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ABSTRACT
ENVIRONMENTAL EFFECTS ON CRACK HEALING AND STATIC FATIGUE
BEHAVIOR OF GLASS AND POLYCRYSTALLINE CERAMICS

By

Brett Allen Wilson

An Environmental Scanning Electron Microscope (ESEM) was used for in-situ studies
of static fatigue growth of Vickers indent cracks in polycrystalline alumina. Cracks
advanced via static fatigue along a tortuous path with grain bridging and crack
deflections on the order of a single grain diameter.

In-situ ESEM studies of healing of Vickers indent cracks in soda-lime silicate
glass found healing to occur at 8 % r.h. and at 400 °C. Increased levels of initial
humidity decreased the temperature at which healing initiated. The crack morphology
included slow crack regression from the crack tip towards the indent impression and
multiple crack pinch-off (above 550 °C). Debris in a crack hindered complete healing.

Conventional heating was used in healing of soda-lime silica glass where
Vickers crack lengths were measured via optical microscopy. Microscopy showed
crack tip blunting, pinch-off, and sub-surface spheroidization. The more complete
healing observed for cracks aged in 45 % r.h. than in 0 % r.h. was attributed to water

vapor entering the glass structure and decreasing the local glass transition temperature



and viscosity along the crack faces.

Crack healing experiments on polycrystalline alumina were performed using
both conventional and microwave heating. No effect of aging environment was found
for conventional healing of alumina. The relative crack healing ([2¢,,ia2Chea]/2Cimisa)
behavior for 49 and 98 N indent cracks was nearly identical. Crack healing was
modeled by a diffusive transport model originally developed by Dutton and Stevens
showing significantly lower activation energies for conventional compared to
microwave heating. Microwave heating at 10 °C/minute had much greater healing

than at 75 °C/minute.
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1. INTRODUCTION AND RESEARCH OBJECTIVES

1.1 Introduction

Ceramic materials are used in many different areas including electronics, dentistry,
automotive engine components, industrial tooling, and biological prostheses.
Mechanical, electrical, and magnetic properties are important for these applications.
The presence of cracks in a ceramic part will change the mechanical, electrical and
magnetic properties of the material.

Static fatigue (which is also termed stress rupture or environmentally-assisted
slow crack growth) of ceramics and ceramic composites involves crack propagation at
stresses lower than the stress required for instantaneous fracture. A ceramic material
subjected to a static (constant) load thus can exhibit a decreasing mechanical strength
as function of time. Strength degradation is typically linked to the stress corrosion of
pre-existing flaws in the material, where stress corrosion occurs via the interaction of
the ambient environment and highly strained atomic bonds at the crack tip. Water,
even in concentrations of parts per million (ppm) as in the ambient environment, can
lead to very significant stress corrosion and static fatigue in ceramics.

For a number of important application areas for ceramic composites, static
fatigue can be an important concern. For example, ceramic engine components are

stressed in high temperature environments that can include water vapor, since water is
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produced during the combustion of hydrocarbon fuels.
Crack healing could be used as the last step in ceramic manufacturing to
reduce or eliminate cracks in the final part. Crack healing in ceramics could also

potentially be used to repair ceramic parts which had been damaged in service.

1.2 Research Objectives
The main objective of this research is to investigate the effects of time, temperature
and humidity on crack healing and static fatigue crack growth behavior in ceramics.

Static fatigue crack growth was investigated in-situ using a tensile stage in the
ESEM. The growth of Vickers indentation cracks over time at different levels of load
and humidity was observed.

Crack healing behavior of glass was observed in-situ using a hot stage for the
Environmental Scanning Electron Microscope (ESEM). Additional healing studies for
glass were performed in conventional furnaces at temperatures below that for bulk
viscous flow in the glass to further investigate and attempt to model the effects of
time, temperature and humidity without having sample damage or bulk dimension
changes which would be undesirable for industrial healing processes. Healing of
polycrystalline alumina in conventional furnaces was studied at temperatures of less
than 1500 °C where the specimen surfaces would not be damaged by excessive
thermal etching or other bulk specimen damage or dimension changes could occur
which would be undesirable for industrial healing processes. Healed polycrystalline
alumina specimens where observed in a field emission scanning electron microscope to

reveal the morphology changes in polycrystalline alumina during healing at
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temperatures below 1500 °C. Microwave heating of polycrystalline alumina was also
performed to compare crack healing behavior in conventional and microwave furnaces.
The activation energy and preexponential factor for diffusion during crack
healing were re-analyzed using the original data for two investigations from the
literature on crack healing in single crystal LiF ceramics. The re-calculated activation
energies and preexponential factors for diffusion were compared to the originally

calculated values and were used to reach different conclusions about the diffusional

healing mechanism(s).



2. LITERATURE REVIEW

2.1 Static Fatigue Behavior of Ceramics

Static fatigue in ceramics refers to a time-dependent weakening of a material under
constant stress due to environmentally-assisted subcritical (slow) crack growth. Static
fatigue is a combination of a mechanical behavior of ceramics under tensile load and
an environmental effect. The mechanical behavior of ceramics is related to the atomic
bonding behavior of ceramic materials. The room temperature tensile behavior of

ceramics is predominantly brittle in nature.

