genome of Arabidopsis (K.W. Osteryoung and K.A. Pyke, unpublished data). However, the demonstration that multiple forms of FtsZ are involved in chloroplast division suggests that the prokaryotic division apparatus has been elaborated during the evolution of photosynthetic eukaryotes, resulting in a more complex machinery for chloroplast division in which constituents of both the chloroplast and cytosol cooperate to achieve constriction of the organelle. Further studies to firmly establish the subcellular localization of different FtsZ proteins in plants and define other components of the plastid division apparatus will no doubt reveal additional similarities

and differences between the mechanisms of chloroplast and prokaryotic cell division.

Methods

Plant Material

Arabidopsis thaliana ecotype Columbia was used for all experiments. Seeds were sown on Supersoil (Rod McLellan Co., South San Francisco, CA) potting mix and vermiculite (4:1 mix) and stratified at 4°C for 48 hr in the dark before germination. Plants were grown in controlled environment chambers at a relative humidity of 40% and provided daily with 16 hr of light (125 μ mol m⁻² sec⁻¹) at 20°C and 8 hr of dark at 18°C. The age of the plants was taken from the date the seeds were placed in the light.

cDNA Library Screening

Primers flanking the region of homology to *FtsZ* present in an expressed sequence tag (EST) (accession number Z48464) were used to amplify the corresponding region of Arabidopsis genomic DNA. The primers had the following sequences: foward primer, 5'-CCAGGCTATGAGAATGTCT- 3'; and reverse primer, 5'-

CTGTGACAAAGACCATATCTGAGC- 3[°]. The amplified fragment was gel purified, radiolabeled with ³²P-dATP by the random primer method (Feinberg and Vogelstein, 1983), and used as a probe to screen the λ PRL2 cDNA library (Newman et al., 1994) at high stringency (65°C, 0.2 × SSC [1 × SSC is 0.15 M NaCl, 0.015 M sodium citrate]). The library, obtained from the Arabidopsis Biological Resource Center (Columbus, OH; stock number CD4-7), was constructed in the λ ZipLox vector (Gibco BRL). Three strongly hybridizing clones were obtained. The pZL1 plasmids containing the hybridizing cDNAs were excised from the phage DNA according to the manufacturer's instructions. End sequencing of the inserts indicated that all three clones were identical. One clone was sequenced completely on both strands and designated AtFtsZ2-1.

Hybridization Analysis

The methods used for DNA extraction, RNA extraction, $poly(A)^+$ RNA isolation, and RNA and DNA gel blot analyses were performed as described previously (Osteryoung et al., 1993). For DNA gel blot analysis, 1.5 µg of genomic DNA was digested with BamHI and electrophoresed through a 0.7% agarose gel. Blots were washed in 0.2 × SSC at 46°C before being exposed to film at -80°C with an intensifying screen. For RNA gel blot analysis, 1.5 µg of poly(A)⁺ RNA isolated from rosette leaves of 3- to 4-week-old plants was separated on a 1.5% agarose gel. Blots were washed in 0.1 × SSC at 60°C and exposed to film for 1 week.

Chloroplast Import Assays

In vitro chloroplast import assays were performed for AtFtsZ1-1 and AtFtsZ2-1 as described by (Osteryoung and Vierling, 1995) and (Chen et al., 1994).

Construction of Antisense Genes and Plant Transformation

The plasmid SN506 (Norris et al., 1998), a derivative of the binary plant transformation vector pART27 (Gleave, 1992), was digested with XhoI and XbaI to remove the insert. The gel-purified vector fragment was ligated directionally to a 743-bp XbaI-AvaI fragment spanning nucleotides 132 to 875 of the *AtFtsZ1-1* cDNA or to a 1164-bp SpeI-AvaI fragment spanning nucleotides 126 to 1290 of the *AtFtsZ2-1* cDNA. The ligation products were amplified in *Escherichia coli*, and the resulting plasmids were purified and transferred to *Agrobacterium tumefaciens* GV3101 (Koncz and Schell, 1986). Transformation of Arabidopsis was done using the vacuum infiltration method (Bechtold et al., 1993; Bent et al., 1994).

Selection of Transgenic Plants

 T_1 seeds collected from vacuum-infiltrated plants were sown on Rockwool (GrodanHP; Agro Dynamics, East Brunswick, NJ) (Gibeaut et al., 1997), saturated with nutrient solution containing 100 mg/L kanamycin (Fisher Scientific, Hampton, NH), covered with a clear plastic lid, and stratified and grown as described above. Kanamycinresistant (Kan^r) seedlings were transplanted to soil at 14 days by cutting the surrounding Rockwool and placing both Rockwool and seedlings in soil. T₂ seed were collected from individual T₁ plants at maturity.

For analysis of transgene segregation ratios, T₂ or T₃ seed was surface sterilized, sown on plates containing 100 mg/L kanamycin in nutrient medium (4.3 g/L Murashige and Skoog salts [Gibco BRL], 1% sucrose, B5 vitamins [Gibco BRL], and 0.8% Phytagar [Gibco BRL]), incubated at 4°C for 2 days, moved to the light for germination, and grown as described above; resistance or sensitivity to kanamycin was scored 10 days later. Lines segregating as homozygous were used for subsequent studies.

Analysis of Transgenic Phenotypes by Microscopy

Analyses of the transgenic phenotypes were performed initially with 14-day-old
Kan^r T₁ seedlings and later with established homozygous lines at 14 and 23 days. The first leaf was removed with a razor blade and prepared for microscopy as described by Pyke and Leech (1991). A longitudinal strip was cut along the center of the leaf to ensure a representative sample of cell sizes. Fixed tissue samples were macerated on a microscope slide by using the blunt end of a scalpel, then suspended in a drop of 0.1 M Na₂–EDTA, pH 9, and covered with a coverslip. Samples were analyzed with Nomarski (Olympus Optical, Tokyo, Japan) differential interference contrast optics, using an Olympus (Olympus America, Melville, NY) BH-2 microscope. Images for analysis and publication were captured by computer using an Optronics (Goleta, CA) DEI-750 digital CCD camera and Adobe Premiere (Adobe Systems, San Jose, CA) imaging software.

Chloroplast numbers were counted by eye under the microscope. Mesophyll cell and chloroplast plan areas were analyzed from captured CCD images on a Macintoshtype (Power Computing Corporation, Round Rock, TX) computer using the NIH-Image public domain software (http://rsb.info.nih.gov/nih-image/). Total chloroplast plan area was taken as the product of chloroplast number and mean chloroplast size per cell (Pyke and Leech, 1994).

RNase Protection Assays

Total RNA was isolated from 18-day-old plants, as described previously (Logemann et al., 1987), using 1 g of leaf tissue from independent transgenic lines (T_3) or from the wild type. Only transgenic individuals exhibiting severely reduced numbers of chloroplasts were used for RNA isolation. After precipitation, the RNA pellet was resuspended in buffer (50 mM Mes, pH 7.0, and 2.5 mM magnesium acetate) and treated

for 15 min with 4 units of RNase-free DNase (Promega), then extracted with phenol– chloroform, and precipitated with sodium acetate and isopropanol. The final RNA pellet was washed with 70% ethanol and resuspended in 50 μ L of sterile H₂O.

Plasmids used for probe synthesis were constructed as follows. For the *AtFtsZ1-1* probe, the pZL1 plasmid (Gibco BRL) containing the *AtFtsZ1-1* cDNA (GenBank accession number U39877), which was provided by the Arabidopsis Biological Resource Center (stock number 105K17T7), was digested with ClaI and XbaI to remove from the insert all but the 88 nucleotides at the 5' end of the cDNA. The overhangs were filled in with the Klenow fragment of DNA polymerase I (Promega) and ligated back together. For the *AtFtsZ2-1* probe, the pZL1 plasmid containing the *AtFtsZ2-1* cDNA, obtained from the library screen described above, was digested with SpeI and XbaI to remove from the insert all but 129 nucleotides at the 5' end of the cDNA, and the ends were ligated back together.

For probe synthesis, the plasmids were linearized with SmaI upstream of the inserts. Radiolabeled antisense RNA was generated by in vitro transcription. The reactions contained 2 μ g of linearized plasmid, 500 2 μ M each of ATP, GTP, and CTP, 1 mM DTT, 20 units of RNasin (Promega), 2 μ L of 5 X transcription buffer (Promega), 2.5 μ L of ³²P-UTP (800 Ci/mmol; ICN, Costa Mesa, CA), and 18 units of SP6 RNA polymerase (Promega). After a 1-hr incubation at 37°C, the reactions were treated with 4 units of DNase (Promega) for 15 min. The probes were purified by electrophoresis through a 6% polyacrylamide gel. The full-length probes were excised from the gel and eluted by incubation in 50 μ L of elution buffer (Ambion Inc., Austin, TX) overnight at 37°C.

RNase protection assays were performed using the RPA II ribonuclease protection assay kit (Ambion, Inc.), as described in the Streamlined Procedure in the manual supplied by the manufacturer. Hybridizations were conducted overnight at 42°C by using 30 μ g of total RNA and ~5 × 10⁴ cpm of probe. The final RNA pellet was resuspended in 3 μ L of loading buffer and heated at 95°C for 2 min before being electrophoresed through a 6% polyacrylamide sequencing gel. The gel was transferred to filter paper and dried. The protected RNA fragments were detected by autoradiography on XAR-5 (Eastman Kodak Co., Rochester, NY) or Bio-Max (Eastman Kodak Co.) film for 2 days at -80°C by using an intensifying screen.

Identification of Other Plant FtsZ Genes and DNA Sequence Analysis

The additional plant FtsZ sequences used in Figure 7 were initially identified by using the BLAST sequence similarity search (Altschul et al., 1990). The partial sequence shown for AtFtsZ2-2 represents a contig formed by two bacterial artificial chromosome (BAC) end sequences (GenBank accession numbers B25544 and B96663) that share an overlap of ~85 nucleotides on opposite strands. Pairwise comparisons, multiple sequence alignments, and parsimony analysis (Swofford, 1998) were performed as indicated in the legends for Figures 1, 7, and 8.

Acknowledgments

We gratefully acknowledge Drs. Kevin Pyke, Stanislav Vitha, and Dean DellaPenna for critical reading of the manuscript, Dr. Rob Jensen for performing the mitochondrial import assays, Joe Gera for lending time and technical expertise with the RNase protection assays, Dr. Sergey Morzunov for advice on parsimony analysis, Kelly Gallaher for DNA sequencing, Elizabeth Tattersall for generous help in proofreading, and Caroline Idema, Jennifer Holder, and Nikole Steele for exceptional assistance in the care, processing, and analysis of the transgenic plants. This work was supported by grants to K.W.O. from the National Science Foundation (No. MCB-9604412) and the Nevada Agricultural Experiment Station (No. 1106-152- 032R).

Note Added In Proof

A recent update of the *FtsZ* sequence from *Physcomitrella patens* (Strepp et al., 1998; GenBank accession number AJ001586) indicates that the encoded protein contains an N-terminal extension. This additional sequence information does not influence the assignment of *PpFtsZ* to the *FtsZ2* gene family. However, the conclusion that N-terminal extensions are attributes of FtsZ1, but not FtsZ2, family members may be premature, or may apply only to higher plant FtsZ proteins.

CHAPTER 3

Stokes KD, McAndrew RS, Figueroa R, Vitha S, Osteryoung KW (2000) Chloroplast division and morphology are differentially affected by overexpression of *FtsZ1* and *FtsZ2* genes in *Arabidopsis*. Plant Physiol **124**: 1668-1677

Abstract

In higher plants, two nuclear gene families, *FtsZ1* and *FtsZ2*, encode homologues of the bacterial protein FtsZ, a key component of the prokaryotic cell division machinery. We previously demonstrated that members of both gene families are essential for plastid division, but are functionally distinct. To further explore differences between FtsZ1 and FtsZ2 proteins we investigated the phenotypes of transgenic plants overexpressing AtFtsZ1-1 or AtFtsZ2-1, Arabidopsis members of the FtsZ1 and FtsZ2 families, respectively. Increasing the level of AtFtsZ1-1 protein as little as three-fold inhibited chloroplast division. Plants with the most severe plastid division defects had 13- to 26fold increases in AtFtsZ1-1 levels over wild type, and some of these also exhibited a novel chloroplast morphology. Quantitative immunoblotting revealed a correlation between the degree of plastid division inhibition and the extent to which the AtFtsZ1-1 protein level was elevated. In contrast, expression of an AtFtsZ2-1 sense transgene had no obvious effect on plastid division or morphology, though AtFtsZ2-1 protein levels were elevated only slightly over wild-type levels. This may indicate that AtFtsZ2-1 accumulation is more tightly regulated than that of AtFtsZ1-1. Plants expressing the AtFtsZ2-1 transgene did accumulate a form of the protein smaller than those detected in wild-type plants. AtFtsZ2-1 levels were unaffected by increased or decreased accumulation of AtFtsZ1-1 and vice versa, suggesting that the levels of these two plastid division proteins are regulated independently. Taken together, our results provide additional evidence for the functional divergence of the *FtsZ1* and *FtsZ2* plant gene families.

Introduction

The first identified proteins of the chloroplast division machinery were homologues of the essential bacterial cell division protein FtsZ (Osteryoung and Vierling, 1995; Osteryoung et al., 1998; Strepp et al., 1998). In contrast with most bacterial genomes that contain only a single gene encoding FtsZ, the nuclear genome of Arabidopsis contains at least three *FtsZ* genes encoding members of two distinct protein families, FtsZ1 and FtsZ2. AtFtsZ1-1 and AtFtsZ2-1, members of the FtsZ1 and FtsZ2 families, respectively, have been shown to be essential for chloroplast division. When the level of either gene is diminished, chloroplast division is inhibited, yielding cells with as few as one very large chloroplast. One important difference between AtFtsZ1-1 and AtFtsZ2-1 is their predicted localization. AtFtsZ1-1 is targeted to the chloroplast, as is a closely related FtsZ protein from pea (Gaikwad et al., 2000), and is thought to be a component of a division ring that forms on the stromal side of the inner envelope membrane. AtFtsZ2-1, in contrast, lacks a chloroplast transit peptide, is not targeted to the chloroplast in vitro, and is hypothesized to be a constituent of a division ring that assembles on the cytoplasmic surface of the outer envelope membrane. The two rings together are postulated to coordinate chloroplast division (Osteryoung et al., 1998).

Bacterial FtsZ is a self-associating cytoskeletal GTPase evolutionarily and structurally related to the eukaryotic tubulins (de Boer et al., 1992; RayChaudhuri and Park, 1992; Mukherjee and Lutkenhaus, 1994; Erickson, 1997; Yu and Margolin, 1997; Löwe and Amos, 1998; Nogales et al., 1998; Nogales et al., 1998). Early in the bacterial division cycle, prior to the onset of cytokinesis, FtsZ assembles into a ring at the division plane that encircles the cell on the inner surface of the cytoplasmic membrane. At least

eight other essential proteins are then recruited to the division site and function to complete cytokinesis. Throughout this process, the FtsZ ring remains localized at the leading edge of the division septum (Bi and Lutkenhaus, 1991; Bramhill, 1997; Lutkenhaus and Addinall, 1997; Pogliano et al., 1997; Rothfield and Justice, 1997; Nanninga, 1998; Rothfield et al., 1999).

Overexpression of FtsZ in bacteria has yielded important insights into the properties of this protein. First, FtsZ appears to be rate limiting in the division process since slight overproduction of FtsZ increases cell division (Ward Jr and Lutkenhaus, 1985). This increased division results in the formation of small, inviable "minicells" that lack chromosomes due to the occurrence of divisions not only at midcell, but also near the cell poles. Second, high overexpression of FtsZ inhibits cell division and results in the formation of bacterial filaments (Ward Jr and Lutkenhaus, 1985). This appears to be due in part to a stoichiometric imbalance between FtsZ and other division proteins because the filamentation phenotype can be relieved by simultaneous overexpression of FtsA or ZipA, two other bacterial cell division proteins that interact with FtsZ directly and colocalize with FtsZ to the midcell (Ward Jr and Lutkenhaus, 1985; Wang and Gayda, 1990; Dai and Lutkenhaus, 1992; Hale and de Boer, 1997; Wang et al., 1997; Hale and de Boer, 1999; Mosyak et al., 2000).

Although chloroplast division involves some proteins homologous to components of the bacterial division machinery, division of higher plant chloroplasts differs from bacterial cell division since it requires the coordinated activities of at least two FtsZ proteins and does not involve cell wall ingrowth at the division site (Osteryoung and Pyke, 1998; Osteryoung et al., 1998). In the studies described here we sought to further

explore the functional differences between FtsZ1 and FtsZ2 proteins by analyzing the phenotypes of Arabidopsis plants overexpressing *AtFtsZ1-1* or *AtFtsZ2-1*. The results reveal additional parallels between chloroplast and bacterial cell division with regard to the behavior of FtsZ, but support a difference in the roles played by FtsZ1 and FtsZ2 in chloroplast division. The data also suggest that the levels of AtFtsZ1-1 and AtFtsZ2-1 are regulated independently in Arabidopsis, and that FtsZ1 may have an additional function inside the organelle in regulating chloroplast morphology.

Results

Production of Antibodies Specific for Recognition of AtFtsZ1-1 or AtFtsZ2-1

In preparation for investigating AtFtsZ1-1 and AtFtsZ2-1 protein levels in this and other studies we produced antipeptide antibodies specific for detection of these two polypeptides on immunoblots. The specificities and reactivities of the affinity-purified antibodies, designated 1-1A and 2-1A, respectively, were analyzed in a series of immunoblotting and competition binding assays (Figure 1). Each antibody was highly selective for its target protein. In Arabidopsis leaf extracts the 1-1A antibodies reacted with a single polypeptide of 40 kD (Figure 1, A, lanes 1 and 3 and B, lanes 1 and 5), whereas the 2-1A antibodies reacted primarily with a polypeptide of 46 kD, though one of 45 kD was also detected (Figure 1, A, lanes 4 and 5 and B, lanes 2 and 4). In competition binding assays, immunoreactivity of the 1-1A antibody with the 40-kD protein was prevented when the antibodies were preincubated with recombinant AtFtsZ1-1 protein (Figure 1A, lane 2), but not with recombinant AtFtsZ2-1 protein (Figure 1A, lane 3). Likewise, immunoreactivity of the 2-1A antibodies with the 46- and 45- kD

Figure 1. Specificity of AtFtsZ antipeptide antibodies.

A, Immunoblots of proteins isolated from wild-type Arabidopsis leaf extracts were probed with 1-1A (lanes 1-3) or 2-1A (lanes 4-6) antibodies raised against peptide from AtFtsZ1-1 or AtFtsZ2-1, respectively. Antibodies were preincubated with purified, recombinant AtFtsZ1-1 protein (lanes 2 and 5) or AtFtsZ2-1 protein (lanes 3 and 6). B, Immunoblot of proteins isolated from leaf extracts of wild-type (lanes 1 and 2), AtFtsZ1-I antisense (lanes 3 and 4), or AtFtsZ2-I antisense (lanes 5 and 6) plants. Blots were probed with either 1-1A (lanes 1, 3, and 5) or 2-1A (lanes 2, 4, and 6) antibodies. The 46- and 40-kD polypeptides are indicated by markers. Equivalent volumes of plant extracts were loaded in each lane.

polypeptides was blocked when the antibodies were preincubated with recombinant AtFtsZ2-1 protein (Figure 1A, lane 6), but not with AtFtsZ1-1 protein (Figure 1A, lane 5). Furthermore, the 1-1A antibodies detected the 40-kD polypeptide in extracts from wild-type plants and transgenic plants expressing an AtFtsZ2-1 antisense construct (Figure 1B, lanes 1 and 5), but not in plants expressing an antisense AtFtsZ1-1 construct (Figure 1B, lane 3). Conversely, the 2-1A antibodies detected the 46- and 45-kD polypeptides in extracts from wild-type plants and transgenic plants expressing an AtFtsZ1-1 antisense construct (Figure 1B, lanes 2 and 4), but not in plants expressing an antisense AtFtsZ2-1 construct (Figure 1B, lane 6). Neither antibody cross-reacted with prokaryotic FtsZ proteins in bacterial extracts (not shown). From these results, we conclude that the 1-1A antibodies specifically recognize AtFtsZ1-1, which migrates at 40 kD, whereas the 2-1A antibodies specifically recognize either two distinct forms of AtFtsZ2-1, which migrate at 46 and 45 kD, or AtFtsZ2-1 and a closely related polypeptide. The absence of both bands in the AtFtsZ2-1 antisense lines (Figure 1B, lane 6) is most consistent with the former possibility.

Overproduction of AtFtsZ1-1 Inhibits Chloroplast Division in Transgenic

Arabidopsis

AtFtsZ1-1 was overexpressed in Arabidopsis under the control of the cauliflower mosaic virus 35S (35S) promoter in the vector pART27 (Gleave, 1992). The kanamycinresistant (kan^r) transgenic plant lines used in this report were confirmed to be independent transformants by Southern-blot analysis (data not shown). With the exception of a slight twist in some of the leaves, all kan^r plants exhibited normal growth

Mesophyll cells are shown from the first leaves of 23-d-old plants transformed with the empty pART27 vector (A), the *AtFtsZ1-1* sense transgene (B-E), or the *AtFtsZ2-1* sense transgene (F). Tissue was prepared for imaging with differential interference contrast optics using methods described previously (Pyke and Leech, 1991). Bar=25 μ m in all figures. A three-dimensional rotating reconstruction of cells with phenotypes similar to those shown in C and D can be found in a video supplement at www.plantphysiol.org.

and development. However, microscopic examination of mesophyll cells revealed distinct phenotypes in plants overexpressing AtFtsZ1-1 when compared with wild-type plants of the Columbia ecotype, which typically contain 80-100 chloroplasts in fully expanded mesophyll cells (Osteryoung et al., 1998), or to control plants transformed with the empty pART27 vector (Figure 2A). The phenotypes of the transgenic plants consistently fell into three categories defined by chloroplast number and size. Transgenic plants were classified as "wild-type-like" if the size and number of chloroplasts in mesophyll cells were similar to those in cells from wild-type or vector controls. Plants with 15 to 30 enlarged chloroplasts per cell were classified as "intermediate" (Figure 2B), and those with five or fewer very large chloroplasts per cell were termed "severe" (Figure 2C). Most plants with severe phenotypes contained only one or two chloroplasts per cell and these organelles usually appeared flattened, filling the thin layer of cytoplasm surrounding the vacuole. Despite the enlarged size, chloroplast ultrastructure consistently appeared normal (data not shown). Similar "severe" phenotypes have been described for the Arabidopsis plastid division mutant arc6 (Pyke and Leech, 1994), for plants transformed with antisense AtFtsZl-1 or AtFtsZ2-1 transgenes (Osteryoung et al., 1998), and for *FtsZ* knockout mutants in the moss *Physcomitrella patens* (Strepp et al., 1998). The proportion of T_1 individuals exhibiting wild-type-like, intermediate, and severe phenotypes were 19%, 39%, and 42%, respectively (Table 1). Therefore, over 80% of the kan^r plants expressing the AtFtsZ1-1 sense transgene displayed defects in chloroplast division.

	Percentage of Transgenic Plants ^a						
Phenotype	AtFtsZ1-1	AtFtsZ2-1					
Wild-type-like	19	72					
Intermediate	39	14					
Severe	42	14					

Table 1. Phenotypic distribution of transgenic T_1 plants.

^aTotal number of plants analyzed: AtFtsZ1-1, 129; AtFtsZ2-1,

The Severity of Chloroplast Division Inhibition Is Proportional to AtFtsZ1-1 Protein Level

AtFtsZ1-1 protein levels in T₃ kan^r plants representing wild-type-like, intermediate, and severe phenotypes were investigated by immunoblot analysis. Proteins in leaf homogenates were separated by SDS-PAGE, transferred to nitrocellulose, and probed with the affinity-purified AtFtsZ1-1 antipeptide antibodies. An immunoreactive 40-kD polypeptide was detected that varied in amount among different transgenic lines (Figure 3A, lanes 5-10), but comigrated with authentic AtFtsZ1-1 from wild-type and empty-vector control extracts (Figure 3A, lanes 1-4). These results indicate that most of the AtFtsZ1-1 protein in the overexpression lines was properly targeted to the chloroplast and processed. However, a slower-migrating immunoreactive polypeptide of 72 kD was also detected in plants with increased levels of the 40-kD polypeptide (Figure 3A, lanes 7-10). Competition binding assays have shown that this polypeptide does contain AtFtsZ1-1 (not shown), and may represent a non-dissociated form of the protein, possibly a dimer. A similarly migrating polypeptide is occasionally observed in wild-type plants as well (data not shown). The increased levels of the 72-kD polypeptide in overexpression lines with high AtFtsZ1-1 levels may be related to the ability of FtsZ proteins to form dimers and multimers in a concentration-dependent fashion (Di Lallo et al., 1999; Sossong et al., 1999; Rivas et al., 2000; White et al., 2000). An FtsZ1 homologue from pea has also been shown to form multimers in vitro (Gaikwad et al., 2000).

Visual inspection of immunoblots from the AtFtsZ1-1 overexpression lines suggested a correlation between the level of AtFtsZ1-1 accumulation and the severity of

Figure 3. Immunoblot analysis of plant extracts overexpressing AtFtsZ1-1.

Proteins in extracts from 23-d-old transgenic plants were separated by SDS-PAGE, transferred to nitrocellulose, and probed with antipeptide antibodies raised against AtFtsZ1-1 (A) or AtFtsZ2-1 (B). Lane 1, Empty vector control (E); lanes 2 through 4, wild type (C); lanes 5 through 10, transgenic plants with wild-type-like (W, lanes 5 and 6), intermediate (I, lane 7), or severe (S, lanes 8-10) phenotypes. Equal loading of all samples was confirmed by staining the membranes with ponceau S (data not shown).

chloroplast division defect. In extracts from plants with wild-type-like (Figure 3A, lane 5 and 6) and intermediate (Figure 3A, lane 7) phenotypes, the levels of the 40-kD AtFtsZ1-1 polypeptide were similar to, or slightly higher than, those seen in extracts from the vector controls (Figure 3A, lane 1) and non-transformed wild-type plants (Figure 3A, lanes 2-4), whereas in plants with severe phenotypes (Figure 3A, lanes 8-10), AtFtsZ1-1 protein levels were noticeably elevated. To further analyze this relationship, the level of AtFtsZ1-1 in the transgenic plants relative to that in control plants was quantified by immunoblotting (Figure 4). For this purpose, a calibration curve was constructed from densitometric analysis of the 40-kD polypeptide in four lanes loaded with increasing volumes of whole leaf extract from control plants transformed with the empty vector (Figure 4, lanes 1-4). For transgenic extracts, the volumes analyzed were adjusted to maintain protein levels within the linear range of the standard curve (Figure 4, lanes 5-13). The relative level of the 40-kD AtFtsZ1-1 polypeptide in each sample was then calculated from the standard curve based on the densitometry readings and sample volume. The calculated protein levels in extracts from three separate non-transformed wild-type plants (Figure 4, lanes 5-7) were comparable with those from empty vector control plants, indicating that the increased protein levels observed in the transgenic plants were due to expression of the AtFtsZ1-1 transgene and not to the vector. In transgenic plants classified as wild-type-like, the relative level of AtFtsZ1-1 protein was similar to the control level or elevated no more than two-fold (Figure 4, lanes 8 and 9). Protein levels between three-fold (Figure 4, lane 10) and 6-fold (not shown) above control levels were measured in plants with an intermediate chloroplast phenotype. Although data from only a single intermediate line are shown in Figures 3 and 4, two

	Empty Vector Control			Control			Transgenic AtFtsZ1-1						
Lane				WT		WTL		INT	SEVERE				
	1	2	3	4	5	6	7	8	9	10	11	12	13
Vol. Loaded (µL)	4	12	22	32	15	15	15	15	15	5	0.8	0.8	0.8
AtFtsZ1-1 (40 kD)			-	-	-		-		-				
Relative AtFtsZ1-1 Level	1		1	1	1	2	1	3	26	13	21		

Figure 4. Relative levels of the 40-kD AtFtsZ1-1 polypeptide in plants expressing the *AtFtsZ1-1* transgene.

Densitometry readings from an immunoblot loaded with increasing amounts of extract from an empty vector control plant (lanes 1-4) were used to construct a standard concentration curve for AtFtsZ1-1. AtFtsZ1-1 levels in the other plant extracts (lanes 5-13), all loaded so that the densitometry reading produced by the 40-kD AtFtsZ1-1 polypeptide on immunoblots fell within the linear range of the standard curve, were then calculated, taking into account the volume loaded. The volume loaded, signal produced on immunoblots, and calculated level of AtFtsZ1-1 relative to that in the empty-vector controls are shown for three Columbia wild type plants (lanes 5-7), and transgenic plants with wild-type-like (WTL, lanes 8 and 9), intermediate (INT, lane 10), or severe (SEVERE, lanes 11-13) phenotypes. additional lines with intermediate phenotypes also had approximately 3-fold more AtFtsZ1-1 than controls, whereas one line had 6-fold more (not shown). Plants exhibiting the most severe phenotypes had AtFtsZ1-1 levels ranging from 13- to 26-fold over control levels (Figures 3A, lanes 8-10, and 4, lanes 11-13). Our data indicate a correlation between the level of AtFtsZ1-1 and the severity of chloroplast division inhibition. However, we cannot rule out the possibility that the observed division defects resulted from accumulation of the 72-kD form of AtFtsZ1-1 rather than from overproduction of the protein per se. This 72-kD band was not quantified, but its levels in the transgenic lines appeared to correlate with those of the 40-kD polypeptide (Figure 3, lanes7-10, and data not shown).

AtFtsZ1-1 Overexpression Produces a Novel Chloroplast Morphology in Some Transgenic Plants

In addition to the phenotypes described above, an interesting and unusual phenotype was encountered in three independent AtFtsZ1-1 overexpression lines with severe phenotypes. A small number of cells in these plants contained chloroplasts that appeared long and narrow, giving the impression of worms or noodles (Figure 2, D and E). Two of these plant lines had only a few noodle-like chloroplasts per cell (Figure 2D), whereas one line had about 15 (Figure 2E). The diameter of these chloroplasts varied somewhat, but was comparable to that of wild-type chloroplasts. The length, however, was many times longer than in wild type, and the chloroplasts meandered in unique patterns around the cytoplasm of the cell. Only a small proportion of the cells in these plants displayed the noodle-like phenotype; the vast majority of cells exhibited a typically

severe chloroplast morphology. The noodle-shaped chloroplasts were only observed in transgenic plants with high levels of AtFtsZ1-1 protein, including those represented in lanes 8 through 10 of Figure 3, but have not been found in all such lines.

Slight Overexpression of AtFtsZ2-1 Does Not Disrupt Chloroplast Division

The effect of AtFtsZ2-1 overexpression in transgenic plants was also investigated. The T₁ generation of kan^r plants transformed with the AtFtsZ2-1 transgene contained cells with wild-type-like, intermediate, and severe chloroplast phenotypes, similar to those described for the AtFtsZ1-1 transgenic plants, and had no obvious abnormalities in growth or development. However, in contrast to the AtFtsZ1-1 overexpression lines, 72% of the AtFtsZ2-1 kan^r T₁ individuals exhibited a wild-type-like phenotype (Figure 2F), whereas plants with intermediate and severe phenotypes each constituted only 14% of the total (Table 1). Furthermore, in subsequent generations the lines with intermediate and severe phenotypes reverted to the wild-type-like phenotype. The extent of this reversion was such that only one transgenic line retained reduced chloroplast numbers by the T₃ generation. Because of this trend, T₁ and T₃ plants were studied further.

AtFtsZ2-1 protein levels were analyzed in whole leaf extracts from T_1 and T_3 plants by immunoblotting. In extracts from transgenic plants exhibiting wild-type-like phenotypes (Figure 5A, lanes 2, 3, 6-9, 11, 13, and 16-18), the same 46- and 45-kD polypeptides present in wild-type and empty-vector control plants (Figure 5A, lanes 1 and 2) were detected. The levels of the 46-kD polypeptide in these lines were comparable with control levels, although some extracts exhibited a slight increase (Figure 5A, lanes 4 and 8). We have observed that the intensity of the 45-kD band varies

Figure 5. Immunoblot analysis of transgenic plant extracts expressing the *AtFtsZ2-1* transgene.

Proteins in extracts from 23-d-old transgenic plants were separated by SDS-PAGE, transferred to nitrocellulose, and probed with antipeptide antibodies raised against AtFtsZ2-1 (A) or AtFtsZ1-1 (B). Lane 1, Empty vector control (E); lane 2, wild type (C); lanes 3 through 18, T_1 or T_3 transgenic plants with wild-type-like (W, lanes, 3, 4, 6-9, 11, 13, 16-18), intermediate (I, lanes 10 and 14), or severe (S, lanes 5 and 15) phenotypes. Equal loading of all samples was confirmed by staining the membranes with ponceau S (data not shown).

considerably among individuals in wild type (not shown), and the levels of the 45-kD protein in the transgenic plants did not appear to vary outside this range. The more obvious result of AtFtsZ2-1 overexpression was the accumulation of a 44-kD polypeptide, detected in all kan^r plants with a wild-type-like phenotype, but not detected in any of the controls. Accumulation of this polypeptide was not correlated with any noticeable plastid division defect. In contrast, all transgenic lines with intermediate or severe phenotypes (Figure 5A, lanes 5, 10, 12, and 14), including the line retaining a severe phenotype into the T₃ generation (lane 15), had reduced levels of the 46- and 45- kD species present in controls, and did not accumulate the 44-kD polypeptide present in lines with the wild-type-like phenotypes. These data suggest that inhibition of chloroplast division in the *AtFtsZ2-1*.

AtFtsZ1-1 and AtFtsZ2-1 Accumulation Are Regulated Independently of One Another

To learn whether overproduction of AtFtsZ1-1 was accompanied by a change in AtFtsZ2-1 levels or vice versa, the levels of both proteins in extracts from each set of transgenic plants were analyzed on duplicate immunoblots. In all *AtFtsZ1-1* overexpression lines analyzed, AtFtsZ2-1 protein remained at wild-type levels (Figure 3B). In a converse manner, the level of AtFtsZ1-1 protein in the *AtFtsZ2-1* transgenic lines was unaffected by the level of AtFtsZ2-1 protein (Figure 5B). Further, antisense repression of *AtFtsZ1-1*, though reducing AtFtsZ1-1 protein to nearly undetectable levels (Figure 1B, lane 3) and severely inhibiting chloroplast division (Osteryoung et al., 1998),

had no affect on accumulation of AtFtsZ2-1 (Figure 1B, lane 4), or vice versa (Figure 1B, lanes 5 and 6). Therefore, we conclude that the phenotypes associated with manipulation of AtFtsZ1-1 or AtFtsZ2-1 expression levels, whether from an increase or decrease, result from altered accumulation of only one and not both proteins. In addition, although AtFtsZ1-1 and AtFtsZ2-1 are co-expressed in wild-type plants (Figure 1B, lanes 1 and 2; Osteryoung et al., 1998), the collective results of overexpression and antisense experiments suggest that FtsZ1 and FtsZ2 protein levels are regulated independently in Arabidopsis.

Discussion

Correlation between AtFtsZ1-1 Accumulation and Plastid Number

Plants producing AtFtsZ1-1 at levels ranging from 13- to as high as 26-fold over wild-type levels exhibited drastically reduced numbers of enlarged chloroplasts, indicating a severe inhibition of chloroplast division. This phenotype is comparable with the filamentation phenotype observed in *E. coli* cells expressing *FtsZ* at high levels. However, when bacterial FtsZ levels were only slightly elevated, extra divisions were induced near the cell poles, resulting in the formation of minicells. Furthermore, when levels of overexpression were below those resulting in filamentation, the minicell phenotype was proportional to the degree of FtsZ overexpression (Ward Jr and Lutkenhaus, 1985). Based on these data we anticipated that slightly elevated AtFtsZ1-1 protein levels might increase the frequency of chloroplast division, yielding plants with cells containing smaller, more numerous chloroplasts. Instead, AtFtsZ1-1 levels as little as three-fold over wild-type levels inhibited, rather than increased, chloroplast division.

However, we have observed a few transgenic lines with more than 150 tiny chloroplasts in mesophyll cells (data not shown), but these plants were chlorotic and died as seedlings, preventing further analysis of their phenotypes or AtFtsZ1-1 expression levels. Nevertheless, these observations suggest that elevated AtFtsZ1-1 levels could, under a limited set of circumstances, increase the frequency of chloroplast division. Based on the observation that plants with two-fold more AtFtsZ1-1 than wild type had wild-type numbers of chloroplasts, whereas plants with 3-fold more protein had intermediate numbers, indicating partial inhibition of division, we would predict that AtFtsZ1-1 accumulation only within this narrow range would lead to increased numbers of chloroplasts, and that levels above this are inhibitory for plastid division. This idea is consistent with the behavior of FtsZ in bacteria and with the possibility that the plastid division defect resulting from AtFtsZ1-1 overproduction reflects a stoichiometric imbalance in plastid division components. It is possible that the use of a weak promoter instead of the strong 35S promoter might allow identification of more plants with only slightly elevated levels of AtFtsZ1-1, and perhaps increased chloroplast numbers, for further study. It is also possible that simultaneous overexpression of additional chloroplast division proteins (including AtFtsZ2-1) might be required to permit an increase in the plastid division frequency. This is suggested by the finding that the increased frequency of cell divisions observed when *FtsZ* is overexpressed in *E. coli* only occurs when *FtsA* is also overexpressed at similar levels (Begg et al., 1998). Plant survival alternatively may be compromised by increased chloroplast numbers, which could account for the small number of plants identified with this phenotype. This conjecture is supported in part by the phenotype of the Arabidopsis *arc*1 chloroplast

division mutant, which is characterized by slightly increased numbers of small chloroplasts (Pyke and Leech, 1992; Marrison et al., 1999). *arc*1 grows more slowly and is pale early in its development compared with either wild type or other *arc* mutants that have reduced numbers of enlarged chloroplasts.

Expression of the *AtFtsZ2-1* Sense Transgene Does Not Produce a Plastid Division Phenotype

In contrast to the dramatic phenotypes associated with AtFtsZ1-1 overexpression, more than 70% of the plants transformed with the AtFtsZ2-1 sense transgene displayed a wild-type-like phenotype. In fact, immunoblotting results (Figure 5A, lanes 5, 10, 12, 14, and 15) indicated that all plastid division defects observed among these transgenic lines were due to cosuppression of endogenous AtFtsZ2-1 expression rather than to overexpression, similar to the plastid division defects observed in plants expressing an AtFtsZ2-1 antisense transgene (Figure 1B, lane 6; Osteryoung et al., 1998). However, authentic AtFtsZ2-1 protein did not accumulate substantially over wild-type levels in the overexpression experiments (Figure 5A), which may indicate that higher levels are lethal or that AtFtsZ2-1 accumulation is more tightly regulated than that of AtFtsZ1-1. The only phenotype associated with AtFtsZ2-1 transgene expression (when it did not result in cosuppression) was the presence of a 44-kD form of AtFtsZ2-1 not detected in wild-type plants. Because this polypeptide was smaller than the one produced by in vitro translation of the predicted AtFtsZ2-1 open reading frame (Osteryoung et al., 1998; R.S. McAndrew, S. Vitha and K.W. Osteryoung, unpublished data), it may represent a degradation product or an aberrantly processed form of AtFtsZ2-1. Accumulation of this

polypeptide at the observed levels had no effect on plastid division, however. Overall, the differences in the phenotypes of plants expressing *AtFtsZ1-1* and *AtFtsZ2-1* transgenes further support a difference in the functions of FtsZ1 and FtsZ2 proteins.

Aberrant Chloroplast Morphology Associated with High Levels of AtFtsZ1-1 Protein

The long, narrow chloroplasts observed in some of the AtFtsZ1-1 overexpression lines occurred only in transgenic lines exhibiting severe plastid division defects and high AtFtsZ1-1 protein levels. Although at present we cannot be certain of the biological relevance of this unique phenotype, it could suggest an additional role for chloroplastlocalized FtsZ1 proteins in the control of chloroplast shape. Immunofluorescence data indicating the presence of longitudinally oriented AtFtsZ1-1-containing filaments in the noodle-shaped chloroplasts (S. Vitha and R. McAndrew, unpublished observations) are consistent with this idea. The assembly of many such filaments in plastids with high AtFtsZ1-1 levels could restrict their ability to expand laterally, allowing plastid expansion to occur only longitudinally to produce narrow, elongated chloroplasts. The noodle phenotype alternatively could reflect an abnormality in the formation of stromules, narrow tubular connections between plastids through which protein molecules can pass (Köhler et al., 1997). At present there is no direct evidence that plant FtsZ proteins participate in chloroplast shape determination or stromule biogenesis, but the notion that FtsZs function in multiple processes, like their tubulin structural homologues, is not incompatible with their cytoskeletal properties.

Materials and Methods

Construction of Sense Transgenes and Plant Transformation

Full-length cDNAs for AtFtsZ1-1 (accession no. U39877) and AtFtsZ2-1 (accession no. AF089738) in the plasmid vector pZL1 (Gibco BRL) were obtained as described previously (Osteryoung et al., 1998). A gel-purified SmaI-ClaI fragment containing the complete AtFtsZI-I cDNA sequence was ligated directionally behind the 35S promoter in pART7 (Gleave, 1992) digested with the same enzymes. The resulting plasmid was digested with NotI and the fragment containing the AtFtsZ1-1 insert was ligated into NotI-digested pART27 (Gleave, 1992) to create the plasmid pAP202 containing the AtFtsZ1-1 transgene. The AtFtsZ2-1 transgene was constructed by digesting the pART27 derivative pSN506 (Norris et al., 1998) with EcoRI and HindIII, and replacing the insert with an *Eco*RI-*Hin*dIII fragment containing the complete AtFtsZ2-1 cDNA to create pRF501. pAP202 and pRF501 were purified from *Escherichia coli* and transferred to *Agrobacterium tumefaciens* GV3101 (Koncz and Schell, 1986). Restriction analysis confirmed that no rearrangements occurred in the transfer to Agrobacterium. Arabidopsis ecotype Columbia was transformed by vacuum infiltration (Bechtold et al., 1993; Bent et al., 1994) with pAP202, and by floral dip (Clough and Bent, 1998) with pRF501 or the pART27 empty vector.

Selection and Propagation of Transgenic Plants

 T_1 seed from the inoculated plants were collected, sown on plates containing nutrient medium (4.3 g/L Murashige and Skoog salts, 1% [w/v] Suc, B5 vitamins, and 0.8% [w/v] Phytagar [Gibco-BRL]) and 100 mg/L kanamycin (Fisher Scientific, Hampton, NH), incubated at 4°C for 2 d, and moved to controlled environment chambers for germination. Chambers were set at a relative humidity of 40%, with 16 h of light daily (125 μ mol m⁻² s⁻¹) at 20°C, and 8 h of darkness at 18°C. The age of the plants was taken from the date of seed transfer to the growth chamber following cold treatment. After 10 d in the growth chamber, kan^r plants were transferred to a mixture of Supersoil potting mix (Rod McLellan Co., San Francisco) and vermiculite (4:1).

 T_2 and T_3 seeds were sown on Rockwool (GrodanHP; Agro Dynamics, East Brunswick, NJ) saturated with Hoagland nutrient solution containing 100 mg/L kanamycin (Gibeaut et al., 1997). Seeds were covered with plastic and incubated at 4°C for 2 d, then transferred to growth chambers for germination. After 14 d, kan^r plants were transferred to soil and grown as described above.

Microscopic Analysis

When plants were 18 d post-germination, the first leaf was removed with a razor blade and prepared for microscopic analysis as described (Pyke and Leech, 1991). Samples were then viewed with differential interference contrast optics using a BH-2 microscope (Olympus America, Melville, NY). Images were captured by computer using a DEI-750 digital charged-coupled device camera (Optronics, Goleta, CA) and Adobe Photoshop (Adobe Systems, San Jose, CA) software.

Generation of Antipeptide Antibodies

Peptides corresponding to regions of AtFtsZ1-1 and AtFtsZ2-1 predicted to constitute highly accessible and immunogenic epitopes were designed using the crystal

structure of *Methanococcus janaschii* (Löwe and Amos, 1998), epitope mapping data for monoclonal antibodies against *E. coli* FtsZ (Voskuil et al., 1994), and molecular modeling programs. Peptides corresponding to residues 201 through 215 in AtFtsZ1-1 (EGRKRSLZALEAIEK) and residues 168 through 184 in AtFtsZ2-1

(RRRTVQAQEGLASLRD) were synthesized, purified by HPLC, and coupled to keyhole limpet hemocyanin (Pierce, Rockford, IL). These peptides, designated 1-1A and 2-1A, respectively, were injected into rabbits (nos. 4164 and 4166, respectively) for the production of polyclonal antibodies (Alpha Diagnostics, San Antonio, TX). The antisera obtained were partially purified by ammonium sulfate precipitation (50% final saturation) followed by dialysis against phosphate-buffered saline (140 mM NaCl, 3 mM KCl, 10 mM Na₂HPO₄, 2 mM KH₂PO₄, pH 7.4), as described (Harlow and Lane, 1988). Antibodies were further purified on affinity columns prepared by immobilizing the peptide antigens to SulfoLink Coupling Gel (Pierce) according to the manufacturer's standard protocol, yielding final protein concentrations of 0.7 and 0.9 mg ml⁻¹ for antibodies 1-1A and 2-1A, respectively, determined using the Bio-Rad Protein Assay reagent (Bio-Rad, Hercules, CA). These preparations were diluted for immunoblotting as described below.

Immunoblotting Procedures

Tissue for immunoblot analysis was collected from leaves of 21-d-old plants with microscopically verified mesophyll cell phenotypes. Tissue was homogenized in a microcentrifuge tube with 10 μ L of grinding buffer {60 mM Tris[tris(hydroxymethyl)-aminomethane]-HCl, pH 8.0, 100 mM dithiothreitol, 2% [w/v] SDS, 15% [w/v] Suc, 5

mM ε -amino-N-caproic acid, 1 mM benzamidine HCl, and 0.01% [w/v] bromophenol blue} per milligram of leaf tissue plus a few grains of sterilized sand. Homogenized tissue was heated for 15 min at 70°C and stored at -20°C until use. Prior to electrophoresis, samples were reheated to 70°C for 5 min and centrifuged (3 min, 14,000g) to remove particulates. Proteins were separated by standard SDS-PAGE on 11% (w/v) polyacrylamide gels (Bio-Rad, Richmond, CA) and transferred to nitrocellulose membranes (0.45 µm, Micron Separations, Westborough, MA). Except where indicated, sample volumes loaded on gels were equivalent. Membranes were blocked for 30 min in TBST (50 mM Tris-HCl, pH 7.4, 200 mM NaCl, and 0.2% [v/v] Tween 20) containing 2% (w/v) Carnation non-fat dry milk (Nestle Food Company, Glendale, CA), then incubated in TBST plus 2% (w/v) nonfat dry milk (TBST-milk) containing affinity-purified AtFtsZ1-1 or AtFtsZ2-1 antibodies at dilutions of 1:1,500 and 1:3,000, respectively. Incubations with primary antibody were carried out in Seal-a-Meal bags (Dazey Corp., Century, KS) shaken vigorously overnight at room temperature. After four 10-min washes in TBST, membranes were incubated with horseradish peroxidase-conjugated goat-anti-rabbit secondary antibodies (Fisher, Pittsburgh) for 15 min at 1:4,000 dilution in TBST-milk. Following four 10-min washes in TBST, membranes were developed using Renaissance Western Blot Chemiluminescence Reagent (NEN Life Science Products, Boston) and the signal was recorded on X-OMAT 1s film (Kodak, Rochester, NY).

Competition Binding Assays

To determine antibody specificity, immunoblotting experiments were performed as described above, except that prior to probing membranes, each diluted antibody was preincubated for 2 to 4 h in TBST-milk with an equimolar amount of purified, recombinant AtFtsZ1-1 (residues 41-269) or AtFtsZ2-1 (residues 92-282) on a rocking platform. These truncated versions of AtFtsZ1-1 and AtFtsZ2-1 were obtained by expressing the corresponding cDNA fragments in the expression vector pJC40 (Clos and Brandau, 1994) as 10-histidine-tagged FtsZ fusion proteins in *E. coli* BL21(λ DE3)/plysS cells, following induction with isopropylthio- β -galactoside (1 mM) at 37°C. The recombinant proteins were purified from inclusion bodies in cell lysates using metal chelation chromatography (His-Bind Resin, Novagen, Madison, WI) according to the manufacturer's protocol for denaturing conditions. Protein concentrations of truncated AtFtsZ1-1 or AtFtsZ2-1 following chromatography, determined using the Bio-Rad Protein Assay reagent (Bio-Rad), were 1.75 and 1.24 mg ml⁻¹, respectively.

AtFtsZ1-1 Quantification

Quantification of FtsZ protein levels was performed by scanning the film used for chemiluminescent detection of signals on immunoblots into the computer using a Mirage IIse imager (UMAX Technologies, Fremont, CA) and Binuscan software (Binuscan, New York). Densitometry measurements were used to quantify the levels of AtFtsZ1-1 from a standard curve prepared by evaluating the intensities of the 40-kD polypeptide in four lanes loaded with increasing amounts of an AtFtsZ1-1-containing plant extract prepared from a control plant transformed with the empty pART27 vector. A best-fit curve

calculated from the data had an R^2 value of 0.98. This curve was used to calculate the relative amount of protein in the other samples, which were loaded so that the signal generated on the immunoblot was in the linear range of the standard curve. The level of AtFtsZ1-1 protein in each extract was calculated relative to the control sample.

Acknowledgements

We gratefully acknowledge Travis Gallagher for excellent care and feeding of plants.

Chapter 3 - Supplemental Data

AtFtsZ2-2 Cosuppression Inhibits Chloroplast Division

Background

Wild-type Arabidopsis plants express three different FtsZ proteins, AtFtsZ1-1, AtFtsZ2-1 and AtFtsZ2-2, which are localized to the chloroplast stroma (McAndrew et al., 2001). Previous research indicated overexpression of AtFtsZ1-1 inhibited chloroplast division (Stokes et al., 2000). Attempts to overexpress AtFtsZ2-1 did not result in any inhibition of chloroplast division. However, immunoblots indicate that only slight increases in protein expression were obtained with the transgenic plants. In the AtFtsZ2-*I* transgenic plants in which chloroplast division was inhibited, the amount of AtFtsZ2-1 protein was reduced due to cosuppression. At the time the overexpression experiments were published by Stokes et al. (2000) the AtFtsZ2-2 gene had not been isolated and characterized. Since that report the AtFtsZ2-2 transcript has been isolated and reported (McAndrew et al., 2001). In an effort to determine the effect of increased AtFtsZ2-2 protein on chloroplast division, plants were prepared with an AtFtsZ2-2 overexpressing transgene. Most of the transgenic plants had a normal chloroplast phenotype, but FtsZ protein levels were similar to those in wild-type plants. Severe inhibition of chloroplast division was only observed in transgenic plants where AtFtsZ2-1 and AtFtsZ2-2 levels were both reduced.

Material and Methods

Preparation of AtFtsZ2-2 Overexpressing Construct

Total RNA was isolated from 19-day-old soil grown plants as described by McAndrew et al. (2001). Reverse transcription (RT) reactions were performed using the Superscript II (Gibco-BRL) enzyme as instructed by the manufacturer, with 10 μ g of total RNA in a 30 μ L reaction volume and the reverse primer 5'-

AGTGGGTCTAGAGGCGAGGA. PCR amplification of the *AtFtsZ2-2* gene was performed on 600 ng of RNA from the above RT reaction using the forward primer 5'-CAGAATGGCAGCTTATGTTTCTCC and the reverse primer used in the RT reactions. The amplified *AtFtsZ2-2* gene was cloned into pBuescript digested with *Sma*I. The resulting plasmid, called pKS135, was digested with *Xba*I and the fragment containing the *AtFtsZ2-2* gene was purified and cloned into the shuttle vector pART7 (Gleave, 1992) that had been digested with the same enzyme. This plasmid, called pKS168, was digested with *Not*I and the fragment with the *AtFtsZ2-2* insert cloned into pART27 (Gleave, 1992) that had been digested with the same enzyme. The final plasmid was called pKS170.

Plant Transformation and Screening for Kanamycin Resistant Plants

The pKS170 plasmid was purified from *Escherichia coli*, transferred to *Agrobacterium tumefaciens* GV3101 (Koncz and Schell, 1986), and then transformed into *Arabidopsis thaliana* ecotype Columbia (Col-0) plants by floral dip (Clough and Bent, 1998). T_1 and T_2 seed were sown on MS plates as described by Stokes et al. (2000), except 50 mg/L kanamycin was used for selection of transgenic plants. After the transfer of transgenic plants to soil, the growth conditions, microscopic analysis, and immunoblotting procedure were as described by Stokes et al. (2000).

Results

Transgenic plants were generated with a construct designed to overexpress AtFtsZ2-2 in an effort to determine the effect of increased AtFtsZ2-2 on chloroplast division. Numerous T_2 plants from three independently transformed lines (Figure 6; transgenic lines A, B, C) were analyzed for both their chloroplast phenotypes in mesophyll cells and FtsZ protein levels. When the transgenic plants are compared to wild-type plants (Fig 6; Wt), the transgenic plants grouped into three different FtsZ protein profiles and chloroplast phenotype combinations. One group of transgenic plants had a normal chloroplast phenotype and normal levels of AtFtsZ1-1, AtFtsZ2-1, and AtFtsZ2-2 protein (Figure 6, lanes 2-5). Although the four plants in this group are from the same transgenic line, this FtsZ protein profile and chloroplast phenotype was the most commonly observed among all the transformed lines that were tested (data not shown). A second group of plants had decreased levels of AtFtsZ2-2, but near-normal levels of AtFtsZ1-1 and AtFtsZ2-1 (Figure 6, lanes 8-10). These plants, from two independent lines, also had normal chloroplast phenotypes. The third group had a severe chloroplast phenotype, which was characterized by one very enlarged chloroplast per cell. FtsZ protein profiles for these plants had reduced AtFtsZ2-2 and AtFtsZ2-1 protein levels, but near normal AtFtsZ1-1 levels (Figure 6, lanes 6 and 7). Plants with this severe chloroplast phenotype were only observed in one transgenic line (data not shown).

Figure 6. Immunoblot analysis of transgenic plant extracts expressing the *AtFtsZ2-2* transgene.

