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ABSTRACT

SCALABLE PULSED MODE COMPUTATION ARCHITECTURE USING
INTEGRATE AND FIRE STRUCTURE BASED ON MARGIN

PROPAGATION

By

Thamira Hindo

Neuromorphic computing architectures mimic the brain to implement efficient computa-

tions for sensory applications in a different way from that of the traditional Von Neumann

architecture. The goal of neuromorphic computing systems is to implement sensory de-

vices and systems that operate as efficiently as their biological equivalents. Neuromorphic

computing consists of several potential components including parallel processing instead of

synchronous processing, hybrid (pulse) computation instead of digital computation, neuron

models as a basic core of the processing instead of the arithmetic logic units, and analog

VLSI design instead of digital VLSI design. In this work a new neuromorphic computing ar-

chitecture is proposed and investigated for the implementation of algorithms based on using

the pulsed mode with a neuron-based circuit.

The proposed architecture goal is to implement approximate non-linear functions that

are important components of signal processing algorithms. Some of the most important sig-

nal processing algorithms are those that mimic biological systems such as hearing, sight and

touch. The designed architecture is pulse mode and it maps the functions into an algorithm

called margin propagation. The designed structure is a special network of integrate-and-fire

neuron-based circuits that implement the margin propagation algorithm using integration

and threshold operations embedded in the transfer function of the neuron model. The

integrate-and-fire neuron units in the network are connected together through excitatory



and inhibitory paths to impose constraints on the network firing-rate. The advantages of

the pulse-based, integrate-and-fire margin propagation (IFMP) algorithmic unit are to im-

plement complex non-linear and dynamic programming functions in a scalable way; to im-

plement functions using cascaded design in parallel or serial architecture; to implement the

modules in low power and small size circuits of analog VLSI; and to achieve a wide dynamic

range since the input parameters of IFMP module are mapped in the logarithmic domain.

The newly proposed IFMP algorithmic unit is investigated both on a theoretically basis

and an experimental performance basis. The IFMP algorithmic unit is implemented with a

low power analog circuit. The circuit is simulated using computer aided design tools and it

is fabricated in a 0.5 micron CMOS process. The hardware performance of the fabricated

IFMP algorithmic architecture is also measured.

The application of the IFMP algorithmic architecture is investigate for three signal pro-

cessing algorithms including sequence recognition, trace recognition using hidden Markov

model and binary classification using a support vector machine. Additionally, the IFMP

architecture is investigated for the application of the winner-take-all algorithm, which is

important for hearing, sight and touch sensor systems.
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Chapter 1

Introduction

1.1 Problem and key solution

Recognition and classification are the basic sensing applications in biological sensory organs.

Extensive researches are implemented to achieve these applications using artificial neural

network algorithms (ANN) and the technology used in man machine interface . Yet, the

processing time and architectures of these applications are far beyond the ”real time” pro-

cessing and ”scalable structures” as in biology. In order to gain real time processing, the

algorithms executed in software using Von Neumann architecture have to be replaced by

hardware implementation. In addition to that, the computational algorithms themselves

have to be scalable to gain efficient hardware implementation. Real time processing and

scalability are the goal of implementing signal processing on a chip in general and imple-

menting neuromorphic systems as a specific implementation. The goal of the neuromorphic

systems is to build a silicon chip that mimics the brain in order to implement sensory devices

in an efficient way as in biology [1, 2, 3, 4, 5]. Therefore, the architecture of the new systems

has to be similar to the neuronal architecture systems which is different from the traditional

Von Neumann architecture such as asynchronous- parallel processing instead of synchronous-

single processing, hybrid (pulse mode or analog and digital mode) computation instead of

digital computation, neuron model as a basic core of the processing instead of the arithmetic
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logic unit and finally, analog VLSI design instead of digital VLSI. As a contribution in this

large effort, a novel and scalable algorithm and its hardware implementation is proposed

to compute non-linear functions as an important procedure to implement signal processing

algorithms in the sensory applications. To meet the above objective, the proposed algo-

rithm is designed in pulse mode that can map the functions into an algorithm called margin

propagation using an integrate and fire structure. Figure 1.1 shows the three concepts of

the proposed algorithm that is firstly based on pulse computation, secondly mapped into

Margin Propagation as an approximation method to log-sum- exp and thirdly the proposed

module is based on an integrate and fire structure as a core unit. This chapter introduces

Design a new computational 
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Figure 1.1: Main concepts of the proposed module

the following: Section 1.2 starts initially with the definition of pulse computation and how

the variables are represented and the reasons behind using the pulse computation module.

Then the section is followed by the background of the pulse computation architectures in
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the research domain and the objective of the proposal. The following two sections 1.3 and

1.4 include concepts that meet the objective of the proposal. Sections 1.3 includes the log-

sum-exp function and margin propagation algorithm. Section 1.4 includes a brief description

of the integrate and fire structure as the core unit of the proposed algorithm. Section 1.5

includes the tasks and methodology to verify the concept. Finally, section 1.6 states the

organization of the consecutive chapters of the proposal.

1.2 Pulse computation

The pulse computation algorithm is introduced to mix the advantages of both digital and

analog design. The proposed algorithm is mapped into hardware as digital in amplitude

level and analog in the variable time between these levels. The main goal for using pulse

computation is to propagate easily the computed parameters between successive modules

because the type of the input/ output signals are digital. Before explaining the details of the

computational module, it is important to define and describe with an example the importance

of pulse computation systems, background of the pulse computations, the objective of the

proposal and finally the significant issues that meet the objective.

1.2.1 What and why pulse computation

Pulse mode computation is an analog/digital (hybrid) computation which is digital(binary)

in voltage level and analog (variable) quantity in time intervals between digital levels. In

this mode, the data used is represented by a stream of pulses which are asynchronous and

arrived at arbitrary times. Example of such data is the stream of pulses generated from

neuron structure which is driven by a continuously varying current.
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A pulse stream is represented as a stochastic stream of ones and zeros in which the

probability of generating ones is considered as a pulse rate value. The pulse rate values are

considered as the input /output variables of the pulse computation mode. In other words,

the input/output variables are assigned as the probability of ones in a stream of random

sequence of zeroes and ones as shown in the following mathematical procedure. If x is a

vector of random inputs between 0 and 1 (x ∈ u[0, 1]), y is the generated pulse stream, then

the probability of generating a stream y of rate L1 is calculated as,

y = 0.5[ sgn(x− 1 + L1) + 1] =⇒ 2y − 1 = sgn(x− 1 + L1)

p[y = 1] = p[sgn(x− 1 + L1) = 1], and [y = 0] = p[sgn(x− 1 + L1) = −1]

therefore the probability that the stream y has logic 1 is equal to the rate L1 calculated as

following,

p[y = 1] = p[x > (1− L1)] =⇒
∫∞

1−L1
u(0, 1)dx =

∫ 1
1−L1

dx = L1

Pulse computation is a promising research topic since it mixes the advantages of analog

and digital designs [6, 7]. The noise accumulation in analog stages can be eliminated by

digital noise immunity. The analog design has the advantage of small area, low cost and low

power especially if the design of computational units is implemented in weak inversion mode

of complementary metal oxide semiconductors (CMOS).

Table 6.1 shows the main differences between the digital and analog systems. The first

three items show the benefits of analog devices in computations while the last two items

show the advantages of the digital systems.
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Table 1.1: Comparison between analog and digital systems.

Analog Digital

Efficient computations use continu-
ous values (currents and voltages).

Computations uses discrete values
(Logic 0 and 1).

Computations arise from physics of
computing devices (capacitors, resis-
tors..etc.).

Computations arise from the math-
ematics of Boolean logic( AND,
OR..etc.).

Designs have high density, small size
and low power (addition requires
only wires, multiplication requires 7
transistors).

Designs have less density, larger size
and higher power (Addition require
18 transistors and 2 bits multiplica-
tions requires 60 transistors).

Noise is due to thermal fluctuation in
physical devices and it accumulates
in the multi-stage designs.

Noise is due to round off error and it
does not accumulate.

Signal is not restored at each stage of
the computation.

Signal is restored at each stage of the
computation.

1.2.2 Example of a pulse computational system

The brain is an example of hybrid computation because the type of signals transmitted

between neurons are spikes (or pulses) and the processing of signals inside the neuron is

analog. Next, a discussion of the power and efficiency of the brain in processing compared

to computers.

Computers are no real competition for the human brain in areas such as vision, hearing,

pattern recognition, and learning. Computers, for instance, cannot match our ability to

recognize a friend from a distance merely by the way he walks. And when it comes to

operational efficiency, there is no contest at all. The ”100 trillion synapses and 100 billion

neurons in the brain process information faster and with a higher density (data stored in the

synapses) than the software simulation of the neural networks using mathematical models.

For example: 2 duo core chips are needed to simulate only thirty neurons, a 32 chip board
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is needed to simulate 302 neurons, and a 64 board rack of super computers is needed to

simulate 1 million neurons. For the super computer, the cost is in millions of dollars and

the power bill costs thousands of dollars in order to simulate the brain of a bee (1 million

neuron). A comparison of processing data between the brain and computers based on the

technical parametric and functionality are listed below: [8].

1.2.2.1 Technical specifications

Energy cost: The computational power measured in Joules per operation in the brain is

108 times smaller than the microprocessor. To explain that, let’s take an example showing

the difference in energy between the brain and processor taking into consideration that each

synaptic junction between neurons represents an instruction operation in the microproces-

sors [9, 10]. Given the followings information: If the neurons fire at an average of 10 Hz in a

human brain that has about 1012 neurons, 1015 synapses and uses an approximate power of

10W. Assuming that the dominant energy consumer is synaptic activation and that a basic

operation is a synaptic activation (synapse is the junction between a pre and post neuron

synaptic). Then the energy cost of this activation is computated in Joules/Operation and

compared with the cost per Multiply-Accumulate (MAC) of contemporary microprocessors,

e.g. 100 W and 1 Hz for 1 G operation [10].

For human brain;

Energy cost = Energy/Number of synapses

Energy cost = (10 W) .( 0.1 sec)/1015 = 10−15J/operation

For Multiply-Accumulate (MAC) in microprocessors;

Energy cost = Energy/Number of operations

Energy cost = (100 W) . (1 sec)/109 = 10−7J/operation
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Therefore, the energy - cost for the human (10−15 J/operation) is less than the energy cost

in the microprocessor (10−7 J /operation) by an order of eight.

Power: The power consumption in the brain is much lower than the computer processor.

The power consumption in the brain is 25 W, while in Pentium, the power needed is 130 W.

The power needed in software simulation to mimic the function of brain in computation is

about 1010 W [3].

Frequency: The spike frequency in the brain is between 1-100 Hz while the clock frequency

in Pentium is in GHz.

Size: The size of brain is just 1 liter while in computers technology, a typical room-size

supercomputer weighs roughly 1,000 times more, occupies 10,000 times more space than the

cantaloupe-size lump of neural tissue that makes up the brain [3].

Cross connection: The synapse in neurons is equivalent to executing an instruction in

the microprocessor. Synaptic activity is 1016 neural connection /sec [3]. It would take one

million Intel Pentium processors to match that rate besides tens of megawatt (cost of time,

power and energy) in software to process these information.

1.2.2.2 Functional features

The computer system is a powerful machine in calculation and processing data, yet, it is

limited in the tasks which the brain is capable to perform. The attractive features which

support such tasks in the brain have different functions from the processor as follows:

Parallel processing: The neurons work in parallel rather than sequentially, as in the

processors. In other words there is no central processing unit to schedule the tasks serially.

The access time of the Input/ output information is the same in both the silicon memory
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and the sensory/motor biology neural system which is measured in nano seconds. However,

the parallel architecture of the brain enhance the processing of the information compared

with computers. It is well known that computers are no real competition for the human

brain in areas such as vision, hearing, pattern recognition, and learning.

Clock orientation: Neurons are self timed while computers are oriented systems that run

on the global clock.

Memory: It is available during computation in neurons within synapse connections, while

in computers the data is distant from computation.

Adaption and modification: In the brain, learning and adaptation are continuous while

the processors are fixed as they are designed and fabricated.

Determination of signal state: The type of signal is stochastic (i.e. digital analog-

digital) while being digitally deterministic in processors.

Tables 1.2 and 1.3 show the technical specifications and functional differences between

the brain and computer.

The above specifications are motivation in designing new architecture in the neuromor-

phic systems in which the design principles and architecture are neuronal inspired. Scientists

in the area of Information Theories, Computer Science, Communication, Mathematics, Bi-

ology and Engineering are all working together to mimic the human brain on a silicon chip.

The primary reason for implementing neural models is attempting to gain possible brain like

performance. It is well known that the type of signal in the brain is spike or pulse based.

Therefore, processing the information is needed to exploit methods in pulse mode processing.

Pulse system research is concentrated in two directions, first the development of com-

putational algorithms to encoding information [11, 12, 13, 14, 15]; and second to morph
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Table 1.2: Comparison of parametric specification between the brain and the computer for
simulating human cortex. The computational energy/cost in brain is 108 times smaller
(efficient) than computers.

Specification Computer simulation
of human cortex

Brain

Power 1010 W consumed in
running software sim-
ulation in addition to
the power needed in
the system hardware.

25 W.

Size A typical room-size
supercomputer weighs
roughly 1,000 times
more, occupies 10,000
times more space.

1liter.

Energy cost 10−7J/operation,for
1G operation in 1s and
power =100 W.

10−15 J /operation,
for a fire rate =10
Hz, power ≈ 10 W,
and a total number of
synapses = 1015.

the above algorithms on silicon elements to encode the input stimulus and then process the

spikes to mimic the biological sensory systems [16, 4, 3]. This thesis mixes between the two

research directions. It introduces a novel pulse based computation algorithm and verifies

the algorithm on the circuit level. But, what are the pulse computation algorithms in the

research field and what is the contribution of the proposed thesis? The answers for these

questions are explored in the next section.

1.2.3 Survey of pulse computation

The goal of pulse computation algorithm is to introduce efficient hardware architecture to im-

plement signal processing tasks such as recognition and classification. The efficiency means
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Table 1.3: Comparison of functional specification between the brain and the computer for
simulating human cortex.

Computer Brain

It is a global clock oriented system,
in GHz.

It is a self timed system, 1-100 Hz.

It has a 1- 8 core processors and it is
based on serial computation.

It has distributed computational
units and it is based on parallel com-
putation.

The buses share several components. There are dedicated local point to
point connections.

The signal is digital and it is a time-
discrete.

The signal is digital in levels (spikes)
and it is analog in time.

The memory is distant from compu-
tation.

The memory is available at compu-
tation location.

The memory and processor are sepa-
rated.

The storage and computation hap-
pen at the same time and in the same
place.

Devices are fixed as fabricated. They
are programmed devices.

It continuously adapts, modifies and
processes information.

It is sensitive to noise. Noise is a beneficial parameter [5].

low power, compact and scalable architecture. The architecture of pulse computational al-

gorithms are introduced in different categories:

• Pulse computation is based on digital gates using stochastic computations.

• Pulse computation is based on analog circuits using finite state machine.

• Pulse computation is based on analog circuits using neural integration.
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1.2.3.1 Pulse computation based on stochastic computations

: Stochastic computation (SC) was introduced in the 1960’s as a method to design low

precision digital circuits. The essential aspect of the SC is the possibility of performing

complex computations using only simple circuitry. In SC, the input variables are represented

as a probability of logic one in a stream of inputs of zeros and ones. The multiplication,

scaled addition and division can be implemented using ”AND”, ”Multiplexers” and ”JK-flip

flops” respectively as shown in Fig.1.2. For the AND gate shown in Fig. 1.2-(a) for example

, if the input rates are 6/8 and 4/8, then the output rate is 6/8× 4/8 = 3/8, as expected for

the multiplication operation. Another example for the multiplexer shown in 1.2-(b), if the

input rates are 1/8, 5/8, and 2/8, then the output rate is 2/8× 1/8 + (1− 2/8)× 5/8 = 4/8,

as expected for the scaled addition.

Experiments on polynomial functions used in image processing show that SC method

produces circuits that are highly tolerant of input errors. The accuracy degrades gracefully

with the error rate [17, 18, 19, 20]. SC has recently shown to be able to provide near optimal

decoding performance for decoding with respect to sum product algorithms with small coding

and specific applications, but it fails to build huge decoding systems due to SC weakness in

computational precision and dynamic range. SC fails for some of the computation process,

for example, the multiplication of two independent streams (p) such as p2 = p × p using

logical bitwise AND operation lead to misleading computation. In addition to that, SC fails

because the parameters used in computations should be scaled up or down depending on the

math operator, for example, the addition cannot be performed directly since the addition

of two stream rates might be greater than one, therefore scaled addition must be used to

implement the addition operator.
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Figure 1.2: Stochastic computation (a): Multiplication stochastic bit streams with an AND
gate. (b): Scaled addition on stochastic bit streams, with a multiplexer (MUX). (c): Stochas-
tic division [17, 21]

Another limitation of the SC is the low dynamic range of the computation in the sum

-product algorithms. In such algorithms, the multiplication of two probabilities (represented

as two bit streams) tends into a smaller quantity and hence multiple multiplications tend

to much smaller value which results into an under flow problem in computation. In SC,

the normalization step could be implemented using JK flip flops as division operator and

multiplexer as scaled addition to realize the data in computations. But this process tends

to be a difficult problem as the design size of the applications is huge (for example, in the

case of hundred states, the implementation needs hundred JK flip flops and hundred to
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one multiplexer). In addition to that, the huge number of states and the number of input

stream need a storage media such as registers. This will definitely increases the size of the

design. Therefore, the low dynamic range of computations, the under flow problem and the

normalization difficulties lead into false computation, low precision and long time to reach

convergence ( or never reach the convergence stage) in factor graph computations.

1.2.3.2 Pulse computation based on finite state machine

: A new technique was proposed to introduce pulse computation using finite state machine.

This computational domain may hold the possibility of discovering silicon analogues to the

enormously complex computational operations. In [22], elementary computational units

named as ”Macher” and ”Differencer” are implemented in hardware using CMOS 2µm.

These units are the basic units to form more complex processing structures.

The foundation of the pulse computation using state machine is the operation of pulse

matching and difference. Fig.1.3 (a) illustrates matched and unmatched pulses, given two

signal lines P1 and P2, then the signals are matched by pairing a pulse on P1 with a pulse

on P2. A pulse on P1 is unmatched, by contrast, if another pulse arrives on it and there are

no pulses on P2 during the successive time period. Fig. 1.3 (b) shows the state transition

diagram of the ”Matcher” where the matched input pulses produce pulse outputs on line

O2. if the machine is in P1 mode (state S1) and receives an input pulse on P1, no output

is produced; but, if the pulse arrives instead on P2, an output pulse is produced on O2 and

the machine transitions to P2 mode (state S2).

Fig. 1.3(c) shows the state machine of the ”Differencer”. If the machine is in ’P1 mode’

(state Sl), it will transition to ’P2-mode’ (state S2) if a pulse received on input P2, and

remain in S1 either if nothing happens, or if a pulse is received on input P1. Output (a
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Figure 1.3: Pulse computation using state machines. (a): matched and unmatched pulses.
(b): simplified state diagram for the matcher. (c): simplified state diagram for the differ-
encer. (d): matched circuit [22]. (For interpretation of the references to color in this and all
other figures, the reader is referred to the electronic version of this dissertation)

pulse on line O1 or O2) is shown as [O1] or [O2]; so if the machine is in S1 and receives a

pulse on P1, it will output a pulse on O1. Therefore, this device outputs pulses only when

unmatched input pulses are received.

The analog circuit and the oscilloscope traces from matcher is shown in Fig. 1.3(d) and

Fig. 1.4(a) respectively. The circuit of the matcher is an SRAM cell constructed from cross-

coupled inverters (transistors MP1, MP2, MN1, MN2) to hold the state. States (Sl) and

(S2) are marked on the diagram; (S2) high means the circuit is in P2-mode. In P2-mode,

a pulse arriving on P1 first opens, then closes the left-side pass-gate (MP11, MN11). This
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charges the dynamic node A high. When P1 falls low again (at the end of the incoming

pulse,) the output of the NAND gate formed by ( MP1a,MP1b,MN1a,MN1b) then drops

low; this signal is inverted by (MP12, MN12) onto O1. An output high on O1 discharges

the dynamic node through MN13, causing the system, including O1, to reset. The result

is a brief voltage pulse, [O1], which also (through MN14) sets the SRAM to state S1. If

the incoming pulse had instead been on P2, the right-side pass-gate (MP21,MN21) would

have opened; but since the dynamic node B would not have been raised high no output nor

change of state would have been produced.
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Figure 1.4: (a): Oscilloscope traces from matcher. P1 and P2, inputs; O2 and O1 outputs
of states S1 and S2 for the matcher state diagram. (b): Block diagram of the peak detector
application. (b) Oscilloscope traces from shows peak detection, P1, P2, P3,are the inputs;
P4 is the output state diagram [22]

15



The basic elementary circuits are used to built a more complex application, for example,

peak detector is designed using mixed units of differencer and matcher shown in the block

diagram of Fig. 1.4 (b). The design considers the conversion of the signal amplitude into

frequency and uses the concept of edge detection to find the highest frequency or the highest

amplitude signal. In the figure, the outputs of the two differencers are the edge detectors

between inputs P1, P2 and between P2, P3 respectively. The matcher generates an output

pulse, with an average frequency which reflects the strength of the peak as shown in Fig. 1.4

(c) where the first three traces are the inputs and the last trace is the output. The occurrence

of the output pulses indicates the input trace with the highest frequency. Although the above

method is attractive in accuracy and programmability but the limitation here is in mapping

the mathematical expressions needed in the applications of the signal processing algorithms.

Also, the above computation unit is not scalable which means that any new application to

design in hardware requires a new architecture of state machine and new analog circuits.

1.2.3.3 Pulse computation based on neural integration

Pulse stream computation was first introduced in the context of neural integration by Murry

in 1987 [23]. Since then it has been used by a number of other groups [24, 25, 26, 27]. Before

introducing the concept of neural pulse computation, the neuron itself is explored first as a

pulse computation unit then an explanation of how to address the pulse computation among

the digital and analog computation methods.

Pulse computation in biological neuron was first noticed, modeled and verified in exper-

iments made by Hodgkin and Huxly in 1952 [28, 29, 30]. It is well known that the neurons

communicate with each other through pulses. The pulses in the axon release neurotrans-

mitters from the pre to the post synapse to generate pulses in the post neuron. As the
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neurotransmitters increase, the rate of the output pulses increase. The increment of neuro-

transmitters in biological experiments is represented by increasing the value of the injected

current in the neuron membrane. It was proven in biological experiments on a giant squid

axon and compared with a simulated neuron model that the transfer function of a neuron

between the activation input current and the output spike rate is close to the logarithm

function [28]. That means the addition of two input rates in one neuron represent the mul-

tiplication of the two rates [31, 29]. The fact that neuron multiplication of the input pulses

realize specific tasks, for example, a motion detection task based on the correlation principle

that multiply the input signal with the delayed version of the same or another input signal

[30]. On the other hand, the decision made by one neuron is a function of the weighted sum

of all the inputs in the neural population. If V j is the input pulse stream from neuron j to

neuron i, and the weight of the synapse between these two neuron is denoted by Tij , then

the output pulse stream Vi is a function of the weighted sum activity xi such that,

Vi = f(xi) = f(

j=n∑

j=1

TijVj) (1.1)

The above is the weighted sum equation which is the core of artificial neural network

(ANN) algorithms that is realized in hardware as digital, analog and hybrid VLSI computa-

tion.

Digital techniques are used in the implementation of the weighted sum, the hardware

platform can be implemented on a special chip, for example, the connected network of adap-

tive processors (CNAPS) chip is based around the processor node shown in Fig. 1.5 (b). The

node comprises a multiplier ( to form TijVj), an ”Adder” to perform the summation, RAM

memory device, input/output control and an arithmetic shifter. Each CNAPS comprises a
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64 processor Node. The device is configurable via microcode to define the architecture of

CNAPS based system. CNAPS is one of the first commercial neurocomputers. This design

puts the emphasis on a very limited connectivity: only two shared input and output buses

connect the processing elements. Since there is no dedicated weight port on each processing

element, weight memory is internal to the processing elements and, as such, rather limited

[32, 33]. In addition to that the digital computations occupy large area and consume power

for designing dense parallel networks [32, 33, 34].