2.1.1 Atomic Bonding in Ceramics

Ceramics are ionically and covalently bonded inorganic materials. Examples of
ceramics with ionic bonding are: NaCl (sodium chloride), MgO (magnesium oxide),
LiF (lithium fluoride), SiO, (silica), and Al,O, (alumina). Ceramic materials such as
SiC (silicon carbide), Si;N, (silicon nitride), BN (boron nitride), WC (tungsten
carbide), and TiB, (titania diboride) are examples of covalently bonded ceramic
materials [1-2]. Ionic and covalently bonded ceramics typically have a high bond
strength, which is reflected in the high melting temperatures observed for ceramics
(typically higher than 2000 °C) [3]. Close packing of the atoms in crystalline

materials requires that the atoms be essentially spherical, of identical size and have
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non-directional bonding between atoms [1]. Ceramic materials which are composed of
two or more types of atoms often have atoms that can be very different in size and so
may not be close packed even if ionically bonded. In fact, most ceramic crystal
structures are very far from being close packed [2].

The open crystal structure of most ceramics coupled with the high bond
strength means that very few ceramic materials have dislocation motion below 1000 to
1200 °C [2]. NaCl, LiF and MgO are examples of ceramic materials which have
dislocation movement at low temperatures, however, these are not commonly used
ceramic materials, at least not by themselves (MgO is commonly added to other
ceramic materials such as SiO, and AL,O,). Single crystals of Al,O; do not have
dislocation motion until temperatures above 1260 °C [4]. Ceramic materials with
covalent bonding have limited dislocation motion even at high temperatures. Ceramic
glasses will not have dislocation motion either, since they are by definition non-

crystalline solids.

2.1.2 Room Temperature Tensile Behavior

Since most common ceramic materials (SiC, Si;N,, BN, WC, Al,O, and glass) do
NOT have dislocation motion at room temperature, ceramics have very limited
plastic deformation and fracture in a BRITTLE manner. The stress-strain behavior
for most monolithic ceramics simply consists of elastic deformation until fracture. On
an atomic level, elastic strain is actually the result of changes in interatomic spacing
due to the applied stress. The elastic modulus for covalently bonded ceramics is

higher than that observed in metals due to the higher strength of the covalent bonding
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compared to metallic bonding. For example SiC has an elastic modulus of over 400
GPa [3], while many common steels have elastic moduli around 200 GPa [5].

The theoretical strength to break the atomic bonds during tensile loading of

ceramics can be calculated using the elastic modulus, E, and is typically % to % [3-

4]. However, the actual fracture strengths of polycrystalline ceramics are only about

% to %06[3-4]. The failure at actual applied loads well below the theoretical

fracture strength is the result of the presence of pores, flaws, and cracks which cause
local regions of stress concentration.

The fracture toughness, K,,, measures the material’s resistance to crack growth:
K, =Yo/m 1)

where K, is the fracture toughness (also the critical stress intensity factor), Y is a
geometric factor dependent on specimen and crack geometry, O is the stress at failure,
c is the half the crack length (2c). For aluminum alloys K, values range from 20 to
40 MPa m"®, while for steels, K, values range from 60 to over 100 MPa m®® [6]. The
fracture toughness values for ceramics are much lower. For example, the fracture
toughness for soda lime silicate glass ranges from 0.7 to 0.8 MPa m®’ [7].
Polycrystalline ceramics have fracture toughness values which are slightly higher than
that for glass, but that are still much lower than that of metals. Al,O; has a K. value
of 4.0 MPa m®’, while Si,N, has about the highest fracture toughness value for non-

transformation toughened ceramics with a K. value of 5.6 MPa m®’ [6].
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The lack of crack resistance means that very small flaws in ceramic specimens
act as stress concentrators from which cracks form and subsequently grow. The flaws
can be surface flaws resulting from scratches, machining or thermal shock. The flaws
can also be volume flaws from pores (voids left over from sintering), or microcracks
caused by thermal expansion anisotropy, thermal expansion mismatch between phases,
or phase transformations. Control or elimination of flaws in ceramics during
processing is the aim of research in ceramic processing, however, in practical
applications it is virtually impossible. The limited ability to control the flaw size leads
to a variation in the population of flaws for a given specimen.

For specimens with low crack resistance, as the applied tensile stress is
increased, the cracks will continue growing until the largest crack grows to a critical
length. At the critical crack length, the local stress intensity factor exceeds the
fracture toughness of the material and results in fracture. The larger the size of the
flaw in the ceramic specimen, the higher the stress intensity at the flaw, and
consequently the lower the fracture strength of the specimen.

