v ‘ _ ' ét .. 3 GE "r In rm. r r . , an? .313 in ...u .. «$9 . .me 9.». 2&3? V k _. 9 ‘t .1 .. LP. { L "a Aflmfi. wwyfi ¢ 4 A. a “ a. W. “1%“. ’74.; 1.3.. . 4 a p? z , v . I l\ 5+ : , ‘ l Elivul?» ‘, cot.” (11V. inul :7 1.4.1! 5?... x. . . T .DI? :2 ' ‘ ~5 31,3...{3‘ 9:. 3003' 54914754 This is to certify that the thesis entitled LIBRARY Michigan .3.) {ate University ORIGIN AND EVOLUTION OF THE NICARAGUAN SILICIC ASH-F LOW SHEETS presented by ELA LITA ESTRADA VIRAY has been accepted towards fulfillment of the requirements for the MS. degree in * GEOLOGY I, __ Major Professor‘s é’ignatore *— ¥ EL , 02% ,6 3 Date MSU is an Affirmative Action/Equal Opportunity Institution PLACE IN RETURN Box to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 8/01 cJCIRC/DateDuepGS-p. 15 ORIGIN AND EVOLUTION OF THE NICARAGUAN SILICIC ASH-FLOW SHEETS By Ela Lita Estrada Viray A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTERS OF SCIENCE Department of Geological Sciences 2003 ABSTRACT ORIGIN AND EVOLUTION OF THE NICARAGUAN SILICIC ASH-FLOW SHEET By Ela Lita Estrada Viray Abundant silicic ash-flow sheets occur in Nicaragua yet little is known about their geochemistry, volume, and age. Their origin is a matter of considerable interest because the generation of silicic magma is generally attributed to the assimilation and/or melting of an underlying continental crust. However, no continental crust occurs in this area. Two models on the generation of these ignimbrites are evaluated: (1) fractional crystallization of basalt or andesitic melt, and (2) partial melting of previously emplaced arc-related igneous rocks. Chemical and mineralogical variations within and among the seven recognized silicic ash-flow sheets cannot be explained by fiactional crystallization alone but rather by partial melting of previously emplaced arc-related igneous rock. This arc- related igneous rock was partially melted by the injection of new mafic magma from the metasomatized mantle wedge. Continued production and ascent of both the silicic and mafic magmas into the magma chamber allowed mingling between the two magmas, and before even reaching compositional and thermal equilibrium, were erupted as ash-flow sheets with distinct chemical variations. REE patterns of the silicic ash-flow sheets mimic the REE trends of the modern arc lavas in Nicaragua indicating a genetic relationship. ACKNOWLEDGEMENT I would like to express my gratitude to all those who gave me the possibility to complete this thesis and my Master’s degree at Michigan State University. There is not enough space on this page to properly thank even one of the following people for their enormous help, understanding, and support. I can only hope each of you will realize how important you were, and you are, to me... I am deeply indebted to my advisor, Dr. Thomas A. Vogel, for giving me the chance to be his student, and whose guidance and encouragement helped me in all the time of research for and writing of this thesis. I would like to thank my co-advisor, Dr. Lina C. Patino, who kept an eye on the progress of my work and was always available when I needed her advises regarding my project and my stay at MSU. I would also like to thank, Dr. Bill Cambray, who did not hesitate to be a part of my committee and for providing me with valuable comments on this thesis. I am gratefiil to all of my colleagues in the Department of Geological Sciences. I am sincerely thankful to Karen Tefend for being my “big sister” and for all the support. Many thanks to Melissa Wilmot, Dave Szymanski, the petrology group, and my fellow graduate students for giving me the feeling of being at home away from home. Special thanks are due to my former professors who have encouraged me to go to graduate school: Dr. Caloy Arcilla, Dr. Ed Listanco, and Dr. Kelvin Rodolfo. I have to thank my roommate Catherine who had been extremely tolerant and understanding of whatever I’m doing or up to. My utmost thanks to my friends Dan, Pam, Monina, Winchelle, Ma-an, Chris, Amy, Kate, and Eric for always being there for me when I needed a fiiend to talk to. Last but certainly not the least, I am forever grateful to the love and care of my family, wala ako sa Ia'nalalagyan k0 ngayon kung wala sila. iii TABLE OF CONTENTS List of Tables .................................................................................... v List of Figures ................................................................................... vi Introduction ..................................................................................... 1 Regional geology and extent of silicic volcanism in Nicaragua ........................ 3 The silicic ash-flow sheets in Nicaragua ................................................... 7 Sampling methods ...................................................................... 7 Sample preparation ..................................................................... 7 Petrography and mineralogy ........................................................... 9 Geochemistry ........................................................................... 11 Whole Rock Geochemistry ................................................... 11 Major element variations ............................................ 11 Trace element variations ............................................. 12 Mineral Chemistry ............................................................. 15 The generation of the silicic ash-flow sheets in Nicaragua ............................. 18 Fractional crystallization ............................................................... 18 Partial melting off previously emplaced arc-related igneous rock ............... 22 Magma mingling ........................................................................ 25 Model for the generation of the Nicaraguan sicilic ash-flow sheets ............. 28 Comparison with Central American Volcanic Arc ................................. 30 Conclusion ....................................................................................... 31 Appendices ....................................................................................... 32 Appendix A: Tables .................................................................... 32 Appendix B: Figures ................................................................... 61 References ....................................................................................... 93 iv LIST OF TABLES Table 1. Sample locations in Nicaragua Table 2. Whole rock major and trace element concentrations for pumice fragments in Nicaragua. Oxides listed in wt%, trace elements in ppm (parts per million). bd: below detection limit; XRF : trace element analyzed by XRF. Table 3. Major element concentrations for matrix glass, melt inclusion, mafic enclaves, plagioclase, and pyroxene fi'om select pumice fragments using electron microprobe analyses. Table 4. Four possible cases during stage 3 in Figure 27 (see Figure 28 for cartoon) LIST OF FIGURES Figure 1. Map of study area: Circles represent sampling location of the 7 different ash- flow sheets; red triangles represent Quaternary volcanoes along the Central American Volcanic arc; numbers in mm/yr represent subduction rate of Cocos Plate under Nicaragua. Map modified from Roger et al. (2002). Figure 2. Sampling location of the seven different ash-flow sheets in red circles. APOYO: Apoyo, MONTE-: Monte Galan, LAS-SI: Las Sierras, SAN-M: San Rafael, OSTOCA, Ostocal, COYOL: Coyol, LAS-MA: Las Maderas. Figure 3. (A) Active quarry site for ignimbrite (Ostocal unit). (B) Typical pumice fragments of various sizes embedded in fine-ash matrix. Figure 4. Photomicrograph of typical glomeroporphyritic texture in the pumice fragments. (A) Under plane polarized light and (B) under crossed polars. (Apoyo unit, sample # 020617-10). Figure 5. (A) Typical oscillatory zoning in plagioclase crystal (Apoyo unit, 020617-2c). (B) Typical sieve/resorved texture in plagioclase suggesting chemical dissolution (Las Sierras unit; 020620-6b). Figure 6. (A) Corroded plagioclase cores observed in Las Maderas unit (020622-5). (B) Melt inclusions found in plagioclase phenocryst San Rafael unit (020619-1t). Figure 7. Phenocrysts of clinopyroxene and orthopyroxene (Apoyo unit, 020617-2c). Distinction between these 2 pyroxenes is difficult from petrography alone. Figure 8. Banded pumice fragment observed under the microscope (Apoyo unit, 020618- 5a). Figure 9. Mafic enclave within a silicic pumice fragment (Las Maderas 020622-5). (A) under plane polarized light and (B) under crossed polars. The phenocrysts content of the enclave are the same as the host pumice but are smaller in size. Figure 10. Intrusive-like feature of Fe-Ti oxide within an enclave into the silicic glass host (Ostocal unit, 0206 24-2c). Figure 11. Dove-tail texture observed in plagioclase crystals within the enclave indicating quenched crystallization (Ostocal unit, 020624-2c). Figure 12. TAS classification diagram of LeBas et al. (19866) of pumice fragment from the seven recognized ash-flow sheets in southern Nicaragua: ApoyoO , Monte Galan 31 , Las SierrasA, San Rafael * , Ostocal 0 , Coyol =33 , Las Maderas [J . All samples plottled have been normalized to 100% volatile free. vi Figure 13. Major element variation against Si02 (wt. %) among ash-flow units in Nicaragua. ApoyoO , Monte Galan x , Las SierrasA , San Rafael 'A' , Ostocal O , Coyol {h , Las Maderas El . Filled area represents trend for low Ti02 Quaternary Nicaraguan lavas. Figure 14. Si02 histogram of the seven silicic ash-flow sheets. Mean and standard deviation are for the high silica pumice fragments only. Figure 15. Trace element concentration of the silicic ash-flow sheets versus Si02 content. ApoyoO , Monte Galan 3t , Las SierrasA , San Rafael * , Ostocal o , Coyolcca , Las Maderastj . Filled area same as Figure 13. No Ta data for Nicaraguan lavas. Figure 16. Cumulative frequency curves (CFC) of trace element ratios of the seven ash- flow units. CFC’s of most of the ash-flow sheets show little variation in the trace element ratios, but are distinct from each other. Others show distinct breaks, e. g. Ostocal, Las Sierras (HF/T h). ApoyoO , Monte Galaer , Las SierrasA , San Rafael * , Ostocal O , Coyol {'9 , Las MaderasCl . Figure 17 . Trace element ratios plotted against distance along the Central American Volcanic Arc (CAVA) (starts in Mexico-Guatemala border, 01cm and ends in central Costa Rica, ~1100 km). Red line represent all CAVA lavas and filled area represent Nicaraguan lavas. ApoyoO , Monte Galan at , Las Sierras A , San Rafael fir , Ostocal 0 , Coyol :3: , Las MaderasE] . Figure 18. REE trend for the seven ash-flow units are similar and define a slight MREE depletion pattern (Dy and neighboring elements; normalization values from Sun & McDonough, 1989). Filled area same as Figure 13. Figure 19. Dy/Lu <1 in some of the silicic ash-flow sheets suggest amphibole in the source melt. ApoyoO, Monte Galanx , Las SierrasA , San Rafael* , Ostocalo, Coyollfla , Las MaderasE] . Figure 20. Calculated Eu anomaly for the seven silicic ash-flow sheets versus Si02 contents. ApoyoO, Monte Galan x , Las SierrasA , San Rafael fir , Ostocal 0 , Coyol r3: , Las Maderas U . Figure 21. Primitive mantle-normalized trace element pattern of the seven ash-flow sheets showing distinct island-arc signature (normalization values from Sun & McDonough, 1989). Filled area same as Figure 13. vii Figure 22. Relative ages of the seven silcic ash-flow sheets in Nicaragua compared to U/Th ratio. Older units Las Maderas and Coyol have low U/Th ratio similar to Plank et al.’s (2003) observation in the Miocene Nicaraguan lavas. The youngest unit, Apoyo, has high U/T h ratio similar to the Quaternary Nicaraguan lavas (Data from http://www.rci.rutgers.edu/~carr/cageochem080800.txt). ApoyoO , Monte Galan 2:, Las Sierras A , San Rafael * , Ostocal O , Coyol Ii} , Las Maderas E], Nicaraguan Quaternary lavas «- , Nicaraguan Miocene lavas+ . Figure 23. Plagioclase composition for all analyses with respect to distance fi'om the core for each crystal in the pumice fragments of the seven ash-flow sheets. Each symbol represent one plagioclase crystal analyzed within the given ash-flow unit. Figure 24. Anorthite content of plagioclase rims versus Si02 content of whole pumice fragment. ApoyoO , Monte Galan 31 , Las Sierras A , San Rafael fi' , Ostocal 0 , Coyolcflr , Las Maderas [j . Figure 25. Analyzed pyroxenes of the silicic ash-flow sheets have a wide range of Mg#. ApoyoO, Monte Galanfl , Las SierrasA , San Rafael ‘k , Ostocal O , Coyol =3= , Las Maderas [j . Figure 26. Calculated temperatures of Las Sierras, Las Maderas, Ostocal and Apoyo units using the 2-pyroxene program QUILF version 6 (Andersen et al., 1993). Other units do not have opx or were not analyzed. Apoyo O , Las SierrasA , Ostocal O , Las Maderas El . Figure 27. Whole pumice fragment and matrix glass (encircled areas) composition of the ash-flow sheets