Bacause of the limitation of the connectivity in digital architecture, analog techniques are

used to design fully parallel architectures such as in Hopfield network shown in Fig. 1.5 (a).

Although analog architecture sacrifices the computation precision, the low power encourages

a massive dense network to be built. Yet, the Hopfield network was abandoned for a decade

because of limitations in programmability. In the Hopfield network, the computation of

the synapse weight is represented by the resistors and the op-amp which imply limited

programmability. Once the resistors are fabricated within the CMOS process, the weight

value and the network functionality are fixed which causes a lack in the dynamic change

of the weight. However, introducing an array of resistors and switches to select the proper

weight, increases the complexity and the size of hardware. Later on, the resistors in the

above design are replaced by weak inversion MOSFET operation which take small space

on the hardware chip. Mead [16] was the pioneer in introducing that since he found the

similarity in operation between the transistors and nerve cell in which both has exponential

transfer function. Yet, the computation in analog has limited programmability and storage.

Many researchers later on used the floating gate that can dynamically change the weight.

However, cascading modules of computational networks as well as the storage capability in

analog hardware computation are still an open research topic.
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Figure 1.5: (a): Resistor array in Hopfield as fixed function analog as (b): Processor node
in digital VLSI

To summarize the above, digital circuitry offer advantages to compute TijVj in terms of

simple design and accuracy, but does not allow more than few hundred parallel multiply-add

operations on a chip. However, analog VLSI allow massively parallel arrays of interconnected

neurons in terms of thousands synapse that can be integrated on a single chip. These con-

siderations have led to adapt a pulse stream computation technique which perform analog

multiplication under digital control.
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The underlying principles for using pulse coded stream in neural computations are the

followings:

1. Analog computation is attractive in neural VLSI, for reasons of compactness, potential

speed, asynchronous, and lack of quantization effects.

2. Analog signals are far from robust against noise and interference, are susceptible to

process variations between devices and are not robust in the inter chip communication.

3. Digital silicon processing is more readily available than analog.

4. Digital signals are robust, easily transmitted and regenerated.

5. Digital consume more power and area than analog.

Figure 1.6: Some of the pulse coding, A is the pulse amplitude modulation (PAM), B is the
pulse frequency or rate modulation (PFM),and C is the pulse duration modulation (PDM)

These considerations encourage a hybrid approach, seeking to blend the merits of both

digital and analog technology. The pulse stream technique uses digital signals to carry

information and control analog circuitry, while storing further analog information on the

time axis. A number of possible techniques exist for coding a neural signals shown in Fig.
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1.6 such as Pulse Amplitude (PAM), Pulse Width (PDM), and Pulse Frequency (PFM). The

PFM is defined as the number of pulses per unit time corresponding to the amplitude of the

analog signal. PFM is the coding mode used in the proposed computation model and it is

referred as the rate or density modulation.

In the following, the approach of the pulse computation is introduced in mapping a dense

computation of the weighted sum in the network architecture [35].

Fig.1.7 (a) shows the architecture of a single network of n totally interconnected neurons.

Neurons, represented by circles, signal their states {Vi} upward into a matrix of synaptic

operators. The state signals are connected to an n-bit horizontal bus running through this

synaptic array, with a connection to one synaptic operator in every column. Each column

consists, therefore, of n operators, denoted by squares, each adding a new contribution Tij

to the running total of activity for the neuron i at the foot of the column. The function of

the neuron is therefore to apply a sigmoid function to this activity to determine a neural

state V . The synaptic function is to multiply a neural state Vp by a synaptic weight Tip

(stored in memory local to the synaptic operator), and add the result to a running total.

The neuron function is illustrated in Fig. 1.7 (c). The neuron is shown as receiving

excitatory and inhibitory inputs, and producing a state output. The synaptic function is

also straightforward at the functional level. Fig. 1.7 (b) shows a single synapse block. The

(positive or negative) synaptic weight Tip is stored in digital memory. To form the product

TipVp, the presynaptic neural state is gated according to the chopping signals derived from

Tip. The resultant product, TipVp is added to the running total propagating down either the

excitatory or inhibitory activity channel, to add one term to the running total, as shown. One

binary bit (the MSBit) of the stored Tij determines whether the contribution is excitatory

or inhibitory. The circuit of neuron that implements the sigmoid function and the circuit of
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Figure 1.7: (a): Schematic architecture for a pulse - stream neural network. Neurons are
denoted as a circle (c) and synaptic operators is denoted as square shape (b)[36]

the synapse that introduces the weighted sum is shown in Fig.1.8 (a,b) respectively [36, 34].

Another computational model of pulse coded neural network is introduced in [27, 37].

The levels of input pulses that represent the output from pre neuron Vi and the weight Ti

introduce current into the synapse- neuron circuit which encode the input current into pulse

density coding shown in Fig. 1.9(a, b). The output of the neuron in Fig. 1.9(b)is trans-

mitted to other neurons via synapses. The weight inputs represents the connection strength

(synaptic weight) between a particular neuron to another. Currents from all synapses con-

nected to a neuron are summed at the input. The net current modulates the pulse train

emanating from the neuron. As an application to this weighted sum circuit, a pulse coded
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Figure 1.8: Neuron and synapse circuit in (a) and (b) respectively [36]

winner-take-all network (PWTA) has been implemented in a 2-micron CMOS process [27].

Fig. 1.9(b) shows a block diagram of the PWTA. The three neurons receive weighted inputs

from V1 and V2. These three neurons in turn feed their outputs (Y1, Y2, and Y3) to a global

inhibition generator. This global inhibition generator feeds back inhibition signals to all the

neurons in the network. Thus, if the output of one neuron is high, the Iinh inputs of all the

neurons will be forced high. This will in turn discharge all the integrating capacitors in the

network and thereby effecting the inhibition of all the neurons.

Many applications are implemented in signal processing and ANN in digital, analog VLSI

and in pulse computation, but there is no scalable computation algorithm to implement

more than the ”weighted sum function”. The limitation is that they are specific to certain

application (algorithms based on weighted sum function) which means that any change in

the applications needs to change the hardware structure and build a new system design. To
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Figure 1.9: (a):Output pulse generated from input current (b):Synapse connection. (c):Pulse
coded winner-take-all block diagram [37, 27]

address this limitation, an array of scalable -pulse computational modules are introduced

to implement nonlinear functions (not restricted on computing only the weighted sum) and

to map the algorithm into analog VLSI hardware. In order to achieve that, the proposed

algorithm has to meet the items discussed in the next section.
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1.2.4 Thesis objective

In this thesis, a scalable pulse computation algorithm and its hardware implementation based

on integrate and fire structure and Margin propagation is developed to meet the following:

1. Convergence property: As a stochastic pulse stream computation, the algorithm has to

meet the convergence and stability performance for the local unit and whole structure

of the module.

2. Cascading and scalability property: The module can be cascaded in serial and parallel.

The serial cascading supports the scalability property which means that the basic unit

of the module can be cascaded to handle a growing amount of work in a capable

manner.

3. Computation properties: As a new algorithm, the module has to meet the basic math-

ematical properties: scaling property, monotonicity, convexity, superposition and offset

property.

4. Basic computation: The proposed module is able to map the basic computations (ad-

dition, subtraction, multiplication and division) and math expressions (power, polyno-

mial and inner product) in pulse mode.

5. Computation capabilities: The computation capability means that the module is not

restricted on computing only the weighted sum terms, but this unit can be mapped

into other types of computations such as the dynamic equations in the Hidden Markov

model and recursion equations in the Support vector machine. In addition to that, the

IFMP algorithm generates an output that is equal to the maximum rate among the

inputs with an adjustment of certain parameters.
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6. Hardware realization: The basic concept of the thesis is the capability of mapping the

algorithm into analog circuits.

7. Power and size efficiency: Since the algorithm can be verified in analog VLSI circuits,

then it can be easily said that the design is compact (occupies small size) and low

power since the design is adjusted in sub threshold or weak inversion mode.

8. The significance of the new pulse computation design: Because of the importance of

the spiking networks with real-time and random input pulses, it is important to show

the impact and significance of this design in the research space.

To meet the above objectives and implement the pulse computation algorithms, the

equations of the algorithm have to be first mapped into the Log-sum-exp function and then

mapped into margin propagation procedure and finally use the integrate and fire structure

as the basic core to implement the algorithm. In the next two sections (sections 1.3 and

1.4), it is important to explain the reason of using log-sum-exp and how is this function

related to both the margin propagation and the integrate and fire structure. In section 1.5,

the methodology and tasks are listed to achieve the thesis objectives.

1.3 Log-sum-exponent and margin propagation

To meet the objective, the proposed algorithm and hardware architecture uses log-sum-exp

and margin propagation. The first term ”log-sum-exp” abbreviated as LSE is an important

function because of the following:

1. LSE is used in factor graph and signal processing applications such as Bayesian belief

propagation [38]. In factor graph algorithms, the basic functions used are the sum of
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product terms ( probability terms) which are used to evaluate the probabilities or the

marginal functions of passing messages between the nodes and variables of the factor

graph. Since the product of probability terms tends to decrease as the number of

probability terms increase, then a problem of underflow will be popped up and cause

false computations. Therefore, such algorithms use the log-likelihood computation to

eliminate the underflow problem.

2. LSE is used to increase the dynamic range of variables in the computation process

since it depend on logarithm functions of the input parameters.

3. For n input parameters, the LSE function evaluate the max value of the input param-

eters as shown in the following proof:

Let P1, P2, P3..Pn represent probability variables and Let

f =
∑

k

P1k.P2k.. −→ Pnk (1.2)

Then the LSE expression is represented as,

log(f) = log
∑

k

elog(P1k)+log(P2k)+..−→log(pnk) (1.3)

Now Let a = log(P1k) + log(P2k)..+ log(Pnk) and set b = max(aik) then

log(f) = log(eb
∑

eaik−b) = b+ log(
∑

eaik−b) ' b (1.4)

The last term is approximately equal to b if all the terms of aik ( except the max value)

are too small. The above trick is to shift the terms of aik to the right by a maximum value
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of inputs equal to b, evaluate the log-sum-exp then shift back to the original position.

In this work, the LSE expression is the first step to map non-linear functions. t can

be said the following : ”If a linear/ non-linear function can be mapped into LSE, then the

function can be implemented in the proposed architecture”.

An example below demonstrates a mapping process of any function into LSE.

Example: Let a,b,c and d ∈ R and let f = ab+ cd, then

log(f) = log(ab+ cd) (1.5)

z = log(f) = log[elog(a)+log(b) + elog(c)+log(d)] (1.6)

The last term of the example is called the LSE expression.

As mentioned earlier, the LSE expression is used in factor graph algorithms. Next, the

factor graph algorithm is defined and how it can be represented in LSE.

A factor graph is a graphical representation that shows how a function of several variables

can be factorized into a product of smaller functions and it is useful because it simplifies

complicated efficient algorithms. In the factor graph, the nodes (rectangles) represent the

factors or functions while the edges represent the variables [39]. The proposed model can be

applied in factor graphs such as in the inference problems. In such problems, the probability

of the message propagated between two independent graph sets can be evaluated based

on belief propagation. An example shows the concept of factorization by evaluating the

probability in any path of the graph using sum product rule [39]. The main idea of using

the factor graph is to extract some variables by sum operators that reduce the computation

of messages passing through nodes and edges. Lets take a function f(x1, x2, x3..xn) where

f is the probability density function (PMF) of discrete random variable x1, x2, x3..xn, then
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in order to compute fk(xk) such that (example: n = 4 and k = 3 in Fig 1.10),

fk(xk) =
∑

x1..xnexcept xk

f(x1, x2, x3..xn) (1.7)

where fk(xk) is the PMF of xk. If fk(xk) can be divided into two independent graph sets,

then it can be inferred that the probability of the message propagated between the two sets

is calculated by multiplying the probability of the two sets. This can be calculated by using

sum-product algorithm in which the large marginalization is split into a sequence of small

marginalization. For example, assume that

fk(xk) =
∑

x1..xnexcept xk

f(x1..xk)f(xk..xn) (1.8)

and the marginal probabilities pa(k) and pb(k) are denoted as,

pa(xk) =
∑

x1..xnexcept xk

f(x1, ..xk) (1.9)

pb(xk) =
∑

xk..xnexcept xk

f(xk..xn) (1.10)

then the probability of the message passing in path k is:

p(xk) = pa(xk)pb(xk) (1.11)

The above equations are expressed in log-sum-exp as following:

log(pa(xk)) = log(
∑

x1..xkexcept xk

elog(f(x1..xk))) (1.12)
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log(pb(xk)) = log(
∑

xk..xnexcept xk

elog(f(xk..xn))) (1.13)

log(p(xk)) = log(pa(xk)) + log(pb(xk)) (1.14)

f4f4 

 f4 f2 

f5 f3 f1 

x4 x2 

x1 x3 x5 

pa (x3) p b (x3)  

Figure 1.10: Factor graph representation to show that p(x3) = pa(x3).pb(x3)

In factor graph, the algorithms are applied extensively using analog input parameters.

But in this work, the input parameters are represented as a stream of random pulses and

applied in scalable architecture. Since it is difficult to implement modularity in LSE, an

approximation method to the LSE is needed. Therefore, Margin propagation method is

introduced as an approximation method to LSE. In previous work [40], it was proven that

margin propagation is an approximation method to LSE. The input/output variables in

that work are represented as currents and the computation procedure is implemented using

Kirchoff’s current law. Margin propagation was implemented in these circuits to achieve

scalability in the decoding algorithms. In this work, the concept in pulse computation

mechanism of margin propagation as an approximation method to LSE is introduced.

The core of the margin propagation (MP) algorithm is based on the concept of the reverse

water-filling (RWF) algorithm, [41]. Given a set of random inputs (scores) Li ∈ R; i = 1 : N ,

the RWF algorithm computes the solution z according to the constraint
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Figure 1.11: Water level filling constraint

N∑

i=1

[Li − z]+ = γ (1.15)

where [.]+ = max(., 0) denotes a threshold operation and γ ≥ 0 represents a parameter

of the algorithm. Note that z is in the log domain. The solution of the equation 1.15 can

be visualized using Fig. 1.11, where the cumulative scores beyond z ( shown by the shaded

area) equal γ. The limit of z is such that

z ≤ max
i
Li

Equation 1.15 can be rewritten in the form of

z = M(L1, L2, ..., LN , γ) (1.16)
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whereM denotes the MP function andN denotes the number of operands in the MP function.

Then LSE is represented as following

z = log(
N∑

i=1

eLi) 'M(L1, L2, L3....LN , γ). (1.17)

To summarize the above, it can be deduced that LSE is a useful function to map signal

processing equations or factor graph algorithms. Yet, it is difficult to represent a cascaded

LSE in analog circuits. In this work, the LSE is approximated into MP algorithm which is

verified to implement scalable computation. The approximated concept from LSE into MP

is realized in hardware using a novel design based on integration and threshold operation.

This operation is realized using integrate and fire structure (explained in the next section)

as the core unit of the computational module.

1.4 Integrate and fire structure

In order to realize the threshold operation used in the MP algorithm discussed in the previous

section, it is important to implement this operation in the circuit design level. The integrate

and fire (IF) structure is introduced to calculate the threshold operation. IF model is a

simple representation of a neuron, it is extensively used as a neuron model in spiking neural

networks [42, 43, 44] and neuromorphic systems [45, 4]. The neuron model is an important

computational structure and it is considered as the basic core in designing ANN which has

huge applications in processing biological, statistical and engineering applications.

To understand the operation of IF neuron model, the structure of neuron is explained

briefly. The neuron has three parts as shown in Fig. 1.12:
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1. Dendrites: These branchlike projections of the cell make connections to other cells and

allow the neuron to talk with other cells .

2. Soma: It is the place that joins the signals from other neurons via dendrites. The soma

and nucleus do not play a role in the transmission of neural signals but they maintain

the cells functionality.

3. Axon: It is located at the end of the soma. It controls the firing of the neuron. If the

total potential reaches a certain threshold, then the neuron will fire. It propagates the

spikes to other cells.
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Figure 1.12: Mechanism of spike-generation and signal propagation through synapses and
neurons

Nerve cells communicate with one another using spikes ( pulses) passed through special-

ized junctional structures called synapses. The spikes are generated when pulses exit neuro-

transmitters in the presynapse and release ions to the postsynapse as shown in Fig.1.12. The
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underlying mechanism of spike or action-potential generation is due to unbalanced movement

of ions across the membrane which alters the potential difference between the inside and the

outside of the neuron. In the absence of any stimuli to the neuron, the potential of the mem-

brane with respect to the potential outside the membrane is about −65 mV, also referred to

as the resting potential. This potential is increased by the influx of sodium ions (Na+) inside

the cell causing depolarization whereas the potential is decreased by the efflux of potassium

ions (K+) outside the cell causing hyper polarization. Once the action potential is gener-

ated, the (Na+) ion channels are unable to reopen immediately until a built-up potential is

formed across the membrane. The delay in reopening the sodium channels results in a time-

period called refractory period, as shown in Fig. 1.12, where the neuron cannot spike. There

are two types of synapses typically encountered in neurobiology: excitatory synapses and

inhibitory synapses. For excitatory synapses, the membrane potential of the post-synaptic

neuron (referred to as the excitatory post-synaptic potential or EPSP) increases, whereas

for inhibitory synapses, the membrane potential of the post-synaptic neuron (referred to as

the inhibitory post-synaptic potential or IPSP) decreases. It is important to note that the

underlying dynamics of EPSP, IPSP and the action potential are complicated and several

books have been written to discuss only the mathematical model [46, 43]. Therefore, for the

sake of brevity, a simple integrate-and-fire neuron model is described which is used in the

design of neuromorphic sensors [4].

A schematic diagram of the IF model is shown in Fig. 1.13 (a). The basic circuit inside

the dashed circle represents the IF model. The IF structure is described as following: when

a current I(t) charges the capacitor c representing the membrane of a neuron, a voltage

vm(t) across the capacitance (points) is built and compared to a threshold. If vm(t) = vth

at firing time t
f
i , then an output delta type pulse δ(t − t

f
i ) is generated. The generated
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Figure 1.13: (a): Simplest representation of IF representation as neuron model neuron. The
basic circuit is the module inside the dashed circle on the right-hand side. A current I(t)
charges the C circuit and a voltage across the capacitance is compared to a threshold vth.
Left part: A presynaptic representation as a low-pass filter. (c): The dynamic equation of
the membrane voltage in a population of spiking neurons in (b)

pulse resets the capacitor voltage to its initial value and hence the pulses are continuously

generated as long as the capacitor is charging/discharging. In the same figure (Left), the

synapse is represented as a low-pass filter whose input pulses are δ(t − tfj ) and the output

pulses are α(t− tfj ). The membrane voltage vm is simply denoted by the following equation

that describe the charging of the membrane capacitance c as,

c
dvm
dt

= I(t) (1.18)
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The above equation is written in discrete time at sampling time n and sampling time ts

as,

vm[n]− vm[n− 1] =
I[n].ts
c

(1.19)

In Fig. 1.13 (a), the input current I to the postsynaptic neuron i is due to the spikes of

presynaptic neurons j. In the simplest model of a synapse, each presynaptic spike arrival

evokes a postsynaptic current with a standard time course α. The total input to neuron i is

denoted as,

Ii =
∑

j,f

wijα(t− tfj ) (1.20)

Where the sum runs over all firing times t
f
j of all presynaptic neurons. The factor wij is the

synaptic efficacy of a connection from a presynaptic neuron j to a postsynaptic neuron i. In

Fig. 1.13 (b), the neuronal population is shown and the membrame potential for neuron i

in Fig. 1.13 (c) is denoted as [23],

dvmi
dt

= −vmi
τ
−

N∑

j=1

∑

f

wijδ(t− tfj ) + xi(t) (1.21)

Where vmi is the membrane voltage for neuron i, wij is the weight from neuron j to neuron

i that could be positive/ negative depending on the excitatory/ inhibitory connection of the

presynapse, t
f
j is the firing time of neuron i, δ(t− tfj ) is the pre synapse pulses and xi(t) is

an external exciting potential to the neuron cell. Different mathematical models have been

introduced and implemented in hardware to simulate the dynamic characteristics of the IF

model [43, 42]. In this work, a simple mathematical equation (1.19) is used to represent the

IF model since it implements the integration and threshold operations.

In analog circuits, the first analog IF model was introduced by Carver Mead in 1989 as a
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Figure 1.14: Conceptual schematic of a circuit that generate pulses due to positive feedback
through capacitor cfb across high gain buffer. The lower transistor adjust the pulse width
during discharge phase of the capacitors

core to a dense layout using a VLSI neuromorphic chip. The designed circuit shown in Fig.

1.14 is simple and easy to implement in hardware [1]. It consists of an integrating capacitor

(representing the membrane capacitance of a neuron), a simple high gain amplifier (double

inverter) that switches when the integrated input current exceeds its threshold voltage and a

feedback capacitor that adds extra charge to the membrane capacitor to stabilize the firing

state. The reset is achieved through a leakage that is turned on while the output is high.

That leakage current determines the pulse length of the output pulse. When the output

voltage is high, it resets the membrane voltage and the output pulse resets to the starting

point again. At this point, the input current charges the capacitor cin until the input voltage

of the amplifier reaches the threshold level at which in which it turns the output Vout into

logic high. The feedback capacitor (Cfb and membrane capacitor Cm are considered here
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a capacitor voltage divider which changes the timing duration of pulses and adjusts the

change in slope of membrane voltage Vmem which decides the output pulse state Vout of the

amplifier.

Conceptual, this model is considered in two ways, the first one is to be considered as an

analog-to-analog converter that transforms an analog current into an analog time interval.

The pulse frequency is proportional to the analog input current. One advantage of this

representation in the time domain is that one can convey analog data with a digital signal,

for example for transmission via a digital wireless link. The second view is conceptually the

same but has different names in that the IF model can be viewed as an analog-to-digital

converter, where the output pulses of the network faithfully encodes different features of the

input analog sensory stimuli into a time encoded signal or into a train of spikes [47, 48]. IF

circuit is asynchronous, meaning it has no clocks, as compared to the conventional ADCs.

The asynchronous property leads to a significantly lower output data rate and lower power

consumption as compared to conventional ADCs [49]. In this work as explored in chapter

2, a more dense circuit of the IF is designed to implement the threshold operation. The

designed circuit has only one small feedback capacitor equal to 200 fF.

1.5 Tasks and Methodology

The methodology of achieving the proposed pulse computational model and hardware imple-

mentation is to design the analog circuit of the ”IF” unit as the core unit in the computational

model, verify the dynamic characteristics and the convergence property in the cadence tool

and then apply it in a novel design to implement spike time dependency. The ”IF” unit is

then simulated in Matlab to verify and analyse the main concept of the ”IFMP algorithm”.
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For hardware implementation of the IFMP algorithm, the simulated ”IFMP” is mapped and

verified in analog circuit. The convergence of the ”IF” unit and the ”IFMP” algorithm are

proven mathematically. In order to show that the concept of IFMP algorithm is applicable

in computations and applications, the IFMP structures are simulated in Matlab to verify

the basic computations ( addition, multiplication, power, inner product and polynomial)

and applications (winner takes all, decoding and classification). An array of IFMP units is

fabricated on a chip using 0.5 µ CMOS circuitry to verify the concept in hardware.

The tasks to achieve the proposed computational model include the followings:

1. Design the analog circuit of the integrate and fire structure (IF), which is the basic unit

of the pulse computational algorithm IFMP. The design of the analog IF implements

the integration and threshold operations, which refer to the operations of integration

the currents caused by the input pulses and then comparing the voltage produced by

the integration with a certain threshold to produce output pulses. The first step in

the successful IF design is to verify the logarithmic transfer function of the IF as the

pulse rate output versus input current. The second step is to verify the convergence

characteristic of spiking IF structure which implies that the expected value of a train of

input pulses converges to the expected value of the output pulses. Here the expected

value of pulses is defined as the average of pulse levels over a time period of these

pulses.