Due to the variation in fracture strengths in tensile loading resulting from stress
concentration at flaws, along with the difficulty of preparing ceramic test specimens
having normal tensile test specimen geometries, different strength testing is used for
ceramics than metals and polymers. Three or four point bend testing is commonly
performed on ceramics and is often referred to by ceramists as modulus of rupture
(MOR) testing or bend strength testing. Since ceramics do not have plastic
deformation, the stress state in bend testing is known from linear fracture mechanics

analysis. The tensile forces are at a maximum on one surface, decrease to zero at the
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midplane of the specimen, and reach a maximum compressive force at the other
surface. Only a fraction of the specimen is under maximum tensile stress during bend
testing, while in normal tensile testing the entire volume of the specimen in the
reduced cross sectional area is under maximum stress. From a statistical standpoint,
the chance of an unusually large flaw being under maximum stress is very small in
bending and very probable in normal tensile testing. Consequently, much less scatter
in fracture strength data is observed in bend testing than in tensile testing requiring

fewer specimens for testing in bend testing than in tensile testing.

2.1.3 Static Fatigue Investigations

In ceramics, "fatigue” is a word that is not just used to describe the behavior of a
material under varying load (as in metals). "Fatigue" is used for many different time-
dependent phenomena observed in ceramics. For ceramics, the term "cyclic
mechanical fatigue" is used to describe the behavior of ceramics under varying
mechanical load and is the equivalent of the term "fatigue" used in metals literature.
Other examples of the use of the term in ceramics include "thermal fatigue" where the
strength decreases from repeated thermal shock and "static fatigue" where the
phenomena of a reduction in strength and/or a growth in cracks under a constant
applied load is a result of environmental effects. In static fatigue of ceramics, growth
of flaws occurs at stress levels lower than required for instantaneous failure and is also
referred to as subcritical crack growth [8-9]. Subcritical crack growth can continue

until a critical crack length is reached and catastrophic failure ensues [8-9].



2.1.3.1 Standard Static Fatigue Testing

Testing of static fatigue subcritical crack growth in ceramics is traditionally performed
by direct optical measurement of a macrocrack under constant mechanical load for
double cantilever beam specimens or double-torsion specimens [9-20]. Double
cantilever beam and double-torsion testing measures the crack length as a function of
time under constant load. The crack length and time measurements are converted to
change in crack length per unit time (da/dt or V) values while the load and the crack
length measurements are converted to stress intensity (K;) values. The data is reported
as crack velocity (V) versus stress intensity (K;) data.

The cracks in DCB specimens are macrocracks, and it is now recognized that,
at least in part, the difficulty with using DCB data to predict static fatigue lifetimes is
the fact that most in-service failures originate from microcracks [21]. Microcracks,
include microcracks or "natural flaws" that are inherent in the material, such as
microcracks that occur due to handling, processing flaws, etc. For microcracks,
subcritical crack propagation behavior under constant load (static fatigue) can differ
substantially from that behavior observed for macrocracks [21].

In static fatigue "lifetime" testing (where time to failure under a static load is
measured), often the surfaces are abraded to approximate a "natural” flaw population,
that is a flaw population that originates from handling, cutting, grinding, or the initial
processing (sintering) of the ceramic specimen. However, for abraded specimens, it is
impossible to obtain information on the initial flaw length and position, thus one can
not determine the stress state under which the flaws begin to propagate. Furthermore,

details of the crack propagation process itself are unaccessible.
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2.1.3.2 Findings of Standard Static Fatigue Testing

Glass has been the focus of much of the static fatigue testing of subcritical crack
growth in ceramics. Wierderhorn performed double cantilever static fatigue
experiments on soda-lime-silicate glass in environments with 0.017% to 100% relative
humidity and 25 °C [8]. The experiments revealed an increase in crack velocity with
increasing relative humidity. The importance of water vapor on the static fatigue has
been well established from many other experiments [10-12, 22]. Further studies by
Wierderhorn and others have shown the existence of very slow static fatigue crack
growth in vacuum (i.e. without the presence of water vapor) for soda-lime-silicate,
aluminosilicate, borosilicate, and high leaded glasses [23-24]. The rate of the static
fatigue slow crack growth depended strongly on the composition of the glass material
tested. For example, no static fatigue slow crack growth was observed for fused silica
and low-alkali borosilicate glasses tested in vacuum [23-24]. For polycrystalline
ceramics, the static fatigue crack growth has been related to the amount of glassy
phase located at the grain boundaries. The microstructure of the material also plays an
important role in static fatigue crack growth [13, 22].

The process of static fatigue is relatively complicated, in that some researchers
associate static fatigue primary with environmental attack at glassy phases between
grains or at interfaces between matrix and reinforcing phases. For example, Choi and
Horibe [22] relate static fatigue in alumina and silicon nitride to the glassy phase
between grains of the ceramic. Choi and Horibé [22] found that silicon nitride
specimens that contained an appreciable glassy phase are relatively sensitive to static

fatigue, while reaction bonded silicon nitride (RBSN), which contains very little glassy
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phase, is relatively insensitive to static fatigue. However, for higher temperature
applications, static fatigue results from the reaction bonding process which leaves
unreacted silicon in the interior of RBSN. This unreacted silicon can be converted to
silica upon heating in air. The silica evolved within RBSN specimens renders RBSN
useless for high temperature applications. In a study of both static and cyclic fatigue
in silicon nitride, Jacobs and Chen [25] found a stress intensity-crack velocity (K-v)
relation for static fatigue of silicon nitride that is similar to that observed for silicate
glasses. Jacobs and Chen [25] then infer that the similarity of the static fatigue
behavior for silicon nitride and silicate glasses may be due to the Y-Si-Al-O-N glass at
the grain boundaries.