Protein extracts from T_2 transgenic plants were separated by SDS-PAGE, transferred to PVDF, and probed with antipeptide antibodies raised against AtFtsZ1-1, AtFtsZ2-1, or AtFtsZ2-2. Samples are from three independent transformed lines (A, lanes 2-5; B, lanes 6 and 7; C, lanes 8-10): lane 1, Wild-type control (C); lanes 2-10, transgenic plants with wild-type-like (W, lanes 2-5 and 8-10) or severe (S, lanes 6 and 7) phenotypes. Equal amounts of extract were loaded on four gels and confirmed by Coomassie staining one of those gels (data not shown).
Discussion

Instead of increased amounts of AtFtsZ2-2 protein, transgenic plants with the overexpressing AtFtsZ2-2 construct had near normal or reduced FtsZ protein levels. The only lines in which chloroplast division was severely inhibited had undetectable levels of AtFtsZ2-1 and AtFtsZ2-2, indicating the chloroplast phenotype is a result of cosuppression. A few plants had reduced AtFtsZ2-2 levels and near-normal levels of AtFtsZ1-1 and AtFtsZ2-1, but chloroplast division did not seem to be affected. This result indicates that a reduction in AtFtsZ2-2 protein levels by itself does not inhibit chloroplast division. A recently isolated AtFtsZ2-2 knockout plant that has no detectable AtFtsZ2-2 protein but normal levels of AtFtsZ2-1 protein supports this result (unpublished results). The chloroplast phenotype in the mesophyll cells of this AtFtsZ2-2 knockout plant is intermediate, with about 15 enlarged chloroplasts. The intermediate phenotype indicates there is some chloroplast division, but the frequency of chloroplast division has been reduced. The most common phenotype among the transgenic lines was normal FtsZ protein levels and normal chloroplast size and number. Although the exact reason for this result is unclear, it may be that expressing AtFtsZ2-2 with a strong promoter is detrimental to plant viability. Cosuppression that resulted in inhibition of chloroplast division was also observed when AtFtsZ2-1 was overexpressed with a similar construct (Stokes et al., 2000). However, overexpression of AtFtsZ2-1 was achieved using the native promoter (McAndrew et al., 2001). Therefore, overexpression of AtFtsZ2-2 may also require a construct that uses the native AtFtsZ2-2 promoter.

CHAPTER 4

Coordinate expression of the FtsZl and FtsZ2 genes in Arabidopsis thaliana plants

Abstract

The Arabidopsis genome encodes three chloroplast-localized FtsZ proteins that belong to two different families, FtsZ1 and FtsZ2. Members of both families perform roles in chloroplast division but little is known about their developmental patterns of expression. We used β -glucuronidase (GUS) reporter gene assays, real-time reverse transcriptase-polymerase chain reaction, and immunoblot assays to investigate RNA and protein expression patterns for all three Arabidopsis *FtsZ* family members. Analysis of GUS reporter staining patterns as well as the FtsZ transcript distribution indicates that the *FtsZ1* and *FtsZ2* genes are coordinately expressed throughout the plant. A high level of *FtsZ* gene expression occurs in the young expanding leaves but expression is reduced in the older, fully expanded leaves. These expression patterns correspond to reported patterns of plastid division (Pyke and Leech, 1992; Pyke, 1997), and are consistent with the role of the FtsZ's in plastid division. Measurements of the *FtsZ* transcript amounts indicate *AtFtsZ2-1* is the most abundant, followed by *AtFtsZ1-1*, and *AtFtsZ2-2*. In addition, the ratio of *FtsZ1* to *FtsZ2* transcript is constant throughout leaf development.

Introduction

Plastid division is important for the maintenance of plant photosynthetic competence. The chloroplast complement of a cell results from division of undifferentiated proplastids and green chloroplasts (Chaly and Possingham, 1981; Whatley, 1993; Robertson et al., 1995; Pyke, 1997). Proplastid division in root and shoot meristems is likely important for maintaining proplastid numbers in these rapidly dividing cell populations (Possingham and Lawrence, 1983), while chloroplast division in monocot and dicot leaves is correlated with cell expansion (Boasson et al., 1972; Possingham and Smith, 1972; Possingham and Lawrence, 1983; Pyke et al., 1994; Robertson et al., 1996). However, the region of the leaf where chloroplast division occurs differs between monocots and dicots. In the monocot wheat, chloroplast division occurs in a relatively small region of the leaf where cell expansion is greatest (Leech and Pyke, 1988; Pyke, 1997). In contrast, chloroplast division in Arabidopsis, a dicot, occurs over a longer period of cell development and expansion (Pyke and Leech, 1992; Pyke, 1997). This makes the region where chloroplast division occurs less pronounced in Arabidopsis than in wheat leaves. However, most chloroplast division still occurs in cells in the basal portion of both monocot and dicot leaves (Possingham and Smith, 1972; Possingham, 1973; Leech et al., 1981; Pyke et al., 1991). In Arabidopsis dividing chloroplasts have also been observed at the base of developing petals and in the rapidly expanding cotyledons (Pyke, 1997; Pyke and Page, 1998). It is in the tissues where plastid division is actively occurring that we anticipate chloroplast division genes, like *FtsZ*, to be expressed.

In bacteria, FtsZ is a cytoskeletal GTPase protein with structural homology to the eukaryotic tubulins that localizes to a ring at the cell division site (Bi and Lutkenhaus, 1991; Bramhill, 1997; Lutkenhaus and Addinall, 1997; Löwe and Amos, 1998). Most bacteria encode a single FtsZ protein, whereas plants contain multiple nuclear encoded copies of the FtsZ proteins. The plant FtsZ proteins have been grouped into two families, FtsZ1 and FtsZ2, based on conserved molecular features (Osteryoung et al., 1998). Members of both families are localized to rings at the chloroplast division site inside the stroma (Osteryoung et al., 1998; Gaikwad et al., 2000; Fujiwara and Yoshida, 2001; McAndrew et al., 2001), and are required for chloroplast division (Osteryoung et al., 1998; Strepp et al., 1998). In Arabidopsis, there are three *FtsZ* genes, one *FtsZl* gene, AtFtsZ1-1, and two FtsZ2 genes, AtFtsZ2-1 and AtFtsZ2-2. Expression of AtFtsZ1-1 and AtFtsZ2-1 has been reported in Arabidopsis leaves by detecting the proteins by immunofluorescence microscopy as well as immunoblot analysis (Stokes et al., 2000; McAndrew et al., 2001; Vitha et al., 2001). No information regarding the expression of the third Arabidopsis FtsZ gene AtFtsZ2-2 has been reported except that the gene product is imported into the chloroplast (McAndrew et al., 2001). Very little has been reported about patterns of *FtsZ* expression in Arabidopsis.

Although roles for both *FtsZ1* and *FtsZ2* genes in chloroplast division have been established (Osteryoung and Vierling, 1995; Osteryoung et al., 1998; Strepp et al., 1998), the relationship of their expression patterns to the patterns of plastid division during development has not been determined. In marigold (*Tagetes erecta* L.) an *FtsZ1* transcript was isolated from petals and was expressed at a higher level in the petals than in leaves (Moehs et al., 2000). There is some evidence indicating that *FtsZ* expression

responds to light in cucumbers and peas (Gaikwad et al., 2000; Ullanat and Jayabaskaran, 2002), cytokinin treatment in cucumbers (Ullanat and Jayabaskaran, 2002) and to the cell cycle in tobacco (El-Shami et al., 2002). However, the studies with cucumber investigated the expression of only one, of several, *FtsZ2* genes (Ullanat and Jayabaskaran, 2002), while the study in peas involved only an *FtsZ1* gene (Gaikwad et al., 2000). The tobacco study investigated one, of several, *FtsZ1* genes and one, of two, *FtsZ2* genes (El-Shami et al., 2002). Furthermore, the significance of cell cycle-dependent FtsZ expression is unclear since the study used a non-photosynthetic tobacco cell culture (El-Shami et al., 2002). None of these studies investigated the expression patterns of both *FtsZ1* and *FtsZ2* or their relationship to FtsZ protein levels and patterns of plastid division in the whole plants.

In an effort to better understand the expression of the *FtsZ* genes in Arabidopsis, experiments were performed that included promoter fusions, transcript quantification, and immunoblot analysis. To understand the spatial and temporal expression of the three Arabidopsis *FtsZ* genes, we used the promoters from each to drive expression of the β *glucuronidase* (*GUS*) reporter gene in transgenic Arabidopsis plants. We report here that the GUS staining pattern, in conjunction with transcript quantification, indicates the three Arabidopsis *FtsZ* genes are coordinately expressed in roots, stems, shoot apex, and expanding leaves. Measurements of the relative levels of the three *FtsZ* gene transcripts indicate *AtFtsZ2-1* is the most abundant, followed by *AtFtsZ1-1*, and *AtFtsZ2-2*. Furthermore, the ratio of *FtsZ1* to *FtsZ2* transcripts remains constant throughout leaf development. These results indicate that expression of the *FtsZ* genes is coordinated and that their relative stoichiometric ratio may be important for chloroplast division.

Materials and Methods

Determination of the FtsZ's 5'-UTR Using 5'-RACE

Amplification of the 5'-UTR for the *FtsZ* genes was performed using the FirstChoice RLM-RACE kit (Ambion, Austin, TX) as described by the manufacturer using 10 ug of total RNA that had been isolated from 19-day-old *Arabidopsis thaliana* ecotype Columbia (Col-0) plants. Two serial PCR amplification reactions utilized nested forward primers provided in the kit with sequence-specific nested reverse primers. The reverse primers for the *AtFtsZ1-1* gene were, in order of use, 5'-CGCATAGAAATCAACACTCTG and 5'-AACGGCATTGTTACCACCAC. The 5'-

UTR of the *AtFtsZ2-1* gene was amplified with the reverse primers 5'-ACCACCTCCCACACCAATAACC and 5'-AGTCCCTTCACCTCTAAGCAT. The reverse primers for the *AtFtsZ2-2* gene were 5'-TGAACCACCACCTCCAACGCC and 5'-AGTAGATAACTCATCCAAATCCTC. The amplified products were gel-purified

and ligated into pBluescript II KS (Stratagene) for sequencing.

Construction of the FtsZ Promoter-GUS Constructs

All promoter constructs were made using pKS1207, a gift from Dr. Dean Dellapenna (Michigan State University). pKS1207 is a derivative of pART27 (Gleave, 1992) in which the pB1101 *GUS* gene has been insterted into the *Not*I restriction site. The *GUS* gene was amplified from pB1101 with the forward primer 5'-AGTCGGCCGAAGCTTGCATGCCTGCAGGTC and the reverse primer 5'-TGCCGGCCGGAATTCCCCGATCTAGTAACAT, each primer has an *Eag*I restriction site engineered at the end. The PCR-amplified *GUS* gene was digested with the enzyme *EagI* and ligated into pART27 that had been digested with the *NotI* enzyme. The final pKS1207 plasmid was sequenced for accuracy.

Plants transformed with pKS1207 served as a promoterless control. The promoter for *AtFtsZ1-1* was amplified from genomic Arabidopsis DNA using the primers 5'-GAAGGATCCCAGACACTTTCTC (forward) and 5'-

GTTTACTTCCTCTGCTTTCAGAGAAG (reverse). The amplified product was ligated into a *Sma*I-digested pBluescript II KS (Stratagene, La Jolla, CA) vector. The promoter was isolated from the resulting plasmid by digestion with *Eco*RI, the overhangs were then filled in with Klenow, and then digested with *Xba*I. The isolated *AtFtsZ1-1* promoter fragment was then directionally ligated into pKS1207 that had been digested with *Hin*dIII, the overhangs filled in, and then digested with *Xba*I. The resulting plasmid, pKS174, contains 1679 bp of *AtFtsZ1-1* promoter sequence, but sequencing indicated one base pair immediately upstream of the *AtFtsZ1-1* start codon (position –1 of the promoter) was incorrect. The reporter gene for *AtFtsZ2-1* was constructed similarly, except that the primers 5'-TTCTCTGCTCTCTTGATGATCA (forward) and 5'-

AATGAGACCAATCACTGCAGG (reverse) were used for promoter amplification. The final construct, pKS154, contains 1775 bp of the *AtFtsZ2-1* promoter sequence. For the *AtFtsZ2-2* reporter gene, the primers 5'-TCTCGAAACGTTTATGCCAT (forward) and 5'-TCTGAGACTACAGAAGCAACCAAA (reverse) were used to amplify the promoter region, which was cloned into pBluescript as described above. The fragment with the *AtFtsZ2-2* promoter was excised from the resulting plasmid by digestion with *Hin*dIII and *Xba*I and then directionally cloned into pKS1207 that had been digested with the same

enzymes. The final plasmid, pKS156, contains 1311 bp of the *AtFtsZtsZ2-2* promoter sequence. The promoters in pKS154 (*AtFtsZ2-1*) and pKS156 (*AtFtsZ2-2*) were sequenced to confirm sequence integrity.

Plant Transformation and Growth

The plasmids pKS1207, pKS174, pKS154, and pKS156 were purified from *Escherichia coli*, transferred to *Agrobacterium tumefaciens* GV3101 (Koncz and Schell, 1986), and then transformed into *Arabidopsis thaliana* ecotype Columbia (Col-0) plants by floral dip (Clough and Bent, 1998). T_1 and T_2 seed were sown on MS plates as described by Stokes et al. (2000), except 50 mg/L kanamycin was used for selection of transgenic plants. After transferring the transgenic plants to soil, growth conditions were as described by Stokes et al. (2000). For etiolated seedlings, seeds were grown on plates that were treated identically to the light-grown seedlings, except the plates were covered with aluminum foil. The age of the plants was taken from the date of plate transfer to the growth chamber, following 2 days of cold treatment. After 8 days in the growth chamber, etiolated and light-grown seedlings were harvested for GUS staining and kan^r plants were transferred to soil. Whole plants and inflorescence tips were harvested for histochemical staining after growing for 19 or 32 days, respectively.

GUS Staining

The GUS staining proceedure is adapted from protocols by Jefferson et al. (1987) and Rodrigues-Pousada et al. (1993). Harvested tissue was immediately fixed in 90% acetone for 15 minutes, then rinsed in wash solution (50 mM NaPO₄ pH 7.2, 0.5 mM

 K_3 Fe(CN)₆, and 0.5 mM K_4 Fe(CN)₆) five times, 15 minutes each wash. The wash solution was then replaced with stain solution (wash solution, 0.1% Triton X-100, and 1 mM 5-bromo-4-chloro-3-indolyl- β -D-glucuronide [X-Gluc]). Before addition to the stain solution the X-gluc (ANGUS Buffers and Biochemicals, Niagara Falls, NY) was dissolved in N-N-dimethylformamide to a concentration of 100 mM. After the stain solution was added to the tissue, the samples were briefly placed under vacuum then incubated overnight at 37°C. Tissue was then cleared with several changes of 70% ethanol and stored in 50 mM NaPO₄ pH 7.2 at room temperature. GUS expression analysis was performed on three independently transformed lines for each construct. Only one representative line for each construct is reported, since the staining pattern for each of the three tested lines was the same.

Detecting GUS Transcript by RT-PCR

Seeds were grown on MS plates with 50 mg/L kanamycin, or without kanamycin for wild-type seed, as described above. RNA was isolated from the shoots of 10-day-old plate-grown seedlings using the RNeasy plant mini kit (Qiagen, Valencia, CA) as directed, except about 400 mg of tissue was used and volumes of the kit solutions RLT, RPE, and ethanol were doubled from that described in the first five steps of the manual. Contaminating genomic DNA was removed by treating the RNA samples with DNase, then re-isolating the RNA with the kit described above. Reverse transcription (RT) reactions were performed using the Superscript II (Gibco-BRL) enzyme as instructed by the manufacturer, with 15 μ g of total RNA in a 60 μ L reaction volume and the reverse primers 5'- TGATCCCATTTTGTCAAGGAGTT (*AtFtsZ1-1*) and 5'- TTCGTTGGCAATACTCCACA (GUS). PCR amplification of a 382 bp *AtFtsZ1-1* gene fragment used the *AtFtsZ1-1* reverse primer indicated above with the forward primer 5'-TTGCAGATGTGAAGGCAGTC. PCR amplification of a 467 bp *GUS* gene fragment used the *GUS* reverse primer indicated above with forward primer 5'-

TGCAACTGGACAAGGCACTA.

Since the *GUS* gene used in our constructs does not have any introns, the amplified fragments from RNA or contaminating genomic DNA would yield the same size product. Therefore, to test for contamination by genomic DNA, we also amplified a fragment of the AtFtsZI-1 gene, which has introns that are removed from the sequence. Another purpose of the AtFtsZI-1 control was to confirm whether endogenous AtFtsZI-1 transcript levels could be detected in the samples. Isolation of genomic DNA for use in the PCR reactions was done as described by Neff et al. (1998).

Immunoblot Analysis of the FtsZ Proteins in Roots

Protein extracts were prepared from 19-day-old Arabidopsis ecotype Columbia (Col-0) plants as described previsously (Stokes et al., 2000). Total protein in each sample was measured using the RC DC Protein Assay kit (Bio-Rad, Hercules, CA) as directed by the manufacturer. Four polyacrylamide gels were loaded with equal amounts of total protein and the extracts separated by SDS-PAGE. Comparison of the loaded protein samples was visually determined by staining one of the gels with Coomassie Brilliant Blue R250. Immunoblot analysis was performed according to procedures described by Vitha et al. (2001).

Plant Material for Real-Time RT-PCR Analysis

Wild-type Arabidopsis ecotype Columbia (Col-0) seed was sown in soil, vernalized 2 days at 4°C, and then grown in growth chambers under the same conditions as above. After 19 days, the plants were harvested and tissue was separated into three fractions consisting of the first and second pair of leaves, the third leaf pair, and the remaining tissue (which included the fourth leaf pair, shoot apex, stems, and some root fragments). The separated tissue was immediately frozen in liquid nitrogen.

Nucleic Acid Isolation for Real-Time RT-PCR Analysis

The separated and frozen tissue, described above, was ground in a mortar and pestle that had been pre-chilled with liquid nitrogen. Total RNA was isolated from the ground tissue as described by McAndrew et al. (2001). Isolated RNA was treated with RNase-free DNase (Promega, Madison, WI) and then extracted with phenol/chloroform to remove proteins. Isolated RNA was again treated with DNase and then purified on RNeasy plant mini kit (Qiagen, Valencia, CA) as directed. These RNA samples were used as the template for the real-time RT-PCR analysis of *AtFtsZ1-1*, *AtFtsZ2-1* and *AtFtsZ2-2* transcript levels.

Real-Time RT-PCR Analysis

Reverse transcription (RT) of 5 μ g total RNA was performed using the Taqman[®] RT-PCR Kit (Applied Biosystems, Foster City, CA) according to the manufacturer's directions. Amplification and detection of *AtFtsZ1-1* transcript during the Taqman[®]

assay involved the primers 5'-CCACAGGCTTCTCTCAGTCATTC (forward) and 5'-TGATCCCATTTTGTCAAGGAGTT (reverse) along with the Taqman[®] probe 5'-AGAAGACACTTCTGACTGATCCAAGAGCAGCT, at concentrations of 300 nM, 300nM, and 150 nM respectively. The *AtFtsZ2-1* transcripts were detected with the primers 5'-GCTACGGGTTTCAAACGACAA (forward) and 5'-

AGCTCCAACTGACGCAGCAT (reverse) with the Taqman[®] probe 5'-

AGAAGGACGAACAGTTCAGATGGTACAAGCA, at concentrations of 900 nM, 300 nM, and 150 nM respectively. For detection of AtFtsZ2-2 transcripts, primers 5'-GAAGGAGAAGGGAGGCCACT (forward) and 5'- GACGTCTTGTGGCTCCCATT (reverse) were used with the Taqman[®] probe 5'- CAGGCGACACAAGCGGATGCAT at concentrations of 900 nM, 300 nM, and 150 nM respectively. The three Tagman[®] probes were synthesized and labeled with the 5' fluorescent reporter dye FAM (6carboxyfluorescein) and the 3' quencher dye TAMRA (6-carboxy-N,N,N',N'tetramethylrhodamine) by the manufacturer (Applied Biosystems). Primers, probe, and optimized conditions for EF1 α detection were as described by Tian and DellaPenna (2001). Real-time RT-PCR reactions used 200 ng of total RNA from the RT reactions, gene-specific primers and probe, and Taqman[®] Universal PCR Master Mix (Applied Biosystems) as described in the kit's manual. Optimization of primer and probe concentrations was done as directed by the manufacturer. Quantification of transcripts for each gene in the samples was based on a comparison to a calibration curve consisting of a dilution series of a plasmid containing the cDNA for the gene of interest. Measurements were repeated on plant samples taken from four biological replications.

Transcript amounts were either compared based on total RNA or on the $EF1\alpha$ transcript amount for each sample in each biological replication.

Results

The Structures of the 5'-UTR Differ Between the FtsZ Genes in Arabidopsis

Before the promoter expression experiments were initiated, there was some question as to the sequence of the *FtsZ* genes in Arabidopsis. Specifically, the start codon for the *AtFtsZ2-1* gene was in question. To identify the correct start codon of each *FtsZ* gene we determined the sequence of each 5'-UTR (untranslated region) by 5'-RACE (rapid amplification of cDNA ends). The 5'-RACE experiments confirmed the start codon for each Arabidopsis *FtsZ* gene and determined the *AtFtsZ2-1* cDNA used in the overexpression construct described in chapter 3 (Stokes et al., 2000) was truncated. Subsequently, a full length *AtFtsZ2-1* cDNA was isolated and characterized (McAndrew et al., 2001). Although the 5'-RACE experiments were important in determining the fulllength transcripts (McAndrew et al., 2001), the sequence of the 5'-UTR's were not reported.

Figure 1 diagrams the structure the *AtFtsZ1-1*, *AtFtsZ2-1*, and *AtFtsZ2-2* primary transcripts upstream of the start codon. The 5'-UTR of *AtFtsZ1-1* extends 89 bp upstream from the translation start site, and does not contain any introns. The *AtFtsZ2-1* gene has a 452 bp intron that is removed, to produce a final 5'-UTR of 164 bp. The 5'-UTR of the *AtFtsZ2-1* gene has been determined by Fujiwara and Yoshida (2001) who reported a similar length and the removal of same 5'-UTR intron. Introns were also detected in the 5'-UTR region of the *AtFtsZ2-2* gene, but in this case three differentially

Figure 1. Genetic structure of the 5'-UTR region of the three *FtsZ* genes.

The exon and intron structure of the 5'-UTR region for each FtsZ gene up to the translation start site (ATG) are diagramed. Exons are represented as bars and are drawn to scale with the size (bp) above, while introns are shown as lines with their size (bp) below, but are not drawn to scale. Three AtFtsZ2-2 transcripts that have differentially spliced 5'-UTR regions (AtFtsZ2-2 A, B, and C) were isolated. Dashed lines indicate junctions common among the AtFtsZ2-2 species.

spliced species were isolated (Figure 1; AtFtsZ2-2A, B, and C). One of these (A) has a 449 bp intron that is removed, while another species (B) has a 408 bp intron that is removed. In contrast to the first two, species (C) has two removed introns. The intron junctions nearest the 5' end of the UTR's are identical in all three *AtFtsZ2-2* species, as well as the intron junction nearest the start codon of species B and C (Figure 1, dashed lines). The results indicate that both *AtFtsZ2-1* and *AtFtsZ2-2* transcripts have introns that are removed from the 5'-UTR region whereas the *AtFtsZ1-1* does not.

GUS Reporter Gene Expression Patterns

To study the expression patterns of the three Arabidopsis *FtsZ* genes, we generated transgenic plants expressing a *GUS* reporter gene under control of the *AtFtsZ1-1* (pKS174), *AtFtsZ2-1* (pKS154), or *AtFtsZ2-2* (pKS156) promoter. The promoter regions were chosen based on the results of the 5'-UTR analysis, which confirmed the position of the start codon for each *FtsZ* gene. To analyze the developmental and tissue-specific expression patterns of the different *FtsZ* genes, transgenic plants at various stages of development were histochemically stained for GUS expression (Figure 2). Both light-grown and etiolated whole seedlings were stained at 8 days, whole plants at 19 days, and floral shoots at 32 days. No GUS staining was detected in transgenic plants with a promoterless *GUS* construct (pKS1207), which served as a negative staining control (Figure 2, A0-H0).

Transgenic plants expressing the *AtFtsZ2-1* and *AtFtsZ2-2* reporter construct exhibited identical patterns of GUS staining (Figure 2, A2-I2 and A3-I3 respectively). Expression was observed in the roots, shoot apex, and cotyledons of etiolated seedlings

Figure 2. Histochemical localization of FtsZ-promoter activity during development of transgenic Arabidopsis.

Histochemical GUS staining in Arabidopsis plants transformed with constructs containing no promoter (A0-H0), the *AtFtsZ1-1* promoter (A1-H1), the *AtFtsZ2-1* promoter (A2-H2), or the *AtFtsZ2-2* promoter (A3-H3) fused to the *GUS* reporter gene. Histochemically stained tissue from (A0-A3) 8-day etiolated seedlings; (B0-B3) 8-day light-grown seedlings; (C0-C3) 19-day 1st leaf pair; (D0-D3) 19-day 2nd leaf pair; (E0-E3) 19-day 3rd leaf pair; (F0-F3) 19-day 4th leaf pair; (G0-G3) 19-day root, stem, meristem, and immature leaves; and (H0-H3) 32-day floral shoots with inserts showing an opened floral bud. Note that pollen grains are stained in H1 but not H2 or H3. Bars = 5 mm.

Images in this dissertation are presented in color.

	pKS1207 (Vector Control No Promoter)	pKS174 (AtFtsZ1-1 Promoter)	pKS154 (AtFtsZ2-1 Promoter)	pKS156 (AtFtsZ2-2 Promoter)
8-Day Etiolated Seedling		A		**
8-Day Light-grown Seedling	B0	B1	B2	B3
19-Day 1st Leaf set	C0		C2	C
19-Day 2nd Leaf set	/			
19-Day 3rd Leaf set	EO			B
19-Day 4th Leaf set	FO			
19-Day Root, Stem, Meristem, Immature Leaves	Go	G1	⁶²	G Z
32-Day Floral Shoot	H	H C	H	H3

(Fig 2; A2, B2, A3, B3), suggesting light stimulation is not required for the *FtsZ* promoters to drive expression. Intense staining of cotyledons from etiolated seedlings compared to the staining at the margins of light-grown seedling cotyledons indicates the *FtsZ2* promoters drive reporter gene expression prior to or during cotyledon expansion, when there is significant chloroplast division (Pyke, 1997) but expression is reduced when the cotyledons have reached full expansion. The roots, shoot apex, and first leaf pair of light-grown seedlings also have an intense GUS staining pattern, consistent with *FtsZ* expression in tissues with actively dividing proplastids and chloroplasts (Pyke, 1997).

In the 19-day-old plants with the *FtsZ2* promoter constructs, the GUS staining intensity was strongest in the roots, stems, shoot apex, and fourth (youngest) leaf pair (Figure 2; F2, G2, F3, G3). Portions of the third leaf pair were also stained, but the staining was generally restricted to the outside edges of the leaf base (Figure 2, E2 and E3). In the older, fully expanded leaves, very little GUS staining was observed (Figure 2; C2, D2, C3, D3). Therefore, the reporter gene assays suggest that *FtsZ2* genes are expressed at higher levels in young, expanding leaves than in mature leaf tissue.

Much of the floral shoot tissue in plants with the *FtsZ2* promoter constructs (Fig 2, H2 and H3) showed intense staining, including the floral buds. Staining of the petal base indicates *AtFtsZ2-1* and *AtFtsZ2-2* are expressed in this tissue, which has a significant population of cells with constricted chloroplasts (Pyke and Leech, 1992; Pyke, 1997; Pyke and Page, 1998). No staining was observed in the pollen sac or pollen grains of plants with either *FtsZ2 promoter-GUS* construct.

In contrast, transgenic plants with the AtFtsZI-1 reporter gene had staining in only the pollen grains (Figure 2, H1 and inset). GUS staining was not observed in the other floral tissues, in the 19-day-old plants, or in either of the seedlings (Figure 2, A1-H1). These results are inconsistent with those of Vitha et al. (2001), who used the same promoter fragment to expression a GFP-tagged AtFtsZ1-1 protein in leaves of transgenic Arabidopsis plants. Furthermore, AtFtsZ1-1 RNA was also detected in vegetative tissue by real-time reverse transcriptase-polymerase chain reaction (RT-PCR, described below) and AtFtsZ1-1 protein has been detected in leaf extracts (Stokes et al., 2000; McAndrew et al., 2001; Vitha et al., 2001). These data indicate that the staining pattern observed with the GUS reporter construct does not accurately represent expression of the endogenous AtFtsZ1-1 gene.

The GUS Reporter Gene Is Not Transcribed Under Control of the AtFtsZ1-1 Promoter

One possible explaination for the lack of GUS staining in the transgenic plants with the *AtFtsZ1-1 promoter-GUS* construct could be that expression is below the level required for histochemical detection. Therefore, we performed **RT-PCR** to determine whether *GUS* transcript could be detected in transgenic seedlings with the *AtFtsZ1-1 promoter-GUS* construct, which would indicate whether the *GUS* reporter gene is being transcribed. Total RNA was isolated for this experiment from 10-day-old plate-grown wild-type Arabidopsis plants, transgenic plants with the *AtFtsZ2-1 promoter-GUS* construct, and two independently transformed lines with the *AtFtsZ1-1 promoter-GUS* construct. Figure 3 shows the **RT-PCR**-amplified *AtFtsZ1-1* and *GUS* products that were

Figure 3. Detection of GUS expression in transgenic Arabidopsis seedlings with the *AtFtsZ1-1 promoter-GUS* fusions.

An agarose gel with the RT-PCR amplified *AtFtsZ1-1* (At1-1, Lanes 1-5) or *GUS* (GUS, lanes 7-11) gene fragments from RNA isolated from 10-day-old seedling shoots of wild-type Arabidopsis (Wt Col, lanes 1 and 7), a transgenic line with the *AtFtsZ2-2 promoter-GUS* construct (At2-2, lanes 2 and 8), and two independently transformed lines with the *AtFtsZ1-1 promoter-GUS* construct (At1-1A, lanes 3 and 9; At1-1B, lanes 4 and 10). PCR amplification of the *AtFtsZ1-1* and *GUS* fragments from genomic DNA from one of the AtFtsZ1-1 promoter lines (At1-1A, lanes 5 and 11) served as a control.

separated on an agarose gel from these plant samples. When primers for *AtFtsZ1-1* are used, PCR amplification of *AtFtsZ1-1* from the genomic DNA results in a product that is 96 bp longer, due to the presence of an intron, than the corresponding fragment amplified from RNA by RT-PCR. Comparison of the fragment amplified from genomic DNA (Figure 3, lane 5) to that from the RNA samples (Figure 3, lanes 1-4) indicates there is no detectable genomic DNA contamination in the RNA preparations. Since the endogenous *AtFtsZ1-1* transcript is detected in all the RNA samples, even those from wild-type Arabidopsis plants, the *GUS* transcript should be detectable if it is present at similar levels.

Samples from wild-type plants were used as a negative control for *GUS* expression, since no *GUS* gene is present in these plants. Expression of *GUS* transcript is not detected in this negative control sample (Figure 3, lane 7). As a positive control, a transgenic plant line with the *AtFtsZ2-1 promoter-GUS* construct was used because expression of GUS in this plant line was detected histochemically. As expected, *GUS* transcript was detected in this positive control sample (Figure 3, lane 8). When two independently transformed *AtFtsZ1-1 promoter-GUS* lines were tested, no *GUS* transcript was detected (Figure 3, lane 9 and 10), although the *GUS* gene fragment was amplified from genomic DNA (Figure 3, lane 11). These results indicate that the *GUS* gene, although present in the plants, is either not transcribed under the control of the *AtFtsZ1-1* promoter that was used in the *GUS* reporter experiments or is very unstable. Because the construct used by Vitha et al. (2001) utilized the identical promoter to express the GFP-tagged AtFtsZ1-1 protein but included the entire genomic sequence of *AtFtsZ1-1*, these

results suggest that expression of *AtFtsZ1-1* requires regulatory elements located downstream of the 5'-UTR.

Arabidopsis Roots Express FtsZ Proteins

The staining patterns in the *promoter-GUS* experiments indicated the *FtsZ2* genes are expressed in the roots, stems, shoot apex and young leaves of 19-day-old plants. In pea plants, Gaikwad et al. (2000) reported that expression of an *FtsZl* gene in pea was highest in the leaves but very low in roots and stems. In order to determine if all three Arabidopsis *FtsZ* genes are expressed in roots we performed immunoblot analysis on extracts from roots, shoot apex and stems, and young leaves of wild-type Arabidopsis plants (Figure 4A). For these immunoblot analyses, tissue similar to that shown in Figure 2G but from wild-type plants was divided into two fractions: a root fraction and a shoot fraction containing the stem, shoot apex, and 4th leaf pair. In addition to these two fractions, tissue from the 3rd leaf pair was also analyzed. All three Arabidopsis FtsZ proteins are detected in each of the three tissue fractions. Immunoblot signals for all three FtsZ proteins are strong in the shoot apex and young leaf extracts but the AtFtsZ1-1 and AtFtsZ2-1 protein signals in the roots are significantly less. In fact, the signal for the AtFtsZ2-1 protein in the root extracts was only observed with very long exposure times and cannot be seen in Figure 4.

Samples for the immunoblot analysis were loaded according to equal total protein, but Coomassie Brilliant Blue G250 staining of one gel indicated the amount of total protein in the root extracts was lower than the amount of protein in the extracts from the shoot apex and young leaves (Figure 4B). This loading error is likely due to soil that

Figure 4. Immunoblot detection of FtsZ protein in root, stem, shoot apex, and immature leaf extracts.

Immunoblot analysis of AtFtsZ1-1, AtFtsZ2-1, or AtFtsZ2-2 proteins was performed on extracts from roots, shoots, and young leaves of 19-day wild-type Arabidopsis plants. Samples were loaded with equal total protein onto four different gels and separated by SDS-PAGE. A, Three of the gels were transferred to PVDF membrane and probed with antibodies specific for AtFtsZ1-1, AtFtsZ2-1, or AtFtsZ2-2. B, the fourth gel was stained with Coomasie Brilliant Blue G250 for visual comparison of the separated proteins. remained on roots following harvest that caused inaccurate determinations of total protein. Because of this loading error, the amount of FtsZ protein signal in the root extracts cannot be accurately compared to the amount of protein in the other two extracts. This is especially significant for the AtFtsZ2-1 protein in root extracts and may be the reason the signal was so weak.

To obtain a better comparison of the amount of FtsZ protein in root extracts may require the Arabidopsis plants to be grown hydroponically rather than in soil. Hydroponically grown plants are free of the soil that seemed to affect protein assays and may result in more root tissue per plant. An alternative experiment for this section may be immunofluorescence microscopy of root sections with antibodies for each of the FtsZ proteins. Not only would the expression of the FtsZ proteins in roots be determined but their localization patterns could also be analyzed and compared to those in chloroplasts.

Relative Expression Levels of the Arabidopsis *FtsZ* Genes Remain Constant Throughout Leaf Development

We sought to compare the relative *FtsZ* transcript levels at various developmental points using quantitative real-time RT-PCR. For this experiment, tissue from 19-day soil-grown wild-type plants was separated into three pools based on the *FtsZ2 promoter-GUS* experiments representing tissue with high, intermediate, or low GUS staining. The shoot consisted of the fourth leaf pair, shoot apex, stems, and roots that comprised the high GUS-staining tissue (see Figure2, F and G). The young leaves consisted of the third leaf pair and comprised the intermediate GUS staining tissue (see Figure2, E). The old leaves consisted of the first and second leaf pairs and comprised the low GUS staining

tissue (see Figure2, C and D). Total RNA was isolated from each sample and the amount of each *FtsZ* transcript as well as the *EF1* α transcript was determined. The entire experiment was repeated four times. The amount of transcript reported in Figure 5 is an average from all four biological replicates.

The amount of *FtsZ* transcript based on equal amounts of total RNA is diagramed in Figure 5A. The amount of *FtsZ* transcript relative to that of *EF1* α is shown in Figure 5B. In Figure 5A, the amount of *AtFtsZ1-1*, *AtFtsZ2-1*, and *AtFtsZ2-2* transcript in one intermediate GUS-staining sample was more than two standard deviations away from the average of those in the other three biological replicates and was removed from the analysis. However, this sample was included in Figure 5B since the amount of each transcript was not more than two standard deviations from the average of the other three when compared relative to the amount of *EF1* α transcript.

Comparison of transcript levels in each of the tissues indicates the *FtsZ* genes are expressed at different levels, with AtFtsZ2-1 being the most abundant, followed by AtFtsZ1-1 and AtFtsZ2-2 (Fig 5; grey, white, and black bars respectively). Furthermore, the ratio of *FtsZ1* to *FtsZ2* (combining the amounts of AtFtsZ2-1 and AtFtsZ2-2) transcript is 1 to 2.4, 1 to 2.8, and 1 to 3.4 in the high, intermediate, and low GUS-staining tissue pools, respectively. These data suggest that a constant ratio of about one *FtsZ1* transcript to three *FtsZ2* transcripts is present throughout leaf development.

When the concentrations of the *AtFtsZ1-1*, *AtFtsZ2-1*, and *AtFtsZ2-2* transcript were compared among the three tissue pools, each was most abundant in the high GUS-staining pool. Lower concentrations of the three transcripts were observed in the other

Figure 5. Quantification of *FtsZ* mRNA in various Arabidopsis tissues.

The concentration of AtFtsZ1-1, AtFtsZ2-1, and AtFtsZ2-2 transcript was determined by real time RT-PCR in tissue from old leaves (gray bars), young leaves (white bars), and the shoot of the Arabidopsis plant (root, stem, and immature leaves; black bars). These three tissue pools represent plant tissues with low, intermediate, or high GUS staining. A, The reported amount is attomoles of FtsZ transcript per 200 ng of total RNA analyzed. B, The amount of FtsZ transcript is reported as a percentage of the $EF1\alpha$ transcript amount in each sample.

pools. The differences between the high and low GUS-staining pools for each transcript are statistically significant. The distribution of the *AtFtsZ1-1*, *AtFtsZ2-1*, and *AtFtsZ2-2* transcripts correlates with the patterns of GUS expression observed in the transgenic plants with the *FtsZ2 promoter-GUS* constructs.

The amount of $EF1\alpha$ transcript was also measured in each of the samples and was to be used for a loading control. The amount of each *FtsZ* transcript was compared as a percentage of the $EF1\alpha$ transcript (Figure 5B). Relative to $EF1\alpha$, the *AtFtsZ2-1* transcript is still the most abundant followed by *AtFtsZ1-1* and *AtFtsZ2-2*. However, expressed in this way, the data show greater variation between the biological replications, and the differences between transcript amounts are not statistically significant. Only in the old leaf samples is there any significant difference between the amount of *AtFtsZ2-1*, *AtFtsZ1-1*, and *AtFtsZ2-2* transcript. When the amount of each *FtsZ* transcript is compared among the three pools, they are each more abundant in the old leaf extracts than they are in the extract from the shoot apex pool. contrary to the patterns of GUS expression in the *FtsZ* promoter experiments and to the patterns of cell expansion and chloroplast division (Pyke and Leech, 1987; Pyke et al., 1991; Pyke, 1997). However, because of variations between the biological replications, any trends of *FtsZ* expression between the different tissues are not significant.

Expression of $EF1\alpha$ in the three tissue pools, and between the biological replications, seems to vary much more than that of the three FtsZ genes. Therefore, $EF1\alpha$ seems to constitute a worse internal control than does basing the comparisons on total RNA. There are reasons why $EF1\alpha$ may not be a good control. One reason may be that $EF1\alpha$ expression may change differently during development than does the

expression of the *FtsZ* genes. Another reason may be the difference in transcript abundance, where *EF1* α is between 10- and 100-fold more abundant than any of the *FtsZ* transcripts. Instead of *EF1* α , the amount of *Geranylgeranyl Diphosphate Synthase 1* (*GGPS1*) or either β -hydroxylase 1 or 2 transcript may be a better internal control because their abundance is more similar to that of the *FtsZ* transcripts (Eva Collakova, personal communication), assuming they are constitutively expressed throughout development.

Discussion

Arabidopsis plants express three FtsZ genes that belong to two different families and members of both families are required for chloroplast division (Osteryoung et al., 1998; McAndrew et al., 2001). To better understand the functional relationship among the three FtsZ genes, we investigated their expression patterns. In the three tissue pools tested, the AtFtsZ2-1 transcript was most abundant, followed by the AtFtsZ1-1 and AtFtsZ2-2 transcripts. Furthermore, for every FtsZ1 transcript, there were approximately three FtsZ genes are expressed at a constant ratio throughout leaf development, and are in reasonable agreement with other analyses in our laboratory showing that FtsZ1 and FtsZ2 protein levels are maintained at a constant 1:2 ratio throughout leaf development (Chi-Ham et al., 2003; McAndrew et al., 2003). The difference between the transcript and protein ratios may be due to differences in translational regulation or transcript and protein turnover rates. Both transcript and protein distribution patterns suggest that the FtsZ genes are expressed at a constant stoichiometric ratio, which may be important for chloroplast division.

Microscopic analyses indicate that FtsZ1 and FtsZ2 proteins co-localize to rings at the chloroplast division site (McAndrew et al., 2001; Vitha et al., 2001; Kuroiwa et al., 2002). It is unclear whether these rings are composed of separate FtsZ1 and FtsZ2 homopolymers or if they represent a heteropolymeric structure (McAndrew et al., 2001; Vitha et al., 2001). Although there seems to be a stoichiometric balance among the three *FtsZ* transcripts, the ratio of *FtsZ1* to total *FtsZ2* may be all that is important for chloroplast division (i.e., AtFtsZ2-2 may be functionally redundant). Also, the inhibition of chloroplast division does not seem to be a gene dosage effect since neither the transcripts or the proteins are present in a 1:1:1 ratio. Disruption of the stoichiometric ratio among the FtsZ proteins, and possibly other components of the chloroplast division apparatus, seems to be detrimental to chloroplast division (Osteryoung et al., 1998; Stokes et al., 2000; Vitha et al., 2001).

In leaves, the staining patterns in transgenic plants with either of the *FtsZ2* promoter-GUS constructs were strongest in young leaves but diminished as the leaves aged. Consistent with this staining pattern, analyses of transcript distribution indicated that *FtsZ2* as well as *FtsZ1* levels are highest in young leaves but are reduced in older leaves. This expression pattern correlates with reported patterns of cell expansion and chloroplast division that are reported for Arabidopsis leaves (Pyke et al., 1991; Pyke and Leech, 1992; Pyke, 1997) and is consistent with the role of FtsZ proteins in chloroplast division.

Transgenic plants expressing either of the *FtsZ2 promoter-GUS* constructs exhibited GUS staining in roots. This was true in light-grown and etiolated seedlings as well as in the 19-day-old plants. In addition, immunoblot analysis detected each of the

FtsZ proteins in root extracts. Although chloroplasts are not present in roots, non-green plastids are present. Therefore, the expression of the *FtsZ* genes in root tissue indicates that FtsZ proteins may also have a function in the division of non-green plastids and in the division of all plastids. However, additional experiments are required to determine if the ratio of the FtsZ proteins and their ring structures are identical in all dividing plastids.

Staining of transgenic plants expressing the AtFtsZ1-1 promoter-GUS construct indicated the GUS transgene was not transcribed in young seedlings (Figure 3). However, RNA and protein analyses indicate the endogenous AtFtsZ1-1 gene is expressed in seedlings and throughout the plant (Figure 2, and 3). Vitha et al. (2001) expressed a GFP-tagged version of AtFtsZ1-1 bearing the same AtFtsZ1-1 promoter that was used in our study but containing the entire genomic AtFtsZ1-1 sequence. Fluorescence microscopy detected the GFP-tagged protein in leaves as well as in the root and shoot apices of transgenic Arabidopsis plants (Vitha et al., 2001), personal communication). Together, the data described here and those of Vitha et al. (2001) suggest that sequences downstream of the 5'-UTR are required for proper expression of AtFtsZ1-1 since expression is not observed with the promoter alone, but is when the full genomic AtFtsZ1-1 sequence is used. There are several reports of other genes that require sequences downstream of the 5'-UTR for proper expression (Luehrsen and Walbot, 1991; Curie et al., 1993; Donath et al., 1995; Sieburth and Meyerowitz, 1997; Silverstone et al., 1997; Itoh et al., 1999; Kim and Guiltinan, 1999; Kloti et al., 1999). For example, proper expression of the GA1 gene requires sequences through the first two introns of the coding region (Silverstone et al., 1997).

CHAPTER 5

Stokes KD, Osteryoung KW (2003) Early divergence of the *FtsZ1* and *FtsZ2* plastid

division gene families in photosynthetic eukaryotes. Gene, In Press

Abstract

Homologues of the bacterial cell division protein FtsZ are found in higher plants where they function as key components of the chloroplast division complex. In contrast to most bacteria that encode a single FtsZ protein, plants encode multiple proteins that group into two families, FtsZ1 and FtsZ2. Using new sequence data from a broad range photosynthetic organisms, we performed a series of analyses to better understand the evolutionary history of the plant FtsZ families. Multiple phylogenetic analyses strongly support the grouping of the plant *FtsZ* genes and proteins into distinct *FtsZ1* and *FtsZ2* clades. Protein features representing potentially significant functional differences between FtsZ1 and FtsZ2 are identified. Genomic structure comparisons show that exon length and intron position are conserved within each clade, but differ between the clades except at one position. Our data indicate that the divergence of the FtsZ1 and FtsZ2 families occurred long before the evolution of land plants, preceding the emergence of the green algae. The results are consistent with proposals that the two FtsZ families evolved distinct functions during evolution of the chloroplast division apparatus, and indicate that genetic and functional differentiation occurred much earlier than previously hypothesized.

Introduction

Cell division in bacteria requires the interaction of multiple proteins at the division site, and the most extensively studied among them is FtsZ (Lutkenhaus and Addinall, 1997). FtsZ is a structural homologue of the eukaryotic tubulins, and is probably their evolutionary predecessor (Erickson, 1998). Like tubulin, FtsZ is a GTPase that polymerizes into filaments in vitro (Mukherjee and Lutkenhaus, 1998). In vivo, formation of FtsZ into a cytokinetic ring at the midcell division site is the first step in assembly of the bacterial cell division machinery (Lutkenhaus and Addinall, 1997). Several key residues important for FtsZ enzyme activity, polymerization, and interactions with other cell division proteins have been identified (Lutkenhaus and Addinall, 1997; Löwe, 1998; Lu et al., 2001). Of considerable interest are the interactions between a short, conserved stretch of amino acids in FtsZ called the C-terminal domain, and the two division regulators FtsA and ZipA (Ma and Margolin, 1999; Mosyak et al., 2000). This interaction is essential for cell division in *Escherichia coli* (Ma and Margolin, 1999), though ZipA and FtsA are less widespread in bacteria than is FtsZ (Rothfield et al., 1999). In most prokaryotes, a single gene encodes *FtsZ*, but exceptions exist (Margolin and Long, 1994).

Chloroplasts are descendants of an ancient cyanobacterial endosymbiont acquired by a eukaryotic host (Martin and Herrmann, 1998; Gray, 1999; McFadden, 1999), and, like prokaryotes, divide by binary fission. The discovery of a nuclear gene in plants encoding a chloroplast–targeted form of FtsZ that is closely related to the FtsZ sequences in cyanobacteria provided compelling evidence for the prokaryotic ancestry of the chloroplast division machinery (Osteryoung and Vierling, 1995). Subsequently, plant

FtsZ proteins were shown to be essential for chloroplast division (Osteryoung et al., 1998; Strepp et al., 1998), indicating that chloroplasts have retained functional components of the prokaryotic cell division machinery during their evolution. In contrast, FtsZ no longer functions in the division of fungal, plant, or animal mitochondria, which descended from an ancient α -proteobacterium (Gray, 1999). However, the recent discovery of α -proteobacterial-like, mitochondrial-targeted FtsZ proteins in several primitive unicellular eukaryotes strongly suggests their presence in the endosymbiotic ancestor of mitochondria (Beech et al., 2000; Takahara et al., 2000; Gilson and Beech, 2001). Phylogenetic analysis has shown that mitochondrial and chloroplastic FtsZ proteins in extant eukaryotes have distinct evolutionary origins that parallel the unique endosymbiotic histories of the two organelles (Beech et al., 2000; Takahara et al., 2000; Gilson and Beech, 2001).

The chloroplastic FtsZ proteins currently identified, all of which are encoded by nuclear genes, group into three major families: red/brown algae, FtsZ1, and FtsZ2 (Beech et al., 2000; Gilson and Beech, 2001; El-Shami et al., 2002; Wang et al., 2003). The former are found only in red and brown algae, whereas the latter two have been reported in higher plants and in *Chamydomonas reinhardti*. Consistent with the presumed monophyletic origin of chloroplasts (Gray, 1999), all three FtsZ groups probably arose from a single *FtsZ* gene present in the cyanobacterial ancestor of chloroplasts, and members of each group have been shown to assemble into mid-plastid rings (Vitha et al., 2001).

Genome data suggest that *FtsZ1* and *FtsZ2* sequences are represented in many higher plants. Functional analysis in *Arabidopsis* has shown that members of both
families are required for chloroplast division in this organism (Osteryoung et al., 1998). FtsZ1 and FtsZ2 proteins are targeted to the chloroplast stroma by cleavable transit peptides (Osteryoung and Vierling, 1995; Gaikwad et al., 2000; Fujiwara and Yoshida, 2001; McAndrew et al., 2001) and are tightly colocalized (Vitha et al., 2001), suggesting they may be components of the same ring structure. FtsZ1 and FtsZ2 family members are distinguished by conserved differences in their amino acid sequences (Osteryoung and McAndrew, 2001; El-Shami et al., 2002). Especially noteworthy are the presence in FtsZ2, but not FtsZ1, of a short carboxy-terminal domain important for FtsZ function in bacteria (Osteryoung and McAndrew, 2001), and a single amino acid difference in the highly conserved "tubulin signature motif" (El-Shami et al., 2002). Because FtsZ2 proteins share slightly higher similarity with the cyanobacterial FtsZs than do FtsZ1 proteins, it has been suggested that FtsZ2 may be the more ancestral form of FtsZ in higher plants (El-Shami et al., 2002). In addition, because both forms of FtsZ had until recently only been identified in vascular plants, it had been postulated that the emergence of the two families may have been coincident with the emergence of this group of land plants (Osteryoung and McAndrew, 2001). However, a recent report showing that FtsZ1 and FtsZ2 homologues are present in the green alga C. reinhardtii indicates that the two families emerged as distinct clades before the evolution of land plants (Wang et al., 2003). The functional significance of this evolutionary divergence with regard to chloroplast division is not yet understood.

In the course of our studies on chloroplast division in higher plants, we have become particularly interested in understanding when during the evolution of chloroplasts the FtsZ1 and FtsZ2 families diverged from one another. Towards this end, we initiated a

series of sequence and phylogenetic analyses to reconstruct the evolutionary history of the chloroplast division FtsZs. These studies differ from those previously reported (Beech et al., 2000; Kiessling et al., 2000; Gilson and Beech, 2001; El-Shami et al., 2002; Wang et al., 2003) in four respects. First, we have focused solely on the plastid FtsZ lineages rather than on bacterial, mitochondrial and plastid lineages, providing a more focused picture of plastid FtsZ evolution. Second, we have incorporated a larger number of plastid FtsZ sequences from a wider range of photosynthetic eukaryotes, including Oryza sativa and the green alga C. reinhardtii, providing a more informative evolutionary perspective than earlier studies. Third, we have examined both protein and cDNA sequences to provide a more thorough analysis of the sequence relationships. Fourth, we have investigated intron positioning, as well as sequence comparisons, as an additional indicator of relatedness among *FtsZ* genes within and between organisms. The detailed analyses reported here strongly support the emergence of FtsZ1 and FtsZ2 as distinct clades before the split between the charophycean green algae, from which land plants evolved (Graham and Wilcox, 2000), and the chlorophycean green algae. Further, our results, which include analysis of evolutionary rates and testing of constraint trees, provide additional support for the peculiar FtsZ branching order observed previously (Beech and Gilson, 2000; Kiessling et al., 2000; Wang et al., 2003). We discuss possible explanations for this unexpected tree topology. In addition, we have identified conserved differences between the FtsZ1 and FtsZ2 protein families whose further study may help to elucidate why two forms of FtsZ evolved to function in chloroplast division.

Materials and Methods

Sequences and Their Alignment

Accession numbers for the protein and cDNA sequences used in this study are listed in Table 1 and most are available from GenBank (http://www.ncbi.nlm.nih.gov). The Synechococcus WH8102, Trichodesmium erythraeum, Nostoc punctiforme, Prochlorococcus marinus MED4 and Prochlorococcus marinus MIT9313 FtsZ sequences were obtained from the DOE Joint Genome Institute (http://www.jgi.doe.gov/JGI_microbial/html/). The Anabaena sp. PCC7120 and Thermosynechococcus elongatus BP-1 sequences are available at the Kazusa DNA Research Institute (http://www.kazusa.or.jp/cyano/cyano.html). Protein sequences were initially aligned with Clustal X (Thompson et al., 1997), but final adjustments were done manually and unaligned regions at the N- and C- termini were removed. The cDNA alignment was done similarly, except the final adjustments were based on the protein alignment. Both alignments are available upon request.

Phylogenetic Analyses

Neighbor joining, maximum parsimony, quartet puzzling and maximum likelihood analyses were all performed using PAUP 4.0v10b (Swofford, 1998). Ties were randomly broken and, for the cDNA analyses, the 3rd codon position was removed. Parsimony analyses were performed using heuristic searches and tree bisectionreconnection (TBR) swapping. All minimal trees were saved. The "COLLAPSE if maximum length is zero" option was in effect during the searches, and character changes were interpreted under ACCTRAN optimization. Characters were unweighted and

Table 1	. Accession numbers for FtsZ protein and	cDNA sequences				
		Accession Number				
Letter ^a	Organism Name	Protein	cDNA			
A	Nicotiana tabacum 2-1	CAB89288	AJ271750			
В	Nicotiana tabacum 2-2	CAC44257	AJ311847			
С	Oryza sativa	CLB17724_5 ^b	CLB17724_5 ^b			
D	Gentiana lutea	AAF23771	AF205859			
E	Lilium longiflorum	BAA96782	AB042101			
F	Arabidopsis thaliana 2-1	AAC35987	AF089738			
G	Arabidopsis thaliana 2-2	AAK63846	AF384167			
Н	Oryza sativa	CL005296_338 ^b	CL005296_338 ^b			
I	Physcomitrella patens 2	CAB76386	AJ249139			
J	Physcomitrella patens 1	CAB54558	AJ249138			
K	Chlamydomonas reinhardtii	AAM22891	AF449446			
L	Cyanidioschyzon merolae	BAA85116	AB032072			
Μ	Cyanidium caldarium RK-1	BAA82871	AB023962			
Ν	Guillardia theta (nucleomorph)	CAA07676	AJ007748			
0	Galdieria sulphuraria	BAA82090	AB022594			
Р	Mallomonas splendens	AAF35433	AF120117			
Q	Galdieria sulphuraria	BAA82091	AB022595			
R	Trichodesmium erythraeum	Gene1949 ^c	Gene1949 ^c			
S	Synechocystis sp. PCC6803	NP_440816	NC_000911			
Т	Anabaena sp. PCC7120	CAA83241 ^c	Z31371 [°]			
U	Nostoc punctiforme	Contig 502 Gene 61°	Contig 502 Gene 61°			
V	Thermosynechococcus elongatus BP-1	Gene tll2382 ^c	Gene tll2382 ^c			
W	Synechococcus PCC7942	AAC26227	AF076530			
Х	Prochlorococcus sp.	CAB56201	AJ011025			
Y	Prochlorococcus marinus MED4	Gene1658 ^c	Gene1658 ^c			
Z	Prochlorococcus marinus ddlb	CAB95028	AJ237851			
AA	Synechococcus WH8102	Gene 549 ^c	Gene 549 ^c			
BB	Prochlorococcus marinus MIT9313	Gene1268 ^e	Gene1268 ^c			
CC	Nicotiana tabacum 1-2	CAB41987	AJ133453			
DD	Nicotiana tabacum 1-3	CAB89287	AJ271749			
EE	Tagetes erecta	AAF81220	AF251346			
FF	Arabidopsis thaliana 1-1	AAA82068	U39877			
GG	Pisum sativum	CAA75603	Y15383			
HH	Nicotiana tabacum 1-4	AAF23770	AF205858			
II	Nicotiana tabacum 1-1	CAB89286	AJ271748			
JJ	Oryza sativa 1-1	AAK64282	AF383876			
KK	Chlamydomonas reinhardtii	BAB91150	AB084236			
LL	Clostridium propionicum	AAC32266	AF067823			
MM	Escherichia coli O157:H7	P06138	X55034			
NN	Bacillus subtilis	AAA22457	M22630			

1 1

^aLetters to the left correspond to sequences represented in Figures. 1 and 2 and Table 2. ^bSequences derived from genomic sequence. ^cSequence source given in Materials and Methods

-

unordered, and gaps were treated as missing data. Bootstrapping was performed on trees obtained from each technique. One thousand replications were used for neighbor joining and maximum parsimony bootstrap analyses, as well as for the quartet puzzling frequency. Values from the different analyses indicate that the same sequences were present at similar nodes. When multiple trees were obtained, bootstrapping analysis was performed on the first tree in the list. For the maximum likelihood analysis, the Hierarchical Likelihood Ratio Tests and Akaike Information Criterion models were selected using Modeltest 3.06 (Posada and Crandall, 1998), which also provided the appropriate settings for analysis in PAUP 4.0v10b (Swofford, 1998) [PAUP command lines for each criterion were, respectively: Lset Base=(0.2705 0.2473 0.2146) Nst=6 Rmat=(1.0000 2.9264 1.0000 1.0000 3.4941) Rates=gamma Shape=0.7144 Pinvar=0.2225; and Lset Base=(0.2629 0.2330 0.2251) Nst=6 Rmat=(2.6121 4.5906 1.3185 1.6823 6.0001) Rates=gamma Shape=0.7111 Pinvar=0.2231]. Bayesian Inference was performed using the MRBAYES program (Huelsenbeck and Ronquist, 2001) with parameters set for four chains, 1.5×10^{6} generations, and trees saved every 100 generations. The first 3000 trees were not included in the frequency analysis. Bayesian Inference analyses using the Hierarchical Likelihood Ratio Tests and Akaike Information Criterion produced identical trees with nearly identical frequency values. Values from the Hierarchical Likelihood Ratio Test criterion are reported in Figure 2.