2. Verify the convergence of one IF structure for more than one input in which the sum

of expected values of input pulses are converges to the expected value of the output

pulses.If the input pulses are denotes as Li, then the E(L1) + E(L2) + ...E(Ln) −→

E(output), where ’i’ is the index of the input pulses, ’E’ is the expected or average
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value of the pulses and ’n’ is the number of inputs.

3. Verify the concept of IF structure as a computational unit itself in the spike dependency

plasticity, which is the learning concept in synaptic junctions of neurons.

4. Simulate steps 1, 2 and 3 in Matlab and verify the concept of approximating the log-

sum-exp into margin propagation algorithm in pulse mode. The design of the technique

is implemented using a network of IF structures (IFMP) and simulated to verify the

convergence of margin equation for all values of the adjusting parameter γ.

5. Derive and simulate how much the difference is between the IFMP algorithm and the

”log-sum -exp” function.

6. Using MOSFET transistors, design, simulate and verify the dynamic characteristics of

an analog circuit implementation of the basic pulse computational algorithm IFMP.

7. Prove mathematically the convergence of one IF structure and IFMP algorithm. Specif-

ically it is shown by induction that the convergence is valid if the integration of step

voltage is bounded between two limits.

8. Prove and simulate the concept of cascading multi - two inputs IFMP structures which

is equivalent to the parallel inputs to the IFMP. The importance here is to built scalable

units of an IFMP array on silicon in order to implement computational function.

9. Simulate in Matlab and circuits the basic computation of nonlinear functions such as

multiplication, power, polynomial and inner product by mapping the functions into

the margin propagation method.
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10. Simulate in Matlab and circuits the applications of sequence and trace detection us-

ing Hidden Markov model (HMM) by mapping the algorithm of HMM into margin

propagation.

11. Simulate in Matlab and circuits binary classification using a Support vector machine

method (SVM) by mapping the algorithm of SVM into margin propagation.

12. Show the significance of the IFMP algorithm in dynamic range capability compared

with stochastic pulse computation using HMM decoding algorithm.

13. Show the significance of the IFMP algorithm that can implement easily spiking winner

take all network compared with other architectures.

14. Design an array of analog IFMPs on a 0.5 µ CMOS process for testing and verification

the dynamic characteristics of a single IFMP.

15. Design an array of analog IFMP on a 0.5 µ CMOS process for testing and verification

the simulation procedure of HMM.

1.6 Thesis organization

The thesis is organized as following: Chapter 2 introduces the circuit diagram of an integrate

and fire model, the convergence performance of one neuron and an application of a single

integrate and fire neuron model. In the application, a floating gate transistor is used as a

storage device to modify the weight in a novel architecture of synapse plasticity ( modification

of weight strength between synapses). However, the above design is limited to a specific

task. The goal here is to built a scalable computational unit that can be plugged into many

applications. Therefore, the main topic of the thesis is introduced in chapter 3 to built a
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scalable computational unit, ”the integrate- fire structure and margin propagation method

(IFMP)”. The chapter includes a proof of the convergence of the dynamic performance, the

IFMP parameters and cascading, the properties of MP and basic computations examples of

the IFMP. Chapter 4 introduces three examples of the proposed pulse computation algorithm

to implement non-linear functions of signal processing algorithms. As a circuit simulation

and layout design on a chip, the first example is a novel implementation of the Hidden

Markov Model algorithm (HMM) to recognize sequences in pulse based computation. The

first example is based on discrete probability observation while the second example is based

on the continuous probability observation. The third example is an implementation of a

support vector machine to classify two sets of data types. Chapter 5 explores the significance

roles of using IFMP algorithmic module in the research space. In other words, how can the

IFMP modules enhance the performance and add specific properties to the applications.

Finally, chapter 6 conclude the thesis with a summary and future work recommendations.
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Chapter 2

Integrate-Fire Model and Synaptic

Plasticity

A new design of the integrate and fire (IF) model is introduced with two concepts:

1. First concept: The generated pulses are proportional to the injected current to the

neuron.

2. Second concept: The generated pulses are proportional to the input pulses which is

refereed to a convergence status. Convergence status mean that the output pulse rate

convergence in value to the input pulse rate.

It is shown in this chapter that the first concept of the IF structure has computational

capability in changing the synapse weight, yet it has a limited capability in implementing

other functions. Therefor, the second concept of the IF model is introduced, in the next

chapter, as the core of a scalable pulse computational algorithmic module which is the main

topic of this thesis. In section 2.1, the new design of the IF model and the proof to the

convergence status are discussed. In section 2.2, the first concept of generating the IF model

is introduced to change the synapse weight in a mechanism called the spike time dependency

plasticity (STDP). Section 2.3 is the summary of the chapter.
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2.1 Pulse based IF

The concept of the integrating and fire neuron model (IF) is to integrate the injected currents

to increase the membrane voltage until reaching a threshold. Then the output of the IF model

fires and resets the membrane voltage into its initial value. The membrane voltage starts

increasing again according to the values of the injected currents. This concept is translated

into analog circuit using an integrator and inverter as a comparetor circuit to compare the

membrane voltage Vm with the threshold value (Fig. 2.1-b).

outV

outV

mV

in

mV

(a ) (b ) 

(c ) (d) 

c 

outV

Integrator Inverter 

Integrator Inverter 

mV

Figure 2.1: (a): Integrate and fire schematic circuit. (b): Integrator and cascoded inverter.
(c): Transfer function of the IF unit. (d): The output voltage Vout, the membrane voltage
Vm and input pin in of the integrator
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The lower boundary is adjusted through biasing voltages Vb1 and Vb2. The upper bound is

equal to Vdd−2Veff , where Vdd = 3.3V , and Veff ≈ 0.5V . Note that Veff = Vgs−Vth. The

biasing V1, V2, V3 are used to adjust the integrator in the high gain region. In this circuit,

the biasing is adjusted so that the integration is bounded between 2.3V and 0.9V . Here, the

lower bound is the threshold value and the upper limit is the reset value of the membrane.

In other words, the integration of currents cause the membrane voltage to decrease from it’s

restart value 2.3V until it reach the lower bound or the threshold (0.9 V).

Initially, if the input of the integrator is zero, the outputs of the integrator and the

cascoded inverter are equal to 3.3V and zero volt respectively. If the input voltage increases

and reaches the high gain region of integrator amplifier, then the integration phase starts

to built up which is considered as the discharging phase of the feedback capacitor. When

the output voltage of the integrator Vm reaches the lower bound, then the outputs of the

inverter Vout is turned into logic one (3.3V ). At this point, the output of the inverter is

logic one which resets the output voltage of the integrator to the upper bound (charging

phase of capacitor) through the feedback to the NMOS shown in Fig. 2.1(a). The cycle

of charging and discharging the feedback capacitor C is repeated according to the amount

of the injected current to the inputs of the integrator (’in’ node) as shown in Fig. 2.1(d).

The injected currents to the integrator are applied respectively during off and on states of

the input pulses L for the excitatory path (PMOS transistors) and through feedback pulses

(output pulses) in the inhibitory path (NMOS transistors).

Fig. 2.1(c) shows the relation between the injected current and the output rate. For a

single neuron, it had been remarked that the relation between external stimulus and neural

response is approximately logarithmic [50, 51] which has been noticed in the designed IF

model too. This means that addition of two neural signals is performing multiplication of
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the input signal. For example if x1 is the input to neuron A and x2 is the input to neuron B

and if it is considered that the response of neuron is exactly log, then the sum of the output

of neurons A and B is a multiplicative relation in log domain; log(x1) + log(x2) = log(x1x2).

Thus multiplication and division can be implemented by adding and subtracting outputs of

neurons with a logarithmic transfer function [29]. The importance of the above is to show

the computation aspect of the IF model that can encode two separate inputs into one output

which is a detecting process (i.e: detecting the occurrence of timely simultaneous inputs yet

spatially separate input signals).

Next, the concept of the IF structure as pulse response with respect to pulse rate is

introduced and analyzed. The change of the applied current to the integrator occurs by

applying a stream of input pulses to the gates of the NMOS and PMOS switches at the

input paths of the integrator. The change of the input rate is caused by changing the stream

of the input pulses L.

The circuit is designed to fulfill the convergence property for pulse rate convergence. It is

important to set the parameters (sampling time of integration, capacitance, currents) of Fig

2.1 (a) such that the expected rate of the output pulses convergence to the expected rate of

the input pulses. In order to do that the currents of both excitatory and inhibitory inputs

are set to the same value. The convergence of IF means that the expected value of output

spikes d[n] is equal to the expected value of the input spike Li[n] overall the samples,

En{L[n]} = En{d[n]} (2.1)

To prove the convergence of IF unit, the equation for the change in the step voltage is shown
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in Fig. 2.1 (d) can be written as,

V [n] = V [n− 1]− tsI

C
(L[n]− d[n]) (2.2)

where V is the membrane voltage, n is the instance time, C is the capacitance that represent

Convergence in one neuron 

V[n-1]    V[n] 

𝑉𝑚=V 

𝑉𝑜𝑢𝑡=d 

𝐸 𝑑 𝑛 → 𝐸{𝐿 𝑛 } 

Step voltage= V[n-1] – V[n]=  
𝐼.𝑡𝑠

𝐶
 (𝐿 𝑛 − 𝑑 𝑛 ) 

𝐼 

Figure 2.2: IF model rate convergence

the membrane, ts is the time sampling, I is the biasing current in the NMOS and PMOS

paths, Li[n] is the Bernoulli random input variables and d[n] is the output spikes that take

the values { 0,1 } according to the threshold voltage (Vth) and the membrane voltage V ,

where,

d[n] = 0.5[sgn(Vth − V [n]) + 1] (2.3)

Then it must be proven that when the membrane voltage V [n] is bounded, then the expected

value of the output d[n] is equal to the expected value of the input L[n]:

if |V [n]| ≤ c then En{Li[n]} = En{di[n]}
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where c is a constant. Let’s write the recursive equation 2.2 of the membrane potential, sum

them to deduce the expectation equation of input/ output and let α = tsI
C , then:

V [n] = V [n− 1]− α(L[n]− d[n]) (2.4)

V [n− 1] = V [n− 2]− α(L[n− 1]− d[n− 1]) (2.5)

V [n− 2] = V [n− 3]− α(L[n− 2]− d[n− 2]) (2.6)

Until

V [1] = V [0]− α(L[1]− d[1]) (2.7)

When these equations are added, divided by the number of samples N and then performing

the limN→∞ of both side of the equation, the resultant equation will be as following:

lim
N→∞

[V [n]

N

]
= lim
N→∞

[V [0]

N

]
− α

[ 1

N

N∑

n=1

L[n]− 1

N

N∑

n=1

d[n]
]

(2.8)

If |V [n]| is bounded (if |V [n]| ≤ constant ), then the equation 2.8 is written as:

lim
N→∞

[ 1

N

N∑

n=1

L[n]
]

= lim
N→∞

[ 1

N

N∑

n=1

d[n]
]

(2.9)

Now, Let us return to equation 2.4: V [n] = V [n− 1]− α(L[n]− d[n]) where the output dn

is equal to:

d[n] = 0.5[sgn(Vth − V [n− 1]) + 1] (2.10)

Let V ′[n] = Vth−V [n] and V ′[n−1] = Vth−V [n−1]. If the above equations are substituted
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in equation 2.4 and 2.10 then the following equations are introduced as,

d[n] = 0.5[sgn(V ′[n− 1]) + 1] (2.11)

and

V ′ [n] = V ′ [n− 1] + α(L[n]− d[n]) (2.12)

Now let

d′[n] = sgn[V ′[n− 1]] (2.13)

Substitute equation 2.13 in 2.11

d[n] = 0.5[d′[n] + 1] (2.14)

Substitute equation 2.14 in 2.12

V ′ [n] = V ′ [n− 1] + α(L[n]− 0.5d′[n]− 0.5) (2.15)

2V ′ [n] = 2V ′ [n− 1] + α(2L[n]− 1− d′[n]) (2.16)

Now Let

L′[n] = 2L[n]− 1 , V ′′[n] = 2V ′[n] and

V ′′[n− 1] = V ′[n− 1] then (2.17)

V ′′ [n] = 2V ′′ [n− 1] + α(L′[n]− d′[n]) (2.18)
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Now substitute 2.13 and 2.17 to find d′[n] such that d′[n] = sgn[V ′′[n− 1]] too.

V ′′ [n] = V ′′ [n− 1] + α(L′[n]− sgn(V ′′[n− 1]))

If V ′′[n− 1] > 0 then

V ′′ [n] = V ′′ [n− 1] + α(L′[n]− 1)

and V ′′[n] ≤ V ′′[n− 1]

if

V ′′[n− 1] ≤ c

then V ′′[n] ≤ V ′′[n− 1] ≤ c

and if V ′′[n− 1] < 0

then V ′′ [n] = V ′′ [n− 1] + α(L′[n] + 1)

and V ′′[n] ≥ V ′′[n− 1]

and if

V ′′[n− 1] ≥ c

then V ′′[n] ≥ V ′′[n− 1] ≥ c

Therefore V [n] is bounded since |V [n]| ≤ c.
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and hence,

En{L[n]} = En{d[n]}

2.2 Spike time dependency plasticity

In this section, the designed model of spiking IF neuron is used as a computational model

itself to change the weight of synapses. The mechanism of changing the strength is called ”the

spike time dependency plasticity” (STDP) which is implemented by changing the amount of

the injected current into the neuron depending on the time difference between the pre and

post pulses of the neurons. The change of the injected current depends on previous weight

of the synapse that must be stored as reference. For that purpose, the change of weight

is implemented using a storing mechanism using floating gate MOSFETs. The concept

of synapse plasticity and a novel mechanism of changing the plasticity using floating gate

transistors will be discussed next.

The STDP is a process that adjusts the strength of connections between neurons in the

brain. The adjustment of the connectivity strength is based on the relative timing of a

particular neuron’s output and input action potentials (or spikes). The STDP process is a

tentative candidate for a hypothesis that partially explains the development of an individual’s

brain, especially with regards to long-term potentiation and long-term depression [52, 53].

While different models have been reported for describing STDP, all of them agree on the

causal relationship between the pre- and post-synaptic spikes. The increase or decrease in

the strength of the synapse (W ) depends on whether the pre-synaptic spike arrives before

or after the post-synaptic spike and the time-duration between the pre and post synaptic

spike. If the pre-synaptic spike was generated at time tj and the post-synaptic spike was
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generated at time ti, then one form of STDP can be mathematically expressed as

∆Wij(∆t) ∝ sgn(∆t).A.e|∆t|/τ , (2.19)

where ∆t = tj − ti, sgn(.) denotes the sign of ∆t, while the parameters A and τ are the

amplitude and the time constant of synapse potential respectively. Depending on the re-

tention time of the synapse, the increase in the weight value is referred to the short-term

potentiation (STP) or long-term potentiation (LTP). On the other hand, the decrease of the

weight value is referred to the short-term depression (STD) or long-term depression (LTD).

Fig. 2.3 and 2.6 (a) show the behavior of changing the weight corresponding to the difference

between the time difference between the pre and the post pulses.
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Figure 2.3: The STDP modification function. The synaptic change with ∆T , where ∆T =
tpre − tpost

In this section, it is shown a novel synapse circuit to change the strength of synaptic

connectivity using a nonvolatile memory of the floating gate type. Before introducing the

synapse circuit, an overview of the floating gate will be explained below.
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The floating-gate MOSFET (FGMOS) is a field-effect transistor, whose structure is sim-

ilar to a conventional MOSFET. The FGMOS is used as storage element in digital EPROM

and flash memories or in analog elements in neuronal computational networks [54]. The gate

of the FGMOS is electrically isolated, creating a floating node. A simplified implementa-

tion of the conventional FG memory cell is shown in Fig. 2.4, where the gate of a PMOS

transistor M1 is used for storing charge. Because the gate is completely insulated by high

quality silicon-dioxide, any charge trapped on the gate is retained for a long period of time

(8 bits retention accuracy for about 8 years) [55, 56]. The charge on the floating-gate can be

modified either by inducing a large electric field at the drain of the transistor for hot electron

injection or by Fowler-Nordheim (FN) tunneling of electrons through a parasitic capacitor

Ctun [57]. The total amount of charge on the floating-gate and the magnitude of the applied

control gate voltage Vcg determines the floating-gate voltage Vfg. The drain current of M1

which is a function of Vfg can be copied and used for biasing or for auxiliary analog signal

processing functions (shown in Fig.2.4).
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Figure 2.4: Floating gate memory

Usually Fowler-Nordheim tunneling and hot-carrier injection mechanisms are used to
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modify the amount of charge stored in the FG [58]. The charge on the floating-gate is

modified using hot-electron injection voltage (4.2V in 0.5µm process) and tunneling voltage

(15V in 0.5µm process).

Since the first reported floating-gate structure in 1967 [59], floating- gate transistors have

been used widely to store digital information for long periods in structures such as EPROMs

and EEPROMs. Recently, floating-gate devices have found applications as analog memo-

ries, analog and digital circuit elements, and neuronal computational networks as adaptive

processing elements. In neuronal networks, the choice of changing the weight in the learning

rule is the (STDP) rule. Recent implementations of STDP learning in VLSI spiking networks

demonstrate the use of these networks in classification and computational tasks [60, 61, 62].

However, the slowest weight update rate and time constant in most of these implementa-

tions is limited to the transistor leakage currents in the chosen fabrication process. To obtain

longer update time constants for the synaptic weights, the use of floating-gate technology to

update the weight is described as another implementation of the STDP learning rule. The

synaptic weight is set by the current flowing through a pFET transistor whose gate is a float-

ing node. The charge on the floating node is removed or added using tunneling and injection.

Two main reasons to use the floating gates in STDP learning mechanism in the neuronal

networks; the storage facility of the weight and good energy efficiency [53, 54, 57, 63, 64, 65].

Toward the above goals, a synapse design is suggested for the STDP learning rule. The

circuit uses the floating gate as a storage device for the weight. The adjustment of the

weight in the designed circuit is implemented in a different way such that the injection

and the tunneling processes change the current to the IF neuron discussed earlier. The

adjustment of weight is implemented in an instantaneous way by applying the following

pulses: pre synapse pulse, post synapse pulse, pre shaped synapse pulse and post-shaped
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synapse pulse. The pre synapse pulse, post synapse pulse are input/ output pulses of a

neuron respectively. The pre shape pulses and post synapse pulses impose a delay to the

incoming signals in order to allow weight modification before losing the occurrence of these

pulses. The detail of the designed circuit is listed below, the circuit description and the

simulation result of each part is demonstrated. The synapse design is fabricated on (1.5mm

* 1.5mm) chip as an array of 12 synapse * 8 neurons and also on (3mm*3mm) chip as an

array of 25 synapse * 30 neurons. The connectivity between the neurons on the fabricated

chip can be implemented using a look up table and state machine program configured in

field-programmable gate array (FPGA). The role of FPGA is to process the output of the

chip and route the pulses between the rows and columns of synapses which are connected

directly as a column vector to the neurons.

Fig 2.5 is the architecture for the STDP learning that include the following units:

1. Synapse unit (S): it represents the junction between neurons. The inputs to the synapse

unit are the pre pulse signal, post pulse signal, pre shape signal and post shape signals.

The output of the synapse is the current applied to the neuron. The current here is

either to increase or decrease the pulse rate of IF neuron. Note that more than one

synapse is connected to the input of neurons. The concept here is that the pulses

are applied in time multiplexing using a high speed FPGA for generating pulses as

if the pulses are generated simultaneously. This is the concept of distributed parallel

processing that is used in neuromprphic design.

2. Neuron unit (N): It represents the IF unit discussed in the previous section.

3. Post shape pulse unit: it receives the neuron output pulses and introduces a delay

so that the synapse unit keeps track of timing sequences between the post pulse and
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Figure 2.5: STDP learning using neuronal architecture showing the connectivity between
the synapses, neurons, post shape, pre shape and shift register modules

pre pulse. This Process is necessary for the tunneling phase in the FG because the

tunneling happens when the post pulse come before the pre pulse. Therefore, the post

pulse has the chance to stay a longer time than the pulse itself so that the difference

voltage between the pre pulse and post shape signal is high enough for tunnelling. The

duration of tunnelling phase and the amount of tunnelling voltage decide how much

increment in the floating gate voltage that deceases the current applied to the neuron

and eventually decrease the pulse rate. The change of the weight depends on the time

difference between tpre and tpost shown in the LTD part of the Fig. 2.6 (a). In the

tunneling mode of the floating gate, the required voltage V T to transfer the electron
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the injection and tunneling in the synapse -floating gate of (b). (d): The Layout of synapse
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out of the gate, where V T is > 15v. The post shape circuit, the layout and a graphic

simulation of the shaped circuit is shown in Fig. 2.7

4. Row selector: It represents the shift register to enable and select the rows to input the

pre pulse from the FPGA into pre shape stage.

5. Pre shape pulse unit: It includes first a level shifter to raise the voltage level to a

required level (from 3.3 v to 6 v) to validate the required voltages for injection and

tunnelling of electrons (in 0.5µm process), hot-electron injection requires a voltage
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difference of 4.2v between the source and drain. This unit is used to introduce a delay

time to the pre pulse in order to keep track of the timing sequence between the pre

pulse and the post pulse. This Process is necessary for the injection phase in the

FG because the injection happens when the pre pulse comes before the post pulse.

Therefore, the pre pulse has the chance to stay longer time than the pulse it self so

that the difference voltage between the pre pulse and post shape signal is high enough

for injection. The duration of injection phase and the amount of injection voltage

decide how much decrements in the the floating gate voltage that increase the current

applied to the neuron and eventually increase the pulse rate. Also, the change of the

weight depends on the time difference between tpre and tpost in the potentiation of

weight (”pre before post” part shown in Fig. 2.6 (a)). The pre shape circuit, the

layout and a graphic simulation of the shaped circuit are shown in Fig. 2.8.

An example of circuit simulation for STDP design is shown in Fig. 2.9. In this experiment

ten synapse circuits are connected to one IF neuron model. In the simulation result, it is

shown that the floating gate voltage (vfg) decreases whenever there is a pre pulse pre at

which the integration step occurs. Notice that as the vfg decrease more ,the current increases

in the PMOS transistor M1 and M2 in Fig. 2.6 (b). Thus the integration of the current

in the IF capacitor increases and causes the membrane voltage of the integrator to increase

too. That will cause the membrane potential to reach the threshold level earlier and generate

output pulse earlier too. Hence the time between the generating output pulses by the IF

will decreases (lower time intervals between the post pulses ”post”) and in other word, the

pulse rate of the IF will increase. In the figure, it is shown two time intervals, the first one is

70ms where tpre− tpost is less than that in the second interval 100ms. This means that the
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Figure 2.7: Post pulse shape circuit

integration occurs earlier in the first case and hence the time to reach the threshold to spike

is shorter and thus the rate is faster. Note of the first case has almost simultaneous intervals

”preshape” and ”post” pulses which realize the injection mode of the floating gate while in

the second interval the post pulse comes before the pre pulse which realize the tunnel mode

of floating gate. The integration in the membrane capacitor vmem is shown correspondingly

in the same figure.

The layout for the fabricated chips are shown in Fig.2.10 for 12 synapses * 8 neuron

and for 25 synapses * 30 neuron. The above implementation is to show the computation

power of the IF-synapse module in the learning field at the level of one neuron. The synapse
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Figure 2.8: Pre pulse shape circuit

unit and the IF structure modify the weight by finding the time difference between post

and pre pulses, decide the change of the weight which is translated to a certain amount

of an injected current and modifies the membrane potential in the IF unit. However, the

computation complexity increases in a population of the neuronal network. In the next

chapter, a network of IF units is designed as a basic novel pulse based computational unit

to encode, compute, recognize input events, map and implement non linear functions.
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Figure 2.9: Transient simulation of the STDP circuit

2.3 Summary

In this chapter, a new model of the integrate and fire neuron is designed. The model is

applied to change the synapse weight using a storage transistor ” floating gate” using a novel

synapse circuit. The applied example discussed in the chapter is to show the computational

capability of the integrate and fire model. Yet, the integrate and fire model is limited in

computing other functions. Therefore, the integrate and fire model is reconsidered to verify

the convergence capability in order to use this model as the core of the basic designed pulse

computational algorithmic model in this thesis. The convergence capability for the integrate

and fire neuron means that the expected rate of the output pulse approach the expected rate
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25 synapse, 30 neuron-1.5m*1.5m
Pre-shape synapsePost-shapeNeuron

Figure 2.10: Layout of the STDP architecture. The two chips are identical but are different
in density

of the input pulses. The applied pulses is stochastic where the input/ output parameters are

quantified by the average number one’s to the time period.
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Chapter 3

IFMP

In this chapter, a scalable pulse computational module using Integrate - Fire structure and

Margin Propagation (IFMP), as the main topic of the thesis, will be discussed in details.