In both glassy silica (SiO,) and single-crystal alumina (Al,O;), water and NH,
(ammonia) chemisorb on the highly strained bonds at the crack tip [26-28]. Michalske
et al. [29] give a model in which a polar molecule such as water or NH, undergo a
"concerted reaction” with the Al-O or Si-O bonds that results in the breaking of the
bond and hence the propagation of the crack. Thus static fatigue is NOT always
associated with grain boundaries containing silicate glass. Single-crystal alumina
certainly does not have grain boundaries and so the bonds being broken are Al-O
bonds rather than Si-O bonds. Thus while silicate phases at grain boundaries may be

important, such phases are apparently not required for static fatigue in ceramics.

2.2 Crack Healing in Ceramics
Crack healing has been observed in a variety of different ceramic materials including

single crystals [30-32], polycrystalline ceramics [31, 33-34], inorganic glasses [35-36],
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and ceramic composites [37]. Three general mechanisms have been reported for crack
healing in ceramics: diffusion-driven thermal healing, adhesion from intermolecular
forces, and reaction products from chemical reactions at the crack tip [33]. The
environment has been found to influence crack healing in ceramics [35-36, 38-39]. In
diffusion driven thermal healing, morphology changes have been treated theoretically
[40-41] and observed experimentally [30-32, 34, 42-44]. Crack healing has been
investigated via strength recovery testing after thermal annealing cycles [22, 31, 34,
45, 47-52]. Healing in alumina has also been investigated via Vickers indent crack

length changes after thermal annealing [37].

2.2.1 Role of Environment

Crack healing studies in inorganic glasses have frequently emphasized the role of
environmental humidity in the crack healing process. Holden and Frechette studied
the environmental effect on thermal annealing of soda-lime-silica glass by varying the
presence of humidity during different portions of the heating cycle [35). Cracks were
formed in specimens from thermal down-shock by a metal probe which gave crack
depths ranging from 191 to 900 microns [35]. Five different annealing cycles were
used for cracked specimens annealed to 550 °C by applying the humid environment
(water vapor pressure of 30 kPa) during different portions of the heating cycle and
varying the length of the hold at the annealing temperature (see Table 1 for detailed
conditions) [35]. After annealing, the specimens were fractured using a ring-on-ring
test and the resulting fracture surfaces were observed using differential interference

contrast (see Table 1 for summary of results) [35]. Based on their results, Holden and
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Table 1 Humidity conditions during five different heating cycles of Holden and
" Frechette [35] and resulting effects on crack closure and tested strength in soda-lime

silica glass.
Heating Humidity Applied During Cycle Holding Crack | Qualitative
Cycle Time Closure | Strength
Heating Hold Cooling | (Minutes) * *k
Temperature

1 No Yes No 60 No Very Low
2 Yes No No 60 Yes Very Low
3 Yes Yes No 10 Yes Low
4 Yes Yes No 60 Yes Good
5 Yes Yes No 100 Yes Good

* Crack closure was determined by the absence of the crack during visual
examination after the heating cycle.

** The qualitative strength is a characterization of the ring-on-ring failure load for
the group of samples with a particular heating cycle compared to a group of
samples without thermal shock cracks.
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Frechette [35] proposed an optimum healing cycle for crack healing and also a four
step model for the crack healing in soda-lime silica glass [35]. The reported
conditions optimum healing was: (1) presence of humidity at lower temperatures
during the heating cycle, (2) presence of a residual stress before the annealing cycle,
(3) the presence of humidity at the annealing temperature, (4) holding at the annealing
temperature for a period much longer than that required for the relief of stresses [35].
The proposed model for crack healing in soda-lime silica glass was: (1) adsorption of
water at a temperature below the glass transition temperature, (2) formation of a gel
layer, (3) closure of the crack due to stress relief and (4) drying of the gel in the
presence of a controlled atmosphere [35].

Using an optical microscope, Lehman, Hill, and Sigel observed crack closure of
Vickers indentation cracks in heavy-metal fluoride glass [36] under different relative
humidity levels at temperatures of 22, 50, and 80 °C. The crack closure rate was
greater at higher levels of relative humidity, while crack closure lengths appear to
reach similar values at longer times for all levels of humidity [35]. Temperature was
reported by the authors as a significant factor in crack closure, however, the authors’
plot of crack length as a function of temperature for different humidity levels could
easily be fit by a horizontal line of zero slope (i.e. no significant crack length change
with temperature) [36]. Lehman et al. found no evidence of a gel or any other
reaction product which usually would be crystalline in fluoride glass and consequently
readily identifiable [36].