Testing Constraint Trees

Constraint trees were produced using the program MacClade 4.0 (Maddison and Maddison, 2000). Trees were tested against the original maximum likelihood tree using

PAUP 4.0v10b (Swofford, 1998) and the Kishino-Hasegawa two-tailed test with a normal test distribution. Results are given as the p-value scores reported by the test.

Relative Rate Test

The relative rate test was performed using sequences taken from the alignments for the phylogenetic analyses. The analysis was performed using the program Phyltest version 2.0 (ftp://ftp.bio.indiana.edu/molbio/ibmpc). All protein comparisons were done using the proportion-of-differences and poisson correction distance estimation methods. Each cDNA comparison was performed with the proportion-of-differences, Jukes-Cantor, and Kimura 2-parameter distance estimation methods. Settings for all distance estimation methods were provided in the program.

Genetic Structure Comparisons

Regions of the *O. sativa* genome containing possible *FtsZ* genes were identified in the Torrey Mesa Research Institute rice database (http://portal.tmri.org/rice/). Accession numbers for the clones containing *FtsZ* genes are CL005296_338, CLB17724_5, and CL000716_185. The cDNA and protein sequences of the *O. sativa FtsZ* genes were determined using Netstart 1.0 at http://www.cbs.dtu.dk/services/NetStart/, Netgene2 at http://www.cbs.dtu.dk/services/NetGene2/, Genescan at http://genes.mit.edu/GENSCAN.html, and by comparison to known plant *FtsZ* sequences. Genomic sequences for the *Arabidopsis thaliana FtsZ* genes were obtained from The *Arabidopsis* Information Resource database (Huala et al., 2001). The accession numbers for the *Physcomitrella patens* genomic sequences are AJ249138 and AJ249139. The *C. reinhardtii* genomic *FtsZ* sequences are located on scaffold sequences 85 and 262, which were obtained from the DOE Joint Genome Institute (http://genome.jgipsf.org/chlre1/chlre1.home.html). Comparisons between the genomic and cDNA sequences were used to determine the intron and exon structures.

Protein Comparisons

The full-length protein sequences reported in Table 1 were aligned using the program Clustal X (Thompson et al., 1997) with default settings. The alignment was adjusted manually to mirror the protein alignment described for the phylogenic analyses, and to align the plant and algal C-terminal peptide sequences with that in *E. coli*. Regions at the amino termini containing the chloroplast transit peptides, and highly divergent regions near the carboxy termini, were removed. The entire *E. coli* FtsZ protein sequence was included in the alignment. The final alignment is available upon request. From the final alignment, residues that are identical in all available sequences of each clade were determined. Similar residues were determined using default settings in the Boxshade program at the Biology Workbench 3.2 website (http://workbench.sdsc.edu/).

Results

Phylogenetic Analysis of FtsZ Proteins from Photosynthetic Eukaryotes

Two recent events have provided critical insights into the plant FtsZ evolutionary origins. First, two *FtsZ* sequences from a green alga, *C. reinhardtii*, became available in

the database. Second, analysis of the newly sequenced genome of O. sativa (rice) (Goff et al., 2002) provided a full complement of monocot *FtsZ* homologues. Focusing on the FtsZ sequences from photosynthetic organisms (Table 1), including the O. sativa and C. reinhardtii sequences, we investigated their evolutionary relationships by phylogenetic analysis. Only available sequences that were full-length or near full-length were used to most accurately represent the evolutionary relationships. The outgroup was chosen based on a preliminary phylogenetic analysis by our group and on previous studies (Beech et al., 2000; Gilson and Beech, 2001), and consists of bacterial FtsZ sequences from E. coli, Bacillus subtilis, and Clostridium propionicum. BLAST searches identified several Bacillus FtsZ sequences as the closest relatives of the cyanobacterial FtsZs. The B. subtilis FtsZ gene, one of these close relatives, was chosen for the outgroup. The extreme amino and carboxy termini of the protein sequences used in this study are highly divergent and could not be aligned; therefore, they were omitted from the alignment. The trimmed protein sequences are about 322 amino acids long and correspond to residues 12 through 304 (Ala to Phe) of the *B. subtilis* sequence.

The protein alignment was analyzed using neighbor joining and maximum parsimony comparative techniques. The neighbor joining tree is shown in Figure 1, along with bootstrap support values for the neighbor joining and maximum parsimony analyses (first two numbers at nodes) and quartet puzzling frequencies (third number). Although six trees were obtained with maximum parsimony (not shown), the strict consensus indicated the differences were within, rather than between, clades. Both neighbor joining and maximum parsimony analyses separate the proteins into four clades: the cyanobacteria, red/brown algae, FtsZ1, and FtsZ2 families. Strong support is seen

Figure 1. Phylogenetic analysis of *FtsZ* proteins.

A neighbor joining tree from analysis of FtsZ protein sequences is shown. Bootstrap support values from the neighbor joining (first number) and maximum parsimony (second number) analyses are shown at selected nodes. Boxed numbers are quartet puzzle frequencies from analysis of the parsimony tree. Nodes with less than 50% support, or not present, are represented by a dash. Letters to the left refer to the sequences listed in Table 1. Alignment is available upon request.

for the FtsZ1 (100/97/79) and FtsZ2 (97/86/93) clades, with slightly reduced support for the red/brown algae (88/70/89). The cyanobacteria have the least support (85/53/-) as a single clade; the analyses suggest there may actually be two clades (100/100/94 and 94/55/67). Although resolution of the cyanobacterial proteins into a single clade is weak, both neighbor joining and parsimony trees indicate that all the cyanobacterial sequences are sister to the red/brown algae and FtsZ2 clades. As indicated in previous reports (Osteryoung and Vierling 1995; Osteryoung et al., 1998; Beech et al., 2000), the plant FtsZ protein sequences are more closely related to those in cyanobacteria than in other prokaryotes (not shown).

An interesting result of the phylogenetic analyses is that the FtsZ1 clade branches prior to the other three clades rather than after the cyanobacterial clade (Figure 1). This branching order is supported by intermediate to weak bootstrap and frequency scores (85/67/55). The early branching of the FtsZ1 proteins before the cyanobacterial proteins seems inconsistent with the evolution of chloroplasts, as discussed below. Support for branching of the cyanobacterial (71/57/62) from the red/brown and FtsZ2 (71/57/62) clades is less strong, suggesting the differences between these clades are not as pronounced.

Significantly, our analyses place all the chloroplastic FtsZ proteins from red/brown algae into a single clade, whereas the sequences from the chlorophycean green alga *C. reinhardtii* are split between the FtsZ1 and FtsZ2 clades. Wang et al. (2003) recently reported a similar result. These findings indicate that the divergence of the FtsZ1 and FtsZ2 families found in plants may have occurred between the divergence of red and green algae.

Phylogenetic Analysis of FtsZ cDNA Sequences from Photosynthetic Eukaryotes

The phylogenetic relationships among the *FtsZ* cDNA sequences were analyzed using neighbor joining, maximum parsimony, and maximum likelihood algorithms (Swofford, 1998). The cDNA alignment used in this set of experiments was based on that of the proteins. The third codon position was removed for these analyses due to its variability. The maximum parsimony analysis produced seventeen different trees, but the strict consensus tree indicated that the differences in branching patterns occurred only within clades. Figure 2 shows the maximum likelihood tree with bootstrap support from the neighbor joining and maximum parsimony analyses (first two numbers) and likelihood frequencies from a Bayesian Inference analysis (Huelsenbeck and Ronquist, 2001) (third number) indicated at selected nodes.

The cDNA experiments group the sequences into the same four clades as the protein analyses, namely FtsZ1, FtsZ2, red/brown algae, and cyanobacteria (Figure 2). Support for each clade is generally strong (100/99/100, 99/97/100, 96/85/100, and 96/-/97, respectively) and the branching order was the same as that obtained for the protein analyses. There is reasonable support in the cDNA analyses for the early branching of the FtsZ1 clade before the cyanobacterial, red/brown algal, and FtsZ2 clades (72/72/94). Like the protein analyses (Figure 1; Wang et al., 2003), the cDNA analyses place distinct *C. reinhardtii* sequences in the FtsZ1 and FtsZ2 clades. The potential grouping of the cyanobacterial sequences into two clades is supported by bootstrap and frequency values of 93/100/100 and 100/65/100. These two cyanobacterial clades are almost identical to those observed in the protein analyses; the only difference is in the position of the

Figure 2. Phylogenetic analysis of *FtsZ* cDNA sequences.

A Maximum likelihood tree using the first two codon positions of the cDNA sequences is shown. Bootstrap support values from neighbor joining (first number) and maximum parsimony (second number) analyses are shown at selected nodes. Bayesian Inference frequencies are underlined. Nodes with less than 50% support, or not present, are represented by a dash. Letters to the left refer to the sequences listed in Table 1. Alignment is available upon request.

Synechococcus sp. PCC7942 sequence. Except for the node at which the red/brown algae and FtsZ2 clades branch, all Bayesian Inference frequencies shown (Figure 2) are greater than 90% and strongly support this as the most likely tree under the selected criteria.

We next tested the significance of the maximum likelihood tree from Figure 2 (shown in simplified form in Figure 3A) against two constraint trees in which the branching order among the four major clades was rearranged (Figure 3, B and C; branching within clades was not altered). In one constraint tree (Figure 3B), the positions of the cyanobacterial and FtsZ1 clades have been switched from that shown in Figure 3A, such that the cyanobacterial clade branches first, followed by the FtsZ1 and subsequently the FtsZ2 and red/brown algae clades. In the second constraint tree (Figure 3C) the FtsZ1 clade has been placed as sister to the FtsZ2 clade, with the cyanobacterial clade branching first. These two constraint trees better represent the relationships we expected based on chloroplast evolution theories (Gray, 1999) and on the strong similarity of both the FtsZ1 and FtsZ2 proteins to the cyanobacterial FtsZs (Osteryoung et al., 1998; Osteryoung and McAndrew, 2001). When the significance of either constraint tree was tested against the maximum likelihood tree, the *p*-value was 0.000. This means that, at greater than 99% confidence, the data do not support a branching order that differs from that shown in the maximum likelihood tree (Figure 3A). Therefore, phylogenetic analyses based on both cDNA and protein data support the grouping of FtsZ sequences into four clades, with the FtsZ1 sequences branching first, followed by the cyanobacteria, then the red/brown algae and FtsZ2 sequences.

Figure 3. Testing the maximum likelihood tree against two constraint trees.

All trees have been simplified in this diagram. The maximum likelihood tree, A, from Figure 2 is compared to two different constraint trees, B & C, in which the relationships between the clades have been altered. The low p-values indicate the relationships in the two constraint trees are not supported by the data.

Testing for Differences in The FtsZ1 and FtsZ2 Evolutionary Rates

One possible explanation for the branching order determined from the phylogenetic analyses is that the *FtsZ1* sequences evolved more rapidly than the *FtsZ2* sequences. To test this possibility, we performed a relative rate test on the *FtsZ1* and *FtsZ2* sequences. Only sequences from the same organism were compared in order to minimize the effect of different selective pressures encountered by different organisms. Because of this restriction, only the *C. reinhardtii*, *O. sativa*, *A. thaliana*, and *Nicotiana tabacum* sequences could be tested. Every *FtsZ1* sequence was tested against every *FtsZ2* sequence from the same organism, using both protein and cDNA sequences. All FtsZ1 and FtsZ2 sequences were compared against each of three outgroups: (1) *B. subtilis* only, (2) *C. propionicum* only, and (3) *C. propionicum*, *E. coli*, and *B. subtilis* combined. At a 95% confidence limit, no significant difference in the evolutionary rate was detected for any of the sequence combinations tested. Thus, the relative rate test did not detect a significant difference in the rates at which the FtsZ1 and FtsZ2 sequences have evolved.

Genetic Structure Is Conserved Within the Plant FtsZ Clades

The relationship between the *FtsZ1* and *FtsZ2* sequences was further investigated using genetic structure (intron position/exon length) comparisons. Fujiwara and Yoshida (2001) reported that the intron positions in the two *A. thaliana FtsZ2* sequences are identical. We analyzed all three *A. thaliana FtsZ* genes, as well as genes from *O. sativa*, *P. patens*, and *C. reinhardtii* (Figure 4). Although relatively few genomic sequences are available for this analysis, especially among members of the FtsZ1 clade, those available represent very diverse groups. Due to high sequence variability in the 5' and 3' ends of

AtFtsZ1-1 (FF) AT	G (294) (100) G (294) (100)	3 4 (230) (168)	5 6 Exon Number (234) (276) (Length) S Intron Number
OsFtsZ1-1 (JJ)	ATG (216) (100)	3 4 (236) (168) (168)	5 6 (234) (261)
CrFtsZ1 (KK) ATC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 6) (156) (65) (161)	7 8 9 (153) (93) (320) 6 ⁄⁄⁄⁄ ⁄ð
FtsZ2		1	
AtFtsz2-1 (F) ATG	1 (633)	2 (300) (1 1	3 4 5 6 91) (125) (93) (195) 3 4 5
AtFtsZ2-2 (G) ATG —	1 (621)	2 (300) ((3 4 5 6 7 91) (125) (93)(66) (126) 3 4 5 6
OsFtsZ2 (H) ATG —	1 (624)	2 (300) (1 2	3 4 5 6 7 91) (125) (93)(60)(72) 3 4 5 6
OsFtsZ2 (C) ATG-	1 (567)	2 (300) ((3 4 5 6 7 91) (125) (93)(66)(78) 3 4 5 6
PpFtsZ1 (J) ATG-	1 (603)	2 (300) ((3 4 5 6 7 91) (125) (93)(66) (123) 3 4 5 6
PpFtsZ2 (I) ATG —	1 (621)	2 (300) (1 2	 3 4 5 6 7 91) (125) (93)(66) (117) 3 4 5 6
CrFtsZ2 (K)	1 2 3 ATG (114) (99) (99) (1 2 2	4 5 6 7 69)(132)(76)(92)(4 5 6 7	 8 9 10 11 88) (128) (121) (287) 全8 少 広

Figure 4. Comparison of *FtsZ1* and *FtsZ2* genetic structures.

Aligned A. thaliana, P. patens, O. sativa, and C. reinhardtii FtsZ cDNA sequences are represented by solid horizontal lines, and drawn to scale. Letters in parentheses correspond to sequences listed in Table 1. Intron positions are indicated by numbered triangles. Exon numbers are indicated above the horizontal line; exon lengths in bp are in parentheses. The shaded box indicates an intron positioned similarly in the FtsZ1 and FtsZ2 genes. Hatched boxes indicate C. reinhardtii and plant FtsZ1 introns located at equivalent positions. The crosshatched boxes represent intron positions shared only in the two C. reinhardtii sequences. The CrFtsZ1 sequence corresponds to the CrFtsZ3 sequence reported by Wang et al. (2003).

the coding regions, a cDNA sequence alignment based on that used for the phylogenetic analysis shown in Figure 2 was used for genetic structure comparisons.

In the *O. sativa* and *A. thaliana FtsZ1* genes, all five introns (1, 2, 3, 4 and 5) are located at identical positions (Figure 4). The introns vary considerably in sequence and length (Table 2), but the exon lengths are identical, the only exception being a 6 bp insertion in the third exon of the *O. sativa FtsZ1* gene. These results indicate that intron locations in the *FtsZ1* sequences from angiosperms are conserved.

The conservation of intron locations among the FtsZ2 genes is even more striking (Figure 4). The six introns in the *A. thaliana*, *O. sativa*, and *P. patens FtsZ2* genes, though variable in sequence and length (Table 2), are in identical positions, with two exceptions. The first is in the AtFtsZ2-1 sequence, which lacks the sixth intron present in the other FtsZ2 genes. The second is a six bp shift in the position of the sixth intron of one *O. sativa* sequence, possibly due to a deletion, that reduces the length of the sixth exon from 66 to 60 bp. Otherwise, monocot, dicot, and moss FtsZ2 sequences have a conserved genetic structure.

Although intron locations within the plant *FtsZ1* and *FtsZ2* genes are conserved, the intron locations between them are significantly different. Only the fourth intron in the *FtsZ1* genes and the second intron in the *FtsZ2* genes are located at equivalent positions (shaded box in Figure 4). The presence of similarly positioned introns in the *FtsZ1* and *FtsZ2* genes from diverse land plants suggests that both clades originated from a common ancestral gene bearing a corresponding intron. Ancient duplication of this ancestral gene presumably allowed the two clades to diverge early and extensively from each other.

Table 2	Comparison of F	tsZ int	ron lei	ngths							
Gene		Intro	n Num	ber ^b							
Family	Sequence ^a	1	2	3	4	5	6	7	8	9	10
FtsZl	AtFtsZ1-1 (FF)	102	93	89	106	96	NA	NA	NA	NA	NA
	OsFtsZl (JJ)	357	266	468	68	192	NA	NA	NA	NA	NA
	CrFtsZl (KK)	126	165	198	122	163	173	133	186	NA	NA
FtsZ2	AtFtsZ2-1 (F)	165	85	301	202	82	NA	NA	NA	NA	NA
	AtFtsZ2-2 (G)	367	90	377	148	85	106	NA	NA	NA	NA
	OsFtsZ2 (H)	287	474	343	258	143	155	NA	NA	NA	NA
	OsFtsZ2 (C)	90	132	500	1006	278	636	NA	NA	NA	NA
	PpFtsZl (J)	462	312	204	79	217	276	NA	NA	NA	NA
	PpFtsZ2 (I)	460	338	187	84	225	455	NA	NA	NA	NA
	CrFtsZ2 (K)	74	86	100	371	150	107	119	114	154	181

^aLetters in parentheses correspond to sequences listed in Table 1. ^bThe intron number corresponds to labeled triangles in Figure 4. NA, not applicable.

The genetic structures of the *C. reinhardtii FtsZ* genes are partially conserved with those of the plant genes. The *C. reinhardtii FtsZ1* gene shares one intron position with the plant *FtsZ1* genes (Figure 4, introns 4 and 3, respectively). Three *C. reinhardtii FtsZ2* introns are positioned similarly to those in the plant *FtsZ2* genes (introns 4, 7, and 9 versus 1, 2, and 4, respectively). Intron 7 in *C. reinhardtii FtsZ2* corresponds to the intron that is common to both *FtsZ1* and *FtsZ2* in plants (shaded box in Figure 4), though this intron is lacking in the *C. reinhardtii FtsZ1* gene. Intron 5 in *C. reinhardtii FtsZ2* corresponds to introns 4 and 3 in the *C. reinhardtii* and plant *FtsZ1* genes, respectively (hatched boxes in Figure 4). Finally, intron 2 is shared by both *C. reinhardtii* genes (crosshatched boxes in Figure 4), but is absent from the plant genes. The positions of the other introns in the two *C. reinhardtii FtsZ* genes are unique to each gene.

FtsZ1 and FtsZ2 Protein Comparisons

The early divergence of the FtsZ1 and FtsZ2 families and their conservation in both plants and *C. reinhardti* is consistent with the hypothesis that the two proteins evolved to have distinct functions. Because protein function is ultimately defined by amino acid composition, we compared the FtsZ protein sequences in an effort to identify regions that may represent functionally important differences between FtsZ1 and FtsZ2 (Figure 5). Consensus sequences for each clade defined in Figure 1 were aligned, except for the highly divergent chloroplast transit peptides. The alignment included the divergent carboxy termini omitted from the phylogenetic analyses because it contains a region of potential functional significance as described below. A full-length *E. coli*

FtsZl FtsZ2 R/B Algae Cyano	+ + + + + + + + + + + + + + + + + + +
Ecoli	MFEPMELTNDAVIKVIGVG <u>GGGGNAVEHMVRERIEGVEFFAVNTDAQALRKTAVGQTIQIGSGITKGLGAGA</u> NPEVGR
Fts21 Fts22 R/B Algae Cyano Ecoli	*AA*ES*e*i***D*VF1ASMCGGTGGGAAPVVA*1*Ke*G*LTVGVVTYPF*FEGRKR**QALEa1 E *L***VD *AA*ES***i***l****DVF1ASMCGGTGGGAAPVVA**Ak*mGILTVG I *T T PF*FEGR*R**QA**gi A *Lr**VD *AAEES***I******************************
FtsZl FtsZ2 R/B Algae Cyano Ecoli	+ +++++ + + +++ + + + + + + + + + + +
FtsZl FtsZ2 R/B Algae Cyano Ecoli	++ +++ ++++ ++ ++ ++ +++++++ ++ +++++++
FtsZ1 FtsZ2 R/B Algae Cyano E. coli	+ + +++++ F···LL····g·····rL·· e·····d······· KRPEITLVTNKQVQQPVMDRYCQHGMAPLTCECKPVAKVVNDNAPQTAKEPDYLDFAFLRKQAD

Figure 5. Comparison of FtsZ proteins from photosynthetic organisms.

Consensus sequences are shown for the FtsZ1, FtsZ2, Red/Brown algae (R/B algae), and cyanobacterial (cyano) clades. For all sequences within a clade, capital letters and small letters indicate identical and similar residues, respectively. Positions where amino acids are not conserved are indicated by asterisks. Gaps in all members of a clade are represented by dashes. Residues shown by structural analysis to either contact GTP (Löwe, 1998) or to be required for regulation of GTPase activity (Erickson, 1998) are underlined in the *E. coli* protein. Residues located on the side of the *E. coli* protein that are required for FtsZ function but not for GTPase activity (Lu et al., 2001) are labeled with dots. Residues where the FtsZ1 and FtsZ2 differ are marked at the top with a '+'; bold letters indicate residues that are completely conserved within, but that differ between, the FtsZ1 and FtsZ2 clades. The circled '+' is a nucleotide binding residue that was previously recognized to differ between the FtsZ1 and FtsZ2 clades (Osteryoung and McAndrew, 2001).

protein is included in the alignment as a reference because it is functionally the best characterized of the bacterial FtsZ proteins.

FtsZ sequences in all four clades share significant similarity with the *E. coli* protein, particularly in regions previously shown to contact GTP (Löwe, 1998), to be required for GTP activity (Erickson, 1998), or to be important for other aspects of E. coli FtsZ function (Lu et al., 2001) (underscores and dots in Figure 5). With one exception (circled plus), all the residues important for GTPase activity (underscores) are conserved in all the FtsZ proteins analyzed in this study. However, because we are most interested in the features that may functionally distinguish the FtsZ1 and FtsZ2 proteins, we used the alignment to highlight the differences between these two clades. The residues indicated in bold represent amino acids that are invariant within the two clades, but that differ between them. None of these conserved differences occur at positions corresponding to the functionally characterized residues in E. coli FtsZ, and most occur downstream of the regions in the E. coli protein associated with GTPase activity (underscores). In addition to these differences, the FtsZ1 and FtsZ2 proteins differ in the presence of a C-terminal peptide similar to a region in E. coli FtsZ (boxed residues in Figure 5) shown to be critical for its interaction with two other bacterial cell division proteins, FtsA and ZipA (Ma and Margolin, 1999; Mosyak et al., 2000). This peptide is identifiable in the FtsZ2 proteins as well as in the cyanobacterial and most of the red/brown algae proteins, but is missing in the FtsZ1 proteins. The absence of this peptide in FtsZ1 and its presence in FtsZ2 suggests the two proteins families may interact with different sets of proteins during chloroplast division, though obvious homologues of ZipA and FtsA are lacking in both plants and cyanobacteria.

.

Discussion

Early Divergence of the FtsZ1 and FtsZ2 Families

Phylogenetic analyses have defined two major groups of green algae, one containing the charophycean green algae, which are sister to the land plants, and the other containing the chlorophycean green algae, which include C. reinhardtii (Graham and Wilcox, 2000). Previously, we hypothesized that the emergence of FtsZ1 and FtsZ2 as separate clades might have accompanied the evolution of vascular plants (Osteryoung et al., 1998). This conjecture was based primarily on the lack of FtsZ1-like sequences from other organisms in the public databases. However, the grouping of the C. reinhardtii *FtsZ* genes into the *FtsZ1* and *FtsZ2* clades is well supported by phylogenetic analyses based on both amino acid (Figure 1; Wang et al., 2003) and cDNA alignments (Figure 2). This strongly suggests that the emergence of FtsZ1 and FtsZ2 as separate clades predated not only the split between the charophycean green algae and land plants, but also the split between the two major green algal lineages. To date, FtsZ1 sequences have only been reported in angiosperms and C. reinhardtii, but if the two FtsZ families originated as early as the data suggest, then members of both families should eventually be discovered in mosses and other land plants, in charophycean green algae, and in other chlorophycean green algae.

Relationship of the FtsZ1 Clade to the Other Three Clades

The phylogenetic analyses consistently yielded trees in which the FtsZ1 clade forms a sister group to the clade containing the FtsZ2, red/brown algal, and cyanobacterial *FtsZ* sequences (Figs. 1 and 2). Although this branching order has also been observed (though not discussed) in previous reports (Beech et al., 2000; Kiessling et al., 2000; Wang et al., 2003), it is not consistent with the relationships predicted based on the presence of only a single *FtsZ* gene in all cyanobacterial genomes sequenced to date and on the presumed monophyletic origin of chloroplasts (Gray, 1999). If the FtsZ1 and FtsZ2 sequences shared a common cyanobacterial ancestor, one would expect them to be more closely related to each other than to the cyanobacterial FtsZ sequences. We tested the possibility that the observed branching order might be an artifact of a difference in the rates of FtsZ1 and FtsZ2 evolution, but were unable to detect such a difference. This could be because the portions of the protein sequences aligned in our analysis are functionally constrained, and do not reflect the true evolutionary rates. In fact, the *E. coli* and *Arabidopsis* FtsZ protein sequences are about 50% identical in this region, indicating a high degree of conservation among FtsZ proteins from widely divergent organisms.

Another possibility for the failure to detect a difference in evolutionary rate could be that the two clades diverged at equal rates. If so, this would suggest that the *FtsZ2* sequences evolved similarly to their cyanobacterial counterparts, perhaps due to specific functional constraints, while the *FtsZ1* sequences evolved to fulfill a new function. In this case, although evolutionary rates would be equal for both clades, the sequence changes would be in different directions. Another potential explanation is that the branching of the *FtsZ1* and *FtsZ2* clades is too deep for the relative rate test to detect a significant difference (Avise, 1994). A related possibility is that the outgroup is too distantly related to the sequences analyzed. However, the *B. subtilis* FtsZ used in the outgroups for the relative rate test is one of the closest currently available relatives of the

cyanobacterial FtsZ proteins based on sequence homology. Regardless of whether the branching order is an artifact of the analyses or reflects the true evolutionary history of the *FtsZ* gene families, the deep branching of the FtsZ1 and FtsZ2 clades supports their early divergence.

Comparisons of exon length and intron distribution among the *FtsZ* genes also support the early divergence of *FtsZ1* and *FtsZ2*. Although the intron positions in the angiosperm *FtsZ1* genes are conserved, they differ from the conserved intron positions in the *FtsZ2* genes, except at a single location. Assuming that both clades originated from a single ancestral *FtsZ* gene, these data indicate that a majority of the introns were inserted into the sequences following an ancestral duplication. The fact that the *C. reinhardtii* and plant *FtsZ* genes share partial similarity in their genetic structures is also consistent with the divergence of the FtsZ1 and FtsZ2 families prior to the split between the two green algal lineages. However, additional genomic *FtsZ* sequences from other green algae are needed for a more complete understanding of the relationship between *FtsZ* evolution and gene structure.

Evolutionary Origins of the Chloroplastic FtsZ1 and FtsZ2 Sequences

Exactly when the duplication and divergence of the ancestral *FtsZ* gene occurred remains unknown, but two general scenarios can be envisioned (Figure 6). In the first, the duplication and divergence might have occurred after a single *FtsZ* gene was transferred from the cyanobacterial endosymbiont to the eukaryotic nucleus, but before separation of the two major green algal lineages (Figure 6A). This scenario would

Figure 6. Two scenarios for the evolutionary origins of the plant *FtsZ* gene families.

Transfer of the FtsZ gene(s) from the cyanobacterial endosymbiont to the eukaryotic nucleus is marked with a vertical line. The evolutionary timeline of the FtsZ gene is represented as a horizontal line. Gray and black horizontal lines represent divergence in the FtsZ genes. A, a single FtsZ gene is transferred from the cyanobacterial endosymbiont to the eukaryotic nucleus. Duplication and divergence of the FtsZ gene occurs before divergence of the two major green algal lineages. B, Duplication and divergence of the FtsZ genes occur in the cyanobacterial ancestor of chloroplasts. Both genes would be transferred to the eukaryotic nucleus, giving rise to separate FtsZI and FtsZ2 clades.

explain why two FtsZ families are present in both chlorophycean green algae (C. *reinhardtii*) and plants. In a variation, divergence could also have occurred earlier, prior to emergence of the red and brown algae, though at present there are no data to suggest this is the case. Additional genome data from more basal organisms will shed light on the timing of FtsZ duplication and divergence. However, this first scenario (Figure 6A) does not explain the branching of the *FtsZ1* clade before the cyanobacterial sequences (Figs. 1 and 2). In the second scenario, duplication of the *FtsZ* gene might have occurred in the cyanobacterial progenitor of chloroplasts (Figure 6B). In this case, the extant cyanobacteria, which so far bear only a single FtsZ gene, would either have lost one of the duplicated genes or would have descended from the chloroplast progenitor before the duplication occurred. This scenario would explain the relationships we observe in our phylogenetic analyses, but would suggest that, in the red and brown algal lineages, one of the FtsZ families was lost or that a second FtsZ family has yet to be discovered. This scenario would also suggest that a cyanobacterium with both an FtsZ1-like and an FtsZ2like gene, more closely related to the original endosymbiont, existed in the past and could still be discovered.

Although not a widely accepted idea (Palmer, 2003), it is also conceivable that chloroplasts may be polyphyletic in origin (Stiller et al., 2003), and that the two FtsZgene families originated from different endosymbiotic events. At present we cannot rule out any of the above scenarios with the currently available information. Addition to the public databases of new FtsZ sequences and genome data from evolutionarily relevant taxa will help to elucidate the history of the chloroplast FtsZ genes, and may shed light on why two forms of FtsZ evolved to function in chloroplast division.

Acknowledgements

We thank Drs. Jim Smith, Richard Triemer and Eric Linton for advice and instruction on the phylogenetic techniques, Dr. Tao Sang for critical reading of the manuscript and many helpful discussions, and members of our laboratory for their valuable input. This work supported by National Science Foundation grant MCB-0092448.

CHAPTER 6

Summaries and Future Directions

Summary

The major thrust of the work presented in this thesis has been to better understand the function of FtsZ proteins in chloroplast division. The functional, expressional, and evolutionary FtsZ comparisons that have been discussed in this work provide a better understanding of the role FtsZ proteins play in chloroplast division. First, my work has helped us recognize that chloroplast division requires members of two FtsZ families, FtsZ1 and FtsZ2. Second, my studies have shown that chloroplast division seems to involve a stoichiometric balance of FtsZ1 and FtsZ2 proteins. Third, my expression studies have shown that the *FtsZ* genes are coordinately expressed in many tissues, including tissues in which chloroplast division occurs in a majority of the cells. Also, the *FtsZ* genes are expressed at different levels, consistent with the hypothesis that a stoichiometeric balance between the FtsZ proteins is required for chloroplast division. Finally, my analyses have shown that sequence and structural characteristics among the FtsZ1 and FtsZ2 families are very conserved, especially in higher plants. This conservation suggests there are differences in functions between FtsZ1 and FtsZ2 proteins. The results discussed in this thesis have laid the foundation for future work on the functions and interactions of the FtsZ proteins, which is central to understanding the complex and important process whereby plastids divide, a process that has only now begun to be explored.

Chapter Summaries and Future Directions

Function of FtsZ1 and FtsZ2 Proteins in Chloroplast Division

Isolation of two Arabidopsis FtsZ genes that belong to different families, FtsZ1 and FtsZ2, indicated there is a significant difference between chloroplast and bacterial division, since the latter requires a single FtsZ gene in most cases. To determine the functions of the FtsZ1 and FtsZ2 proteins, plants expressing antisense FtsZ transgenes were generated. When FtsZ1 or FtsZ2 expression is reduced in the transgenic plants, chloroplast division is inhibited, which reduces the number of chloroplasts from about 100 in a normal mesophyll cell to as few as one very large chloroplast. These results indicate that both FtsZ1 and FtsZ2 proteins function in chloroplast division.

Although *FtsZ1* and *FtsZ2* family members are both functional in chloroplast division, Arabidopsis plants actually express two *FtsZ2* family members, *AtFtsZ2-1* and *AtFtsZ2-2*. Antisense repression experiments could not differentiate between the functions of the two FtsZ2 proteins since expression of both *AtFtsZ2-1* and *AtFtsZ2-2* is repressed in the *AtFtsZ2-1* antisense lines. Isolation and characterization of *AtFtsZ2-1* or *AtFtsZ2-2* Arabidopsis knockout mutants would greatly benefit studies aimed at determining the function of each FtsZ2 protein. Although knockout lines for each of the three Arabidopsis *FtsZ* genes are sought, *AtFtsZ2-2* is the only *FtsZ* gene for which we have knockout plants in our laboratory (Dr. Deena Kadirjan-Kalbach, unpublished results). The chloroplast phenotype of the *AtFtsZ2-2* knockout line is intermediate; it is characterized by about 15 enlarged chloroplasts per mesophyll cell. This phenotype would indicate the efficiency of plastid division is reduced but not inhibited by removal of AtFtsZ2-2 protein. This may reflect the fact that the total FtsZ2 protein level is reduced by only about 20% in this mutant (McAndrew et al., 2003), personal communication)

Altered FtsZ1 or FtsZ2 Levels Disrupt Chloroplast Division

In addition to reducing *FtsZ* levels, we also asked whether increasing FtsZ1 or FtsZ2 protein levels would affect chloroplast division. For this purpose, I attempted to create transgenic plants overexpressing *AtFtsZ1-1*, *AtFtsZ2-1*, or *AtFtsZ2-2* transgenes. Analysis of the transgenic plants suggests there is a direct correlation between the *AtFtsZ1-1* overexpression level and the severity of the chloroplast division defect. Because the *AtFtsZ2-1* cDNA that was used in the overexpression construct was truncated, none of the transgenic plants can be described to be true overexpressors. However, a full-length *AtFtsZ2-1-cmyc* transgene was overexpressed by Vitha et al. (2001) who observed that slight increases in *AtFtsZ2-1* expression did not affect chloroplast division but that large increases did. These results indicate that altering the stoichiometric balance between the FtsZ1 or FtsZ2 proteins themselves, or between FtsZ proteins and other components of the chloroplast division apparatus, disrupts chloroplast division. However, there may be some flexibility in the stoichiometric balance since slight increases in FtsZ levels did not noticeably disrupt chloroplast division.

In bacteria, a slight increase in FtsZ protein level induces cell division abnormally at the cell poles because of FtsZ ring assembly at those sites (Ward Jr and Lutkenhaus, 1985). It was hypothesized that increased chloroplast division in plants would be manifested by increased numbers of smaller chloroplasts in mesophyll cells. None of the transgenic plants overexpressing AtFtsZ1-1 or AtFtsZ2-1 proteins had increased numbers

of chloroplasts. However, the experiments do not indicate that overexpression of the plant FtsZ proteins is unable to induce plastid division. One possible explanation for the fact that increased chloroplast division was not observed may be that a very narrow range of FtsZ overexpression is required to induce chloroplast division, and the FtsZ protein levels in the transgenic plants may not have been within that range. Related to this possibility is the use of the 35S promoter in all the overexpressiong constructs, which is typically a very strong promoter for gene expression. It is also possible that overexpression of two of the Arabidopsis FtsZ proteins together, or of all three, may be required before an increase in chloroplast division. Therefore, increasing the level of only one of the plant FtsZ proteins may be insufficient to increase chloroplast division, no matter what level of overexpression is achieved. Furthermore, preserving the stoichiometric balance between the three FtsZ proteins, and possibly other components of the division apparatus, may also be necessary for the chloroplasts to divide.

To address whether FtsZ overexpression could induce chloroplast division, transgenic plants that overexpress combinations of two or even all three *FtsZ* genes could be generated. The stoichiometric ratios of the FtsZ proteins may be critical for increasing chloroplast division; therefore control of expression may be very important. Expression with the 35S promoter, which was used in the overexpression constructs, may be too strong for these experiments. Also, the strong expression of the *FtsZ* genes with the 35S promoter may have been a cause for the co-suppression that was observed in many of the transgenic plants. Therefore, it may be better to use the native *FtsZ* promoters or possibly an inducible promoter for studies of FtsZ function in transgenic plants.

FtsZ knockout plants would also benefit studies to determine whether the functions of the FtsZ2 proteins are redundant. One experiment might be to overexpress *AtFtsZ2-1* in the *AtFtsZ2-2* knockout line, and vice versa once an *AtFtsZ2-1* knockout line is found, and see if a normal chloroplast phenotype can be restored. Furthermore, experiments could be performed that investigate whether overexpression of FtsZ1 proteins could substitute for loss of FtsZ2, or vice verse. The results of these experiments would have implications for understanding the roles of FtsZ1 and FtsZ2 proteins in chloroplast division.

FtsZ1 and FtsZ2 Genes are Coordinately Expressed

Expression of the Arabidopsis *FtsZ* genes in tissues where chloroplast division is occurring was expected due to the critical role FtsZ proteins have in this process. Histochemical staining of transgenic plants with the *FtsZ promoter-GUS* constructs, measurements of *FtsZ* transcript levels by real-time reverse transcription-polymerase chain reaction (RT-PCR), and measurements of protein by immunoblot analysis indicate that the three Arabidopsis *FtsZ* genes are coordinately expressed, especially in tissues where chloroplast division is occurring in a large proportion of the cell population. Transcript measurements of the *FtsZ* genes indicate *AtFtsZ2-2* is the least abundant, *AtFtsZ1-1* was intermediate, and *AtFtsZ2-1* was the most abundant. Furthermore, the ratio of *FtsZ1* to *FtsZ2* transcript was about 1 to 3, which correlates well with the 1 to 2 ratio of FtsZ1 to FtsZ2 protein that was determined by McAndrew et al. (in preparation). The *FtsZ* transcript ratios seem to be constant throughout leaf expansion, consistent with the hypothesis that the stoichiometric balance between the FtsZ proteins may be important for chloroplast division.

One important experiment would be to identify and characterize the sequences that are required for *FtsZ* expression. This is especially important for *AtFtsZ1-1* since there are probably sequences downstream of the 5'-UTR that are required for expression, which were not present in our *promoter-GUS* constructs. Although the expression patterns observed with the *AtFtsZ2-1* and *AtFtsZ2-2* promoters were more defined, there may still be regulatory elements that are missing. An initial step to define the regulatory elements for the *FtsZ* genes would be to use computer programs to identify known regulatory elements that are involved in gene expression. The results of the computer analysis would allow, at least on a basic level, comparisons of potential regulatory elements among these *FtsZ* genes. Also, analysis of the sequences surrounding the *FtsZ* genes with these computer programs would help determine what regions may still be required in the *promoter-GUS* constructs to accurately represent endogenous *FtsZ* expression. Of course, mutation or deletion analysis would be required to determine the functionality of any identified elements.

A PARTY AND A

In addition to computer analysis of the FtsZ promoters, the *promoter-GUS* plant lines and RNA quantification techniques can be used to determine the factors that affect FtsZ expression. By assaying the amount of GUS enzyme that is expressed with the *promoter-GUS* constructs, factors that change FtsZ expression in treated plants can be easily assayed. Similarly, changes in FtsZ transcript levels can be assayed using realtime RT-PCR or possibly northern blot analysis. Changes in FtsZ transcript amounts are

predicted to have an effect on chloroplast division, but the chloroplast phenotypes that result from any treatment will have to be characterized.

Some of the factors that should be tested for their effect on *FtsZ* expression include environmental conditions and growth hormone treatments. Environmental factors might include changes in the light intensity, photoperiod, temperature, nutritional factors, or water availability. There is already some evidence that light induces FtsZ expression and chloroplast division in peas (Gaikwad et al., 2000) and cucumber (Ullanat and Jayabaskaran, 2002). Although a variety of growth hormones should be tested, cytokinin has been shown to induce both cell expansion and chloroplast division in cultured spinach leaf disks (Possingham and Smith, 1972). Cytokinin treatment also increases transcript levels of one *FtsZ2* homologue in cucumber cotyledons, whereas auxin treatment did not increase transcript levels (Ullanat and Jayabaskaran, 2002). Although these studies with pea and cucumber *FtsZ* genes are important, they only investigated one of several FtsZ genes present in these organisms. Expression studies with the *FtsZ* genes from Arabidopsis would allow for analysis of the entire *FtsZ* gene complement of the plant. Throughout these studies different mutants could help determine the regulatory factors that are involved in *FtsZ* expression. For example, studies with mutants defective in light or cytokinin response could help characterize *FtsZ* regulation or help elucidate other regulatory factors involved in *FtsZ* expression.

During analysis of the *FtsZ2 promoter-GUS* transgenic plants, it was noticed that the older leaves were not stained. However, *FtsZ1* and *FtsZ2* transcripts and protein were detected in the older leaf tissues, indicating they are expressed. Furthermore, immunofluorescence and fluorescence microscopy experiments detected FtsZ1 and FtsZ2

protein rings in all the chloroplasts, including those of the older leaf cells (McAndrew et al., 2001; Vitha et al., 2001). The transcript and protein measurements suggest that FtsZ expression is reduced in the older leaves, and the GUS staining patterns are consistent with reduced FtsZ expression in these tissues. However, the microscopy data suggest there is still enough protein to maintain FtsZ rings in all the chloroplasts. The presence of rings in tissues where expression is reduced may indicate the FtsZ proteins are relatively stable and are not rapidly turned over, at least compared to the GUS protein. Stability could be inherent in the FtsZ proteins alone or a characteristic of the polymerized FtsZ structure. To test the stability of the FtsZ proteins, plants could be generated where an inducible promoter drives expression of an *FtsZ* transgene fused to a reporter gene or epitope tag. Treatment of transgenic plants with the inducers for only a short period would stimulate expression of the tagged FtsZ protein for a brief period, similar to a pulse labeling experiment. Following removal of the inducers, the stability of the tagged FtsZ proteins could be followed. Mutated FtsZ proteins unable to polymerize could be expressed similarly to determine whether FtsZ protein stability is affected by polymerization.

The regulation of AtFtsZ2-2 expression may be different than the regulation of AtFtsZ1-1 or AtFtsZ2-1 expression. Three AtFtsZ2-2 transcripts were isolated, all differentially spliced upstream of the start codon. Only a single RNA species was isolated for each of the AtFtsZ1-1 and AtFtsZ2-1 genes. The functionality and stability of the three AtFtsZ2-2 species will need to be determined because their presence does not absolutely indicate they are functional. If there is more than one functional transcript, it is possible that they are expressed in different tissues or at different developmental
stages. Tissue- or developmental-specific expression could be tested by RT-PCR, *in situ* hybridization, or *in situ* RT-PCR. Although tissue- or developmental-specific expression could mean that *AtFtsZ2-2* has a regulatory role in chloroplast division, the total ratio of FtsZ1 to FtsZ2 protein may be the most important factor for chloroplast division and the splicing differences may just reflect the evolutionary history of the *FtsZ* genes.

FtsZ1 and FtsZ2 Sequence Comparisons Identify Potential Functional Differences

Phylogenetic analyses indicate that the *FtsZ1* and *FtsZ2* families diverged before the split between the chlorophycean and charophycean green algal lineages. Analysis of the intron positions in the FtsZ genes also supports the early divergence of the two families. The reason chloroplast division requires members of two FtsZ families are unclear, but one likely reason is that the functions of the FtsZ1 and FtsZ2 proteins differ. There are several pieces of evidence that support this hypothesis. First, antisense repression of either *FtsZ1* or *FtsZ2* genes inhibits chloroplast division indicating the proteins in the two families are not functionally redundant, at least at normal levels. However, it is possible that inhibition of chloroplast division in the antisense lines is due to reduction of the total FtsZ protein concentration below critical levels in the chloroplasts. Second, both families seem to be present in all green algae and higher plants. If the two families were functionally redundant, it would be expected that members of one family would be lost in at least one lineage. Third, differences in the FtsZ1 and FtsZ2 sequences also support specific roles for each family. For example, the C-terminal domain, the bacterial counterpart of which interacts with FtsA and ZipA in E. coli (Ma and Margolin, 1999), is present in the FtsZ2 but not the FtsZ1 proteins. This

sequence difference sugests FtsZ2 proteins may interact with a different set of proteins in the chloroplast division apparatus than FtsZ1. Mutation and deletion experiments would help to determine the functions of this C-terminal domain, as well as the numerous other sequence differences, in the plant FtsZ proteins and help to define the functional differences between the FtsZ1 and FtsZ2 proteins.

Phylogenetic analyses indicate that there are two or more FtsZ2 homologues in Arabidopsis, rice, tobacco, and moss. In contrast, the green alga *Chlamydomonas* reinhardtii only has one FtsZ2 homologue. Why do higher plants and moss have two FtsZ2 proteins while the green alga has only one? Is the chloroplast division apparatus different in single-celled green algae and multicellular plants? One interesting and important cellular difference between the green alga C. reinhardtii and Arabidopsis, rice, tobacco, and moss is that the former has only a single chloroplast in each cell, whereas the latter four organisms have numerous chloroplasts in each mesophyll cell. It is also interesting that only one of the rice FtsZ2 proteins has an identifiable C-terminal domain. Arabidopsis *FtsZ2* knockout plant experiments could be performed to investigate whether the green alga FtsZ2 protein, either rice FtsZ2 protein, or any of the FtsZ2 proteins from the various organisms could functionally complement the Arabidopsis FtsZ2 proteins. For instance, in one experiment the C. reinhardtii FtsZ2 protein could be expressed in AtFtsZ2-1 and AtFtsZ2-2 Arabidopsis knockout plants and in a double knockout plant. If AtFtsZ2-1 and AtFtsZ2-2 have different functions and expression of the C. reinhardtii protein restores chloroplast division in both FtsZ2 Arabidopsis knockout mutant, this would suggest the two FtsZ2 proteins in plants have divergent functions and the divergence occurred in only the plant lineage. Complementation studies where FtsZ

genes from different organisms like the archea bacteria, green algae, red algae, and primitive plants are transformed into Arabidopsis *FtsZ* knockout plants would provide valuable information into the functions of the FtsZ proteins as well as the structure of the FtsZ ring. This information may help in determining the reasons chloroplast division in plants evolved to have multiple FtsZ proteins from two families.

One weakness in the phylogenetic analyses was insufficient numbers of *FtsZ* sequences from diverse organisms. Therefore, additional genomic, RNA, and protein *FtsZ* sequences from a variety of photosynthetic organisms would benefit studies aimed at understanding functionally important regions of the FtsZ proteins, as well as the evolutionary events that led to the two FtsZ families in plants. Of particular interest are the *FtsZ* sequences from primitive plants like the hornworts and liverworts (Araki et al., 2003), which would provide information into the early evolutionary events of the plant *FtsZ* genes in land plants. Additional algal sequences are also important, especially from green algae since only the C. reinhardtii sequences have been reported. Adding more cyanobacterial *FtsZ* sequences to the analysis may help determine whether there are truly two clades for this group and whether those two clades could represent the sources from which the plant FtsZ1 and FtsZ2 clades evolved. Currently, all known cyanobacteria for which *FtsZ* sequence information is available have only a single *FtsZ* gene. However, as the genomes of more cyanobacteria are studied, one organism may be isolated with two different FtsZ genes; this could support the hypothesis that the origins of the FtsZ1 and FtsZ2 proteins extends back to the cyanobacterial endosymbiont.

APPENDICES

APPENDIX A

FtsZ Protein Alignment

The Nexus file with the FtsZ protein alignment that was used in the phylogenetic analyses that are discussed in Chapter 5 and used to produce the tree shown in Figure 1 of that chapter. Sequences are labeled with the organism initials followed by the accession or gene number.