Section 3.1 includes a description of the dynamic performance, the analysis of different pa-

rameters in the module and the cascading concept of the IFMP. Section 3.2 includes the

proofs and simulations of the margin propagation properties. Section 3.3 demonstrates

examples of the basic computations using IFMP including the addition, multiplication, di-

vision, power, polynomial, and inner product functions. Section 3.4 shows the analog circuit

of IFMP module and the measurement test of the IFMP chip. The final section summaries

the chapter.

3.1 IFMP: concepts and analysis

The strategy of processing information and the connectivity between neurons in a population

of neurons in the brain is not known yet. There are different types of connectivity schemes

between neurons in the population of spiking neural networks. Some of these neurons act

as an excitatory and others as inhibitory neurons. If the excitatory/inhibitory neurons are

connected to a particular neuron in the population through synapse, then the spike rate of

that neuron will increase/decrease accordingly. The proposed model is inspired from the

neuronal computation of the receptive field in the biological sensory system. In the receptive
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field, the afferent neurons are excited by the external stimuli. The excited spot of the input

stimulus causes high spike rate generated by the afferent neurons of the receptive field.

These neurons inhibit the surrounded afferent neurons through inhibitory synapses in order

to maximize its effect and transmit the spikes to the higher neuronal level as shown in the

neurobiology sensory system figure 3.1 [5]. This observation matched with the log-sum-exp

function discussed earlier which maximize the input value.

Spot of stimuli 

Sensors 

Receptive 

field 

Afferent 

neurons 

Higher 

level 

neurons 

Inhibitory connection  

Basic sensory system       

        

neuron  

Synapse 

Figure 3.1: Organization of a generic neurobiological sensory system, image source:
Wikipedia and Ref. [5, 66]

It is well known that the simplest form of neural coding is the rate-based encoding [11]
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which computes the instantaneous spiking-rate of the ith neuron Ri(t) according to

Ri(t) =
1

T

∫ t+T

t
ρi(t)dt, (3.1)

where ρi(t) denotes the spike-train generated by the ith neuron using a sequence of time-

shifted Kronecker-delta functions as

ρ(t) =
∞∑

m=1

δ(t− tm) (3.2)

where δ(t) = 0 for t 6= 0 and
∫ +∞
−∞ δ(τ)dτ = 1. tm is the firing time of the spike or the delta

pulse.

Since pulse rate is one way to encode information, a pulsed neuronal model is proposed to

implement pulse rate computation with a novel strategy of excitatory and inhibitory neurons

[67]. In this proposal, an architecture is presented which uses the integrate-and-fire structure

to encode the analog input currents passing through switches controlled by a stream of input

pulses. These neuronal structures are connected with lateral inhibition which prevents them

from spiking simultaneously, and has the effect of distributing their sampling uniformly in

time. The new structure has N feed back inhibition which is less than the full connection of

N(N-1) inhibition connections used for example in [68].

Fig. 3.2 shows a schematic diagram of the proposed spiking network. The network is

referred to as an IFMP model and consists of three integrate-and-fire structures N1, N2 and

N3. The excitatory/inhibitory inputs are represented by black (white) triangles and only

modules N1 and N2 have self-inhibitory feedback connections. Given the rate of input spike-

trains L1[n] and L2[n] with n being a discrete time-index, it can be shown that firing-rate of
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Figure 3.2: Schematic of the proposed IFMP unit comprising of three integrate-and-fire
modules

the output Lz[n] (denoted by E(Lz) = limT→∞ 1
T

∑T
n=1 Lz[n]) asymptotically satisfies the

following equation,

[E(L1[n])− E(Lz[n])]+ + [E(L2[n])− E(Lz[n])]+ −→ E(γ[n]) (3.3)

and in general for p inputs,

P∑

i=1

[E(Li[n])− E(Lz[n])]+ −→ E(γ[n]) (3.4)

Note that the equation 3.4 converges only in probability. The difference between the left
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Figure 3.3: a: The error bar between the theoretical and practical rates with respect to
iterations for iterations greater than 3000. b: Error bars for iterations greater than 100

and right hand side of the above equation decreases as the time increases (or the number of

stream sequence of the random inputs increases denoted as n). Hence the summation of the

expected values of the input stream converges to the expected values of the output stream.

Fig. 3.3-a shows the absolute error bars versus the number of iteration for the input stream

where the error is calculated as the difference between the theoretical and the simulated

output rate. In the figure, it is shown that the absolute error bars decrease with iteration

number starting from 100 to 30,000. The nine bars for each iteration represent the error

when the input rate for one input changes from [0.1:0.9] where the bound for the absolute
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error is less than 0.003. In Fig. 3.3-b, it is shown a zoomed out picture for iterations starting

from 3,000 to 30,000 and how is the error decreasing significantly..

Fig.3.4 shows the plot of instantaneous spiking-rates for N1,N2 and N3, when input rate

of the inputs are varied as shown in Fig. 3.4 (below). In this experiment, γ = 0.3 and the

input rate L2 = 0.5 for N2 while input rate L1 for N1 increase from 0 to 1. The dynamic

of the figure follows the IFMP equation 3.4 such that [L1 − z]+ + [L2 − z]+ = γ. Initially,

when L1 is between 0 and 0.3, then the output rate of N1, N2 and N3 is equal to 0, 0.3

and 0.2 respectively. When L1 is 0.35, then the output rate of units N1, N2 and N3 are

0.05, 0.25 and 0.25 respectively. When L1 is 0.6, then the output rate of units N1, N2 and

N3 are 0.2, 0.1 and 0.4 respectively and so on the sum of the output rates for the first two

IF units convergence to a rate equal γ all the time in which the dynamics of IFMP satisfies

equation 3.4 as shown in Fig. 3.4.

To prove the convergence of equation 3.4 above, it is necessary to prove initially the

convergence of each neuron and then the convergence of the IFMP network. The convergence

of one neuron was proven in chapter 2. The convergence equation for the IFMP in Fig. 3.2

is listed as,
∑P
i=1 [E(Li[n])− E(Lz[n])]+ −→ E(γ[n]) or

[En{T1[n]}+ En{T2[n]}] = E{γ[n]} (3.5)

where, T1[n] = E(L1[n])− E(Lz[n])+ and T2[n] = E(L2[n])− E(Lz[n])+

The equation for the membrane voltage for neurons 1, 2 and 3 can be written as,

V1 [n] = V1 [n− 1]− α(L1[n]− T1[n]− z[n]) (3.6)
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Figure 3.4: Spike-rates for neurons N1, N2 and N3 when the spike-rate of L1 is monotonically
increased. For interpretation of references to color in this figure and all other figures, the
reader referred to the electronic version of this thesis

V2 [n] = V2 [n− 1]− α(L2[n]− T2[n]− z[n]) (3.7)

V3 [n] = V3 [n− 1]− α(T1[n] + T2[n]− γ[n]) (3.8)

The membrane potential V3 [n] in the IFMP is designed to be bounded between threshold

voltage and restart voltage (initial voltage). Let T1, T2, and z be the output spike rate

for structures N1, N2 and N3 respectively and γ is the inhibitory input rate for unit N3.

Then resumes proving the convergence by writing recursively the membrane equation for N1

starting from the first recursion as follows,

V1 [n− 1] = V1 [n− 2]− α(L1[n− 1]− T1[n− 1]− z[n− 1]) (3.9)
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V1 [n− 2] = V1 [n− 3]− α(L1[n− 2]− T1[n− 2]− z[n− 2]) (3.10)

Writing the recursive equations for the previous step times will get eventually the initial

recursive equation as follows,

V1 [1] = V1 [0]− α(L1[1]− T1[1]− z[1]) (3.11)

Next, adding all the above recursive equations and divide them by N will have the followings,

V1 [n]

N
=
V1[0]

N
− α(

1

N

N∑

i=1

L1[i]− 1

N

N∑

i=1

T1[i]− 1

N

N∑

i=1

z[i]) (3.12)

since |V1[n]| is bounded, then the limN→∞ of the above equation becomes as,

[E{L1[n]} − En{z[n]}] = En{T1[n]} (3.13)

Similarly for N2,

[En{L2[n]} − En{z[n]}] = En{T2[n]} (3.14)

For N3, the membrane potential is listed below:

V3 [n] = V3 [n− 1]− α(T1[n] + T2[n]− γ[n]) (3.15)

Since V3 is bounded, then the expected value of the output for neuron 3 will be as :

[En{T1[n]}] + En{T2[n]} = En{γ[n]} (3.16)

Now, substitute equations (3.13) and (3.14) in (3.16), then the convergence expectation
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equation is written as follows,

[En{L1[n]} − En{z[n]}] + [En{L2[n]} − En{z[n]}] = [En{γ[n]}] (3.17)
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Figure 3.5: Dynamic characteristics of IFMP unit for different values of γ for MP and IFMP

Fig.3.5 shows the plot of instantaneous spiking-rates for N3, when spiking-rate of the

input rate L1 is varied from 0.01 to 0.99. For this result, the spiking-rate for input L2 is

kept constant to 0.5 as γ changes from 0.01 : 0.05 : 0.56. The plot shows that the spiking-rate

of N3 increases according to a piece-wise linear approximation to the margin propagation

function.

It is proven in [40] that the margin propagation (MP) is an approximation to the log-

71



sum-exp. But how much the approximation is and what are the parameters involved in the

approximation? How successful is the cascading of the approximated model? To answer

these questions, the followings are stated: Let zMP is the output pulse rate for an IFMP

unit of m inputs of inputs L1, L2..Lm and let zLSE = log(
∑m
i eLi) is a solution to

m∑

i

e[Li−zLSE ]+ = 1 (3.18)

where {zLSE : Rm −→ R}, then using the fact that

e[Li−zLSE ] ≥ [1 + Li − zLSE ]+

then
m∑

i

[1 + Li − zLSE ]+ ≥ 1 (3.19)

To make the normalization ideal, the above equation is equated to one,

m∑

i

[1 + Li − zLSE ]+ = 1 (3.20)

m∑

i

[Li − zMP ]+ = 1 (3.21)

where zMP is the approximated MP value to the log -sum -exp as zMP = zLSE − 1

If the normalization factor changes to zLSE/γ = log(
∑m
i e(Li/γ)) as a solution to

m∑

i

e[Li−zLSE ]/γ = 1 (3.22)
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MP is approximated as following, (see Fig. 3.7-a)

m∑

i

[1 + (Li − zLSE)/γ]+ ≥ 1 (3.23)

m∑

i

[γ + Li − zLSE ]+ ≥ γ (3.24)

m∑

i

[γ + Li − zLSE ]+ = γ (3.25)

m∑

i

[Li − zMP ]+ = γ (3.26)

such that zMP = zLSE − γ

Fig. 3.6 shows the above approximation which is equal to γ between zLSE and zMP , zIFMP

where zIFMP = zMP

The MP formulation can be mapped onto a cascaded topology by rewriting the LSE

equation ” zLSE = log(
∑n
i e

(Li)) ” in a recursive form as following,

zLSE [n] = log(
n−1∑

i

e(Li) + e(Ln)) (3.27)

zLSE [n] = log(e
log(

∑n−1
i e(Li))

+ e(Ln)) (3.28)

zLSE [n] = log(e
(zLSE[n−1]) + e(Ln)) (3.29)

Above is the equation for cascading the MP units. The margin of the first unit ( Fig. 3.7-b)

is represented as ,

[L1 − zMP1]+ + [L2 − zMP1]+ = γ (3.30)
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Let L2 = −∞ for the sake of clarity to show the cascading property. It was shown earlier
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that zLSE = zMP + γ then for the second block,

[zLSE1 − zMP2]+ + [L2 − zMP2]+ = γ (3.31)

[zLSE1 − [zLSE2 − γ]]+ + [L2 − [zLSE2 − γ]]+ = γ (3.32)

[zLSE1 − zLSE2 + γ]+ + [L2 − zLSE2 + γ]+ = γ (3.33)

Denote zLSE[n] and zLSE[n−1] are equal to zm[n] and zm[n− 1], therefore,

[zm[n− 1]− zm[n] + γ]+ + [Ln − zm[n] + γ]+ = γ (3.34)

Equation 3.34 can now be implemented using only two-input IFMP (2-IFMP) units in

which it is extended to implement a complex spiking neural network as shown in Fig.3.7

(b). An array of 2-IFMP units is integrated on silicon and the connectivity to the array is

potentially achieved using an FPGA. The FPGA could also implement the synapse by storing

the synaptic weights on a high-density digital memory. Fig. 3.8 shows the response of five

inputs to log-sum exp function that is identical with cascaded margin in series, cascaded

margin in parallel, cascaded pulsed margin (IFMP) in series and cascaded pulsed margin

(IFMP) in parallel.

In [40], it is shown that the approximation between log-sum-exp and MP is enhanced as

the number of inputs increases. In this work, the relation is shown between the γ constraint

and the number of inputs for the exact match. Let L1, L2..Ln be the input scores to the

log-sum-exp formula and these inputs are of equal values then,

zLSE = log(e(L1) + e(L2) + ..e(Ln)) (3.35)
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zLSE = log(ne(L)) (3.36)

In MP with the same assumption related the input scores assuming that the inputs are

greater that zMP (see Fig. 3.8)

n[L− zMP ]+ = γ (3.37)

n[L− zLSE + γ]+ = γ (3.38)

The following equation is the result of substituting equation 3.36 in the above equation,

nL− n(log(ne(L)) + nγ = γ (3.39)

Then gamma needed for exact matching corresponds to the number of input scores (n) as
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following:

γ = −nlog(n)/(1− n) (3.40)

For two different input scores L1 and L2, the value of gamma that matches the exact log-

sum-exp value of zLSE to the approximated value of zMP will substituted in the following

log-sum-exp and the margin equations respectively as,

zLSE = log(eL1 + eL2) (3.41)

[L1 − zMP ]+ + [L2 − zMP ]+ = γ (3.42)

Then the above equation is substituted with the exact value of zMP ,

[L1 − zLSE + γ]+ + [L2 − zLSE + γ]+ = γ (3.43)

If the input scores are greater than zMP , then the value of γ will be,

γ = 2zLSE − L1 − L2 (3.44)

In general, for n input scores L > zMP and m input scores L < zMP , γ is calculated for

best matching between the exact log-sum-exp and the approximated margin propagation

values as following: For the log-sum-exp value,zLSE is calculated as,

zLSE =
N∑

i=1

log(eLi) (3.45)

Here N=n+m input scores where n and m represent the number of inputs greater and less
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than zMP respectively. Therefore, the approximated margin propagation values zLSE for n

inputs is written as,
n∑

i=1

Li − nzLSE + nγ = γ (3.46)

zLSE =

∑n
i=1 Li + (n− 1)γ

n
(3.47)

Equate the two equations 3.45 and 3.47 will get the followings,

N∑

i=1

log(eLi) =

∑n
i=1 Li + (n− 1)γ

n
(3.48)

γ =
n
∑N
i=1 log(eLi)−∑n

i=1 Li
n− 1

(3.49)

In the above derivations, it is shown the convergence and approximation characteristics

of the IFMP related the constraint γ. In the next section, the properties of the IFMP is

shown with proofs and simulation plots.

3.2 IFMP properties

In [69], the properties and proofs were mentioned for analog margin propagation. In this

work, the same properties are tested in pulse computation mode. Experiments are imple-

mented for both the analog and pulse based margin propagation and shows the similarity

between the two modes. The properties and proofs in [69] are listed below:

Since margin approximation uses thresholds [x]+ = max(x; 0), then two lemmas are

listed as facts to be used later for proving some of the other properties.

Lemma 1: ∀a, b ∈ R, [a]+ − [b]+ ≤ [a− b]+.
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Lemma 1: ∀a, b ∈ R, [a]+ + [b]+ ≤ [a− b]+.

Property 1 (P1, Scaling Property): For any α ∈ R,α > 0 and a set of series L =

{Li}, i = 1..N,M(αL, αγ) = αM(L, γ). Here αL = {αLi}, i = 1, .., N.

The proof of this property is simple: if the condition
∑N
i=1[Li − z]+ = γ is satisfied, then

the following condition

∑N
i=1[αLi − αz]+ = αγ is also satisfied. This property indicates that the threshold z scales

with the scaling of the log-likelihood scores and the parameter γ.

Property 2 (P2, Monotonicity): Given a set of scores L = {Li}, i = 1, ..., N, and if

γ1 ≥ γ2 ≥ 0, then M(L, γ1) ≤M(L, γ2).

One of the important implications of the monotonicity is the asymptotic property when

γ → 0 and is given by limγ→0M(L, γ) = max(L).

Proof: Given

N∑

i=1

[Li − z1]+ = γ1,
N∑

i=1

[Li − z2]+ = γ2, γ1 ≥ γ2 ≥ 0, (3.50)

To prove the equation z1 ≤ z2., then the two equations in (3.50) are subtracted to get the

following,
N∑

i=1

[Li − z1]+ − [Li − z2]+ = γ1 − γ2 ≥ 0, (3.51)

Based on Lemma 1,
∑N
i=1[z2 − z1]+ ≥

∑N
i=1[Li − z1]+ − [Li − z2]+. combined with

(3.51), it is deduced that
∑N
i=1[z2 − z1]+ ≥ 0 Thus z1 ≤ z2.

Property 3 (P3, Convexity Property): Given a set of coefficients {αk} satisfying

0 ≤ αk ≤ 1 and
∑
k αk = 1, given a set of hyper-parameters {γk}, M(L,∑k αkγk) ≥
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∑
k αkM(L, γk).

Proof: Given the same group of Lis, and a set of γk, k = 1, .., n.

N∑

i=1

[Li − z1]+ = γ1, ...
N∑

i=1

[Li − zn]+ = γn. (3.52)

Based on property 1, equation (3.52) is transformed as,

N∑

i=1

[α1Li − α1z1]+ = α1γ1, ...
N∑

i=1

[αnLi − αnzn]+ = αnγn.

Add up the above equations, and according to Lemma 2 will get,
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N∑

i=1

[Li −
n∑

k=1

αkzk]+ ≥
n∑

k=1

αkγk. (3.53)

Denote z′ satisfies
∑N
i=1[Li − z′1]+ =

∑n
k=1 αkγk. Based on property 1, the following

equation z′ ≥∑n
k=1 αkzk is obtained. Therefore, M(L,∑k αkγk) ≥∑

k αkM(L, γk)

Property 4 (P4, Superposition Property): Given two sets of scores L and Gof size

N with a well defined ordering, and if L+G represent an element by element scalar addition,

then M(L+ G, γ) ≤M(L, γ) +M(G, γ). Proof: Given,

N∑

i=1

[Li − z1]+ = γ,

N∑

i=1

[gi − z2]+ = γ, (3.54)
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Figure 3.11: Convexity property for spiking IFMP compared to the continous values of
margin propogation

What is needed to prove is: if

N∑

i=1

[Li + gi − z3]+ = γ, (3.55)

then z3 ≤ z1 + z2.

All the Lis are sorted and rearranged in a decreasing order so that L′1 ≥ L′2 ≥ L′3... ≥ L′N ,

then N1 is used to represent the number of Li above the threshold z1. The same operations

are done to gis. All gis are stored and rearranged decreasingly as g′1 ≥ g′2 ≥ g′3... ≥ g′N . And

the number of g′is above the threshold z2 is N2. Rewrite equation (3.54) as,

N∑

i=1

L′i −N1z1 = γ,

N∑

i=1

g′i −N2z2 = γ, (3.56)
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Figure 3.12: Margin propogation property for spiking IFMP compared to the continous
values of margin propogation.

Assume N2 ≥ N1 then from the latter equation in (3.56), the following will have,

0 ≤
N1∑

i=1

g′i −N1z2 ≤ γ. (3.57)

Thus by adding the two equations in (3.56), the following will have,

γ ≤
N1∑

i=1

L′i +

N1∑

i=1

g′i −N1z1 −N1z2 ≤ 2γ. (3.58)

Equation (3.58) can be transformed as
∑N1
i=1[L′i + g′i − (z1 + z2)] ≥ γ from which can be

deduced that
N∑

i=1

[Li + gi − (z1 + z2)]+ ≥ γ, (3.59)
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Given (3.55) and (3.59), based on Property 2, it can be deduced that z3 ≤ z1 + z2

and vice versa if N1 ≥ N2 is assumed. If written in MP function, it is M(L + G, γ) ≤

M(L, γ) +M(G, γ).

Property 5 (P5, Offset property): Given a set of scores L of size N and a scalar

g ∈ R, then M(L + g, γ) = M(L, γ) + g. Property 5 implies that if a constant offset

to all the elements of input set leads to an equivalent offset in the output of the margin

approximation function.

Proof: Based on the proof of Property 4, given

∑N
i=1[Li − z]+ = γ, if G is a scalar set with each gi = g, g ∈ R, equation (3.55) can be

rewritten as
∑N
i=1[Li + g − (z + g)]+ = γ. Written into MP function format, it becomes

M((L+ g), γ) = M(L, γ) + g.
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Figure 3.13: Super position property for spiking IFMP compared to the continous values of
margin propogation.
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The computational properties above are applied successfully to the spiking networks

based on the proposed IFMP model. It is shown in Fig.3.9, 3.10, 3.11, 3.12 and 3.13 respec-

tively the close match between the approximated continuous MP and the pulse-mode margin

propagation (IFMP) for all of the above properties. Because of the limitation in represent-

ing the probabilities between [0,1], the above properties, especially the scaling and the offset

properties, are used to represent the input parameters to approximate the nonlinear com-

putational functions. In the next section, examples of nonlinear functions are approximated

using IFMP pulse computations.

3.3 Examples of basic computations using IFMP

Before applying the model into algorithmic applications, it is necessary to show how the

IFMP unit is used to approximate the basic computations such as addition,subtraction,

multiplication, division, power, inner product and polynomial. The inputs to these units are

probabilities and must be converted into logarithmic format. Then the resultant negative

values are scaled using the properties of scaling and offset, as discussed above, in order to

keep the input values between zero and one. To retrieve the correct computation values,

the output of the computational function is scaled back in the reverse order of input scales

as shown in Fig.3.14. The basic computations are implemented using log-sum-exp, analog

margin propagation and pulsed margin propagation as an approximated operation as well as

the error for each of the above computations will be shown graphically for different values

of input probability rates.

Addition: Let f = a+ b = elog(a+b) then the exponent z can be represented in log-sum-
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Figure 3.14: Input/output stages in the Pulsed computational unit.

exp and margin format as followings(see Fig. 3.15-a)

z = log(f) = log(elog(a) + elog(b)) (3.60)

z = log(eL(a) + eL(b)) (3.61)

z = M(La, Lb, γ) (3.62)

where L stand for log function.

Multiplication: Let f = a.b = elog(a.b) then the exponent z can be represented in

log-sum-exp and margin format as followings (see Fig. 3.15-b)

z = log(eL(a)+L(b)) (3.63)

z = M(La + Lb, γ) (3.64)

Division: Let f = a/b and c = 1/b then f = ac. Then the above can be represented as
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a multiplication operation in IFMP representation as,

z = M(La + Lc, γ) (3.65)

Power: Let f = a1a2a3... = elog(a1a2a3...) then the exponent z can be represented in

log-sum-exp and margin format as followings (see Fig. 3.15-c)

z = log(eL(a1)+L(a2)...) (3.66)

z = M(La1 + La2 + ..., γ) (3.67)

Subtraction: In the subtraction function, the differential form is used such that f = a−b

can be written as f = (a+ − a−)− (b+ − b−) = (a+ + b−)− (b+ + a−)

f = elog(a++b−) − elog(b++a−) (3.68)

The following two exponents z+ and z− are then evaluated using two IFMP’s as shown in

Fig. 3.15 (d) such that

z+ = M(La+ , Lb− , γ). (3.69)

and

z− = M(Lb+ , La− , γ). (3.70)

Polynomial: Let f = a0 + a1b1 + a2b
2
2 + a3b

3
3 then the exponent z can be represented

in log-sum-exp and margin format as followings (see Fig. 3.15-e)

z = log(eLa0 + e
La1+Lb1 + e

La2+2Lb2
+....