Stravrindis and Holloway [38] investigated crack healing in glass using a

double torsion loading configuration to observe crack closure and repropagation. The
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closure and repropagation of cracks in soda-lime silica, borosilicate, and silica glasses
was dependent on the environment [38]. For soda-lime silica specimens, the strain
energy release rate for crack repropagation for a crack which was allowed to close in
air, increased with room temperature aging time in air [38]. An optical reflectivity
developed for the cracked specimen within a few minutes of exposure to air, but a
significant increase in the energy required to repropagate the crack took hours of
exposure of the crack to air [38]. Stravrindis et al. [38] state that the change in
reflectivity may be due to the penetration of water to the two faces of the crack and
that the initial adhesion between the faces of the closed crack may be due to the
formation of a hydrogen bonded network. Stravrindis et al. [38] theorize that the
subsequent increase in the energy required to repropagate the crack after a few hours
of exposure of the crack to air may be due to a progressive interaction between the
water layer and the SiO, network of the glass.

Michalske and Fuller [39] investigated crack closure and repropagation in soda-
lime silica and vitreous silica glass using a double-cleavage drilled-compression
fracture mechanics configuration. The energy during closing of cracks was humidity
dependent at low temperatures, but was independent of glass composition which the
authors state indicates that the closure may be the result of a physical process such as
hydrogen bonding and not complex chemical reactions [39]. Michalske et al. [39]
develop a model for the hydrogen bonding energy across the crack as a function of
humidity. The model shows a drop in the closure energy at humidity levels of less
than 15%. The authors [39] state that linkages of two or three water molecules

between the crack faces may be possible which would mean that crack faces separated
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by up to 1 nm may be adhered by hydrogen bonding.

2.2.2 Crack Morphology Changes during Thermal Healing of Cracks
Thermal-annealing induced changes in crack morphology have been treated
theoretically by Nichols and Mullins [40-41]. Nichols and Mullins [40-41] showed
that a semi-infinite cylindrical crack would either evolve (by diffusive transport) into a
string of small spherical pores (ovulation) or into a large sphere (spheroidization).
Experimental observations of crack morphology changes [30-32, 34, 42-44] are
consistent with Nichols and Mullins’ theoretical observations [40-41]. For example,
Yen and Coble [32] thermally annealed internal cracks in single crystal sapphire in air
at temperatures ranging from 1650 to 1810 °C and found that the original continuous
internal cracks broke up into channels of tubular voids which subsequently evolved
into rows of spherical pores. Wang and Harmer [30] used an in-situ optical
microscope to observe healing of internal cracks in single crystal LiF during
isothermal annealing in the temperature range of 620 °C to 820 °C and found that
annealing occurred in three stages: pinching off of plane cracks into cylindrical pores,
ovulation of cylindrical pores, and shrinkage of isolated pores [30]. Gupta
investigated healing in MgO [34], sapphire [31], and alumina [31]. Specimens, which
had cracks formed from thermal down-shocking, were thermally annealed at
temperatures in the 1400 °C to 1700 °C range, fractured in four point bend, and
observed in an SEM [31, 34]. Gupta observed that the cracks at grain boundaries
pinched-off (for MgO and alumina), that the cracks evolved into cylindrical voids

which became rows of spherical pores, and that with further annealing the spherical
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pores underwent continuous shrinkage (31, 34].

Hrma, Han, and Cooper [42] investigated indentation crack healing in soda-
lime silica glass at 600, 650, and 675 °C using transmission optical microscopy and
multiple beam interference microscopy on cooled samples. Hrma et al. [42] found a
process of crack healing characterized by several stages with distinct morphological
changes. In the first stage of healing, two different phenomena were reported: 1a)
relaxation of the residual stress created during indentation occurred, 1b) subsurface
crack outlines (which were barely detectable before annealing) became visible after a
short time of heat treatment (e.g. less than 45 minutes at 600 °C) as a result of
blunting of the crack tips via capillarity driven viscous flow of the glass [42]. In the
second stage of healing, the indent cracks receded with a inward motion of the crack
boundaries and radial cracks broke up via pinch off into oval cavities [42]. Grooving
of the crack edges at the crack surface and shrinking of the subsurface cracks into
cylinders and oval cavities characterized the third stage of healing [42]. The last
healing stage consisted of spheroidization of the remaining subsurface cracks and
gradual smoothing of the surface in the region of the indent impression [42].

Cassidy and Gjostein investigated the capillarity-induced smoothing of soda-
lime-silica glass surfaces after heating in air to 640-670 °C [43]. The decay in the
amplitude of periodic surface perturbations was measured with an interference
microscope for specimens cooled to room temperature after being held for 30 to 120
minutes at a set healing temperature [43]. The smoothing process was dominated by
viscous flow (from the convex surface to the concave surface) [43]. Kishi et al. [44]

investigated the surface flattening in soda-lime silica glass in dry nitrogen at 610-670
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°C and found that viscous flow dominated the smoothing process. The surface
viscosity was higher than the bulk viscosity of the glass [44]. Kishi et al. [44] noted
that residual water in glass will reduce the viscosity and so heating at temperatures

above 600 °C may deplete the surface of water and result in an increased surface

viscosity [44].