#NEXUS					
BEGIN DATA;					
DIMENSIONS	NTAX=40 NCHAR=1	322:			
FORMAT DATA	TYPE=PROTEIN SY	MBOLS = "1	234" M	ITSSING=?	GAP=-
INTERLEAVE :		-			0
MATRIX					
ſ	10	20	30	4.0	1
ſ	20	50	50	10	l r
t	·	·	•	•	1
NECAB89288	AKTKVVGVGGGGSN	WNRMIESSMKG	VEEWIVNTDI	OAMRMS	- [42]
NtCAC44257	AKIKVVGVGGGGSNA	AVNIRMIESSMKG	VEFWIVNTDI	OAMRMS	- [12]
OSCLB17724 5	AKIKVVGVGGGGSNA	VNRMIESSMNG	VEFWIVNTDY	OATRMS	- [12]
Glaaf23771	AKIKVVGVGGGGSNA	WNRMIESAMKG	VEFWIVNTDV	OAIKMS	- [12]
L1BAA96782	AKIKVIGVGGGGSN	VNRMI A SSMDG	VEEWIVNTDV	QAINIS OAMPMS	[42] _ [10]
At AAC 35987	ARIKVIGVGGGGSNA	WNRMIESEMSC		QAMDMG	- [42] - [42]
AFAAK63846	ARIKVIGVGGGGSNA	WNRMIESEMSG			- [42] - [42]
Occl.005296 338	PRIKVIGVGGGGGSNA	WINNESDAKO		QAMRIS	· [42]
PDCAB76386	AKIKVIGVGGGGGSNA	VNIPMI ESEMOCI	VEEWIVNIDE	QAMAIS	- [442] [40]
PDCAB54558	AKIKVIGVGGGGGSNA	VINIESEMQG	VEFWIVNIDA	QAMALS	· [42]
Craam22891	ATTKU CVCCCCSN		VEFWIVNIDA		- [42]
CmRAA85116	CLIKUTCUCCCCCN		VEFWIANTDA	QALATS	- [42]
CaBAA03110	CLINVIGVGGGGGGNA	AVNRMADIGISG	VEFWAINTDV	QALKRS	• [42]
CEBAA02071	CUIKVIGVGGGGGGNA	AVINRMADIGISG	VEFWAINTDV	QALKRS	- [42]
GLCAAU/8/8	CULKVIGVGGGGGGNA	AVNRMVG-GVEG	VEFWSINTDA	QALSRS	• [41]
GSBAA02090	CIIKVVGVGGGGGSIVA	AVINRMCE-MVEG	VEFWCINTDA	QALSRV	· [41]
MSAAF 35435	CKTRUBICUCCACCA		VELWVVNTDA	QALSRS	
GSBAA82091		AVQRMLESGLQD	VEFLCANTDA	QALGRFQE	/ [45]
Te1949	AKIKVIGVGGGGGGNA	AVNRMIASEVSG	I EFWTVNTDA	QALTLS	- [42]
SSNP_440815	AKIKVIGVGGGGGCNA	AVNRMIASGVTG	IDFWAINTDS	QAL'I'N'I'	- [42]
ASCAA83241	ANIKVIGVGGGGGGNA	AVNRMIESDVSG	VEFWSINTDA	QAL'I'LA	- [42]
	ANIKVIGVGGGGGGNA	AVNRMIESDVSG	VEFWSINTDA	QAL'I'LA	- [42]
Tet112382	ARIKVIGVGGGGGGNA	AVNRMIASNVAG	VEFWCVNTDA	QAIAQS	- [42]
SyAAC26227	ARIKVIGVGGGGSNG	GVNRMISSDVSG	VEFWALNTDA	QALLHS	- [42]
PSCAB56201	AKIEVIGVGGGGSNA	AVNRMIDSDLEG	VSFRVLNTDA	QALLQS	- [42]
Pm1658	AKIEVIGVGGGGSNA	AVNRMIDSDLEG	VSFRVLNTDA	QALLQS	- [42]
PmCAB95028	ARIEVIGVGGGGSNA	AVNRMILSDLQG	VSYRVLNTDA	QALLQS	- [42]
Sy549	AKIEVIGVGGGGSNA	AVNRMILSDLEG	VAYRVLNTDA	QALIQS	- [42]
Pm1268	ARIEVIGVGGGGSNA	AVNRMILSDLDG	VNYRVMNTDA	QALLQS	- [42]
NECAB41987	AKIKVIGVGGGGNNA	AVNRMIGSGLQG	VDFYAINTDA	QALLQS	- [42]
NECAB89287	AKIKVIGVGGGGNNA	AVNRMIGSGLQG	VDFYAINTDA	QALLQS	- [42]
TeAAF81220	AKIKVVGVGGGGNNA	AVNRMIGSGLQG	VDFYAINTDS	QALLQS	- [42]
AtAAA82068	ARIKVIGVGGGGNNA	AVNRMISSGLQS	VDFYAINTDS	QALLQF	- [42]
PsCAA75603	AKIKVVGIGGGGNNA	AVNRMIGSGLQG	VDFYAINTDA	QALLHS	- [42]
NtAAF23770	AKIKVVGVGGGGNNA	AVNRMIGSGLQG	VDFYAVNTDA	QALLQS	- [42]
NtCAB89286	AKIKVVGVGGGGNNA	AVNRMIGSGLQG	VDFYAVNTDA	QALLQS	- [42]
OsAAK64282	ARIKVVGVGGGGNNA	AVNRMIGSGLQG	IEFYAINTDS	QALLNS	- [42]
CrBAB91150	ACIKVIGVGGGGGNA	ALNRMINSGLQG'	VEFWAINTDA	QALAAH	- [42]
CpAAC32266	AQIKVIGVGGGGNNA	AVDRMIEDGLDG'	VDFISINTDO	QALSKA	- [42]
EcP06138	AVIKVIGVGGGGGNA	AVEHMVRERIEG'	VEFFAVNTDA	QALRKT	- [42]
BsAAA22457	ASIKVIGVGGGGNNA	AVNRMIENEVOG'	VEYIAVNTDA	QALNLS	- [42]

• •

[50	60	70	80	90]	
[•	•	•	.]	
NtCAB89288	PVAAEORI	PIGOELTRGL	GAGGNPDIGN	INAANESKOAI	LEEAVY	[85]
NtCAC44257	PVAAEQRI	PIGQELTRGL	GAGGNPDIGN	INAANESKOAI	LEEAVY	[85]
OsCLB17724_5	PVLPQNRL	QIGQELTRGL	GAGGNPDIGN	INAAKESVESI	LOEALY	[85]
GlAAF23771	PVYLENRL	QIGQELTRGL	GAGGNPDIGN	INAAKESKEAI	EEAVY	[85]
L1BAA96782	PVYPENRL	JOIGOELTRGL	GAGGNPDIGN	INAAKESKVSI	LEESVS	[85]
AtAAC35987	PVLPDNRL	QIGKELTRGL	GAGGNPEIGN	INAARESKEVI	TEEALY	[85]
AtAAK63846	PVFPDNRL	QIGKELTRGL	GAGGNPEIGN	INAATESKEA	IOEALY	[85]
OsCL005296_338	PIDPDNKL	QIGQELTRGL	GAGGNPEIGN	INAAKESQEL	/EOAVS	[85]
PpCAB76386	PVPAQNRL	QIGQKLTRGL	GAGGNPEIGO	SAAEESKAM	/EEALR	[85]
PpCAB54558	PVPAQNRL	QIGQKLTRGL	GAGGNPEIGO	SAAEESKAM	/EEALR	[85]
CrAAM22891	PVNGKCKV	QIGGKLTRGL	GAGGNPEIGA	KAAEESRDSI	IAAALO	[85]
CmBAA85116	AAHHTL	SIGNKLTRGL	GAGGNPEVGE	RKAAEESCDQI	LAEAVR	[83]
CcBAA82871	AAHHTI	GIGNKLTRGL	GAGGNPEIGE	RKAAEESCDQI	LAEAVR	[83]
GtCAA07676	LAPNTC	NIGAKLTRGL	GAGGNPEIGE	RKAAEESRDLI	LAEAVS	[82]
GsBAA82090	KTSNSV	TIGSEITRGL	GAGGKPEVGE	RQAAEESQAAI	ESSAVQ	[82]
MsAAF35433	SAKRRL	NIGKVLSRGL	GAGGNPAIGA	KAAEESREEI	IMAVVK	[58]
GsBAA82091	YCQKTHHQVI	QIGKQSCRGL	GAGGNPEAGE	RVAAEESKEDI	EAKALQ	[90]
Te1949	RAPKRI	QLGQKLTRGL	GAGGNPAIG	KAAEESRDE1	LANALD	[83]
SsNP_440816	NAPDCI	QIGQKLTRGL	GAGGNPAIG	KAAEESRDEI	IARSLE	[83]
AsCAA83241	GAPSRL	QIGQKLTRGL	GAGGNPAIG	KAAEESRDEI	IATALE	[83]
Np61	GAPSRL	QIGQKLTRGL	GAGGNPAIG	KAAEESRDE1	IATALE	[83]
Tet112382	QAHRCL	QIGQKLTRGL	GAGGNPAIG	KAAEESREDI	LAAALK	[83]
SYAAC26227	AAPKRM	IQLGQKLTRGL	GAGGNPAIGN	IKAAEESREEI	LIAALE	[83]
PsCAB56201	SADRRV	/QLGQNLTRGL	GAGGNPSIG)KAAEESKDEI	LQQTLE	[83]
Pm1658	SADRRV	QLGQNLTRGL	GAGGNPSIG)KAAEESKDEI	LQQTLE	[83]
PmCAB95028	SAENRV	QLGQTLTRGL	GAGGNPSIGE	EKAAEESRAEI	LQQALE	[83]
Sy549	QAQHRL	JQLGQTLTRGL	GAGGNPTIG	KAAEESRTDI	LHDALQ	[83]
Pm1268	AASNRV	VQLGQTLTRGL	GAGGNPSIGÇ)KAAEESRAEI	LQQALQ	[83]
NtCAB41987	AAENPL	QIGELLTRGL	GTGGNPLLGE	EQAAEESKEAI	LANSLK	[83]
NtCAB89287	AAENPL	QIGELLTRGL	GTGGNPLLGE	EQAAEESKEAI	LANSLK	[83]
TeAAF81220	VAHNPI	QIGELLTRGL	GTGGNPLLGE	EQAAEESKEAI	IGNALK	[83]
AtAAA82068	SAENPL	QIGELLTRGL	GTGGNPLLGE	EQAAEESKDAI	IANALK	[83]
PsCAA75603	AAENPI	KIGELLTRGL	GTGGNPLLGE	EQAAEESKEAI	IANALK	[83]
NtAAF23770	TVENPI	QIGELLTRGL	GTGGNPLLGE	EQAAEESKEHI	EANALK	[83]
NtCAB89286	TVENPI	QIGELLTRGL	GTGGNPLLGE	EQAAEESKEHI	EANALK	[83]
OsAAK64282	QAQYPL	QIGEQLTRGL	GTGGNPNLGE	EQAAEESKEAI	EANALK	[83]
CrBAB91150	QALNKV	QIGSELTRGL	GCGGNPELGF	RRAAMESEEAI	LRRMVQ	[83]
CpAAC32266	RSSTK1	QIGEKLTKGL	GAGGNPEIGE	EKSVDETQDEI	EAQALH	[83]
EcP06138	AVGQTI	QIGSGITKGL	GAGANPEVGE	RNAADEDRDAI	LRAALE	[83]
BSAAA22457	KAEVKM	QIGAKLTRGL	GAGANPEVG	KAAEESKEQI	LEEALK	[83]

[100	110	120	130]	
[.]	
NtCAB89288	GADMVFVTAGMGGGT	GTGAAPIIAG	TAKSMGILTVO	GIVTTPFSFE	[130]
NtCAC44257	GADMVFVTAGMGGGT	GTGAAPIIAG	TAKSMGILTVO	GIVTTPFSFE	[130]
OsCLB17724_5	GADMVFVTAGMGGGT	GTGGAPVIAG	IAKSMGILTVO	GIVTTPFSFE	[130]
Glaaf23771	GADMVFVTAGMGGGT	GTGGAPVIAG	IAKSMGILTVO	GIVTTPFSFE	[130]
L1BAA96782	GADMVFVTAGMGGGT	GTGGAPVIAG	VAKSMGILTVO	GIVTTPFMFE	[130]
AtAAC35987	GSDMVFVTAGMGGGT	GTGAAPVIAG	IAKAMGILTVO	GIATTPFSFE	[130]
AtAAK63846	GSDMVFVTAGMGGGT	GTGGAPIIAG	VAKAMGILTVO	GIVTTPFSFE	[130]
OsCL005296_338	GADMIFVTAGMGGGT	GTGGAPVIAG	IAKSMGILTVO	GIVTTPFAFE	[130]
PpCAB76386	GADMVFVTAGMGGGT	GSGAAPIIAG	VAKQLGILTVO	GIVTTPFAFE	[130]
PpCAB54558	GADMVFVTAGMGGGT	GSGAAPIIAG	VAKQLGILTVO	GIVTTPFAFE	[130]
CrAAM22891	DTDMVFVTAGMGGGT	GSGAAPVVAE	VARELGILTVO	GIVTTPFTFE	[130]
CmBAA85116	GADLVFVTAGMGGGT	GSGAAPVVAE	AAREQGCLTV	GVVTKPFAFE	[128]
CcBAA82871	GADLVFVTAGMGGGT	GSGAAPVVAE	AAREQGCLTV	GVVTKPFAFE	[128]
GtCAA07676	AGDLVFVTAGMGGGT	GSGAAPIVAE	VAKEMGCLTVO	GVVTKPFAFE	[127]
GsBAA82090	GGDLVFVTAGMGGGT	GSGAAPIVAK	IAKEQGCLTVO	GVVTKPFSFE	[127]
MsAAF35433	NADLVFVTAGMGGGT	GSGAAPVVAE	CAKEAGALTVO	GVVTKPFGFE	[103]
GsBAA82091	GGDLVFVTAGMGGGT	GTGAAPIVAD	VARELGCLTVO	GVVTKPFAFE	[135]
Te1949	HPDLVFITAGMGGGT	GTGAAPVIAE	IAKEAGSLTVO	GVVTRPFTFE	[128]
SsNP_440816	GTDLVFITAGMGGGT	GTGAAPIVAE	VAKEMGCLTVO	GIVTRPFTFE	[128]
AsCAA83241	GADLVFITAGMGGGT	GTGAAPIVAE	VAKEMGALTVO	GVVTRPFVFE	[128]
Np61	GADLVFITAGMGGGT	GTGAAPIVAE	VAKEMGALTVO	GVVTRPFVFE	[128]
Tet112382	DADLIFITCGMGGGT	GTGAAPIVAE	VAKEQGALTVA	AVVTRPFTFE	[128]
SyAAC26227	GADLVFITAGMGGGT	GTGAAPIVAE	VAKEVGALTVO	GIVTKPFTFE	[128]
PsCAB56201	GSDLVFIAAGMGGGT	GTGAAPVVAE	VAKQSGALTVO	GIVTKPFSFE	[128]
Pm1658	GSDLVFIAAGMGGGT	GTGAAPVVAE	VAKQSGALTVO	GIVTKPFSFE	[128]
PmCAB95028	GADLVFIAAGMGGGT	GTGAAPVVAE	VAKQSGALTVA	AIVTKPFSFE	[128]
Sy549	GSDLVFIAAGMGGGT	GTGAAPVVAE	VAREVGALTVO	GIVTKPFGFE	[128]
Pm1268	GVDLVFIAVGMGGGT	GTGAAPVVAE	VAKESGALTVO	GIVTKPFSFE	[128]
NtCAB41987	GSDMVFITAGMGGGT	GSGAAPVVAQ	IAKEAGYLTVO	GVVTYPFSFE	[128]
NtCAB89287	GSDMVFITAGMGGGT	GSGAAPVVAQ	IAKEAGYLTVO	GVVTYPFSFE	[128]
TeAAF81220	GSDLVFITAGMGGGT	GSGAAPVVAQ	IAKEAGYLTVO	GVVTYPFSFE	[128]
AtAAA82068	GSDLVFITAGMGGGT	GSGAAPVVAQ	ISKDAGYLTVO	GVVTYPFSFE	[128]
PsCAA75603	GSDLVFITAGMGGGT	GSGAAPVVAQ	ISKEAGYLTVO	GVVTYPFSFE	[128]
NtAAF23770	GSDMVFITAGMGGGT	GSGAAPVVAQ	IAKEAGYLTVO	GVVTYPFSFE	[128]
NtCAB89286	GSDMVFITAGMGGGT	GSGAAPVVAQ	IAKEAGYLTVO	GVVTYPFSFE	[128]
OsAAK64282	DSDLVFITAGMGGGT	GSGAAPVVAQ	ISKEAGYLTVO	GVVTYPFSFE	[128]
CrBAB91150	GADLVFITAGMGGGT	GTGAAPVVAR	LSKELGILTVO	GVVTYPFNFE	[128]
CpAAC32266	GSDMVFITAGMGGGT	GTGAAPRIAA	ISKELGILTVO	GVVTKPFNFE	[128]
EcP06138	GADMVFIAAGMGGGT	GTGAAPVVAE	VAKDLGILTVA	AVVTKPFNFE	[128]
BsAAA22457	GADMVFVTAGMGGGT	GTGAAPVIAQ	IAKDLGALTVO	GVVTRPFTFE	[128]

[140	150	160	170	180]	
[.]	
NECAB89288	GRRRAVOA	DEGIAALRENN		(LTAVSPSTP	VTEA [173]	
NtCAC44257	GRRRAVOA	DEGIAALRENN		(LLTAVSPSTP	VTEA [173]	
OsCLB17724 5	GRRRAVOA	DEGIAALRNSV		(LL.SAVSPNTP	VTEA [173]	
GIAAF23771	GRRRAVOA	DEGIAALRDM		(LLTAVSPSTP)	VTEA [173]	
L1BAA96782	GREETVOA	DEGIAALRNN		CLUTAVSPNTP	VTEA [173]	
At AAC 35987	GRERTVO = A(DEGLASLEDM		CLUTAVSINII CLUTAVSOSTP	VTEA [173]	
At AAK 63846	GRRBALOA	DEGIAALRDN	DTLIVIPNDI	(LLAAVSOSTP	$\frac{VTEA}{VTEA} \begin{bmatrix} 173 \end{bmatrix}$	
OSCI-005296 338	GRRBALOA	DEGIASLESM		(LLTAVSPNTP	VTEA [173]	
PpCAB76386	GRRRSVOA	HEGIAALKNN		(LLTAVAOSTP	VTEA [173]	
PpCAB54558	GRRRAVOAF	HEGTAALKNN		(LLTAVAOSTP	VTEA [173]	
CrAAM22891	GRORAOOAI	RSALANLRAAV		RLLSAMDSNVP	TKDA [173]	
CmBAA85116	GRKRMNOAI	LEATEALRES	DTLIVVSND	(LLOTVPENTP	LODA [171]	
CcBAA82871	GRRRMTOAI	LEATEALRES	DTLIVVSND	(LLOIVPENTP	LODA [171]	
GtCAA07676	GKRRMOOAI	NDAILNLRNK	/DTLIVVSND	(LLOIVPDNTP	LODA [170]	
GsBAA82090	GRRRMOOAI	EEAIEALRKE	/DTLIVVSND	(LLEIVPENTA	LEKA [170]	
MsAAF35433	GRKRMOOAI	RNAILEMKDK	/DTLIVVSND	(LLKIVPDNTP	LTEA [146]	
GsBAA82091	GRRRLOOAV	JEGLANLREK	/DTLIVISND	RLLETVPKDTP	LTEA [178]	
Te1949	GRRRITOAI	DEGITALOTR	JDTLIVIPNNI	RLLSVINDOTP	VOEA [171]	
SsNP_440816	GRRRAKQAI	EEGINALQSR	DTLIVIPNN	2 LLSVIPAETP	LQEA [171]	
AsCAA83241	GRRRTSQAI	EQGIEGLKSRV	DTLIIPNN	KLLEVIPEQTP	VQEA [171]	
Np61	GRRRTSQAI	EQGIEGLKSR	/DTLIIPNN	(LLEVIPEQTP	VQEA [171]	
Tet112382	GRRRANQAI	DEGIEALQSR	DTLIVIPND	KILSVISEQTS	VQDA [171]	
SyAAC26227	GRRRMKQAI	EEGTAALQSS	DTLITIPND	RLLHAISEQTP	IQEA [171]	
PsCAB56201	GKRRMRQAI	EEGIARLAEN	DTLIVIPND	RLKDVIAG-AP	LQEA [170]	
Pm1658	GKRRMRQAI	EEGIARLAEN	/DTLIVIPND	RLKDVIAG-AP	LQEA [170]	
PmCAB95028	GRRRMRQAI	DEGIAKLTESV	DTLIVIPND	RLKDAIAG-AP	LQEA [170]	
Sy549	GRRRMRQAI	DEGIARLAEHV	DTLIVIPND	RLREAIAG-AP	LQEA [170]	
Pm1268	GRRRMRQA	AEGIGRLADH	/DTLIVIPND	RIKDVISE-AP	LQEA [170]	
NtCAB41987	GRKRSVQA	LEAIEKLQKN	/DTLIVIPND	RLLDIADEQTP	LQDA [171]	
NtCAB89287	GRKRSVQA	LEAIEKLQKN	/DTLIVIPND	RLLDIADEQTP	LQDA [171]	
TeAAF81220	GRKRSVQA	LEAIEKLQKN	JDTLIVIPND	RLLDIADENTP	LQDA [171]	
AtAAA82068	GRKRSLQA	LEAIEKLQKN	JDTLIVIPND	RLLDIADEQTP	LQDA [171]	
PsCAA75603	GRKRSLQA	LEAIEKLQKN	VDTLIVIPND	RLLDIADEQMP	LQDA [171]	
NtAAF23770	GRKRSLQA	LEAIEKLQKN	JDTLIVIPND	RLLDIADEQTP	LQNA [171]	
NtCAB89286	GRKRSLQA	LEAIEKLQKN	JDTLIVIPND	RLLDIADEQTP	LQNA [171]	
OsAAK64282	GRKRSLQASAI	LEALEKLERSV	JDTLIVIPND	RLLDVVDENTP	LQDA [173]	
CrBAB91150	GRRRAGQA	LEGIEALREAV	JDSVIVIPND	RLLDVAGASTA	LQDA [171]	
CpAAC32266	GKKRMSNA	EKGIMELKKN	VDTLVIIP NQ I	RLLSIIDKKTT	LTEA [171]	
EcP06138	GKKRMAFA	EQGITELSKH	JDSLITIPND	KLLKVLGRGIS	LLDA [171]	
BsAAA22457	GRKRQLQA	AGGISAMKEAV	JDTLIVIPND	RILEIVDKNTP	MLEA [171]	

[19	0	200	210	220]
[•		•		•]
N+CAB89288	ENI ADDTI POC	VPCTODIT			ACCETM	- [210]
$N \neq CAC44257$	FNLADDILROG	VRGISDII		TADVRATMAN TADVRATMAN	ACCCI M	3 [210]
OsciB17724 5	FNLADDILROG	IRGISDII	TYPELVINUD	TADVICATIANA TADVICATMONI	ACCCI M	3 [210]
GlaaF23771	FNLADDILROG	VRGISDII		TADVICATINQIN FADVICATINANI	ACCELM	J [210]
L1BAA96782	FNLADDIIROG	VRGISDII			ACCCI M	3 [210]
$\Delta \pm \Delta \Delta C 35987$	FNLADDIL ROG	VRGISDII		TADVICATIAN TADVICATMAN	NCCCI M	3 [210]
A + A A K 6 3 8 4 6	FNLADDILROG	VRGISDII		TADVRATMAN TADVDATMAN	ACCCIM	3 [210]
OSCI.005296 338	FNLADDILROG	VRGISDII		FADVRAIMAN	ACCCIM	3 [210]
PpCAB76386	FNLADDILROG	VRGISDII	TVPGLVNVD	FADVRSVM3D FADVRATMANI	ACCCI M	3 [210]
PpCAB54558	FNLADDILROG	VRGISDII	TVPGLVNVD	ADVIAIMAN FADVRATMAN	ACCCIM	3 [210]
CrAAM22891	FKIADDVLROG	VKGISEII		TADVICATINAN	ACCCI M	3 [210]
CmBAA85116	FRVADDILROG	WGISDII	TRPGLINVD	FADURSUMAH	ACCALM	3 [210]
CCBAA82871	FRVADDILROG	VVGISDII	TRPGLINVD	FADURSVMAH	NGSALM	3 [210]
GtCAA07676	FSVADDILROG	VVGISEII	VRPGLINVD		ACCALM	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
GSBAA82090	FSVADDILROG	WGISEII	VRPGLINVD	FADURSTMAD	ACSALM	[215]
MSAAF35433	FLVADDILROG	WGITEII	VKPGLVNVDI	FADVRUTMON	ACTALM	[210]
GSBAA82091	FIFADEVLROG	VGGISDII	TKPGLVNVD	FADVRTUMAFI	KGFALL	
Te1949	FITADDILROG	LOGISDIT	TVPGLVNVD	FADURAUMADI	ACSALM	[225]
SSNP 440816	FRVADDILROG	VOGISDII	T T PGL VNVD	FADVRAVMAD	AGSALM	G [216]
AsCAA83241	FRYADDVLROG	VOGISDII	TIPGLVNVD	FADVRAVMAD	AGSALM	G [216]
Np61	FRYADDVLROG	VOGISDII	TIPGLVNVD	FADVRAVMAD	AGSALM	G [210]
Tet112382	FRVADDVLROG	VOGISDII	NVPGLINVD	FADIRSVMADA	AGSAMM	G [216]
SYAAC26227	FRVADDILROG	VOGISDII	TIPGLVNVD	FADVRAVMADA	AGSALM	G [216]
PsCAB56201	FRNADDVLRMG	VKGISDII	TCPGLVNVD	FADVRSVMTE	AGTALL	G [215]
Pm1658	FRNADDVLRMG	VKGISDII	TCPGLVNVD	FADVRSVMTE	AGTALL	G [215]
PmCAB95028	FKNADDVLRMG	VKGITDII	TLPGLVNVD	FADVRSVMTE	AGTSLL	G [215]
Sy549	FRSADDVLRMG	VKGISDII	TCPGLVNVD	FADVRSVMTE	AGTALLO	G [215]
Pm1268	FRSADDILRMG	VKGISDII	TCPGLVNVD	FADVRSVMTE	AGTALL	G [215]
NtCAB41987	FLLADDVLRQG	VQGISDII	TIPGLVNVD	FADVKAVMKD	SGTAML	G [216]
NtCAB89287	FLLADDVLRQG	VQGISDII	TIPGLVNVD	ADVKAVMKD	SGTAML	G [216]
TeAAF81220	FLLADDVLRQG	VQGISDII	TIPGLVNVD	FADVKAVMKD	SGTAML	G [216]
AtAAA82068	FLLADDVLRQG	VQGISDII	TIPGLVNVD	FADVKAVMKD	SGTAML	G [216]
PsCAA75603	FRLADDVLRQG	VQGISDII	TIPGLVNVD	FADVKAVMKD	SGTAML	G [216]
NtAAF23770	FLLADDVLCQG	VQGISDII	TIPGLVNVD	FADVKAIMKD	SGTAML	G [216]
NtCAB89286	FLLADDVLCQG	VQGISDII	TIPGLVNVD	FADVKAIMKD	SGTAML	G [216]
OsAAK64282	FLLADDVLRQG	VQGISDII	TIPGLVNVD	FADVKAVMKN	SGTAML	G [218]
CrBAB91150	FALADDVLRQG	VQGISDII	TVPGLINVD	FADVKAIMSN	SGTAML	G [216]
CpAAC32266	FKKADEILRQG	VQGIADLI	SKPGVINLD	FADVRTVMAN	KGIAHM	G [216]
EcP06138	FGAANDVLKGA	VQGIAELI	TRPGLMNVD	FADVRTVMSEN	MGYAMM	G [216]
BsAAA22457	FREADNVLRQG	VQGISDLI	ATPGLINLD	FADVKTIMSNI	KGSALM	G [216]

[230	240	250	260	270]
[•	.]	
NtCAB89288	IGTAT	GKTRARDAA	LNAIQSPLLI	DIG-IERATG	IVWNI	[255]
NtCAC44257	IGTAT	GKTRARDAA	LNAIOSPLLI	DIG-IERATG	IVWNI	[255]
OsCLB17724_5	IGTAT		LNAIOSPLLI	DIG-IERATG	IVWNI	[255]
GlAAF23771	IGTAT	GKTRARDAA	ALNAIOSPLLI	DIG-IERATG	IVWNI	[255]
L1BAA96782	IGTAT	GKTRARDAA	LNAVOSPLLI	DIG-IERATG	IVWNI	[255]
AtAAC35987	IGTAT	GKSRARDAA	LNAIOSPLLI	DIG-IERATG	IVWNI	[255]
AtAAK63846	IGTAT	GKTRARDAA	LNAIOSPLLI	DIG-IERATG	IVWNI	[255]
OsCL005296_338	IGTAT	GKTRARDAA	LNAIQSPLLI	DIG-IERATG	IVWNI	[255]
PpCAB76386	IGTAT	GKSKAREAA	LSAIQSPLLI	DVG-IERATG	IVWNI	[255]
PpCAB54558	IGTAT	GKSRAREAA	LSAIQSPLLE	DVG-IERATG	IVWNI	[255]
CrAAM22891	QGYGS	GPRRASDAA	LRAISSPLLE	EVG-IERATG	VVWNI	[255]
CmBAA85116	IGTGS	GKSRAHDAA	VAAISSPLLE	OFP-IERAKG	IVFNV	[253]
CcBAA82871	IGTGS	GKSRAHDAA	VAAISSPLLI	OFP-IERAKG	IVFNV	[253]
GtCAA07676	IGTGS	GKTRAQDAA	VAAISSPLLE	OFP-IEKARG	IVFNI	[252]
GsBAA82090	IGSGS	GKSRAKDAA	VAAISSPLLI	OFP-IERAKG	IVFNI	[252]
MsAAF35433	IGHGK	GKNRAKDAA	LSAISSPLLI	OFP-ITRAKG	IVFNI	[228]
GsBAA82091	IGTAS	GDSRARNAA	TAAISSPLLI	OFP-ITSAKG	AVFNI	[260]
Te1949	IGMGS	GKSRAREAA	NAAISSPLLE	ESS-IEGAKG	VVFNI	[253]
SsNP_440816	IGVGS	GKSRAKEAA	TAAISSPLLE	ESS-IQGAKG	VVFNV	[253]
AsCAA83241	IGVSS	GKSRAREAA	IAAISSPLLE	ECS-IEGARG	VVFNI	[253]
Np61	IGVSS	GKSRAREAA	IAAISSPLLE	ECS-IEGARG	VVFNI	[253]
Tet112382	IGIAS	GKSRATEAA	LSAISSPLLE	ERS-IEGAKG	VVFNI	[253]
SyAAC26227	IGSGS	GKSRAREAA	HAAISSPLLE	ESS-IEGARG	VVFNI	[253]
PsCAB56201	IGIGS	GRSRALEAA	QAAMNSPLLE	EAARIDGAKG	CVINI	[253]
Pm1658	IGIGS	GRSRALEAA	QAAMNSPLLE	EAARIDGAKG	CVINI	[253]
PmCAB95028	IGIGS	GRSRAAEAA	QAAINSPLLE	EAGRIDGAKG	CVVNI	[253]
Sy549	IGIGS	GRSRAVEAA	QAAISSPLLE	ETERIDGAKG	CVINI	[253]
Pm1268	IGEGS	GRSRAIEAA	QAAISSPLLE	EAARIDGAKG	CVINI	[253]
NtCAB41987	VGVSS	SKNRAEEAA	EQATLAPLIC	GSS-IQSATG	VVYNI	[253]
NtCAB89287	VGVSS	SKNRAEEAA	EQATLAPLIC	GSS-IQSATG	VVYNI	[253]
TeAAF81220	VGVSS	SKNRAEEAA	EQATLAPLIC	GSS-IQSATG	VVYNI	[253]
AtAAA82068	VGVSS	SKNRAEEAA	EQATLAPLIC	GSS-IQSATG	VVYNI	[253]
PsCAA75603	VGVSS	GKNRAEEAA	EQATLAPLIC	GSS-IQSATG	VVYNI	[253]
NtAAF23770	VGVSS	SRNRAEEAA	EQATLAPLIC	GSS-IQSATG	DVYNI	[253]
NtCAB89286	VGVSS	SRNRAEEAA	AEQATLAPLIC	GLS-IQSATG	VVYNI	[253]
OsAAK64282	VGVSS	SKNRAQEAA	AEQATLAPLIC	GSS-IEAATG	VVYNI	[255]
CrBAB91150	VGAASTATAA	PGGPDRAEQAA	VAATSAPLIÇ	QRS-IEKATG	IVYNI	[260]
CpAAC32266	IGRAS	GENKAEIAA	KMAIQSPLLE	ETT-IEGAKS	VLINF	[253]
EcP06138	SGVAS	GEDRAEEAA	AEMAISSPLLE	EDIDLSGARG	VLVNI	[254]
BsAAA22457	IGIAT	GENRAAEAA	KKAISSPLLE	EAA-IDGAQG	VLMNI	[253]

[280	290	300	310]	
[•		•	.]	
NtCAB89288	TGGSDLTLF	EVNAAAEVIY	(DLVDPSANL)	IFGAVIDPSIS	S-GOVSI	[299]
NtCAC44257	TGGSDLTLF	EVNAAAEVIY	ZDLVDPSANL	IFGAVIDPSIS	S-GOVSI	[299]
OsCLB17724_5	TGGADMTLF	EVNSAAEIIY	(DLVDPNANL)	IFGAVIDPSLN	-GOVSI	[299]
GlAAF23771	TGGSDLTLF	EVNAAAEVIY	ZDLVDPSANL	IFGAVVDPSLO	C-GOVSI	[299]
L1BAA96782	TGGNDLTLY	EVNAAAEVIY	ZDLVDPAANL	IFGAVIDPSIS	S-GOVSI	[299]
AtAAC35987	TGGSDLTLF	EVNAAAEVIY	DLVDPTANL	IFGAVVDPALS	-GOVSI	[299]
AtAAK63846	TGGSDLTLF	EVNAAAEVIY	DLVDPTANL	IFGAVVDPSYS	G-GQISI	[299]
OsCL005296_338	TGGNDLTLT	EVNAAAEVIY	DLVDPGANL	IFGSVIDPSY	-GQVSI	[299]
PpCAB76386	TGGSDMTLF	EVNAAAEVIY	ZDLVDPNANL	IFGAVVDEALH	I-DQISI	[299]
PpCAB54558	TGGSDMTLF	EVNAAAEVIY	ZDLVDPNANL	IFGAVVDEALH	I-GQVSI	[299]
CrAAM22891	TGPPNMTLH	EVNEAAEIIY	DMVDPNANL	IFGAVVDSTL	PDDTVSI	[300]
CmBAA85116	TGGEDMTLH	EINQAAEVIY	(EAVDPNANI)	IFGALIDQQME	E-SEISI	[297]
CcBAA82871	TGGEDMTLH	EINQAAEVIY	YEAVDPNANI	IFGALVDQQME	E-SEISI	[297]
GtCAA07676	TGGQDMTLH	EINSAAEVIY	YEAVDSNANI	IFGALVDDNM	E-NEISI	[296]
GsBAA82090	TGGHDMTLH	EINAAAEVIY	YEAVDLNANI	IFGALVDDSM	E-NELSI	[296]
MsAAF35433	VGGSDMSLQ	EINAAAEVIY	YENVDQDANI	IFGAMVDDKM	rsgevsi	[273]
GsBAA82091	TGGTDMTLS	EVNQAAQVIY	DSVDSDANI	IFGAVVDETFH	K-GKVSV	[304]
Te1949	TGGTDLTLH	EVNAAAEIIY	YEVVDPNANI	IFGAVIDDKLÇ	Q-GEIKI	[297]
SsNP_440816	TGGTDLTLH	EVNVAAEIIY	YEVVDADANI	IFGAVIDDRLÇ	Q-GEMRI	[297]
AsCAA83241	TGGSDLTLH	EVNAAAETIY	YEVVDPNANI	IFGAVIDDRLÇ	Q-GEVRI	[297]
Np61	TGGTDLTLH	EVNAAAEAIY	YEVVDPNANI	IFGAVIDDRLÇ	Q-GEVRI	[297]
Tet112382	TGGTDLSLH	EVNAAADVIY	YNVADANANI	IFGAVIDPQMÇ	Q-GEVQI	[297]
SyAAC26227	TGGRDMTLH	EVNAAADAIY	YEVVDPEANI	IFGAVIDDRLE	E-GELRI	[297]
PsCAB56201	TGGKDMTLE	DMTSASEII	YDVVDPEANI	IVGAVIDESME	E-GEIQV	[297]
Pm1658	TGGKDMTLE	DMTSASEIIY	YDVVDPEANI	IVGAVIDESME	E-GEIQV	[297]
PmCAB95028	TGGKDMTLE	DMTSASEVIY	YDVVDPEANI	IVGAVIDEAL	E-GEVQV	[297]
Sy549	SGGRDMTLE	DMTTASEVI	YDVVDPEANI	IVGAVVDEALE	E-GEIHV	[297]
Pm1268	SGGRDMTLE	DMTSASEVI	YDVVDPEANI	IVGAVVDEKLI	E-GEVHV	[297]
NtCAB41987	TGGKDITLQ	EVNRVSQVV	[SLADPSANI]	IFGAVVDERYN	N-GEIHV	[297]
NtCAB89287	TGGKDITLQ	EVNRVSQVV	[SLADPSANI]	IFGAVVDERYN	N-GEIHV	[297]
TeAAF81220	TGGKDITLQ	EVNRVSQVV	[SLADPSANI]	IFGAVVDERYN	N-GEIHV	[297]
AtAAA82068	TGGKDITLQ	EVNRVSQVV	rsladpsani:	IFGAVVDDRY	C-GEIHV	[297]
PsCAA75603	TGGKDITLQ	EVNRVSQVV	[SLADPSANI]	IFGAVVDDRY	r-GEIHV	[297]
NEAAF23770	TGGKDITLQ	EVNKVSQVV	rsladpsani:	IFGAVVDERYN	N-GEIQV	[297]
NECAB89286	TGGKDITLQ	EVNKVSQVV	[SLADPSANI]	IFGAVVDERYN	1-GEIQV	[297]
OSAAK64282	TGGKDITLQ	EVNKVSQIV	[SLADPSANI]	IFGAVVDDRY	C-GEIHV	[299]
CrBAB91150	TGGRDLTLA	EVNRVSEVV	FALADPSCNI	IFGAVVDEQYI	D-GELHV	[304]
CPAAC32266	SGDMNLGLM	ETEEAADLII	REAIDPDAEI	IFGTTINEDL	I-NEVVV	[297]
ECP06138	TAGFDLRLD	EFETVGNTI	RAFASDNATV	VIGTSLDPDM	N-DELRV	[298]
BSAAA22457	TGGTNLSLY	EVQEAADIVA	ASASDQDVNM	IFGSVINENLE	(-DEIVV	[297]

[320]	
[.]	
NtCAB89288	TLIATGF	[306]
NtCAC44257	TLIATGF	[306]
OsCLB17724_5	TLIATGF	[306]
GlAAF23771	TLIATGF	[306]
L1BAA96782	TLIATGF	[306]
AtAAC35987	TLIATGF	[306]
AtAAK63846	TLIATGF	[306]
OsCL005296_338	TLIATGF	[306]
PpCAB76386	TLIATGF	[306]
PpCAB54558	TLIATGF	[306]
CrAAM22891	TIIATGF	[307]
CmBAA85116	TVVATGF	[304]
CcBAA82871	TVVATGF	[304]
GtCAA07676	TVVATGF	[303]
GsBAA82090	TVIATGF	[303]
MsAAF35433	TVLATGF	[280]
GsBAA82091	TVVATGF	[311]
Te1949	TVIATGF	[304]
SsNP_440816	TVIATGF	[304]
AsCAA83241	TVIATGF	[304]
Np61	TVIATGF	[304]
Tet112382	TVIATGF	[304]
SyAAC26227	TVIATGF	[304]
PsCAB56201	TVIATGF	[304]
Pm1658	TVIATGF	[304]
PmCAB95028	TVIATGF	[304]
Sy549	TVIATGF	[304]
Pm1268	TVIATGF	[304]
NtCAB41987	TIIATGF	[304]
NtCAB89287	TIIATGF	[304]
TeAAF81220	TIVATGF	[304]
AtAAA82068	TIIATGF	[304]
PSCAA75603	TIIATGF	[304]
NEAAF23770	TLIATGF	[304]
NtCAB89286	TLIATGF	[304]
OSAAK64282	TIIATGF	[306]
CrBAB91150	TIIATGF	[311]
CpAAC32266	TVIATGL	[304]
EcP06138	TVVATGI	[305]
BSAAA22457	TVIATGF	[304]
;		
END;		

Land Roll of

APPENDIX B

FtsZ cDNA Alignment

The Nexus file with the FtsZ cDNA alignment that was used in the phylogenetic analyses that are discussed in Chapter 5 and used to produce the tree shown in Figure 2 of that chapter. Sequences are labeled with the organism initials followed by the accession or gene number.

#NEXUS							
BEGIN	DATA;						
	DIMENSIONS	NTAX = 40	NCHAR=966;				
	FORMAT DATA	FYPE=DNA	MISSING=?	GAP=-	INTERLEAVE ;		
MATRIX							
r			1.0	0.0	2.0		
l			10	20	30	40]
l			•	•	•	•]
ר א ה ה א	21.01						
	521U1	GCGAAGA			TGGCGGGGGGGTC		r [45]
OSCLUU OSCLUU	0220_0020	CCGAGGA		GCGTTGC	BAGGTGGTGGATC		
	1750	GCCAAGA					
NEAUZ/	1947	GCGAAAA			COMPCCOCC A MC		A [45]
CIAE20	15859	GCAAGA	CAAGGIGGII CAAGGIGGII		CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		A [45]
AtAF08	9738	GCGAGGA	TCAAGGIAGIG TTA ACCTTA TT	COTICC	AGGGGGGIGGCIC	GAAIGC ו	R [45]
AtAF38	4167	GCTAGGAT			ACCTCCTCCTTC		I [4]] T [4]]
PpA.T24	9139	GCGAAAA			CCCCCCCCCCCTTC		1 [4J] 7 [45]
PDA T24	.9138	GCGAAAA		CCCTCCC	ACCTCCCCCTTC		
CrAF44	9446	GCCATCAT	TTAAGGTTCTG	36061000 360677760	CGGTGGTGGCTC	CANCOC	
CmAB03	2072	TGTCTGAT	TTAAAGTTATC	GCGTCGC	TGGTGGTGGTGGCGG	CAACGC	Δ [45]
CcAB02	3962	TGTTTGAT	CAAGGTGATT	GTGTCG	CGGCGGCGGCGGTGG	CAACGC	[45]
GtAJ00	7748	TGTGTTAT	TAAAGTTATT	GTGTTG	GAGGTGGTGGTGG	AAATGC	A [45]
GsAB02	2594	TGCATTAT	TAAAGTTGTT	GGAGTCG	GAGGAGGTGGAAG	TAACGC	A [45]
MsAF12	0117						- [0]
GsAB02	2595	TGCAAGAT	TAAAGGTAGTT	GGGGTAGC	GAGGAGCAGGAGG	GAATGC	A [45]
PsAJ01	1025	GCCAAAAT	TGAAGTAATT	GGTGTCGC	GGGTGGTGGGAG	TAATGC'	Г [45]
Pm1658	•	GCCAAAAT	TGAAGTAATT	GGTGTCGC	GGGTGGTGGGAG	TAATGC	г [45]
PmAJ23	7851	GCCCGCAT	TGAAGTAATT	GGCGTAG	GTGGTGGTGGCAG	CAATGC'	r [45]
Sy549		GCCAAGAT	TTGAGGTCATC	GGGGTTGC	GGGTGGCGGCAG	GCAATGC	C [45]
Pm1268	:	GCTCGCAT	TTGAAGTAATT	GGCGTCGC	GCGGAGGCGGCAG	GCAATGC	C [45]
SYAF07	6530	GCCCGCAT	CAAAGTAATT	GGCGTTGC	GCGGTGGCGGCAG	GCAACGG	G [45]
AsZ313	71	GCCAATAT	CAAAGTAATT	GGTGTTGC	GCGGTGGTGGTGG	STAATGC	r [45]
Np61		GCCAACAT	CAAAGTGATT	GGTGTCGC	GTGGCGGCGGTGG	TAATGC	C [45]
Tetll2	382	GCACGCAT	CAAAGT GATT	GGTGTCGC	GTGGTGGCGGTGG	GCAATGC	A [45]
Te1949	1	GCAAAAA	TTAAAGTAATT	GGCGTAGC	GAGGAGGTGGCGG	GCAATGC'	r [45]
SsNC_0	00911	GCCAAAA	TAAAGTGATC	GGCGTTGC	GGGGAGGCGGTTC	GCAATGC'	T [45]
NtAJ13	3453	GCTAAGAT	TAAGGTTATC	GGCGTCGC	GTGGCGGTGGTAA	CAATGC	C [45]
NtAJ27	1749	GCTAAGAT	TAAGGTTATCO	GGCGTCGC	GTGGCGGTGGTAA	CAATGC	C [45]
TeAF25	1346	GCAAAAA	CAAAGTCGTT(GGCGTCG	GTGGTGGTGGCAA	CAATGC	C [45]
AtU398	77	GCGAGAA	TAAGGTGATT	GGTGTCGC	GTGGTGGTGGTAA	CAATGC	C [45]
PsY153	83	GCTAAGAT	TAAGGTCGTT	GGAATTGO	GGGTGGTGGTAA	CAATGC	C [45]
NtAF20	5858	GCCAAGAT	TAAGGTTGTC	GGCGTCG	GTGGCGGCGGCAA	CAATGC	r [45]
NtAJ27	1748	GCCAAGAT	TAAGGTTGTC	GGCGTCGC	GTGGCGGCGGCAA	ACAATGC'	r [45]
OsAF38	3876	GCGAGGA	FAAAGGTCGTG	GGCGTCGC	GCGGCGGCGGGAA	ACAACGC'	г [45]
CrAB08	4236	GCCTGCAT	CAAGGTTATC	GGGGTCG	GCGGTGGTGGCGC	GCAATGC	C [45]
CpAF06	1823	GCGCAGA	AAAAGTAATC	GCGTTG	GTGGCGGCGGCAA	CAACGC'	г [45]
BsM226	30	GCATCAAT	TAAAGTAATC	GGAGTAGO	GAGGCGGCGGTAA	CAACGC	C [45]
EcX550	34	GCGGTGAT	TTAAAGTCATC	GGCGTCGC	GCGGCGGCGGCGG	GTAATGC'	г [45]