showing distinct large compositional gap. Gray area represents mafic matrix glass, stippled area represents silicic matrix glass, vertical pattern represents mafic enclaves and horizontal pattern represents melt inclusion in plagioclase. Figure 28. MgO vs Si02 of the whole pumice fragment and matrix glass (encircled areas) of the ash-flow sheets. Symbols same as Figure 25. Figure 29. Model for the genesis of the silicic ash-flow sheets in Nicaragua. Cross- section is not to scale. See text for explanation. Figure 30. Cartoon depicting 4 possible scenarios during stage 3 in Figure 27. See text for explanation. Figure 31. DyN/LuN vs LaN/LuN for Nicaraguan ash-flow sheets in comparison with some Costa Rican ash-flow sheets (Si02 >65 wt%). Costa Rican data from Hannah et al. (2000) and Szymanski et al. (2002). viii Introduction Abundant silicic ash-flow sheets occur in Nicaragua yet little is known about their geochemistry, volume, and age. Studies of volcanism in this area have been concerned primarily with the basaltic and basaltic andesite lavas, and these voluminous silicic ignimbrites have been neglected. Their origin is a matter of considerable interest because generally, the generation of silicic magma is attributed to the assimilation and/or melting of an underlying continental crust. However, no continental crust occurs in this part of Nicaragua. There are two widely accepted but contrasting models for the origin of silicic magmas in arcs that have been proposed by several workers. The first model is fractional crystallization of basaltic or andesitic melts (Sisson and Grove, 1993; F eely and Davidson, 1994; Grove et al., 1997; Brophy et al., 1999; Hildreth and F ierstein, 2000). This model requires a high percentage of fractional crystallization (as high as 68%) to generate high-silica magma, and in the process would produce cumulate rocks. Ifthis model were to apply to the silicic magmas in Nicaragua, the cumulate rocks would have been produced at depth and have not yet been exposed at the surface since no cumulate rocks are observed in the region. Alternatively, the second model is partial melting of previously emplaced arc-related igneous rocks to explain the origin of silicic magmas in an evolved arc setting (e. g. Beard and Lofgren, 1991; Roberts and Clemens, 1993; Tamura and Tatsumi, 2002; Smith et al., 2003). Dehydration melting experiments on basaltic rocks and their metamorphosed equivalents, amphibolite and eclogite, at various pressures yield partial melts with composition similar to island-arc tonalities and dacites (Beard and Lofgren, 1991; Rapp et al., 1991; Wolf and Wyllie, 1994; Sen and Dunn, 1994; Rapp and Watson, 1995). Tamura and Tatsurni (2002) considered a calc-alkaline andesitic magma to be a source. Influxes of hot basaltic magmas from the mantle wedge would reheat, partially melt and remobilize the still hot and ponded andesitic magma to produce silicic rocks (Tarnura and Tatsunri, 2002). The silicic ash-flow sheets in Nicaragua, like any other ignimbrites, each represent an instantaneous partial evacuation of the magma chamber. Any chemical heterogeneity in the original magma bodies would then be preserved in the ash-flow sheets and therefore, their evolution can be inferred. Two major processes have been attributed as to why chemical heterogeneities occur in silicic ash-flow sheets: (1) involves large-scale differentiation of an originally homogeneous magma body (i.e. Mittlefehltd and Miller, 1983; Baker and McBirney, 1985; McBirney and Nielson, 1986; de Silva and Wolff, 1995); and (2) effects of discrete magma batches emplaced in a magma chamber that were generated by partial melting and melt extraction with distinct compositional groups unrelated to crystal fractionation (i.e. Marsh, 1984; Bergantz 1989; Sawyer, 1994; Eichelberger and Izbekov, 2000; Eichelberger et al., 2000). However, these discrete magma batches may subsequently be modified by magma mixing, magma mingling, assimilation, and/or crystal fractionation as they ascend to a high-level chamber and/or to the conduit, and possibly even during eruption. Furthermore, Eichelberger et al. (2000) pointed out that the heterogeneity in erupted materials may be a result of chamber recharge either by: (1) mafic magma intruding a more silicic magma, characterized by effusive eruption (i.e. Pinatubo, Karymsky, Ruapehu, New Zealand; Pallister et al., 1992; Nakagawa et al., 1999; Eichelberger and Izbekov, 2000); and (2) silicic magma intrudes a mafic magma body, commonly associated with pyroclastic eruption (i.e. Katmai, Alaska; Eichelberger and Izbekov, 2000). The purpose of this study is to: (1) document the chemical and mineralogical variations among and within the silicic ash-flow sheets in Nicaragua; and (2) to evaluate these data with respect to the models proposed above for their origin and evolution. Major and trace element whole-rock analyses, petrography, mineral chemistry and analyses of matrix glass, enclaves, and melt inclusions in plagioclases are used to evaluate the models for the genesis of these silicic magmas. Regional geology and extent of silicic volcanism in Nicaragua Nicaragua is located along the western margin of the Caribbean plate in Central America (Figure 1). The Caribbean plate is composed of various blocks and microplates and Central America is divided into two main tectonic regions, the Chortis and the Chorotega blocks (Dengo, 1969; Escalante, 1990). The Chortis block has a pre-Mesozoic continental-type crust and encompasses southern Guatemala, Honduras, Northern Nicaragua and the western Nicaraguan Highlands (e. g. Dengo, 1969; Pindell and Barrett, 1990). This block serves as the basement for the northern part of the Central American Volcanic Arc (CAVA). The Chorotega Block on the other hand, is underlain by a thickened basaltic crust, which many workers believe is part of over-thickened oceanic plateau on the western edge of the Caribbean Plate emplaced during the Late Cretaceous- Paleocene and constitute most of the southern CAVA (Pindell and Barrett, 1990; Di Marco et al., 1995; Kerr et al., 1997, Meschede and Frisch, 1998). It was not until the Eocene-Oligocene that the CAVA began to form in the western part of the Caribbean plate as a result of the amalgamation of the Chortis and the Chorotega blocks (Cigolini and Chaves, 1986; Meschede and Frisch, 1998). The boundary between the Chortis and the Chorotega Blocks is still a matter of controversy. South of Nicaragua, the Santa Elena-Hess Escarpment lineament is believed to mark the boundary between the two tectonic terranes (Bourgois et al., 1984). Hauff et al. (2000) however suggested that the structural boundary may lie south of the escarpment based on the remarkable similarities on trace elements and isotopic contents of the alkaline and picritic rocks fiom Tortugal and the alkali basalts from Santa Elena, both located in northern Costa Rica. Moreover, ophiolitic rocks studied in detail by Weinberg (1992), which are commonly observed offshore of Panama and Costa Rica but are not found in onshore outcrops, indicate that the suture between the two terranes is located in central Costa Rica. On the contrary, major and trace element data fi'om front arc Tertiary-Recent volcanic rocks in Nicaragua, along with Sr, Nd, and Pb isotope data suggest that the boundary passes through Bluefields in the Caribbean side of Nicaragua and through the Nicaraguan Depression on a NW-SE trending direction (see Figure l in Nystrom et al., 1993). Recent geophysical studies using modeling of seismic wide-angle measurements across the Pacific convergent margin of Nicaragua, gravity, earthquake and borehole data, as well as coincident seismic reflection profile, also argue that the suture between these two tectonic blocks is located at the northeastern border of the SE- NW-trending Nicaraguan Depression (Walther et al., 2000). Their argument was based on their reconstructed tectonic evolution of the Nicaraguan margin. They suggested that the collision of an oceanic plateau (i.e. Galapagos hotspot plume or Mid-Cretaceous superplume) in the Upper Cretaceous time left the former trench and margin area in deep water. This is followed by the subsequent trench jumping by about 70km to the SW, which left a portion of ophiolitic crust and upper oceanic mantle underneath the Nicaraguan Depression (Figure 13 in Walther et a1, 2000). If this is the case, then most of the observed silicic volcanism in Nicaragua is associated with the oceanic Chorotega block. The Tertiary-Recent volcanism in Nicaragua is attributed to the present day subduction of the Cocos Plate at 91 mm yr'l (DeMets et al., 1990) in a northeasterly direction beneath the Caribbean Plate. Seismic data define a steeply dipping Benioff zone in Nicaragua with a dip increasing from 25° in the seismogenic zone to 84° between 100 and 220 km depth (Burbach et al., 1984; Wilson, 1996). The associated chain of volcanoes is located in the western edge of the Nicaraguan Depression, which is a 50-km wide extensional structure formed in the Plio-Pleistocene and has been defined as a half- graben parallel to the trench that hosts Lake Nicaragua and Lake Managua (McBirney and Williams, 1965; Weinberg, 1992; Elming et al., 2001). There are 21 Quaternary volcanic centers in Nicaragua, which are closely spaced with an average of 25 km between central craters (Van Wyk de Vries, 1993). As compared with the other eruptive centers in CAVA, the volcano summits in Nicaragua are relatively lower with smaller volumes of erupted materials (Van Wyk de Vries, 1993). The volcanic deposits in Nicaragua are chemically bimodal, dominated by basaltic to basaltic andesite flows, and dacitic to rhyolitic ash-flow sheets and air-fall deposits (Ehrenborg, 1996). Slab signature is strongest in the Nicaraguan lavas as compared with the other CAVA lavas. This signature is manifested by the high Ba/Th and Ba/La ratios as well.” the abundance of 10Be (Carr et al., 1990; Patino et al., 2000; Morris et al., 1990). An interesting characteristic of the Nicaraguan lavas is the high U/Th ratio of the younger flow units (<7Ma) relative to the older lavas and to the rest of the CAVA lavas (Plank et al., 2002). This has been interpreted as a result of the closure of the Panama gateway, which led to the “carbonate crash” at 10 Ma followed by high organic carbon burial in the sediments (Lyle et al., 1995; Plank et al., 2002). The silicic ash-flow sheets for this study cover an area of approximately 6,400 km2 (Figure 1 and 2). The oldest pyroclastic flow unit is represented by the Coyol Group, which is believed to have originated from El Limon caldera, a >3 0km diameter structure formed between 12 and 16 Ma (Ehrenborg, 1996). K-Ar dates of the Coyol Group ranged from 4.3 to 24.7 Ma (Ehrenborg, 1996), whereas deep sea tephra stratigraphy combined with Ar-Ar dating obtained an age of 12.3 to 18.4 Ma (Sigurdsson et al., 2000). The youngest ignimbrite is dated at 23,000 yrs BP by radiocarbon dating and found along the periphery of the Apoyo caldera (Sussman, 1985). Sussman (1985) estimated that the volume of the last erupted materials from the Apoyo caldera is 10.7 km3 dense-rock equivalent (DRE). The stratigraphy of the Tertiary volcanic rocks in Nicaragua is described by Ehrenborg (1996). He noted three major volcanic events: (1) rhyolitic shield volcanism in the Oligocene, which produced the Highland ignimbrites; (2) extrusion of basaltic to andesitic magmas along the Pacific coast and the construction of the Coyol volcanic arc during the Miocene; and (3) creation of the modern volcanic arc during the Pliocene-Pleistocene after the southwestward shift of arc volcanism. The silicic ash-flow sheets in Nicaragua Formatting note The images in this thesis are presented in color. Sampling Methods More than 300 whole pumice fragments and air fall deposits were collected during 2 field seasons, July 2001 and June 2002. Table 1 lists the sampling locations for all the samples collected. The majority of these samples were taken fi'om active quarries (Figure 3A) and road cuts, which are easily accessible. The samples represent the variation among glassy pumice fragments present within an outcrop (Figure 3B). Sampling was based on color, size, degree of welding (if present), and the types and amount of phenocrysts in the observed hand samples. Sample preparation One hundred seventeen pumice fragments were selected and analyzed for mineral and element composition for this project. The basis for sample selection process for the analyses is the same as the sampling methods done in the field —- to sample the variation present. Whole pumice fragment major element and selected trace element compositions were analyzed by X-ray fluorescence spectrometry (XRF) for the all selected samples. Additional whole pumice fragment trace and rare-earth element compositions were analyzed using Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA ICP- MS). Based