2.2.3 Crack Healing Investigations Via Strength Recovery Testing
Crack healing has been investigated via strength recovery testing after thermal
annealing cycles [22, 31, 34, 45-52]. Lange and Gupta [45] investigated the flexural
strength recovery of thermally shocked ZnO specimens after thermal heating to the
sintering temperature (1100 °C) for 10, 20, and 35 hours. No explicit mention of the
environment in which the specimens were heated is made by the authors other than a
comment that the specimens were heated in a closed ZnO boat [45]. The four-point
bend strength of the thermally shocked specimens before healing was 40% of the
strength of the original, as-machined strength. The healed specimen strength increased
from about 70% of the as-machined strength for 10 minutes of healing at 1100 °C to
nearly 100% of the as-machined strength for the specimens heated for 35 hours at
1100 °C [45]. The grain size in the ZnO specimens also increased with increasing
time at 1100 °C [45].

Lange and Radford [46] investigated the flexural strength recovery of thermally
shocked Al,O, specimens after thermal heating in air to the 1700 °C for 1, 7, 25, and
50 hours. The thermally shocked specimens had 36% of the strength of as-machined

specimens. The strength of the specimens increased for the 1 and 7 hour specimens to
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76 and 86% of the as-machined strength, respectively. The specimens heated for 25
and 50 hours had a steadily decreasing strength of 80 and 78% of the as-machined
strength, respectively, which was attributed to grain growth in the specimen [46].

Gupta investigated the bend strength recovery in thermally shocked
polycrystalline MgO specimens after heating in air to 1400, 1500, 1600, and 1650 °C
for 1 to 10 hours [34]. The four-point bend strength of the thermally shocked
specimens was about 30% of the as-machined strength. The amount of recovered
strength increased with increasing temperature from a maximum of about 45% of the
as-machined strength at 1400 °C to about 90% of the as-machined strength at 1600 °C
[34]. The amount of strength recovered also increased dramatically with time for
temperatures above 1400 °C, for example, at 1600 °C the strength increased from
about 60 to 90 % of the as-machined strength for 1 minute of healing compared to 2
minutes of healing [34]. The grain size in the MgO specimens also increased with
increasing time and temperature [34].

Gupta also investigated the strength recovery in thermally shocked
polycrystalline Al,O, specimens after heating in vacuum to temperatures 1400, 1500,
1600, and 1700 °C for up to 110 minutes [31]. The temperatures tested were below
the sintering temperature so that grain growth was avoided [31]. The amount of
strength recovery increased both as a function of time and temperature for
temperatures below 1700 °C [31]. The four-point bend strength of the thermally
shocked specimens was about 30% of the as-machined strength. The strength after 10
minutes of healing increased from about 35 to 80 % of the as-machined strength for

healing at 1400 and 1700 °C, respectively. The strength for healing at 1600 °C
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increased from about 60 to 85 % of the as-machined strength for 10 and 90 minutes,
respectively. At 1700 °C, there was an un-explained decrease in strength (of less than
10% of the as-machined strength) as the time at 1700 °C increased to 110 minutes.
Cracks formed along the grain boundaries after thermal shock [31]. Healing occurred
via the gradual disappearance of the void space between neighboring grains [31].
Grain boundary diffusion was thought by Gupta to aid the healing process since the
healing and strength recovery was more rapid for the polycrystalline alumina than for
similar testing of sapphire (single crystal alumina) [31].

Roberts and Wrona [47] investigated the bend strength recovery in thermally
shocked polycrystalline UO, specimens after heating in a static helium environment to
1600, 1800, and 2000 °C for 1 to 10 hours [34]. The four-point bend strength of the
thermally shocked specimens was about 20% of the as-machined strength. Full
strength recovery occurred after heating for approximately 3 hours at 2000 °C and
approximately 11 hours at 1800 °C [34]. The strength after 4 and 32 hours of healing
at 1600 °C was about 50 and 70 % of the as-machined strength, respectively. The
cracks healed initially via crack pinch-off into a line of pores of irregular cylindrical
or spherical shape [34]. Healing continued via shrinkage of the pores into nearly
spherical shaped pores which remained as grain-boundary porosity [34]. A model by

Nichols and Mullins for the shape change of pores during sintering [41]

-% = {4 exp(-Q/RT))C? = kC? @

was used by Roberts and Wrona [47] to help model the change in strength from
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healing where C is the pore diameter, t is the time at temperature, T is the
temperature, A is a pre-exponential constant, Q is the activation energy for healing, R
is the gas constant, k is a constant containing the activation energy in an Arrhenius
relationship, G, is the as-shocked strength, G, is the uncracked fracture strength, o, is
the strength after healing for a time, t, and k’ is a constant that can be related to
temperature with an Arrhenius relationship. Roberts and Wrona [47] found an
activation energy for healing of 230 kJ/mole, while reporting that for UO, the
activation energy for volume diffusion is about 419 kJ/mole and for grain boundary
diffusion in sintering it is about 314 kJ/mole. The authors conclude that the healing is
probably dominated by grain boundary diffusion [47].

Bandyopadhyay and Roberts [48] investigated the bend strength recovery in
thermally shocked polycrystalline UQ, specimens after heating in a static helium
environment to temperatures of 1290 to 1740 °C for 1 hour and to 1400 °C for times
up to 8 hours [49]. Healing, in the form of strength recovery, occurred in two stages
[48]. The first stage of healing was characterized by crack pinch-off and some
sintering of the crack-like pores [48]. The second stage of healing was controlled by
continued sintering of crack-like pores by a diffusional process [48].