[[50	60	70	80	90]	
L1AB042101GTTAATAGGATGATTGCGAGTTCCATGGATGGTGCGAGTTTTGG[90]OscL005296_338GTGAACAGGATGATTGAGAGCGCACATGAAGGGGTGGAGTTTTGG[90]NtAJ21750GTAAATGCCATGATTGAGAGCTCCATGAAGGGGTGAGAGTTTTGG[90]NtAJ211750GTAAATCGCATGATTGAGAGTCGATGAAGGGGTGAGAGTTTTGG[90]G1AF205859GTTAATCGGATGATTGAAGGGCACATGAAAGGCGTAGAGGTTTTGG[90]AtAF089738GTGAATCGTATGATAGAGAGGGAAAAGGCGTAGAGGTTTGGG[90]PpJ249139GTCAACCGAATGCTTGAGAGGGAAATGCAAGGGGTGGAATTCTGG[90]PpJ249138GTAAACCGAATGCTTGAGAGCGACAGCGCAGGGCGTGGAATTCTGG[90]CAFA44946GTCAACCGATGCTTGAGAGCGACAGCGCAGGGCGTGGAGTTCTGG[90]CAB032072GTGAACCGTATGGCGGATACAGGTATTCGGGGGTGGAAGTCTGG[90]CAB023962GTCAACCGTATGGCGGATACAGGTATAGGGGTGGAAGGTGTAGAGGTTTTGG[90]GAB022594GTGAATCGGATGTGTGGAGGCTTCAAGGGGTGGAACTCTGG[91]GSAB022595GTTCAACCGTATGGAGGAGTGTACAAGGGGTTGAATTTTGG[92]PsJJ011025GTAAACAGGATGATGATGATGATGGTTTCAAGAGGGGTTCATTCA	[•	.]	
DIABO42101GTIAATAGGATIGGATIGGGAGTCCATGGAGGGGTGGAGTTTCGG[90]OsCL05296_338GTGAACAGGATGATTGAGAGCATGAAGGGGGTGGAGTTTGG[90]NtAJ271750GTAAATCGCATGATGAGAGGTCCATGAAGGGGTGTAGAGTTTTGG[90]NtAJ311847GTAAATCGCATGATTGAGAGGTCGATGAAAGGGTGTAGAGTTTTGG[90]AtAF384167GTGAATCGTATGATAGAGAGGGAAATGCAAGGGTGTGGAGTTTGG[90]AtAF384167GTGAATCGTATGATAGAGGGGAGATGCAAGGGGTGGGAGTTCTGG[90]PAJ249139GTCAACCGAATGCTTGAGAGCGAAATGCAAGGGGTGGAGATTCTGG[90]PAJ249138GTAAACCGAATGCTTGAGAGCGAGATGCAAGGGGTGGAGATTCTGG[90]CcAB032072GTGAACCGTATGGCGAATAGCGACGTCCAGGGCGTGGAGTTTCG[90]CcAB032072GTGAACCGTATGGCGGACACGGCATCAGGGGTGGAGATTTTGG[90]CcAB032072GTGAATCGATGGTGGGGGGTGTTGAAGGAGTGAATTTTGG[91]CaB032072GTGAATCGATGGTGGGGGGTGTTGAAGGAGTGGAATTTTGG[92]GsAB022594GTGAATCGATGTGGGGGACACGGCATCCTGGAGGTTGAATTTTGG[87]GsAB022595GTTCAACGATGTGTGAGATGGTTGAAGAGGTGTATCATTCGAG[90]PsAJ011025GTAAACAGGATGATTCTTAGTGGAGCTTTCATCGAGAGGTTTCATTCA	1 1 2 0 0 0 1 0 1						
OscL003296_33BGTGAACAGGATGATGAGGGCGACAGGAGGGGGGGGATTCTGG[90]NtAJ271750GTAAACGGATGATTGAGAGGTCCATGAAGGGGGGGGGGG	LIAB042101	GTTAATAGGAT	rgat"rgcgag'	I"TCCATGGAT	GGTGTCGAGT	"T"T"TGG	[90]
OSCLB17/24_5GTCAACAGGTGATTGAAGAGCTCCATGAACGGCGTCGAGTTCGG[90]NtAJ211847GTAAATCGCATGATTGAAGAGTTCCAATGAAGGGGTGAGAGTTTTGG[90]Q1AF205859GTTAATCGCATGATTGAAAGTGCTATGAAAGGCGTAGAGTTTTGG[90]AtAF089738GTGAATCGTATGATAGAAGGGGAAATGCAAGGTGTGGAGTTCTGG[90]PpAJ249139GTCAACCGAATGCTTGAGAGCGACAATGCAAGGGTGTGGAGTTCTGG[90]PpAJ249138GTAAACCGAATGCTTGAGAGCGACAGCGACGAGGGGTGGAGATTCTGG[90]CrAF449446GTCAACCAACATGCTCAATAGCGACGCGCAGGGGTGGAGTTCTGG[90]CrAB032072GTGAACCGTATGGCGACACCGGCACCGCGCAGGGGTGGAGTTCTGG[90]GtAJ007748GTTAATCGAATGGTAGGGGTGTGAAGGAGTGAAGTTTTGG[87]GSAB022594GTCAACCGTATGGCGACACCGGCATCTCAGGCGTGGAATTTTGG[87]MsAF120117GGCGTTGAAGGAGTGGAATTTTGG[90]PmJ1058GTAAACAGGATGATTGTAGAGAGTGTATACAAGAGCGTTCCATTCAGA[90]Pm1658GTAAACAGGATGATTGATAGTGATGTAGATCTTGAAGGCGTTCCATACAGA[90]Pm1658GTCAACCGCATGATTGATAGTGATCTGAAGGGGTGTGGATTTTGG[90]Sy549GTCAACCGCATGATTGCTAGTGATCTGAGAGGTGTGAACTTTGG[90]sy231371GTTAACCGCATGATTGCAAGTCCTCAGTGGAGCGTGGATTTTGG[90]sy8231371GTTAACCGCATGATTGCAAGTACGCAGGATGTCAGCGGGTGGAACTTTTGG[90]NcJ2313453GTTAACCGCATGATTGCCAGTGAGGCTTACCAGGGGTGTGAATTTTGG[90]NcJ133453GTTAACCGCATGATTGCCAGTGGCTTACAGGGGTGTGAATTTTGG[90]NcJ271749GTTAACCGCATGATTGCCAGTGGCTTACCAGGGGTGTGAATTTTGG[90]NcJ271749GTTAACCGCATGATTGCCAGGGGCTTCCAGGGGTGTGAATTTTAC[90]NcJ271749GTTAACCGCATGATTGCCAGGGGCTT	OSCL005296_338	GTGAACAGGAT	rgat"rgagago	CGACA'I'GAAG	GGGGTGGAAT	TCTGG	[90]
NCLAJ 211750GTAAAATCGCATGATTGAAGGTTCGATGAAGGGTGTAGAGTTTTGG[90]GIAF205859GTTAATCGGATGATTGAAGGTGCAGAAGGGGTGTAGAGTTTTGG[90]GLAF205859GTGAATCGTATGATAGAAGGGGTAGAAGGCGTAGAGTTTTGG[90]ALAF384167GTGAATCGTATGATAGATGAAGGGGAAAGGCGTAGAGGTGTGGGGATTCTGG[90]PpAJ249139GTCAACCGAATGCTTGAGAGCGAAGGCGAAGGGGTGGGAGTTCTGG[90]PpAJ249138GTAAACCGAATGCTTGAGAGCGACGACGGCGTGGGGGTGTGGGAGTTCTGG[90]CAF449446GTCAACCACACATGGTCGAGCGCACGCGCGCGGGGGGGGG	USCLB1//24_5	GTCAACAGGA	L'GA'I''I'GAGAG(C'TCCA'I'GAAC	GGCGTCGAGT	TCTGG	[90]
NLAJ11847GTAAANCGCATGATTGAAGGTCTGATGAAGGCTGAGGCTTTGGG[90]ALAF089738GTGAATCGTATGATAGAAGGCGAAGGGCGTGGAGTTTTGG[90]ALAF089738GTGAATCGTATGATAGAAGGGGAAATGCAAGGGGTGGGAGTTTTGG[90]PpAJ249139GTCAACCGAATGCTTGAGAGCGAAATGCAAGGGTGGGAGTTCTGG[90]PpAJ249138GTAAACCGAATGCTTGAGAGCGAAAGCAAGGGGTGGGAGTTCTGG[90]CrAF449446GTCAACCGAATGCTTGAGAGCGACGGCAGGGCGGGGGGGG	NtAJ2/1/50	G'PAAA'FCGCA'	I'GA'I''I'GAGAG'	I'TCGA'TGAAG	GGTGTAGAGT	TTTGG	[90]
G1A20559GTTAATCGAATGATTGAAAGTGCTATGAAAGGCGTAGAGTTTTGG[90]AtAF089738GTGAATCGTATGATAGATAGAAGAGTGAAATGCCAGGGTGGAGTTTTGG[90]PAJ249139GTCAACCGAATGCTTGAGAGCGAAATGCAAGGGTGGAGATTCTGG[90]PpAJ249138GTAAACCGAATGCTTGAGAGCGACAGCGCAGGGGTGGAATTCTGG[90]CrAF449446GTCAACCGAATGCTGAGAGCGACAGGGCGTGGAGTTCTGG[90]CcAB023962GTCAACCGTATGGCGGATACAGGTATTCGGGGTGGAGTTTTGG[90]CcAB023962GTCAACCGATGGTGGAGTGTGTTGAAGGAGTGAATTTTGG[87]GsAB022594GTGAATCGAATGGTGGGAGTGTTGAAGGAGTGGAATTTTGG[87]MsAF120117GCGCTCGAACGTGGAATTTTGG[90]PsAJ237851GTAAACAGGATGATGTTGGAGGTTGATAGTGAAGCGTGGAATTCTA[90]PmJ025GTAAACAGGATGATTGATAGTGATCTTGAAGGGCGTTTCATTCA	NTAJ 311847	GTAAATCGCA'	l'GA'I''I'GAGAG'	ITCGATGAAG	GGTGTAGAGT	TTTGG	[90]
AtAP089/38GTGAATCGTATGATAGAGAGTGAAATGCTAGGGTGTGGAGTTCTGG[90]AtAF384167GTGAATCGTATGATGATGAGAGTGAGATGATTGGTGTGGAGTTTGG[90]PpAJ249139GTCAACCGAATGCTTGAGAGCGAAATGCAAGGGTGGAATTCTGG[90]CrAF449446GTCAACCAACGGTCAATAGCGACGCGAGAGGCGGAGGTTCTGG[90]CmAB032072GTGAACCGTATGGCGGATACAGGGATTCCGGGGGTGGAGTTCTGG[90]GtAJ007748GTTAATCGAATGGTGGGGGTGTTGAAGGAGTTGAAGTTTTGG[87]GsAB022594GTGAACCGTATGCGGATGGTGGAGATGGTTGAAGGAGTTGAATTTTGG[87]MsAF120117GGTGTTGAAGAGCGTGGAATTCTAG[90]PsAJ011025GTAAACAGGATGATTGAGAGAGTGGATTACAAGACGTGGAATTTCTA[90]PsAJ011025GTAAACAGGATGATTGATAGTGATCTTGAAGGCGTTCATTCA	G1AF205859	GTTAATCGGAI	rgattgaaag [,]	IGCTATGAAA	GGCGTAGAGT	TTTGG	[90]
At.AF 384167GTGAATCGTATGATTGAGAGTGAGATGATGGTGGGGAGTTTTGG[90]PpAJ249139GTCAACCGAATGCTTGAGAGCGAAATGCAAGGGGTGTGGAATTCTGG[90]CrAF449446GTCAACACGAATGCTTGAGAGCGACGTGCAAGGGGTGGAGATTCTGG[90]CmAB032072GTGAACCGTATGGCGGACACCGGCATGCAGGGGTGGAGGTTCTGG[90]CcAB023962GTCAACCGTATGGCCGACACCGGCATCTAGGGGGTGGAGGTTTGG[90]CcAB023962GTCAACCGTATGGCCGACACCGGCATCTCAGGCGTGAAGTTTTGG[87]GsAB022594GTGAATCGGATGTGTGAGATGGTTGAAGGAGTGAAATTTTGG[87]GsAB022595GTTCAACGTATGTTGGAGAGTGGTTACAAGAGCGTGGAATTTCTG[90]PsJJ01102GTTAATCGAATGTTGGAGAGTGGTTACAAGAGCGTGGAATTTCTA[90]PsJ237851GTAAACAGGATGATTGTAGTGGTAGTGTTGAAGGGGTTCCATCCA	AtAF089738	GTGAATCGTAT	rgatagagag'	IGAAATGTCA	GGTGTGGAGT	TCTGG	[90]
PpAJ249139GTCAACCGAATGCTTGAGAAGCGAAATGCAAGGGGTGTGAAATTCTGG[90]PpAJ249138GTAAACCGAATGCTTGAGAGCGAGATGCAAGGGGTGGAAATTCTGG[90]CrAF449446GTCAACACACGTGTGAGGGCGACACGGCAGGGGTGGAGATTCTGG[90]CmAB032072GTGAACCGTATGGCGGACACCGGCATCTCAGGGGTGGAGATTTGG[90]CcAB023962GTCAACCGTATGGCGGACACCGGCATCTCAGGCGTAGAGTTTTGG[90]GtAJ007748GTTAATCGAATGGTAGGGATGGTTGAAGGAGTTGAATTTTGG[87]GsAB022594GTGAATCGGATGTGTGAGATGGTTGAAGGAGTGAATTTTGG[87]GsAB022595GTTCAACGTATGTTGGAGAGTGGTTTACAAGAGCGTGGAATTCTA[90]PsJ101025GTAAACAGGATGATTGATAGTGATCTTGAAGGCGTTTCATTCA	AtAF384167	GTGAATCGTAT	rgattgagag'	IGAGATGATT	GGTGTGGAGT	TTTGG	[90]
PpA2249138GTAAACCGAATGCTTGAGAGCGAGATGCAAGGGGTGAGAATTCTGG[90]CrAF44946GTCAACAACATGGTCAATAGCGACGTCCAAGGGCTGGAGGTTCTGG[90]CcAB023962GTCAACCGTATGGCGGATACAGGTACAGGATTTCGGGGGTGGAGGTTTGGG[90]CcAB023962GTCAACCGTATGGCGGACACCGGCATCTCAGGCGTAGAGTTTTGG[87]GsAB022594GTGAATCGAATGGTGAGGGGTGTTGAAGGAGTTGAATTTTGG[87]GsAB022595GTTCAACGATGTTGGAGGGGTGTTGAAGGAGTTGAATTTTGG[87]GsAB022595GTTCAACGATGTTGGAGAGTGGTTTACAAGAGCGTGGAACTCTGG[90]PsAJ011025GTAAACAGGATGATTGTTGGAGAGTGGTTTACAAGAGCGTGGAACTTCAGG[90]PmJ237851GTAAACAGGATGATTGATAGTGATCTTGAAGGGGTTCATTCA	PpAJ249139	GTCAACCGAAT	IGCTTGAGAG	CGAAATGCAA	GGTGTGGAAT	TCTGG	[90]
CrAF449446GTCAACAACATGGTCAATAGCGACGTGCAGGGCGTGGAGTTCTGG[90]CmAB032072GTGAACCGTATGGCGGATACAGGTATTTCGGGGGGTGTGGAGTTCTGG[90]CcAB023962GTCAACCGTATGGCCGACACCGCACCTCTAGGGGGTGAGAGTTTTGG[90]GtAJ007748GTTAATCGAATGGTAGGGGGTGTTAAAGGAGTGAATTTTGG[87]GsAB022594GTGAATCGGATGTGTGAGATGGTTGAAGGAGTGAATTTTGG[87]MsAF120117GGCGTCGAACTCTGG[15]GsAB022595GTTCAACGTATGTTGGAGAGTGGTTTACAAGACGTGGAATTTCTA[90]PsAJ011025GTAAACAGGATGATTGATAGTGATCTTGAAGGCGTTTCATTCA	PpAJ249138	GTAAACCGAAT	IGCTTGAGAG	CGAGATGCAA	GGGGTAGAAT	TCTGG	[90]
CmAB032072GTGAACCGTATGGCGGATACAGGTATTTCGGGTGTGGAGTTCTGG[90]CcAB023962GTCAACCGTATGGCCGACACCGGCATCTGAGGGTGAGAGTTTTGG[90]GtAJ007748GTTAATCGAATGGTAGGGGGTGTTGAAGGAGTGAATTTTGG[87]GsAB022594GTGAACCGATGGTGAGATGGTTGAAGGAGTGGAACTTTGG[87]MsAF120117GCGTCGAAGCGGGAACTCTGG[15]GsAB022595GTTCAACGTATGTTGGAGAGTGGATTACAAGACGGGGAACTTCTA[90]PsAJ011025GTAAACAGGATGATTGATAGTGATCTTGAAGGCGTTTCATTCA	CrAF449446	GTCAACAACA	rggtcaatag(CGACGTGCAG	GGCGTGGAGT	TCTGG	[90]
CcAB023962GTCAACCGTATGGCCGACACCGGCATCTCAGGCGTAGAGTTTTGG[90]GtAJ007748GTTAATCGAATGGTAGGGGTGTTGAAGGAGTTGAATTTTGG[87]GsAB022594GTGAATCGGATGTGTGAGATGGTTGAAGGAGTTGAATTTTGG[87]MsAF120117GGCGTCGAACCTCTGG[15]GsAB022595GTTCAACGTATGTTGGAGAGTGGTTTACAGAGCGTGGAACTTTCAT[90]PsAJ011025GTAAACAGGATGATTGATAGTGATCTTGAAGGCGTTTCATTCA	CmAB032072	GTGAACCGTAT	rggcggatac.	AGGTATTTCG	GGTGTGGAGT	TCTGG	[90]
GtAJ007748GTTAATCGAATGGTAGGGGGTGTTGAAGGAGTTGAATTTTGG[87]GsAB022594GTGAATCGGATGTGTGAGGATGGTTGAAGGAGTTGAATTTTGG[87]MsAF120117GGCGTCGAACTCTGG[15]GsAB022595GTTCAACGTATGTTGGAGAGTGGATTTACAAGACGTGGAACTTCAGA[90]PsAJ011025GTAAACAGGATGATTGATAGTGATCTTGAAGGCGTTTCATTCA	CcAB023962	GTCAACCGTAT	rggccgacac	CGGCATCTCA	GGCGTAGAGT	TTTGG	[90]
GsAB022594GTGAATCGGATGTGTGAGATGGTTGAAGGAGTTGAATTTTGG[87]MsAF120117GGCGTCGAACTCTGG[15]GsAB022595GTTCAACGTATGTTGGAGAGTGGTTTACAAGACGTGGAATTTCAT[90]PsAJ011025GTAAACAGGATGATTGATAGTGATCTTGAAGGCGTTTCATTCA	GtAJ007748	GTTAATCGAAT	rggtaggg	-GGTGTTGAA	GGAGTTGAAT	TTTGG	[87]
MsAF120117GGCGTCGAACTCTGG[15]GsAB022595GTTCAACGTATGTTGGAGAGTGGTTTACAAGACGTGGAATTTCTA[90]PsAJ011025GTAAACAGGATGATTGATAGTGATCTTGAAGGCGTTTCATTCA	GsAB022594	GTGAATCGGAT	rgtgtgag	-ATGGTTGAA	GGAGTTGAAT	TTTGG	[87]
GsAB022595GTTCAACGTATGTTGGAGAGTGGTTTACAAGACGTGGAATTTCTA[90]PsAJ011025GTAAACAGGATGATTGTTGATAGTGATCTTGAAGGCGTTTCATTCA	MsAF120117				GGCGTCGAAC	TCTGG	[15]
PsAJ011025GTAAACAGGATGATTGATAGTGATCTTGAAGGCGTTTCATTCA	GsAB022595	GTTCAACGTAT	rgttggagag'	IGGTTTACAA	GACGTGGAAT	TTCTA	[90]
Pm1658GTAAACAGGATGATTGATAGTGATCTTGAAGGCGTTTCATTCA	PsAJ011025	GTAAACAGGAT	IGATTGATAG	IGATCTTGAA	GGCGTTTCAT	TCAGA	[90]
PmAJ237851GTAAATCGAATGATTCTTAGTGATCTTCAAGGGGGTCTCATACAGA[90]Sy549GTCAACAGGATGATCCTCAGTGATCTGGAGGGTGTTGCTTATCGC[90]Pm1268GTCAACCGCATGATTCTCAGTGACCTCGATGGTGTGAACTATCGG[90]SyAF076530GTCAACCGCATGATTAGCAGCGATGTCAGCGGGGGTTGAATTTTGG[90]As231371GTTAACCGCATGATCGAATCTGATGTCTCTGGTGTAGAGTTTTGG[90]Np61GTTAACCGCATGATCGCAGTGATGTGCCTGGGTGTGAATTTTGG[90]Tet112382GTAAACCGCATGATTGCCAGTAGTGTGGCGGGGTGTTGAATTTTGG[90]SsNC_000911GTCAACCGTATGATTGCCAGTGGGGTGACGGGCATCGACTTCTAT[90]NtAJ133453GTTAACCGTATGATTGCCAGTGGGCTTACAGGGTGTGACTTCTAT[90]NtAJ271749GTTAACCGATGATTGGTAGCGGCTTACAGGGTGTGACTTCTAT[90]AtU39877GTTAACCGCATGATTGGTAGTGGTTGCAGGGTGTGACTTCTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTGACTTCTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTGACTTCTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTGACTTTTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCCTCCAGGGTGTGACTTTTAT[90]NtAJ271748GTTAACCGCATGATGGCAGCGGCCTCCCAGGGCACCGAATTTTAT[90]NtAJ271748GTTAACCGCATGATCGCAGCGCCTCCCAGGCCAGGGTGAGATTCTAG[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTCCAGGGCGTGAAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAACAGCGCCTGGAAGGGCGTGAAGTATATC[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	Pm1658	GTAAACAGGAT	[GATTGATAG [*]	IGATCTTGAA	GGCGTTTCAT	TCAGA	[90]
Sy549GTCAACAGGATGATCCTCAGTGATCTGGAGGGTGTTGCTTATCGC[90]Pm1268GTCAACCGCATGATTCTCAGTGACCTCGATGGTGGAACTATCGG[90]SyAF076530GTCAACCGCATGATTAGCAGCGATGTCAGCGGGGGTTGAATTTTGG[90]Asz31371GTTAACCGCATGATTGAATCTGATGTCTCTGGTGTAGAGTTTTGG[90]Np61GTTAACCGCATGATTGCAGTGACGGGGTGTTGAATTTTGG[90]Tet112382GTAAACCGCATGATTGCCAGTAATGTGGCGGGGTGTTGAATTTTGG[90]SSNC_000911GTCAACCGTATGATTGCCAGTGGGGTGACGGGCATCGACTTTTGG[90]NtAJ133453GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]NtAJ271749GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]AtU39877GTTAACCGCATGATTGGTAGTGGCTTGCAGGGTGTGACTTCTAT[90]NtAF205858GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTGACTTTTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTGACTTTTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCCTCCAGGGCATCGAATTTTAT[90]CrAB084236CTAAACCGCATGATCGCAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAAATGAAGCGCCTGGAAGGAGTAGAGTTTTATT[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	PmAJ237851	GTAAATCGAAT	IGATTCTTAG	IGATCTTCAA	GGGGTCTCAT	ACAGA	[90]
Pm1268GTCAACCGCATGATTCTCAGTGACCTCGATGGTGTGAACTATCGG[90]SyAF076530GTCAACCGCATGATTAGCAGCGATGTCAGCGGGGTTGAATTTTGG[90]As231371GTTAACCGCATGATTGAATCTGATGTCTCTGGTGTAGAGTTTTGG[90]Np61GTTAACCGCATGATCGAATCTGATGTCTCTGGTGTAGAGTTTTGG[90]Tet112382GTAAACCGCATGATGCCAGTAATGTGGCGGGTGTTGAATTTTGG[90]SSNC_000911GTCAACCGTATGATTGCCAGTGGGGTGACGGGCATCGACTTTTGG[90]NtAJ133453GTTAACCGTATGATTGGCAGTGGCGTTACAGGGTGTTGACTTCTAT[90]NtAJ271749GTTAACCGCATGATTGGTAGCGGCTTACAGGGTGTTGACTTCTAT[90]AtU39877GTTAACCGCATGATTGGTAGTGGCGTTGCAGGTGTGACTTCTAT[90]NtAF205858GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]CrAB084236CTAAACCGCATGATCGCAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTAACCGCATGATCGAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]SsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATACC[90]	Sy549	GTCAACAGGAT	IGATCCTCAG	TGATCTGGAG	GGTGTTGCTT	ATCGC	[90]
SyAF076530GTCAACCGCATGATTAGCAGCGATGTCAGCGGGGTTGAATTTTGG[90]AsZ31371GTTAACCGCATGATTGAATCTGATGTCTCTGGTGTAGAGTTTTGG[90]Np61GTTAACCGCATGATCGCAGTAATGTGGCGGGGTGTTGAATTTTGG[90]Tet112382GTAAACCGCATGATTGCCAGTAATGTGGCGGGGTGTTGAATTTTGG[90]Te1949GTTAACCGAATGATTGCCAGTGGGGTGACGGGCATCGACTTTTGG[90]NtAJ133453GTTAACCGTATGATTGGCAGTGGCGTTACAGGGGTGTGACTTCTAT[90]NtAJ271749GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]AtU39877GTTAACCGCATGATTGGTAGTGGCGCTTGCAGGGGTGTGACTTCTAT[90]NtAF205858GTTAACCGCATGATTGGCAGCGGCTTGCAGGGGTGTGACTTTTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCCTCCAGGGCGTGGAGATTTTAT[90]CrAB084236CTAAACCGCATGATCGCAGCGGCCTCCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTAACCGCATGATTGAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]SsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	Pm1268	GTCAACCGCAT	FGATTCTCAG	IGACCTCGAT	GGTGTGAACT	ATCGG	[90]
AsZ31371GTTAACCGCATGATTGAATCTGATGTCTCTGGTGTAGAGTTTTGG[90]Np61GTTAACCGCATGATCGAATCTGATGTCTCTGGTGTAGAGTTTTGG[90]Tet112382GTAAACCGCATGATTGCCAGTAATGTGGCGGGTGTTGAATTTTGG[90]Te1949GTTAACCGAATGATTGCTAGTGAGGTATCTGGTATAGAATTTTGG[90]SsNC_000911GTCAACCGTATGATTGCCAGTGGGGTGACGGCCATCGACTTTTGG[90]NtAJ133453GTTAACCGTATGATTGCCAGTGGCGTTACAGGGTGTTGACTTCTAT[90]NtAJ271749GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]AtU39877GTTAACCGCATGATTGGTAGTGGCTTTGCAGGGTGTGACTTTCTAT[90]NtAF205858GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTGACTTTTAT[90]NtAJ271748GTTAACCGCATGATTGGCAGCGGCCTTGCAGGGTGTTGACTTTTAT[90]OsAF383876GTCAACCGCATGATCGGCAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CrAB084236CTAAACCGCATGATCGACGGCCTGCAGGGCGTGGAGGTTCTGG[90]CpAF067823GTTGACCGAATGATTGAAAATGAAGACGCCTGGAAGGAGTAGAGTATATC[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	SyAF076530	GTCAACCGCAT	GATTAGCAG	CGATGTCAGC	GGGGTTGAAT	TTTGG	[90]
Np61GTTAACCGCATGATCGAATCTGATGTCTCTGGTGTAGAGTTTTGG[90]Tet112382GTAAACCGCATGATTGCCAGTAATGTGGCGGGTGTTGAATTTTGG[90]Te1949GTTAACCGAATGATTGCCAGTGGGGTGACGGGCATCGACTTTTGG[90]SsNC_000911GTCAACCGTATGATTGCCAGTGGGGTGACGGGCATCGACTTTTGG[90]NtAJ133453GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]NtAJ271749GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]TeAF251346GTTAACCGCATGATTGGTAGCGGCTTACAGGGTGTTGATTTTTAC[90]AtU39877GTTAACCGCATGATTGGTAGTGGTTTGCAGGGTGTGACTTTTAT[90]NtAF205858GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTGACTTTTAT[90]NtAJ271748GTTAACCGTATGATTGGCAGCGGCCTCCAGGGCGTGAATTTTAT[90]OsAF383876GTCAACCGCATGATCGCAGCGGCCTCCAGGGCGTGGAGTTCTGG[90]CrAB084236CTAAACCGCATGATCGAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAAATGAAGTGCAACGGAGTAGAGTATATC[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	AsZ31371	GTTAACCGCAT	IGATTGAATC	FGATGTCTCT	GGTGTAGAGT	TTTGG	[90]
Tet112382GTAAACCGCATGATTGCCAGTAATGTGGCGGGTGTTGAATTTTGG[90]Te1949GTTAACCGAATGATTGCTAGTGAGGTATCTGGTATAGAATTTTGG[90]SsNC_000911GTCAACCGTATGATTGCCAGTGGGGTGACGGGCATCGACTTTTGG[90]NtAJ133453GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]NtAJ271749GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]TeAF251346GTTAACCGCATGATTGGTAGCGGCTTACAGGGTGTTGATTTTAC[90]AtU39877GTTAACCGGATGATTGGTAGGTGTGGAGTGTGACTTTCTAT[90]NtAF205858GTTAACCGCATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGTATGATTGCCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]OsAF383876GTCAACCGCATGATCGCAGCGGCCTCCAGGGCATCGAATTTTAT[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	Np61	GTTAACCGCAT	IGATCGAATC	IGATGTCTCT	GGTGTAGAGT	TTTGG	[90]
Te1949GTTAACCGAATGATTGCTAGTGAGGTATCTGGTATAGAATTTTGG[90]SsNC_000911GTCAACCGTATGATTGCCAGTGGGGTGACGGGCATCGACTTTTGG[90]NtAJ133453GTTAACCGTATGATTGCCAGTGGCTTACAGGGTGTTGACTTCTAT[90]NtAJ271749GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]TeAF251346GTTAACCGCATGATTGGTAGCGGCTTACAGGGTGTTGATTTTAC[90]AtU39877GTTAACCGGATGATTGGTAGCGGCTTACAGGGTGTTGATTTCTAT[90]PsY15383GTTAACCGCATGATTGGTAGTGGTTTGCAGGGTGTTGACTTTCTAT[90]NtAF205858GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGTATGATTGGCAGCGGCCTCCAGGGCATCGAATTTTAT[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	Tet112382	GTAAACCGCAT	IGATTGCCAG	FAATGTGGCG	GGTGTTGAAT	TTTGG	[90]
SsNC_000911GTCAACCGTATGATTGCCAGTGGGGTGACGGGCATCGACTTTTGG[90]NtAJ133453GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]NtAJ271749GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]TeAF251346GTTAACCGCATGATTGGTAGCGGCTTACAGGGTGTTGATTTTTAC[90]AtU39877GTTAACCGGATGATTGGTAGCGGCTTACAGGGTGTTGATTTCTAT[90]PsY15383GTTAACCGCATGATTGGTAGTGGTTTGCAGGGTGTTGACTTTCTAT[90]NtAF205858GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]OsAF383876GTCAACCGCATGATCGCAGCGGCCTCCAGGGCGTGGAGTTCTGG[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	Te1949	GTTAACCGAAT	IGATTGCTAG	IGAGGTATCT	GGTATAGAAT	TTTGG	[90]
NtAJ133453GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]NtAJ271749GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]TeAF251346GTTAACCGCATGATTGGTAGCGGCTTACAGGGTGTTGATTTTAC[90]AtU39877GTTAACCGGATGATTTCAAGCGGTTTACAGAGTGTTGATTTCTAT[90]PsY15383GTTAACCGCATGATTGGTAGTGGTTTGCAGGGTGTTGACTTTCTAT[90]NtAF205858GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]CrAB084236CTAACCGCATGATCGCAGCGGCCTCCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	SsNC_000911	GTCAACCGTAT	IGATTGCCAG'	TGGGGT <mark>GACG</mark>	GGCATCGACT	TTTGG	[90]
NtAJ271749GTTAACCGTATGATTGGCAGTGGCTTACAGGGTGTTGACTTCTAT[90]TeAF251346GTTAACCGCATGATTGGTAGCGGCTTACAGGGTGTTGATTTTAC[90]AtU39877GTTAACCGGATGATTTCAAGCGGTTTACAGAGGTGTTGATTTCTAT[90]PsY15383GTTAACCGCATGATTGGTAGTGGTTTGCAGGGTGTAGATTTCTAT[90]NtAF205858GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGTATGATTGGCAGCGGCCTTGCAGGGTGTTGACTTTTAT[90]OsAF383876GTCAACCGCATGATCGGCAGCGGCCTCCAGGGCGTGGAGTTCTGG[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	NtAJ133453	GTTAACCGTAT	rgattggcag'	FGGCTTACAG	GGTGTTGACT	TCTAT	[90]
TeAF251346GTTAACCGCATGATTGGTAGCGGCTTACAGGGTGTTGATTTTAC[90]AtU39877GTTAACCGGATGATTGGTAGCGGTTTACAGAGTGTTGATTTCTAT[90]PsY15383GTTAACCGCATGATTGGTAGTGGTTTGCAGGGTGTAGATTTCTAT[90]NtAF205858GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGTATGATTGGCAGCGGCCTCCAGGGCGTGTGACTTTTAT[90]OsAF383876GTCAACCGCATGATCGGCAGCGGCCTCCAGGGCGTGGAGTTTAT[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAAACGGCCTGGAAGGAGTAGAGTATATC[90]	NtAJ271749	GTTAACCGTAT	IGATTGGCAG	FGGCTTACAG	GGTGTTGACT	TCTAT	[90]
AtU39877GTTAACCGGATGATTTCAAGCGGTTTACAGAGTGTTGATTTCTAT[90]PsY15383GTTAACCGCATGATTGGTAGTGGTTGCAGGGTGTAGATTTCTAT[90]NtAF205858GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGTATGATTGGCAGCGGCGCTTGCAGGGTGTTGACTTTTAT[90]OsAF383876GTCAACCGCATGATCGGCAGCGGCCTCCAGGGCGTCGAGAGTTCTGG[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAGACGGCCTGGAAGGAGTAGAGTATATC[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	TeAF251346	GTTAACCGCAT	GATTGGTAG	CGGCTTACAG	GGTGTTGATT	TTTAC	[90]
PsY15383GTTAACCGCATGATTGGTAGTGGTTTGCAGGGTGTAGATTTCTAT[90]NtAF205858GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]OsAF383876GTCAACCGCATGATCGGCAGCGGCCTCCAGGGCATCGAATTTTAT[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAGACGGCCTGGACGGCGTGATTTTATT[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	AtU39877	GTTAACCGGAT	GATTTCAAG	CGGTTTACAG	AGTGTTGATT	TCTAT	[90]
NtAF205858GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]NtAJ271748GTTAACCGTATGATTGGCAGCGGCTTGCAGGGGTGTTGACTTTTAT[90]OsAF383876GTCAACCGCATGATCGGCAGCGGCCTCCAGGGCATCGAATTTTAT[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAGACGGCCTGGAAGGGCGTGATTTTATT[90]BsM22630GTTAACCGAATGATTGAAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	PsY15383	GTTAACCGCAT	IGATT GGTAG'	TGGTTTGCAG	GGTGTAGATT	TCTAT	[90]
NtAJ271748GTTAACCGTATGATTGGCAGCGGCTTGCAGGGTGTTGACTTTTAT[90]OsAF383876GTCAACCGCATGATCGGCAGCGGCCTCCAGGGCATCGAATTTTAT[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAGACGGCCTGGAAGGGCGTTGATTTTATT[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	NtAF205858	GTTAACCGTAT	GATTGGCAG	CGGCTTGCAG	GGTGTTGACT	TTTAT	[90]
OsaF383876GTCAACCGCATGATCGGCAGCGGCCTCCAGGGCATCGAATTTTAT[90]CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAGACGGCCTGGACGGCGTTGATTTTATT[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	NtAJ271748	GTTAACCGTAT	GATTGGCAG	CGGCTTGCAG	GGTGTTGACT	TTTAT	[90]
CrAB084236CTAAACCGCATGATCAACAGCGGCCTGCAGGGCGTGGAGTTCTGG[90]CpAF067823GTTGACAGAATGATTGAAGACGGCCTGGACGGCGTTGATTTTATT[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	OsAF383876	GTCAACCGCAT	GATCGGCAG	CGGCCTCCAG	GGCATCGAAT	TTTTAT	[90]
CpAF067823GTTGACAGAATGATTGAAGACGGCCTGGACGGCGTTGATTTTATT[90]BsM22630GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC[90]	CrAB084236	CTAAACCGCAT	IGATCAACAG	CGGCCTGCAG	GGCGTGGAGT	TCTGG	[90]
BsM22630 GTTAACCGAATGATTGAAAATGAAGTGCAAGGAGTAGAGTATATC [90]	CpAF067823	GTTGACAGAA	IGATTGAAGA	CGGCCTGGAC	GGCGTTGATT	TTATT	[90]
	BsM22630	GTTAACCGAAT	IGATTGAAAA	IGAAGTGCAA	GGAGTAGAGT	ATATC	[90]
EcX55034 GTTGAACACATGGTGCGCGAGCGCATTGAAGGTGTTGAATTCTTC [90]	EcX55034	GTTGAACACAT	rggtgcgcga	GCGCATTGAA	GGTGTTGAAT	TCTTC	[90]

[100	110	120	130]
[•	•	•	•]
LIAB042101	ልጥጥር ጥጥል ልር	מרייני ארייי	ACCCATCA	<u></u>		[126]
Osci.005296 338	ATTOTIANC	ACTORIGIAC ACTORIGIAC	AGGCGAIGA			[120]
OSCLB17724 5	ATCOTOAN	ACIGATITIC	AGGCIAIGA CAGGCGATAA	GATGTCA		[120]
N + A + 1271750	ATTOTOM	ACCOATOTOC	CAGGCOATAA			[120]
N+ A.T311847	ATTOTOAAC	ACTGATATIC		CATCICA		[126]
G1AF205859	ATTOTOAAC	ACTGATATIC	AAGCAAIGA([120]
A+AF089738	ATTGTGAAC	ACTGATGIIC	CARGECATAA			[126]
AtAF384167	ATTOTCARC	ACTGATATCC	TAGGC TATGA			[126]
PpA.T2/9139	ATTOTOAAT	ACCGATAICC				[126]
PpA.T249138	ATTGIGAAT	ACUGATOCIC				[126]
Craf449446	ATCOIGAN	ACIGAIGCOC	AGGCIAIGG			[126]
CmAB032072	GCGATCAAC	ACCGACGCIC	AGGCCI IGGC	CCCCTCC		[120]
CcAB023962	CCCATCAAC	ACIGACGIGC				[126]
Gt A.1007748	TCTATTAAT	ACCONTOIN				[120]
GeAB022594	TCTATIAA	ACCOALCE				[123]
McAF120117	GTTGTAL	ACCGACGCIC		CALGIGIG		[123]
GeAB022595	TGTGCCAN	ACIGACGCCC				[]]]
Pe A.TO11025	CTTTTA A AT	ACAGACGCIC		JCAGAIIICAA DACAATCT	IGAGGIA	[135]
Pm1658	GTTTTAAA	ACTGATGCGC	ZAAGCATIAI.			[126]
PmA.1237851	GTTTTAAT	ACTGATGCAC		TACAAICI		[126]
Sv549	GTGCTCAAC	ACTGATGCAC	AGCCCTCA	TGCAATCI		[120]
Pm1268	GTCATGAAT		ACCCCTCC			[120]
SVAF076530	GCCCTCAAC	ACCORDICACO				[120]
As731371	тсааттаат					[126]
Np61	тсаатааат	ACTGATGCCC		CTITGGCA		[126]
Tet112382	TGTGTCAAT	ACTGATGCG		CCAATCC		[126]
Te1949	ACGGTTAAT	ACAGATGCCC				[126]
SsNC 000911	GCAATTAAT	ACCGATTCCC		TTAATACG		[126]
NtAJ133453	GCTATAAAC	ACGGATGCT	CAAGCACTGC	TACAGTCT		[126]
NtAJ271749	GCTATAAAC	ACGGATGCT	CAAGCACTGC	TGCAGTCT		[126]
TeAF251346	GCCATTAAC	CACGGACTCAC	CAAGCGCTTC	IGCAATCT		[126]
AtU39877	GCGATAAAC	CACGGATTCGC	CAAGCTCTGT	FACAGTTT		[126]
PsY15383	GCGATAAAT	ACCGATGCT	CAAGCGCTAT	FGCATTCT		[126]
NtAF205858	GCTGTAAAC	CACGGATGCTC	CAAGCATTGC	IGCAGTCT		[126]
NtAJ271748	GCTGTAAAC	CACGGATGCTC	CAAGCATTGC	IGCAGTCT		[126]
OsAF383876	GCCATAAAC	CACAGATTCCC	CAGGCGCTTT	FGAATTCG		[126]
CrAB084236	GCCATCAAC	CACCGACGCCC	CAGGCCCTGG	CCGCCCAC		[126]
CpAF067823	ТСААТАААТ	ACAGATGGAC	CAAGCCCTTT	CCAAGGCT		[126]
BsM22630	GCGGTAAAC	CACGGACGCTC	CAAGCTCTTA	ACCTGTCA		[126]
EcX55034	GCGGTAAAT	ACCGATGCAC	CAAGCGCTGC	GTAAAACA		[126]

[140	150	160	170	180]	
[•	•	•	.]	
L1AB042101	CCTG	IGTATCCTGA	GAACCGGTTA	CAGATTGGGCA	GGAG	[165]
OsCL005296_338	CCCA	TTGATCCGGA	TAATAAGTTG	CAGATCGGCCA	GGAG	[165]
OsCLB17724 5	CCGG7	FCCTTCCGCA	GAACAGGTTG	CAGATTGGGCA	GGAG	[165]
NtAJ271750	CCTG	TAGCGGCTGA	GCAGCGACTT	CCGATAGGTCA	AGAA	[165]
NtAJ311847	CCTG	TAGCGGCTGA	GCAACGACTG	CCGATAGGTCA	AGAA	[165]
G1AF205859	CCTG2	TATATTTAGA	GAACCGGCTG	CAAATTGGTCA	AGAG	[165]
AtAF089738	CCTG	TTTTGCCTGA	TAATAGGTTA	CAAATTGGTAA	GGAG	[165]
AtAF384167	CCGG7	TTTTTCCAGA	CAATAGGTTA	CAAATTGGTAA	GGAG	[165]
PpAJ249139	CCGG7	TTCCGGCTCA	GAATCGTCTG	CAGATTGGTCA	GAAA	[165]
PpAJ249138	CCTG7	TTCCGGCTCA	GAATCGTCTG	CAGATTGGGCA	AAAA	[165]
CrAF449446	CCCG	TTAACGGCAA	GTGCAAGGTG	CAAATTGGAGG	CAAG	[165]
CmAB032072		GCGGCACA	CCATACGCTG	AGCATCGGGAA	TAAG	[159]
CcAB023962		GCCGCGCA	CCACACACTC	GGTATCGGCAA	CAAG	[159]
GtAJ007748		TTAGCACC	CAATACATGT	AATATTGGTGC	ТААА	[156]
GsAB022594		AAAACAAG	CAACTCTGTA	ACAATAGGGAG	CGAA	[156]
MsAF120117		TCTGCGAA	ACGGAGGCTG	AACATTGGGAA	AGTA	[84]
GsAB022595	TATTGCCAGA	AACGCATCA	TCAAGTTATC	CAAATTGGGAA	ACAA	[180]
PsAJ011025		TCTGCAGA	TCGTAGAGTT	CAACTAGGTCA	GAAC	[159]
Pm1658		TCTGCAGA	TCGTAGAGTT	CAACTAGGTCA	GAAC	[159]
PmAJ237851		TCGGCTGA	GAATAGAGTT	CAACTTGGTCA	AACA	[159]
Sy549		CAGGCTCA	GCATCGTCTT	CAACTCGGCCA	AACC	[159]
Pm1268		GCAGCCAG	TAACCGCGTG	CAGCTGGGTCA	GACC	[159]
SyAF076530		GCAGCCCC	CAAGCGGATG	CAGTTGGGACA	GAAA	[159]
AsZ31371		GGCGCTCC	TAGTCGTTTA	CAAATCGGGCA	GAAA	[159]
Np61		GGCGCTCC	CAGTAGATTA	CAAATTGGACA	AAAG	[159]
Tet112382		CAAGCCCA	CCGCTGCCTG	CAAATTGGCCA	GAAA	[159]
Te1949		CGCGCTCC	TAAACGCTTA	CAACTTGGACA	AAAG	[159]
SsNC_000911		AACGCCCC	GGATTGTATT	CAAATTGGCCA	АААА	[159]
NtAJ133453		GCTGCTGA	AAACCCGCTT	CAAATTGGAGA	ACTT	[159]
NtAJ271749		GCTGCTGA	AAATCCACTT	CAAATTGGAGA	GCTT	[159]
TeAF251346		GTTGCACA	TAACCCTATT	CAAATTGGGGA	GCTT	[159]
AtU39877		TCTGCTGA	GAACCCACTT	CAAATTGGAGA	ACTT	[159]
PsY15383		GCGGCCGA	GAATCCTATT	AAAATTGGCGA	GCTT	[159]
NtAF205858		ACGGTTGA	GAACCCAATT	CAAATTGGAGA	ACTT	[159]
NtAJ271748		ACGGTTGA	GAACCCAATT	CAAATTGGAGA	ACTT	[159]
OsAF383876		CAAGCGCA	ATACCCGCTA	CAAATTGGAGA	GCAG	[159]
CrAB084236		CAGGCTCT	CAACAAGGTG	CAGATCGGCAG	CGAG	[159]
CpAF067823		AGATCCAG	CACAAAAACT	CAGATTGGTGA	AAAG	[159]
BsM22630		AAAGCAGA	AGTGAAAATG	CAAATCGGCGC	AAAG	[159]
EcX55034		GCGGTTGG	ACAGACGATT	CAAATCGGTAG	CGGT	[159]

[]LlAB042101CTTACGAGAGGTCTTGGTGCTGGCGGGGAATCCGGATATTGGTATG[210]OsCL005296_338CTAACACGAGGTCTTGGTGCTGGTGGGAACCCGGAAATCGGCATG[210]OsCLB17724_5CTGACTCGGGGTCTAGGCGCAGGTGGAAACCCTGACATTGGGATG[210]NtAJ271750CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]NtAJ311847CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]GlAF205859CTTACCAGAGGGACTTGGAGCAGGTGGGAAACCCTGATATTGGTATG[210]AtAF089738TTGACTAGGGGTTTAGGTGCTGGAGGAAATCCAGAAATCGGTATG[210]AtAF384167TTGACTAGGGGTCTGGGGGCGGGGGAAATCCAGAAATAGGGTGT[210]PpAJ249139TTGACGCGAGGTCTGGGGGCGGGGGGAATCCAGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGCGGGGGGAATCCAGAAATAGGGTGT[210]
LlAB042101CTTACGAGAGGTCTTGGTGCTGGCGGGGAATCCGGATATTGGTATG[210]OsCL005296_338CTAACACGAGGTCTTGGTGCTGGTGGGAACCCGGAAATCGGCATG[210]OsCLB17724_5CTGACTCGGGGTCTAGGCGCAGGTGGAAACCCTGACATTGGGATG[210]NtAJ271750CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]NtAJ311847CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]GlAF205859CTTACCAGAGGACTTGGAGCAGGTGGGAACCCTGATATTGGTATG[210]AtAF089738TTGACTAGGGGTTTAGGTGCTGGAGGAAATCCAGAAATCGGTATG[210]AtAF384167TTGACTAGGGGTTTAGGTGCTGGAGGTAATCCAGAGATTGGGATG[210]PpAJ249139TTGACGCGAGGTCTGGGGGCGGGGGGAATCCAGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGCGGGGGGAATCCAGAAATAGGGTGT[210]
L1AB042101CTTACGAGAGGTCTTGGTGCTGGCGGGGAATCCGGATATTGGTATG[210]OsCL005296_338CTAACACGAGGTCTTGGTGCTGGTGGGGAACCCCGGAAATCGGCATG[210]OsCLB17724_5CTGACTCGGGGTCTAGGCGCAGGTGGAAACCCTGACATTGGGATG[210]NtAJ271750CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]NtAJ311847CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]GlAF205859CTTACCAGAGGGACTTGGAGCAGGTGGGAACCCTGATATTGGTATG[210]AtAF089738TTGACTAGGGGTTTAGGTGCTGGAGGAAATCCAGAAATCGGTATG[210]AtAF384167TTGACTAGGGGTCTGGGGGCGGGTGGTAATCCAGAAATGGGATG[210]PpAJ249139TTGACGCGAGGTCTGGGGGCGGGGGGGAAATCCGGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGCGGGCGGGAAATCCAGAAATAGGGTGT[210]
OscL005296_338CTAACACGAGGTCTTGGTGCTGGTGGGAACCCCGGAAATCGGCATG[210]OscLB17724_5CTGACTCGGGGTCTAGGCGCAGGTGGAAACCCTGACATTGGGATG[210]NtAJ271750CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]OscLB17724_5CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]NtAJ211847CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]GlAF205859CTTACCAGAGGACTTGGAGCAGGTGGGAAACCCTGATATTGGTATG[210]AtAF089738TTGACTAGGGGTTTAGGTGCTGGAGGAAATCCAGAAATCGGTATG[210]AtAF384167TTGACTAGGGGTCTGGGGGCGGGGGGAAATCCAGAAATAGGGTGT[210]PpAJ249139TTGACGCGAGGTCTGGGGGCGGGGGGGAAATCCAGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGCGGGCGGGAAATCCAGAAATAGGGTGT[210]
OscLB17724_5CTGACTCGGGGTCTAGGCGCAGGTGGAAACCCTGACATTGGGATG[210]NtAJ271750CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]NtAJ311847CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]GlAF205859CTTACCAGAGGACTTGGAGCAGGTGGGAACCCTGATATTGGTATG[210]AtAF089738TTGACTAGGGGTTTAGGTGCTGGAGGAAATCCAGAAATCGGTATG[210]PpAJ249139TTGACGCGAGGTCTGGGGGCGGGGGGGAAATCCAGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGCGGGGGGAAATCCAGAAATAGGGTGT[210]
NtAJ271750CTTACAAGGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]NtAJ311847CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]GlAF205859CTTACCAGAGGACTTGGAGCAGGTGGGAACCCTGATATTGGTATG[210]AtAF089738TTGACTAGGGGTTTAGGTGCTGGAGGAAATCCAGAAATCGGTATG[210]AtAF384167TTGACTAGGGGTTTAGGTGCTGGAGGTAATCCAGAAATGGGATG[210]PpAJ249139TTGACGCGAGGTCTGGGGGCGGGGGGGAAATCCGGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGCGGGGGGGAATCCAGAAATAGGGTGT[210]
NtAJ311847CTTACAAGGGGACTTGGTGCAGGTGGTAATCCAGATATAGGGATG[210]GlAF205859CTTACCAGAGGACTTGGAGCAGGTGGGAACCCTGATATTGGTATG[210]AtAF089738TTGACTAGGGGTTTAGGTGCTGGAGGAAATCCAGAAATCGGTATG[210]AtAF384167TTGACTAGGGGTTTAGGTGCTGGAGGTAATCCAGAAATAGGGTGT[210]PpAJ249139TTGACGCGAGGTCTGGGGGCGGGGGGGAAATCCAGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGCGGGGGGGAATCCAGAAATAGGGTGT[210]
GlAF205859CTTACCAGAGGACTTGGAGCAGGTGGGAACCCTGATATTGGTATG[210]AtAF089738TTGACTAGGGGTTTAGGTGCTGGAGGAAATCCAGAAATCGGTATG[210]AtAF384167TTGACTAGGGGTTTAGGTGCTGGAGGTAATCCAGAGATTGGGATG[210]PpAJ249139TTGACGCGAGGTCTGGGGGGGGGGGGGGGAATCCGGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGGCGGGGGGGAATCCAGAAATAGGGTGT[210]
AtAF089738TTGACTAGGGGTTTAGGTGCTGGAGGAAATCCAGAAATCGGTATG[210]AtAF384167TTGACTAGGGGTTTAGGTGCTGGAGGTAATCCAGAGATTGGGATG[210]PpAJ249139TTGACGCGAGGTCTGGGGGGGGGGGGGGGGAATCCGGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGGGGGGGGGGGAATCCAGAAATAGGGTGT[210]
AtAF384167TTGACTAGGGGTTTAGGTGCTGGAGGTAATCCAGAGATTGGGATG[210]PpAJ249139TTGACGCGAGGTCTGGGGGGGGGGGGGGGAATCCGGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGGGGGGGGGGAATCCAGAAATAGGGTGT[210]
PpAJ249139TTGACGCGAGGTCTGGGGGGGGGGGGGGGGGAATCCGGAAATAGGGTGT[210]PpAJ249138TTGACGAGAGGTCTGGGGGGGGGGGGGGGAATCCAGAAATAGGGTGT[210]
PpAJ249138 TTGACGAGAGGTCTGGGGGGGGGGGGGGGAATCCAGAAATAGGGTGT [210]
CrAF449446 CTTACCCGCGGTCTCGGCGCCGGAGGCAACCCTGAGATCGGCGCT [210]
CmAB032072 CTGACCCGTGGTCTCGGAGCTGGCGGCAATCCCGAAGTGGGTCGC [204]
CcAB023962 TTGACGCGCGGCCTTGGAGCGGGGGGGGGAACCCAGAAATTGGACGG [204]
GtAJ007748 TTGACTCGCGGTTTAGGAGCAGGTGGAAATCCTGAAATTGGCAGA [201]
GsAB022594 ATTACTAGGGGATTGGGTGCTGGAGGAAAACCTGAAGTTGGTAGG [201]
MsAF120117 CTCAGTCGGGGGACTCGGAGCTGGCGGAAATCCAGCCATAGGCGCG [129]
GsAB022595 AGTTGCAGAGGATTGGGAGCCGGTGGAAATCCGGAAGCTGGTAGA [225]
PsAJ011025 TTAACAAGAGGTCTTGGAGCAGGAGGGAATCCAAGTATTGGTCAA [204]
Pm1658 TTAACAAGAGGTCTTGGAGCAGGAGGGAATCCAAGTATTGGTCAA [204]
PmAJ237851TTAACTCGAGGCCTAGGAGGCTGGAGGGAACCCAAGTATTGGAGAG[204]
Sy549 CTCACCCGAGGCCTGGGGGGTAACCCCACCATCGGTCAG [204]
Pm1268 CTTACGAGAGGGTTAGGAGCTGGCGGTAATCCCAGCATCGGCCAG [204]
SyAF076530 CTAACGCGAGGGCTAGGCGCAGGTGGCAACCCTGCGATCGGCATG [204]
Asz31371 CTCACGAGGGGTTTAGGTGCAGGTGGTAATCCTGCAATTGGTCAA [204]
Np61 CTAACGCGGGGCTTAGGAGCAGGTGGTAATCCTGCCATCGGTCAA [204]
Tet112382 CTCACCCGTGGTCTTGGCGCAGGTGGCAACCCCGCCATTGGTCAA [204]
Te1949 CTCACAAGAGGTTTGGGGGGGGGGGGGGGGGGGGGGGGG
SsNC_000911 CTCACCAGGGGTTTGGGGGGCCGGTGGTAATCCGGCGATCGGGCAA [204]
NtAJ133453 CTGACTCGTGGGCTTGGTACTGGTGGTAATCCTCTTTTAGGGGAA [204]
NtAJ271749 CTGACTCGTGGGCTTGGTACTGGTGGCAATCCTCTTTTAGGGGAA [204]
TeAF251346 TTGACTCGTGGATTAGGTACTGGTGGGAACCCGCTTTTGGGAGAA [204]
AtU39877 TTAACTCGTGGGCTTGGCACTGGTGGAAACCCGCTTCTTGGAGAA [204]
Psy15383 CTGACTCGTGGATTAGGTACCGGTGGGAATCCGCTTTTGGGAGAA [204]
NtAF205858 CTGACTCGTGGACTTGGTACTGGTGGCAATCCTCTGTTGGGGGAA [204]
NtAJ271748 CTGACTCGTGGACTTGGTACTGGTGGCAATCCTCTGTTGGGGGAA [204]
OsAF383876 TTAACTCGTGGACTAGGTACTGGTGGAAATCCTAATTTGGGAGAG [204]
CrAB084236 TTGACCCGCGGCCTGGGCTGCGGCGGCAACCCTGAGCTGGGCCGC [204]
CpAF067823 CTGACAAAGGGTCTTGGGGGCAGGGGGGTAATCCTGAAATTGGGGAA [204]
BsM22630 CTGACTAGAGGATTGGGAGCAGGTGCGAATCCGGAAGTCGGGAAA [204]
EcX55034 ATCACCAAAGGACTGGGCGCTGGCGCTAATCCAGAAGTTGGCCGC [204]

[230	240	250	260	270	
[•	•			.]	
L]AB042101	AATGCTGCTA		AGTGTCGATA	CACCACTCCC	ጥጥርጥ	[255]
OSCI.005296 338	AATGCAGCCA	AGGAAAGCCAG	GAGTTGGTA	GAGGAGICGGI		[255]
OSCL003230_550	AATGCGGCGA	A G A A A GTGTO	CAGTIGGIA	CAGGAAGCAGI		[255]
N+ A.T271750	AATOCOCCA		CACCCATT	CAGGAAGCICI		[255]
NEAU271750	AACGCCGCCA		CACCCCATT	GAAGAAGCIGI		[200]
G1AF205859	AATGCTGCCA	ACAAAGCAAC	GAAGCGATT	GARGAAGCIGI		[255]
A+AF089738	AATGCTGCCA	AGAAAGCAA		CAACAACCAGI		[255]
AtAF384167	AATGCTGCTA	CAGAGAGCAA		GAAGAAGCICI	unn man	[255]
PnA.T249139	AGTGCCGCGG	AGAGAGCAA		CAAGAAGCAC I	TACCC	[255]
PnA.1249138	AGTGCTGCGG	AGAGAGCAA		CAAGAAGCCII CAAGAAGCCCI	TACGC	[255]
CrAF449446	AAAGCTGCTG	AGAGAGCCG	GACTCCATC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TCC A A	[255]
CmAB032072	AAAGCCGCCG	AGGAATCGTG	GACCAAATT	GCAGAAGCCG1	CCGT	[2/9]
CcAB023962	AAGGCTGCAG	AGGAGTCTTG		CCCGAAGCGG1	CCGT	[24]
GtAJ007748	AAAGCAGCAG	AGAAAGTAG	AGACTTAATT	GCTGAAGCCGT	CTCT	[245]
GsAB022594	CAGGCAGCTG	AGAGTCTCA	GCTGCAATA	AGTTCTGCAGI	TTCAA	[240]
MsAF120117	AAAGCTGCCGA	AGGAAAGTCG	GAAGAAATC	ATGGCTGTTGT	TAAAG	[174]
GsAB022595	GTAGCAGCCGA	AGAGTCCAA	AGAGGATATA	GCAAAAGCTCI	TCAA	[270]
PsAJ011025	AAAGCTGCTGA	AGGAATCTAA	AGATGAATTG	CAACAAACCTT	TAGAG	[249]
Pm1658	AAAGCTGCTG	AGGAATCTAA	AGATGAATTG	CAACAAACCTT	TAGAG	[249]
PmAJ237851	AAAGCTGCAGA	AAGAATCTAGA	AGCAGAGCTT	CAACAAGCTTT	TAGAA	[249]
Sy549	AAGGCCGCCGA	AAGAGTCCCGA	AACAGACCTC	CACGACGCCCT	TCAG	[249]
Pm1268	AAGGCGGCGGA	AGGAATCTCGA	AGCAGAACTG	CAACAAGCTCI	GCAA	[249]
SYAF076530	AAAGCCGCTGA	AAGAATCGCGG	GAAGAACTA	ATCGCCGCCTI	GGAA	[249]
AsZ31371	AAAGCAGCTGA	AAGAATCACG	CGATGAAATT	GCTACAGCCTI	TAGAA	[249]
Np61	AAGGCAGCTGA	AGGAATCACGA	AGACGAAATT	GCTACAGCTTI	CAGAG	[249]
Tet112382	AAGGCGGCCGA	AAGAATCCCG	CGAAGACCTG	GCTGCGGCGCI	CAAG	[249]
Te1949	AAAGCTGCTGA	AAGAATCTAGA	AGATGAAATA	GCTAATGCTTI	TAGAC	[249]
SsNC_000911	AAAGCGGCGG	AGGAATCCCG	GGATGAAATT	GCCCGTTCCCI	TGAG	[249]
NtAJ133453	CAGGCAGCGGA	AGGAGTCGAA	GGAAGCCATT	GCAAATTCTCI	TAAAA	[249]
NtAJ271749	CAGGCAGCAG	AGGAGTCGAAG	GGAAGCCATT	GCAAATTCTCI	TAAAA	[249]
TeAF251346	CAGGCTGCGGA	AGGAGTCGAAG	GGAAGCGATT	GGGAATGCGCI	TAAA	[249]
AtU39877	CAAGCTGCAGA	AAGAATCAAAA	AGATGCAATT	GCTAATGCTCI	TAAA	[249]
PsY15383	CAAGCTGCGGA	AGGAATCGAAA	AGAGGCTATT	GCTAATGCGCT	TAAA	[249]
NtAF205858	CAGGCAGCAG	AGGAGTCAAAG	GGAACACATT	GCAAATGCTCI	AAATT	[249]
NtAJ271748	CAGGCAGCAGA	AGGAGTCAAAO	GGAACACATT	GCAAATGCTCI	AAATT	[249]
OsAF383876	CAAGCTGCTGA	AGGAATCAAAA	AGAAGCCATA	GCCAATGCCCI	GAAG	[249]
CrAB084236	CGCGCTGCTA	rggagagcgag	GGAGGCGCTG	CGCCGCATGGI	IGCAG	[249]
CpAF067823	AAATCCGTTGA	ATGAAACCCAA	AGACGAAATT	GCACAGGCTTI	IGCAT	[249]
BsM22630	AAAGCCGCTGA	AAGAAAGCAAA	AGAGCAGATT	GAAGAAGCACI	TAAA	[249]
EcX55034	AATGCGGCTGA	ATGAGGATCG	CGATGCATTG	CGTGCGGCGCI	rggaa	[249]

[280	290	300	310]
[•		•	•]
L1AB042101	COMPONDACAMO	PTTTCCTCACCC		PCCCCCma C	V [300]
DIAD042101 Osci.005296 338	GGTGCTGACATGG	PTTTCGICACGG PTTTTCTCACGC		IGGGGGIAC.	A [300]
$O_{\rm SCI} = 17724$ 5	CCTCCTCATATCC	PTTTTTGTGACIG		GGAGGGAC.	A [300]
NFA 1271750	CCCCCACACAT	I I I I I I GICACGG		IGGAGGCAC	I [300]
NCAU2/1/30	GGCGCAGACAIGG			IGGAGGAAC.	A [300]
C1AE205959	GGCGCAGACAIGG			IGGAGGAAC.	A [300]
	GGIGCAGAIAIGG			rggaggaac.	A [300]
ALAF 009730	GGCICAGAIAIGG			GGIGGAAC	T [300]
A LAF 3 6 4 1 0 7	GGIICAGAIAIGG			IGG IGGAAC	T [300]
PPA0249139	GGAGCIGACAIGG			IGGIGGCAC	T [300]
PPAU249130	GGAGCIGACAIGG			IGGCGGCAC	T [300]
$C_{1}AF449440$	GATACTGACATGG	PATTCGTGACGG		GGCGGCAC	G [300]
CIIIAB032072	GGCGCCGACCTGG	IGTTTGTGACTG(GGCGGCAC	T [294]
CCAB023962	GGUGUTGAUUTUG	PCTTTTGTGACAG		GGCGGTAC	C [294]
GLAJ007748	GCAGGTGATCTAG	I"I"I"I"IGTGACAG		AGGAGGTAC.	A [291]
GSAB022594	GGTGGAGATCTCG	I"I"I"ITGTTACAGO		AGG'I'GGAAC.	A [291]
MSAF120117	AACGCAGACCTGG	PCTTTGTAACGG	CCGGTATGGG	rggrggcac	G [219]
GSAB022595	GGTGGAGATC'T'TG'	FGTTTTGTTACTG	CTGGTATGGGA	AGG'I'GG'I'AC.	A [315]
PSAJ011025	GGCTCTGACTTGG	I"T"TTATTGCTG	CAGGTATGGGA	AGGAGGAAC	T [294]
Pm1658	GGCTCTGACTTGG	I"I"TTTATTGCTG	CAGGTATGGGA	AGGAGGAAC	т [294]
PmAJ237851	GGTGCCGAT'I'TGG'	TATTTATTGCCG	CTGGCATGGG	IGGAGGAAC.	A [294]
Sy549	GGTTCCGATCTGG'	TGTTCATCGCTG	CGGGTATGGG	rggcggaac	C [294]
Pm1268	GGAGTCGATCTCG	PCTTCATCGCCG	TTGGCATGGG	IGGCGGAAC	C [294]
SYAF076530	GGGGCTGACCTCG	ICTTTATCACGG	CGGGGGATGGG	CGGTGGAAC	C [294]
AsZ313/1	GGTGCTGATTTAG	PATTTATCACTG(CTGGGATGGG	AGGTGGTAC	T [294]
Np61	GGTGCAGACCTAG	TATTTATCACCG(CTGGTATGGG	IGGCGGTAC	T [294]
Tet112382	GACGCTGATTTGA	TTTTCATTACCT	GTGGCATGGGG	GGCGGCAC	T [294]
Te1949	CATCCAGATCTAG	PATTTATTACTG	CTGGAATGGG	AGGTGGTAC	A [294]
SsNC_000911	GGTACGGATTTGG	ICTTTATTACTG	CGGGCATGGG	GGGCGGCAC	т [294]
NEAJ133453	GGTTCAGATATGG	IGTTCATAACAG	CAGGAATGGG	rggaggtac.	A [294]
NtAJ271749	GGTTCAGATATGG	IGTTCATAACAG	CAGGAATGGG	IGGAGGTAC.	A [294]
TeAF251346	GGGTCGGATCTTG	IGTTTATAACAG	CAGGTATGGG	FGGTGGGAC	G [294]
AtU39877	GGATCAGACCTTG	TTTTCATAACTG(CTGGTATGGG	IGGTGGAAC.	A [294]
PsY15383	GGATCGGATTTGG	IGTTTATAACAG	CTGGGATGGG	IGGCGGTAC.	A [294]
NtAF205858	GGTTCGGATATGG'	IGTTTATAACAG	CAGGCATGGG	FGGCGGTAC	т [294]
NtAJ271748	GGTTCGGATATGG'	IGTTTATAACAG	CAGGCATGGG	IGGCGGTAC	т [294]
OsAF383876	GATTCTGACCTTG	ICTTCATAACGG(CTGGAATGGGA	AGGGGGGTAC	т [294]
CrAB084236	GGCGCTGATCTGG'	IGTTCATCACCG	CGGGCATGGG	CGGCGGTAC	C [294]
CpAF067823	GGTTCTGACATGG'	FATTTATTACTG	CCGGAATGGG	TGGTGGCAC	C [294]
BsM22630	GGTGCTGACATGG'	TATTCGTGACAG	CTGGTATGGG	CGGCGGAAC	A [294]
EcX55034	GGTGCAGACATGG'	FCTTTATTGCTG	CGGGTATGGG	FGGTGGTAC	C [294]