on the variation in chemical composition of these analyzed samples, a small number of pumice fragments were selected and analyzed for phenocrysts major element contents using the Electron Probe Micro Analyzer (EPMA) at University of Michigan. Fused glass disks were used for both XRF and LA ICP-MS analyses. The disks were made fiom whole pumice fragments that were powdered using an aluminum flat plate grinder after passing them through a chipmunk. Three grams of finely ground pumice fragment powder were diluted by adding 9.0g of lithium tetraborate (LizB4O7) and 0.5g of ammonium nitrate (NH4NO3) as an oxidizer. These were then mixed and melted in platinum crucibles at 1000 °C of oxidizing flame for >20 minutes while being stirred with an orbital mixing stage. The melt was poured into platinum molds making the glass disk for analyses. The firsed disks were analyzed using a Rigaku S/Max X-ray fluorescent spectrograph. XRF major element analyses were reduced by a fundamental parameter data reduction method (Criss, 1980) using XRF WIN software (Omni Instruments), while XRF trace element data were calculated using standard linear regression techniques. For LA ICP-MS trace element data, a Cetac LSX200+ laser ablation system was used coupled with a Micromass Platform ICP-MS and using strontium, determined by XRF, as an internal standard. Trace element data reduction was done using MassLynx software. Prior to any calculations, the background signal was subtracted from the standards and samples. Element concentration in the samples were calculated based in a linear regression method using MST-612, BHVO, W-2, JB-l, JB-2, JB-3, JA-2, JA-3, BER, SN], and RGMl standards. For electron microprobe analyses, select pumice fragment thin sections were used based on a wide range of chemical compositions. The minerals analyzed were plagioclase, clinopyroxene, orthopyroxene and in addition, the matrix glass, enclaves and melt inclusions present in the plagioclases. Analyses were performed on a Cameca SX 100 EPMA equipped with five wavelength spectrometers using an accelerating potential of lSkV, a 6m beam spot size, counting time of 3min/mineral, and a lOnA beam current. Petrography and mineralogy Petrograhic analyses were done on thirty selected thin sections of pumice fragments. They represent a wide range of chemical compositions and color (e. g. white, gray, and black). The lighter colored pumice fragments are typically more silicic than the darker pumice fragments. They contain varying amounts of plagioclase, clinopyroxene, orthopyroxene and Fe-Ti oxide phenocrysts, either in clots or as isolated crystals. Crystals larger than 0.5mm were considered phenocrysts and smaller crystals were considered part of the groundmass. Petrographically, there is no visible distinction among the ash-flow sheets except for the abundance of phenocrysts content. Generally, the amount of phenocrysts present in the pumice fi'agments decrease with increasing silica content. Crystal-rich and black pumice fragments are usually basaltic to andesitic in composition. They contain 10- 55% glass, 25-50% plagioclase, 5-lO% orthopyroxene, 10-20% clinopyroxene, and 5-10% F e- Ti oxides. Crystal-poor samples, which are dacitic to rhyolitic, have the same phase assemblages but in considerably fewer amount. They contain 70-90°/o glass, 5-10% plagioclase, 1-5% orthopyroxene, 2-10% clinopyroxene, and 1-5% Fe-Ti oxides. The nearly aphyric samples are usually the white pumice fragments and the phenocrysts occur within glomerophyric clots (Figure 4). Plagioclase crystals, which are the most abundant phenocrysts, occur as medium- to coarse-grained, euhedral to subhedral crystals, and most exhibit albite twinning and oscillatory zoning (Figure 5A). Often, these crystals have embayed-, sieved-, or resorbed- textures (Figure 5B) while some plagioclases have corroded cores (Figure 6A). These textures indicate disequilibrium between the crystal and the melt. A few plagioclases contain melt inclusion (6B) and some of these inclusions are devitrified. Phenocrysts of pyroxene are less abundant than the plagioclase and occur mostly as medium-grained subhedral crystals. Usually, clinopyroxene and orthopyroxene either occur together as clots or in aggregates with the plagioclase. It is difficult to distinguish a clinopyroxene from an orthopyroxene based on optical properties alone (Figure 7) and can only determined through microprobe analyses. Generally, the clinopyroxenes are more abundant than the orthopyroxene in any given pumice fragment in the ash-flow sheets. The F e—Ti oxides (e. g. ilmenite, magnetite) occur as minor phases, either in aggregates with other phenocrysts or as euhedral and isolated crystals. Prismatic apatite crystals occur as an accessory mineral found within the plagioclase. A few banded pumice fragments have been observed within the silicic ash-flow sheets (e. g. Apoyo unit; Figure 8). They usually have gray color and their composition is transitional between the silicic and the mafic pumice fragments. These banded pumice clasts are interpreted to be the result of mingling between the silicic and mafic magmas. Incomplete mixing was probably due to viscosity contrast between the two magmas as manifested by the flow banding present. Mafic enclaves occur within some of the pumice fragment units (i.e. Las Maderas, Ostocal; Figure 9). These enclaves are mostly >2mm in size and contain the same mineralogy as the host pumice but are more crystal-rich and the phenocrysts sizes are 10 relatively smaller. Some enclaves show an intrusion-like feature of F e-Ti oxide into the host pumice fragment (Figure 10) These features are indicative of mingling between the silicic and mafic magmas. Within these enclaves are dove-tail textured plagioclases (Figure 11), which suggest quenched crystallization process after the two magmas came in contact. Geochemistry Whole Rock Geochemistry Major element variations Whole pumice fragment major and trace element data are listed in Table 2. All major element values used in the discussion and plots have been normalized to 100% volatile free because of secondary hydration of glassy pumice. Total iron is calculated as Fe203m. The compositions of the pumice fragments in the ash-flow sheets from Nicaragua vary from basalt to rhyolite, with Si02 ranging from 50.92 to 71.47 wt% (Figure 12). The concentrations of the major element oxides, except the alkalies, decrease with silica content and define distinct chemical trends for these ignimbrites (Figure 13). Most of these ignimbrites are enriched in potassium and fall within the medium- to high-K calc- alkaline field, with K20 range from 0.5 to 5.71 wt. % (Figure 12). Based on these chemical variations and stratigraphic location, seven distinct ash-flow sheets were recognized. These ash-flow sheets are Apoyo, Las Sierras, and 5 informally named units referred here as Coyol and Las Maderas of the Coyol Group (Ehrenborg, 1996), Ostocal, Monte Galan, and San Rafael. The pumice fragments with lower Si20 content in any 11 given ash-flow units occur within a trend similar to the Quaternary Nicaraguan lavas (Figure 13). Considering all units, the Apoyo ash-few sheet has the widest range in Si02 content from 50.9 to 69.1 wt %. It is however dominated by high-Si02 pumices (mean of the high Si02: 67.78 wt. %; Figure 14) with distinctly low Ti02 and K20 trend than the other ash-flow units (Figure 12). The Las Maderas unit, like Apoyo, has low-Si02 pumice fragments and is dominated by dacitic pumices (mean of the high Si02: 64.03; Figure 14). This unit has a distinct high A1203 and K20 content relative to the other units (Figure 13). The Coyol ash-flow sheet, like Apoyo and Las Maderas, contain both low- and high- Si02 pumice fragments (Figure 14) but samples are mostly trachydacites (Figure 12). This unit has the highest K20 content for all the ash-flow sheets with a distinguishing trend, which range from 2.04 to 5.71 wt. % (Figure 13). The Las Sierras ash-flow sheet has the highest Si02 content for all the units sampled, and range from dacitic to rhyolitic composition, 66.95 to 71.47 Si02 wt. % with a mean composition of 70. 16 wt. °/o (Figure 12, 13, 14). The Monte Galan unit is mostly of rhyolitic composition (average: 70.18 wt. % Si02; Figure 14) and in many aspects resembles the major oxide content of the Las Sierras ash-flow sheet (Figure 13). Ostocal and San Rafael units both are dominated by dacitic tuffs with an average composition of 67. 15 and 64.28 wt. % Si02, respectively (Figure 13) but each have a distinctive Ti02 and F e203m content (Figure 13). Trace element variations Trace element abundances for all the seven ash-flow sheets in Nicaragua are listed in Table 2. Within an ash-flow sheet, the pumice fragments show little variation in trace 12 element abundances. However, a weak linear relationship of some trace elements with silica content occurs in some units (Figure 15). Cumulative frequency distribution curves (CFCs) of incompatible trace element ratios among the seven the ash flow sheets show small but distinct variation (Figure 16). Such distinctions among these ignimbrites fiirther demonstrate the occurrence of seven compositionally different ash-flow sheets in the region. Las Sierras and Monte Galan have similar La/Yb ratio but they show distinction in their Hf/Th ratio. All other ash-flow units fall on a distinct CFC and this is consistent with each unit having a separate source. Distinct “breaks” or “gaps” in incompatible trace element ratios (i.e. Hf/Th; Ba/Nb) on the CFC plots are also observed within some of the ash-flow units (i.e. Las Sierras, Ostocal; Apoyo, Las Maderas). These “breaks” or “gaps” imply that fiactional crystallization is not a dominant process but rather played a minor role in the chemical heterogeneity of these ignimbrites. If fractional crystallization were the dominant mechanism, then the trend for any of these ash-flow sheets would fall along a single continuous curve. The “breaks” or “gaps” suggest that another process (i.e. different source area) may have contributed for such incompatible trace element trend. Trace element ratios of the seven ash-flow sheets mimic the trace element ratios of the low Ti02 Quaternary front arc lavas in Nicaragua (Figure 17). The Ba/La and La/Yb ratios of the ignimbrites are consistent with the modern arc lavas (Carr et al., 1990) along with Ba/Rb and Hf/Th ratios (Figure 17). Rare earth element (REE) trends for these silicic rocks are similar and define a slight middle rare earth element (MREE) depletion (Figure 18). A DyN/LuN ratio <1 further supports this observation particularly in the younger ash-flow sheets (Figure 19). REE ratios of the older ash-flow sheets (i.e. l3 Coyol and Las Maderas) show an increasing LaN/LuN with increasing DyN/LuN ratio, while younger ignimbrites (i.e. Las Sierras, Monte Galan) have relatively constant LaN/LuN with increasing DyN/LuN ratio (Figure 19). This difference could be a firnction of the degrees of melting that each unit has undergone. Some ash-flow sheets like Ostocal, Las Maderas, and Las Sierras units contain a small negative Eu anomaly (0.67 to 0.90). Eu anomaly is a measure of Eu/Eu*, which is calculated from the linear equation of the line connecting Sm and Tb on a REE chondrite normalized plot (for equations, refer to Hannah, 2000). Such negative Eu anomaly in these units may result from plagioclase fractionation. However the Apoyo unit contains a slight positive Eu anomaly (1.09 to 1.13) (Figure 20), which may reflect plagioclase accumulation. Spider diagrams normalized to primitive mantle concentration (Sun and McDonough, 1989) show enrichment in the large-ion lithophile elements (LILEs) and depletion in the high field strength elements (HF SEs) (Figure 21) for all units, which is consistent with the composition of melts associated with subduction zone environment. Relatively young ash-flow sheets correspond to high U/Th ratio while older units tend to have lower U/Th ratio. This is similar to the observation made by Plank et al. (2002). They related this change from low to high U/Th ratio resulting from the “carbonate cras ” at 10 Ma, where the istmus of Panama changed the circulation patterns in the eastern Pacific Ocean (Ler et al., 1995). This is supported by the fact the youngest ash-flow sheet in this study is the Apoyo unit, with an age of 23,000 yrs BP (Sussman, 1985) and has a high U/Th ratio of 0.45 to 1.30. The oldest units are from the Coyol Group, the Coyol and Las Maderas ash-flow sheets, with an age of Early Miocene (Ehrenborg, 1996) and have a low U/T h ratio of 0.35 to 0.52 and 0.29 to 1.09, 14 respectively. From here, it is inferred that the other units, Monte Galan, Las Sierras, San Rafael, and Ostocal correspond to an age younger than the Coyol Group since they have a higher U/Th ratio (Figure 22). Mineral Chemistry Electron nricroprobe analyses of phenocrysts from select pumice fragments are listed in