Bandyopadhyay and Kennedy [49] investigated the bend strength recovery in
thermally shocked polycrystalline UO, specimens after heating in a static helium

environment to temperatures ranging from 1450 to 1920 °C for 1 to 48 hours [49].
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The healing behavior of specimens with different levels of thermal shock was studied
[49]. The four-point bend strength of specimens thermally shocked at 130 to 700 °C
decreased from about 35 to 19 % of the as-machined strength, respectively. As the
thermal shock quench increased from 120 to 700 °C, the number crack density per cm
increased from 1 to more than 20 and the maximum crack width increased from about
4 to 12 pm [49]. The authors state that an empirical relationship between crack
density and maximum crack width could be determined so that either parameter could
be used to further study healing at different levels of thermal shock [49]. An
exponential relationship was found between the time required for complete healing and
the crack density [49]. The activation energy for healing was 410 kJ/mole using the

following equation
t,=m Texp(%) C))

where t, is the time required for complete healing, m is a temperature independent
constant, T is the healing temperature, Q is the activation energy for healing, and R is
the gas constant [49]. Volume diffusion was reported as the process for the healing of
the thermal shock cracks in UQ, since the activation energy for healing calculated
using Equation 4 (410 kJ/mole) was near the reported activation energy for volume
diffusion of 419 kJ/mole [49].

Tomozawa, Hirao and Bean [50] investigated the bend strength increase in
soda-lime silica glass after annealing. Cylindrical specimens with a Vickers indent
were thermal shocked to cause the indent crack to extend beyond the range expected

for the residual stress created during indentation [50]. The thermal shocked specimens
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were annealed at 510 °C for one hour and furnace cooled before four-point bend
testing at liquid nitrogen temperatures [S0]. The strength of the annealed specimens
increased by 20 to 30% without a decrease in the crack length during annealing [50].
The increase in strength was attributed to blunting of the crack tip during the thermal
annealing [50].

Hirao and Tomozawa [51] further investigated the bend strength increase after
annealing in Vickers indented cylindrical specimens of soda-lime silica glass. The
specimens were annealed in air and in vacuum at both 510 °C and 570 °C for one hour
[51]. The specimens annealed in vacuum had a strength increase of about 16 and 26
MPa for 20 minutes of healing at 510 and 570 °C, respectively, without a decrease in
the crack lengths [S1]. The specimens annealed in air had a strength increase of about
28 and 38 MPa for 20 minutes of healing at 510 and 570 °C, respectively, without a
decrease in the crack lengths [S1]. The strength increased faster with respect to time
and reached a higher strength value for the specimens annealed at 570 °C compared to
the specimens annealed at 510 °C [51]. Residual stress was eliminated during the
annealing process in both environments according to measurements via a
polarmicroscope [51]. Crack tip blunting is mentioned as the cause of the strength

increase in the glass after reference to the Inglis equation for stress concentration

-

o, = %a,h[%z ®)

where oy is the fracture strength, o, is the theoretical strength of the material, p is the

crack tip radius, and C is the crack length. The authors comment that slow crack
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growth effects of the environment would result in a decrease in strength and not an
increase in strength, that the measured crack length did not change, and consequently
conclude that the only mechanism for a fracture strength increase after annealing
would be an increase in the crack tip radius (i.e. crack tip blunting).

Hirao et al. [S1] also investigated the surface flattening of soda-lime silica
glass after annealing in vacuum and environments with water vapor present using
similar techniques originally used by Kishi et al. [44]. Viscous flow was the dominant
mechanism for the smoothing process in vacuum and in the presence of water vapor.
The surface viscosity was lower for specimens annealed in the presence of water vapor
than for specimens annealed in vacuum [51]. The increased viscous flow for
specimens annealed in the presence of water was used as an explanation for the
increased strength recovery for specimens annealed in air compared to specimens
annealed in vacuum [51].

Choi and Tikare investigated the crack healing of an alumina with a residual
glassy phase (Coors ADS96R with 4% silicates added as sintering aids) using four-
point bend testing of specimens with Vickers indents and single-edge-precrack-beam
testing [22]. Specimens with 49 N Vickers indent cracks were annealed for 30
minutes in air at temperatures ranging from 25 to 1400 °C and in argon gas at 1200 °C
[22]. Annealed and as-indented specimens were tested in four-point bend at room
temperature [22]. As-indented bend strength was about 215 MPa [22]. Specimens
annealed at 800 °C had bend strengths of about 256 MPa, while specimens annealed at
1200 °C and higher had strengths equal to the as-machined strength of about 375 MPa

and had the indent impression essentially disappear completely from optical
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microscopy examination [22]. The crack healing was reported to occur from a
material transport mechanism within the specimen [22]. The specimens annealed at
1200 °C in argon exhibited similar strength increases to specimen annealed in air at
1200 °C [22].