2010 AND 12

[320	330	340	350	360]	
[•	•	•	.]	
L1AB042101	GGAACTGGTGC	GTGCTCCTGTA	ATTGCTGGA	GTTGCCAAGI	TCAATG	[345]
OsCL005296_338	GGCACAGGCGC	GGCCCCAGTI	TATAGCAGGG.	ATTGCAAAGI	TCCATG	[345]
OsCLB17724 5	GGAACTGGAGO	GTGCCCCTGTA	ATCGCTGGA	ATTGCCAAGT	TCCATG	[345]
NtAJ271750	GGGACTGGTG	CAGCTCCTATA	ATTGCAGGA	АСТССТАААТ	CAATG	[345]
NtAJ311847	GGGACTGGTGC	CGGCTCCTATA	ATTGCAGGA	ACTGCCAAAT	CAATG	[345]
G1AF205859	GGAACTGGCGG	GGCTCCAGTA	ATTGCGGGA	ATTGCTAAAI	TCTATG	[345]
AtAF089738	GGCACTGGTGC	CAGCCCCTGTA	ATTGCAGGA	ATTGCCAAGO	GCGATG	[345]
AtAF384167	GGCACAGGTGO	GTGCTCCTATA	ATTGCAGGG	GTTGCAAAAG	GCGATG	[345]
PpAJ249139	GGCAGCGGTGC	CTGCACCAATO	CATTGCTGGT	GTAGCGAAGC	CAATTG	[345]
PpAJ249138	GGCAGCGGTGC	CAGCACCAATA	ATTGCGGGT	GTGGCGAAGC	CAGTTG	[345]
CrAF449446	GGCAGTGGCGC	CCGCGCCCGTC	CGTGGCGGAG	GTGGCGCGTG	GAATTG	[345]
CmAB032072	GGTTCCGGAGO	CCGCTCCAGTA	AGTTGCAGAG	GCTGCCCGCG	GAGCAA	[339]
CcAB023962	GGCTCGGGTGC	CAGCACCGGTO	CGTCGCTGAG	GCTGCCCGTC	GAACAG	[339]
GtAJ007748	GGATCAGGAGG	TGCCCCGATA	GTAGCTGAA	GTTGCTAAAG	GAAATG	[336]
GsAB022594	GGCTCAGGTGC	CTGCTCCAATI	GTTGCTAAA	ATAGCTAAAG	GAACAA	[336]
MsAF120117	GGATCTGGCGC	CTGCCCCTGTC	GTGGCGGAA	TGTGCTAAGO	GAGGCT	[264]
GsAB022595	GGAACAGGAGG	CAGCTCCAATA	AGTTGCCGAT	GTTGCTAGAG	GAACTG	[360]
PsAJ011025	GGGACAGGAGG	CGGCTCCAGTA	AGTTGCTGAG	GTTGCAAAGC	CAAAGT	[339]
Pm1658	GGGACAGGAGG	CGGCTCCAGTA	AGTTGCTGAG	GTTGCAAAGC	CAAAGT	[339]
PmAJ237851	GGCACTGGAGO	CAGCACCAGTA	GTTGCAGAA	GTAGCCAAAC	CAAAGC	[339]
Sy549	GGAACGGGTGC	CCGCCCCCGTC	GTTGCGGAG	GTCGCCCGTC	GAGGTC	[339]
Pm1268	GGCACTGGTGC	CCGCTCCAGTC	GTTGCCGAA	GTTGCCAAGO	GAAAGC	[339]
SyAF076530	GGCACTGGAGO	CTGCCCCGATC	GTGGCAGAA	GTCGCCAAAG	GAAGTG	[339]
AsZ31371	GGTACTGGTGC	CTGCACCAATI	GTTGCGGAA	GTGGCAAAGG	GAAATG	[339]
Np61	GGGACTGGTGC	CAGCTCCAATC	CGTAGCAGAA	GTAGCCAAAG	GAAATG	[339]
Tet112382	GGCACCGGCGC	CTGCCCCAATI	rgtggcggaa	GTGGCCAAGG	GAACAG	[339]
Te1949	GGTACTGGTGC	CAGCTCCAGTI	TATAGCTGAA	ATTGCTAAAG	GAAGCA	[339]
SsNC_000911	GGCACTGGAGO	CAGCTCCCATI	rgtggccgag	GTGGCCAAAG	GAAATG	[339]
NtAJ133453	GGATCTGGTGC	CTGCTCCTGTI	GTGGCTCAA	ATAGCAAAAG	GAAGCA	[339]
NtAJ271749	GGATCTGGTGC	CTGCTCCTGTI	IGTGGCTCAA	ATAGCAAAAG	GAAGCA	[339]
TeAF251346	GGTTCGGGTGC	CTGCTCCAGTI	GTAGCGCAG	ATAGCGAAAG	GAAGCA	[339]
AtU39877	GGGTCTGGTGC	CTGCACCTGTC	GGTAGCTCAG	ATTTCGAAGO	GATGCT	[339]
PsY15383	GGGTCCGGTGC	CTGCCCCAGTI	IGTGGCTCAA	ATATCAAAAG	GAGGCA	[339]
NtAF205858	GGATCTGGTGC	CTGCTCCTGTT	GTTGCTCAA	ATAGCCAAAG	GAAGCA	[339]
NtAJ271748	GGATCTGGTGC	CTGCTCCTGTI	IGTTGCTCAA	ATAGCCAAAG	GAAGCA	[339]
OsAF383876	GGATCTGGTGC	CTGCTCCAGTI	IGTTGCTCAG.	ATATCAAAGG	GAAGCC	[339]
CrAB084236	GGCACCGGTGC	CCCCCCCGTC	GTGGCCCGC	CTGTCCAAGO	GAGTTG	[339]
CpAF067823	GGTACAGGTGC	CGGCTCCCAGA	ATTGCCGCA	ATTTCCAAAO	GAACTA	[339]
BsM22630	GGAACAGGTGO	CCGCACCGGTT	TATCGCACAA	ATCGCGAAAG	GACTTA	[339]
EcX55034	GGTACAGGTGC	CGGCACCAGTO	CGTCGCTGAA	GTGGCAAAAG	GATTTG	[339]

per-

[37	0	380	390	400]
[•		•		•]
1 1 1 0 0 4 2 1 0 1						. (2001
DIAB042101	GGIAICIIGAC				TATGTTTGA	A [390]
OSCL003290_338	GGIAIAITAAC	IGTIGGAA			"IGCAT I IGA	G [390]
USCLB1/724_5	GGTATACTGAC	AGTTGGCA	TCGTGAC	GACACCAT	CTCATTTGA	A [390]
NLAJ2/1/50	GGTATCTTAAC	TGTTGGTA	TTGTTAC		"T"TCT"I"TCGA	G [390]
NEAJ311847	GGTATCTTAAC	TGTTGGTA	TTGTTAC	CAACCCC'I''I''I	"T"TC'T"T"TCGA	.G [390]
GIAF205859	GGTATCTTGAC	CGTTGGTA	TTGTCAC	CAACACC'I''I''I	'C'I'CC'I'T'I'GA	A [390]
AtAF089738	GGTATATTGAC	AG'I''I'GG'I'A	TTGCCA	CTACGCCTTT	CTCGTTTGA	G [390]
AtAF384167	GGTATATTAAC	GG'I''I'GG'I'A	TTGTGAC	CAACGCCTTT	CTCATTTGA	G [390]
PpAJ249139	GGAATTCTTAC	CGTGGGAA	TAGTAAC	CTACGCCTTI	TGCCTTTGA	A [390]
PpAJ249138	GGAATTCTTAC	TGTAGGAA	TAGTTAC	CTACTCCTTI	CGCCTTTGA	A [390]
CrAF449446	GGCATCCTAAC	AGTTGGCA	TCGTCAC	CACCCCCTI	CACCTTCGA	.G [390]
CmAB032072	GGCTGCCTAAC	CGTGGGCC	STTGTCAC	CAAGCCATI	CGCGTTTGA	A [384]
CcAB023962	GGCTGCTTGAC	AGTCGGTC	TCGTGAC	CAAGCCGTI	TGCCTTCGA	A [384]
GtAJ007748	GGTTGTTTAAC	TGTTGGAG	TTGTAAC	CAAACCTTT	TGCTTTTGA	A [381]
GsAB022594	GGCTGTCTTAC	TGTTGGAG	TTGTGAC	CTAAACCTTI	CAGCTTTGA	G [381]
MsAF120117	GGCGCGTTAAC	CGTAGGCC	TAGTCAC	CAAAGCCGTT	CGGATTCGA	A [309]
GsAB022595	GGTTGTTTGAC	AGTTGGTG	TTGTTA	GAAACCTTI	TGCTTTTGA	A [405]
PsAJ011025	GGTGCTTTAAC	TGTTGGGA	TAGTAAC	CAAGCCATI	TTCATTTGA	A [384]
Pm1658	GGTGCTTTAAC	TGTTGGGA	TAGTAAC	CAAGCCATI	TTCATTTGA	A [384]
PmAJ237851	GGAGCCCTTAC	TGTCGCAA	TAGTTAC	TAAACCATT	TAGTTTTGA	A [384]
Sy549	GGAGCCCTCAC	CGTGGGAA	TCGTGAC	CAAACCCTI	TGGTTTTGA	A [384]
Pm1268	GGTGCGCTCAC	TGTGGGCA	TCGTCAC	CAAACCCTI	TAGCTTTGA	G [384]
SyAF076530	GGTGCGCTGAC	GGTTGGGA	TTGTCAC	CAAACCCTI	CACCTTCGA	A [384]
AsZ31371	GGCGCTCTTAC	TGTTGGAG	TGGTAAC	CACGTCCTTT	TGTTTTTGA	A [384]
Np61	GGCGCTCTCAC	TGTTGGGG	TAGTCAC	CACGTCCATT	CGTCTTTGA	A [384]
Tet112382	GGAGCCCTCAC	CGTTGCAG	TGGTGAC	CCGCCCCTI	TACCTTTGA	G [384]
Te1949	GGTTCTTTGAC	GGTGGGTG	TTGTGAC	CTCGCCCTTT	TACTTTTGA	G [384]
SsNC_000911	GGCTGTTTGAC	GGTGGGCA	TTGTCAC	CCCGTCCATT	TACCTTTGA	A [384]
NtAJ133453	GGCTATTTGAC	TGTTGGTG	TTGTCAC	CATACCCATT	CAGCTTTGA	A [384]
NtAJ271749	GGCTATTTGAC	TGTTGGTG	TTGTCAC	CATACCCATI	CAGCTTTGA	A [384]
TeAF251346	GGGTATTTAAC	TGTTGGTG	TTGTAAC	GTACCCATT	CAGCTTTGA	A [384]
AtU39877	GGTTATTTGAC	TGTTGGTG	TTGTTAC	CTATCCGTT	TAGCTTTGA	A [384]
PsY15383	GGTTACTTGAC	TGTAGGTO	TTGTTAC	CATATCCTTT	CAGTTTTGA	A [384]
NtAF205858	GGTTATTTGAC	TGTTGGTG	TCGTCAC	CGTATCCATT	CAGCTTTGA	A [384]
NtAJ271748	GGTTATTTGAC	TGTTGGTG	TCGTCAC	CGTATCCATT	CAGCTTTGA	A [384]
OsAF383876	GGTTATCTCAC	CGTTGGAG	TTGTTAC	CTATCCATT	CAGTTTTGA	A [384]
CrAB084236	GGCATCCTGAC	TGTGGGC	TCGTCAC	CTACCCTT	CAACTTCGA	G [384]
CpAF067823	GGCATCTTAAC	GGTAGGTG	TTGTGAC	CAAAGCCCTT	TAACTTTGA	G [384]
BsM22630	GGCGCATTAAC	AGTCGGCG	TTGTGAC	CAAGACCGTT	TACCTTCGA	A [384]
EcX55034	GGTATCCTGAC	CGTTGCTG	TCGTCAC	CTAAGCCTTT	CAACTTTGA	A [384]

[410	420	430	440	450]
[•		.]	
L1AB042101	GGGCGAAGACG			CAACAACCAAI	PTCCA	[1 2 2]
OSCI.005296 338	GGAAGGAGGCC	TGCACTACAG	ADD 200	CAAGAAGGAA	PTCCC	[429]
$OSCL005250_550$	GGGAGGAGAGACG	CCCACTACAG	020	CAAGAAGGAAJ		[429]
NFA.T271750	GGGCGAAGACC	ACCACTTCAA -	600	CAAGAAGGAA		[429]
NEA0271750	GGGCGAAGACG	AGCAGIICAA-	600	CAAGAAGGIAI		[429]
G1AF205859	GGTCGGAGAAG	BAGCAGTICAA-		CAAGAAGGGA		[429]
A+AF089738	GGTCGGAGAAG	AGCAGIGCAA-	GCA	CAAGAAGGCA		[429]
AtAF38/167	GGACCCACAAG	CACIGIICAG-	GCT	CAAGAAGGGCI		[429]
Dna.T2/9139	GGGCGCAGAG	AGCACICCAG-	GCT	CAGGAAGGGA	IGCA	[429]
DDA 7249139	CCCCCCACACO	CCTCTCCAA-	GCC			[429]
CraE49130	CCCCCCCACC	CCCCCACCAC	GCC			[429]
CTAP 449440	CCCCCCAAACC	CATCA ATCAC	GCC			[429]
CIIIAB032072	GGCCGGGAAACG	CAIGAAICAG-			ICGAG	[423]
CERB023302		TAIGACGCAG-				[423]
GLAUUU7740	GGIAAACGAAG	GAAIGCAACAA-	GCA	AATGACGCAAT	PACT ^P P	[420]
GSABU22394	GGAAGAAGGAG	GAATGCAACAG-	GCA	GAGGAAGCAA	ragaa	[420]
MSAF120117	GGUUGAAAAUG	GAATGCAACAA-	GCG	AGGAACGCTA	I'TCTG	[348]
GSAB022595	GGACGICGACG	STCTGCAGCAA-	GCA	GTCGAAGGAT"	IGGCA	[444]
PSAJUIIUZ5	GGTAAAAGGAG	SAATGCGTCAG-	GCA	GAAGAAGGGA	I'TGCA	[423]
Pm1038	GGTAAAAGGAG	AATGCGTCAG-	GCA	GAAGAAGGGA	I''I'GCA	[423]
PmAJ237851	GGTCGCCGCAG	GAATGCGTCAA-	GCA	GA'I'GAAGG'I'A'I	ICGCC	[423]
Sy549	GGUUGUUGUUG	GCATGCGCCAG-	GCC	GATGAAGGCAT	l'CGCC	[423]
Pm1268	GGACGTCGTCG	GCATGCGACAG-	GCC	GC'I'GAAGGCA'I	I'TGGC	[423]
SYAF076530	GGGCGTCGCCG	GAATGAAGCAG-	GCG	GAAGAAGGAAG	CAGCC	[423]
ASZ31371	GGTCGTCGCCC	GACTAGTCAG-	GCA	GAACAAGGAA	ГТGAA	[423]
	GGTCGCCGCCG	FTACCAGCCAA-	GCC	GAACAAGGGA'	ICGAA	[423]
Tet112382	GGTCGTCGTCG	JAGCGAACCAA-	GCC	GATGAAGGGAT	ГТGAA	[423]
Te1949	GGACGACGCCG	GAATTACTCAG-	GCT	GATGAAGGAA	TACT	[423]
SSNC_000911	GGCCGACGACG	GGCTAAGCAA-	GCT	GAGGAAGGCA	TAAT	[423]
NEAJI33453	GGACGTAAAAG	GA'I'CCG'I'GCAG-	GCT	CTGGAAGCAA	ITGAA	[423]
NEAJ271749	GGACGCAAAAG	GATCCGTGCAG-	GCT	CTGGAAGCAA	ГТGAA	[423]
TeAF251346	GGCCGTAAAAG	GATCAGTACAG-	GCG	TTAGAGGCTAT	FTGAG	[423]
AEU39877	GGACGTAAAAG	GATCTTTGCAG-	GCA	CTGGAAGCTAI	TTGAA	[423]
PsY15383	GGACGGAAAAC	GATCCTTGCAG-	GCA	CTTGAAGCGAI	FTGAA	[423]
NEAF205858	GGACGTAAAAG	GATCTTTGCAG-	GCT	TTGGAAGCAA	rtgaa	[423]
NtAJ271748	GGACGTAAAAG	GATCTTTGCAG-	GCT	TTGGAAGCAAT	FTGAA	[423]
OsAF383876	GGACGCAAGCO	GCTCTCTTCAGG	CAAGTGCG	TTGGAAGCATI	ſAGAG	[429]
CrAB084236	GGCCGCCGCCG	GCGCCGGCCAG-	GCT	CTTGAGGGCAT	FTGAG	[423]
CpAF067823	GGAAAGAAAAG	GAATGAGTAAT-	GCC	GAAAAAGGTAT	TTATG	[423]
BsM22630	GGACGCAAAAG	GACAGCTTCAG-	GCT	GCAGGCGGAAT	TCTCG	[423]
EcX55034	GGCAAGAAGCG	GTATGGCATTC-	GCG	GAGCAGGGGAT	ГСАСТ	[423]

[46	50	470	480	490]
[•		•	•	•]
L1AB042101	GCTTTAAGAA	ATAACGTTG	ACACACTT	Α ΨΨGΨC Α ΨCC	CAAATGA	C [474]
OSCL005296 338	TCCTTAAGAAG	CAATGTTG	ATACACTG	ATTGTAATTC		C [474]
OSCLB17724 5	GCCTTGAGAA	ATAGTGTGG	ACACCCTC	ATTGTCATCC		C [474]
NtAJ271750	GCTTTGAGAG	AAATGTCG	атастста	ATTGTCATTC		C [474]
NtAJ311847	GCTTTGAGAGA	AAATGTCG	ATACTCTA	ATTGTCATTC	CAAATGA	C [474]
G1AF205859	GCACTGAGAGA	TAATGTCG	ACACCCTA	ATTGTGATTC	CAAATGA	C [474]
AtAF089738	TCTCTCAGAGA	CAATGTTG	ACACTCTC	ATCGTCATTC	CAAATGA	C [474]
AtAF384167	GCCCTCAGAGA	TAATGTTG	ACACCCTC	ATTGTTATTC	CAAACGA	C [474]
PpAJ249139	GCTCTCAAAAA	TAATGTTG	ACACTTTA	ATTACGATAC	CAAACAA	C [474]
PpAJ249138	GCTCTCAAAAA	ATAACGTGG	ACACGTTA	ATTACGATTC	CAAACAA	C [474]
CrAF449446	AACTTGCGTG	CAGCGGTTG	ACACGCTC	ATTGTCATCC	CGAACGA	C [474]
CmAB032072	GCCTTGCGCG	AGAGCGTGG	ACACGCTG	ATTGTCGTGA	GCAACGA	C [468]
CcAB023962	GCGCTGCGAGA	AGAGTGTGG	ACACGCTG	ATTGTGGTCA	GCAATGA	C [468]
GtAJ007748	AACTTGAGAAA	ACAAAGTTG	ATACACTT	ATTGTTGTAI	CTAATGA	T [465]
GsAB022594	GCTTTAAGAA	AGGAAGTCG	ATACTTTG	ATTGTAGTTI	CCAATGA	T [465]
MsAF120117	GAGATGAAGGA	ACAAGGTGG	ACACGCTC	ATCGTCGTGI	CCAACGA	C [393]
GsAB022595	AATTTGAGAGA	AAAAGGTCG	ATACTCTT	ATTGTTATTI	CAAACGA	T [489]
PsAJ011025	AGATTAGCAGA	AAAACGTTG	ATACGCTT	ATTGTGATTC	CAAATGA	T [468]
Pm1658	AGATTAGCAGA	AAAACGTTG	ATACGCTT	ATTGTGATTC	CAAATGA	T [468]
PmAJ237851	AAGCTCACAGA	AAAGTGTTG	ACACTTTA	ATTGTCATCC	CTAACGA	T [468]
Sy549	CGCTTGGCGGA	AACACGTGG	ATACCTTG	ATTGTGATTC	CCAACGA	T [468]
Pm1268	CGCCTGGCCGA	ATCATGTGG	ATACCTTG	ATTGTGATCO	CCAACGA	C [468]
SyAF076530	GCACTGCAAAG	GCTCAGTCG	ACACTTTG	ATCACTATTO	CTAATGA	C [468]
AsZ31371	GGGCTAAAAA	GTAGAGTTG	ATACTTTA	ΑΤΤΑΤΤΑΤΤΟ	CTAACAA	T [468]
Np61	GGCTTAAAAA	GTAGGGTAG	ATACACTG	ΑΤΤΑΤΤΑΤΤΟ	CTAACAA	C [468]
Tet112382	GCACTGCAAAG	GTCGCGTGG	ATACCCTA	ATCGTGATTC	CCAATGA	C [468]
Te1949	GCTCTACAAA	CTAGAGTAG	ATACTTTA	ATTGTGATCO	CCAATAA	T [468]
SsNC_000911	GCTCTCCAAT	CGCGGGGTCG	ATACCCTA	ATTGTGATTC	СТААТАА	C [468]
NtAJ133453	AAACTTCAGAA	AAAATGTAG	ATACCCTT	ATAGTAATTO	CCAATGA	C [468]
NtAJ271749	AAACTTCAGAA	AAAATGTCG	ATACCCTT	ATAGTAATTO	CCAATGA	C [468]
TeAF251346	AAGCTGCAAAA	AGAACGTTG	ACACACTT	ATAGTGATTC	CAAATGA	C [468]
AtU39877	AAGCTCCAAAA	AGAATGTTG	ATACCCTT	ATCGTGATTC	CAAATGA	T [468]
PsY15383	AAGCTTCAGAA	AAAATGTTG	GATACGCTT	ATTGTGATTC	CAAATGA	T [468]
NtAF205858	AAACTTCAGAA	AAAATGTAG	ATACTCTT	ATAGTAATTC	CCAATGA	T [468]
NtAJ271748	AAACTTCAGAA	AAAATGTAG	ATACTCTT	ATAGTAATTC	CCAATGA	T [468]
OsAF383876	AAGCTGGAAA	GGAGTGTAG	ACACACTT	ATTGTTATTC	CAAATGA	T [474]
CrAB084236	GCGCTGCGTG	AGGCCGTGG	ACTCCGTG	ATCGTCATCC	CCAACGA	AC [468]
CpAF067823	GAATTAAAGAA	AGAACGTTG	ATACTTTG	GTTATTATTC	CAAACCA	A [468]
BsM22630	GCAATGAAAGA	AAGCGGTGG	GATACACTG	ATCGTGATCC	CGAACGA	AC [468]
EcX55034	GAACTGTCCA	AGCATGTGA	ACTCTCTG	ATCACTATCC	CGAACGA	C [468]

- A STATE

4-

[500	510	520	530	540]	
[.]	
L1AB042101	AAGCTATTGACI	GCCGTTTC	CCCAAATACT	CCTGTGACAG	AGGCG	[519]
OsCL005296_338	AAATTGTTGACI	GCTGTTTC	TCCAAATACT	CCTGTGACAG	AAGCA	[519]
OsCLB17724_5	AAGCTGTTGTCT	GCTGTTTC	TCCAAATACT	CCAGTAACCG	AAGCA	[519]
NtAJ271750	AAATTATTGACA	GCTGTTTC	TCCATCGACCO	CCGGTAACTG	AAGCT	[519]
NtAJ311847	AAATTGTTGACA	GCTGTTTC	TCCATCGACCO	CCAGTAACTG	AAGCT	[519]
G1AF205859	АААТТАСТСАСІ	GCAGTTTC	CCCATCTACT	CCAGTCACAG	AAGCA	[519]
AtAF089738	AAGTTGCTTACA	GCTGTCTC	TCAGTCTACT	CCGGTAACAG	AAGCA	[519]
AtAF384167	AAGTTACTAGCA	GCAGTCTC	TCAGTCTACT	CCAGTTACAG	AAGCA	[519]
PpAJ249139	AAGCTTTTGACI	GCAGTTGC	GCAGTCTACC	CCCGTGACGG	AAGCA	[519]
PpAJ249138	AAACTTTTGACI	GCAGTTGC	GCAGTCTACC	CCAGTGACGG	AAGCG	[519]
CrAF449446	CGGCTGCTGTCG	GCCATGGA	CTCCAACGTG	CCTATCAAGG	ACGCC	[519]
CmAB032072	AAGCTGCTTCAG	GATAGTCCC	TGAGAACACA	CCATTGCAGG	ACGCA	[513]
CcAB023962	AAGCTGTTACAG	GATTGTACC	AGAGAACACG	CCATTGCAGG	ATGCA	[513]
GtAJ007748	AAATTATTACAC	GATAGTTCC	AGATAATACG	CCCCTTCAGG	ATGCA	[510]
GsAB022594	AAGTTACTCGAA	ATTGTTCC	TGAAAATACA	GCTTTGGAAA	AGGCT	[510]
MsAF120117	AAGCTCTTGAAG	GATCGTGCC	GGACAACACT	CCCCTGACGG	AAGCC	[438]
GsAB022595	CGACTCTTAGAA	ACAGTACC	GAAAGATACT	CCACTGACTG	AGGCT	[534]
PsAJ011025	CGTTTAAAAGAC	GTAATTGC	AGGAGCT	CCACTTCAAG	AAGCC	[510]
Pm1658	CGTTTAAAAGAC	GTAATTGC	AGGAGCT	CCACTTCAAG	AAGCC	[510]
PmAJ237851	CGCCTTAAAGAT	IGCAATTGC	AGGAGCG	CCCCTTCAAG	AAGCA	[510]
Sy549	CGTTTGCGGGAA	AGCGATCGC	CGGGGCT	CCGCTTCAGG.	AGGCC	[510]
Pm1268	CGCATTAAAGAC	CGTCATCTC	CGAAGCT	CCGCTTCAAG	AAGCC	[510]
SYAF076530	CGCCTACTCCAC	CGCCATATC	TGAGCAGACG	CCGATTCAAG	AAGCT	[513]
AsZ31371	AAATTATTGGAA	AGTGATTCC	AGAACAAACA	CCAGTCCAAG.	AAGCG	[513]
Np61	AAACTACTGGAA	AGTGATCCC	CGAACAAACA	CCTGTGCAAG.	AAGCT	[513]
Tet112382	AAGATTCTCTCC	GTCATCTC	TGAGCAAACA	TCGGTTCAGG.	ATGCG	[513]
Te1949	CGTTTGCTATCT	IGTAATTAA	TGACCAAACT	CCAGTACAGG.	AGGCT	[513]
SsNC_000911	CAACTTTTGTCC	GTTATTCC	CGCCGAAACT	CCTCTCCAGG.	AAGCT	[513]
NtAJ133453	CGTCTGCTAGAT	TATTGCTGA	TGAGCAGACA	CCACTTCAAG.	ATGCT	[513]
NtAJ271749	CGTCTGCTAGAT	TATTGCTGA	TGAGCAGACA	CCACTTCAAG.	ATGCT	[513]
TeAF251346	CGTTTGCTGGAT	FATTGCTGA	TGAAAACACG	CCTCTTCAGG.	ATGCT	[513]
AtU39877	CGTCTGCTAGAT	FATTGCTGA	TGAACAGACG	CCACTTCAGG.	ACGCG	[513]
PsY15383	CGTCTGCTTGAC	CATAGCTGA	TGAGCAGATG	CCCCTTCAAG.	ATGCT	[513]
NtAF205858	CGTCTTCTGGAT	TATTGCTGA	TGAGCAGACA	CCACTTCAAA	ATGCT	[513]
NtAJ271748	CGTCTTCTGGAT	FATTGCTGA	TGAGCAGACA	CCACTTCAAA	ATGCT	[513]
OsAF383876	CGATTATTAGAT	IGTTGTTGA	TGAAAACACG	CCCTTGCAAG	ATGCG	[519]
CrAB084236	CGCCTGCTGGAC	CGTGGCCGG	CGCCAGCACC	GCGCTGCAGG.	ATGCC	[513]
CpAF067823	AGATTATTGAGO	CATTATTGA	TAAAAAGACG.	ACACTCACCG	AAGCT	[513]
BsM22630	CGTATCCTTGAA	ATTGTTGA	TAAAAACACA	CCGATGCTTG	AAGCA	[513]
EcX55034	AAACTGCTGAAA	AGTTCTGGG	CCGCGGTATC	TCCCTGCTGG	ATGCG	[513]

[5	50	560	570	580]
[•		•	•]
L1AB042101	TTTAACTTGG	CTGATGAT	ATACTTCGAC	AAGGTGTTCC	TGGAAT	C [564]
OsCL005296 338	TTTAATTTGG	CAGATGAT	ATACTTCGGC	AAGGTGTCCC	TGGAAT	C [564]
OsCLB17724_5	TTCAACTTGG	CTGATGAT	ATTCTTCGAC	AAGGAATTCC	TGGTAT	C [564]
NtAJ271750	TTTAACCTGG	CTGATGAT	ATTCTTCGGC	AAGGAGTTCC	TGGAAT	C [564]
NtAJ311847	TTTAACCTGG	CTGATGAT	ATTCTTCGGC	AAGGAGTTCC	TGGTAT	T [564]
G1AF205859	TTTAACTTGG	CTGATGATA	ATTCTTCGAC	AAGGAGTTCC	TGGAAT	C [564]
AtAF089738	TTTAATCTAG	CTGATGAT	ATACTCCGTC	AGGGGGTTCC	TGGGAT	A [564]
AtAF384167	TTTAATCTGG	CAGATGATA	ATACTTCGTC	AAGGTGTCCC	TGGAAT	A [564]
PpAJ249139	TTCAATCTTG	CCGATGAC	ATCCTTCGGC	AGGGAGTGCC	GGGTAT	T [564]
PpAJ249138	TTCAATCTTG	CAGACGAC	ATCCTTCGGC	AGGGAGTGCG	GGGTAT	T [564]
CrAF449446	TTCAAAATTG	CGGATGAC	GTACTGCGGC	AGGGCGTAAA	GGGCAT	C [564]
CmAB032072	TTTCGAGTTG	CAGATGACA	ATCCTGCGGC	AGGGTGTTGI	GGGCAT	C [558]
CcAB023962	TTTCGAGTAG	CGGATGATA	ATTCTGCGAC	AAGGTGTCGI	TGGGAT	C [558]
GtAJ007748	TTTTCTGTTG	CTGATGAT	ATTCTAAGAC	AAGGAGTTGI	AGGAAT	A [555]
GsAB022594	TTTTCTGTAG	CGGATGATA	ATTCTCAGAC	AAGGTGTGGT	TGGAAT	C [555]
MsAF120117	TTTCTGGTCG	CAGACGAC	ATCCTCAGAC	AGGGCGTGGI	GGGCAT	C [483]
GsAB022595	TTTATATTTG	CGGACGAAG	GTTTTACGTC	AAGGAGTTGG	TGGAAT	T [579]
PsAJ011025	TTTAGAAATG	CTGATGAT	GTTTTAAGGA	TGGGAGTTAA	AGGTAT	A [555]
Pm1658	TTTAGAAATG	CTGATGAT	GTTTTAAGGA	TGGGAGTTAA	AGGTAT	A [555]
PmAJ237851	TTTAAAAATG	CAGATGAT	GTTTTACGAA	TGGGAGTGAA	AGGCAT	A [555]
Sy549	TTCCGCAGTG	CCGATGAC	GTGCTTCGGA	TGGGTGTGAA	AGGCAT	C [555]
Pm1268	TTCCGAAGTG	CAGATGACA	ATCCTGCGTA	TGGGTGTTAA	AGGTAT	C [555]
SyAF076530	TTCCGGGTCG	CCGACGATA	ATTCTCCGGC	AGGGTGTGCA	AGGGAT	T [558]
AsZ31371	TTTCGTTATG	CAGATGAC	GTACTACGTC	AAGGGGTACA	AGGCAT	T [558]
Np61	TTTCGCTATG	CAGATGACO	GTGTTGCGTC	AAGGGGTGCA	AGGTAT	T [558]
Tet112382	TTTCGCGTTG	CTGATGAT	GTGCTGCGCC	AAGGGGTTCA	GGGGAT	T [558]
Te1949	TTCATAATTG	CAGATGATA	ATCTTACGTC	AAGGTATACA	GGGAAT	T [558]
SsNC_000911	TTTCGGGTAG	CCGATGATA	ATTCTGCGCC	AGGGGGTACA	GGGTAT	T [558]
NtAJ133453	TTTCTTCTTG	CTGATGATC	GTATTACGCC	AAGGTGTCCA	AGGAAT	T [558]
NtAJ271749	TTTCTTCTTG	CTGATGATC	GTATTACGTC	AAGGTGTCCA	AGGAAT	T [558]
TeAF251346	TTTCTTCTTG	CTGATGATC	GTACTCCGCC	AAGGAGTTCA	AGGAAT	C [558]
At039877	TTTCTTCTTG	CAGATGATC	GTTTTACGCC	AAGGAGTACA	AGGAAT	C [558]
PSY15383	TTTCGTCTTG	CAGATGATC	GTTTTACGCC	AAGGAGTTCA	GGGAAT	A [558]
NEAF205858	TTTTCTTCTTG	CTGATGATC	JTACTTTGTC	AAGGCGTCCA	AGGAAT.	A [558]
NTAJ271748	TTTTCTTCTTG	CTGATGATC	GTACTTTGTC	AAGGCGTCCA	AGGAAT	A [558]
USAF383876	TTTCTTCTTG	CAGATGAT	GTTCTTCGTC	AAGGTGTCCA	AGGAAT	A [564]
	TTCGCGTTGG	CAGACGAT	GTGCTGCGCC	AGGGTGTGCA	GGGTAT	C [558]
CPAPU6/823	TTCAAAAAGG	CGGACGAA	ATTITI ACGCC	AAGGTGTTCA	GGGTAT	T [558]
BSM2203U	TTCCGCGAAG	CGGATAAC	STAC'I"I'CGCC	AAGGGGTTCA	AGGTAT	T [558]
LCX55U34	TTTGGCGCAG	CGAACGAT	J'I'AC'I'GAAAG	GCGCTGTGCA	AGGTAT	C [558]

[590	600	610	620	630]	
[•	•	•	•	.]	
L1AB042101	TCTGATATAAT	CACGGTTCC	TGGTCTAGTTA	\ATGTTGATT'	TCGCT	[609]
OsCL005296_338	TCAGATATAAT	CACTGTGCC	AGGTTTGGTCA	ATGTTGACT	TTGCT	[609]
OsCLB17724_5	TCTGATATTAT	CACGGTTCC	TGGGTTGGTTA	\ATGTTGATT'	TTGCT	[609]
NtAJ271750	TCTGATATTAT	TACGATTCC	TGGGCTAGTA	ATGTGGATT	TTGCT	[609]
NtAJ311847	TCTGATATAAT	TACGATTCC	TGGGCTAGTA	ATGTGGATT'	TTGCT	[609]
G1AF205859	TCTGATATAAT	TACGATCCC	TGGGCTAGTA	ATGTGGACT	ITGCT	[609]
AtAF089738	TCTGATATCAT	TACGATTCC	TGGTTTGGTGA	ATGTGGATT'	TTGCT	[609]
AtAF384167	TCTGATATTAT	TACGATTCC	TGGATTGGTCA	ATGTGGATT'	ITGCT	[609]
PpAJ249139	TCAGATATTAT	CACTGTTCC	TGGTCTCGTTA	ACGTG <mark>GACT</mark>	TTGCG	[609]
PpAJ249138	TCAGATATTAT	CACGGTCCC	TGGGCTGGTTA	ACGTAGATT'	TTGCC	[609]
CrAF449446	AGCGAAATTAT	CACAGTGCC	CGGCCTAGTCA	ACGTGGACT	TCGCG	[609]
CmAB032072	AGCGATATTAT	CATCCGCCC	TGGTCTCATTA	ACGTAGACT'	TTGCC	[603]
CcAB023962	AGCGACATCAT	CATCCGCCC	TGGACTGATTA	ATGTTGATT'	ITGCT	[603]
GtAJ007748	TCCGAGATTAT	TGTAAGACC	AGGTTTAATTA	ATGTTGATT'	TTGCC	[600]
GsAB022594	TCAGAAATCAT	TGTTCGTCC	AGGTCTGATTA	ATGTTGACT	ITGCG	[600]
MsAF120117	ACCGAAATCAT	TGTGAAGCC	AGGGCTCGTG	ATGTTGATT	ICGCT	[528]
GsAB022595	TCCGATATTAT	ТАСТАААСС	GGGCTTAGTCA	ACGTAGATT'	FTGCA	[624]
PsAJ011025	AGTGACATAAT	TACATGCCC	TGGATTAGTT	ACGTTGATT'	FTGCT	[600]
Pm1658	AGTGACATAAT	TACATGCCC	TGGATTAGTTA	ACGTTGATT	ITGCT	[600]
PmAJ237851	ACCGACATAAT	CACTTTGCC	TGGTCTTGTA	ATGTGGACT'	ITGCG	[600]
Sy549	AGCGACATCAT	CACGTGCCC	CGGTTTGGTGA	ACGTCGACT	ICGCT	[600]
Pm1268	AGTGACATCAT	CACCTGCCC	TGGCCTTGTCA	ATGTGGACT	ICGCC	[600]
SyAF076530	TCTGACATCAT	CACGATCCC	AGGTCTGGTCA	ACGTCGACT	FTGCC	[603]
AsZ31371	TCCGACATCAT'	TACTATTCC	TGGTTTGGTA	ATGTAGACT	ITGCT	[603]
Np61	TCTGATATCAT	CACAATTCC	CGGTTTGGTA	ATGTTGACT	ITGCT	[603]
Tet112382	TCCGACATTAT	CAACGTGCC	GGGGCTGATTA	ACGTGGATT	ITGCC	[603]
Te1949	TCAGATATTAT	TACTGTACC	TGGATTAGTA	ATGTTGACT	FTGCT	[603]
SsNC_000911	TCCGACATTAT	CATCATCCC	CGGTTTGGTGA	ATGTGGACT	ITGCG	[603]
NtAJ133453	TCCGATATAAT	TACTATACC	TGGGCTTGTA	ATGTGGATT	FTGCC	[603]
NtAJ271749	TCCGATATAAT'	TACTATACC	TGGGCTTGTA	ATGTGGATT	FTGCC	[603]
TeAF251346	TCAGATATAAT	TACAATACC	TGGGCTGGTAA	ATGTGGACT	FTGCA	[603]
AtU39877	TCAGATATTAT	TACTATACC	TGGACTAGTCA	ATGTGGATT	FTGCA	[603]
PsY15383	TCGGACATTAT	ААСААТАСС	TGGACTTGTAA	ATGTGGATT	FTGCT	[603]
NtAF205858	TCTGATATAAT	CACTATACC	TGGGCTGGTAA	ATGTGGATT	FTGCA	[603]
NtAJ271748	TCTGATATAAT	CACTATACC	TGGGCTGGTAA	ATGTGGATT	FTGCA	[603]
OsAF383876	TCAGATATTAT'	ТАСААТАСС	TGGACTTGTCA	ATGTTGATT	FTGCT	[609]
CrAB084236	TCAGACATCAT	CACCGTGCC	CGGCCTCATCA	ACGTTGACT	FTGCG	[603]
CpAF067823	GCTGATTTGAT	TTCCAAGCC	CGGCGTAATTA	ACTTGGACT	FTGCC	[603]
BsM22630	TCTGACTTGAT	TGCTACACC	TGGTCTTATCA	ACCTTGACT	FTGCT	[603]
EcX55034	GCTGAACTGAT	TACTCGTCC	GGGTTTGATGA	ACGTGGACT	FTGCA	[603]

[640	650	660	670]
[•	•	•]
L1AB042101	GATGTTAGAGCAATI	ATGGCAAATG	CAGGCTCATC	CCTAATGGG	r [654]
OsCL005296_338	GATGTCCGATCAGTT	ATGTCGGATG	CAGGGTCATC	TTTGATGGG	[654]
OsCLB17724_5	GATGTTCGAGCCATC	ATGCAAAATG	CAGGCTCATC	CTTGATGGG	r [654]
NtAJ271750	GACGTGCGTGCTATI	ATGGCAAATG	CTGGTTCTTC	TTTAATGGG	A [654]
NtAJ311847	GACGTGCGTGCTATI	ATGGCAAATG	CTGGTTCCTC	TTTAATGGG	A [654]
G1AF205859	GATGTGCGGGCTATA	ATGGCCAATG	CTGGGTCTTC	CTTAATGGG	[654]
AtAF089738	GATGTGAGAGCTATA	ATGGCAAATG	CGGGGTCTTC	ATTGATGGG	A [654]
AtAF384167	GATGTGAGGGCGATA	ATGGCAAATG	CAGGTTCTTC	ATTGATGGG	A [654]
PpAJ249139	GATGTGCGGGCGATC	ATGGCCAATG	CAGGATCATC	TTTGATGGG	A [654]
PpAJ249138	GACGTGCGGGCGATC	ATGGCTAATG	CAGGATCATC	TTTGATGGG	[654]
CrAF449446	GACGTTCGTGCCATC	ATGGCGGGCG	CCGGTAGCTC	GCTCATGGG	G [654]
CmAB032072	GACGTCCGAAGTGTC	ATGGCACATG	CGGGATCGGC	CTTAATGGG	C [648]
CcAB023962	GACGTGCGGAGTGTT	ATGGCGCACG	CAGGATCCGC	GCTTATGGG	[648]
GtAJ007748	GATGTAAGATCTGTC	ATGGCAGATG	CGGGAAGCGC	ACTTATGGG	[645]
GsAB022594	GATGTTCGTTCTATI	ATGGCAGATG	CTGGTTCAGC	TTTGATGGG	[645]
MsAF120117	GACGTGCGGACAATC	ATGGGCAACG	CAGGCACGGC	CTTGATGGG	[573]
GsAB022595	GATGTTCGTACGGTT	ATGGCAGAAA	AAGGTTTTGC	TTTGTTAGG	[669]
PsAJ011025	GATGTTAGGTCTGTA	ATGACTGAAG	CTGGCACTGC	CCTGCTTGG	r [645]
Pm1658	GATGTTAGGTCTGTA	ATGACTGAAG	CTGGCACTGC	CCTGCTTGG	r [645]
PmAJ237851	GACGTTCGCTCTGTA	ATGACTGAAG	CTGGAACATC	ATTACTTGG	A [645]
Sy549	GACGTGCGTTCCGTG	ATGACGGAAG	CAGGAACAGC	ATTGCTAGG	[645]
Pm1268	GACGTGCGTTCGGTG	ATGACCGAAG	CCGGCACGGC	CCTGCTAGG	G [645]
SyAF076530	GACGTTCGCGCCGTC	ATGGCCGATG	CTGGATCAGC	CCTGATGGGG	[648]
AsZ31371	GACGTGCGGGCTGTC	ATGGCCGATG	CGGGATCAGC	ATTGATGGG	r [648]
Np61	GATGTCCGGGCTGTG	ATGGCAGATG	CAGGATCGGC	ATTGATGGG	A [648]
Tet112382	GATATTCGCTCGGTG	ATGGCTGATG	CCGGTTCTGC	CATGATGGG	[648]
Te1949	GATGTTAGAGCAGTT	ATGGCCGATG	CTGGTTCGGC	ATTGATGGG	A [648]
SsNC_000911	GACGTGCGGGCGGTG	ATGGCCGATG	CTGGCTCCGC	ATTAATGGGG	[648]
NtAJ133453	GATGTAAAGGCAGTO	GATGAAAGATT	CTGGAACTGC	TATGCTTGGA	A [648]
NtAJ271749	GATGTAAAGGCAGTG	ATGAAAGATT	CTGGAACTGC	TATGCTTGGA	A [648]
TeAF251346	GACGTTAAAGCAGTC	ATGAAAGATT	CTGGAACTGC	AATGCTTGGT	[648]
AtU39877	GATGTGAAGGCAGTC	ATGAAAGATT	CTGGAACTGC	AATGCTCGGG	G [648]
PsY15383	GATGTAAAAGCTGTG	ATGAAAGACT	CTGGTACCGC	AATGCTCGG	A [648]
NtAF205858	GATGTTAAGGCAATC	ATGAAAGATT	CTGGAACTGC	TATGCTCGG	A [648]
NtAJ271748	GATGTTAAGGCAATC	ATGAAAGATT	CTGGAACTGC	TATGCTCGGA	A [648]
OsAF383876	GATGTGAAAGCTGTT	ATGAAAAACT	CTGGAACTGC	AATGCTTGGI	r [654]
CrAB084236	GATGTCAAGGCCATC	ATGAGCAACA	GCGGCACGGC	CATGCTGGG	r [648]
CpAF067823	GATGTACGTACAGTA	ATGGCAAATA	AAGGTATTGC	CCATATGGG	r [648]
BsM22630	GATGTGAAAACAATC	ATGTCAAACA	AAGGATCTGC	TTTGATGGG	[648]
EcX55034	GACGTACGCACCGTA	ATGTCTGAGA	TGGGCCACGC	AATGATGGGI	[648]

[680	690	700	710	720]
[•	.]	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						[[]]
	ATAGGAACTGC			GGTAA	GACA	[678]
OSCL005296_338	ATTGGAACTGC			GGTAA	GACA	[6/8]
USCLB1//24_5	ATTGGAACGGC			GGGAA	GTCA	[6/8]
NEAJ271750	ATAGGAACTGO			GGAAA	GACC	[6/8]
NEAJ311847	ATAGGAACCG	CTACG		GGGAA	GACC	[678]
GIAF205859	ATTGGGGACAG	CACA		GGGAA	AACC	[678]
AtAF089738	ATAGGAACTGO	CGACA		GGAAA	GAGT	[678]
AtAF384167	ATAGGAACTGO	CAACA		GGAAA	GACC	[678]
PpAJ249139	ATTGGAACCG	CTACA		GGGAA	GTCA	[678]
PpAJ249138	ATAGGGACCG	CCACA		GGTAA	GTCA	[678]
CrAF449446	CAGGGCTATG	GATCC		GGTCC	GCGG	[678]
CmAB032072	ATCGGCACCG	GCAGT		GGCAA	GTCC	[672]
CcAB023962	ATCGGCACCG	GCAGT		GGCAA	IGTCC	[672]
GtAJ007748	ATAGGAACAG	GATCT		GGAAA	AACT	[669]
GsAB022594	ATTGGAAGCG	GTTCG		GGAAA	ATCC	[669]
MsAF120117	ATCGGCCACG	GCAAG		GGAAA	GAAC	[597]
GsAB022595	ATTGGAACTG	CAAGT		GGAGA	TTCG	[693]
PsAJ011025	ATAGGTATTGO	GTTCT		GGTAG	SATCT	[669]
Pm1658	ATAGGTATTGO	GTTCT		GGTAG	SATCT	[669]
PmAJ237851	ATAGGCATTGO	GATCT		GGTCG	TTCT	[669]
Sy549	ATCGGCATTG	GATCC		GGCCG	GCTCA	[669]
Pm1268	ATTGGTGAAGO	GTTCA		GGACG	TTCC	[669]
SyAF076530	ATCGGTAGCG	GCTCT		GGCAA	GTCC	[672]
AsZ31371	ATTGGTGTGA	GTTCA		GGAAA	ATCT	[672]
Np61	ATTGGCGTTAC	GTTCT		GGAAA	ATCT	[672]
Tet112382	ATTGGTATTG	CCTCT		GGAAA	GTCA	[672]
Te1949	ATTGGTATGG	GGTCT		GGTAA	GTCT	[672]
SsNC_000911	ATTGGGGTGG	GTTCC		GGCAA	GTCC	[672]
NtAJ133453	GTTGGGGTTTC	CATCA		AGCAA	GAAC	[672]
NtAJ271749	GTTGGGGTTT	CATCA		AGCAA	GAAC	[672]
TeAF251346	GTCGGTGTTT	CCTCA		AGTAA	AAAC	[672]
AtU39877	GTAGGTGTTTC	CTTCC		AGCAA	AAAC	[672]
PsY15383	GTAGGTGTTTC	CATCC		GGTAA	AAAC	[672]
NtAF205858	GTTGGGGTTT	CTTCC		AGTAG	GAAC	[672]
NtAJ271748	GTTGGGGTTT	CTTCC		AGTAG	GAAC	[672]
OsAF383876	GTTGGTGTTT	CTTCC		AGCAA	AAAT	[678]
CrAB084236	GTGGGCGCTG	CCTCCACAGC	CACCGCCGCCC	cceeceeccc	CGAC	[693]
CpAF067823	ATCGGTCGTG	CCAGT		GGCGA	AAAT	[672]
BsM22630	ATCGGTATTG	CTACT		GGGGA	AAAT	[672]
EcX55034	TCTGGCGTGG	CGAGC		GGTGA	AGAC	[672]

[730	740	750	760]
[•	•	•	•]
L1AB042101	CGGGCAAGAGATGCTC	GCGTTAAATG	CTGTTCAGTC	ACCATTACTO	[723]
OsCL005296 338	CGTGCCAGGGATGCTC	GCGCTTAATG	CTATACAGTC	rcctcttctt	[723]
OsCLB17724 5	AGAGCAAGAGATGCTC	GCTCTTAATG	CCATTCAGTC	ACCACTGCT	[723]
NtAJ271750	AGAGCCAGAGATGCAG	GCATTGAACG	CCATTCAATC	FCCTTTACTC	[723]
NtAJ311847	AGAGCCAGAGATGCAG	GCGTTGAACG	CTATTCAATC	ГССТТТАСТС	[723]
G1AF205859	AGGGCCAGAGATGCT	GCCTTAAATG	CGATCCAATC	CCCTTGCT	
AtAF089738	CGGGCAAGAGATGCTC	GCGCTAAATG	CAATCCAATC	CCTTTGTTA	[723]
AtAF384167	CGAGCAAGAGATGCTC	GCATTAAACG	CAATCCAATC	CCTTTATTA	[723]
PpAJ249139	AAAGCTAGAGAGGCAG	GCATTGAGTG	CCATTCAGTC	rccattgttg	[723]
PpAJ249138	AGAGCTAGAGAAGCAG	GCATTGAGCG	CAATCCAATC	rcctctattc	[723]
CrAF449446	CGTGCCTCTGACGCC	GCGCTGCGCG	CCATCAGCTC	GCCGCTGCTC	[723]
CmAB032072	CGGGCCCATGACGCC	GCCGTGGCAG	CGATTTCCTC	ACCGCTGCT	G [717]
CcAB023962	CGAGCGCACGATGCT	GCTGTCGCTG	CCATCTCTTC	FCCGCTCTT	x [717]
GtAJ007748	CGAGCACAAGATGCAG	GCAGTTGCAG	CTATAAGTTC	rcctttacti	[714]
GsAB022594	CGTGCCAAGGATGCCC	GCAGTTGCTG	CAATTTCCTC	GCCATTACTI	[714]
MsAF120117	AGAGCCAAGGACGCG	GCGCTGTCGG	CCATCTCCTC	CCCGCTGCTC	F [642]
GsAB022595	AGAGCTCGAAATGCAG	GCAACTGCGG	CTATTTCATC	ACCTCTTTT	A [738]
PsAJ011025	AGAGCATTAGAGGCT	GCTCAAGCCG	CAATGAATAG	FCCTTTACT	A [714]
Pm1658	AGAGCATTAGAGGCT	GCTCAAGCCG	CAATGAATAG	rcctttact <i>i</i>	[714]
PmAJ237851	AGAGCCGCCGAAGCCG	GCTCAAGCAG	CAATAAACAG	FCCTTTATT	[714]
Sy549	AGGGCGGTTGAGGCCC	GCGCAAGCTG	CCATCAGCAG	CCCGTTACTI	r [714]
Pm1268	AGGGCGATAGAAGCAG	GCCCAGGCTG	CCATCAGCAG	rccgctacto	G [714]
SYAF076530	CGCGCTCGGGAAGCCC	GCTCATGCAG	CCATTAGCTC	ACCGCTGCTC	; [717]
AsZ31371	AGAGCCAGAGAAGCT	GCGATCGCCG	CTATATCTTC	ACCACTGCTA	A [717]
Np61	AGAGCCAGAGAAGCT	GCGATCGCAG	CTATTTCTTC	ACCGTTACTA	A [717]
Tet112382	CGGGCCACTGAAGCT	GCCCTCAGCG	CCATTTCTTC	ACCTCTACTO	G [717]
Te1949	AGGGCAAGGGAAGCA	GCAAATGCGG	CAATTTCTTC	rcc <mark>t</mark> ttgcti	r [717]
SsNC_000911	CGGGCCAAGGAGGCG	GCCACGGCGG	CCATTTCCTC	FCCTTTGTTC	; [717]
NtAJ133453	CGTGCTGAAGAAGCAG	GCCGAACAAG	CAACTCTTGC	CCTCTAATT	r [717]
NtAJ271749	CGTGCTGAAGAAGCAG	GCCGAACAAG	CAACTCTTGC	CCTCTAATT	r [717]
TeAF251346	CGAGCTGAAGAAGCAG	GCTGAACAAG	CAACTCTTGC	FCCTTTGATT	r [717]
AtU39877	CGGGCAGAAGAAGCAG	GCTGAACAAG	CAACTTTGGC	FCCATTGATC	[717]
PsY15383	CGAGCAGAAGAAGCAG	GCAGAACAGG	CTACCTTGGC	ICCTTTAATC	[717]
NtAF205858	CGTGCTGAGGAAGCAG	GCTGAACAAG	CAACTCTGGC	CCTCTCATI	r [717]
NtAJ271748	CGTGCTGAGGAAGCAG	GCTGAACAAG	CAACTCTGGC	CCTCTCATI	r [717]
OsAF383876	CGGGCCCAAGAAGCTC	GCAGAGCAGG	CAACACTTGC	ICCTTTAATC	[723]
CrAB084236	CGCGCGGAGCAGGCG	GCCGTGGCCG	CCACATCGGC	ACCGCTCATC	[738]
CpAF067823	AAAGCTGAAATTGCA	GCGAAAATGG	CAATTCAGAG	CCCTCTTTTC	G [717]
BsM22630	CGCGCGGCAGAGGCAG	GCAAAAAAAG	CAATTTCCAG	CCCGCTTCTT	r [717]
EcX55034	CGTGCGGAAGAAGCT	GCTGAAATGG	CTATCTCTTC	FCCGCTGCT	G [717]

.