Table 3. The plagioclase analyses were obtained from the core, nriddle and rim. Analyses in the middle of the plagioclase were usually halfway between the core and the rim of the crystal. Representative clinopyroxene and orthopyroxene grains were analyzed and at least 2 glass analyses from each pumice fragment and from the mafic enclave (if present) were obtained. A number of melt inclusions present in the plagioclase were also analyzed. The range of plagioclase compositions for all the seven ash-flow sheets is from Anzs to Afl91 (Figure 23). Some plagioclases show a more calcic rim and a sodic core (e. g. Monte Galan, Ostocal) while others shows calcic core with very low sodic rim (e.g. Apoyo) (Figure 23). Both normal and reverse zoning in these plagioclases were observed in any given ash-flow unit. The composition of the plagioclase rims would be expected to be in equilibrium with the last liquid. Except for Ostocal, all ash-flow sheets have plagioclase grains with rims that display a wide range of composition (Figure 24). They vary from as low as 20% to as high as 70% An content within a single pumice fragment (i.e. Monte Galan and Apoyo). This large variation indicates that the I plagioclases were not in equilibrium with the last crystallizing liquid/s prior to the eruption of these ignimbrites. Neither the coexistence of both normal and reverse zonations of the plagioclase phenocrysts nor the large variations in An content in the 15 plagioclase rims within a pumice fi'agment can be explained by simple closed-system crystallization. It would imply that at least 2 different magma bodies, a high-silica and a low-silica magma, are in contact and did not reach compositional equilibrium. Another indicator of these compositional disequilibrium is the high An content (up to 91% An) of some of the plagioclase cores, particularly in Apoyo and Las Sierras units (Figure 23) because silicic rocks typically have plagioclases with An content less than 50%. For clinopyroxene phenocrysts, the composition range from W044,5.32,4 Emg,4.32,5 F829_o-13_2 while orthopyroxene composition range from W09_6-2_o En67_14o_7 Fsso_5-3o,1. Orthopyroxenes were not observed in some ash-flow sheets (i.e. San Rafael, Monte Galan and Coyol). It is possible that they are present but not analyzed due to inability to recognize an orthopyroxene from a clinopyroxene through optical properties. The Mg# for both clinopyroxene and orthopyroxene among the seven ash-flow sheets show a wide range of variation as shown in Figure 25. The Ostocal and the San Rafael units have a distinctive Fe-rich orthopyroxene and clinopyroxene respectively, while Las Maderas and Apoyo ash-flow sheets have Mg-rich clinopyroxene. This indicates that each unit has distinct source composition unrelated to the other units. Figure 26 shows the calculated temperature at which the phases of the last crystallizing liquid were last in equilibrium using the program QUILF version 6 (Andersen et al., 1993). The temperature was calculated using two pyroxene thermometer in clinopyroxene + orthopyroxene bearing pumice fragments. Each ash-flow unit has a distinct temperature, and even within a single flow unit, 2 different temperatures have been calculated. The calculated temperature are: Apoyo: 910i 19 and 9251- 39; Las Maderas: 941 3:71 and 1012 i73; Las Sierras: 959 i 69 and 969i144; and Ostocal: 1214 i139 and 1086 i 274. Even though the uncertainty of 16 the calculated temperatures is high for some ignimbrites (i.e. Ostocal), they still indicate thermal distinction of the source magma among the ash-flow sheets. Matrix glass composition for the pumice fragments, including the mafic enclaves and melt inclusions in plagioclases vary with the Si02 of the whole pumice fragment and range fiom 47.0 to 76.6 wt %. Figure 27 and 28 show the plots of MgO and K20 versus Si02 for the matrix glass, mafic enclave, and melt inclusion compositions together with the whole pumice fragment content for each ash-flow unit. The matrix glass in the mafic enclaves found in Las Maderas and Ostocal units have lower Si02 and K20 contents than the matrix glass of their respective host pumice fragment. The MgO content of the Ostocal mafic enclaves is higher than the host pumice fragment but Las Maderas mafic enclaves contain both high and low MgO contents. Melt inclusions in plagioclase phenocrsyt have lower Si02, K20 and MgO content than the host pumice fi'agment. The Si02 and K20 contents of the matrix glass overlap the composition of the whole pumice fragment for Coyol, Monte Galan and San Rafael units (Figure 27 and 28). A large compositional gap occurs in the whole pumice fragment and in the matrix glass data for any of the ash-flow sheets, including the mafic enclave in Las Maderas and Ostocal units and the melt inclusions in San Rafael ash-flow sheet (Figure 27 and 28). This compositional gap represents at least two evolving magma batches that did not attain thermal equilibration and were not stored in prolonged contact before eruption. This scenario is similar to what occurred in the Aniakchak Caldera and the enclave-bearing Mount Dutton eruptions, both in Alaska, where a large difference in the whole rock and melt compositions are observed (Eichelberger et al., 2000). 17 The generation of the silicic ash-flow sheets of southern Nicaragua Abundant silicic magmas are typically rare in island arc environment because they are generally thought to be generated by assimilation and/or melting of underlying continental crust. The seven silicic ash-flow sheets observed in Nicaragua may therefore provide excellent means to infer their origin in this island arc environment. Distinct mineralogical and chemical heterogeneities occur among and within the silicic ash-flow units and these can be used to determine magmatic processes that occur in the magma chamber prior to eruption since ash-flow tuffs represent instantaneous evacuation from the magma chamber. Two models have been proposed to generate these silicic ash-flow sheets: (1) fractional crystallization of basalt or basaltic andesite and (2) partial melting of previously emplaced arc-related magma. Subsequent magma mixing, magma mingling, and/or crystal fractionation may modify the produced melt. Each of these models will be evaluated individually. Fractional Crystallization The evolution of silicic magmas by fractional crystallization of basaltic or basaltic andesite melts was proposed by several workers (Sisson and Grove, 1993; Feely and Davidson, 1994; Grove et al., 1997; Brophy et al., 1999). In order to attain high-silica magmas, a large amount of fractionation is involved (~68%; e. g. Grove et al., 1997). For this to be produced, cumulate rocks such as anorthosite would have to be generated as well. However, no cumulate rocks have been reported in Nicaragua. Even in areas where the roots of silicic volcanic rocks are thought to be exposed, such as in the Cordillera de Talamanca in southeastern Costa Rica, cumulate rocks are rare (Alvarado and Carr, 18 1993). Brophy et al. (1999) proposed that silicic calc-alkaline rocks might originate by fractionation near the crust-mantle boundary, which would explain the scarcity of exposed cumulate rocks. The base of a thickened crustal province, like the CLIP, might serve as an ideal density trap for magmas to pond (e. g. Hauff et al., 1997, Sinton et al., 1997, Hauffet al., 2000). Each ash-flow sheet has a distinct CFC trace element ratio trend (Figure 16). Even within some ash-flow sheets such as Ostocal and Las Sierras, “breaks” or “gaps” in their trace element ratio CFC occur (e. g. Hf/Th) and these “breaks” or “gaps” suggest that another process such as a different source area for each trend, may have contributed to such distribution trend. The seven silicic ash-flow sheets lack significant Eu anomaly (Figure 18). However, this does not necessarily mean that plagioclase fractionation did not occur. Most calc-alkaline rocks, such as the silicic ignimbrites of Nicaragua, are produced under an oxidizing environment where Eu behaves as Eu3+ and therefore Eu would behave like the other REES and no Eu anomaly would be observed even if plagioclase fractionated. Nonetheless, Las Sierras and Las Maderas units contain slight negative Eu anomaly (Eu/Eu“ <1) with increasing 8102 (Figure 20), and would imply that fiactional crystallization may have played a minor role in their production and that an oxidizing state may not be truly the case. The Apoyo ash-flow sheet, the only unit with a small positive Eu anomaly (Eu/Eu* >1), suggests the effect of plagioclase accumulation. However, the Eu/Eu* of the more mafic and more silicic pumice fragments fall into two distinct groups that can not be related by simple fractional crystallization (Figure 20). If 19 the silicic tuffs fractionated from the more mafic ignimbrites, a continuous linear trend would be expected, but this is not the case for the Apoyo unit. Oscillatory zoning in plagioclase is a widespread phenomenon observed in many volcanic rocks (e. g. Anderson, 1984; Kuritani, 1998; Ginibre et al., 2002, Halarna, et al., 2002). The observed chemical zonations in plagioclase phenocrysts from the seven silicic ash-flow sheets can be used to elucidate magma-chamber and emplacement processes. Plagioclase phenocrysts in any of the ignimbrite units commonly display abrupt fluctuations in An content (up to 25% in Apoyo unit) (Figure 23). The abrupt shifts from a calcic core to a sodic rim (e. g. Apoyo) or the trend from a more sodic core into a calcic rim (e.g Monte Galan, Ostocal) could correspond to the well-developed dissolution surfaces in the plagioclase crystals (e. g. embayed, resorbed textures). The coexistence of both normal and reverse zonations of the plagioclase phenocrysts within the pumice fragments, the large variations in An content in the plagioclase rims from a given unit (Figure 24), and the very high An content of the core (>50 An%) for all the units except Ostocal imply that each ash-flow unit can not be generated by simple crystal fractionation (Figure 23). If fi'actional crystallization of the melt produced these plagioclases, then they should have normal uninterrupted zonation, little variation in the plagioclase rim composition since they should be in equilibrium with the last crystallizing liquid, and an An content of <50%, typical of silicic melts. The observed characteristics of the plagioclase phenocrysts however suggest compositional and thermal disequilibrium within the magma chamber contradicting the process of fi'actional crystallization. The observed compositional discontinuity within both the pumice fragments and the matrix glass, including the mafic enclaves and melt inclusions in the plagioclases 20 (Figure 27 and 28) suggest chemical and thermal disequilibrium in the magma chamber (e. g. Eichelberger et al., 2000), in accordance with the plagioclase phenocrysts. If these silicic ash-flow sheets were related by progressive fractional crystallization and/or even by assimilation, it is impossible to have a discontinuity in melt composition without a corresponding discontinuity in temperature (Eichelberger et al., 2000). This large gap of unrepresented compositions can be accounted for by some special mechanism such as sidewall crystallization with efficient expulsion and collection of melt, producing a gravitationally stable silicic over mafic layering (McBirney, 1980; Turner and Gustafson, 1981; McBirney et al., 1987; Bacon and Druitt, 1988) or by incomplete mixing of a silicic and mafic magma in the chamber (e. g. Snyder and Tait, 1998; Eichelberger et al., 2000). Sidewall crystallization has been envisioned to be an effective mechanism to produce ryholitic magma such as those erupted during the 1912 Katmai eruption in Alaska (Hildreth and Fierstein, 2000). However, should fractional crystallization generate the trends within the seven high-silica rocks in Nicaragua, individual glass matrix analyses should show higher Si02 and K20 with lower Mg0 when compared with the whole pumice fi'agment analyses. But most of the silicic ash-flow sheets contradict this except Apoyo, Las Maderas and Ostocal (Figure 27 and 28). Some of the matrix glasses are more mafic than the whole pumice fragment indicating that fractional crystallization did not generate these matrix glasses. Such variations in the matrix glass of the silicic ignimbrites are best explained by mingling of at least 2 different magma type, a silicic and a mafic magma and this will be discussed more in detail below. The presence of crystal-rich mafic enclaves (Figure 9) within the silicic pumice fragments (eg. Las Maderas, Ostocal) is another indicator of disequilibrium in the magma 21 chamber, a process unrelated to fractional crystallization. These mafic enclaves record the intrusion of a mostly liquid mafic magma into a mushy silicic magma (e. g. Eichelberger et al., 2000), supporting the process of magma mingling. Such interaction is shown in