Healing of large macrocracks in single-edge-precrack-beam specimens was also
investigated by Choi and Tikare [22] using SEM observation of fracture surfaces of
as-precracked specimens and healed precracked specimens [22]. The as-precracked
specimens predominantly fractured intergranularly with straight cleavage planes and
some crack branching along other cleavage planes and sharp grain edges [22]. The
healed precracked specimens had rounded crack edges and glassy striations on the
cleavage planes [22]. Healed specimens exhibited degraded fatigue resistance in slow
crack growth testing via dynamic fatigue experiments with a decrease in the fatigue
susceptibility parameter, N, from 107 for the as-indented specimens to 68 for the
specimens healed for 30 minutes at 1200 °C [22]. The authors suggest that since the
healed specimens have degraded fatigue resistance and since glass has poor fatigue (N
values of 20 to 40), then the crack healing mechanism was viscous flow of the glassy

grain boundary driven by capillary forces [22].

2.2.4 Crack Healing Investigations of Vickers Indent Cracks Lengths
T-hompson, Chan, Harmer, and Cook investigated the Vickers indent crack lengths
during healing of Al,O, and Al1,0,-SiC nanocomposite [37]. The specimens were
viewwed un-coated in an SEM at a 3.1 KeV accelerating voltage after being indented

and after annealing for 2 hours in argon at 1300 °C [37]. The specimen aging time
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between indenting and thermal annealing was not explicitly stated [37]. The crack
path for a 10 N indent in a composite specimen was predominantly transgranular while
in a monolithic alumina specimen the crack path was predominantly intergranular [37].
In the annealed composite, the crack opening displacement decreased such that the
faces of the crack came into contact. A "surface trace" along the original crack plane
was observed on SEM micrographs which the authors state indicates that the fracture
surface did not bond completely [37]. In the annealed composite, the last 2-3 microns
of the crack at the original crack tip disappeared and was termed by the authors as the
only true healing of the crack [37]. The authors conclude that the healing mechanism
must have been adhesion of the crack faces rather than a diffusive transport healing of
the crack since the crack morphology did not change via pinch-off into isolated pores
or continuous reduction of the spheroidized pores [37].

In the annealed monolithic Al,O,, crack healing (in the form of a decrease in
the crack length) did not occur, instead, crack length and the crack opening
displacement increased [37]. The crack grew as a result of a more rapid decay of the
microstructural toughening than the residual stress field driving force [37]. (The
microstructural toughening was attributed to frictional traction between adjacent gains
and the decay during annealing was the result of the reduction in the thermal

expansion mismatch with increasing temperature [37].) The authors explain that the
extended cracks failed to heal (once the residual stress was relieved) because: 1) the
tortuous fracture path may have made it difficult for the crack faces to match and
comae together and 2) the frictional tractions may not have disappeared upon annealing

and may inhibit asperities from sliding past each other thus preventing crack closure
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[(371.

2.3 Capabilities of an Environmental Scanning Electron Microscope

Conventional scanning electron microscopes (SEM) use electrons to form an image of
a specimen’s surface. The Everhart-Thornley detector collects secondary electrons
(SE) and back scattered electrons (BSE) generated from interactions between the
incident electrons and the surface [53]. The specimen chamber in an SEM must
remain under vacuum for an image to be formed by using the Everhart-Thornley
detector [53].

An environmental scanning electron microscope (ESEM) also uses electrons to
form an image of a specimen’s surface. However, the ESEM uses a gaseous detection
device (GDD) to collect SE and BSE electrons and thus the sample chamber in an
ESEM can have a gaseous environment [54]. The ESEM has a number of pressure
levels along the path of the electron beam. The differing pressure levels are separated
by pressure limiting apertures (PLA) which allow the electron gun to be under high
vacuum while the specimen chamber can be pressurized up to 25 Torr [S4]. The GDD
operates with a positive bias of a few hundred volts. A SE emitted from the sample
surface is accelerated toward the detector. Along the way, the emitted SE collides
with a gas molecule which ejects an electron from the gas molecule. This process is
repeated and results in an avalanche process [54] which amplifies the SE signal. The
process of electron ejection from a gas molecule creates positive gas ions which help
neutralize the buildup of a negative charge on the sample surface and allows the use

of nonconducting samples without a conductive coating [53]. Danilatos has shown no



28

loss of resolution using the GDD detector in a gaseous environment compared to using
an Everhart-Thornley detector at high vacuum [54].

The unique capabilities of the ESEM allow in-situ study of the crack healing
and static fatigue crack growth of ceramics. The ability to have pressures up to 25
Torr in the specimen chamber allow the ceramic specimens to be in a humid
environment, at least initially. (As the temperature increases the relative humidity
drops rapidly, such that at temperatures above 100 °C, the relative humidity at
pressures below 10 Torr becomes negligibly small [54]). Also, the ESEM can
examine ceramic specimens without the conductive coating required for a conventional
SEM. The absence of the surface coating allows the surface of the specimen to be
exposed to the environment in the ESEM chamber and make static fatigue testing

possible in the ESEM.

2.4 Focus of the Current Investigation

In the literature, no static fatigue studies reported observations of static fatigue crack
growth in-situ. The present investigation will develop a technique to study crack
growth in ceramics in the presence of wat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>