[770	780	790	800	810]	
[•	•	•	•	.]	
L1AB042101	GATATTGGT	-ATTGAAAG	AGCTACTGGA	ATAGTATGGAA	ТАТА	[765]
OsCL005296_338	GATATTGGC	-ATTGAAAG	AGCAACAGGA	ATTGTATGGAA	TATC	[765]
OsCLB17724_5	GACATTGGA	-ATTGAAAG	AGCTACAGGC	ATTGTGTGGAA	TATC	[765]
NtAJ271750	GACATTGGT	-ATAGAGAG	GGCTACTGGA	ATTGTGTGGAA	TATA	[765]
NtAJ311847	GATATTGGT	-ATAGAGAG	GGCTACTGGA.	ATTGTGTGGAA	TATA	[765]
G1AF205859	GATATCGGT	-ATCGAGAG	AGCTACTGGT	ATTGTGTGGAA	TATT	[765]
AtAF089738	GATATTGGG	-ATTGAGAG	AGCCACTGGA	ATTGTTTGGAA	CATT	[765]
AtAF384167	GATATTGGC	-ATTGAGAG	AGCCACTGGA	ATAGTTTGGAA	CATA	[765]
PpAJ249139	GATGTGGGT	-ATTGAGCG	AGCCACAGGG.	ATCGTTTGGAA	TATT	[765]
PpAJ249138	GATGTGGGT	-ATTGAGCG	AGCCACAGGG.	ATAGTCTGGAA	TATC	[765]
CrAF449446	GAGGTGGGC	-ATTGAGCG	CGCCACTGGC	GTGGTGTGGAA	CATC	[765]
CmAB032072	GATTTCCCT	-ATCGAGCG	IGCCAAAGGT.	ATTGTTTTCAA	CGTC	[759]
CcAB023962	GATTTCCCT	-ATAGAACG	CGCCAAGGGC.	ATCGTCTTCAA	TGTC	[759]
GtAJ007748	GATTTTCCA	-ATCGAAAA	AGCCAGAGGA	АТТСТАТТТАА	TATC	[756]
GsAB022594	GACTTTCCT	-ATTGAGCG	TGCAAAAGGA	АТТGTTTTTAA	CATT	[756]
MsAF120117	GACTTCCCC	-ATCACCCG	CGCCAAAGGC.	ATCGTTTTCAA	CATT	[684]
GsAB022595	GATTTTCCT	-ATAACATC	TGCGAAAGGT	GCCGTTTTTAA	TATT	[780]
PsAJ011025	GAAGCGGCAAG	AATTGATGG	AGCTAAAGGT	TGTGTGATAAA	TATT	[759]
Pm1658	GAAGCGGCAAG	AATTGATGG	AGCTAAAGGT	TGTGTGATAAA	TATT	[759]
PmAJ237851	GAAGCTGGTCG	TATAGATGG	AGCAAAAGGC	TGCGTAGTAAA	TATT	[759]
Sy549	GAAACCGAGCG	AATCGATGG	TGCCAAGGGC	TGTGTGATCAA	CATC	[759]
Pm1268	GAAGCGGCCCG	CATCGACGG	AGCCAAAGGT	TGCGTCATCAA	CATC	[759]
SyAF076530	GAGTCTTCG	-ATCGAAGG	GGCGCGCGGC	GTTGTCTTCAA	CATC	[759]
AsZ31371	GAATGTTCT	-ATCGAAGG	TGCTAGAGGT	GTTGTTTTTAA	CATC	[759]
Np61	GAATGTTCT	-ATTGAAGG	TGCTAGAGGG	GTTGTATTTAA	TATT	[759]
Tet112382	GAGCGGTCT	-ATCGAGGG	TGCCAAGGGC	GTTGTCTTTAA	CATT	[759]
Te1949	GAGTCTTCC	-ATTGAAGG	AGCAAAAGGG	GTTGTATTTAA	TATT	[759]
SsNC_000911	GAATCTTCT	-ATCCAGGG	AGCTAAAGGA	GTCGTATTTAA	TGTC	[759]
NtAJ133453	GGATCGTCC	-ATTCAATC	TGCAACTGGG	GTAGTATACAA	CATT	[759]
NtAJ271749	GGATCGTCT	-ATTCAATC	TGCAACTGGG	GTAGTATATAA	CATT	[759]
TeAF251346	GGATCATCA	-ATTCAATC	TGCTACAGGT	GTTGTTTATAA	TATT	[759]
AtU39877	GGATCATCC	-ATACAATC	AGCTACTGGT	GTCGTCTACAA	CATC	[759]
PsY15383	GGATCATCT	-ATTCAATC	AGCCACGGGA	GTAGTGTATAA	TATC	[759]
NtAF205858	GGATCATCA	-ATTCAATC	TGCAACTGGT	GATGTATATAA	CATT	[759]
NtAJ271748	GGATTATCA	-ATTCAATC	TGCAACTGGT	GTTGTATATAA	CATT	[759]
OsAF383876	GGGTCGTCT	-ATTGAGGC	GGCTACTGGT	GTTGTGTACAA	TATC	[765]
CrAB084236	CAGCGCAGC	-ATCGAGAA	GGCTACCGGC	ATTGTGTACAA	CATC	[780]
CpAF067823	GAAACTACC	-ATTGAGGG	AGCTAAGAGC	GTATTGATTAA	TTTC	[759]
BsM22630	GAAGCGGCC	-ATTGACGG	TGCGCAAGGC	GTCCTCATGAA	CATC	[759]
EcX55034	GAAGATATCGA	CCTGTCTGG	CGCGCGCGGC	GTGCTGGTTAA	CATC	[762]

[820	830	840	850 j	
[.]	
LIAB042101	ACTGGGGGA	AATGATTTAA	CTTTGTATG	GGTGAATGCT	GCTGCA	[810]
OsCL005296_338	ACTGGAGGG	AATGATCTAA	COTTGACGG	AGGTGAATGCA	GCAGCT	[810]
OsCLB17724_5	ACTGGGGGA	GCTGATATGA	CTTTGTTTG	GGTGAATTCT	GCTGCT	[810]
NtAJ271750	ACTGGTGGT	AGTGATCTAA	CATTATTTG	AGGTAAATGCT	igeagea	[810]
NtAJ311847	ACTGGTGGT	AGTGATCTAA	CATTATTTG?	AGGTAAATGCC	GCAGCA	[810]
G1AF205859	ACTGGCGGA	AGTGATTTGA	CATTGTTTG	AGGTCAATGCA	GCTGCT	[810]
AtAF089738	ACTGGCGGA	AGTGACTTGA	CATTGTTTG	AGGTAAATGCI	GCTGCG	[810]
AtAF384167	ACCGGTGGA	AGTGACTTAA	CACTGTTCG	AGGTAAATGCI	IGOTGCA	[810]
PpAJ249139	ACTGGGGGA	AGCGACATGA	CCCTCTTTG?	AGTCAATGCT	IGCAGCA	[810]
PpAJ249138	ACTGGGGGA	AGCGACATGA	CTCTCTTTG	AGGTAAATGCT	IGCAGCA	[810]
CrAF449446	ACCGGTCCG	CCAAACATGA	CCCTGCACGA	AGGTGAACGAG	GCGGCC	[810]
CmAB032072	ACCGGTGGA	GAAGACATGA	CCCTGCACGA	AATCAACCAG	GCCGCT	[804]
CcAB023962	ACTGGCGGT	GAAGACATGA	CGCTGCATG	AGATTAACCAG	GCTGCT	[804]
GtAJ007748	ACAGGTGGA	CAAGATATGA	CATTACATG	AGATCAATTCI	GCAGCA	[301]
GsAB022594	ACAGGTGGA	CATGATATGA	CGCTACACG?	AATAAATGCC	GCCGCA	[801]
MsAF120117	GTGGGCGGC	TCCGACATGI	CTCTGCAGG	AATCAACGCC	CGCCGCG	[729]
GsAB022595	ACAGGAGGA	ACGGATATGA	COTTATCTG	AGTGAATCAG	GGCTGCA	[825]
PsAJ011025	ACAGGTGGG	AAAGATATGA	CATTAGAAGA	ATATGACCTCA	AGCTTCA	[804]
Pm1658	ACAGGTGGG	AAAGATATGA	.CATTAGAAG2	ATATGACCTCA	GCTTCA	[804]
PmAJ237851	ACAGGCGGG	AAAGACATGA	CATTAGAAGA	ACATGACCTCI	IGCTTCA	[804]
Sy549	AGCGGCGGC	CGTGACATGA	ACCCTCGAGGZ	ACATGACCACC	GCCTCT	[804]
Pm1268	AGCGGCGGT	CGCGACATGA	ACCOTTGAGGA	ACATGACCTCC	GCATCG	[804]
SYAF076530	ACAGGCGGC	CGCGATATGA	ACCCTGCATG2	AGGTCAACGCA	AGCAGCG	[804]
AsZ31371	ACTGGTGGT	AGTGACCTCA	ACTOTACATG?	AGTAAATGCI	CCCCCC	[804]
Np61	ACAGGCGGT	ACCGATCTTA	CTTTACATG	AGTGAATGCA	GCCGCA	[804]
Tet112382	ACAGGGGGC	ACCGATCTCA	GTCTCCATG	AGTCAATGCI	GCCGCA	[804]
Te1949	ACTGGTGGT	ACTGATTTAA	CTTTACATGA	AGGTTAATGCI	TGCTGCT	[804]
SsNC_000911	ACTGGTGGA	ACCGATCTGA	ACCCTGCACGA	AGTTAATGTT	TGCGGCT	[804]
NtAJ133453	ACAGGAGGA	AAAGACATAA	CTTTGCAGG?	AGTGAATAGG	GTGTCT	[804]
NtAJ271749	ACAGGAGGA	аладасатар	ACTTTGCAGGA	AGTGAATAGG	GTGTCT	[804]
TeAF251346	ACCGGAGGG	AAGGACATAA	CTCTACAAGA	AGTCAACAGG	GTTTCT	[804]
AtU39877	ACTGGTGGA	AAAGACATAP	CTTTGCAGGA	AGTGAACCGA	AGTATCA	[804]
PsY15383	ACTGGAGGA	AAGGACATCA	ACCCTGCAGG?	AGTCAACAGA	AGTATCT	[804]
NtAF205858	ACTGGAGGA	AAAGATATT?	ACTITICAGG2	AGGTGAATAAG	GTGTCC	[804]
NtAJ271748	ACTGGAGGA	AAAGATATTA	ACTTTGCAGG?	AGGTGAATAAG	GTGTCC	[804]
OsAF383876	ACTGGTGGA	AAGGACATAA	ACCTTGCAAG2	AGTAAACAAA	AGTCTCT	[810]
CrAB084236	ACTGGTGGC	CGTGACCTGA	ACCCTGGCCG2	AGGTCAACCGC	CGTGTCC	[825]
CpAF067823	AGCGGTGAT	ATGAACCTTS	GTTTGATGG	AAACAGAGGAA	AGCGGCT	[804]
BsM22630	ACTGGAGGA	ACAAACCTCA	AGCCTATATGA	AGGTTCAGGAA	AGCAGCA	[804]
EcX55034	ACGGCGGGC	TTCGACCTGC	GTCTGGATG?	AGTTCGAAACG	GTAGGT	[807]

[860	870	880	890	900]	
[•			.]	
L1AB042101	GAAGTGATCTA	TGACCTTGT	CGATCCGGCTG	САААСТТАА	TATTT	[855]
OsCL005296_338	GAAGTGATATA	CGATCTTGT	TGATCCTGGTG	CAAATCTCA	TTTTT	[855]
OsCLB17724_5	GAGATCATCTA	TGACCTTGT	TGATCCAAATG	CTAATCTGA	TATTT	[855]
NtAJ271750	GAGGTTATATA	TGACCTTGT	GGATCCTAGTG	CGAACCTTA	TTTTC	[855]
NtAJ311847	GAGGTTATATA	TGACCTTGT	GGATCCTAGTG	CGAACCTTA	TTTTTC.	[855]
G1AF205859	GAAGTTATATA	TGATCTGGT	AGATCCAAGTG	ССААСТТАА	TTTTTT	[855]
AtAF089738	GAAGTAATATA	TGATCTTGT	CGATCCAACTG	CCAATCTTA	TATTC	[855]
AtAF384167	GAAGTGATTTA	CGACCTCGT	TGATCCAACAG	CGAATCTTA	TATTT	[855]
PpAJ249139	GAGGTAATCTA	TGATTTGGT	GGATCCTAACG	CAAATCTTA	TTTTC	[855]
PpAJ249138	GAGGTGATTTA	TGATTTGGT	CGATCCCAACG	САААТСТТА	TTTTT	[855]
CrAF449446	GAAATTATCTA	CGATATGGT	GGACCCCAACG	CCAACCTTA	TCTTT	[855]
CmAB032072	GAGGTAATCTA	CGAAGCAGT	CGACCCCAACG	CGAATATCA	TCTTC	[849]
CcAB023962	GAGGTGATCTA	CGAAGCGGT	AGACCCGAATG	САААСАТСА	TATTC	[849]
GtAJ007748	GAAGTAATTTA	TGAAGCAGT	AGATTCTAATG	САААТАТАА	TATTT	[846]
GsAB022594	GAAGTTATTTA	CGAAGCCGT	GGATTTGAATG	ССААТАТАА	TCTTC	[846]
MsAF120117	GAGGTCATTTA	CGAGAACGT	GGATCAGGACG	CGAATATCA	TATTC	[774]
GsAB022595	CAAGTTATTTA	TGATAGTGT	AGATTCTGATG	САААТАТТА	TTTTT	[870]
PsAJ011025	GAAATTATTTA	TGATGTTGT	AGATCCAGAAG	САААСАТАА	TAGTA	[849]
Pm1658	GAAATTATTTA	TGATGTTGT	AGATCCAGAAG	CAAACATAA	TAGTA	[849]
PmAJ237851	GAGGTTATTTA	CGATGTTGT	AGACCCAGAAG	САААТАТТА	TTGTT	[849]
Sy549	GAAGTGATCTA	CGACGTGGT	GGACCCAGAAG	CCAACATCA	TTGTT	[849]
Pm1268	GAAGTGATCTA	CGACGTGGT	CGATCCAGAAG	CCAACATCA	TTGTT	[849]
SyAF076530	GATGCGATTTA	CGAAGTCGT	CGATCCTGAAG	CCAATATCA	TTTTC.	[849]
AsZ31371	GAAACGATTTA	TGAAGTAGT	TGATCCCAACG	CCAACATTA	TTTTT	[849]
Np61	GAAGCAATCTA	TGAAGTAGT	TGATCCCAACG	ССААТАТТА	TTTTT	[849]
Tet112382	GACGTCATTTA	CAATGTGGC	CGATGCCAACG	CCAATATCA	TCTTT	[849]
Te1949	GAAATTATCTA	TGAAGTTGT	AGATCCTAATG	СТААТАТТА	TTTTT	[849]
SsNC_000911	GAAATTATCTA	TGAAGTGGT	GGATGCCGATG	CCAACATCA	TCTTT	[849]
NtAJ133453	CAGGTTGTTAC	CAGTCTGGC	TGATCCCTCCG	CTAACATCA	TATTT	[849]
NtAJ271749	CAGGTTGTTAC	CAGTCTGGC	TGATCCCTCCG	CTAACATCA	TATTT	[849]
TeAF251346	CAGGTGGTAAC	AAGTTTGGC	AGATCCATCAG	САААСАТТА	TATTC	[849]
AtU39877	CAGGTCGTGAC	AAGTTTGGC	AGACCCATCGG	CCAACATCA	TATTT	[849]
PsY15383	CAGGTTGTGAC'	TAGTTTGGC	CGATCCTTCTG	CCAATATTA	TATTT	[849]
NtAF205858	CAGGTTGTCAC	AAGCTTGGC	TGATCCATCCG	CCAACATCA	TATTC	[849]
NtAJ271748	CAGGTTGTCAC	AAGCTTGGC	TGATCCATCCG	CCAACATCA	TATTC	[849]
OsAF383876	CAGATTGTGAC	AAGCTTGGC	CGATCCTTCTG	САААТАТАА	TTTTC	[855]
CrAB084236	GAGGTGGTGAC	CGCCCTGGC	CGACCCCTCAT	GCAACATTA	TCTTT	[870]
CpAF067823	GATTTAATCAG	AGAGGCTAT	TGATCCTGATG	CAGAAATCA	TCTTT	[849]
BsM22630	GACATTGTCGC	TTCGGCGTC	TGATCAAGACG	TAAACATGA	ATTTTC	[849]
EcX55034	AACACCATCCG	TGCATTTGC	TTCCGACAACG	CGACTGTGG	TTATC	[852]

STATISTICS.

[910	920	930	940]
[•	•]
LIAB042101	GGAGCAGTGATTGAT	CCGTCGATTAC	GTGGTCA	AGTTAGCATA	A [897]
OsCL005296_338	GGCTCTGTTATTGAT	CCATCGTATAC	CTGGTCA	AGTGAGCATA	A [897]
OsCLB17724_5	GGTGCTGTCATAGAC	CCATCACTCA	ATGGCCA	AGTGAGCATA	A [897]
NtAJ271750	GGGGCCGTGATAGAC	CCATCAATAAC	GTGGACA	GGTCAGCATA	A [897]
NtAJ311847	GGGGCGGTGATAGAC	CCATCAATAAC	GTGGACA	GGTCAGCATA	A [897]
G1AF205859	GGAGCTGTAGTAGAT	CCATCACTGT	GTGGTCA	AGTCAGTATA	A [897]
AtAF089738	GGTGCTGTTGTAGAT	CCAGCCTCAC	GCGGTCA	AGTAAGCATA	A [897]
AtAF384167	GGTGCTGTGGTAGAT	CCATCTTATAC	GTGGTCA	AATAAGTAT	[897]
PpAJ249139	GGAGCCGTAGTAGAC	GAAGCACTTCA	ATGACCA	AATTAGCATA	A [897]
PpAJ249138	GGAGCCGTAGTAGAC	GAAGCACTTCA	ATGGCCA	AGTTAGTATA	A [897]
CrAF449446	GGAGCCGTGGTGGAC	TCTACCCTGCC	CCGACGACAC	GGTGTCCAT	[900]
CmAB032072	GGTGCCCTTATTGAT	CAGCAAATGGA	AAAGCGA	GATATCCATA	A [891]
CcAB023962	GGCGCCCTCGTTGAC	CAACAAATGGA	AGAGCGA	GATATCGAT	[891]
GtAJ007748	GGAGCGCTTGTTGAT	GATAATATGGA	AAAATGA	AATTTCAAT	[888]
GsAB022594	GGTGCTTTGGTCGAT	GATAGTATGGA	AAAATGA	ATTATCCAT	[888]
MsAF120117	GGGGCGATGGTGGAC	GACAAGATGAG	CCTCTGGAGA	GGTGTCCAT	[819]
GsAB022595	GGTGCAGTTGTAGAT	GAGACATTCA	AAGGAAA	AGTTTCGGT	r [912]
PsAJ011025	GGTGCTGTTATAGAT	GAATCAATGGA	AAGGCGA	AATACAGGTA	A [891]
Pm1658	GGTGCTGTTATAGAT	GAATCAATGGA	AAGGCGA	AATACAGGTA	A [891]
PmAJ237851	GGCGCAGTTATTGAT	GAAGCTCTTGA	AAGGGGA	AGTTCAAGT	A [891]
Sy549	GGTGCTGTGGTGGAT	GAAGCCCTAGA	AAGGCGA	AATCCACGT	[891]
Pm1268	GGAGCTGTTGTAGAC	GAGAAACTCGA	AAGGTGA	AGTTCACGT	[891]
SyAF076530	GGCGCCGTGATTGAC	GATCGATTGGA	AAGGAGA	GCTGCGGAT	[891]
AsZ31371	GGTGCCGTGATTGAT	GATAGGTTGCA	AAGGAGA	GGTGCGAAT	r [891]
Np61	GGGGCTGTAATTGAT	GACAGACTCCA	AAGGTGA	GGTCAGAAT	r [891]
Tet112382	GGTGCTGTCATTGAT	CCGCAAATGCA	AGGGGGA	AGTTCAAAT	[891]
Te1949	GGGGCTGTAATTGAT	GATAAACTTCA	AGGGAGA	ААТТААААТ	[891]
SsNC_000911	GGAGCGGTGATTGAC	GATCGCCTGCA	AGGGAGA	AATGAGAAT	r [891]
NtAJ133453	GGTGCTGTTGTGGAT	GAGCGCTACA	ATGGCGA	AATACACGT	G [891]
NtAJ271749	GGTGCTGTTGTGGAT	GAGCGCTACA	ATGGCGA	AATACACGT	G [891]
TeAF251346	GGGGCAGTGGTAGAT	GAGAGATACA	ACGGGGA	GATTCATGT	G [891]
AtU39877	GGAGCTGTTGTGGAT	GATCGCTACA	CCGGAGA	GATTCATGT	A [891]
PsY15383	GGAGCTGTAGTTGAT	GATCGTTACAC	CCGGAGA	GATTCACGT	G [891]
NtAF205858	GGTGCTGTTGTGGAT	GAGCGCTATA	ATGGAGA	GATCCAGGT	G [891]
NtAJ271748	GGTGCTGTTGTGGAT	GAGCGCTATA	ATGGAGA	GATCCAGGT	G [891]
OsAF383876	GGGGCTGTTGTTGAT	GACCGGTACA	CTGGTGA	GATTCATGT	G [897]
CrAB084236	GGCGCCGTTGTGGAC	GAGCAGTACGA	ACGGCGA	GCTGCACGT	G [912]
CpAF067823	GGTACAACCATTAAC	GAAGATCTCAA	ATAATGA	GGTTGTTGT	r [891]
BsM22630	GGTTCTGTTATTAAT	GAAAATCTAA/	AGATGA	GATTGTGGT	G [891]
EcX55034	GGTACTTCTCTTGAC	CCGGATATGA	ATGACGA	GCTGCGCGT	[894]

[950	960]
[•	•]
L1AB042101	ծ Բ Ծ Բ Ծ Բ Բ Բ Բ Բ Բ Բ Բ Բ Բ Բ Բ Բ Բ Բ	CCCATT	r [010]
OSCL005296 338	ACTOTGATTGCIAC	TCCATTC	- [910] - [919]
OsciB17724 5	ACCUTGATIGCAAC		· [910]
$N \neq A = 1271750$	ACCETAATCCCCAC		
NEA0271750	ACCOMATCGCCAC		
G1AF205859	ACCOMMANDGCCAC		
At A F089738	ACCOMENTAGECAC		
AtAF384167	ACCOMPAGENAC		
PnA.T249139	ACCUTGATAGCAAC		
PpA.T249139	ACCITORIAGCAAC		
CrAF449446	ACCATCATTCCCAC	AGGAII	
CmAB032072	ACCATCATIGCCAC		· [921]
CcAB023962	ACOGIGGIIGCCAC		[912]
Gt A.1007748	ACAGTIGIIGCCAC		
GeAB022594	ACTOTIOTOCCARC		
MgAF120117	ACAGTCCTGGCCAC		
GsAB022595	ACCGTAGTTGCCAC		r [040] r [933]
PsA.1011025			[955] [912]
Pm1658	ACTGTTATTGCAAC		- [912] - [912]
PmA.1237851	ACTGTAATTGCAAC	TCCTTTC	[912] r [912]
Sv549	ACCGTAATCGCCAC	GGGATTI	[912] r [912]
Pm1268	ACCGTGATCGCCAC		r [912]
SVAF076530	ACCGTGATCGCCAC	GGGCTT	r [912]
AsZ31371	ACCGTCATTGCTAC	TGGATT	[912] r [912]
Np61	ACTGTAATTGCCAC	TGGGTT	[912] F [912]
Tet112382	ACCGTTATCGCCAC	TGGCTT	r [912]
Te1949	ACTGTCATAGCTAC	TGGTTT	[912]
SsNC 000911	ACCGTCATTGCCAC	GGGCTT	[912] [912]
	ACCATAATTGCAAC	TGGTTT	r [912]
NtAJ271749	ACCATAATTGCAAC	TGGTTT	[912]
TeAF251346	ACCATTGTTGCTAC	TGGCTT	[912]
AtU39877	ACGATAATCGCCAC	CAGGCTTO	[912]
PsY15383	ACTATCATCGCAAC	TGGCTT	[912]
NtAF205858	ACTCTAATTGCAAC	TGGTTTC	[912]
NtAJ271748	ACTCTAATTGCAAC	TGGTTTC	[912]
OsAF383876	ACGATCATTGCCAC	AGGGTTT	r [918]
CrAB084236	ACCATCATCGCTAC	CGGCTT	[933]
CpAF067823	ACTGTAATTGCAAC	AGGGCTT	r [912]
BsM22630	ACAGTGATTGCAAC	CGGCTTT	r [912]
EcX55034	ACCGTTGTTGCGAC	CAGGTATO	[915]
;			

END;
APPENDIX C

Conserved Residues of the FtsZ Proteins

The Nexus file with the FtsZ protein alignment that was used to determine the conserved residues in each FtsZ family that is discussed in Chapter 5 and diagramed in Figure 5 of that chapter. Sequences are labeled with the organism initials followed by the accession or gene number.

#NEXUS									
BEGIN DATA;									
DIMENSIONS	NTAX=38 NCHA	AR=397;							
FORMAT DATA	FYPE=PROTEIN	SYMBOLS	= " 1	23	4 "	MISSIN	IG=-	GAP=#	
INTERLEAVE ;									
MATRIX									
ſ	10	2(า	٦	0	40)	1	
ſ	10	2.	5	5	0	-10	•	1	
t	•	•		•		•		1	
NtCAB89288	DSSRSNNFNEAR	IKVVGVGG	GGSNAVI	NRMI	ESSMF	GVEFWI	VNTE) [45	1
NtCAC44257	DSSRSNNFNEAR	IKVVGVGG	GSNAVI	NRMI	ESSMF	GVEFWI	VNTE) [45	, j
OsCLB17724 5	APPDHCDYDGAR	IKVVGVGG	GSNAVI	NRMI	ESSM	IGVEFWI	VNTE) [45	i
Glaaf23771	DSSSSNNYSEA	(IKVVGVGG	GSNAVI	NRMI	ESAM	GVEFWI	VNTE) [45	i
L1BAA96782	SSVTSSDYNGA	IKVIGVGG	GSNAVI	NRMI	ASSMI	GVEFWI	VNTE) [45	i
AtAAC35987	EPSAPSNYNEA	IKVIGVGG	GSNAVI	NRMI	ESEMS	GVEFWI	VNTE) [45	i
AtAAK63846	ELSTPNTYNEAR	RIKVIGVGG	GSNAV	NRMI	ESEMI	GVEFWI	VNTE) [45	i
OsCL005296 338	DVSASHRYSEP	XIKVIGVGG	GSNAV	NRMT	ESDMK	GVEFWI	VNTE) [45	i
PpCAB76386	NGDEYESSNEAR	IKVIGVGG	GSNAVI	NRML	ESEMO	GVEFWI	VNTE) [45	i
PpCAB54558	SGDDTGSYNEAR	(IKVIGVGG	GSNAVI	NRML	ESEMO	GVEFWI	VNTE) [45	í
CrAAM22891	LVRLYASSDOA	IKVLGVGG	GSNAVI	NNMV	NSDVC	GVEFWI	ANTE) [45	i
CmBAA85116	PLSSDSSAPPCI	LIKVIGVGG	GGNAVI	NRMA	DTGIS	GVEFWA	INTE) [45	í
CcBAA82871	PMSSDSSAPPCI	IKVIGVGG	GGNAVI	NRMA	DTGIS	GVEFWA	INTE) [45	i
GtCAA07676	FFNOEISSSPCV	IKVIGVGG	GGNAVI	NRMV	G-GVE	GVEFWS	SINTE) [45	í
GsBAA82090	FVSSGGAVNPC	IKVVGVGG	GSNAV	NRMC	E-MVE	EGVEFWC	INTE) [45	i
MsAAF35433						GVELWV	VNTE) [45	i
GsBAA82091	QSSTNLPOQOCE	(IKVVGVGG)	AGGNAV	ORML	ESGLO	DVEFLC	ANTE) [45	í
Te1949	RSDDIVPSNTA	(IKVIGVGGG	GGGNAVI	NRMI	ASEVS	- GIEFWI	VNTE	, [45	1
SsNP_440816	KRDQIVPSNIA	IKVIGVGGG	GCNAVI	NRMI	ASGVI	GIDFWA	INTE	, [45	1
AsCAA83241	RIGEIVPGRVAN	1IKVIGVGGG	GGNAVI	NRMI	ESDVS	GVEFWS	SINTE	, [45	j.
Np61	RIGEIVPGRVAN	1IKVIGVGGG	GGGNAVI	NRMI	ESDVS	GVEFWS	SINTE	(45	1
Tet112382	SYDKLVETSAA	<pre>XIKVIGVGGG</pre>	GGGNAVI	NRMI	ASNVA	GVEFWC	VNTE	(45]
SYAAC26227	PEELIIPSSVA	<pre>XIKVIGVGGG</pre>	GGSNGVI	NRMI	SSDVS	GVEFWA	LNTE) [45]
PsCAB56201	QSKDILPSQNA	CIEVIGVGGG	GGSNAVI	NRMI	DSDLE	EGVSFRV	LNTE	(45]
Pm1658	QSKDILPSQNA	(IEVIGVGG	GSNAVI	NRMI	DSDLE	GVSFRV	LNTE	(45]
PmCAB95028	RSESIQPSQNA	<pre>levigvggg</pre>	GGSNAVI	NRMI	LSDLQ	GVSYRV	LNTE) [45]
Sy549	DATGIQPSQNA	(IEVIGVGGG	GSNAVI	NRMI	LSDLE	EGVAYRV	LNTE	(45]
Pm1268	ETAGILPSQSA	<pre>XIEVIGVGGG</pre>	GSNAVI	NRMI	LSDLI	GVNYRV	MNTE) [45]
NtCAB41987	ISSSFTPFDSA	IKVIGVGG	GGNNAVI	NRMI	GSGL	QVDFYA	INTE) [45	j
NtCAB89287	ISSSFTPFDSA	(IKVIGVGG	GGNNAVI	NRMI	GSGL	GVDFYA	INTE) [45]
TeAAF81220	VCCSFASLDSA	KIKVVGVGGG	GGNNAVI	NRMI	GSGLQ	GVDFYA	INTE	(45]
AtAAA82068	LRCSFSPMESA	<pre>XIKVIGVGGG</pre>	GNNAVI	NRMI	SSGLQ	SVDFYA	INTE) [45]
PsCAA75603	VRCSLAYVDNA	(IKVVGIGG	GGNNAVI	NRMI	GSGL	QVDFYA	INTE	(45]
NtAAF23770	RFSICSSLSSA	(IKVVGVGG	GGNNAVI	NRMI	GSGL	QVDFYA	VNTE) [45]
NtCAB89286	RRSICSSLSSA	(IKVVGVGG	GGNNAVI	NRMI	GSGLÇ	QVDFYA	VNTE	(45]
OsAAK64282	VRCSFAPVETAR	<pre>xIKVVGVGGG</pre>	GGNNAVI	NRMI	GSGL	GIEFYA	INTE	(45]
CrBAB91150	STGYIPFGGDAG	IKVIGVGG	GGGNALI	NRMI	NSGL	QVEFWA	INTE) [45]
EcP06138	MFEPMELTNDAV	/IKVIGVGGG	GGGNAV	EHMV	RERIE	EGVEFFA	VNTE) [45]

[50	60	70	80	90]	
[•	•		•	.]	
NtCAB89288	IQAMRMSPVA	AEQRLPIGQE	ELTRGLGAGGN	PDIGMNAANE	SKQAI	[90]
NtCAC44257	IQAMRMSPVA	AEQRLPIGQE	ELTRGLGAGGN	PDIGMNAANE	SKQAI	[90]
OsCLB17724_5	VQAIRMSPVL	PQNRLQIGQE	ELTRGLGAGGN	PDIGMNAAKE	SVESI	[90]
Glaaf23771	VQAIKMSPVY	LENRLQIGQE	ELTRGLGAGGN	PDIGMNAAKE	SKEAI	[90]
L1BAA96782	VQAMRMSPVY	PENRLQIGQE	ELTRGLGAGGN	PDIGMNAAKE	SKVSI	[90]
AtAAC35987	IQAMRMSPVL	PDNRLQIGKE	ELTRGLGAGGN	PEIGMNAARE	SKEVI	[90]
AtAAK63846	IQAMRISPVF	PDNRLQIGKE	ELTRGLGAGGN	PEIGMNAATE	SKEAI	[90]
OsCL005296_338	FQAMRMSPID	PDNKLQIGQE	ELTRGLGAGGN	PEIGMNAAKE	SQELV	[90]
PpCAB76386	AQAMALSPVP	AQNRLQIGQH	KLTRGLGAGGN	IPEIGCSAAEE	SKAMV	[90]
PpCAB54558	AQAMALSPVP	AQNRLQIGQH	KLTRGLGAGGN	PEIGCSAAEE	SKAMV	[90]
CrAAM22891	AQALATSPVN	GKCKVQIGGH	KLTRGLGAGGN	IPEIGAKAAEE	SRDSI	[90]
CmBAA85116	VQALKRSA	AHHTLSIGNE	KLTRGLGAGGN	IPEVGRKAAEE	SCDQI	[90]
CcBAA82871	VQALKRSA	AHHTLGIGN	KLTRGLGAGGN	IPEIGRKAAEE	SCDQI	[90]
GtCAA07676	AQALSRSL	APNTCNIGA	KLTRGLGAGGN	IPEIGRKAAEE	SRDLI	[90]
GsBAA82090	AQALSRVK	TSNSVTIGSE	EITRGLGAGGK	PEVGRQAAEE	SQAAI	[90]
MsAAF35433	AQALSRSS	AKRRLNIGK	/LSRGLGAGGN	IPAIGAKAAEE	SREEI	[90]
GsBAA82091	AQALGRFQKT	HHQVIQIGKÇ	SCRGLGAGGN	IPEAGRVAAEE	SKEDI	[90]
Te1949	AQALTLSR	APKRLQLGQH	KLTRGLGAGGN	IPAIGQKAAEE	SRDEI	[90]
SsNP_440816	SQALTNTN	APDCIQIGQH	KLTRGLGAGGN	IPAIGQKAAEE	SRDEI	[90]
AsCAA83241	AQALTLAG	APSRLQIGQH	KLTRGLGAGGN	IPAIGQKAAEE	SRDEI	[90]
Np61	AQALTLAG	APSRLQIGQI	KLTRGLGAGGN	IPAIGQKAAEE	SRDEI	[90]
Tet112382	AQAIAQSQ	AHRCLQIGQI	KLTRGLGAGGN	IPAIGQKAAEE	SREDL	[90]
SyAAC26227	AQALLHSA	APKRMQLGQI	KLTRGLGAGGN	IPAIGMKAAEE	SREEL	[90]
PsCAB56201	AQALLQSS	ADRRVQLGQN	NLTRGLGAGGN	IPSIGQKAAEE	SKDEL	[90]
Pm1658	AQALLQSS	ADRRVQLGQN	NLTRGLGAGGN	IPSIGQKAAEE	SKDEL	[90]
PmCAB95028	AQALLQSS	AENRVQLGQ	TLTRGLGAGGN	IPSIGEKAAEE	SRAEL	[90]
Sy549	AQALIQSQ	AQHRLQLGQ	TLTRGLGAGGN	IPTIGQKAAEE	SRTDL	[90]
Pm1268	AQALLQSA	ASNRVQLGQ	FLTRGLGAGGN	IPSIGQKAAEE	SRAEL	[90]
NtCAB41987	AQALLQSA	AENPLQIGEI	LLTRGLGTGGN	IPLLGEQAAEE	SKEAI	[90]
NtCAB89287	AQALLQSA	AENPLQIGEI	LTRGLGTGGN	IPLLGEQAAEE	SKEAI	[90]
TeAAF81220	SQALLQSV	AHNPIQIGEI	LLTRGLGTGGN	IPLLGEQAAEE	SKEAI	[90]
AtAAA82068	SQALLQFS	AENPLQIGEI	LLTRGLGTGGN	IPLLGEQAAEE	SKDAI	[90]
PsCAA75603	AQALLHSA	AENPIKIGEI	LTRGLGTGGN	IPLLGEQAAEE	SKEAI	[90]
NtAAF23770	AQALLQST	VENPIQIGEI	LLTRGLGTGGN	IPLLGEQAAEE	SKEHI	[90]
NtCAB89286	AQALLQST	VENPIQIGEI	LTRGLGTGGN	IPLLGEQAAEE	SKEHI	[90]
OsAAK64282	SQALLNSQ	AQYPLQIGE	QLTRGLGTGGN	IPNLGEQAAEE	SKEAI	[90]
CrBAB91150	AQALAAHQ	ALNKVQIGSI	ELTRGLGCGGN	IPELGRRAAME	SEEAL	[90]
EcP06138	AOALRKTA	VGOTIOIGS	GITKGLGAGAN	IPEVGRNAADE	DRDAL	[90]

[100	110	120	130]
[•	•]
NtCAB89288	EEAVYGADMVFVTA	GMGGGTGTGAAI	PIIAGTAKSM	GILTVGIVT	r [135]
NtCAC44257	EEAVYGADMVFVTA	GMGGGTGTGAAI	PIIAGTAKSM	GILTVGIVT	r [135]
OsCLB17724_5	QEALYGADMVFVTA	GMGGGTGTGGA	PVIAGIAKSM	GILTVGIVT	r [135]
GlAAF23771	EEAVYGADMVFVTA	GMGGGTGTGGA	VIAGIAKSM	GILTVGIVT	r [135]
L1BAA96782	EESVSGADMVFVTA	GMGGGTGTGGA	PVIAGVAKSM	GILTVGIVT	r [135]
AtAAC35987	EEALYGSDMVFVTA	GMGGGTGTGAAI	VIAGIAKAM	GILTVGIATT	r [135]
AtAAK63846	QEALYGSDMVFVTA	GMGGGTGTGGA	PIIAGVAKAM	GILTVGIVT	r [135]
OsCL005296_338	EQAVSGADMIFVTA	GMGGGTGTGGA	VIAGIAKSM	GILTVGIVT	r [135]
PpCAB76386	EEALRGADMVFVTA	GMGGGTGSGAA	PIIAGVAKQL	GILTVGIVT	r [135]
PpCAB54558	EEALRGADMVFVTA	GMGGGTGSGAA	PIIAGVAKQL	GILTVGIVTT	r [135]
CrAAM22891	AAALQDTDMVFVTA	GMGGGTGSGAA	VVAEVAREL	GILTVGIVT	r [135]
CmBAA85116	AEAVRGADLVFVTA	GMGGGTGSGAA	VVAEAAREQ	GCLTVGVVTH	< [135]
CcBAA82871	AEAVRGADLVFVTA	GMGGGTGSGAA	VVAEAAREQ	GCLTVGVVTH	< [135]
GtCAA07676	AEAVSAGDLVFVTA	GMGGGTGSGAA	PIVAEVAKEM	GCLTVGVVTH	< [135]
GsBAA82090	SSAVQGGDLVFVTA	GMGGGTGSGAA	PIVAKIAKEQ	GCLTVGVVTH	< [135]
MsAAF35433	MAVVKNADLVFVTA	GMGGGTGSGAA	VVAECAKEA	GALTVGVVTH	< [135]
GsBAA82091	AKALQGGDLVFVTA	GMGGGTGTGAAI	PIVADVAREL	GCLTVGVVTH	K [135]
Te1949	ANALDHPDLVFITA	GMGGGTGTGAAI	PVIAEIAKEA	GSLTVGVVTF	R [135]
SsNP_440816	ARSLEGTDLVFITA	GMGGGTGTGAAI	PIVAEVAKEM	GCLTVGIVTE	R [135]
AsCAA83241	ATALEGADLVFITA	GMGGGTGTGAAI	PIVAEVAKEM	GALTVGVVTF	R [135]
Np61	ATALEGADLVFITA	GMGGGTGTGAAI	PIVAEVAKEM	GALTVGVVTF	R [135]
Tet112382	AAALKDADLIFITCO	GMGGGTGTGAAI	PIVAEVAKEQ	GALTVAVVTE	R [135]
SyAAC26227	IAALEGADLVFITA	GMGGGTGTGAAI	PIVAEVAKEV	GALTVGIVTH	K [135]
PsCAB56201	QQTLEGSDLVFIAA	GMGGGTGTGAAI	PVVAEVAKQS	GALTVGIVTH	K [135]
Pm1658	QQTLEGSDLVFIAA	GMGGGTGTGAAI	PVVAEVAKQS	GALTVGIVTH	K [135]
PmCAB95028	QQALEGADLVFIAA	GMGGGTGTGAAI	PVVAEVAKQS	GALTVAIVTH	K [135]
Sy549	HDALQGSDLVFIAA	GMGGGTGTGAAI	PVVAEVAREV(GALTVGIVT	K [135]
Pm1268	QQALQGVDLVFIAV	GMGGGT <mark>GTGAA</mark> I	VVAEVAKES	GALTVGIVTH	K [135]
NtCAB41987	ANSLKGSDMVFITA	GMGGGTGSGAAI	PVVAQIAKEA	GYLTVGVVTY	<i>(</i> [135]
NtCAB89287	ANSLKGSDMVFITA	GMGGGTGSGAAI	PVVAQIAKEA	GYLTVGVVTY	<i>t</i> [135]
TeAAF81220	GNALKGSDLVFITA	GMGGGTGSGAAI	PVVAQIAKEA	GYLTVGVVTY	<i>t</i> [135]
AtAAA82068	ANALKGSDLVFITA	GMGGGTGSGAAI	PVVAQISKDA	GYLTVGVVTY	<i>(</i> [135]
PsCAA75603	ANALKGSDLVFITA	GMGGGTGSGAAI	PVVAQISKEA	GYLTVGVVTY	<i>(</i> [135]
NtAAF23770	ANALKGSDMVFITA	GMGGGTGSGAAI	PVVAQIAKEA	GYLTVGVVTY	<i>(</i> [135]
NtCAB89286	ANALKGSDMVFITA	GMGGGTGSGAAI	PVVAQIAKEA	GYLTVGVVTY	<i>(</i> [135]
OsAAK64282	ANALKDSDLVFITA	GMGGGTGSGAAI	PVVAQISKEA	GYLTVGVVTY	<i>(</i> [135]
CrBAB91150	RRMVQGADLVFITA	GMGGGTGTGAAI	PVVARLSKEL	GILTVGVVTY	<i>[</i> [135]
EcP06138	RAALEGADMVFIAA	GMGGGTGTGAAI	PVVAEVAKDL	GILTVAVVTH	K [135]

[140	150	160	170	180]
[•	•	.]
NtCAB89288	PFSFEGRRRAV	/QAQEGIAALH	RENVDTLIVI	NDKLLTAVSP	STPV [180]
NtCAC44257	PFSFEGRRRAV	/QAQEGIAALH	RENVDTLIVIE	NDKLLTAVSP	STPV [180]
OsCLB17724_5	PFSFEGRRRAV	/QAQEGIAAL	RNSVDTLIVI	NDKLLSAVSP	NTPV [180]
GlAAF23771	PFSFEGRRRAV	/QAQEGIAAL	RDNVDTLIVI	NDKLLTAVSP	STPV [180]
L1BAA96782	PFMFEGRRRTV	/QAQEGIAAL	RNNVDTLIVIE	NDKLLTAVSP	NTPV [180]
AtAAC35987	PFSFEGRRRTV	/QAQEGLASLI	RDNVDTLIVI	NDKLLTAVSQ	STPV [180]
AtAAK63846	PFSFEGRRRAL	JQAQEGIAALI	RDNVDTLIVI	NDKLLAAVSQ	STPV [180]
OsCL005296_338	PFAFEGRRRAL	LQAQEGIASL	RSNVDTLIVI	NDKLLTAVSP	NTPV [180]
PpCAB76386	PFAFEGRRRSV	/QAHEGIAALI	KNNVDTLITIE	NNKLLTAVAQ	STPV [180]
PpCAB54558	PFAFEGRRRAV	QAHEGIAAL	KNNVDTLITIE	NNKLLTAVAQ	STPV [180]
CrAAM22891	PFTFEGRQRAQ	QARSALANLI	RAAVDTLIVII	NDRLLSAMDS	NVPI [180]
CmBAA85116	PFAFEGRKRMN	IQALEAIEALI	RESVDTLIVVS	NDKLLQIVPE	NTPL [180]
CcBAA82871	PFAFEGRRRMI	QALEAIEAL	RESVDTLIVVS	NDKLLQIVPE	NTPL [180]
GtCAA07676	PFAFEGKRRMQ	QANDAILNL	RNKVDTLIVVS	NDKLLQIVPD	NTPL [180]
GsBAA82090	PFSFEGRRRMQ	QAEEAIEAL	RKEVDTLIVVS	NDKLLEIVPE	NTAL [180]
MsAAF35433	PFGFEGRKRMQ	QARNAILEM	KDKVDTLIVVS	NDKLLKIVPD	NTPL [180]
GsBAA82091	PFAFEGRRRLQ	QAVEGLANL	REKVDTLIVIS	NDRLLETVPK	DTPL [180]
Te1949	PFTFEGRRRIT	QADEGITAL	QTRVDTLIVI	NNRLLSVIND	QTPV [180]
SsNP_440816	PFTFEGRRRAK	QAEEGINAL	QSRVDTLIVI	NNQLLSVIPA	ETPL [180]
AsCAA83241	PFVFEGRRRTS	SQAEQGIEGLI	KSRVDTLIII	NNKLLEVIPE	QTPV [180]
Np61	PFVFEGRRRTS	SQAEQGIEGLI	KSRVDTLIII	NNKLLEVIPE	QTPV [180]
Tet112382	PFTFEGRRRAN	QADEGIEAL	QSRVDTLIVIE	NDKILSVISE	QTSV [180]
SyAAC26227	PFTFEGRRRMK	QAEEGTAAL	QSSVDTLITIE	NDRLLHAISE	QTPI [180]
PsCAB56201	PFSFEGKRRMF	QAEEGIARL	AENVDTLIVIE	NDRLKDVIAG	-APL [180]
Pm1658	PFSFEGKRRMF	QAEEGIARL	AENVDTLIVIE	NDRLKDVIAG	-APL [180]
PmCAB95028	PFSFEGRRRMF	QADEGIAKL	resvdtlivie	NDRLKDAIAG	-APL [180]
Sy549	PFGFEGRRRMF	QADEGIARL	AEHVDTLIVIE	NDRLREAIAG	-APL [180]
Pm1268	PFSFEGRRRMF	RQAAEGIGRLA	ADHVDTLIVI	NDRIKDVISE	-APL [180]
NtCAB41987	PFSFEGRKRSV	QALEAIEKL	QKNVDTLIVI	NDRLLDIADE	QTPL [180]
NtCAB89287	PFSFEGRKRSV	QALEAIEKL(QKNVDTLIVI	NDRLLDIADE	QTPL [180]
TeAAF81220	PFSFEGRKRSV	QALEAIEKL	QKNVDTLIVI	NDRLLDIADE	NTPL [180]
AtAAA82068	PFSFEGRKRSL	JQALEAIEKL	QKNVDTLIVI	NDRLLDIADE	QTPL [180]
PsCAA75603	PFSFEGRKRSL	JQALEAIEKL	QKNVDTLIVI	NDRLLDIADE	QMPL [180]
NtAAF23770	PFSFEGRKRSL	QALEAIEKL	QKNVDTLIVI	NDRLLDIADE	QTPL [180]
NtCAB89286	PFSFEGRKRSL	JQALEAIEKL	QKNVDTLIVI	NDRLLDIADE	QTPL [180]
OsAAK64282	PFSFEGRKRSL	JQALEALEKLI	ERSVDTLIVI	NDRLLDVVDE	NTPL [180]
CrBAB91150	PFNFEGRRRAG	GQALEGIEAL	REAVDSVIVIE	NDRLLDVAGA	STAL [180]
EcP06138	PFNFEGKKRMA	FAEQGITELS	SKHVDSLITIE	NDKLLKVLGR	GISL [180]

[190	200	210	220]
[•	•	•	•]
N+CAB89288		TLROGVRGT			MANACS	5 [225]
NECAC44257	TEAFNLADD	LENGVEGIS	SDITTIGUN	WDFADVRAT	MANACS	5 [225] S [225]
OsCLB17724 5	TEAFNLADD	ILROGIRGIS	SDITTYPGLV	WDFADVRAT	MONAGS	[225]
Glaaf23771	TEAFNLADD	LERQUIRGIS	SDITTIPGLV	WDFADVRAT	MANACS	[225]
L]BAA96782	TEAFNLADD	ILROGVRGIS	SDITTVPGLV	WDFADVRATI	MANACS	[225]
At AAC 35987	TEAFNLADD	ILROGVRGI S	SDITTIPGLM	WDFADVRAT	MANACS	[225]
At AAK63846	TEAFNLADD	LLROGVRGIS	SDITTIPGLVI	WDFADVRATI	MANACS	[225]
OSCI.005296 338	TEAFNLADD	ILROGVRGIS	SDITTVPGLVI	WDFADVRSVI	MEDAGES	[225]
PpCAB76386	TEAFNLADD	LENGVEGIS	SDITTVPGLV	WDFADVRATI	NANACS	[225]
PpCAB54558	TEAFNLADD	LENGVEGIS	SDITTVPGLVI	WDFADVRATI	MANAGS	[225] [225]
CrAAM22891	KDAFKTADD'	VLROGVKGIS	SETTTVPGLVI	VUDFADVRATI	MAGAGS	[225]
CmBAA85116	ODAFRVADD	LENGVIGIS	SDITTRPGLT	WDFADVRSV	VAHACSI	$1 = \frac{225}{225}$
CcBAA82871	ODAFRVADD	LLROGVVGIS	SDITTRPGLT	WDFADVRSVI	MAHACSI	A [225]
GLCAA07676	ODAFSVADD	LENGVVGLS	SETIVRPGLT	VVDFADVRSVI	MADAGSI	[225]
GSBAA82090	EKAESVADD		SELIVRPOLI	WDFADVRST	MADAGSI	(225)
MsAAF35433	TEAFLVADD	ILROGVVGI	TETTVKPGLVI	VDFADVRTI	MGNAGT	[225]
GsBAA82091	TEAFIFADE	VLROGVGGIS	SDITTKPGLVI	VVDFADVRTVI	MAEKGE	[225]
Te1949	OEAFIIADD	ILROGIOGIS	SDIITVPGLVI	NVDFADVRAVI	MADAGS	[225]
SsNP 440816	OEAFRVADD	ILROGVOGIS	SDITIPGLVI	VDFADVRAVI	MADAGS	[225]
AsCAA83241	OEAFRYADD	VLROGVOGIS	SDIITIPGLVI	NVDFADVRAVI	MADAGS	A [225]
Np61	OEAFRYADD'	VLROGVOGIS	SDIITIPGLVI	NVDFADVRAVI	MADAGS	(225)
Tet112382	ODAFRVADD'	VLROGVOGIS	SDIINVPGLI	NVDFADIRSVI	MADAGS	A [225]
SyAAC26227	QEAFRVADD	ILROGVOGIS	SDIITIPGLVI	NVDFADVRAVI	MADAGS	A [225]
PsCAB56201	QEAFRNADD'	VLRMGVKGIS	SDIITCPGLVI	NVDFADVRSVI	MTEAGT	A [225]
Pm1658	QEAFRNADD'	VLRMGVKGIS	SDIITCPGLVI	NVDFADVRSVI	MTEAGT	A [225]
PmCAB95028	QEAFKNADD'	VLRMGVKGI	TDIITLPGLVI	NVDFADVRSVI	MTEAGTS	5 [225]
Sy549	QEAFRSADD	VLRMGVKGIS	SDIITCPGLVI	NVDFADVRSVI	MTEAGT	A [225]
Pm1268	QEAFRSADD	ILRMGVKGIS	SDIITCPGLVI	NVDFADVRSVI	MTEAGT	A [225]
NtCAB41987	QDAFLLADD	VLRQGVQGIS	SDIITIPGLVI	NVDFADVKAVI	MKDSGTA	A [225]
NtCAB89287	QDAFLLADD	VLRQGVQGIS	SDIITIPGLVI	NVDFADVKAVI	MKDSGTA	A [225]
TeAAF81220	QDAFLLADD	VLRQGVQGIS	SDIITIPGLVI	NVDFADVKAVI	MKDSGT	A [225]
AtAAA82068	QDAFLLADD'	VLRQGVQGIS	SDIITIPGLVI	NVDFADVKAVI	MKDSGT	A [225]
PsCAA75603	QDAFRLADD	VLRQGVQGIS	SDIITIPGLVI	NVDFADVKAVI	MKDSGT	A [225]
NtAAF23770	QNAFLLADD	VLCQGVQGIS	SDIITIPGLVI	NVDFADVKAII	MKDSGTA	A [225]
NtCAB89286	QNAFLLADD	VLCQGVQGIS	SDIITIPGLVI	NVDFADVKAII	MKDSGTA	A [225]
OsAAK64282	QDAFLLADD	VLRQGVQGIS	SDIITIPGLVI	NVDFADVKAVI	MKNSGT	A [225]
CrBAB91150	QDAFALADD'	VLRQGVQGIS	SDIITVPGLI	NVDFADVKAI	MSNSGT	A [225]
EcP06138	LDAFGAAND'	VLKGAVQGIA	AELITRPGLMI	NVDFADVRTVI	MSEMGYA	A [225]

î. Hi

[230	240	250	260 2	270]
[•	•	•	.]
NtCAB89288	LMGIGTATGKI	TRARDAALNA	QSPLLDIG-	IERATGIVWNITGG	5 [270]
NtCAC44257	LMGIGTATGKT	TRARDAALNA	QSPLLDIG-	IERATGIVWNITGG	5 [270]
OsCLB17724_5	LMGIGTATGKS	SRARDAALNAI	QSPLLDIG-	IERATGIVWNITGG	A [270]
G1AAF23771	LMGIGTATGKT	TRARDAALNA	QSPLLDIG-	IERATGIVWNITGG	5 [270]
L1BAA96782	LMGIGTATGKI	[RARDAALNA]	/QSPLLDIG-	IERATGIVWNITGG	N [270]
AtAAC35987	LMGIGTATGKS	SRARDAALNA	IQSPLLDIG-	IERATGIVWNITGG	5 [270]
AtAAK63846	LMGIGTATGK	TRARDAALNA	IQSPLLDIG-	IERATGIVWNITGG	S [270]
OsCL005296_338	LMGIGTATGKI	TRARDAALNA	IQSPLLDIG-	IERATGIVWNITGG	N [270]
PpCAB76386	LMGIGTATGKS	SKAREAALSA	IQSPLLDVG-	IERATGIVWNITGG	S [270]
PpCAB54558	LMGIGTATGKS	SRAREAALSA	IQSPLLDVG-	IERATGIVWNITGG	S [270]
CrAAM22891	LMGQGYGSGPH	RRASDAALRA	ISSPLLEVG-	IERATGVVWNITGP	P [270]
CmBAA85116	LMGIGTGSGKS	SRAHDAAVAA	ISSPLLDFP-	IERAKGIVFNVTGG	E [270]
CcBAA82871	LMGIGTGSGKS	SRAHDAAVAA	ISSPLLDFP-	IERAKGIVFNVTGG	E [270]
GtCAA07676	LMGIGTGSGK	[RAQDAAVAA]	ISSPLLDFP-	IEKARGIVFNITGG	2 [270]
GsBAA82090	LMGIGSGSGKS	SRAKDAAVAA	ISSPLLDFP-	IERAKGIVFNITGG	H [270]
MsAAF35433	LMGIGHGKGKN	NRAKDAALSA	ISSPLLDFP-	ITRAKGIVFNIVGG	S [270]
GsBAA82091	LLGIGTASGDS	SRARNAATAA	ISSPLLDFP-	ITSAKGAVFNITGG	г [270]
Te1949	LMGIGMGSGKS	SRAREAANAA	ISSPLLESS-	IEGAKGVVFNITGG'	г [270]
SsNP_440816	LMGIGVGSGKS	SRAKEAATAA	ISSPLLESS-	- IQGAKGVVFNVTGG'	r [270]
AsCAA83241	LMGIGVSSGKS	SRAREAAIAA	ISSPLLECS-	IEGARGVVFNITGG	S [270]
Np61	LMGIGVSSGKS	SRAREAAIAA	ISSPLLECS-	IEGARGVVFNITGG	r [270]
Tet112382	MMGIGIASGKS	SRATEAALSA	ISSPLLERS-	IEGAKGVVFNITGG'	r [270]
SyAAC26227	LMGIGSGSGKS	SRAREAAHAA	ISSPLLESS-	IEGARGVVFNITGG	R [270]
PsCAB56201	LLGIGIGSGR	SRALEAAQAAI	MNSPLLEAAF	RIDGAKGCVINITGG	К [270]
Pm1658	LLGIGIGSGRS	SRALEAAQAAI	MNSPLLEAAF	RIDGAKGCVINITGG	К [270]
PmCAB95028	LLGIGIGSGRS	SRAAEAAQAA	INSPLLEAGE	RIDGAKGCVVNITGG	K [270]
Sy549	LLGIGIGSGRS	SRAVEAAQAA	ISSPLLETER	RIDGAKGCVINISGG	R [270]
Pm1268	LLGIGEGSGR	SRAIEAAQAA	ISSPLLEAAF	RIDGAKGCVINISGG	R [270]
NtCAB41987	MLGVGVSSSKI	NRAEEAAEQA'	FLAPLIGSS-	-IQSATGVVYNITGG	K [270]
NtCAB89287	MLGVGVSSSKI	NRAEEAAEQA	FLAPLIGSS-	-IQSATGVVYNITGG	К [270]
TeAAF81220	MLGVGVSSSKI	NRAEEAAEQA'	TLAPLIGSS-	-IQSATGVVYNITGG	К [270]
AtAAA82068	MLGVGVSSSKI	NRAEEAAEQA	TLAPLIGSS-	-IQSATGVVYNITGG	К [270]
PsCAA75603	MLGVGVSSGKI	NRAEEAAEQA	TLAPLIGSS-	-IQSATGVVYNITGG	K [270]
NtAAF23770	MLGVGVSSSRI	NRAEEAAEQA	TLAPLIGSS-	-IQSATGDVYNITGG	к [270]
NtCAB89286	MLGVGVSSSRI	NRAEEAAEQA'	TLAPLIGLS-	-IQSATGVVYNITGG	К [270]
OsAAK64282	MLGVGVSSSKI	NRAQEAAEQA'	TLAPLIGSS-	-IEAATGVVYNITGG	К [270]
CrBAB91150	MLGVGAASTAI	DRAEQAAVAA	rsapliqrs-	-IEKATGIVYNITGG	R [270]
EcP06138	MMGSGVASGE	DRAEEAAEMA	ISSPLLEDII	DLSGARGVLVNITAG	F [270]