Figure 10, where an oxide mineral of the mafic enclave “invades” the matrix glass of the silicic host. In summary, trace element variations among the ash-flow sheets, Eu/Eu*, plagioclase zonations, compositional gaps, and mafic enclaves can be used to reject the model of fractional crystallization fi‘om a low-silica magma to a high-silica magma as a dominant mechanism to produce any of the seven silicic ash-flow sheets in Nicaragua. Partial melting of previously emplaced arc-related igneous rock Partial melting of previously emplaced arc-related igneous rocks has been cited as a mechanism to generate high-silica rocks in an island arc setting (Beard and Lofgren, 1991; Roberts and Clemens, 1993; Wolf and Wyllie, 1994; Nakajima and Arima, 1998; Tamura and Tatsumi, 2002; Smith et al., 2003). Dehydration melting experiments of basaltic compositions carried out by Beard and Lofgren (1991) under low pressure have yielded rhyolitic melts coexisting with the anhydrous assemblage plagioclase + orthopyroxene + clinopyroxene + Fe-Ti oxides consistent with the phenocrsyt assemblage of the seven silicic ash-flow sheets in Nicaragua. Although the rhyolitic melts produced by Beard and Lofgren (1991) have the same decreasing Ti02, CaO, MgO, and Fe203 with increasing K20 and Si02, their melts are more silicic and have lower potassium than the Nicaraguan ash-flow sheets. Tamura and Tatsunri (2002) argued that 20-3 0% dehydration melting of solidified calc-alkaline andesite in the crust rather than 22 basaltic magmas play an important role in producing high silica rocks (e. g. Izu-Bonin arc). They suggest that water-saturated andesites solidify at depth and never erupt to the surface and these andesites remelted to produce the high-silica deposits in Izu-Bonin. Major elements and phenocryst assemblage of the silicic ash-flow sheets in Nicaragua are similar to the rhyolitic rocks in Izu-Bonin arc (Tarnura and Tatsumi, 2002) but the K20 content is relatively enriched. This enrichment in K20 may be attributed to either the role of amphibole in the source and/or the influence of sediment-derived fluids, which will be discussed in detail below. As discussed above, each of the silicic units are not produced by fractional crystallization alone and are independently generated. The increasing Rb and Zr and decreasing Sr with Si02 (Figure 15) could therefore indicate that there has been an involvement of an older, altered oceanic crust. In most systems where plagioclase is fi'actionating, Sr is greatly reduced and the Sr value approaches zero. However, the Sr content of any of the ash-flow sheets is high (>100; Figure 15) indicating the involvement of an altered crust. Such crust must have a total crustal thickness of 15-20 km («0.5 Gpa), where amphibole is a stable phase, in order to generate silicic magmas (i.e. Smith et al., 2003). The breakdown of amphibole at some temperature between the wet and dry solidi (~ 900° C) triggers dehydration melting of the lower crust (i.e. Beard and Lofgren, 1991; Smith et al., 2003). Smith et al. (2003) pointed out that once a fluid is present, heat can propagate relatively fast by convection to produce large batches of silicic magmas. The observed slight depletion in MREEs in the younger ash-flow units (Figure 18) indicates the stability of amphibole in the source magma, which has a strong affinity for the MREEs. This is apparent from the observed DyN/LuN ratios in the younger 23 silicic ash-flow sheets, which are <1 suggesting that amphibole is in the source rock (Figure 19). Such dehydration melting of an amphibole-rich source also explains the enrichment in K20 content of the ash-flow sheets as mentioned above. The relative low LaN/LuN ratios of the pumice fragments suggest a high degree of melting or from a source with low LaN/LuN ratio, while increasing LaN/LuN ratios with increasing DyN/LuN ratios imply crystal fractionation of a melt derived from an amphibole-rich source. If the subsequent differentiation did not occur, the DyN/LuN ratio would remain constant even under varying degrees of melting. It is important to note that efficient partial melting of amphibole-bearing previously emplaced arc-related igneous rock to generate the silicic ash-flow sheets is governed by periodicity and multiplicity of basaltic intrusion from deep source into the lower crust (e. g. Petford and Gallagher, 2001; Annen and Sparks, 2002). Continuous and multiple production of basaltic magma from the melting of the mantle wedge due to the fluids coming off the dehydrating, subducted Cocos plate would ascend to the lower crust and effectively partially melt the previously emplaced arc-related magma. Segregation and ascent of partial melt would then produce the silicic ash-flow sheets. Because the silicic ignimbrites contain high amounts of Ba/La ratio similar to the modern Nicaraguan lavas, which is interpreted to indicate high sediment influx (Carr et al., 1990; Patino et al., 2000), it implies that the source rock of the silicic ash-flow sheets were produced by the same manner. This is complimented by the high degrees of melting as shown by the low LaN/LuN ratio in the silicic ash-flow sheets. These sediment-derived fluids are often enriched in “fluid-mobile” elements such as Ba, Rb, K, and Sr (Tatsumi 24 et al., 1986), which explains the K20 enrichment in the silicic tuffs accompanied by the consumption of amphibole during partial melting. Magma Mingling Ash-flow sheets such as observed in Nicaragua, represent an instantaneous partial evacuation of the magma chamber and therefore any variation indicates heterogeneity in the pre-eruptive magma. Mafic enclaves and large compositional gaps in eruptive products in the ash-flow sheets are thought to indicate mafic-silicic magma interaction, and many workers have suggested that such magma mixing/mingling could trigger the eruption (Sparks et al., 1977; Eichelberger, 1978; Stimac et al., 1990; Pallister et al., 1992; Eichelberger et al., 2000; Eichelberger and Izbekov, 2000). Magma mixing/mingling can occur effectively during the injection of either a mafic or silicic magma into the chamber and/or during the ascent into the conduit (F eeley and Dungan, 1996; Eichelberger ct a1, 2000; Kuritani, 2001). The occurrence of banded pumice within the silicic ash-flow sheets resulted from incomplete mixing of the coexisting magmas (Figure 8) as they ascend through the conduit. Crystal-rich mafic enclaves (Figure 9) present in the pumice fi'agments of Las Maderas and Ostocal units indicate mingling of the coexisting magmas. These mafic enclaves record the partial disintegration of the invading basaltic magma, strewing out blobs of basaltic debris as it came in contact with the rhyolitic magma (e. g. Eichelberger, 1978; Eichelberger et a1, 2000). The quenched textures exhibited by the phenocrysts (e. g. dove-tail texture in plagioclase) in the enclaves (Figure 11) are the result of undercooled crystallization of the mafic magma. The interaction of these distinct magmas is also 25 manifested by the “intrusive-like” feature of Fe—Ti oxide phenocrysts in the enclave into the glass matrix of the silicic host (Figure 10). Chemical and thermal disequilibrium induced by the interaction of mafic and silicic magmas are recorded by textures and composition of the plagioclase phenocrysts in the silicic pumice fragments. Such disequilibrium resulted in: (l) embayed, resorbed and sieved crystal forms (Figure SB) indicating incomplete dissolution, (2) compositional reverse zoning (Figure 23), (3) abrupt shifts of both sodic plagioclase into a more calcic composition, and calcic composition into a more sodic plagioclase (Figure 23), (4) remarkably anorthitic core (>An7o, e.g. Apoyo, Las Sierras; Figure 23), and the wide range in anorthite content of the plagioclase rims for a given pumice fragment (Figure 24). A strong argument in favor of magma mingling in the silicic ash-flow sheets in Nicaragua is the remarkable large compositional discontinuity within the pumice fragments and their matrix glass, the mafic enclaves and the melt inclusion compositions (Figure 27 and 28). These large differences in melt compositions demonstrate the lack of thermal equilibration and require that the two mingling magmas were not stored in prolonged contact (Eichelberger et al., 2000). The similarity of the silicic matrix glass with the silicic host pumice fragment in terms of Si02 and K20 for some of the ignimbrite units (i.e. San Rafael, Coyol, Monte Galan) and although no mafic host pumice liagment can be compared with the observed mafic matrix glass, mafic enclaves, and melt inclusion compositions, is a significant evidence that a silicic magma intruded a mafic magma. This is comparable to the erupted Aniakchak ignimbrites in Alaska, where the invading silicic magma interacted with the mafic magma in a limited way and weakly 26 contaminated each other (Eichelberger et al., 2000). The silicic replenishment case is further supported by the nearly aphyric texture of the silicic pumice fragments. As Eichelberger et al. (2000) pointed out, these silicic ignimbrites are crystal-poor not because the parent magma was sitting at the roof of the chamber and heated from below by a more mafic magma, but because they had just arrived from the deep source, after they were produced from partial melting of a previously emplaced arc-related igneous rock This silicic intrusion scenario is the reversal of the enclave-bearing ignimbrites where mafic recharge is envisioned (i.e. Las Maderas, Ostocal). Eichelberger et al. (2000) made a distinction that mafic recharge are enclave-bearing and the enclaves are enriched in silica and potassium relative to their host rocks and the contact between the magmas is prolonged because the mafic entrant is initially denser than the resident magma. However, even for the enclave-bearing units in Nicaragua, the silicic and mafic matrix glass, and the silicic and mafic host pumice respectively, are still similar in silica and potassium content indicating silicic recharge. Nonetheless, it is possible that the enclaves came from the roof or walls of the chamber and were just picked up by the intruding silicic magma as it ascend to the conduit. Further investigation on these cases needs to be done but is not within the scope of this study. For whatever case applies for the enclave- bearing units, either a mafic recharge or a silicic entrant, it is still conclusive to say that magma mingling occurred. Overall, the preservation of mafic enclaves in the silicic host pumice fragments, the disequilibrium features of the plagioclase phenocrysts, and the large compositional gap in the matrix glass and the pumice fragments can be used as evidence that magma mingling played an important role in the evolution of the silicic ash-flow sheets in 27 Nicaragua. The mingling of the magmas induced chemical and thermal instability in the chamber and thereby possibly triggering the eruption of the ignimbrites. Model for the evolution of the Nicaraguan silicic ash-flow sheets Chemical and mineralogical compositions within the seven silicic ash-flow sheets in Nicaragua suggest that they are the product of partial melting of previously emplaced arc-related igneous rocks and are independently generated. Figure 29 is a cartoon of the evolution of the Nicaraguan silicic ash-flow sheets. During stage 1, calc-alkaline magmas are produced by melting of the mantle wedge due to the fluids from the dehydrating, subducted Cocos plate. These magmas were produced by the same process as the modern arc lavas being enriched in Ba/La ratios due to the high fluid influx, which induces higher degrees of melting of the mantle wedge (low La/Yb). These magmas were emplaced at the base of the crust, approximately 15-20 km where amphibole would be stable. At stage 2, rising mafic magmas partially melts the amphibole-bearing previously emplaced igneous rocks to produce the silicic melt. The metasomatic characteristics of the mantle melt (i.e. high in fluid-mobile elements) and the presence of amphibole in the source rock (DyN/Luu <1) could explain the enrichment of potassium in the silicic ignimbrites. As these pockets or blebs of silicic magmas ascend, they mingle with other rising and/or ponded mafic magmas (stage 3) at the magma chamber and/or during the ascent to the conduit. Four possible cases during stage 3 in Figure 29 have been conceptualized and are shown in Figure 30 (Table 4). In case A, both the produced silicic magma and the intruding mafic magma ascend into the potential magma chamber without mingling. This scenario produces both the silicic and mafic pumice fragments in a single flow unit. For 28 case B, some silicic magma stays behind in the chamber, and had ample time to mingle with intruding mafic magma and immediately erupts as mingled ash-flow sheets. These pumices are characterized by the presence of mafic enclaves within the silicic pumice fragments, with calcic plagioclase rims, and