) (3.71)
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z = M(La0 , La1 + Lb1 , La2 + 2Lb2 .., γ) (3.72)

Inner Product: Let f = a0b0 +a1b1 +a2b2 + ... then the exponent z can be represented

in log-sum-exp and margin format as followings (see Fig. 3.15-f)

z = log(e
La0+Lb0 + e

La1+Lb1 + e
La2+Lb2 + ....) (3.73)

z = M(La0 + Lb0 , La1 + Lb1 , La2 + Lb2 ..., γ) (3.74)

0 0.5 1
0

0.1

0.2

0.3

0.4

op
1
 (op

2
= 0.3) 

P
ul

se
 r

at
e 

fo
r 

F

F=op
1
 . op

2

 

 

0 0.5 1
−0.04

−0.02

0

0.02

op
1
 (op

2
= 0.3) 

E
rr

or
 r

at
e

 

 IFMP (sw)
MP
LSE
IFMP (circuit)

Error1=LSE −IFMP (sw)
Error2=LSE −IFMP (circuit)

Figure 3.17: Computational functions for multiplication using IFMPsw,MP, LSE and
IFMPcircuit. The right figure represent the error between the LSE computation and
IFMPsw (Error1), and IFMPcircuit (Error2)

The above computations are simulated using log-sum-exp (LSE), margin propagation for

real values and pulsed IFMP. The left parts of Fig.3.16 ,3.17, 3.18, 3.19 and 3.20 represent the

computational function for addition, multiplication, power, inner product and polynomial for

pulse-based IFMP software simulation, continuous values MP, LSE and pulse-based hybrid

circuit simulation IFMP, while the right part represents the error between the LSE and

pulse based IFPM values for both software and hybrid circuit simulation. The absolute
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errors between the software simulation and the theoretical output rates for all computations

are less than 0.03, where the number of iteration in these cases are 10000. On the other

hand, the number of iterations for the circuit simulation in cadence are applied for 3000 for

the sake of storage space allocated for research purpose. Therefore, the absolute errors in

the cases of circuit simulation are higher which are less than 0.07.

The rates in the above experiments are chosen so that the output computational results

are in the limits of probability values of [0:1]. If the first operator in the addition case for

example is 0.3, then the second operator in the experiment is between [0:0.6]. In the mul-

tiplication and power cases, the computational results have no conflict with the probability

limit. As experimental procedure for the multiplication operation, one operand is equal to

0.3 and the other is equal between [0.1:0.9]. For the power function, the range of operand in

the experiment is between [0.3:0.7]. For the inner product function, there are four operands

as discussed in the mapping above,(op1, op2, op3, op4), three of them are fixed to 0.3, 0.4 and

0.5 respectively and the forth operand varies between [0.1:0.8]. For the polynomial function,
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Figure 3.20: Computational functions for polynomial using IFMPsw,MP, LSE and
IFMPcircuit. The right figure represent the error between the LSE computation and
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there are three operands as discussed in the mapping above,(op1, op2, op3), two of them are

fixed to 0.3 and 0.4 and the third operand varies between[0.1:0.6].

For more comprehensive display of the pulse based computations explained above, ex-
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Figure 3.21: Output Rates and error corresponding to the theoretical computation for both
the circuit simulation in (a) and software simulation in (b) to evaluate the multiplication
function using pulse computation

periments are implemented when both of the IFMP inputs are changing. For example,

experiments are implemented to evaluate the output rates for the pulse based IFMP circuits

and theoretical modules to show the dynamic characteristics for the multiplication operation

and polynomial operation as in Figure3.21, 3.22 and 3.23 respectively. In the multiplication

function, the range of first and the second operand is between [0.1, 0.9]. In the polynomial
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function, one operand is fixed on 0.3 and the other two operands are in the range of [0.1:0.3]

and [0.1:0.6] respectively. In the inner product function, two operands are fixed to 0.4 and

0.5 and the other two operands are in the range of [0.1:0.6] and [0.1:0.7] respectively.The

absolute errors in the above cases are less than 0.1. The errors are due to either the number

of random pulses in the simulation and circuit simulation or the balance accuracy between

the excitatory and inhibitory paths of the IFMP circuit.

3.4 IFMP: circuit, layout and tested measurements

The analog circuit of IFMP module in Fig. 3.24-(a) is shown in Fig. 3.24-(b). Each

neuron in the IFMP module represents the integration and threshold operations that are

designed between two bounds (2.34v, 0.9v). Initially, if the input of the integrator is zero,

the outputs of the integrator and the cascoded inverter are equal to 3.3 and zero volts

respectively. If the input voltage increases and reaches the high gain region of integrator

amplifier, then the integration phase will built up which is considered as the discharging phase

of the capacitor. The input current is integrated and the output voltage of the integrator

discharges to the lower bound. At this point, the output of the cascoded inverter turned into

logic one which will turn the output voltage of the integrator to the upper bound (charging

phase of capacitor). The cycle of charging and discharging the capacitor C is repeated

according to the amount of the current injected to the inputs of the integrator (’in’ node).

The injected currents to the three integrators are applied respectively during off and on

states of the input pulses for the excitatory path (PMOS transistors) and inhibitory path

(NMOS transistors). Modules N1, N2 have excitatory inputs (PMOS path), one self feedback

inhibitory input (NMOS path) and one output feedback inhibitory input (NMOS path)
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Figure 3.22: Output Rates and error corresponding to the theoritical computation for both
the circuit simulation in (a) and software simulation in (b) to evaluate the polynomial func-
tion using pulse computation

while Module N3 has two excitatory inputs (PMOS paths) and one inhibitory input. The

last inhibitory input is represented by an adjustable constrain rate γ explained earlier.The

values of the capacitance, current, W/L and the biasing voltages in Figure 2(3) are as follows:

C = 200 ∗ 10−15F, I = 10−12A,W/L = 6/3m,V b1 = 0, V b2 = 3.3v, V 3 = 0.7v, V 2 =

1.37v, V 1 = 1.4v.
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Figure 3.23: Output Rates and error corresponding to the theoritical computation for both
the circuit simulation in (a) and software simulation in (b) to evaluate the inner product
function using pulse computation

The dynamic characteristics of the IFMP module are verified in theoretical and layout

design on standard 0.5m CMOS technology shown in 3.25 (b). In the experiments using

the structure in 3.25(a), the chip is biased to ensure the balance between the excitatory

and inhibitory parts using National instrument data acquisition input/ output. The biasing

voltages are applied utilizing a Matlab program to initialize the ADC and DAC converters.
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Figure 3.24: (a): Two inputs IFMP module. (b): Analog circuit for the IFMP module

The USB is supported with functions to communicate the input / output between th e PC

and FPGA. The inputs are applied as random pulses with certain specified rates which are
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Figure 3.25: (a): Interfacing boards for testing the IFMP chip. The PC and FPGA are
used to generate random pulses/getback the output pulses to/from the IFMP circuit. The
National instrument interfacing card is used to generate voltage biasing to the transistors
of the IFMP as well to intiate the stack memory to pull the stored pulses to the PC. (b):
IFMP chip includes array of 8*8 IFMP chip and decoders

generated using Verilog hardware description language (Verilog HDL). The HDL program

is converted into a bit file and is reconfigured into hardware components on FPGA using
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Figure 3.26: Sample tests of dynamic characteristics of IFMP when γ = 0.2 in (a) re-
spectivally and the deference between the dynamic characteristics of the measured values,
theoritical rates in (b)

Xilinx Integrated Software Environment (ISE 9.2) software. Experiments are implemented

and shown in Figure 3.26, 3.27 and 3.28 to test the convergence of the dynamic characteristics

of IFMP chip which match the theoretical convergence rates. In the figures, it is shown the

measured output rates, theoretical rates and the difference between these two rates in when

the input rates changes between 0 and 1 for three gamma rate (0.2, 0.4 and 0.6). The
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Figure 3.27: Sample tests of dynamic characteristics of IFMP when γ = 0.4 in (a) re-
spectivally and the deference between the dynamic characteristics of the measured values,
theoritical rates in (b)

experiments are implemented for the three values of gamma when the range of input rates

L1 and L2 are chosen between [0.2:0.6] and [0.3:0.8] respectively. The absolute errors for

the three experiments are less than 0.1. In addition to the reason of the convergence error

caused by the value of the iterations assigned to the stream inputs, there is another reason

for the error in the IFMP layout. The main reason for the error in the IFMP layout is to
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Figure 3.28: Sample tests of dynamic characteristics of IFMP when γ = 0.6 in (a) respectively
and the diference between the dynamic characteristics of the measured values, and theoritical
rates in (b)

maintain the balance in current between the exitatory and inhibitory paths of the IFMP

circuit. The balance achieved by fixing the biasing voltages to certain accurate values. In

circuit simulation, there is no problem in fixing these values but a problem in the circuit

layout chip appears because the biasing voltages are common for all the paths due to pins

limitation of the chip. This may not cause a problem if there is no mismatch in the physical
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performance of the transistors on a chip but that is not the case in real world. Therefore

the number of pulses to coverage the input/output rates and the mismatch of transistors in

hardware are the main reasons for the error in the measurement results of IFMP simulation

and circuit layout.

It is well known that the low current biasing in subthreshold is important in low power

applications, particularly in neuromorphic applications that simulate various aspects of brain

function [1], [70]. Since the new designed modules, discussed above, are verified in low power

circuits, which imply low current and/or voltage levels, then the designed circuits are more

susceptible to the effect to noise. Therefore, It is important to suppress the effect of the noise

in the design since the noise due to the thermal change can not be avoided. In this novel

design, the type of connectivity of the IFMP network reduce the effect of the noise because

the inhibitory connection suppress the noise to maintain the desired dynamic characteristics

as will be discussed next.

The main parameter that causes the noise in the weak inversion mode is the thermal

effect. A formula for subthreshold noise in MOS transistors has been derived by Enz [71]

and Vittoz [72] from the consideration that the channel of transistor as being composed

of a series of resistors. The integrated thermal noise of all these resistors yields the net

thermal noise in the transistor. In [73], the white- noise is derived for the subthreshold MOS

transistors that include the thermal effect as the sum of fluctuation components from the

forward and reverse currents.

However, it is proven in neuronal population that the inhibitory connections between

neurons shape the noise or reduce the noise and thus increase the signal to noise ratio

(SNR). The SNR is improved if either the output signal is increased or the noise is reduced.

In [74], [75], the authors proved that a method named noise shaping is used to improve
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the SNR in neuronal population. In the above approach, the inhibitory couplings between

neurons are used to shift the noise power from one part of the spectum to another, thereby

shaping the spectrum and more importantly, lowering the noise at the frequencies of interest.

Therefore, it is possible in the noise shaping method to suppress the noise power within the

signal bandwidth and thus improve the SNR. In [76], the author shows that the noise shaping

is used to reduce the noise effect in performance of the analog circuit design fabricated on

0.5 µ m CMOS process.

In [5], the noise-shaping mechanism is discussed using the integrate-and-fire model. Con-

sider a neuronal network consisting of N integrate-and-fire neurons. Each neuron is charac-

terized by its intrinsic voltage vi(t), i ∈ [1, N ], and the neuron fires whenever vi exceeds a

threshold Vth. Between consecutive firings, the dynamics of the membrane potential can be

expressed using the integrate-and-fire model as [74]:

dvi(t)

dt
= −vi(t)/τm −

N∑

j=1

Wij exp(−(t− tmj ) /τs) + αxi(t). (3.75)

Here, tmj are the set of firing times of the jth neuron and τm denotes the time-constant of

the neuron capturing the leaky nature of integration denoted by the leaky potential of the

membrane vi(t)/τm . The exponential term and the related time constant τs models the

pre-synaptic filter h(t) in Eq. (4.8) and time constant of the pre-synaptic spike-train. The

parameter set Wij denotes the synaptic weights between the ith and jth neurons and also

denotes the set of learning parameters for this integrate-and-fire neural network.

To show how the synaptic weights Wij influence noise-shaping, consider two specific cases:

(a) when Wij = 0, implying there is no coupling between the neurons and each neurons fires

independently of the other; and (b) when Wij = W implying that the coupling between the
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Figure 3.29: (a): Uncoupled connection between neurons and the coresponding raster plot.
(b): Coupled connection between neurons and the coresponding raster plot showing the
uniform and non uniform occurance of pulses at the bottom of the raster plots

neurons is inhibitory and constant. For a simple demonstration, τm is set to 1ms and N

is set to 50 neurons. When the input xi(t) is applied, the raster plot is used to indicate

the firing signal of the 50 neurons for both the uncoupled case and the coupled case as

shown in Fig. 3.29 (a) and (b) respectively. In the raster plot of the two figures, the y-axis

represents the neuron Ni that fires with respect to time, where i is the index of neurons. The

lower parts of the raster plots present firings time of the neurons. For the uncoupled case,

the population firing show clustered behavior where multiple neurons fire could fire in close

proximity, whereas for the coupled case, the firing rates are respectively uniform indicating
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that the inhibitory coupling reduce correlation (introduce temporal correlation) between the

neuronal firings. In the frequency domain, these correlations shift the noise power from one

part of the spectrum to another, thereby ”shaping” the spectrum and, more importantly

increase the SNR ratio.
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Figure 3.30: Power spectrum to show that the noise is suppressed in coupled connection of
neurons compared with the uncoupled connection of neuron shown in Fig. 3.29

To understand the implication of the inhibitory coupling for noise-shaping, a sinusoidal

input at frequency f0 = 1 kHz is applied to all the neurons and the population firing rates

are analyzed in frequency domain using a short time Fourier transform. Fig. 3.30 shows

a comparison of the power spectrum for a single neuron, a neuron in a population of a

coupled and uncoupled network respectively. The spectrum for a single neuron shows that it

is unable to track the input signal since its bandwidth (1 kHz) is much larger than the firing

rate of the neuron, whereas for the uncoupled/coupled neurons in a population case the input

signal can be easily seen. For the uncoupled case, the noise floor, however, is flat, whereas

for the coupled case, the noise floor from the signal band is shifted in the higher frequency
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range. The shaping of the in-band noise-floor enhances the SNR ratio of the network for a

large network [74]. therefore, It can be deduced that the inhibitory connections enhance the

performance of the IFMP network in the existence of thermal noise.

3.5 summary

To summaries this chapter, the characteristics of the new designed pulse computational

IFMP module is verified in code simulation, mapped and verified into analog circuit as sim-

ulation and chip layout. The results in all the above simulations proved the convergence

equation of the IFMP in verifying the dynamic characteristics and approximating the non-

linear functions. The convergence of IFMP module depends on three main points:

1- The first parameter is the number of iterations of random pulses per time that repre-

sents the probability to satisfy the convergence. This effect is verified in software simulation

and showed that the convergence is enhanced as the number of random input pulses to rep-

resent the rate increases above 3,000. The convergence can be achieved for less than 3,000

iterations (1,000 iterations), yet these lower iterations is not stable on repeatedly running

the experiments. The reason is that the type of input pulses are random and that the num-

ber of pulses per time period in repeating the experiment is not constant. As a results of

the randomness of the inputs, the chance of the potential membrane potential to reach the

threshold and generate pulses is not fixed when the experiments are repeated. Hence, the

average number of pulses per time might not be to satisfy the convergence.

2- The second parameter is the accuracy of the current balance between the excitatory

and the inhibitory paths of the analog IFMP module. This effect is very important in

the circuit and layout design. If the biasing current which is measured in pico-amperes
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(20PA) and balanced accurately, then the convergence tends to be stable and close to the

software simulation. Therefore, it is recommended, for future work, to design a fixed biasing

techniques to stabilize the analog circuit biasing voltages. Therefore, this second parameter

effect is the reason in the difference error between measured and simulated results discussed

in this chapter.

3- The mismatch of the transistors in the hardware implementation causes difference

biasing in the excitatory and inhibitory paths. This mismatch is caused by the common

biasing for all the neuron modules in the IFMP array because of the limitation of the pins

on the chip packages. The last reason is the cause of the error in hardware implementation

besides the above two reasons for the error.
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Chapter 4

IFMP Applications

This chapter shows three applications for the newly designed pulse computational architec-

ture, the first two applications are concerned with factor graph algorithm in recognition of

discrete sequences and trajectory traces using Hidden Markov Model (HMM) while the third

one is a binary classification using support vector machine (svm). The purpose of applying

the above applications is to show that pulse computations are applicable to complicated

dynamic algorithms. If the newly designed pulsed computational architecture is applied and

verified on a silicon chip then this unit could be the core of sensory designs of the neuromor-

phic applications. The chapter includes an introduction to the HMM, sequence recognition

HMM, trajectory detection HMM, introduction to svm, binary classification using svm and

finally a summary to the chapter.

4.1 Introduction to the Hidden Markov Model

In this section, a brief explanation of the Markov model and the hidden Markov model

algorithm is introduced. Markov model is a probabilistic model of symbol sequences in which

the probability of the current event is conditioned only by the previous event. Consider a

sequence of random variables s1, s2, , sN in which the subscripts indicates word-position in a

sentence. Here, the random variable is a function, and in this case its range is the vocabulary

of the language. Then the probability of words s1, s2..st according to Bayes formula is equal
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to,

p(s1 = w1, s2 = w2, ..st = wt) = p(st = wt | s1 = w1, s2 = w2, ..st−1 = wt−1)*

p(s1 = w1, s2 = w2, ..., st−1 = wt−1)

(4.1)

p(s1 = w1, s2 = w2, ..st = wt) = p(st = wt | s1 = w1, s2 = w2, ..st−1 = wt−1)∗

p(st−1 = wt−1 | s1 = w1, s2 = w2, ..st−2 = wt−2)∗

......p(s1 = w1)

(4.2)

Therefore, the probability of the last state can be recursively written as,

p(st = wt | s1 = wi, s2 = w2, ..st−1 = wt−1) = p(st = wt | st−1 = wt−1) (4.3)

On the other hand, the Hidden markov Model (HMM) is a probabilistic algorithm that is

used to estimate the probabilities of unobserved events (in order to be decoded or recognized

) using probabilities of observed events. For examples: in speech recognition, the observed

data is the acoustic signal and the spoken sequence of words are the hidden parameters

and the goal is to find the maximum probability out of all possible sequences of words. In

handwriting recognition, the observed data is the designed images of words and the hand

written words to be decoded or recognized are the hidden parameters. The estimation of the

probabilities for unobserved events can be evaluated using the forward recursion algorithm.

The following shows how to calculate the probability using the HMM- forward algorithm
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[77]. Given the following parameters for the HMM states s1 : sn in Fig.4.1(a):

1. Initial state distribution for the first state.

2. Transition probabilities from one state to the next or self state : p(sk/sk−1)

3. Emission or observation probabilities: x1:k

    

            a11=0.8            a22 =0.8         a33= 1

                        S1                  S2                  S3                         
  

 

a12=0.2 a23=0.2

(b)

S1

S2

S3

Time 

1         3         3          2

(b)(a)

X1

 S1  Sk-1  Sk-1

XK-1 XK

Figure 4.1: (a): HMM states(s)and emission events (x). (b): Three state HMM and it’s
representation using trellis with four input sequence to be recognized (1,3,3,2)

The goal is to compute the probability of sk/x1:n according to the marginalization prop-

erty as p(sk/x1:n) =
∑m
sk−1=1

p(sk, sk−1, x1:k−1) for k = 1 : m, then the probability is

factorized and normalized as following;

p(sk, x1:k) =
∑m
sk−1=1

p(xk/sk, sk−1, x1:k−1)∗

p(sk/sk−1, x1:k−1) ∗ p(sk−1/x1:k−1) ∗ p(x1:k−1)

(4.4)

In the first term p(xk/sk, sk−1, x1:k−1), xk is independent on both sk−1 and x1:k−1.

Similarly, in the second term p(sk/sk−1, x1:k−1), sk is independent of x1:k−1 . The terms
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p(sk−1/x1:k−1) ∗ p(x1:k−1) is equivalent to p(sk−1, x1:k−1), therefore,

p(sk, x1:k) =
∑m
sk−1=1

p(xk/sk) ∗ p(sk/sk−1) ∗ p(sk−1, x1:k−1) (4.5)

Let αk−1(sk−1) = p(sk−1, x1:k−1) and

αk(sk) = p(sk, x1:k) then

αk(sk) =
∑m
sk−1=1

p(xk/sk) ∗ p(sk/sk−1) ∗ αk−1(sk−1) (4.6)

The above equation represents the HMM recursive equation where αk−1(sk−1) is the

pre or initial state distribution, p(sk/sk−1) is the transition probability and p(xk/sk) is the

emission probability. Thus the forward algorithm evaluate recursively the probabilities from

the current state to backward state. HMM is feasible in recognition but it has limits in

scalability for implementing large networks in analog circuit implementations using current-

mode or voltage-mode circuits [78]. In the next section, it can be shown how to implement

an asynchronous analog HMM circuit using log-likelihood decoding directly in time-domain

using binary pulses. The core of the implementation is an integrate-and-fire margin prop-

agation circuit that can approximate a soft-max function and can be cascaded together to

build large, complex HMMs. The simulation results obtained at a circuit level show that

the implementation of the asynchronous HMM is equivalent to the results obtained from a

software implementation.
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4.2 Sequence detection

In this application, the detection for sequences might be a recognition of slices to recognize

a character, recognition of letters in certain sequence to recognize a word or determination

of certain order in DNA sequence. In these applications, a sequence of numbers are needed

for recognition. If it is intended to detect a specific discrete number in a sequence, then

the required observations for such sequence are trained to get the highest probability of

occurrence for successful detection. The resultant probability can be assigned in a matrix

named as an observation probability matrix. The observation probability, as discussed in the

previous section, is one of the main parameters in HMM. The dimension of the observation

matrix depends on the number of HMM states and the size of numbers to be detected. For

example, if the number of HMM states are three and the discrete numbers to be detected

are a set of {1,2,3...10}, then the size of observation matrix is (3x10), where the row is

denoted to the state and the column is denoted to the sequence number. Note that the sum

of observation probability for each state (row) in the matrix is equal to 1. In this section, the

number of states are chosen as three states and the the numbers to be detected in a sequence

are chosen as set of {1,2,3}. Therefore, the dimension of the observation probability matrix

is (3 x 3). Another parameter in the HMM sequence detection is the transition probability

matrix which includes two types of probabilities: 1- the transition probability from one state

to the next state. 2- the probability of being in the same state. Since there are three states

in the HMM model, then the size of the observation matrix is (3x3), where the rows and

columns denoted to the state number. The same condition related the sum of probabilities in

each row or state in the observation matrix is valid in the transition matrix too (ie, the sum

of probabilities in a row is equal to one). Next, the HMM model for detecting a sequence of
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numbers using the newly designed pulse computational IFMP algorithm will be discussed in

details.