I

Ē

[280	290	300	310]
[•	•	•	•]
NtCAB89288	DLTLFEVNAAAE	VIYDLVDPSANL	IFGAVIDPSISC	OVSITLIA	r [315]
NtCAC44257	DLTLFEVNAAAE	VIYDLVDPSANL	IFGAVIDPSISC	OVSITLIAT	[315]
OsCLB17724_5	DMTLFEVNSAAE	IIYDLVDPNANL	IFGAVIDPSLNO	OVSITLIAT	r [315]
GlAAF23771	DLTLFEVNAAAE	VIYDLVDPSANL	IFGAVVDPSLCC	QVSITLIA	r [315]
L1BAA96782	DLTLYEVNAAAE	VIYDLVDPAANL:	IFGAVIDPSISC	QVSITLIAT	r [315]
AtAAC35987	DLTLFEVNAAAE	VIYDLVDPTANL	IFGAVVDPALSO	QVSITLIA	r [315]
AtAAK63846	DLTLFEVNAAAE	VIYDLVDPTANL	IFGAVVDPSYSC	QISITLIA	r [315]
OsCL005296_338	DLTLTEVNAAAE	VIYDLVDPGANL	IFGSVIDPSYTC	GVSITLIAT	r [315]
PpCAB76386	DMTLFEVNAAAE	VIYDLVDPNANL	IFGAVVDEALHI	QISITLIAT	r [315]
PpCAB54558	DMTLFEVNAAAE	VIYDLVDPNANL	IFGAVVDEALHO	QVSITLIAT	r [315]
CrAAM22891	NMTLHEVNEAAE	IIYDMVDPNANL	IFGAVVDSTLPI	TVSITIIAT	r [315]
CmBAA85116	DMTLHEINQAAE	VIYEAVDPNANI	IFGALIDQQMES	SEISITVVA	r [315]
CcBAA82871	DMTLHEINQAAE	VIYEAVDPNANI	IFGALVDQQMES	SEISITVVA	r [315]
GtCAA07676	DMTLHEINSAAE	VIYEAVDSNANI	IFGALVDDNMEN	JEISITVVAT	r [315]
GsBAA82090	DMTLHEINAAAE	VIYEAVDLNANI	IFGALVDDSMEN	JELSITVIAT	r [315]
MsAAF35433	DMSLQEINAAAE	VIYENVDQDANI	IFGAMVDDKMTS	SEVSITVLA	r [315]
GsBAA82091	DMTLSEVNQAAQ	VIYDSVDSDANI	IFGAVVDETFKO	GKVSVTVVA	r [315]
Te1949	DLTLHEVNAAAE	IIYEVVDPNANI	IFGAVIDDKLQC	GEIKITVIA	r [315]
SsNP_440816	DLTLHEVNVAAE	IIYEVVDADANI	IFGAVIDDRLQC	GEMRITVIA	r [315]
AsCAA83241	DLTLHEVNAAAE	TIYEVVDPNANI	IFGAVIDDRLQC	GEVRITVIA	r [315]
Np61	DLTLHEVNAAAE	AIYEVVDPNANI	IFGAVIDDRLQC	GEVRITVIA	r [315]
Tet112382	DLSLHEVNAAAD	VIYNVADANANI	IFGAVIDPQMQC	GEVQITVIA:	r [315]
SYAAC26227	DMTLHEVNAAAD	AIYEVVDPEANI	IFGAVIDDRLEG	GELRITVIA	r [315]
PsCAB56201	DMTLEDMTSASE	IIYDVVDPEANI	IVGAVIDESMEC	GEIQVTVIA	r [315]
Pm1658	DMTLEDMTSASE	IIYDVVDPEANI	IVGAVIDESMEC	GEIQVTVIA	r [315]
PmCAB95028	DMTLEDMTSASE	VIYDVVDPEANI	IVGAVIDEALEC	GEVQVTVIA	r [315]
Sy549	DMTLEDMTTASE	VIYDVVDPEANI	IVGAVVDEALEC	GEIHVTVIA	r [315]
Pm1268	DMTLEDMTSASE	VIYDVVDPEANI	IVGAVVDEKLEG	GEVHVTVIA	r [315]
NtCAB41987	DITLQEVNRVSÇ	VVTSLADPSANI	IFGAVVDERYNO	GEIHVTIIA	r [315]
NtCAB89287	DITLQEVNRVSÇ	VVTSLADPSANI	IFGAVVDERYNO	GEIHVTIIA	r [315]
TeAAF81220	DITLQEVNRVSÇ	VVTSLADPSANI	IFGAVVDERYNO	GEIHVTIVA	r [315]
AtAAA82068	DITLQEVNRVSQ	VVTSLADPSANI	IFGAVVDDRYT	GEIHVTIIA	r [315]
PsCAA75603	DITLQEVNRVSQ	VVTSLADPSANI	IFGAVVDDRYT	GEIHVTIIA	r [315]
NtAAF23770	DITLQEVNKVSÇ	VVTSLADPSANI	IFGAVVDERYNO	GEIQVTLIA	r [315]
NtCAB89286	DITLQEVNKVSÇ	VVTSLADPSANI	IFGAVVDERYNO	GEIQVTLIA	r [315]
OsAAK64282	DITLQEVNKVSQ	IVTSLADPSANI	IFGAVVDDRYT	GEIHVTIIA	r [315]
CrBAB91150	DLTLAEVNRVSE	VVTALADPSCNI	IFGAVVDEQYDO	GELHVTIIA	r [315]
EcP06138	DLRLDEFETVGN	ITIRAFASDNATV	VIGTSLDPDMNI	DELRVTVVA	r [315]

[320	330	340	350	360]	
[•	•	•		.]	
NtCAB89288	GFKRQE	ESDGRPLQ	-GNQLTQGD	VS	-LGN	[360]
NtCAC44257	GFKRQE	ESDGRPLQ	-GNQLTQGD	AS	-LGS	[360]
OsCLB17724_5	GFKRQD	EPEGRTTK				[360]
Glaaf23771	GFKRQE	ESDKRSIQ	AGGQLAPGD	AN	-QGI	[360]
L1BAA96782	GFKRQD	ETEGQKSQ-	GTQLGL	GGN	-LGI	[360]
AtAAC35987	GFKRQE	EGEGRTVQ-	MVQAD	AAS	-VGA	[360]
AtAAK63846	GFKRQE	EGEGRPLQ	ATQAD	AS	-MGA	[360]
OsCL005296_338	GFKRQE	EAESRQEE				[360]
PpCAB76386	GFSSQD	DPDARSMQ	YASRVLEGQ.	AG	R	[360]
PpCAB54558	GFSSQD	EPDARSMQI	NVSRILDGQ.	AG	R	[360]
CrAAM22891	GFGHVEPELG.	ALADRGSRAAA	AASPRVAAA	ANAPAAAAAVP	PVTT	[360]
CmBAA85116	GFPQ	PNESANSG	GSSSTLNAT.	ANEFYQAG-PP	NRQV	[360]
CcBAA82871	GFPQ	PNESASNG	GTSSTLNAT	ASDFYQAG-PS.	ARPA	[360]
GtCAA07676	GFTQ	PNDSK		FFSTK		[360]
GsBAA82090	GFPQ	PSDSPSSS		MTQTP		[360]
MsAAF35433	GFSTDY	FSNDGSGLE	NLPPNRLSP	PKTVGSAK-KP	KG	[360]
GsBAA82091	GFS					[360]
Te1949	GFSGEVQT	QPIQEKVQP	R	RPVPNPTQN		[360]
SsNP_440816	GFNGEKEK	PQAKTSSKP	VLSGPPAGV	ETVPSTTTP		[360]
AsCAA83241	GFTGEIQA	APQQNAANA	RVVSAPPKR	TPTQTPLTN	S	[360]
Np61	GFTGEVQA	AVQQSVASV	RVAPNTSKR	PTTQQPAVNPS	STPT	[360]
Tet112382	GFSGEPMS	RTRATTKTT	PLTNR	PLATTSPPP		[360]
SYAAC26227	GFSTDRPN	LNTISTSTS		QPTSQPSVS		[360]
PsCAB56201	GFETNQPL	KQQRIKNR-		-LSNQPLYN		[360]
Pm1658	GFETNQPL	KQQRIKNR-		-LSNQPLYN		[360]
PmCAB95028	GFDGNQPY	TKQKAGAK-		-LSPQSLYR		[360]
Sy549	GFDQGQQY	RSDRSSASG		-LPVQPQRS		[360]
Pm1268	GFEGNQPY	RSERSINK-		-IASQSIYS		[360]
NtCAB41987	GFTQSFQKTL	LSDPRGAKLAD	KGPVIQESM	ASPVTLRS		[360]
NtCAB89287	GFTQSFQKTL	LSDPRGAKLAD	KGPVIQESM	ASPVTLRS		[360]
TeAAF81220	GFAQSFQKSL	LADPKGAKLVD	RNQEPTQPL	TSARSLTT		[360]
AtAAA82068	GFSQSFQKTL	LTDPRAAKLLD	KMGSSGQQE	NKGMSLPHQ		[360]
PsCAA75603	GFSQSFQKKL	LTDPRAAKLLD	KVAEGKESK	TVPPPLKSS		[360]
NtAAF23770	GFAQSFQNSL	LTDPRGAKLVD	KSKGTTERT	VSPDTLRS		[360]
NtCAB89286	GFAQSFQNSL	LTDPRGAKLVD	KSKGTTERT	VSPDTLRS		[360]
OsAAK64282	GFPQSFQKSL	LADPKGARIME.	AKEKAANLT	YKAVAAAT		[360]
CrBAB91150	GFAPTYENEL	LNGGNAQQQQA	RAARRASNQ	ATAASLAPNPA	VQPT	[360]
EcP06138	GIGMDKRPEI	TLVTNKQVQQP	VMDRYQQHG	MAPLTQEQKPV	AKVV	[360]

[370	380	390]	
[•	•]	
NtCAB89288	NRRPAS-	FLEGGSVE	IPEFLRKKGR	SRYPRA		[397]
NtCAC44257	NRRPAS-	FLEGGSVE	IPEFLRKKGR	SRYPRA		[397]
OsCLB17724 5	VOKLCVP	MIGEIESG	ITVTIORORI			[397]
GlAAF23771	NRRPSS-	FSESGSVE	IPEFLRKKGR	SRYPRA		[397]
L1BAA96782	NRRPSSS	MTMGGIVE	IPHFLRKKAG	SRNPRA		[397]
AtAAC35987	TRRPSSS	FRESGSVE	IPEFLKKKGS	SRYPRV		[397]
AtAAK63846	TRRPSSS	FTEGSSIE	IPEFLKKKGR	SRYPRL		[397]
OsCL005296 338		GPTLO	IPEFLORKGR	SGFSRG		[397]
PpCAB76386	SSMASSR	GGNSSTIN	IPNFLRKRGQ	R		[397]
PpCAB54558	SPTGLSQ	GSNGSAIN	IPSFLRKRGQ	TRH		[397]
CrAAM22891	AAPETPG	GASSSGVE	IPAFLRRRRV	QGK		[397]
CmBAA85116	TPPPPQP	GPSRTIGN	IPDFLRRFQK			[397]
CcBAA82871	SQPPSQT	GPSRSIGS	IPDFLRRFQK			[397]
GtCAA07676			DLWKKFY-			[397]
GsBAA82090		D	IPDFLRRFQQ	ENK		[397]
MsAAF35433		GG	FRGFIKRLFS			[397]
GsBAA82091						[397]
Te1949	PNSTPEP	QRKLPGLD	IPDFLQRRRN	PSNK		[397]
SsNP_440816	EDPLGEI	PMA-PELD	IPDFLQKRRF	PRR		[397]
AsCAA83241	PAPTPEP	KEK-SGLD	IPDFLQRRRP	PKN		[397]
Np61	PTPTPEP	KEK-PGLD	IPDFLRNRRT	PRN		[397]
Tet112382	EAPAPEV	EAK-PKLD	IPEFLQRRRP	TP		[397]
SYAAC26227	PNPASAP	PASGGGLD	IPAFLQRKIQ	NRP		[397]
PsCAB56201	IS	DNKDTGTN	IPEFLRLRQN	KKDIE		[397]
Pm1658	IS	DNKDTGTN	IPEFLRLRQN	KKDIE		[397]
PmCAB95028	QT	PNKEPGAS	IPEFLRLRQL	RRDQ		[397]
Sy549	AI	EENGAR	IFEFLRQRQQ	QTNDPT		[397]
Pm1268	QP	EANESGAR	IPEFLRKRQP	RNDNEI		[397]
NtCAB41987		S	TSPSTTSRTP	TRRLFF		[397]
NtCAB89287		S	TSPSTTSRTP	TRRLFF		[397]
TeAAF81220			PSPAPSR	SRKLFF		[397]
AtAAA82068		KQS	PSTISTKSSS	PRRLFF		[397]
PsCAA75603		NFS	-SKVESRPPP	PRKLFF		[397]
NtAAF23770		S	ESPSTKPRPA	TRRLFF		[397]
NtCAB89286		S	ESPSTKPRPA	ARRLFF		[397]
OsAAK64282			-VQPAPAATW	SRRLFS		[397]
CrBAB91150	T	PPA	NPAAPWSRPN	IRAKLDFLGRS	IL	[397]
EcP06138	NDNAPQT	AKEPDYLD	IPAFLRKQAD)		[397]
•						

; END;

LITERATURE CITED

- Addinall SG, Cao C, Lutkenhaus J (1997) Temperature shift experiments with an *ftsZ84*(Ts) strain reveal rapid dynamics of FtsZ localization and indicate that the Z ring is required throughout septation and cannot reoccupy division sites once constriction has initiated. J Bacteriol **179:** 4277-4284
- Addinall SG, Lutkenhaus J (1996) FtsA is localized to the septum in an FtsZ-dependent manner. J Bacteriol 178: 7167-7172
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410
- Araki Y, Takio S, Ono K, Takano H (2003) Two types of plastid *ftsZ* genes in the liverwort *Marchantia polymorpha*. Protoplasma **221**: 163-173
- Arimura S-i, Tsutsumi N (2002) A dynamin-like protein (ADL2b), rather than FtsZ, is involved in *Arabidopsis* mitochondrial division. PNAS **99:** 5727-5731
- Aussel L, Barre FX, Aroyo M, Stasiak A, Stasiak AZ, Sherratt D (2002) FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell **108**: 195-205
- Avise JC (1994) Molecular Markers, Natural History and Evolution. *In*. Chapman and Hall, New York, pp 106-108
- Barre FX, Aroyo M, Colloms SD, Helfrich A, Cornet F, Sherratt DJ (2000) FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev 14: 2976-2988.
- Baumann P, Jackson SP (1996) An archaebacterial homologue of the essential eubacterial cell division protein FtsZ. Proc Natl Acad Sci USA 93: 6726-6730
- Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Paris, Sciences de la vie/Life sciences 316: 1194-1199

Beech PL, Gilson PR (2000) FtsZ and organelle division in Protists. Protist 151: 11-16

- Beech PL, Nheu T, Schultz T, Herbert S, Lithgow T, Gilson PR, McFadden GI (2000) Mitochondrial FtsZ in a chromophyte alga. Science 287: 1276-1279
- Begg K, Nikolaichik Y, Crossland N, Donachie WD (1998) Roles of FtsA and FtsZ in activation of division sites. J Bacteriol 180: 881-884
- Begg KJ, Dewar SJ, Donachie WD (1995) A new *Escherichia coli* cell division gene, *ftsK*. J Bacteriol 177: 6211-6222
- Begg KJ, Donachie WD (1985) Cell shape and division in *Escherichia coli*: experiments with shape and division mutants. J Bacteriol 163: 615-622
- Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) *RPS2* of *Arabidopsis thaliana*: a leucine-rich repeat class of plant disease resistance genes. Science **265**: 1856-1860
- Bi E, Lutkenhaus J (1990) FtsZ regulates frequency of cell division in *Escherichia coli*. J Bacteriol 172: 2765-2768
- Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in *Escherichia* coli. Nature 354: 161-164
- Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nature Cell Biol 1: 298-304
- Boasson R, Bonner JJ, Laetsch WM (1972) Induction and regulation of chloroplast replication in mature tobacco leaf tissue. Plant Physiol **49:** 97-101
- Boffey SA, Ellis Jr, Sellden G, Leech RM (1979) Chloroplast division and DNAsynthesis in light-grown wheat leaves. Plant Physiol 64: 502-505
- Botta GA, Park JT (1981) Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J Bacteriol 145: 333-340

- Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature **349**: 117-127
- Bowler LD, Spratt BG (1989) Membrane topology of penicillin-binding protein 3 of Escherichia coli. Mol Microbiol 3: 1277-1286
- Boyle DS, Grant D, Draper GC, Donachie WD (2000) All major regions of FtsK are required for resolution of chromosome dimers. J Bacteriol 182: 4124-4127
- Boyle DS, Khattar MM, Addinall SG, Lutkenhaus J, Donachie WD (1997) *ftsW* is an essential cell-division gene in *Escherichia coli*. Mol Microbiol **24**: 1263-1273
- Bramhill D (1997) Bacterial cell division. Annu. Rev. Cell Dev. Biol. 13: 395-424
- Bramhill D, Thompson CM (1994) GTP-dependent polymerization of *Escherichia coli* FtsZ protein to form tubules. Proc Natl Acad Sci USA 91: 5813-5817
- Buddelmeijer N, Aarsman ME, Kolk AH, Vicente M, Nanninga N (1998) Localization of cell division protein FtsQ by immunofluorescence microscopy in dividing and nondividing cells of *Escherichia coli*. J Bacteriol **180:** 6107-6116
- Buddelmeijer N, Beckwith J (2002) Assembly of cell division proteins at the *E. coli* cell center. Curr Opin Microbiol **5:** 553-557
- Buddelmeijer N, Judson N, Boyd D, Mekalanos JJ, Beckwith J (2002) YgbQ, a cell division protein in *Escherichia coli* and *Vibrio cholerae*, localizes in codependent fashion with FtsL to the division site. Proc Natl Acad Sci USA **99:** 6316-6321
- Caplan MR, Erickson HP (2003) Apparent cooperative assembly of the bacterial cell division protein FtsZ demonstrated by isothermal titration calorimetry. J Biol Chem 278: 13784-13788
- Cerveny KL, McCaffery JM, Jensen RE (2001) Division of mitochondria requires a novel *DMN1*-interacting protein, Net2p. Mol Biol Cell **12**: 309-321.
- Chaly N, Possingham JV (1981) Structure of constricted proplastids in meristematic plant tissues. Biology Cell 41: 203-209

- Chaly N, Possingham JV, Thomson WW (1980) Chloroplast division in spinach leaves examined by scanning electron microscopy and freeze-etching. J Cell Science 46: 87-96
- **Chen JC, Beckwith J** (2001) FtsQ, FtsL and FtsI require FtsK, but not FtsN, for colocalization with FtsZ during *Escherichia coli* cell division. Mol Microbiol **42**: 395-413
- Chen JC, Minev M, Beckwith J (2002) Analysis of *ftsQ* Mutant Alleles in *Escherichia coli*: Complementation, Septal Localization, and Recruitment of Downstream Cell Division Proteins. J Bacteriol **184:** 695-705
- Chen JC, Weiss DS, Ghigo JM, Beckwith J (1999) Septal localization of FtsQ, an essential cell division protein in *Escherichia coli*. J Bacteriol 181: 521-530
- Chen Q, Osteryoung K, Vierling E (1994) A 21-kDa chloroplast heat shock protein assembles into high molecular weight complexes in vivo and in organelle. J Biol Chem 269: 13216-13223
- Chida Y, Ueda K (1991) Division of chloroplasts in a green alga, *Trebouxia potteri*. Annals of Botany 67: 435-442
- Chi-Ham C, McAndrew RS, Vitha S, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW (2003) Molecular levels of plastid division proteins FtsZ1 and FtsZ2 and analysis of their interactions. Arabidopsis 2003 poster abstract
- Clos J, Brandau S (1994) pJC20 and pJC40--two high-copy-number vectors for T7 RNA polymerase- dependent expression of recombinant genes in *Escherichia coli*. Protein Expr Purif **5**: 133-137
- Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743
- Curie C, Axelos M, Bardet C, Atanassova R, Chaubet N, Lescure B (1993) Modular organization and development activity of an *Arabidopsis thaliana EF-1 alpha* gene promoter. Mol Gen Genet **238:** 428-436
- Dai K, Lutkenhaus J (1992) The proper ratio of FtsZ to FtsA is required for cell division to occur in *Escherichia coli*. J Bacteriol **174**: 6145-6151

- **Dai K, Xu Y, Lutkenhaus J** (1993) Cloning and characterization of *ftsN*, an essential cell division gene in *Escherichia coli* isolated as a multicopy suppressor of *ftsA*12(Ts). J Bacteriol **175**: 3790-3797
- de Boer P, Crossley R, Rothfield L (1992a) The essential bacterial cell-division protein *FtsZ* is a GTPase. Nature **359**: 254-256
- de Boer PAJ, Crossley RE, Hand AR, Rothfield LI (1991) The MinD protein is a membrane ATPase required for the correct placement of the *Escherichia coli* division site. EMBO J 10: 4371-4380
- de Boer PAJ, Crossley RE, Rothfield LI (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in *E. coli*. Cell **56:** 641-649
- de Boer PAJ, Crossley RE, Rothfield LI (1992) Roles of MinC and MinD in the sitespecific septation block mediated by the MinCDE system of *Escherichia coli*. J Bacteriol 174: 63-70
- de Pereda JM, Leynadier D, Evangelio JA, Chacon P, Andreu JM (1996) Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. Biochemistry 35: 14203-14215
- **Di Lallo G, Anderluzzi D, Ghelardini P, Paolozzi L** (1999) FtsZ dimerization in vivo. Mol Microbiol **32:** 265-274
- Diaz JF, Kralicek A, Mingorance J, Palacios JM, Vicente M, Andreu JM (2001) Activation of cell division protein FtsZ. Control of switch loop T3 conformation by the nucleotide gamma-phosphate. J Biol Chem 276: 17307-17315.
- Donath M, Mendel R, Cerff R, Martin W (1995) Intron-dependent transient expression of the maize *GapA1* gene. Plant Mol Biol 28: 667-676
- **Duckett JG, Ligrone R** (1993) Plastid-dividing rings in ferns. Annals of Botany **72:** 619-627
- El-Shami M, El-Kafafi S, Falconet D, Lerbs-Mache S (2002) Cell cycle-dependent modulation of *FtsZ* expression in synchronized tobacco BY2 cells. Mol Genet Genomics 267: 254-261

Erickson HP (1995) FtsZ, a prokaryotic homolog of tubulin? Cell 80: 367-370

Erickson HP (1997) FtsZ, a tubulin homologue in prokaryote cell division. Trends Cell Biol 7: 362-367

Erickson HP (1998) Atomic structures of tubulin and FtsZ. Trends Cell Biol 8: 133-137

- Erickson HP, Taylor DW, Taylor KA, Bramhill D (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci USA 93: 519-523
- Errington J, Daniel RA, Scheffers D-J (2003) Cytokinesis in Bacteria. Microbiol Mol Biol Rev 67: 52-65
- Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6-13
- Fekkes P, Shepard KA, Yaffe MP (2000) Gag3p, an outer membrane protein required for fission of mitochondrial tubules. J Cell Biol 151: 333-340
- Fujiwara M, Yoshida S (2001) Chloroplast targeting of chloroplast division FtsZ2 proteins in *Arabidopsis*. Biochem Biophys Res Commun **287**: 462-467
- Fulgosi H, Gerdes L, Westphal S, Glockmann C, Soll J (2002) Cell and chloroplast division requires ARTEMIS. Proc Natl Acad Sci USA 99: 11501-11506
- Gaikwad A, Babbarwal V, Pant V, Mukherjee SK (2000) Pea chloroplast FtsZ can form multimers and correct the thermosensitive defect of an *Escherichia coli ftsZ* mutant. Mol Gen Genet 263: 213-221
- Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW (2003) ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci USA 100: 4328-4333
- Geissler B, Elraheb D, Margolin W (2003) A gain-of-function mutation in *ftsA* bypasses the requirement for the essential cell division gene *zipA* in *Escherichia coli*. Proc Natl Acad Sci USA 100: 4197-4202

- Gerard P, Vernet T, Zapun A (2002) Membrane topology of the *Streptococcus* pneumoniae FtsW division protein. J Bacteriol **184:** 1925-1931
- Ghigo JM, Beckwith J (2000) Cell division in *Escherichia coli*: role of FtsL domains in septal localization, function, and oligomerization. J Bacteriol **182**: 116-129
- Ghigo JM, Weiss DS, Chen JC, Yarrow JC, Beckwith J (1999) Localization of FtsL to the *Escherichia coli* septal ring. Mol Microbiol **31**: 725-737
- Gibeaut DM, Hulett J, Cramer GR, Seemann JR (1997) Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions [letter]. Plant Physiol 115: 317-319
- Gilson PR, Beech PL (2001) Cell division protein FtsZ: running rings around bacteria, chloroplasts and mitochondria. Res Microbiol 152: 3-10
- **Gleave AP** (1992) A versatile binary vector system with a T-DNA organizational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol **20:** 1203-1207
- Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274: 546, 563-567
- Goffin C, Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62: 1079-1093

Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River, New Jersey

Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5: 294-299

Gray MW (1993) The endosymbiont hypothesis revisited. Int Rev Cytol 141: 233-357

Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9: 678-687

Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2

- **Gueiros-Filho FJ, Losick R** (2002) A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 16: 2544-2556
- Guzman LM, Barondess JJ, Beckwith J (1992) FtsL, an essential cytoplasmic membrane protein involved in cell division in Escherichia coli. J Bacteriol 174: 7716-7728
- Hale CA, de Boer PA (1999) Recruitment of ZipA to the septal ring of *Escherichia coli* is dependent on FtsZ and independent of FtsA. J Bacteriol **181:** 167-176
- Hale CA, de Boer PA (2002) ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in *Escherichia coli*. J Bacteriol 184: 2552-2556
- Hale CA, de Boer PAJ (1997) Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in *E. coli*. Cell **88**: 175-185
- Hale CA, Rhee AC, de Boer PA (2000) ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J Bacteriol 182: 5153-5166
- Harlow E, Lane D (1988) Antibodies: A Laboratory Manual. *In*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 298-299
- Hashimoto H (1986) Double ring structure around the constricting neck of dividing plastids of Avena sativa. Protoplasma 135: 166-172
- Hashimoto H (2003) Plastid division: its origins and evolution. Int Rev Cytol 222: 63-98
- Henriques AO, Glaser P, Piggot PJ, Moran CP, Jr. (1998) Control of cell shape and elongation by the *rodA* gene in *Bacillus subtilis*. Mol Microbiol **28**: 235-247
- Hirota Y, Ryter A, Jacob F (1968) Thermosensitive mutants of *E. coli* affected in the processes of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol 33: 677-693

Holtzendorff J, Marie D, Post AF, Partensky F, Rivlin A, Hess WR (2002) Synchronized expression of *ftsZ* in natural Prochlorococcus populations of the Red Sea. Environ Microbiol **4**: 644-653

- Holtzendorff J, Partensky F, Jacquet S, Bruyant F, Marie D, Garczarek L, Mary I, Vaulot D, Hess WR (2001) Diel expression of cell cycle-related genes in synchronized cultures of *Prochlorococcus sp.* strain PCC 9511. J Bacteriol 183: 915-920
- Hooykaas PJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19: 15-38
- Hu Z, Lutkenhaus J (1999) Topological regulation of cell division in *Escherichia coli* involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol **34**: 82-90
- Hu Z, Lutkenhaus J (2000) Analysis of MinC reveals two independent domains involved in interaction with MinD and *ftsZ*. J Bacteriol **182**: 3965-3971
- Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J (1999) The MinC component of the division site selection system in *Escherichia coli* interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA 96: 14819-14824
- Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, Reiser L, LaFond F, Hanley D, Kiphart D, Zhuang M, Huang W, Mueller LA, Bhattacharyya D, Bhaya D, Sobral BW, Beavis W, Meinke DW, Town CD, Somerville C, Rhee SY (2001) The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29: 102-105
- Huang J, Cao C, Lutkenhaus J (1996) Interaction between FtsZ and inhibitors of cell division. J Bacteriol 178: 5080-5085
- Huang X, Miller W (1991) A Time-Efficient, Linear-Space Local Similarity Algorithm. Advances in Applied Mathematics 12: 337-357
- Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755

- Ishino F, Jung HK, Ikeda M, Doi M, Wachi M, Matsuhashi M (1989) New mutations *fts-36, lts-33, and ftsW* clustered in the *mra* region of the *Escherichia coli* chromosome induce thermosensitive cell growth and division. J Bacteriol **171:** 5523-5530
- Itoh H, Tanaka-Ueguchi M, Kawaide H, Chen X, Kamiya Y, Matsuoka M (1999) The gene encoding tobacco *gibberellin 3beta-hydroxylase* is expressed at the site of GA action during stem elongation and flower organ development. Plant J 20: 15-24
- Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: *beta-glucuronidase* as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907
- Kameya T (1972) Cell Elongation and Division of Chloroplasts. J Exp Bot 23: 62-64
- Khattar MM, Addinall SG, Stedul KH, Boyle DS, Lutkenhaus J, Donachie WD (1997) Two polypeptide products of the *Escherichia coli* cell division gene *ftsW* and a possible role for FtsW in FtsZ function. J Bacteriol **179**: 784-793
- Kiessling J, Kruse S, Rensing SA, Harter K, Decker EL, Reski R (2000) Visualization of a cytoskeleton-like FtsZ network in chloroplasts. J Cell Biol 151: 945-950
- Kim K-N, Guiltinan MJ (1999) Identification of cis-Acting Elements Important for Expression of the Starch-Branching Enzyme I Gene in Maize Endosperm. Plant Physiol. 121: 225-236
- Kloti A, Henrich C, Bieri S, He X, Chen G, Burkhardt PK, Wunn J, Lucca P, Hohn T, Potrykus I, Futterer J (1999) Upstream and downstream sequence elements determine the specificity of the rice tungro bacilliform virus promoter and influence RNA production after transcription initiation. Plant Mol Biol 40: 249-266
- Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276: 2039-2042
- Koncz C, Schell J (1986) The promoter of T_L-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204: 383-396

- Kuhn I, Peng L, Bedu S, Zhang CC (2000) Developmental regulation of the cell division protein FtsZ in *Anabaena sp.* strain PCC 7120, a cyanobacterium capable of terminal differentiation. J Bacteriol **182:** 4640-4643
- Kuroiwa H, Mori T, Takahara M, Miyagishima SY, Kuroiwa T (2002) Chloroplast division machinery as revealed by immunofluorescence and electron microscopy. Planta 215: 185-190
- Kuroiwa T (1989) The nuclei of cellular organelles and the formation of daughter organelles by the "plastid-dividing ring". Bot Mag Tokyo **102:** 291-329
- Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R (1998) The division apparatus of plastids and mitochondria. Int Rev Cytol 181: 1-41
- Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4: 815-826
- Lamppa GK, Elliot LV, Bendich AJ (1980) Changes in Chloroplast Number during Pea Leaf Development. Planta 148: 437-443
- Leech RM (1976) The replication of plastids in higher plants. In MM Yeoman, ed, Cell Division in Higher Plants. Academic Press, London, pp 135-159
- Leech RM (1986) Stability and plasticity during chloroplast development. *In* JW Jennings, AJ Trevawas, eds, Plasticity in plants, Vol 40. Cambridge University Press, Cambridge, UK, pp 121-153
- Leech RM, Pyke KA (1988) Chloroplast division in higher plants with particular reference to wheat. In SA Boffey, D Lloyd, eds, Division and Segregation of Organelles. Cambridge University Press, Cambridge, pp 39-62
- Leech RM, Thomson WW, Platt-Aloia KA (1981) Observations on the mechanism of chloroplast division in higher plants. New Phytol 87: 1-9
- Liu G, Draper GC, Donachie WD (1998) FtsK is a bifunctional protein involved in cell division and chromosome localization in *Escherichia coli*. Mol Microbiol **29**: 893-903

- Liu Z, Mukherjee A, Lutkenhaus J (1999) Recruitment of ZipA to the division site by interaction with FtsZ. Mol Microbiol 31: 1853-1861
- Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Anal Biochem 163: 16-20
- Lonsdale D, Price C (1997) Eukaryotic gene nomenclature a resolvable problem? Trends in Biochemical Sciences 21: 443-444
- Löwe J (1998) Crystal structure determination of FtsZ from *Methanococcus jannaschii*. J Struct Biol **124**: 235-243
- Löwe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature **391:** 203-206
- Löwe J, Amos LA (1999) Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J 18: 2364-2371
- Löwe J, van den Ent F (2001) Conserved sequence motif at the C-terminus of the bacterial cell-division protein FtsA. Biochimie 83: 117-120.
- Lu C, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182: 164-170
- Lu C, Stricker J, Erickson HP (1998) FtsZ from *Escherichia coli*, *Azotobacter vinelandii*, and *Thermotoga maritima*--quantitation, GTP hydrolysis, and assembly. Cell Motility And The Cytoskeleton **40:** 71-86
- Lu C, Stricker J, Erickson HP (2001) Site-specific mutations of FtsZ effects on GTPase and in vitro assembly. BMC Microbiol 1: 7
- Luehrsen KR, Walbot V (1991) Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol Gen Genet 225: 81-93
- Lutkenhaus J, Addinall SG (1997) Bacterial cell division and the Z ring. Ann Rev Biochem 66: 93-116

- Lutkenhaus J, Wolf-Watz H, Donachie WD (1980) Organization of genes in the *ftsZ*envA region of the *Escherichia coli* genes map and identification of a new *fts* locus (*ftsZ*). J Bacteriol 142: 615-620
- Ma X, Margolin W (1999) Genetic and functional analyses of the conserved C-terminal core domain of *Escherichia coli* FtsZ. J Bacteriol **181:** 7531-7544
- Maddison D, Maddison W (2000) MacClade 4: Analysis of phylogeny and character evolution. *In*, Ed Version 4.0. Sinauer Associates, Sunderland, MA
- Margolin W (2003) Bacterial division: the fellowship of the ring. Curr Biol 13: R16-18
- Margolin W, Long SR (1994) *Rhizobium meliloti* contains a novel second homolog of the cell division gene *ftsZ*. J Bacteriol **176**: 2033-2043
- Margolin W, Wang R, Kumar M (1996) Isolation of an *ftsZ* homolog from the archaebacterium *halobacterium salinarium:* implications for the evolution of FtsZ and tubulin. J Bacteriol **178:** 1320-1327
- Marrison JL, Rutherford SM, Robertson EJ, Lister C, Dean C, Leech RM (1999) The distinctive roles of five different ARC genes in the chloroplast division process in Arabidopsis. Plant J 18: 651-662
- Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol **118:** 9-17
- Matsuhashi M, Wachi M, Ishino F (1990) Machinery for cell growth and division: penicillin-binding proteins and other proteins. Res Microbiol 141: 89-103
- Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1: 142-148
- McAndrew RS, Froehlich JE, Vitha S, Stokes KD, Osteryoung KW (2001) Colocalization of plastid division proteins in the chloroplast stromal compartment establishes a new functional relationship between FtsZ1 and FtsZ2 in higher plants. Plant Physiol 127: 1656-1666

- McAndrew RS, Vitha S, Chi-Ham C, Froehlich JE, Kadirjan-Kalbach D, Osteryoung KW (2003) Molecular levels and structural associations of plastid division proteins FtsZ1 and FtsZ2. In preparation
- McFadden GI (1999) Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol 2: 513-519
- McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37: 951-959
- Mercer KL, Weiss DS (2002) The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol 184: 904-912
- Mingorance J, Rueda S, Gomez-Puertas P, Valencia A, Vicente M (2001) Escherichia coli FtsZ polymers contain mostly GTP and have a high nucleotide turnover. Mol Microbiol 41: 83-91
- Miyagishima S, Itoh R, Toda K, Kuroiwa H, Kuroiwa T (1999) Real-time analyses of chloroplast and mitochondrial division and differences in the behavior of their dividing rings during contraction. Planta 207: 343-353
- Miyagishima S, Itoh R, Toda K, Takahashi H, Kuroiwa H, Kuroiwa T (1998) Identification of a triple ring structure involved in plastid division in the primitive red alga *Cyanidioschyzon merolae*. J Electron Microscopy **47**: 269-272
- Miyagishima S, Itoh R, Toda K, Takahashi H, Kuroiwa H, Kuroiwa T (1998) Orderly formation of the double ring structures for plastid and mitochondrial division in the unicellular red alga *Cyanidioschyzon merolae*. Planta **206**: 551-560
- Miyagishima S, Kuroiwa H, Kuroiwa T (2001) The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga *Cyanidioschyzon merolae*. Planta **212**: 517-528
- Miyagishima S, Takahara M, Kuroiwa T (2001) Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell 13: 707-721

- Miyagishima S, Takahara M, Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2001) Plastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 13: 2257-2268
- Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (2003) A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell **15:** 655-665
- Moehs CP, Tian L, Osteryoung KW, DellaPenna D (2000) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol 45: 281-293
- Mori T, Kuroiwa H, Takahara M, Miyagishima S, Kuroiwa T (2001) Visualization of an FtsZ Ring in Chloroplasts of *Lilium longiflorum* Leaves. Plant Cell Physiol 42: 555-559.
- Mori T, Tanaka I (2000) Isolation of the *ftsZ* gene from plastid-deficient generative cells of *Lilium longiflorum*. Protoplasma **214**: 57-64
- Mosyak L, Zhang Y, Glasfeld E, Haney S, Stahl M, Seehra J, Somers WS (2000) The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19: 3179-3191
- Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151: 367-380
- Mukherjee A, Dai K, Lutkenhaus J (1993) *Escherichia coli* cell division protein FtsZ is a guanine nucleotide binding protein. Proc Natl Acad Sci USA **90:** 1053-1057
- Mukherjee A, Lutkenhaus J (1994) Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 176: 2754-2758
- Mukherjee A, Lutkenhaus J (1998) Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J 17: 462-469
- Mullet JE (1988) Chloroplast development and gene expression. Ann Rev Plant Physiol Plant Mol Biol **39:** 475-502

- Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897-911
- Nanninga N (1998) Morphogenesis of *Escherichia coli*. Microbiol Mol Biol Rev 62: 110-129
- Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in *Arabidopsis thaliana* genetics. Plant J 14: 387-392
- Newman T, de Bruijin FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S. Thomashow M, Retzel E, Somerville C (1994) Gene galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous *Arabidopsis* cDNA clones. Plant Physiol **106**: 1241-1255
- Nogales E, Downing KH, Amos LA, Löwe J (1998) Tubulin and FtsZ form a distinct family of GTPases. Nature Struct Biol 5: 451-458
- Nogales E, Whittaker M, Milligan RA, Downing KH (1999) High-resolution model of the microtubule. Cell 96: 79-88
- Nogales E, Wolf SG, Downing KH (1998) Structure of the alphabeta tubulin dimer by electron crystallography. Nature **391:** 199-203
- Norris SR, Shen X, DellaPenna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiology 117: 1317-23
- Ogawa S, Ueda K, Noguchi T (1994) Division apparatus of the chloroplast in Nannochloris bacillaris (Chlorophyta). J Phycol 31: 132-137
- **Ohashi T, Hale CA, de Boer PA, Erickson HP** (2002) Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain. J Bacteriol **184:** 4313-4315
- Oross JW, Possingham JV (1989) Ultrastructural features of the constricted region of dividing plastids. Protoplasma 150: 131-138

- Osteryoung KW (2000) Organelle fission: crossing the evolutionary divide. Plant Physiol 123: 1213-1216
- Osteryoung KW, McAndrew RS (2001) The plastid division machine. Annu Rev Plant Physiol Plant Mol Biol 52: 315-333
- Osteryoung KW, Pyke KA (1998) Plastid division: evidence for a prokaryotically derived mechanism. Curr Opin Plant Biol 1: 475-479
- Osteryoung KW, Stokes KD, Rutherford SM, Percival AL, Lee WY (1998) Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial *ftsZ*. Plant Cell **10**: 1991-2004
- Osteryoung KW, Sundberg H, Vierling E (1993) Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected. Mol Gen Genet 239: 323-333
- Osteryoung KW, Vierling E (1995) Conserved cell and organelle division. Nature 376: 473-474
- Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39: 4-12
- Paolillo DJJ, Kass LB (1977) The Relationship Between Cell Size and Chloroplast Number in the Spores of a Moss, *Polytrichum*. J Exp Bot 28: 457-467
- Pichoff S, Lutkenhaus J (2002) Unique and overlapping roles for ZipA and FtsA in septal ring assembly in *Escherichia coli*. EMBO J **21**: 685-693
- Pitts KR, Yoon Y, Krueger EW, McNiven MA (1999) The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol Biol Cell **10:** 4403-4417
- Pla J, Dopazo A, Vicente M (1990) The native form of FtsA, a septal protein of *Escherichia coli*, is located in the cytoplasmic membrane. J Bacteriol 172: 5097-5102

- Pla J, Sanchez M, Palacios P, Vicente M, Aldea M (1991) Preferential cytoplasmic location of FtsZ, a protein essential for *Escherichia coli* septation. Mol Microbiol 5: 1681-1686
- Pogliano J, Pogliano K, Weiss DS, Losick R, Beckwith J (1997) Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc Natl Acad Sci USA 94: 559-564
- Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818
- Possingham JV (1973) Chloroplast growth and division during the greening of spinach leaf discs. Nat New Biol **245:** 93-94
- Possingham JV, Hashimoto H, Oross J (1988) Factors that influence plastid division in higher plants. In SA Boffey, D Lloyd, eds, Division and Segregation of Organelles. Cambridge University Press, Cambridge, pp 1-20
- **Possingham JV, Lawrence ME** (1983) Controls to plastid division. Int Rev Cytol **84:** 1-56
- Possingham JV, Smith JW (1972) Factors affecting chloroplast replication in spinach. J Exp Bot 23: 1050-1059
- **Pyke KA** (1997) The genetic control of plastid division in higher plants. Am J Bot 84: 1017-1027
- Pyke KA (1999) Plastid division and development. Plant Cell 11: 549-556
- Pyke KA, Leech RM (1987) The control of chloroplast number in wheat mesophyll cells. Planta 170: 416-420
- Pyke KA, Leech RM (1991) Rapid image analysis screening procedure for identifying chloroplast number mutants in mesophyll cells of *Arabidopsis thaliana* (L.) Heynh. Plant Physiol **96**: 1193-1195
- Pyke KA, Leech RM (1992) Chloroplast division and expansion is radically altered by nuclear mutations in *Arabidopsis thaliana*. Plant Physiol **99:** 1005-1008

- Pyke KA, Leech RM (1994) A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol 104: 201-207
- Pyke KA, Marrison JL, Leech RM (1991) Temporal and spatial development of the cells of the expanding first leaf of Arabidopsis thaliana (L.) Heynh. J Exp Bot 42: 1407-1416
- Pyke KA, Page AM (1998) Plastid ontogeny during petal development in Arabidopsis. Plant Physiol 116: 797-803
- Pyke KA, Rutherford SM, Robertson EJ, Leech RM (1994) arc6, a fertile Arabidopsis mutant with only two mesophyll cell chloroplasts. Plant Physiol 106: 1169-1177
- Raskin DM, de Boer PA (1999) MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in *Escherichia coli*. J Bacteriol **181:** 6419-6424
- Raskin DM, de Boer PA (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of *Escherichia coli*. Proc Natl Acad Sci USA. 96: 4971-4976
- Raskin DM, de Boer PAJ (1997) The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in *Escherichia coli*. Cell **91:** 685-694
- **RayChaudhuri D** (1999) ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J **18**: 2372-2383
- RayChaudhuri D, Park JT (1992) Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359: 251-254
- **RayChaudhuri D, Park JT** (1994) A point mutation converts *Escherichia coli* FtsZ septation GTPase to an ATPase. J Biol Chem **269**: 22941-22944
- Rivas G, Lopez A, Mingorance J, Ferrandiz MJ, Zorrilla S, Minton AP, Vicente M, Andreu JM (2000) Magnesium-induced linear self-association of the FtsZ bacterial cell division protein monomer. The primary steps for FtsZ assembly. J Biol Chem 275: 11740-11749

- Robertson EJ, Pyke KA, Leech RM (1995) arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplastid proliferation and morphology in shoot and root apices. J Cell Sci 108: 2937-2944
- Robertson EJ, Rutherford SM, Leech RM (1996) Characterization of chloroplast division using the *Arabidopsis* mutant *arc5*. Plant Physiol **112**: 149-159
- Rodrigues-Pousada RA, De Rycke R, Dedonder A, Van Caeneghem W, Engler G, Van Montagu M, Van Der Straeten D (1993) The Arabidopsis *1-Aminocyclopropane-1-Carboxylate Synthase* Gene 1 Is Expressed during Early Development. Plant Cell **5:** 897-911
- Romberg L, Simon M, Erickson HP (2001) Polymerization of ftsz, a bacterial homolog of tubulin. is assembly cooperative? J Biol Chem 276: 11743-11753.

The second second

- Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of nucleotide-binding protein. Nature 250: 194-199
- Rothfield L, Justice S, Garca-Lara J (1999) Bacterial cell division. Annu Rev Genet 33: 423-428
- Rothfield LI, Justice SS (1997) Bacterial cell division: the cycle of the ring. Cell 88: 581-584
- Scheffers D, Driessen AJ (2001) The polymerization mechanism of the bacterial cell division protein FtsZ. FEBS Lett **506:** 6-10
- Scheffers DJ, de Wit JG, den Blaauwen T, Driessen AJ (2002) GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. Biochemistry 41: 521-529
- Scheffers DJ, den Blaauwen T, Driessen AJ (2000) Non-hydrolysable GTP-gamma-S stabilizes the FtsZ polymer in a GDP-bound state. Mol Microbiol **35:** 1211-1219.
- Scheffers DJ, Driessen AJ (2002) Immediate GTP hydrolysis upon FtsZ polymerization. Mol Microbiol 43: 1517-1521

- Scott NS, Possingham JV (1980) Chloroplast DNA in Expanding Spinach Leaves. J Exp Bot 31: 1081-1092
- Sesaki H, Jensen RE (1999) Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 147: 699-706
- Sever S, Damke H, Schmid SL (2000) Garrotes, springs, ratchets, and whips: putting dynamin models to the test. Traffic 1: 385-392.
- Sieburth LE, Meyerowitz EM (1997) Molecular Dissection of the AGAMOUS Control Region Shows That cis Elements for Spatial Regulation Are Located Intragenically. Plant Cell 9: 355-365
- Silverstone AL, Chang C, Krol E, Sun TP (1997) Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12: 9-19
- Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143: 351-358
- Sossong TM, Jr., Brigham-Burke MR, Hensley P, Pearce KH, Jr. (1999) Selfactivation of guanosine triphosphatase activity by oligomerization of the bacterial cell division protein FtsZ. Biochemistry 38: 14843-14850
- Spratt BG (1977) Temperature-sensitive cell division mutants of *Escherichia coli* with thermolabile penicillin-binding proteins. J Bacteriol **131:** 293-305
- Steiner W, Liu G, Donachie WD, Kuempel P (1999) The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol Microbiol 31: 579-583
- Stiller JW, Reel DC, Johnson JC (2003) A single origin of plastids revisited: convergent evolution in organellar genome content. J Phycol **39:** 95-105
- Stokes KD, McAndrew RS, Figueroa R, Vitha S, Osteryoung KW (2000) Chloroplast division and morphology are differentially affected by overexpression of *FtsZ1* and *FtsZ2* genes in *Arabidopsis*. Plant Physiol **124**: 1668-1677

- Stokes KD, Osteryoung KW (2003) Early divergence of the *FtsZ1* and *FtsZ2* plastid division gene families in photosynthetic eukaryotes. Gene, **In Press**
- Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95: 4368-4373
- Stricker J, Maddox P, Salmon ED, Erickson HP (2002) Rapid assembly dynamics of the *Escherichia coli* FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci USA 99: 3171-3175
- Sweitzer SM, Hinshaw JE (1998) Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93: 1021-1029
- Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts
- Szeto TH, Rowland SL, King GF (2001) The dimerization function of MinC resides in a structurally autonomous C-terminal domain. J Bacteriol 183: 6684-6687
- Takahara M, Takahashi H, Matsunaga S, Miyagishima S, Takano S, Sakai A, Kawano S, Kuroiwa T (2000) A putative mitochondrial *ftsZ* gene is present in the unicellular primitive red alga *Cyanidioschyzon merolae*. Mol Gen Genet 7: 245-251
- Tamura T, Suzuki H, Nishimura Y, Mizoguchi J, Hirota Y (1980) On the process of cellular division in *Escherichia coli*: isolation and characterization of penicillinbinding proteins 1a, 1b, and 3. Proc Natl Acad Sci USA 77: 4499-4503
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882
- Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680

- Tian L, DellaPenna D (2001) Characterization of a second carotenoid *beta-hydroxylase* gene from Arabidopsis and its relationship to the LUT1 locus. Plant Mol Biol 47: 379-388
- Tieu Q, Nunnari J (2000) Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, dnm1p, to trigger mitochondrial division. J Cell Biol 151: 353-366
- Tieu Q, Okreglak V, Naylor K, Nunnari J (2002) The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol **158**: 445-452
- Tymms MJ, Scott NS, Possingham JV (1983) DNA Content of *Beta vulgaris* Chloroplasts during Leaf Cell Expansion. Plant Physiol **71**: 785-788
- Ullanat R, Jayabaskaran C (2002) Light- and cytokinin-regulated *ftsZ* gene expression in excised cucumber cotyledons (Cucumis sativus). Plant Growth Regulation 38: 209-218
- van den Ent F, Löwe J (2000) Crystal structure of the cell division protein FtsA from *Thermotoga maritima*. EMBO J **19:** 5300-5307
- Vitha S, McAndrew RS, Osteryoung KW (2001) FtsZ ring formation at the chloroplast division site in plants. J Cell Biol 153: 111-119
- Von Heijne G, Hirai T, Klösgen R-B, Steppuhn J, Bruce B, Keegstra K, Hermann R (1991) CHLPEP--a database of chloroplast transit peptides. Plant Molec Biol Reporter 9: 104-126
- Voskuil JL, Westerbeek CA, Wu C, Kolk AH, Nanninga N (1994) Epitope mapping of *Escherichia coli* cell division protein FtsZ with monoclonal antibodies. J Bacteriol **176:** 1886-1893
- Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K, Sugiura M (1997) Complete nucleotide sequence of the chloroplast genome from the green alga *Chlorella vulgaris*: the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94: 5967-5972

- Wang D, Kong D, Wang Y, Hu Y, He Y, Sun J (2003) Isolation of Two Plastid Division *ftsZ* Genes from *Chlamydomonas reinhardtii* and its Evolutionary Implication for the Role of FtsZ in Plastid Division. J Exp Bot 54: 1115-1116
- Wang HC, Gayda RC (1990) High-level expression of the FtsA protein inhibits cell septation in *Escherichia coli* K-12. J Bacteriol **172**: 4736-4740
- Wang L, Khattar MK, Donachie WD, Lutkenhaus J (1998) FtsI and FtsW are localized to the septum in *Escherichia coli*. J Bacteriol **180**: 2810-2816
- Wang L, Lutkenhaus J (1998) FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol Microbiol 29: 731-740
- Wang X, Huang J, Mukherjee A, Cao C, Lutkenhaus J (1997) Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol **179:** 5551-5559
- Wang X, Lutkenhaus J (1993) The FtsZ protein of *Bacillus subtilis* is localized to the division site and has a GTPase activity that is dependent upon the FtsZ concentration. Mol Microbiol 9: 435-442
- Wang X, Lutkenhaus J (1996) FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol Microbiol 21: 313-319
- Ward Jr JE, Lutkenhaus J (1985) Overproduction of FtsZ induces minicell formation in *E. coli*. Cell **42**: 941-949
- Weisenberg RC (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177: 1104-1105
- Weiss DS, Chen JC, Ghigo JM, Boyd D, Beckwith J (1999) Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol 181: 508-520
- Weiss DS, Pogliano K, Carson M, Guzman LM, Fraipont C, Nguyen-Distèche M, Losick R, Beckwith J (1997) Localization of the *Escherichia coli* cell division protein FtsI (PBP3) to the division site and cell pole. Mol Microbiol 25: 671-681

- Whatley JM (1980) Plastid Growth and Division in *Phaseolus vulgaris*. New Phytol 86: 1-16
- Whatley JM (1988) Mechanisms and morphology of plastid division. *In* SA Boffey, D Lloyd, eds, Division and Segregation of Organelles. Cambridge University Press, Cambridge, pp 63-84
- Whatley JM (1993) The endosymbiotic origin of chloropasts. Int Rev Cytol 144: 259-299
- White EL, Ross LJ, Reynolds RC, Seitz LE, Moore GD, Borhani DW (2000) Slow polymerization of *Mycobacterium tuberculosis* FtsZ. J Bacteriol **182**: 4028-4034
- Wienke DC, Knetsch ML, Neuhaus EM, Reedy MC, Manstein DJ (1999) Disruption of a dynamin homologue affects endocytosis, organelle morphology, and cytokinesis in Dictyostelium discoideum. Mol Biol Cell 10: 225-243
- Wolf SG, Nogales E, Kikkawa M, Gratzinger D, Hirokawa N, Downing KH (1996) Interpreting a medium-resolution model of tubulin: comparison of zinc-sheet and microtubule structure. J Mol Biol 262: 485-501
- Yu XC, Margolin W (1997) Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks *in vitro*. EMBO J 16: 5455-5463
- Yu XC, Tran AH, Sun Q, Margolin W (1998) Localization of cell division protein FtsK to the *Escherichia coli* septum and identification of a potential N-terminal targeting domain. J Bacteriol **180**: 1296-1304
- Yu XC, Weihe EK, Margolin W (1998) Role of the C terminus of FtsK in *Escherichia* coli chromosome segregation. J Bacteriol **180**: 6424-6428