with matrix glass more mafic than whole pumice fragment (low Si02 with low K20 and high MgO wt %; e. g. Las Maderas, Ostocal). In case C, newly formed and ascending blebs of silicic magmas intrude pockets of ponded mafic magma, mingles and gets erupted. Case C is distinguished with abrupt shifts of plagioclase composition from a more calcic core to a sodic rim (e. g. Las Sierras), and the glass composition in terms of Si02 and K20 content is similar to the whole pumice fragment with distinct compositional gap (i.e. San Rafael, Coyol, Monte Galan). The process for these three scenarios was fast enough such that chemical and thermal equilibrium between the two magmas was not attained. The mingling of the magmas might have triggered the eruption and the immediate evacuation of the magma chamber caused caldera collapse. The fourth scenario, case D, involves an evolving intermediate magma that is continuously replenished from the source. All four cases could simultaneously occur but not in the same magma body. 29 Comparison with Central “American Volcanic Arc The silicic ash-flow sheets in Nicaragua are clearly enriched in Si20 and K20 compared to the low Ti02 modern Nicaraguan arc lavas (Figure 13). It is important to note that the trace element variations (e. g. Hf/Th, Ba/La) of the silicic ignimbrites mimic the trace element variations in the modem arc (Figure 17). LILE and HF SE concentrations of the silicic ash-flow sheets are relatively higher than the modern Nicaraguan lavas (Figure 21) but the REE patterns are similar (Figure 18). Compared with the rest of CAVA lavas, which represent Quaternary front arc volcanism from Mexico-Guatemalan border down south to central Costa Rica, the Nicaraguan ash-flow sheets and modern arc lavas also show higher Ba/La ratio (Figure 17) indicating higher sediment influx (Carr et al., 1990). The presence of amphibole in the source rock of the silicic ignimbrites of Nicaragua manifested by DyN/LuN ratio <1, is similar to the Costa Rican ignimbrites (Figure 31; Hannah, 2000; Szymanski et a1, 2002) although the range for Nicaragua is smaller compared to Costa Rica. The increasing LaN/LuN ratio with increasing DyN/LuN ratio suggests differentiation after emplacement of the melt. The DyN/LuN ratio differences result from different source rocks of the melts while the lower LaN/LuN ratio in the Nicaraguan silicic ash-flow sheets may be due to higher degrees of melting or from a source with lower LaN/LuN ratio, followed by crystal fractionation. 3O Conclusion Seven chemically distinct ash-flow sheets were sampled in Nicaragua. Chemical and mineralogical variations among and within these silicic ash-flow sheets indicate that they cannot be explained by fractional crystallization alone but rather were produced by partial melting of previously emplaced arc-related igneous rock at depths where amphibole is stable (15-20 km). This arc-related source was partially melted by the injection of new mafic magma from the metasomatized mantle wedge generated via melting induced by fluids released from the dehydrating, subducted Cocos slab. Segregation and ascent of the partial melts produced the silicic ash-flow sheets. Continued production and ascent of both the silicic and mafic magmas into the chamber allowed mingling between the two magmas, and before even reaching compositional and thermal equilibrium were erupted as silicic ash-flow sheets with distinct chemical variations. REE pattern of the silicic ash-flow sheets mimic the REE trend of the modern arc lavas in Nicaragua indicating a genetic relationship. The enrichment in K20 in the ignimbrites can be explained by the presence of amphibole in the source rock as manifested by the behavior of the MREE, in particular the DyN/LuN ratio of <1 , coupled with the influence of sediment-derived fluids (high Ba/La). 31 APPENDIX A Tables 32 Table 1 Sample Location Sample 0107161a-e 010716-2a-h 010716-8a-e 010718-1a-o 010719-1a-g 02061 74 a-p 02061 7-2a-h 020617-3a-e 0206174a-e 020617-5a 020617-6a-f 020618-1a-d 02061 B-Za-c 02061 8-3a-j 020618-4414 02061 8-6a-g 020619-1a-w 020620-1a-n 020620-2a-e 020620-3a-e 0206204a-c 020620-5a-h 020620-6a-e 020620-7a-n 020620-8a-b 020620-9a-k 020620-10a-h 020620-1 1a-n 020622-1a-k 020622-2a 020622-2641 020622-3a-b 020622-41” 020622-6 ozoszz-sa-g 020623-1a-d ozoszs-za-g 020624-1a-n 020624-2a-k Map Name (1 :50,000) Las Banderas Las Maderas Malpaisillo Malpaisillo Masaya Masaya Masaya hfiasaya Masaya Masaya Masaya Masaya Masaya Masaya Masaya Masaya San Rafael Del Sur Malpaisillo Malpaisillo Malpaisillo Malpaisillo Malpaisillo Malpaisillo Malpaisillo La Paz Centro La Paz Centro La Paz Centro La Paz Centro Las Playitas Las Playitas Las Playitas Las Playitas Las Maderas Las Maderas Las Maderas Las Maderas Las Banderas Las Banderas Las Banderas UTM Coordinates 613626 1362313 602120 1381700 550798 1397432 538300 1371500 600063 1317781 602582 1314027 601042 1316332 600414 1318125 601695 1319418 601695 1319418 601851 1319296 603668 1320690 603668 1320690 603354 1320701 604046 1321759 603288 1324370 568404 1316865 537726 1394134 538520 1394320 539786 1394607 539786 1394607 539786 1394607 539940 1394639 544295 1395855 538624 1373036 540470 1372277 536651 1370009 536496 1367451 602970 1384427 602988 1384055 602870 1383797 602764 1383579 602613 1383207 602150 1381805 602150 1381805 605021 1369890 605021 1369890 613695 1362284 612602 1362213 33 Table 2 Apoyo Ash-flow Sheet Sample 010110-13 010110-11: 010110-10 010110-10 010110-11 010110-19 020011-10 020011-10 Si02 66.90 65.78 65.88 64.86 64.12 65.44 49.96 65.67 1102 0.52 0.51 0.55 0.56 0.52 0.57 0.80 0.57 ~20. 15.10 15.45 15.39 15.62 15.59 15.56 18.89 15.60 F020,", 4.20 4.08 4.35 4.54 4.50 4.74 10.57 4.47 14110 0.13 0.13 0.14 0.14 0.13 0.14 0.15 0.14 M90 1.12 1.10 1.22 1.37 1.11 1.32 4.12 1.21 Get) 3.76 3.87 3.92 4.07 3.68 4.21 10.30 3.96 N020 4.34 5.49 3.98 3.88 4.23 3.98 2.70 3.95 K20 2.09 2.04 2.02 1.89 1.99 1.91 0.49 1.99 P20. 0.14 0.14 0.15 0.15 0.14 0.15 0.13 0.14 Totals 98.30 98.59 97.60 97.08 96.01 98.02 98.11 97.70 Cr (XRF) bd bd bd bd bd bd bd bd Ni(XRF) bd bd bd bd bd bd bd bd Cu (XRF) bd bd bd bd bd bd bd bd Zn(XRF) bd bd bd bd bd bd bd bd Rb 38.40 37.70 44.20 41.40 37.00 38.50 44.70 41.90 Sr 354.80 351 .10 326.40 320.50 350.80 316.60 270.80 278.40 Zr 155.60 155.30 173.90 154.30 140.30 151.00 189.30 185.60 Ba 1433.68 1408.55 1565.81 1483.25 1351.77 1530.04 1596.08 1660.37 La 13.34 13.44 14.12 12.95 12.04 13.89 17.20 18.62 Co 30.19 29.53 31.68 27.98 25.68 29.36 34.27 35.60 Pr 3.94 3.89 4.09 3.54 3.39 3.82 5.46 5.36 Nd 15.26 15.53 16.46 13.75 13.40 14.68 24.92 23.95 Sm 3.64 4.00 4.26 3.36 3.18 3.42 6.33 6.05 Eu 1.28 1.27 1.25 1.08 1.15 1.15 1.82 1.78 Gd 3.58 3.82 3.64 3.19 3.02 3.38 6.79 6.56 Tb 0.61 0.62 0.65 0.50 0.49 0.55 1.18 1.12 Y 20.66 23.13 22.97 18.54 17.55 19.11 45.18 42.35 Dy 3.49 3.66 3.64 2.88 2.86 2.90 7.24 6.87 Ho 0.75 0.83 0.86 0.64 0.61 0.65 1.54 1.48 Er 1.94 2.24 2.25 1.89 1.77 1.75 4.64 4.47 Yb 2.56 2.64 2.67 2.40 2.24 2.43 4.84 4.56 Lu 0.39 0.43 0.43 0.34 0.34 0.36 0.79 0.74 V 69.49 74.59 63.26 93.33 86.17 76.34 18.96 28.69 Cr 3.71 4.14 4.45 3.98 3.09 4.05 3.43 4.29 Nb 7.25 8.12 8.99 6.64 5.23 5.83 5.44 5.82 Hf 3.56 3.66 3.87 3.36 3.13 3.41 5.55 5.13 Ta 0.45 0.45 0.52 0.40 0.36 0.42 0.37 0.39 Pb 5.38 5.12 6.49 5.92 4.88 5.78 7.97 9.08 Th 2.83 2.94 3.09 3.08 2.79 3.10 3.79 3.85 U 3.11 3.17 3.52 3.31 2.71 3.16 3.01 3.38 EuIEu‘ 1.12 1.04 0.97 1.07 1.19 1.09 0.89 0.91 Distance 754.80 754.80 754.80 754.80 754.80 754.80 754.80 754.80 34 Table 2 continued Apoyo Ash-flow Sheet Sample 020011-11 020011-1n 020011-10 020011-20 020011-21: 020011-21: 020617-3d 020011-45 Si02 66.70 67.31 66.30 65.96 55.67 65.89 66.37 65.61 Ti02 0.50 0.52 0.50 0.51 0.81 0.56 0.51 0.57 A120. 15.19 14.95 15.16 15.63 17.01 15.02 15.33 15.38 F020,", 3.81 3.98 3.76 4.15 9.12 4.37 3.95 4.57 1.1110 0.12 0.13 0.12 0.13 0.19 0.13 0.12 0.14 M90 0.97 1.10 0.97 1.08 3.20 1.14 1.00 1.20 Ga!) 3.45 3.56 3.47 4.02 7.79 3.66 3.58 3.96 N020 4.00 3.93 3.99 3.98 3.23 3.99 3.97 3.91 K20 2.17 2.16 2.16 1.99 1.06 2.07 2.10 1.99 P20. 0.12 0.13 0.13 0.14 0.17 0.14 0.12 0.15 Totals 97.03 97.77 96.56 97.59 98.25 96.97 97.05 97.48 Cr (XRF) bd bd bd bd bd bd bd bd Ni (XRF) bd bd bd bd bd bd bd bd Cu (XRF) bd bd bd bd bd bd bd bd Zn(XRF) bd bd bd bd bd bd bd bd Rb 39.20 44.80 52.40 58.20 57.60 55.50 61.10 62.10 Sr 301.40 273.40 286.80 222.00 201.10 221.00 214.00 220.50 Zr 168.10 190.40 194.10 208.10 211.70 206.70 211.90 210.00 Ba 1456.80 1666.62 1760.40 1967.93 1942.43 1999.46 1990.14 2003.82 La 16.07 18.46 16.27 16.63 16.65 17.38 16.88 17.31 Co 31.20 35.37 36.86 38.50 39.35 38.23 38.85 39.11 Pr 5.13 5.75 5.31 5.38 5.51 5.70 5.55 5.74 Nd 23.28 26.62 22.85 23.07 23.08 24.76 23.78 24.67 Sm 6.04 6.81 5.99 5.92 5.80 6.51 6.15 6.25 Eu 1.75 1.95 1.66 1.65 1.56 1.72 1.63 1.65 Gd 6.54 7.45 6.09 6.18 6.15 6.95 6.30 6.26 Tb 1.09 1.23 1.04 1.06 1.05 1.12 1.04 1.07 Y 42.46 46.77 38.41 39.86 40.01 41.58 39.48 39.52 Dy 6.87 7.62 6.28 6.44 6.49 6.78 6.63 6.43 , Ho 1.51 1.64 1.35 1.39 1.41 1.47 1.42 1.41 Er 4.53 4.92 4.10 4.28 4.36 4.66 4.33 4.49 Yb 4.58 5.08 4.45 4.46 4.60 4.95 4.76 4.80 Lu 0.75 0.83 0.71 0.75 0.73 0.82 0.77 0.77 V 75.91 13.59 31 .28 32.38 28.44 28.20 22.26 35.93 Cr 2.88 4.00 9.00 16.38 5.97 5.19 5.21 6.00 Nb 4.67 5.69 7.34 7.33 7.49 7.59 7.25 7.29 Hf 5.04 5.92 5.26 5.84 5.80 5.93 5.89 5.99 Ta 0.31 0.38 0.57 0.70 0.70 0.80 0.76 0.68 Pb 6.94 8.47 12.65 14.13 15.23 14.59 15.36 14.38 Th 3.50 3.97 3.31 3.58 3.66 3.65 3.62 3.74 U 2.63 3.18 3.57 4.07 4.11 4.13 4.02 4.01 EuIEu‘ 0.90 0.69 0.87 0.87 0.84 0.84 0.84 0.84 Distance 754.80 754.60 683.30 663.30 683.30 683.30 683.30 683.30 35 Table 2 continued Apoyo Ash-flow Sheet Sample 020011-40 0200114. 020011-00 020011-00 020011-00 020011-00 020011-01 020010-1c Si02 65.75 66.40 65.24 50.84 67.41 65.48 55.08 65.86 1102 0.55 0.52 0.54 0.80 0.50 0.54 0.82 0.57 1020, 15.37 15.36 15.50 17.62 15.23 15.33 17.11 15.45 F020,", 4.42 3.94 4.32 10.32 3.95 4.21 9.19 4.57 Mn0 0.13 0.12 0.13 0.19 0.12 0.13 0.19 0.14 M90 1.13 1.03 1.13 4.84 1.03 1.13 3.25 1.20 Cao 4.06 3.80 3.84 9.75 3.74 3.74 7.75 4.11 Map 3.94 4.01 3.89 2.79 3.92 4.01 3.45 3.96 K20 1.98 2.04 2.02 0.73 2.13 2.08 1.00 1.97 P20. 0.14 0.13 0.14 0.13 0.13 0.14 0.19 0.14 Totals 97.47 97.35 96.75 98.01 98.16 96.79 98.03 97.97 Cr (XRF) bd bd bd bd bd bd bd bd Ni (XRF) bd bd bd bd bd bd bd bd Cu (XRF) bd bd bd bd bd bd bd bd Zn (XRF) bd bd bd bd bd bd bd bd Rb 32.40 50.80 53.40 49.70 51 .70 49.30 65.50 64.30 Sr 345.70 248.90 252.40 245.50 248.80 251.60 209.90 195.20 Zr 146.90 190.80 191.40 190.20 189.50 192.80 216.90 221.20 Ba 1385.55 1817.29 1811.91 1837.73 1880.30 1830.66 1893.77 1882.10 La 13.62 14.98 14.85 15.11 14.61 14.71 14.66 14.91 00 29.16 34.62 33.52 34.11 34.60 34.12 32.45 32.73 Pr 3.78 4.90 4.81 4.93 4.93 4.90 4.55 4.47 Nd 15.46 20.59 20.29 20.79 21.23 20.26 18.46 18.25 Sm 3.73 5.19 5.19 5.44 5.38 5.28 4.57 4.58 Eu 1.19 1.40 1.42 1.44 1.45 1.45 1 .03 1.01 Gd 3.72 5.26 5.36 5.44 5.37 5.35 4.44 4.65 Tb 0.61 0.90 0.90 0.93 0.94 0.90 0.75 0.81 Y 23.77 36.98 37.28 37.47 35.69 36.83 31 .52 32.90 Dy 3.66 5.58 5.59 5.66 5.69 5.54 4.67 4.85 No 0.69 1.10 1.13 1.11 1.26 1.14 0.93 0.99 Er 2.20 3.41 3.51 3.56 3.79 3.51 3.00 3.11 Yb 2.68 4.00 4.08 4.27 4.23 4.17 3.68 3.80 Lu 0.42 0.62 0.64 0.65 0.65 0.64 0.57 0.58 V 80.80 26.17 23.25 21.72 22.61 23.11 54.17 58.14 Cr 3.77 4.50 4.17 4.23 5.12 5.00 5.41 4.79 Nb 7.54 6.80 6.68 6.89 6.78 7.19 6.59 6.85 l-lf 3.67 4.76 4.84 5.03 5.04 4.96 5.59 6.00 Ta 0.48 0.48 0.51 0.56 0.68 0.53 0.57 0.58 Pb 5.98 11.16 11.01 11.82 14.72 13.47 13.62 13.66 Th 2.14 1.93 2.00 2.05 2.92 2.07 2.72 2.81 0 1.80 1.90 1.91 1.97 3.82 2.20 2.50 2.41 Err/Eu“ 1.03 0.85 0.86 0.84 0.85 0.87 0.72 0.69 Distance 656.00 656.00 656.00 656.00 656.00 656.00 656.00 656.00 36 Table 2 continued Apoyo Ash-flow 011001 Sample 020616-21) 02061646 02061641 020616-39 020616411 020616-44: 020616-46 020610-41 5102 05.49 05.07 00.35 05.09 00.42 00.09 00.33 00.51 rio2 0.44 0.59 0.57 0.55 0.50 0.53 0.57 0.51 A120. 15.74 14.97 15.10 15.40 15.20 15.42 15.27 15.05 0020,", 4.29 4.47 4.31 4.42 4.44 4.33 4.71 3.09 Mac 0.12 0.14 0.13 0.14 0.14 0.13 0.14 0.13 M90 1.33 1.23 1.09 1.24 1.13 1.10 1.31 1.05 Ca0 4.30 3.02 3.00 3.90 3.09 4.01 4.01 3.45 Nazo 3.70 3.92 3.90 3.91 3.09 3.95 3.90 3.99 K20 1.95 2.12 2.10 2.00 2.11 2.07 2.00 2.21 9.0. 