A generic architecture of an HMM is similar to that of a finite-state-machine with mul-

tiple states s1, .., sk where the transition between the states occurs with a finite probability

and each of the states generates random observations or symbols according to a well-defined

probability distribution [79]. As an example, a three-state HMM is shown in Fig.4.1(b) which

label the transition probability between states si and sj . For each state, the probability dis-

tribution associated with it is based on which an observation is generated. If the probability

distribution is continuous then the observations are the elements of real numbers vector. If

the probability distribution is discrete then the observations are symbols drawn from a finite

alphabet. In the example, 3-states HMM shown in Fig.4.1(b) can be mapped into trellis as

three states to detect a four items sequence with time, the discrete probability distribution

over three symbols is compactly represented using a observation probability matrix. An

example of the observation matrix is:

O =




0.9 0.1 0.0

0.0 0.2 0.8

0.0 0.9 0.1




where the element Oi,x represents the observation probability of generating symbol x ∈

{1, 2, 3} while being in state Sj . The transition and observation probabilities for an HMM

(discrete or continuous) are typically estimated using a training procedure based on a pre -

collected sequence of observations. During the decoding procedure, the trained HMM model

H1 is used for estimating the posterior probability p(x|H1) of generating an observation

sequence x =∈ {1, 2, 3} given the HMM. In practice, estimation of p(x|H1) is implemented
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using a forward recursion algorithm which can be expressed as,

pj [n] =
∑

i∈Cj
pi[n− 1]aijOj,x[n] (4.7)

where pj [n] represents the probability of being in state Sj at time instant n, aij represents

the transition probability from state Si to state Sj , Oj,x[n] is the emission probability of

an observation x in state Sj at instant n and Cj is the connection index for state Sj . For

example, in Fig 4.1, the recursion for state S2 can be simplified to

p2[n] = p1[n− 1]a12O2,x[n] + p2[n− 1]a22O2,x[n] (4.8)

Practical implementations of HMM decoding algorithms map equation 4.8 into log-

domain such that the product of probabilities does not lead to precision or truncation errors.

Define L(pj [n]) = log(pj [n]), L(aij) = log(aij), L(Oj,x[n]) = log(Oj,x[n]), then equation 4.7

can be expressed in the log-domain as,

L(pj [n]) = log(
∑

i∈Cj
exp(L(pi[n− 1]) + L(aij) + L(Oj,x[n]))) (4.9)

Equation 4.9 involves a logarithm of a sum of exponents, abbreviated as log-sum-exp, for

which a piece-wise linear approximation called margin propagation is discussed earlier. Given

a general form of log-sum-exp function by

zlog = log(
P∑

i=1

exp(Li)) (4.10)

where Li, i = 1 : P represents the log-likelihood scores as in equation 4.9, margin propagation
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generates an approximation z ≈ zlog where z is computed as a solution to the following

equation
P∑

i=1

[Li − z]+ = γ (4.11)

where γ is an adjustable parameter which is chosen to improve the quality of approximation.

The operation [.]+ denotes a threshold operation whose output value is generated if the input

is positive, otherwise equals zero. Using equation 4.11 to approximate the equation 4.9 the

following recursion is obtained.

∑

i∈Cj
[L(pi[n− 1] + L(aij) + L(Oj,x[n]))− L(p[n])]+ = γ (4.12)

A basic circuit of margin propagation (IFMP) is designed for two inputs P = 2 indicated

in equation 4.11. Any state of the three states in Fig. 4.2 (below) represents an IFMP

model and consists of three integrate-and-fire structures. For the first structures of state 1

(N1, N2, N4, N5, N7, N8), there are three excitatory inputs (black triangle) and two inhibitory

inputs (white triangle): the self-feedback and the feedback from the output of the IFMP

structure, where the output here is fed from the third structure of the local state. The third

one of each state (N3, N6, N9), has two excitatory inputs and one inhibitory input. Let us

denote L1[n] and L2[n] with n being a discrete time-index as the rate of input spike-train for

the first two structures, then it can be shown that firing-rate of the output Lz[n] (denoted

by E(Lz) = limT−→∞ 1
T

∑T
n=1 Lz[n]) asymptotically satisfies.

P∑

i=1

[E(Li[n])− (Lz[n])]+ −→ E(γ[n]) (4.13)

Note that equation 4.13 convergences only in probability. The parameters in the above
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equations represent the expected values of binary (pulse) sequences. For example, a rate of

L = 0.5 means that half of the equally space bits in a stream is equal to logic 1.
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Figure 4.2: Three state HMM cascaded using IFMP structure to decode sequence and the
analog circuit (below) for each cascaded state

The analog circuit of IFMP module shown in Fig. 4.2 (upper) (explained earlier in
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chapter 2) is mapped to each state of the HMM states shown in 4.2 (lower). The inputs of

the analog circuit shown in the figure represent the input terms for state S2. Each state

of the HMM states is represented by ”two-inputs IFMP” unit. One input is fed by the

sum-log of self feedback pulses of the state, observation probability to an input sequence

and self transition probability. The second input is fed by the sum-log of the previous pulse

state, observation probability to an input sequence and transition probability from a previous

state to present state. These input are applied into the IFMP as expected value of pulses as

E(L(Oj,x[n])) +E(L(pi[n− 1]) +E(L(aij)). where j represents the present state, i represents

the previous and the present states as two terms and x[n] is the input sequence to the HMM

states. As an example of the inputs to state S2, j and i in the above equation are denoted

as states 2 and 1 respectively. Then, the above terms of the equation are represented as

E(L(O2,x[n])) + E(L(p1[n− 1]) + E(L(a12)) and E(L(O2,x[n])) + E(L(p2[n− 1]) + E(L(a22))

respectively.

In the next section, the procedure and results of HMM decode sequence are demonstrated

when the proposed model in Fig. 4.2, maps the equation below such that the expected value

of the output spike is proportional to the expected values of the input spikes,

∑

i∈Cj
[E(L(Oj,x[n])) + E(L(pi[n− 1]) + E(L(aij))− E(L(pj [n]))]+ = γ (4.14)

Procedure and results: The IFMP module discussed above represents one state ma-

chine of three HMM states. Here, the circuit of three states HMM is implemented to find

the output rates p1, p2, p3 of states s1, s2, s3 of Fig 4.2 (b- below) which is substituted from

the recursive equations 4.9 and 4.12 as,
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L(p1)[n] = L[e
[L(O1,x[n])+L(p0)]

+ e
[L(O1,x[n])+L(p1[n−1])+L(a11)]

] (4.15)

L(p2)[n] = L[e
[L(O2,x[n])+L(p1[n−1])+L(a12]

+ e
[L(O2,x[n])+L(p2[n−1])+L(a22)]

] (4.16)

L(p3)[n] = L[e
[L(O3,x[n])+L(p2[n−1])+L(a23)]

+ e
[L(O3,x[n])+L(p3[n−1])+L(a33)]

] (4.17)

The mapping of the parameters in the above equations is shown in the Fig. 4.2. Where

L(p0) is the initial probability for the first state. In the figure, it is shown that each of the

IFMP units has two terms; the pre state unit and the self state unit in addition to the related

transition and observation probabilities for each state.

Two HMM (H1andH2) are tested to observe the sequence {1, 3, 3, 2} where the rows in

the probability observation matrix represent the states and the columns represent the item

sequence as a digit ∈ {1, 2, 3} . In HMM H1, it is trained to maximize the probability in the

third state according to trained observation. The second HMM H2 has identical transition

probabilities as H1 but with different observation matrix that does not recognize the above

sequence. The second observation is given as:

O =




0.9 0.1 0.0

0.1 0.9 0.0

0.9 0.1 0.0




In both observations, the excitatory inputs corresponding to each state Sj are the recur-

sive feed-back term L(pi[n− 1]) , the transition probability score L(aij) and the observation

probability score L(Oj,x[n]). At the end of the HMM decoding (after N sequences have been
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Figure 4.3: (Left): Rates of the states in Fig. 4.2 for two sequences recognition with both
matched and unmatched observation using pulse based HMM in software and schematic
simulation. Time scale: 0.4ms/step. (a): output rates of HMM state H1 software simulation.
(b): output rates of HMM state H1 cadence simulation. (c): output rates of HMM state
H2 software simulation. (d): output rates of HMM state H2 cadence simulation. (right):
A window of the output pulses for the three states for HMM H2 which view the sparse of
pulses between state s1 as Lp1 rate , state s2 as Lp2 rate and state s3 as Lp3 rate

received, here N = 4, p(x|H1) can be estimated according to

log(p(x|H1)) ≈ L(p3[N ]) (4.18)

Which is then compared against the likelihood scores generated by other HMMs before the

decision is made. Fig. 4.3 shows the instantaneous firing-rate computed for each of the
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modules S1, S2, S3 in HMMs H1 and H2 when an observation sequence x = {1, 3, 3, 2} is

received. For this particular experiment, only H1 is trained to recognize this sequence (which

can be easily verified by inspecting the observation matrix. As described in equation 4.9, the

final likelihood score can be estimated using L(p3[N ]) which is the firing-rate of the third

IF module of third state. As shown in Fig.4.3, the HMM H1 which is trained to recognize

the observation sequence produces a higher probability (output p3) compared to output

produced by HMM H2 for both the software and schematic simulations. In other words the

output rate of recognizing HMM H1 in the third state is higher than that for HMM H2. Fig

4.3 (a, b, c, d) shows successively the output rates of HMM H2 states in software simulation,

the output rates of HMM H2 states in cadence simulation, the output rates of HMM H1

states in software simulation and the output rates of HMM H1 states in cadence simulation

respectively. In the same Figure (right) a window of 60ms is shown for the output pulses

(circuit simulation) for the three states of HMM H2 and H1 .
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Figure 4.4: Instantaneous firing-rates for neurons N1 to N3 using the IFMP network imple-
menting HMM H1(left) and HMM H2 (right) for the observation sequence {1,3,3,2}.

Another experiment is implemented for the same input sequence {1,3,3,2} shows a suc-

cessful detection. The result of the experiment is shown in Fig. 4.4. The figure represents
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the moving average window for the probabilities over the time operation which shows that

the probability of the third state is higher in HMM H1 than HMM H2. Probability of third

state is the resultant sum of product over the observations, transition probabilities and it-

erations. It is shown in the figure the instantaneous firing-rates for neurons N1 to N3 using

the IFMP network implementing HMM H1(Left) and HMM H2 (right) for the observation

sequence {1,3,3,2}.
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   FPGA  IFMP 

  Chip 

 NI data 

acquisition 

Card  Initialization Biasing voltage 

        Trigger inputs to collect the stored pulses in 

         stack memory from  FPGA to PC  

  

   

  Decoders 
 

8*8 IFMP 

(a) (b) 

(c) 

Input/ output pulses to /from IFMP 

Figure 4.5: Interfacing boards for testing the IFMP chip. The PC and FPGA are used to
generate random pulses/getback the output pulses to/from the IFMP circuit. The National
instrument interfacing card is used to generate voltage biasing to the transistors of the IFMP
as well to intiate the stack memory to pull the stored pulses to the PC

4.2.1 Chip simulation

For the hardware verification of the IFMP pulse computational modules, the sequence de-

tection example is implemented using arrays of IFMP’s on a chip. The units of the IFMP

in the array are chosen using row and column decoders. The IFMP chip is interfaced to the

FPGA and National instrument (NI) ADC/ DAC boards shown in Figure 4.5 to test and
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Assig Map the algorithm procedure of the applications into IFMP equations:  

• Scale the input parameters. 

• Decide the number of IFMP units required to implement the algorithm 

Assign the required input / output ports for the FPGA 

• Assign the ports between IFMP chip and FPGA 

• Assign the ports between the FPGA and PC 

Write a Verilog program  to configure the connectivity between IFMP units using FPGA 

• Generate the random pulses for the parameters  

• Decide the timing clock required to generate the random pulses ( see the timing 

chart)  

v 

Apply the input pulses to all IFMP’s in parallel  

• Design a time multiplexing mechanism to output the pulses   

• Decide the feedback required from chip to modify the input pulses  

•   

  Write an interfacing program to communicate the PC with FPGA 

• Convert the Verilog program to bit file  

• Download the bit file in the RAM of FPGA to Configure the connectivity  between 

IFMP  units  

•  

Analyze the generated rate out of the IFMP stages 

• Use pipe line facility of the USB interfacing with FPGA to save  the pulses   into 

RAM  

• Load these pulses from RAM into PC using the  interfacing program for  

quantifying the results  

•  

Figure 4.6: Flowchart of the supported software needed to implement applications using
IFPG board and the array of IFMP modules on a chip

implement the HMM algorithm. The NI instrument is used to apply the voltage biasing to

the IFMP chip while the FPGA system is used to apply inputs to the IFMP units, route the
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pulses between the IFMP units and store the output pulses of the IFMP units for analysis

and verification of results. In this experiment, the input parameters are applied in parallel

to the three HMM state machine discussed earlier (the three IFMP modules). The inputs

are generated using pseudo random generators written in verlog hard description language

(Verlog HDL). While the inputs are applied in time sharing strategy for each input pulse

period, the output pulses from the three states are considered as feedback signals according

to the forward HMM equations.
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Figure 4.7: Timing simulation of Verilog program to generate random pulses to the three
units of IFMP in time sharing mode where col1 and col2 select the IFMPunit on the chip
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The flow chart shown in Figure 4.6 explains the procedure needed to implement applica-

tions using IFMP chip supported by the FPGA board as a device to select the connectivity

and route the pulses between the IFMP units on a chip according to a particular application.

The flow chart for implementing applications started by scaling the input parameters and

assigning the iteration number of the random input pulses. Then the interfacing ports need

to be assigned between the IFMP chip and FPGA as well as between FPGA and PC . Next,

a verlog program is written to generate the pseudo random pulses in time-share multiplexing.

The Time step of the generating pulses depend on the frequency of applying these pulses.

The step time used in software simulation is the same step time used in hardware implemen-

tation which is equal to 0.2ms. Therefore, the input frequency of 5KHz is needed for the

HDL program to generate the pseudo random pulses. By simulating the HDL program, In

Figure 4.7, the following pulse signals are explained as,

1. Generated pulse streams for the IFMP states(a1, b1, c1, a2, b2, c2, a3, b3 and c3): in

the timing diagram, three random input rates are generated per IFMP state. Two of

these inputs (a1, b1) are the excitatory inputs of the first two IF model of the IFMP,

while the third input (c1) is the gamma constraint applied to the inhibitory input of

the third neuron of the IFMP. The other inputs (a2, b2, c2, a3, b3 and c3) are applied

in the same way to the other two IFMP states. For experimental purpose to verify the

HMM operation in pulse mode, these nine inputs are generated using pseudo random

generator. These nine inputs are applied in parallel to the three IFMP units in time

share multiplexing mode where each pulse width represent a time of 0.2ms which is

the step time implemented in software simulation and circuit simulation.

2. The output pulses from the IFMP states (P1, P2 and P3): these outputs are fed back
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Figure 4.8: The moving average window for the three output states of HMM with two
observations: the HMM-H1 and HMM-H2 respectively

and ORED with the input pulses to the IFMP units according to the HMM states

algorithm.

3. The selection signals k, col1 and col2: These signals are used to select a specified IFMP

unit in the IFMP array.

4. The clock pulse: this input signal is chosen equal to 5KHz which is the same frequency

used in the software and circuit simulation.

5. The iteration signal: this signal is to repeat the pseudo random pulses inputs.
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Figure 4.9: The output pulses and moving average window for the three states for HMM-H1
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The last steps in the flow chart is to write an interfacing program in Matlab to communicate

the PC with the FPGA, configure the HDL program on FPGA and analyzing the generated

rates from the IFMP stages. The last step is utilized using the pipe line facility of software

functions ( designed by opal kelly to interface the PC with FPGA through USB) to save

the pulses into RAM of the FPGA then load these pulses from RAM into PC using the

interfacing program for quantifying the results.

An example of detecting a sequence of numbers is succeeded by evaluating the rates of

the third states for the two observations HMM H1 and HMM H2. As the expected outputs

in simulation, a higher probability or rate is observed using the input parameters of the first

observation HMM H1 (which is the matched observation for the input sequence [1,3,3,2])

rather than using the parameters of the second observation HMM H2 as shown in Figure 4.8.

In the figure, the P3 trace represents the probability of the third state of the Markov state

machine, while the P1 and P2 traces represent the rate of the first and the second states

respectively . In the experiment, the number of samples /input is equal to 1500 steps each

has duration time of 0.2ms which is the same step time used in the software simulation in

Matlab and in circuit simulation using cadence (discussed in the previous section). For both

of the observations HMM H1 and HMM H2, it is shown respectively in Figures 4.9 and 4.10

the output pulses of the third state of HMM and the moving average window which from

which the three traces of the three states clarify the matching detection of the HMM circuit.

To summarize this section, the implementation of HMM sequence decoding task is demon-

strated in pulse based using analog circuit as cadence simulation and chip layout hard-

ware which realize the modular characteristics of IFMP. Achieving MP based computation

in spike-domain implies the possibility of implementing hybrid neuromorphic architectures

where large-scale machine learning algorithms can now be integrated on spiking neural-
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Figure 4.10: The output pulses and moving average window for the three states for HMM-H2

networks. The observation probability matrix in the above application shows discrete or

fixed probability to the observed input items. In the next section, another detection applica-
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tion is verified in HMM model using IFMP pulse computation module where the observation

probability are real values and obtained using Gaussian distribution.

4.3 Trajectory detection

In this application, the forward algorithm of HMM Model discussed in the sequence detection

application is used to detect a trajectory traces. Since the trajectory has infinity points in the

trace, the change in the curvature shape is considered as separate state. Each state is trained

by selecting the mean and variance of the neighboring points using Gaussian distribution.

Fig. 4.11 shows the states sj : j = 1 : 17 of the HMM model used to detect eight trajectories

Pi : i = 1 : 8. The model is left-to-right Markov models with three states per one path.

Each state, j , is characterized by the following.

1- A state transition vector, ai, with components aji = probability of making a transition

to state i (at the next transition instant), given that the system is currently in state j.

2- A state observation continuous density, bj(O), of the form of,

bj(O) =

∏D
d=1 exp[−(O(d)− µjd)2/(2σ2

jd]

2π1/2(
∏D
d=1 σ

2
jd)

1/2
(4.19)

where O is the observation vector, µjd is the mean vector and σ is the standard deviation

in state j and D (D = 2 for this experiment) is the component of dimension of µjd. In this

application, the sets of mean and standard deviation for each trace is trained in order to

find the standard deviations that are close to the trace. The mean, standard deviation and

the observed dimension of the event are used to evaluate the observation probability. In the

experiment, the standard deviation used for training the neighboring trace is chosen as 0.2
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Figure 4.11: Traces for eight trajectories starting from state 3 using three HMM states per
path

unit so that there is no conflict with other traces. The mean values in the two dimension

graph shown in Fig. 4.11 are chosen for the eight paths as following,

1. Path1: {(1.5,1.5); (1.0,1.0); (0.5,0.5)}

2. Path2: {(1.5,1.5); (1.0,1.5); (0.5,1.5)}

3. Path3: {(1.5,1.5); (1.0,2.0); (0.5,2.5)}

4. Path4: {(1.5,1.5); (1.5,2.0); (1.5,2.5)}

5. Path5: {(1.5,1.5); (2.0,2.0); (2.5,2.5)}
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Figure 4.12: Four detecting experiments for different trajectory paths in Fig 4.11. The x-
axis and Y-axis reprsent the eight traces and the probabilities for each trace path in the
experiment

6. Path6: {(1.5,1.5); (2.0,1.5); (2.5,1.5)}

7. Path7: {(1.5,1.5); (2.0,1.0); (2.5,0.5)}

8. Path8: {(1.5,1.5); (1.5,1.0); (0.5,0.5)}

In order to check which path is belong to given points or traces, the points as an observa-

tion values are applied in Gaussian equation (4.19) to calculate the observation probability,

given the variance σjd and the mean values for the paths listed above. Once the observation

probability and the transition probability are known, then it is possible to apply the forward
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algorithm HMM to calculate the probability of the being in any states having the input

observation of the trace point.

Thus, the observation probability and the transition probability for all traces are mapped

into the recursive HMM-IFMP formula to decide the highest probability for the observed

event or trace among the eight traces as shown in Fig. 4.12. In this application, four ex-

periments are implemented to check the path to four different input traces. In the first

experiment, the sequence of the trajectory points near by the states 3, 12, 13, 13 are re-

quired to be detected and decide the closest path. For this purpose, the HMM model is

implemented to find the probabilities for the eight paths. In this experiment, it is shown

the max probability matches at path 6 which is the closest path to the input trace points

as shown in the trace figure 4.11 and 4.12. The same procedures are implemented for the

other three experiments to detect respectively the trajectory points near by the following

states [3,11 ,10 ,10], [3 ,16 ,17 ,17] and [3 ,2 ,1 ,1]. The figure shows that the maximum

probabilities for the above traces are corresponding paths 3, 8, and 1 respectively.

4.4 Support vector machine

Support vector machines (svm) are one of the most popular supervised learning instances.

The supervised learning methods are comprised of two discreet phases, the training and the

classification [80]. The svm training phase is responsible for the identification of these data

points, called support vectors, that can best build a separation model for the classes. These

vectors are then used to predict the class of any future data point during the classification

phase. In this section, a general idea of svm learning machine and a brief description of the

learning and classification will be explained.
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The General idea of classifying data using support vector machine it to map the data

from the original input space into some higher-dimensional feature space where the training

set is separable. For example in Fig. 4.13 (a), the data is mapped from one dimension into

two dimension space and in Fig. 4.13 (b), the data is mapped from two dimension into

three dimensional space. Every data point is mapped into high-dimensional space via some

transformation φ : x −→ φ(x) such that:

K(xi, xj) = φ(xi)
Tφ(xj) where K(xi, xj) is some function called a kernel function that

corresponds to an inner product in some expanded feature space. Example: Two dimensional

vectors x = [x1 x2]; let K(xi, xj) = (1 + xTi xj)
2,

Starting from the second order polynomial kernel K(xi, xj) = (1 + xTi xj)
2 , it can be

shown that K(xi, xj) = φ(xi)
T (xj) as following,

K(xi, xj) = (1 + xTi xj)
2

= 1 + x2
i1x

2
j1 + 2xi1xj1xi2xj2 + x2

i2x
2
j2 + 2xi1xj1 + 2xi2xj2

= [1 x2
i1

√
2xi1xi2 x2

i2

√
2xi1

√
2xi2]T ∗

[1 x2
j1

√
2xj1xj2 x2

j2

√
2xj1

√
2xj2]

= φ(xi)
Tφ(xj)

(4.20)

where φ(x) = [1 x2
1

√
2x1x2 x2

2

√
2x1

√
2x2]

The kernel function types listed below are used in training and classification in svm,
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Figure 4.13: (a, b): Two examples of mapping a non separable data (left) into a linearly
separable data (right) by mapping the lower dimension data into higher dimensions. (c):
Binary classification based on linear huperplan svm

• Linear: K(xi, xj) = xTi xj

• Polynomial of power p: K(xi, xj) = (1 + xTi xj)
p

• Gaussian (radial-basis function network): K(xi, xj) = exp(−‖xi−xj‖
2

2σ2 )

• Sigmoid: K(xi, xj) = tanh(β0x
T
i xj + β1)

In the IFMP application for classification, a second order polynomial is implemented as

will be discussed in the next section.

The svm training builds a model that is able to distinguish the belonging class of any
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future data based on the support vectors obtained by the training data set. On a two-

class classification problem, the svm objective is the construction of a separating hyperplane

w.x − b = 0 to attain maximum separation between the classes, as shown in Fig. 4.13(c).

The classes’ hyperplanes are parallel to the separating one, lying on each of its sides. The

Euclidean distance between the two hyperplanes is 2
‖w‖ , thus the objective of svm is to

maximize the distance between the classes hyperplanes or, in other words, to minimize ‖ w ‖

min
1

2
‖ w2 ‖, s.t. yi(w.xi − b) ≥ 1, 1 ≤ i ≤ N (4.21)

where (·) denotes an inner product, xi is the training data and label yi denotes the belonging

class of data xi and takes the values -1 or 1. While w is a perpendicular vector to the

hyperplane direction, b is the offset to the origin, and N is the training set size. The svm

training phase focuses on the identification of the support vectors, which are the training

samples that lie closest to the hyperplane and determine its direction. Many optimization

algorithms have been proposed to find the parameters of svm [81, 82, 83]. Whenever the

training data are not linearly separable in the input space, the input space is mapped to a

higher-dimensional one, where a linear separation may be feasible. Support vector Machine

employs kernel functions discussed above K(xi, xj) to replace the inner products in the

optimization problem 4.21

min
1

2
‖ w2 ‖, s.t. yi(k(w, xi)− b) ≥ 1, 1 ≤ i ≤ N (4.22)

On the classification phase, any new data x is classified according to the output of the
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decision function;

F (x) = sgn(

Nsv∑

i=1

yiαik(xi, x) + b) (4.23)

where αi and b are the optimization parameters and ”Nsv” is the set of the support vectors

identified in the training phase. It is easily derived that the computational time of the non-

linear svm classification task is linearly dependent on the size of the classification dataset,

on the SV population ”Nsv” and on the problem’s dimensionality. In the next section, the

svm classification using the IFMP computation modules will be shown.