0.11 0.14 0.14 0.15 0.14 0.14 0.15 0.14 Totals 97.47 90.07 97.49 97.70 97.12 90.37 90.51 90.99 Cr (XRF) bd bd bd bd bd bd bd bd Ni (XRF) 00 00 00 bd bd bd 00 00 Cu (XRF) bd bd bd bd bd bd bd bd Zn (XRF) bd 00 bd bd bd bd bd bd Rb 40.00 40.70 41.10 47.70 45.40 40.70 40.00 40.20 Sr 204.40 250.10 254.10 201.30 203.50 201.10 203.00 250.30 Zr 170.90 103.00 107.00 102.00 103.40 104.40 100.50 103.40 Ba 1792.50 1037.70 1940.93 1921.95 1009.50 1001.42 1091.91 1057.00 La 14.79 14.92 15.40 15.79 14.90 15.30 15.23 15.21 Ce 32.10 34.42 37.21 34.97 34.29 34.00 35.17 35.11 Pr 4.00 4.93 5.09 5.30 4.07 4.92 5.02 4.07 Nd 20.43 20.99 21.51 22.00 20.70 21.20 21.52 21.22 3m 5.30 5.34 5.52 5.77 5.37 5.43 5.31 5.15 Eu 1.47 1.50 1.50 1.04 1.44 1.50 1.00 1.51 00 5.49 5.45 5.57 5.90 5.44 5.00 5.03 5.40 Tb 0.90 0.92 0.92 0.90 0.95 0.90 0.94 0.90 v 30.21 37.74 30.30 37.07 35.05 37.03 35.09 35.00 Dy 5.35 5.40 5.02 5.90 5.70 5.07 5.70 5.09 Ho 1.07 1.13 1.20 1.20 1.25 1.29 1.20 1.20 Er 3.40 3.43 3.02 3.93 3.05 4.00 3.00 3.05 Yb 3.97 4.10 4.20 4.20 4.24 4.29 4.30 4.21 Lu 0.02 0.04 0.05 0.00 0.07 0.70 0.10 0.09 v 20.04 29.11 22.04 40.05 24.07 25.43 24.75 21.25 Cr 4.47 4.05 4.73 5.04 3.94 4.30 3.30 4.00 Nb 5.95 0.03 0.07 0.02 0.70 0.07 0.07 0.04 111 4.00 4.07 5.03 4.03 4.90 4.99 5.10 4.91 Ta 0.40 0.53 0.03 0.57 0.01 0.02 0.03 0.02 Pb 9.90 11.22 14.00 12.00 13.55 13.05 14.29 14.70 111 1.91 2.02 3.03 2.01 2.93 2.92 2.92 3.01 u 1.70 1.90 3.92 3.40 3.01 3.70 3.00 3.04 swam 0.07 0.09 0.07 0.90 0.04 0.07 0.94 0.90 Distance 050.00 050.00 050.00 050.00 050.00 050.00 050.00 050.00 37 Table 2 continued Apoyo Ash-flow Sheet Sample 020010-00 020010-00 020010-01 Si02 66.53 65.59 86.95 Ti02 0.46 0.47 0.42 N20, 14.86 15.16 14.78 F020,", 4.22 4.62 3.94 MnO 0.13 0.14 0.12 M90 1.15 1.32 1.06 000 3.79 4.26 3.68 Nazo 3.79 3.62 3.60 K10 2.11 1.95 2.17 P20. 0.12 0.12 0.11 Totals 97.16 97.25 96.83 Cr (XRF) bd bd bd Ni (XRF) bd bd bd ‘ Cu (XRF) bd bd bd Zn (XRF) bd bd bd Rb 49.20 49.20 48.40 Sr 243.30 250.50 259.90 Zr 192.70 189.20 185.50 Ba 1892.57 1883.81 1860.38 La 15.11 15.32 15.54 00 35.13 35.74 35.90 Pr 5.00 4.98 5.13 Nd 21.30 21.31 21.59 Sm 5.38 5.34 5.38 Eu 1.46 1.54 1.57 Gd 5.61 5.44 5.64 Tb 0.96 0.93 0.96 Y 36.96 35.91 36.70 Dy 5.83 5.90 5.80 Ho 1.28 1.28 1.30 Er 3.87 3.95 3.90 Yb 4.26 4.33 4.18 Lu 0.69 0.69 0.70 V 25.63 26.13 22.14 Cr 5.09 5.18 4.97 Nb 7.17 6.82 6.78 Ht 5.16 5.08 5.12 Ta 0.80 0.62 0.68 Pb 14.64 13.86 15.30 Th 3.10 3.03 3.04 0 4.22 3.79 3.81 EulEu‘ 0.85 0.91 0.91 Distance 683.30 683.30 683.30 38 Table 2 continued Monte Galen Ash-flow Sheet Sample 020620-100: 020620-109 0206204011 020620416 020620-111 02062041111 02062040 W 0102 05.32 00.91 00.11 00.23 00.25 07.33 07.30 07.05 1102 0.59 0.40 0.44 0.44 0.42 0.45 0.50 0.51 A1202 14.79 14.34 14.24 14.29 14.10 14.37 14.29 14.30 0020.", 4.41 3.97 3.00 3.03 3.00 3.93 3.73 3.70 MnO 0.10 0.14 0.15 0.15 0.14 0.14 0.14 0.14 M90 0.00 0.00 0.55 0.57 0.53 0.59 0.50 0.04 CaO 2.00 2.23 2.05 2.12 2.02 2.19 2.29 2.30 N020 3.09 3.44 3.70 3.19 3.70 3.55 3.23 3.07 K20 2.05 3.23 3.22 3.07 3.40 3.47 3.22 2.92 P20; 0.10 0.10 0.09 0.09 0.09 0.10 0.11 0.11 Totals 95.97 95.42 90.41 90.50 90.51 90.12 95.37 90.30 Cr (XRF) 00 bd bd bd bd bd 00 00 Ni (XRF) bd bd bd bd bd bd bd bd Cu (XRF) 00 bd bd 00 bd bd bd bd Zn (XRF) bd 00 bd bd bd bd 00 bd Rb 41.20 43.20 50.10 30.30 20.50 33.00 31.40 27.00 Sr 490.00 527.10 473.10 304.00 301.90 307.00 302.90 310.50 Zr 123.00 110.10 145.70 123.00 125.20 120.00 129.50 121.50 Ba 1095.24 1070.00 1347.55 991.04 957.90 905.10 991.05 029.05 La 12.12 10.17 20.70 11.40 11.10 11.30 11.51 14.23 c. 25.24 20.44 35.30 22.35 21.00 22.35 22.09 21.22 Pr 3.70 5.00 7.30 3.73 3.05 3.73 3.72 4.22 Nd 10.75 22.21 33.11 17.00 17.47 11.05 10.15 20.35 Sm 4.27 5.50 0.30 4.99 4.90 5.03 5.20 5.01 Eu 1.21 1.00 2.25 1.50 1.49 1.49 1.52 1.07 Gd 4.12 5.51 0.14 5.79 5.51 5.03 5.04 0.05 Tb 0.07 0.00 1.30 1.01 0.90 0.90 1.00 1.10 v 24.59 34.70 50.40 30.94 30.01 30.00 37.44 50.02 Dy 4.00 5.49 0.01 0.23 0.19 0.19 0.41 7.70 Ho 0.00 1.21 1.99 1.39 1.33 1.34 1.39 1.01 Er 2.32 3.50 5.51 4.24 3.92 4.02 4.15 5.24 Yb 2.40 3.55 5.07 4.19 4.01 3.94 4.11 5.10 Lu 0.37 0.53 0.09 0.09 0.05 0.00 0.09 0.00 v 130.44 147.40 101.90 252.92 244.20 252.01 244.12 243.00 Cr 3.00 3.30 3.31 4.02 4.00 4.05 4.72 5.09 Nb 2.90 2.02 3.40 4.11 4.07 4.11 4.25 3.01 111 3.53 3.35 4.27 4.20 4.24 4.30 4.40 3.57 Ta 0.21 0.21 0.20 0.20 0.27 0.27 0.29 0.20 Pb 4.41 4.54 5.00 4.57 4.00 4.00 4.97 4.03 Th 2.97 2.00 3.70 2.44 2.47 2.50 2.51 1.07 u 1.10 1.30 4.10 1.72 1.09 1.09 1.77 3.30 EulEu‘ 0.92 0.94 0.07 0.90 0.91 0.90 0.09 0.00 Distance 075.00 075.00 015.00 075.00 075.00 075.00 717.00 717.00 39 Table 2 continued Monte Galen Ash-flow Sheet Sample 020020-00 020020-00 020020-09 0102 07.90 00.73 00.39 no2 0.49 0.50 0.40 A1203 14.47 14.34 14.31 F020,", 3.04 3.74 3.40 MnO 0.14 0.14 0.13 M90 0.01 0.02 0.57 eao 2.45 2.29 2.22 N020 3.07 3.99 3.99 K20 2.09 2.93 3.05 9,0. 0.11 0.11 0.11 Totals 90.57 95.39 90.71 Cr (XRF) bd 00 00 Ni (XRF) 00 00 bd cu (XRF) bd bd bd Zn(XRF) 00 00 bd Rb 34.90 37.00 37.10 Sr 257.70 235.90 242.30 Zr 210.70 234.50 220.50 Ba 1297.15 1455.25 1355.40 La 14.09 17.40 15.01 Ce 34.00 42.17 30.52 Pr 5.10 5.90 5.43 Nd 23.31 27.05 24.52 Sm 0.37 7.15 0.75 Eu 1.01 2.05 1.00 Gd 7.00 7.73 7.12 1'0 1.23 1.30 1.24 Y 47.75 49.00 Dy 7.43 7.79 Ho 1.09 1.70 Er 4.70 5.10 Yb 4.90 5.21 Lu 0.70 0.01 ,v 59.04 00.00 39.03 er 4.40 0.94 4.44 Mb 0.31 0.95 0.52 111 5.53 0.31 5.00 Ta 0.51 0.57 0.57 Pb 0.31 7.25 0.91 Th 2.70 3.15 3.00 u 2.01 2.07 2.11 EulEu“ 0.86 0.88 0.86 Distance 717.00 717.00 717.00 Table 2 continued Las Sierras Ash-flow Sheet Sample 01011030 01011040 010710-30 01011035 010110-10 010710-10 010110-10 010110-11 Si02 66.72 67.79 67.71 64.75 66.86 68.42 67.15 67.15 T102 0.54 0.50 0.52 0.58 0.51 0.48 0.49 0.53 A120. 15.06 14.68 14.61 15.40 14.52 14.29 14.44 14.73 F010,", 4.07 3.67 3.84 5.15 3.98 3.65 3.69 4.08 14110 0.14 0.14 0.14 0.15 0.14 0.14 0.14 0.15 10190 0.70 0.60 0.65 1.18 0.67 0.53 0.56 0.62 C80 2.70 2.44 2.58 3.61 2.57 2.29 2.34 2.39 N820 2.99 3.25 3.59 3.34 3.45 3.42 3.58 3.03 K20 2.82 3.05 2.95 2.40 2.92 3.03 2.96 2.85 P20. 0.12 0.11 0.11 0.15 0.12 0.10 0.10 0.11 Totals 95.86 96.23 96.70 96.71 95.74 96.35 95.45 95.64 Cr (XRF) 21.50 1153.70 20.90 27.50 bd bd bd bd Ni (XRF) 21.30 148.50 bd bd bd bd bd bd Cu (XRF) bd 46.10 bd 42.40 bd 24.90 bd bd Zn (XRF) 104.70 88.90 104.50 93.60 95.40 104.00 124.00 95.30 Rb 41.30 30.00 38.40 32.30 58.40 65.80 67.80 46.80 81' 244.70 209.60 233.90 227.20 390.60 394.80 376.20 419.90 Zr 225.60 226.10 227.30 232.40 209.00 212.40 218.20 208.10 Ba 1383.10 949.20 1314.10 1328.30 1580.00 1700.00 1570.00 1960.00 La 16.51 14.72 16.47 13.96 21.10 21.70 22.00 21.90 Ce 37.66 35.06 34.76 33.68 39.20 40.50 39.50 38.70 Pr 5.61 4.94 5.41 4.70 6.56 6.72 6.87 6.52 Nd 24.72 22.72 24.68 21.65 29.20 29.00 30.90 29.60 8111 6.57 6.20 6.76 5.83 7.05 7.15 7.56 7.27 E11 1.87 1.65 1.71 1.58 1.75 1.77 1.83 1.77 Gd 6.67 6.60 6.97 5.90 6.78 6.90 7.39 6.89 Tb 1.14 1.11 1.21 0.98 1.16 1.15 1.26 1.13 Y 46.48 43.22 48.56 38.48 48.40 47.50 57.50 45.30 Dy 7.20 6.77 7.61 6.02 7.01 6.74 7.84 6.52 Ho 1.53 1.40 1.59 1.26 1.52 1.46 1.74 1.40 Er 4.59 4.26 4.86 3.82 4.40 4.28 5.22 4.00 Yb 5.02 4.63 5.11 4.22 4.78 4.51 5.95 3.94 Lu 0.74 0.68 0.77 0.61 0.77 0.70 0.98 0.64 V 12.60 78.32 31.95 37.23 68.50 75.30 64.50 77.10 Cr 14.37 10.93 10.36 16.47 11.30 13.20 11 .30 11.00 Nb 9.95 8.27 9.20 9.16 5.43 5.62 5.48 5.10 Hf 4.41 5.30 5.60 5.06 5.26 4.90 5.51 5.43 Ta 0.46 0.48 0.49 0.48 0.30 0.32 0.33 0.31 Pb 7.32 5.17 4.72 5.00 8.64 10.40 8.22 8.83 T11 2.70 2.99 3.20 2.94 4.65 4.66 5.10 5.00 U 3.07 2.06 2.27 2.21 2.02 2.31 2.03 1.46 511le 0.90 0.83 0.79 0.86 0.80 0.80 0.77 0.80 Distance 717.00 717.00 717.00 717.00 675.00 675.00 675.00 675.00 41 Table 2 continued Las Sierras Ash-flow Sheet Sample 010110-11 010710-11 010710-1L 010718-1m 010110-10 020020-10 020020-111 020020-11 Si02 64.07 67.68 69.32 69.25 68.34 65.83 66.99 67.85 110, 0.52 0.49 0.43 0.42 0.44 0.58 0.50 0.50 ~20, 14.65 14.38 14.23 14.15 14.56 15.04 14.36 14.41 F020,", 3.78 3.82 3.33 3.27 3.54 4.64 3.82 3.74 Mn0 0.14 0.14 0.08 0.07 0.08 0.14 0.14 0.14 M90 0.59 0.62 0.64 0.66 0.75 1.24 0.68 0.60 000 2.27 2.34 2.18 2.19 2.52 3.96 2.38 2.39 N020 3.44 3.35 2.96 2.92 3.19 3.78 3.83 3.78 K20 2.77 3.02 3.85 3.89 3.56 2.07 3.00 3.03 P20. 0.10 0.11 0.08 0.07 0.06 0.15 0.12 0.12 Totals 92.33 95.95 97.10 96.89 97.04 97.43 95.82 96.56 Cr (XRF) 1179.90 23.60 22.30 21.70 bd bd 29.10 bd Ni (XRF) 133.00 19.50 bd bd bd bd bd bd Cu (XRF) 20.90 16.50 46.10 bd bd bd 36.70 bd Zn (XRF) 98.20 74.00 90.30 67.50 64.00 67.70 70.50 - Rb 59.40 41.40 39.30 44.80 51.80 48.50 43.10 50.90 Sr 340.50 447.30 436.90 284.60 258.00 265.30 311.60 263.50 Zr 252.30 176.40 151.90 179.80 186.10 182.10 158.10 185.00 Ba 2140.00 1720.00 1680.00 1564.20 1591.40 1581.20 1538.00 1813.31 La 20.30 27.10 19.50 14.24 15.72 13.69 13.15 14.49 00 46.80 36.90 35.90 31.60 31.37 32.23 29.24 33.78 Pr 6.29 7.93 6.20 4.71 4.89 4.65 4.56 4.70 Nd 26.90 36.30 28.70 20.45 21.76 19.64 19.99 19.68 Sm 6.31 9.20 7.27 5.19 5.39 4.93 5.24 5.10 Eu 1.62 2.09 1.73 1.41 1.33 1.37 1.43 1.32 Gd 5.44 8.84 6.64 5.10 5.54 4.78 5.12 5.19 Tb 0.92 1.45 1.05 0.84 0.94 0.78 0.82 0.89 Y 33.60 61.10 36.00 32.94 38.21 31.73 32.29 35.82 Dy 5.12 8.38 5.86 5.13 5.75 4.94 4.95 5.63 110 1.09 1.82 1.18 1.05 1.21 1.02 1.07 1.08 Er 3.08 5.15 3.25 3.25 3.72 3.21 3.34 3.37 Yb 3.07 5.10 2.95 3.77 4.27 3.60 3.55 3.84 Lu 0.46 - 0.83 0.46 0.55 0.64 0.51 0.55 0.62 V 42.20 87.10 117.00 32.50 17.05 27.21 83.75 36.83 01 14.80 10.20 10.90 13.49 10.84 15.48 16.40 9.35 Nb 7.42 4.36 3.87 6.52 5.99 6.86 5.51 6.45 Ht 6.19 4.92 4.29 3.66 4.45 3.71 3.12 4.74 Ta 0.42 0.28 0.25 0.35 0.38 0.36 0.30 0.56 Pb 13.40 6.99 6.43 10.16 7.64 11.84 8.95 11.95 Th 5.82 4.47 3.94 2.42 2.74 2.40 2.08 2.01 0 2.46 1.11 1.07 2.89 2.56 3.21 2.71 2.09 EulEu‘ 0.86 0.74 0.80 0.88 0.78 0.90 0.89 0.81 Distance 675.00 675.00 675.00 656.00 656.00 656.00 656.00 683.30 42 Table 2 continued Las Sierras Ash-flow Sheet Sample 020020-1111 020020-20 02002020 02002040 02002030 020020-40 020020-00 020020-01 Si02 68.00 68.56 67.99 69.09 68.96 66.48 67.35 67.40 T10, 0.48 0.48 0.49 0.40 0.42 0.52 0.52 0.50 A1203 14.34 14.33 14.38 14.03 13.86 14.87 14.29 14.71 Fe202m 3.62 3.69 3.72 3.26 3.42 3.95 3.91 3.69 Mn0 0.14 0.13 0.14 0.09 0.09 0.14 0.14 0.14 M90 0.58 0.58 0.59 0.63 0.66 0.63 0.68 0.56 000 2.34 2.37 2.35 2.38 2.30 2.59 2.48 2.38 Na20 3.62 3.77 3.86 3.05 3.00 3.31 3.64 3.65 K20 3.14 3.02 3.02 3.65 3.71 2.86 2.93 2.89 P20. 0.11 0.11 0.11 0.09 0.10 0.12 0.12 0.11 Totals 96.37 97.04 96.65 96.67 96.52 95.47 96.06 96.03 Cr (XRF) bd bd bd bd bd bd bd bd Ni (XRF) bd bd bd bd bd bd bd bd Cu (XRF) bd bd bd bd bd bd bd bd Zn (XRF) bd bd bd bd bd bd bd bd Rb 52.20 54.10 52.80 57.10 50.40 65.50 65.70 61.20 Sr 244.90 251.80 252.20 250.10 244.60 197.00 195.90 217.30 Zr 191.70 192.20 192.20 188.90 190.70 223.30 223.40 215.70 Ba 1839.60 1895.17 1839.78 1851.54 1814.38 1882.63 1848.94 1852.88 La 14.59 15.14 15.40 14.75 14.73 15.13 14.75 14.99 00 34.70 35.26 36.21 34.31 33.90 34.93 33.46 32.36 Pr 4.87 4.98 5.21 4.84 4.79 4.91 4.64 4.75 Nd 20.20 20.77 22.07 20.12 20.35 19.85 18.56 19.09 Sm 5.32 5.17 5.56 5.36 5.16 4.95 4.50 4.82 Eu 1.37 1.35 1.45 1.36 1.35 1.05 0.96 1.11 Gd 5.31 5.39 5.65 5.17 5.22 4.73 4.39 4.67 Tb 0.90 0.89 0.92 0.87 0.89 0.80 0.78 0.79 Y 36.2 37.26 38.50 36.70 36.60 32.99 32.25 32.72 Dy 5.77 5.77 5.93 5.61 5.53 4.90 4.76 4.84 Ho 1.10 1.11 1.17 1.11 1.11 0.96 0.93 0.96 Er 3.50 3.57 3.58 3.54 3.39 2.97 2.98 3.10 Yb 4.11 4.21 4.12 4.02 4.05 3.68 3.53 3.83 Lu 0.64 0.65 0.67 0.62 0.61 0.57 0.57 0.59 V 24.45 28.83 31.56 29.18 29.19 65.02 59.91 68.28 Cr 10.27 12.76 10.46 12.81 9.38 13.58 12.95 12.29 Nb 7.17 6.78 7.01 7.35 6.66 7.31 6.80 7.26 H1 5.04 4.86 4.93 4.90 4.85 5.80 5.61 5.70 Ta 0.65 0.59 0.56 0.55 0.55 0.63 0.65 0.56 Pb 13.66 12.68 12.11 12.07 10.89 13.19 12.13 11.61 Th 2.17 2.02 2.11 2.08 2.08 2.72 2.58 2.75 0 2.30 2.16 2.15 2.10 2.09 2.65 2.48 2.41 EuIEu' 0.82 0.83 0.84 0.83 0.69 0.67 0.74 Distance 683.30 683.30 683.30 683.30 683.30 683.30 683.30 683.30 43 Table 2 continued Las Sierras Ash-flow Sheet Sample 02062060 020620411 020620411 020620-79 020620-71 0102 00.27 00.97 07.07 07.03 00.30 1102 0.50 0.51 0.51 0.50 0.40 A120, 14.09 14.44 14.43 14.45 14.42 F020,", 4.35 3.00 3.01 3.77 3.00 Mn0 0.15 0.14 0.14 0.14 0.14 M90 0.73 0.04 0.01 0.03 0.59 CaO 2.09 2.47 2.43 2.40 2.44 N020 2.00 3.13 3.04 3.00 307 K20 2.00 2.01 2.90 2.77 2.07 P20. 0.12 0.11 0.12 0.12 0.11 101010 95.42 95.02 90.20 95.75 90.90 or (XRF) 20.00 00 00 00 00 Ni (XRF) 00 00 00 00 00 Cu (XRF) 00 00 00 00 00 Zn (XRF) 57.00 50.00 57.10 59.50 57.00 Rb 35.50 37.00 37.20 30.30 37.00 Sr 340.00 300.50 303.30 374.70 309.00 Zr 102.10 101.00 102.30 150.90 105.00 Ba 1450.00 1490.00 1400.00 1410.00 1500.00 La 14.70 15.00 15.10 14.20 14.00 00 29.00 30.00 30.00 29.10 30.50 Pr 4.2 4.24 4.29 4.03 4.25 Nd 17.10 17.30 17.30 10.00 17.20 Sm 3.97 4.17 4.05 3.00 3.95 Eu 1.34 1.30 1.35 1.31 1.37 00 3.70 3.74 3.77 3.00 3.70 10 0.01 0.03 0.02 0.59 0.01 v 24.90 25.40 25.00 24.20 25.00 Dy 3.03 3.71 3.01 3.53 3.53 110 0.79 0.00 0.77 0.75 0.77 Er 2.30 2.32 2.33 2.24 2.27 Yb 2.72 2.74 2.00 2.59 2.00 Lu 0.41 0.42 0.41 0.40 0.41 v 79.90 04.70 00.00 92.90 05.00 Cr 15.70 17.50 10.40 10.00 10.30 Nb 0.09 0.35 0.20 0.01 0.05 H1 3.02 3.50 3.02 3.41 3.73 10 0.44 0.45 0.40 0.41 0.40 Pb 0.90 7.30 7.14 0.50 7.03 111 3.01 3.01 2.07 2.77 2.94 u 2.00 2.99 2.01 2.07 3.00 EulEu" 1.11 1.09 1.10 1.11 1.14 Distance 754.00 754.00 754.00 754.00 754.00 44 Table 2 continued 3011 1001001 Ash-flow 311001 Sample 020010-10 020010-11 020010-111 020010-10 sio2 04.15 03.42 02.35 03.25 1102 0.77 0.19 0.03 0.70 A1202 13.93 13.97 14.25 13.93 F020,", 1.05 7.97 0.50 1.53 MnO 0.21 0.20 0.21 0.20 M90 0.05 0.07 1.47 0.70 C00 3.49 3.43 4.40 3.27 N020 4.04 4.00 4.04 4.00 11,0 2.35 2.30 2.00 2.33 P20. 