4.5 Classification using support vector machine

A multi-class svm classifier computes matching scores (kernels) between the input vectors y

and a set of template vectors (support vectors) xi. Then the kernel of the two vectors x and

y are combined linearly to produce a score corresponding to class j according to

fj(y) =

Nsv∑

i=1

αijk(xi, y) + bj (4.24)

where bj is a class specific bias parameter and αij are the weights corresponding to the

support vector xi and class j. In this work, a quadratic kernel K(xi,y) = (xi · y)2 is

implemented, satisfying the Mercer condition [Mercer condition only tells whether the kernel

function is actually an inner product in some space and therefore admissible for use in a

support vector machine. However, it tells nothing how to find φ(x). To find support vectors,

there are different training packages for training the input data based on the optimization

problem to maximize the marginal distance from the hyper plane] [84]. The svm training

procedure automatically selects support vector templates from the training examples, and

135



derives values for the weights αij and the bias parameter bj accordingly. During the training

procedure, several hardware related constraints can be imposed. For instance, all the the

weights, biases and support vectors are positive so that they can be mapped directly onto an

IFMP architecture using the inner-product in the kernel (xi · y). The polynomial operation

(.)2 in the kernel is mapped onto multiplication because IFMP computations operate in

a logarithmic domain. For a spiking architecture, the mapping simply results in multiple

fan-outs (copies) of the spike-train. The multiplication of the weights αij with the kernels

according to equation 4.24 can be viewed as an inner-product computation and hence the

mapping to IFMP described in chapter 2 is also applicable.

As an example of applying IFMP as pulse computational unit, a binary linear classifying

has been implemented using svm algorithm. The following procedure shows how to derive

the parameters to be applied in the IFMP based svm experiment: Let y denotes a vector

drawn from the input space and let {φ(yj)}
m1
j=1 denotes a set of non-linear transformations

from the input space to a feature space , m1 is the dimension of the feature space. For such

set of non-linear transformations, a hyperplane is defined as the decision surface as:

m1∑

j=i

ᾱφ(yj) + b = 0 (4.25)

where ᾱ denotes the vector of non-linear weights connecting the feature space to the output

space, and b is the bias. In this example, a second order polynomial kernel of inner product

is introduced between the input vector y and support vectors x to decide the hyperplane as

z =
N∑

i=1

αi(xi.ȳ)2 + b (4.26)

To find the parameters for the IFMP units, the logarithm function of both sides of the
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above equation must be applied as following,

Lz = L(
N∑

i=1

α.(xi.ȳ)2 + b) (4.27)

Lz = L(
N∑

i=1

e(log(αi)+2. log(xi.ȳ)) + e(log(b))) (4.28)

where N represent the number of support vectors. The parameters for margin (M1) are

expressed as,

M1({log(αi) + 2. log(xi.ȳ)}, log(b), γ) (4.29)

Now, the kernels ki are calculated as the Margin parameter (M2) for the inner product

term such that

Ki = log(
m∑

j=1

xi,j .yj) (4.30)

Ki = log(
m∑

j=1

e
(log(xi,j)+log(yj))

) (4.31)

Therefore, the parameters for Margin (M2 ) are the set of kernels Ki such that,

Ki = M2({log(xi,j) + log(yj)}, γ) (4.32)

Since the values of bias b and optimization factors αi might be negative, these values are

simulated in differential form (b+ − b− and α+
i − α

−
i ). Therefore, equation 4.27 is derived

for two differential form as following,
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Lz+ = L(
N∑

i=1

α+.(xi.ȳ)2 + b+) (4.33)

Lz− = L(
N∑

i=1

α−.(xi.ȳ)2 + b−) (4.34)

The difference between the above two equations are used to decide the classification of

data as shown in Fig. 4.14.
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Figure 4.14: The classification using IFMP and support vector machine to compare between
the differential outputs

As an example, the IFMP based svm network is applied for a binary classification task

where the two-dimensional Iris data (shown in Fig. 4.16(a)) are used for training and vali-

dation. A ”Gini” svm training algorithm is used to obtain the weights αij and identify the

support vectors xi [84]. The complexity of the IFMP depends on the number of support

vectors and number of sparse data. In this application, nine support vectors are obtained

from the training program ” Gini” svm and 22 units of IF neural model are needed for the

classification architecture. For this application, the architecture shown in Fig. 4.15 is de-

signed for two - class classification using spiking svm network based on IFMP modules. The

architecture follows a modular approach to compute first the kernel inner-product and sec-
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ondly the inner-product between the weights and the kernels. The first computations shown

in the architecture is implemented using nine IFMP modules to implement the kernel inner

product with nine support vectors mentioned in equation (4.32). These nine units (k1 : k9)

are common units between the two differential hyper plane equations (4.33) and (4.34). The

input parameters for the positive hyper plan are : b+1 , α
+, k1 : k9, where k represents the

kernels or the inner products of the support vectors and the input data to be classified. In

the same way, the input parameters for the negative hyper plan are : b−1 , α
−, k1 : k9. For

this architecture note the followings:

1. For the IFMP architecture, a quadratic operation is implemented using a simple fan-out

which replicates the spike-train twice.

2. The two outputs z+ and z− in the figure are in log domain and they are corresponding

to the output of the IFMP networks for each class.

3. All the inputs are quantified as random pulse rate.

Fig. 4.16(b) shows the raster-plot of the spikes generated by the neurons in the svm

network [raster plot: is a fig that shows the occurrence of spikes for neurons in population

with respect to time]. The spike-train at the top of the plot corresponds to one of the output

of the network (neurons 11 and 22 in Fig 4.15) . Visually, it is inferred that when the

vector corresponding to each of the classes is presented, the output spiking rate illustrates

the network’s discrimination capability. Fig. 4.17 shows the difference between the firing-

rates z+ − z− computed for the input data. The result shows that the network is correctly

classifying both types of Iris petal data and hence the result validates the proof-of-concept

of an IFMP-based spiking SVM.
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Figure 4.15: svm based classification using parllel cascading of IFMP modules. k1 : k9
are the kernels. The difference between the firing-rates of the output z+ − z− determines
the classification of input data. B1: Input vector (y) and support vector (x), B2: Kernel
function (k), output decision (z+) B3: Kernel function (k), output decision (z−)

On the other hand the classification has been implemented for cascading architecture of

two input- IFMP units shown in Fig. 4.18, where the support vectors are applied to a series

of IFMP units with positive and negative values of alpha and bias values. Fig. 4.19 shows

successively the classification of the data and raster- plot of the cascaded IFMP units as in

the first case where neurons 30 and 81 are the output neurons of the two differential parts

of the IFMP based SVM implementation. In this case, 81 neurons are used to simulate

SVM with nine support vectors, nine values of alpha and one bias value, which are all in the

differential form , to test the classification of input data.
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 (a) 

      
 (b) 

  
 (c) 

Figure 4.16: Results obtained from the svm based classification using IFMP network. (a):
Two dimensional Iris data set; (b): Raster-plot of spikes generated by the neurons in the
network; and (c) Difference between the firing-rate of the outputs z+ and z−
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 (a) 

      
 (b) 

  
 (c) 

Figure 4.17: Continued- Difference between the firing-rate of the outputs z+ and z−

4.6 Summary

In this chapter, it is shown that the new designed pulse computational unit is not only

approximating the basic nonlinear functions but it can also cascaded in serial architecture

or parallel architecture to approximate more complicated algorithms. Three applications are

implemented: the sequence decoding, the trace detection and data classification. The first

two applications are implemented using forward recursion algorithm of hidden Markov model

and the third application is implemented using support vector machine algorithm. It is not

intended to implement these applications to replace artificial neural networks rather to show

that the new designed pulse computation module is applicable in complicated algorithms

that include state machine design and recursive equations in their procedures. Moreover, all

the parameters in these applications are represented by the rate of a real time random pulses.

Another important goal in this chapter is to verify that such applications can be applied in
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Figure 4.18: Classification for serial cascaded architecture using IFMP. k1 : k9 are the
kernels. The biasing and weights (b and α ) are in the differential forms to find the output
z+ and z− that decides the classification of input data

hardware. In the hardware implementation, the designed IFMP algorithm is mapped and

verified into analog circuit, and then design an architecture composed of IFMP array to

implement procedural applications. The implementation of applications is possible because

first the IFMP units are scalable modules and secondly the connectivity between modules

are implemented using high speed programmable gate array ”FPGA”. The FPGA helps

to apply high speed random pulses, consider the output pulses from the IFMP modules

as feedback in processing and finally analyses the output rates according to the required

algorithm.
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Figure 4.19: (a): Classification for the serial cascaded architecture of two classes of Iris data
set. The negative and positive values of (z+ − z−) represent Setosa and Versilcolor types
respectively using two models,the MP (red marker) and IFMP (plus marker). (b): Raster
plot for spikes of neurons 30 and 81 decide the classification of two samples of input Iris data
set: the first and the second half of the raster plot respectively
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Chapter 5

Significance of IFMP

There are two significant roles of the new designed IFMP module in pulse computation

algorithms. The first significant role is the enhancement of dynamic range in computations

compared with an existed pulse-based stochastic computation applications. The second

significant role is the direct and simple implementation of the ”winner take all” design

compared with other existing designs. For the first significance of the designed IFMP module,

it is shown with an example that the factor graph application reported to fail in pulse based

stochastic computation regardless of the simplicity in hardware structure. In section one,

a solution is suggested to this failure by using the IFMP pulse computation module. The

second role of the IFMP designed module is compared with the existing ”winner take all”

designs which are important in designing neuromorphic architecture such as the receptive

field structures of retina and cochlea. A background of designing winner take all is presented

starting from continuous time design presented by Lazzaro, 1989[85] to the spiking network

design presented by; Oster, 2009), [86]. It is shown in section 2 with an example, the

significant difference of spiking network design between Oster’s design and the new IFMP

design.
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5.1 Dynamic range enhancement in pulse computation

5.1.1 Applications of stochastic computations

Stochastic computations are pulse computational structures where the probabilities are rep-

resented as streams of random digital bits using Bernoulli sequences and the information is

contained in the statistics of the bit stream. Using this representation, complex operations

on probabilities such as multiplication and division are converted to operations on bits which

can easily be manipulated using simple stochastic gates.

Stochastic computation is reported to implement hardware structures for some applica-

tions of factor graph algorithms. The factor graphs, introduced in chapter one, originally lie

in the coding theory but they offer an attractive notation for a wide variety of signal process-

ing problems. These problems are viewed as instances of the summary-product algorithm

which operates by message passing in a graphical model. Specific instances of such algo-

rithms include Kalman filtering and smoothing; the forward-backward algorithm for hidden

Markov models; probability propagation in Bayesian networks; and decoding algorithms for

error-correcting codes such as the Viterbi algorithm, the BCJR algorithm, and the iterative

decoding of turbo codes, low-density parity-check (LDPC) codes, and similar codes [39][17].

However, stochastic decoding methods could only work either on very simple short codes

or for decoding some specific error-correcting codes on trellis graphs. The reason for that

is because the stochastic computations have false computations and might not be successful

for other decoding applications. The false stochastic computations are caused by the similar

pulsed-input codes in the multiplication operation and implementing scaling addition in the

addition operation. In addition to that, the main problems in the stochastic computation

are the long time convergence and low dynamic range of processed parameters. To address
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the low dynamic range problem, the new pulse computational module ”IFMP” is introduced

to map the input/output parameters in logarithmic domain.

In the next section, the basic units in stochastic computations are introduced in order to

design the required dynamic or the recursive equations for the algorithmic applications. An

application of sequence decoding using Hidden Markov model is implemented in both pulse-

based stochastic computation and pulse- based IFMP modules to compare the performance

in both cases.

5.1.2 Significant difference between IFMP and SC

In stochastic representation, the multiplication function is implemented with simply the

”AND” logic gate. In Fig. 5.1 (a) the multiplication is implemented on two input values

represented by stochastic bit streams. In the figure, with bit streams of length 8, the values

have a resolution of 1/8. Assuming that the two input stochastic bit streams A and B

are independent, then the rate c is represented by the output stochastic bit stream C as

P (C = 1) such that,

c = P (C = 1) = P (A = 1andB = 1)

= P (A = 1)P (B = 1) = a.b

(a) (b) 

(c) 

J K Q 

1 0 1 

0 1 0 

0 0 No change 

1 1 Reverse 

1,1,0,1,0,1,1,1 

1,1,0,0,1,0,1,0 

1,1,0,0,0,0,1,0 

AND 

A 

B 

a= 6/8 

b= 4/8 

c= 3/8 

C 

0,1,0,0,0,0,0,0 

1,0,1,1,0,1,1,0 

0,0,1,0,0,0,0,1 

1,0,0,1,0,1,1,0 
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S 

C 

1 

0 

a: 1/8 

b= 5/8 

c= 4/8 

s= 2/8 

 

 

P a 

P b 
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K 

Q P c =P a / (P a + P b) 

ck 

Figure 5.1: (a): Multiplication on stochastic bit streams with an AND gate. (b): Scaled
addition on stochastic bit streams, with a multiplexer (MUX)
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In stochastic computation, it is not possible to add two probability values directly because

the output result might be greater than one, which cannot be represented as a probability

value. Therefore, the normal addition is replaced by the scaled addition which is verified

using multiplexer (MUX) . The multiplexer shown in Fig. 5.1 (b) is a digital construct that

selects one of its two input values to be the output value, based on the selecting input value

S. When S = 1, the output C = A. Otherwise, when S = 0, the output C = B. The

Boolean function implemented by the multiplexer is C = (A ∧ S) ∨ (B ∧ S). With the

assumption that the three input stochastic bit streams A, B, and S are independent, the

number represented by the output stochastic bit stream C is

c = P (C = 1)

= P (S = 1 ∧ A = 1) + P (S = 0 ∧B = 1)

= P (S = 1)P (A = 1) + P (S = 0)P (B = 1)

= s.a+ (1− s).b

Thus, with this stochastic representation, the computation performed by a multiplexer is

the scaled addition of the two input values a and b, with a scaling factor of (s) for (a) and

(1− s) for (b).

Since the multiplication and the addition operations are verified in stochastic pulse com-

putation, then it is possible to implement more complicated equations such as the recursive

equations. It is intended in this section to map the forward HMM recursion algorithm (equa-

tions 4.7 and 4.8 in chapter 4) in stochastic computation to verify the sequence detection

application. Recall that the HMM recursion equation is the following,

pj [n] =
∑
i∈Cj pi[n− 1]aijOj,x[n]

Then the above equation is expanded into the following three equations;
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Figure 5.2: Stochastic computation to implement forward HMM algorithm HMM

The above three equations are simulated in stochastic computation using the AND logic

units as multiplication operations and multiplexer units as the addition operations shown in

Figure 5.2. This pulse-based architecture is compared with the architecture of pulse based

IFMP computational modules discussed in chapter four and shown in Figure 4.2. The imple-

mented example is to maximize a sequence that match the HMM observations. It is shown in

the lower plots of Fig. 5.3, the output rates or probabilities of the three states of the HMM

H1 and HMM H2 for the stochastic simulation which can not recognize a simple sequence

[1,3,3,2]. It is shown in the figure that the output rates for HMM states are low rates that

make it impossible to distinguish the input sequence if it is matched or unmatched with the
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given observations HMM H1 and HMM H2. The low rates of the HMM based stochastic

computations are caused by the multiplication of the following probabilities in the forward

HMM equation: observation probability, transition probability and the pre-time state proba-

bility. Multiplying the above probabilities reduce the probability more or reduce the dynamic

range of the computations that make it difficult to recognize the posterior probabilities for

different HMM observations. On the other hand, mapping the HMM recursive equation to

the log-exp- sum or the margin propagation enhances the dynamic range and make it possible

to distinguish the different HMM observation probabilities as shown in upper plots for Fig.

5.3. In the figure of IFMP implementation, the output rate of the third state P3 in the HMM

H1 observation is higher than the output rate in the case of observation HMM H2. In the

case of HMM H1, it is shown how the the rate of P3 increasing as the input sequence [1,3,3,2]

are applied with respect to time. In addition to the dynamic range characteristics between

the pulse based computations and the pulse base IFMP architecture, there are other differ-

ences in implementation such as the hardware dense, the power consumption and the rate

convergence of the HMM states. Table 5.1 lists the differences in implementation between

the pulse based stochastic computation structures and the pulse based IFMP computation

modules.

5.2 Novel pulse-mode Winner take all (WTA)

The second significance of the new designed IFMP module is the simplicity and the direct

implementation of the winner take all network. The definition of the winner take all concept

and it’s background in the design and the contribution of the new designed pulse mode IFMP
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Figure 5.3: (Upper):the observation sequence {1,3,3,2} of the Instantaneous firing-rates for
neurons N1 to N3 using the IFMP architecture. (Lower): the observation sequence {1,3,3,2}
of the Instantaneous firing-rates for neurons N1 to N3 using stochastic computation archi-
tecture

architecture is introduced in the successive sections.

Winner take -all networks are a case of competitive learning in recurrent neural networks.

Output nodes in the network mutually inhibit each other, while simultaneously activating

themselves through reflexive connections. After some time, only one node in the output

layer will be eventually active, namely the one corresponding to the strongest input. Thus

the network uses nonlinear inhibition to pick out the largest of a set of inputs. Winner-

take-all is a general computational primitive that can be implemented using different types
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Table 5.1: Differences in implementation between the pulse based stochastic computation
structures and the pulse based IFMP computation modules

Pulse - based IFMP Computation Pulse - based Stochastic Computation

Number of Transistors = 100 (more
dense in layout chip design)

Number of Transistors = 300 (less
dense)

Analog computations, low power dissi-
pation = 1.6 µ W, operation current
=200nA

Digital Computations, Higher power
dissipation in 100s mW, operation cur-
rent in hundreds µ A

Implementing the computations by
taking the log of input rates (proba-
bilities) introduce wide range(Ex: log
.000001= -6)

Implementing the computations pro-
hibits the decoding process (Ex: multi-
plication of probabilities reduce the val-
ues causing underflow )

Increasing the number of pulses to
represent the rate improves the con-
vergence equation and eventually en-
hances the decoding applications.

Increasing the iterations does not im-
prove the decoding output.

The IFMP module is scalable, mean-
ing that the IFMP units has the same
structure each implement partial com-
putation of any mapped algorithm (Ex.
HMM and SVM algorithm)

Simple design but each algorithm has
different structure as hardware.

of neural network models, including both continuous-time and spiking networks (Grossberg,

1973; Oster, 2009)[87] [86].

5.2.1 Importance of WTA

1. WTA has a role in the sensing of the external stimulus in the receptive fields of cochlea,

retina and skin [88]. [Zaghlol 2006, Wen, 2003, Dungem, 2005]. A winner-take-all

circuit finds the maximum among a set of inputs, shutting off the other inputs. This
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is a useful function in many sensory processing tasks that try to focus attention on the

most interesting salient of an array of sensory inputs. Solving this task on-chip with

dedicated parallel computing elements is much faster than processing the raw sensor

data serially on a computer.

2. WTA has a role in cortical processing. Decision processes in the brain are not localized

in one specific region but evolve in a distributed manner when different brain regions

cooperate to reach a consistent interpretation. The winner-take-all circuit with both

cooperative and competitive properties is a main building block that contributes to

this distributed decision process in [89] [90].

3. WTA has a role in a hierarchical model of vision in cortex. Computational visual

attention is the process of selecting a part of the available visual information for local-

ization, identification and understanding of objects in an environment or visual scene.

This process allows the visual system to capture visual input preferentially by shifting

attention about an image, giving more attention to salient locations and less attention

to unimportant regions [91] [92] [93].

4. WTA circuit conceived as part of an imager chip to process current input from a

motion detection array, thus detecting the row and column of maximum change of

illumination. The fact that this WTA processes analog input and produces spike

output is most convenient for the address event interface (AER) that conveys the

WTA output off-chip.
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5.2.2 Background of WTA (continuous input/output variables)

Because of the importance of WTA networks, these networks have been of great interest to

researchers. Yuille and Grzywacz (1989) [94] and Ermentrout (1992) [95] are classical refer-

ences to theoretical analyses. In these early models, the neurons are non spiking, that is, they

receive an analog input and have an analog output. The analog WTA computation can be

efficiently implemented in very-large scale integrated (VLSI) transistor circuits. With initial

circuits described in [96], a whole series of analog models [97, 98, 99] and implementations

has been developed in [100, 101, 102, 103, 104, 105, 106].

5.2.3 Case study to design WTA ( spiking networks)

In the past decade, spiking neuron models and their electronic counterparts have gained

increasing interest. Spike-based networks capture the asynchronous and time-continuous

computation inherent in biological nervous systems. Neuron models with analog inputs

and analog outputs can be converted into models with spiking output if a thresholding

operating is introduced to the neuron. Coultrip, Granger, and Lynch (1992) is an early

theoretical analysis, with further descriptions in Jin and Seung (2002) [107] and Yu, Giese,

and Poggio (2002) [108] and VLSI implementations in Chicca, Indiveri, and Douglas (2004),

Abrahamsen, Hafliger, and Lande (2004) [109], and Oster, Wang, Douglas, and Liu (2008)

[110]. The next theoretical considerations are models with both spiking input and spiking

output. Previous theoretical studies focused on population models (e.g., Lumer, 2000) [111],

where the population firing represents a graded analog value. Indiveri, Horiuchi, Niebur, and

Douglas (2001) [104] and Chicca, Lichtsteiner, Delbruck, Indiveri,and Douglas (2006) [112]

are VLSI implementations that use the firing rate as an analog input and output encoding.

154



A special case is presented in Carota, Indiveri, and Dante (2004) [113] and Bartolozzi and

Indiveri (2004) [114], in which the core of the winner-take-all is analog but the signals are

converted to spike rates for communication with the outside world. Table 5.2 present the

summary of the above background of WTA design.

5.2.4 Contribution and Significance of IFMP as WTA

No analysis until now has considered the effect of single spikes and spike timing on the

winner-take-all computation with random spiking inputs and outputs. Gautrais and Thorpe

(1998) [115] start their analysis from a similar point of view, that is, how the network

decides which of two input spike rates is higher, but they do not consider sampling of this

estimation in the output spikes (this analysis could be classified as spiking input and analog

output). The emergence of multichip spiking systems that incorporate the WTA as part

of their decision process (Serrano-Gotarredona et al., 2005 [116]; Choi, Merolla, Arthur,

Boahen, and Shi, 2005 [117]; Chicca, Lichtsteiner, Delbruck, Indiveri, and Douglas, 2006

[118]; Vogelstein, Mallik, Culurciello, Cauwenberghs,and Etienne-Cummings, 2007 [119])

highlights the necessity for theoretical quantification of a WTA network based on different

network parameters (e.g., CAVIAR), especially if these systems are to be used in different

applications.

To address this need a framework is developed by Oster et al. (2001-2009) [86] for

quantifying the performance of a spiking WTA network with regular spiking inputs. Our

contribution is to develop a new pulse computational architecture that implement WTA

computation as one application to our model. The new aspect here is that the input pulses

to the network is not necessary to be regular which is the basic of Oster architecture in which

the recognition of the highest rate is based on receiving the earliest signal in time among
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Table 5.2: Survey of Winner take all design started from theoritical analaysis into spiking
populaion of neural networks

Research of WTA development Achievement of WTA

Yuille and Grzywacz (1989);Ermen-
trout (1992)

Models as theoretical analyses: In these
early models, the input and output sig-
nals of neuron models are analog rather
than spiking signals.

Lazzaro, Ryckebusch, Mahowald, and
Mead (1989); Kaski and Kohonen
(1994); Barnden and Srinivas (1993);
Hahnloser, Sarpeshkar, Mahowald,
Douglas, and Seung (2000)

The WTA circuits are initially de-
scribed using analog computation.

He and Sanchez-Sinencio (1993);
Starzyk and Fang (1993); Serrano-
Gotarredona and Linares-Barranco
(1995); Kincaid, Cohen, and Fang
(1996); Indiveri (1997,2001); Moller,
Maris, Tomes, and Mojaev (1998);
Hahnloser, Sarpeshkar, Mahowald,
Douglas, and Seung (2000); Liu (2000,
2002)

The WTA are efficiently implemented
in very-large scale integrated (VLSI)
transistor circuits

Coultrip, Granger, and Lynch (1992);
Jin and Seung (2002); Yu, Giese, and
Poggio (2002);Chicca, Indiveri, and
Douglas (2004); Abrahamsen, Hafliger,
and Lande (2004); Oster, Wang, Dou-
glas, and Liu (2008), Lumer (2000), In-
diveri, Horiuchi, Niebur, and Douglas
(2001); Chicca, Lichtsteiner, Delbruck,
Indiveri, and Douglas (2006)

Early theoretical analysis with VLSI
implementation of spiking neuron mod-
els when the threshold operating point
is introduced to the neuron. The stud-
ies are focused on spiking population
models, where the population firing
represents a graded analog value.

Oster et al. (2001-2009) quantifying the performance of a spik-
ing WTA network with regular spiking
inputs
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set of incoming sources of spikes. If the input spikes are random, then Osters architecture

will not recognize the highest rate as will explained in the next section. In the new designed

IFMP architecture, the inputs to our computing architecture is quantified as the rate of

random spikes in which a simple procedure is implemented to recognize the highest rate

even if the input spikes are random pulses in time. Table 5.2 list the summary of the WTA

background.
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Figure 5.4: (a): Input spikes, membrane potential and output spike of neuron1 and neuron2.
It shows how is the winner neuron1 inhibit the membrane of neuron2.(b): Full connectivity
between 20 neuorons for processing the input pulses shown in (a)

5.2.5 Experiment

A framework is developed by Oster et al. (2001-2009) for quantifying the performance of a

spiking WTA network with regular spiking inputs. Our contribution is to develop a new pulse
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computational architecture that implement WTA computation where the input pulses to the

network is not necessary to be regular which is the basic of Oster architecture in which the

recognition of the highest rate is based on receiving the earliest signal in time among set of

incoming sources of spikes. The problem of the above architecture is that if the input spikes

are random, then Osters architecture will not recognize the highest rate. Experiment are

implemented to simulate both Oster’s architecture and IFMP architecture for a network of 20

neurons. For each case the simulation of the neuronal population of neurons are considered

with no connection between neurons and with specific connection according to the type of

architecture. In order to understand the difference in the architecture and operation between

the newly designed IFMP and Oster’s design, both of the above architectures are explained

next.

1. To explore the concept of Oster’s architecture, Fig. 5.4(b) shows the full connectivity

between neurons in Oster’s design. The number of connectivity in this architecture is

simply calculated as n(n−1), where n is the number of neurons. The operation of this

network is explained using Fig. 5.4(a) which demonstrate the membrane behavior for

a couple of neurons when the input spikes are applied. The input spikes have different

frequency and therefore the winner neuron is the one with the highest input frequency

or the least in time period as explained in the followings:

(a) Neuron 1 (the winning neuron) spikes when its membrane potential exceed thresh-

old. After every spike, the neuron is reset to Vself .

(b) As soon as neuron 1 spikes , no other neuron is able to spike because of the in-

hibitory connection from neuron 1 reset the membrane potential of other neurons

(neuron 2 in the figure).
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(c) When the input spikes are applied to the neurons, the membrane potential of the

neurons increase by a step voltage VE . As the membrane potential reaches the

threshold, the neuron generates a spike and resets the membrane voltage again

to Vself . Then the above procedures are repeated and therefore the shortest time

period of the spike is considered as the winner neuron.

(d) If the duty cycle for the input spikes are not equal to 50% or the input spikes are

irregular, then there will be more than one winner. Fig. 5.5 shows that when the

input pulses are irregular and applied to three neurons (for example), then there

will be more than one winner. Therefore it can be deduced that Oster’s network

can not recognize the highest rate for streams of random pulses.

Figure 5.5: More than one winner in Oster’s architecture when three random input streams
are applied to three neuron.

159



The above procedure are simulated and implemented with two types of connectivity

between the IF neurons. The first type of connectivity are implemented when there is

no weight between neurons (for time less than 400 units) and the second type when

there is full connectivity ( for time greater than 400 units). Two experiments are

implemented, the first one when the input spikes are regular and the second one when

the input spikes are irregular (random). As a result of the first experiment, a raster

plot in Fig. 5.6 shows that the neurons spike according to regular input spikes when

there is no connectivity and there is only one neuron spike (winner ) when there is

full connectivity. On the other hand, the second experiment shows the raster plots for

four simulations in Fig. 5.7where the neurons spikes when there is no connectivity and

there in different winners with the full connectivity architecture.

2. The concept of pulse based computation of the IFMP architecture is discussed earlier

in details. In Fig. 5.8(a), it is shown the network architecture between neurons (n) in

the IFMP design where the number of connectivity in this architecture is calculated

as 3n. The concept of inhibitory connection between the neurons is similar in both

the IFMP network and the receptive field of the sensory system. In Fig. 5.8(c), the

neurons of the highest rate inhibit the neighboring neurons in order to propagates

the highest input stimuli(highest rate). For three input IFMP module shown in Fig.

5.8(b), the output of N4 inhibits neurons N1, N2 and N3 according to the convergence

equation [L1 − z]+ + [L2 − z]+[L3 − z]+ = γ. The output neuron N3 in this case

propagates the highest input rate when the constraint γ is approximately zero. Fig.

5.9 shows the membrane potential for neurons N1, N2 and N3 for a three-inputs IFMP

where the output rate is the highest rate between the input rates. For comparison
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Oster WTA (2001-2009)

with regular  input pulses:

In this experiment and in the first part of time (400 time scale), 20 neurons are 

not connected and they spikes  according to Oster design of the firing integrate 

neurons.  In the second part concurrent inhibitory connections  are applied and 

work to approve one  winner (neuron 1 is the highest rate or the least duration in 

time to spike).  It is shown those neurons 2: 20 are inhibited to spike  and only the 

winner neuron  generate spikes. 

Figure 5.6: Raster plot for 20 neurons based on Oster’s spiking neuranal architecture. Two
types of connectivity are implemented between the IF neurons, the first part (less than 400
units) are implemented when there is no weight between neurons. The second part ( greator
than 400 units) in the full connectivity and implementation of Oster’s archhitecture showing
that there is only one winner neuron

reasons, 20 neurons of the IFMP modules are simulated to test the spiking capability

of the neurons when these neurons have inhibitory connections and when there is

no connectivity between these neurons. Fig. 5.10(a)shows that there is one winner

between the 20 neurons for the inhibitory connections while Fig. 5.10(b) shows that

the neuron spikes according to the membrane potential and the threshold reached as

the normal operation for neurons.

Finally table 5.3 lists the difference comparison between the temporal spiking network in

Oster’s architecture [86] and the IFMP architecture.

161



0 200 400 600
0

5

10

15

20

Time

N
eu

ro
ns

0 200 400 600
0

5

10

15

20

Time

N
eu

ro
ns

0 200 400 600
0

5

10

15

20

Time

N
eu

ro
ns

0 200 400 600
0

5

10

15

20

Time

N
eu

ro
ns

Figure 5.7: Raster plot for four experiment to the Oster’s Architecture with stochastic inputs

5.3 Summary

In this chapter, two significant roles of the new designed pulse mode computation are ex-

plored. In the first significance role, it is shown that the designed pulse mode computation

enhances the dynamic range of the signal processing applications that are based on proba-

bility or the rate of input/output parameters. The reason for the wide range enhancement

is mapping the computational functions into log- sum- exp which eliminates the underflow

problem caused by repeated multiplication of probabilities. It is shown using a simple se-

quence detection factor graph application that using stochastic computation failed to detect

a simple sequence of numbers while the new designed pulse computational IFMP modules
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(b) (c) 

(a) 

Number of connections in  

IFMP architecture : 

3n= 3*20=60 

Figure 5.8: (a): Conection between 20 neurons in the IFPM architecture. (b): Inhibitary
connections between neurons in the IFMP architecture similar to the basic sensory system
in the receptive field shown in (c)

recognize the sequence directly.

The second significant role of the designed module is the direct and simple implementation

of an important design in the bio sensory system named as winner take all. A background of

WTA network has discussed in details showing that no research has yet designed the winner

take all circuit as spiking network where the input/ outputs are stream of random pulses.

In this section, the successful implementation of winner take all to random input pulses is

compared to the unique study in this aspect that shows a limited capability in designing the

spiking winner take all networks.
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Figure 5.9: Pulse output response for three input IFMP architecure showing that the output
rate is equal to the highest input rate
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Figure 5.10: (a):Spikes of neuron with respect to time using IFMP architecture with in-
hibitory connections between IF neurons. (b):Spikes of neuron with respect to time using
without the connection between the IF neurons
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Table 5.3: Comparison between the temporal spiking network in Oster’s architecture and
the proposed work

WTA (IFMP) WTA (Oster, Douglas, Shi Chii 2001-
2012)

The activated input pulses are random
where the probability of generating the
pulses is equal to the rate of logic one
over a time window.

The activated input pulses are assumed
as regular rate which is not the real case
in the biological neuronal population

The activating variables are currents
injected by the random input / output
pulses.

The activating variables are currents
injected by of regular input / output
pulses.

Competition between neurons is de-
cided through a global neuron as shown
in fig a. Ex: To detect the max input
between N neurons, the number of con-
nection are equal 3N connections

Competition between neurons is de-
cided through full connections as shown
in fig b. Ex: To detect the max input
for 100 neurons, the number of connec-
tions is equal N (N-1) connections.

Simple procedure of detecting the
max input by the excitatory synapses
and the inhibitory feedback to/from a
global neuron using the margin equa-
tion.

Complicated procedure of detecting the
max input through self excitatory con-
nection and inhibit all the neurons in
the network.
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Chapter 6

Summary and Future work

In chapter one, it is stated that real time processing and scalability are goals of implementing

signal processing applications on a chip in general and implementing neuromorphic systems

as specific computations. In order to achieve real time processing, the computations are

processed in parallel and implemented in pulse mode. The pulse mode computations mix

the advantages of analog and digital hardware designs as well as to propagate easily the

computed parameters in real time between the successive modules. In order to achieve a

scalable design, it is important to introduce a computation algorithm that can be cascaded

to achieve partial processes of the algorithms and procedures.

As a contribution to this large effort, a novel and scalable mechanism of pulse compu-

tation algorithm and its hard ware implementation is designed to approximate the nonlin-

ear functions as an important procedure to implement signal processing algorithms. The

designed module is based on the integrate and fire structure and margin propagation al-

gorithm (IFMP). In chapter one, the objectives and the tasks to implement the designed

pulse computational module are addressed. In the chapters two, three, four and five, the

analysis of these tasks are explored in details. In this chapter, the objective goals to design

the scalable IFMP algorithmic module, the tasks and methodology to meet the objective

and the significance roles of the designed algorithm are summarized with recommendations

to the future work.
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6.1 Objectives

In order to design a scalable pulse computation algorithm and its hardware implementation,

it is important to meet the following objectives,

1. Convergence property: Since the computations are implemented with stochastic pulse

computation, the designed algorithm has to meet the convergence property for each

unit of the designed module.

2. Scalability property: Scalability means that the basic designed module can be cascaded

to handle a growing amount of work in a capable manner.

3. Computation properties: As a new computation algorithm, the module has to meet

some computational properties such as: scaling property, monotonicity, convexity, su-

perposition and offset property.

4. Pulse computation verification: The pulse mode computational module has to verify

the the approximation of the basic and non linear functions such as the addition,

multiplication, power, polynomial and inner product.

5. Pulse computational applications: It is important to implement procedural algorithms

to verify that the pulse computation module has the capability to implement signal

processing applications such as decoding and classification.

6. Hardware realization: The basic concept of the designed module is the capability of

mapping the algorithm into analog circuits.

7. Power and size efficiency: In order to design a dense array of the pulse mode-algorithm

on a chip, it is recommended to map the algorithm into a compact and low power
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analog circuits.

8. Significance role: The designed pulse module has the roles in dynamic range enhance-

ment and unique design to maximize the highest input rate in spiking networks.

6.2 Implemented tasks

To meet the above objectives, the following tasks and methodologies are applied for the

verification of the scalable pulse computational module:

Design the core unit of the IFMP: The basic unit of the IFMP module is designed

using the concept of the integrate and fire structure. The goal here is to verify the convergence

of input/output pulses such that E(L[n]) = E(d[n]), where E(L[n]) and E(d[n]) are the

expected values of input pulses L and d over time period T as shown in following equations:

( 1
T

∑T
n=1 L[n]) and ( 1

T

∑T
n=1 d[n]) respectively.

500 600 700 800 900 1000
0

0.5

1
IN1: R1=0.2

500 600 700 800 900 1000
0

0.5

1
OUT: R= 0.2

Time (0.2 msec/step)

Figure 6.1: Convergence of one IF neuron with input rate equal 0.2. It shows that the output
rate (R) is equal to the input pulse rate (R1)
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Figure 6.2: Convergence of one IF neuron with three inputs of rates 0.2, 0.1, and 0.3 respec-
tively. It shows that the output rate (Rate) is convergence to the sum of the input pulse
rates (R1, R2, and R3)

The above convergence is proven theoretically and verified experimentally. If the ”IF”

neuron has one input, then the output rate (OUT) converges to the input rate (IN1) as

shown in Fig. 6.1, where both of the input and output rates are equal to 0.2. In addition

to that, the convergence is verified for more than one input according to this equation:

∑P
i=1 E(L[n]) = E(d[n]), where (P ) is the number of input signals to the neuron. In Fig.

6.2, an experiment is implemented using three inputs (P = 3). It is shown that the sum of

the expected values for these inputs is equal to the expected value of the output pulses.

IF application: As an application to the IF structure, a novel circuit is designed to

adjust the weight of the synapse by changing the input current to the neuron. The injected

current is changed according to the previous and post pulses to the neuron. The synapses
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weight is adjusted using storage transistors named as the floating gates. The above synapse

weight adjustment is designed with ten synapses connected a IF neuron. The result of the

experiment verifies the behavior of the synapse time dependency plasticity that represents

the mechanism of learning process in neuronal population.
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Figure 6.3: Convergence of the output rates for the three neurons N1 = 0.25, N2 = 0.05 and
N3 = 0.45 in the IFMP structure when the input rates γ, L1, and L2 are equal to 0.3, 0.7
and 0.5 respectively

IFMP pulse computational unit: A special network of the IF neurons is designed to

approximate non- linear functions in pulse mode. The designed algorithmic module is based

on margin propagation that approximate the log-sum-exp function. The importance of the

log-sum -exp is to map easily the nonlinear functions. Moreover, the importance of margin

propagation is to map these function into analog circuit. In order to verify the algorithmic
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Figure 6.4: Dynamic characteristics for two-input IFMP module showing the convervence
and the output rates for the three neurons N1 , N2 and N3 in both theoretical and cir-
cuit(cadence) simulation

operation of IFMP, the following convergence equation must be satisfied,

P∑

i=1

[E(Li[n])− E(Lz[n])]+ −→ E(γ[n])

where Li, p, z, γ and n are the i’th input, number of inputs, output, constraint and time step

respectively. The inputs, output and γ are quantified as the rate of ones in a stream of random

pulses. The concept of the convergence in the above equation is proven theoretically, verified

in software simulation and circuit simulation as explained in chapter 3. An experiment is

implemented when the input rates γ, L1, L2 are equal to 0.3, 0.7 and 0.5 respectively. The

output pulses for the neurons converge to N1 = 0.25, N2 = 0.05 and N3 = 0.45 as shown in

Fig. 6.3.
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Table 6.1: Pulse rates obtained in the theoretical ”theo” and cadence ”cad” simulations
for the three neurons N1, N2 and N3, note that z is the output rate of neuron N3. Where
γ = 0.2 and L2 = 0.3

L1 N1cad N2cad zcad N1theo N2theo ztheo

0.1 0.21 0.02 0.12 0.2 0 0.1

0.2 0.16 0.07 0.17 0.15 0.05 0.15

0.3 0.14 0.14 0.2 0.1 0.1 0.2

0.4 0.1 0.2 0.25 0.05 0.15 0.25

0.5 0.4 0.24 0.33 0 0.2 0.3

0.6 0 0.27 0.41 0 0.2 0.4

0.7 0 0.26 0.54 0 0.2 0.5

0.8 0 0.25 0.64 0 0.2 0.6

0.9 0 0.27 0.73 0 0.2 0.7

Another experiment is implemented to show the convergence of the IFMP algorithmic

module in software and circuit simulations. Fig. 6.4 and table 6.1 shows the dynamic

convergence of the output rates for the three neurons N1 = 0.25, N2 = 0.05 and N3 = 0.45

in the IFMP structure when the input rates γ, L1, and L2 are equal to 0.3, 0.7 and 0.5

respectively.

The figure shows a difference between theoretical and practical results of the rates as

indicated in the legend and the corresponding table of numerical values. The reason of the

difference in the circuit simulation is the requirement of the accurate balance for the IFMP

convergence to fix the input currents to the inhibitory and excitatory paths of the IF. In

addition to that, the accuracy of the output rates depends on the number of iterations for

the input pulses. The implementation of IFMP in analog circuit is important because it tells

that the IFMP concept can be mapped on a chip and thus achieve dense, high speed, and

low power specification compared to the software simulation.
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Cascading and approximation concept of IFMP: The importance of the cascad-

ing or the scalability property is to handle gnawing amount of designs and to implement

different algorithms on the same hard ware array with different connectivity and settings.

The connectivity and settings in this project are implemented using field-programmable gate

array (FPGA).

In order to achieve the cascading property for the IFMP modules, first of all the approx-

imation between the margin propagation and the log-sum-exp must be estimated in order

to achieve the right computations. In chapter 3, it is proven that the estimation between

the above function is equal to the rate γ. It is shown in the simulation too the successfully

approximation for both the parallel and serial cascading.

Properties, computation and applications: As a pulse computation algorithmic

model, it is important to identify and verify the properties of these computations. In chap-

ter 4, the scaling, offset, monstrosity, convexity and supper position were discussed in details.

The above properties were proven and simulated to show that the above properties are appli-

cable for the designed computational algorithm in pulse mode. Scaling and offset properties

are used frequently in the computations because the inputs, output and γ are probabilistic

terms or pulse rate terms. In order to map the IFMP to the non-linear functions, all the

parameters of the equation are in logarithmic values. Applying the logarithmic function to

these terms will get negative numbers that require biasing adjustments by adding an offset

and then scaling the rates to values within the probability range (0:1). Having the above

properties for IFMP modules, the module can then be used to approximate the mathematical

functions such as multiplication, addition, power, inner product and polynomial function.

The above functions are verified in both the software simulation and the circuit simulation

as explained in chapter 4. In addition to that, more complicated algorithm are verified using
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cascaded IFMP modules such as recursive dynamic equations and support vector machine

algorithms for decoding and classification applications respectively.

6.3 significance of the IFMP algorithmic module

1. Dynamic range improvement

To identify the difference that the pulse computational IFMP module would have to

make in computations compared to other pulse computational modules, an application

of sequence detection is applied in two pulse computation techniques: the stochastic

pulse computations and the IFMP algorithmic module.

The Stochastic computation is a new alternative approach for iterative computation

on factor graphs. In this approach, the information is represented by the statistics of

the bit stream which results in simple high-speed hardware implementation of graph-

based algorithms. Stochastic arithmetic was introduced to design low-precision digital

circuits. The important motivation for considering stochastic computation was the pos-

sibility of performing complex computations using only simple circuitry. In stochastic

computation as in the IFMP pulse computations , probabilities are represented as

streams of random digital bits. Using this representation, complex operations on prob-

abilities such as multiplication and division are converted to operations on bits which

can easily be manipulated using simple stochastic gates.

Although the stochastic computations seems feasible but it fails to implement a sim-

ple detection application. In chapter 5, a simulation to the factor graph application

”sequence detection” is implemented using stochastic computation. The simulation

shows that the low range of the processing parameters cause a failure to recognize
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an input sequence to the hidden Markov model with a matching observation. In the

same chapter, it is shown the significance difference in detecting a simple sequence in

both the pulse stochastic computation and the IFMP computations which tells that

the logarithmic representation of the computational parameter enhance the range of

the small values of the probabilities in computations.

2. Novel design of spiking winner take all network

In chapter 5, the background of designing winner take all (WTA) in continuous time

systems and spiking networks is discussed. Many attempts are listed in the background

survey to design the WTA because of it’s importance in the sensory system of the

receptive fields. Many researchers are interested in the design of spiking networks but

most of them looked to the WTA in a spiking architecture as a circuit that implement

continuous signal with encoder/decoder for spikes to continuous/ continuous to spikes

signal conversion. The only designed network for spiking WTA that addressed the

spiking WTA is the Oster’s architecture, where the input and output signals for the

designed algorithm are quantified as spike rate. Yet, these input spikes have to be

regular in order to identify the winner between the input streams of pulses. If the

above architecture is designed for random input pulses, the design will fail to identify

the winner.

The significance and novelty of the pulse computational IFMP unit is the identification

to the winner input even if the input streams are random pulses ( variable time period

between pulses/ stream). In chapter 5, it is shown that the designed IFMP module

verifies the concept of winner take all (WTA) algorithm in pulsed computations and

that the idea of WTA is embedded in the IFMP algorithm. The IFMP algorithm
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approximates the max input if the inhibiting parameter γ is chosen as a small rate

(example: 0.001), thus it can be said that IFMP propagates the maximum input rate.

The novelty in the designed winner take all is the implementation of the concept when

the input pulses are stochastic or random compared to the unique designed found

in the survey which implement spiking WTA based on the regular input pulses.

3. Chip test verification:

The next significance role of the designed pulse computational module is the successful

implementation and realization of the algorithmic concept into analog circuit and lay-

out design. The design pulse computation algorithm is realized on a chip as an array of

64 units of two-input IFMP modules. Couple of the 3-8 decoders are used to select the

IFMP unit in the array and 16- pull up transistors are used to propagate the output

pulses to identify the x-y coordination of the IFMP that generates a spike in the array.

If the IFMP units are verified as a stable unit in silicon layout as in the simulation,

then the IFMP array is ready to approximate the basic functions and the algorithmic

applications.

In order to built an architecture for any application, a state machine is designed us-

ing hardware description language (HDL) that is configured on an interfacing field-

programmable gate array (FPGA). The HDL program is designed to generate random

pulses that are applied to the IFMP units in time multiplexing mode. The number of

the required IFMP units for implementing applications depends on the complexity of

the algorithmic application. For each step time unit, the output of the IFMP units

is detected and routed using a lookup table that represents the connectivity of IFMP

network. The output pulses are stored in the FPGA registers for the analysis and
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verification of the applied algorithmic application. Following the above procedure, the

IFMP array has been tested and verified in the following,

(a) Testing and verification of the convergence property of the IFMP algorithmic

module on a chip as discussed in chapter 3.

(b) Testing and verification of a sequence decoder application using HMM algorithm

as discussed in chapter 4

The same chip can be used for other application in the same procedure discussed above.

This is the scalability issue, which means that there is no need to redesign the hardware

for different applications. For example, the scalability is essential in designing the

neuromporphic architectures that require dense neuron modules to implement signal

processing applications using FPGA or any other interfacing programmable controller.

6.4 Future work

Since the newly designed module is significant in spiking networks and it is scalable in

detection and classification algorithms, then it is recommended the followings,

1- It is recommended to built speech recognition and image processing systems on the

hardware level. A pre-stage is required for both applications to encode/decode the images

and speeches into/from sequence of pulses.

2- In the neuromorphic applications, the designed arrays can be used as computational

model in mimicking the biological sensory systems especially that the induced noise is con-

sidered as beneficiary to enhance performance.

3- In order to get accurate convergence of each neuron and each IFMP unit in the array
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in the hardware level, the biasing voltages can be fixed using floating gate transistors. This

is a huge project in fixing the biasing using row and column shift registers to identify each

biasing voltage.
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