0.21 0.21 0.22 0.21 101010 97.05 97.10 90.41 90.34 Cr(XRF) 00 00 00 00 Ni(XRF) 00 00 00 00 Cu (XRF) 00 00 00 00 Zn(XRF) 00 00 00 00 Rb 50.20 49.70 05.20 03.00 Sr 251.10 231.40 540.10 500.00 Zr 109.20 195.90 157.70 150.00 Ba 1035.41 1901.51 1270.29 1311.05 La 15.47 15.97 23.00 21.02 00 35.30 30.05 40.94 40.14 Pr 5.13 5.27 0.07 0.14 Nd 21.01 22.33 30.10 27.25 3111 5.59 5.02 0.90 0.47 Eu 1.50 1.52 1.05 1.70 00 5.05 5.75 0.00 0.25 10 0.90 0.90 0.99 0.95 Y 37.03 37.41 37.24 34.10 Dy 0.00 0.12 5.79 5.50 140 1.30 1.31 1.27 1.19 Er 4.05 3.92 3.47 3.29 110 4.40 4.37 3.42 3.39 Lu 0.70 0.72 0.55 0.51 v 21.37 10.03 191.24 195.23 or 4.53 5.00 0.09 0.10 Nb 0.40 0.93 3.97 4.15 111 5.20 5.31 4.20 4.29 hi 0.02 0.03 0.20 0.30 90 14.40 15.30 3.90 4.10 T11 3.10 3.14 5.23 5.30 u 3.54 3.03 2.10 2.74 EulEu‘ 0.89 0.83 0.90 0.91 Distance 683.30 683.30 670.00 670.00 45 Table 2 continued Ostocal Ash-flow Sheet Sample 010716-1A 010716-13 010716-16 010716-10 020624-11: 020624-16 020624-111 020624-11 8102 05.01 02.02 05.09 04.00 04.33 04.11 05.49 05.55 no2 0.07 0.73 0.07 0.70 0.70 0.70 0.09 0.07 A1203 14.04 14.74 14.09 14.71 14.22 14.07 13.99 13.92 mom, 0.21 0.90 0.10 0.10 0.00 0.44 0.29 0.23 MnO 0.20 0.22 0.19 0.24 0.20 0.20 0.19 0.20 11190 0.00 2.43 1.04 1.39 1.10 1.03 0.91 0.00 oao 3.14 2.90 2.93 2.94 3.40 2.99 3.05 3.05 110.0 4.20 2.32 3.75 3.05 3.00 3.93 3.94 4.10 K20 2.23 1.01 2.19 2.00 1.90 2.01 2.10 2.10 P20. 0.2 0.29 0.10 0.14 0.20 0.10 0.10 0.10 101010 97.32 95.22 90.09 90.29 90.77 95.70 90.01 90.92 Cr(XRF) 00 00 00 00 00 00 00 00 Ni(XRF) 00 00 00 00 00 00 00 00 Cu (XRF) 00 00 00 00 00 00 00 00 Zn (XRF) 00 00 00 00 00 00 00 00 Rb 40.50 34.90 13.00 30.70 37.40 10.30 34.30 37.30 Sr 352.20 357.90 400.00 340.90 342.00 473.20 359.40 350.20 Zr 150.70 154.20 50.10 100.30 101.10 01.70 149.10 140.30 00 1532.43 1490.94 502.40 1499.01 1501.07 790.32 1359.07 1415.00 La 13.95 13.72 7.19 14.01 14.50 9.54 13.00 12.44 Ce 32.29 30.50 14.33 31.19 31.54 19.10 29.03 20.00 Pr 4.02 3.95 2.20 4.10 4.11 2.07 3.09 3.39 Nd 15.90 15.70 10.01 15.01 10.03 13.22 15.57 13.39 Sm 3.04 3.99 2.90 3.01 3.00 3.43 3.00 3.31 Eu 1.30 1.31 1.00 1.31 1.30 1.20 1.20 1.12 00 3.71 3.70 3.13 3.04 4.10 3.52 3.01 3.09 10 0.02 0.01 0.52 0.00 0.00 0.57 0.01 0.49 v 20.70 21.70 10.45 21.91 22.52 20.10 22.31 10.50 Dy 3.30 3.55 3.11 3.45 3.07 3.30 3.59 3.00 Ho 0.70 0.79 0.00 0.77 0.03 0.73 0.02 0.00 Er 2.00 2.15 1.09 2.02 2.34 2.07 2.22 1.01 v0 2.59 2.57 1.90 2.07 2.90 2.15 2.51 2.35 Lu 0.40 0.41 0.29 0.40 0.43 0.34 0.40 0.30 v 00.04 75.05 301.31 00.09 70.27 235.21 72.50 00.09 Cr 3.75 3.77 21.97 5.30 4.00 5.57 4.07 0.30 Nb 7.70 1.27 2.25 7.44 7.75 3.14 7.00 5.05 111 3.47 3.02 1.07 3.05 3.90 2.20 3.52 3.05 10 0.49 0.52 0.14 0.49 0.51 0.21 0.43 0.30 Pb 0.19 0.00 1.75 5.02 5.50 2.44 5.10 4.94 Th 2.90 3.03 1.10 2.93 3.22 1.05 2.72 2.94 u 3.00 3.15 0.01 3.10 3.10 1.22 2.02 2.79 EulEu‘ 1.09 1.00 1.12 1.12 1.12 1.10 1.00 1.13 Distance 754.00 754.00 754.00 754.00 754.00 754.00 754.00 754.00 46 8“ Table 2 continued Ostocal Ash-flow Sheet Sample 02062441: 020624411 020624-29 020624-211 0102 05.12 04.50 04.59 05.10 no. 0.00 0.09 0.70 0.00 111,0, 13.00 13.91 14.09 13.09 00.03‘“ 0.35 0.23 0.43 0.32 Mn0 0.23 0.20 0.40 0.20 M90 0.04 0.00 0.00 0.00 000 4.04 3.13 3.20 3.00 100,0 3.97 4.01 4.00 3.93 K20 2.10 2.11 2.10 2.13 no. 0.43 0.10 0.20 0.17 101010 97.42 95.04 90.05 90.54 Cr(XRF) 00 00 00 00 Ni (XRF) 00 00 00 00 Cu (XRF) 00 00 00 00 Zn(XRF) 00 00 00 00 R0 42.00 41.70 30.30 30.50 sr 325.00 334.00 355.00 340.30 Zr 100.40 103.20 157.50 100.00 30 1501.03 1509.90 1432.04 1459.40 La 14.07 14.30 13.03 13.91 00 31.50 31.03 29.04 30.35 Pr 4.20 4.12 4.05 4.00 Nd 17.12 17.10 15.03 10.34 Sm 4.32 4.24 3.07 3.01 Eu 1.34 1.33 1.30 1.33 00 4.12 3.99 3.97 4.01 10 0.00 0.04 0.03 0.03 Y 24.41 23.10 22.49 23.30 Dy 3.02 3.00 3.53 3.14 Ho 0.04 0.00 0.00 0.02 Er 2.43 2.10 2.13 2.19 v0 2.01 2.00 2.71 2.79 Lu 0.45 0.41 0.40 0.42 v 73.30 71.25 70.24 70.31 Cr 4.20 3.95 3.07 3.72 Nb 0.51 7.09 7.41 7.29 H1 3.03 3.72 3.52 3.01 10 0.47 0.49 0.49 0.49 Pb 5.41 5.04 5.02 5.20 111 3.00 3.10 2.94 3.01 u 3.00 3.00 2.92 2.90 EulEu“ 1.01 1.04 1.13 1.12 Distance 754.80 754.80 754.80 754.80 47 Table 2 continued Coyol Ash-flow Sheet Sample 020022-10 020022-10 020022-111 020022-20 020022-20 02002240 02002240 02002240 8102 54.34 54.24 64.31 66.51 67.33 64.65 62.94 65.29 Ti02 0.86 0.86 0.64 0.64 0.61 0.68 0.73 0.64 A1203 16.39 16.38 15.33 15.29 15.14 16.00 15.59 15.42 F020,", 9.62 9.56 3.96 3.89 3.61 4.35 5.45 3.98 MnO 0.17 0.17 0.12 0.13 0.12 0.09 0.18 0.11 M90 3.00 2.83 0.98 0.50 0.31 0.77 0.66 0.41 000 7.24 7.45 1.74 1.88 1.63 2.12 3.22 1.95 N010 3.38 3.43 2.48 4.01 4.01 3.62 3.72 4.15 K20 1.99 2.03 5.43 5.21 5.27 4.17 4.19 4.72 P20. 0.62 0.82 0.16 0.18 0.15 0.12 0.36 0.19 Totals 97.61 97.77 95.15 98.24 98.18 96.57 97.04 96.86 Cr (XRF) bd bd bd bd bd bd bd bd Ni (XRF) bd bd bd bd bd bd bd bd Cu (XRF) bd bd bd bd bd bd bd bd Zn (XRF) bd bd bd bd bd bd bd bd Rb 148.40 142.90 147.80 94.40 104.40 106.00 90.90 65.90 Sr 265.30 289.10 258.40 330.20 426.40 312.30 564.00 374.60 Zr 354.60 346.00 358.10 333.20 239.30 339.20 216.70 189.80 80 2219.12 2504.21 2488.68 2604.57 2324.41 2687.50 1962.11 1979.85 La 30.28 31 .03 30.07 22.45 29.48 31.71 24.84 22.00 Ce 69.35 68.96 67.19 49.40 63.14 64.01 45.70 45.86 Pr 8.56 8.96 8.64 5.96 8.62 8.94 7.23 7.00 Nd 33.85 35.36 34.00 24.16 35.41 35.16 30.74 30.77 Sm 7.14 7.86 7.56 5.40 7.81 8.08 6.98 7.24 Eu 1.69 1.94 1.81 1.84 2.02 1.90 1.65 1.90 Gd 6.68 7.13 6.82 5.20 7.01 7.16 6.78 6.70 Tb 1.04 1.14 1.09 0.81 1.05 1.11 1.07 1.06 Y 35.96 39.87 39.42 26.64 30.40 37.46 37.37 39.56 Dy 5.94 6.58 6.41 4.66 5.58 6.49 6.10 6.23 Ho 1.28 1.40 1.39 1.00 1.12 1.35 1.30 1.42 Er 3.74 3.87 3.94 2.74 2.96 3.70 3.76 3.99 Yb 4.23 4.56 4.29 3.01 2.97 4.08 3.75 4.13 Lu 0.64 0.66 0.72 0.42 0.38 0.61 0.57 0.62 V 23.65 36.55 39.55 43.81 78.14 39.84 83.57 97.11 Cr 3.73 3.60 3.19 4.43 3.80 4.06 5.12 4.35 Nb 10.45 10.33 10.52 9.41 8.11 10.12 6.38 4.81 H1 8.55 8.35 8.37 7.98 6.20 8.13 5.52 4.85 To 0.86 0.86 0.94 0.80 0.55 0.91 0.39 0.38 Pb 21.88 14.95 12.52 20.67 9.65 37.18 10.69 10.21 Th 12.04 11.73 12.02 11.11 8.89 11.37 7.73 4.71 U 5.86 5.81 5.93 4.36 3.09 5.05 2.80 2.18 EulEu‘ 0.79 0.83 0.80 1.13 0.89 0.80 0.78 0.88 Distance 670.00 670.00 670.00 670.00 670.00 670.00 675.00 675.00 48 Table 2 continued Las Maderas Ash-Flow Sheet Sample 010110-20 010710-20 010110-2c 010710-20 010110-21 01071049 01011020 02002240 Si02 62.97 61 .46 61.43 62.24 64.59 62.98 61 .60 60.37 T102 0.77 0.77 0.78 0.80 0.68 0.80 0.79 0.85 A120. 15.39 15.16 15.68 15.72 15.29 15.69 16.03 16.04 F020,", 6.26 6.05 6.09 6.40 5.12 6.87 6.96 7.61 Mn0 0.15 0.15 0.14 0.14 0.14 0.10 0.16 0.15 M90 1.86 1.76 2.20 1.13 0.93 0.88 1.17 1.46 CaO 4.19 4.01 4.04 3.90 2.68 4.05 3.98 4.16 N020 2.74 2.72 1.97 4.00 3.58 3.65 3.47 3.65 K20 3.81 4.00 4.14 2.84 3.55 2.97 2.57 2.28 P20. 0.36 0.36 0.35 0.37 0.17 0.47 0.36 0.57 Totals 98.50 96.44 96.82 97.54 96.73 98.46 97.09 97.14 Cr (XRF) 20.00 bd bd bd bd bd bd bd Ni (XRF) bd bd bd bd bd bd bd bd Cu (XRF) bd bd bd bd bd bd bd bd Zn (XRF) 61.20 bd bd bd bd bd bd bd Rb 34.50 11.60 36.60 41.30 39.60 43.60 38.50 24.70 Sr 382.20 544.80 360.00 328.10 321.10 329.90 362.10 454.40 Zr 150.00 64.30 152.60 163.20 162.80 164.60 149.10 81.40 Ba 1350.00 725.78 1455.56 1542.28 1522.58 1614.74 1444.39 776.70 La 13.90 9.40 13.88 14.36 14.38 14.62 13.40 9.36 00 27.80 16.05 30.48 31.88 32.12 33.05 29.73 18.46 Pr 3.87 3.13 4.02 4.07 4.24 4.15 3.90 2.73 Nd 15.90 14.66 16.18 17.01 16.77 16.28 15.48 12.20 Sm 3.68 3.82 4.06 4.24 4.03 3.98 3.82 3.16 Eu 1.27 1.25 1.33 1.27 1.35 1.32 1.28 1.12 Gd 3.45 3.81 3.80 4.07 3.92 3.88 3.57 3.37 Tb 0.57 0.63 0.64 0.67 0.63 0.64 0.58 0.57 Y 24.10 23.66 23.78 24.73 22.67 22.22 20.73 20.22 Dy 3.50 3.86 3.90 3.81 3.76 3.60 3.36 3.32 No 0.76 0.80 0.83 0.92 0.82 0.84 0.75 0.75 Er 2.16 2.26 2.44 2.72 2.27 2.12 1.93 1.98 Yb 2.46 2.22 2.74 2.78 2.91 2.69 2.47 2.15 Lu 0.39 0.34 0.42 0.45 0.42 0.41 0.38 0.33 V 90.70 253.27 65.70 53.95 62.04 61.73 65.21 212.51 Cr 14.60 21 .70 3.37 3.04 4.85 4.89 3.89 5.93 Nb 7.44 2.30 6.80 7.53 8.40 8.33 7.03 3.33 H1 3.39 1.93 3.57 3.83 3.89 3.59 3.52 2.22 Ta 0.42 0.16 0.54 0.59 0.53 0.58 0.47 0.22 Pb 5.33 2.70 5.52 6.62 6.23 6.51 5.39 2.57 T11 2.70 1.25 2.79 2.94 3.11 3.03 2.80 1.61 U 2.36 0.56 2.40 2.63 3.68 3.81 2.98 1.42 EuIEu' 1.13 1.05 1.07 0.97 1.09 1.07 1.11 1 .10 Distance 754.80 754.80 754.80 754.80 754.80 754.80 754.80 754.80 49 Table 2 continued L00 140001110 Ash-Flow 511001 Sample 0200224 020022-00 02002241 02002249 510, 03.25 57.79 54.02 50.00 110, 0.70 0.00 0.70 0.01 A1,o, 15.71 10.05 10.01 10.04 r-'e,o,m 5.39 0.14 0.02 7.04 MnO 0.13 0.12 0.12 0.14 M90 1.34 1.92 2.00 1.05 000 4.03 0.75 7.30 7.54 010,0 2.01 2.00 3.02 3.31 K,o 3.03 1.00 1.01 1.95 12,0. 0.20 0.27 0.35 1.79 101010 97.25 90.50 90.09 90.35 Cr(XRF) 00 00 00 00 Ni (XRF) 00 00 00 00 Cu (XRF) 00 00 00 00 Zn (XRF) 00 00 00 00 R0 40.50 40.30 35.70 34.50 sr 327.20 330.90 351.00 357.40 Zr 102.20 102.70 152.00 149.00 30 1524.04 1551.40 1449.00 1410.90 La 13.99 13.02 13.99 13.00 Ce 32.29 31.72 31.05 29.03 Pr 4.07 4.04 4.17 3.90 Nd 10.14 15.59 10.04 15.70 Sm 3.92 3.04 3.90 3.02 Eu 1.29 1.21 1.32 1.22 00 3.70 3.03 3.97 3.75 10 0.00 0.59 0.04 0.00 Y 21.31 22.00 22.22 21.00 Dy 3.30 3.57 3.00 3.73 Ho 0.77 0.70 0.79 0.00 Er 2.09 2.10 2.13 2.09 Yb 2.50 2.09 2.49 2.57 Lu 0.39 0.30 0.39 0.41 v 74.04 00.29 02.77 70.94 Cr 4.14 3.02 3.92 2.09 Nb 7.14 7.99 7.42 0.00 111 3.02 3.50 3.00 3.50 10 0.40 0.50 0.40 0.47 Pb 0.15 0.09 5.42 5.09 111 2.94 2.95 2.03 2.01 u 3.30 3.59 3.13 2.00 EulEu' 1.00 1.09 1.07 1.00 Distance 754.80 754.80 754.80 754.80 50 aa.0a 00 .aa 3.0a 0‘00 .305. _.5.0a N0.5a vu.0a 00.0a 0N.0a ..0.5a 0¢.0a _.¢.aa 00. For 00.00.. 3&0? 00.50.. 5.0 05.0 0N0 0N0 .0 No.0 a0.0 00.0 mad .0 3.0 0.0 .0 09.0 0...0 00.0 3.0 00.0 0N0 VNN a5; 5*.N F0.N 0N0. a0.N 50.N 3.0 aN.0 ON! 0_..N N...N 0N0. 0N.N 9N «0.0 05.0 aa.0 00d ON! 00.0 R.» 00.0 «3. 0002 aN.0 006 5a. _. 50.0 032 50.0 0a.0 0.4.02 00% afiv 3.0 0a.0 F00 50.0 032 5N0 00.0 _._..0 5a.N 000 056 N00 506 05.w 000 00.0 5N0 000 00;. avé 05a N5.5 a5.0 0_..N 08 ~00 0... F 00.0 ~00 00.... 00. F 0... P 3.0 00.0 00.... «E 3.0 00.2 vmd 0N0 50.0 0 v.0 0 rd 010 Gas. 0.0 0N0 0N0 5N.0 0:2 0rd 5_..0 3.0 a0.0 0:2 3.0 0.20 0:: 00.0 00.0 00.0 0 _..0 0:! 00.0 5... 00.0 00.0 600... nod «3 00.0 00.0 .000". 02. 0: 000.“. E 03 50.0 t; 00.? EN 600“. 00.0 +0.0 3. 0 00.0 «o: 00.0 N00 00.0 00.0 «OF 05.0 05.0 «0:. 00.0 5.0 80 ~00 2.0 8.0 «cc. 3.: ~00. 00.0. 00.2 .002 2.2 00.0. «0.: 00.: 4002 3.0. 2.00 .002 00.0. 0.0.2 0.0.8 00.0w 00. a 00.2 .002 00.00 20.00.50.002 3.00 230.5030: 0.0.00 20.03.70.003 00.00 20.00.070.002 N0.0 0.0.50 02.0 300.02 .83. 000 «0.00 20.00.00.030: 3.00 0.0.00.8.0202 0N0» 29.00.00.030: 3.: :0.«0.8.0«8~0 N90 0.0500 02.0 30.0.02 «at...» 3.. 00.00 0.0.00.3.2080 00.3 23003302 N90 0.0800 .02.» 30:02 00.00 300.2 8.2. 0.30.00.22.00 h 00.. 20.33.2080 00.00 20.00.02.002 3.3 20.00.02.080 3.00 «5.8.3.2002 0:0 0.0.3.2532 «a.» 0.0.50 02.0 30.0.02 0>00< 0.0222 80.0 x50: 0 03.... 51 ..0.5a F5.5a V0.0a «~00 2.02 00.000 ..0.0a .50... aNaa 00.0a .50... 0N.0a 00.0a 5a.0a 5N.0a Na.0a 5N.0a .50... 3.000 N0.aa 00.00. 0N.0 0N0 00.0 50.0 0N0 No.0 No.0 50 No.0 00.0 3.0 0N0 «N0 0N0 «N0 .0 3.0 00.0 2.0 .0 a0.N 05.N a0.0 00.0 0 PM. 00.0 F5.N ONv. a0.0 3.0 05. 0N.N 00.N 3N NPN 0a... 00.N ON! 00.0 a0.w 50.0 ON! 00... .00 00.. 00.0 00.0 00.0 .00 0002 .00 00.0 0002 00.0 ~00 ~00 00.0 ~0.0 0~.0 00.02 00.0 0.0 0.0 0002 «0.. ..0... 00.5 00.0.. ..0.0 5N... 00.N 000 00.0 3.: 000 F0.N 00.N #00 00.0 0 0.0 00.0 000 a0.0 0 .0 05.0 000 00.0 00.0 «0.0 0 .0 00.0 0N0 05.0 002 00.0 00.00 00.2 05.0 00.0 «0.0 05.0 0a.0 a5.0 00.2 00.0 00.0 00.0 00... 00.0 0.0 N...0 0...0 00.0 0:: v0.0 «0.0 0...: ad NN.0 a_..0 0...0 00.0 3.0 0:: 00.0 00.0 00.0 0...! 0.5.N 00d a0.0 a0. .. a0.a 00.N 00.0 .03“. a0.a 5N0 F 003». 00.0 N50 05.0 5a.0 ..0.0 00.0 000.0". 00.0 00.0 00.0 .000". 0~.0 .00 ~00 00.0 8.0 0.0.0 .00 «o: 00.0 ~0. . N0.» 000 .00 ~00 00.0 00.0 00.0 N0.» 00.0 00.0 00.0 u.0... 03.00.00.800: 50.00.00.800: 20.00.00.020: ~.0.~0.00.-0~00~0 ..0.~0.00..0~00~0 ~.0.o~--00~0 ..0..0.0~--00~0 0.0800 .0000 300.02 .260 ~_a._.o.o~.0~00~0 :0. 3.3.3003 0.0.5.0 «2.0.2.0 000:. 002.0 300...: .3300 00.0. 0 .. 2. 00.0. 00. K ~0.0~ ~0.00 .~.0~ 00.00 0~.0~ 0.0 00.0. 00.~. 00.0. 00.00 .00.... 00.0 .0.~. 00.00 0.0 .000 .002 00.0 0.0. 00.00 .00. 00.00 ~00. .000 ~00. 0~..0 00.0. 00.8 00.0. 000.0 .002 N0.0 0..0~ 00.00 00.0~ 000.0 0..0~ .000 .00.... 6.0 0.0..0.0~.0~00~0 0.0..0.0~.0~00~0 ~.0.~0....0~00~0 ..0..0....0~00~0 ._o.00.0..0~00~0 50.80.0202 0.0500 «02.» 30.0.9.2 .000qu ~00..._0.~0.n..-0.00~0 .00....0.~0.0..0.00~0 .00...0.~o.n...0.00~0 0.950 00.020... «.0... «02.0 30.....2 .0003. :00 0.0205 30.0 x50... 02.0.28 0 0.00» 52 ..0.00« mfg 3.00 «N50 00.00 00.3 00.00 1.250 0 «.00 00.50 .30... 05.0.. 3.09 00.0 «0.0 v «.0 0N0 .0 0N0 0...0 0N0 0N0 0...0 .0 00.0 9.0 .0 00.0 00.0 00... 05.0 00.0 03. 05.0 00.0 0 «.v 9.0 05.0 ON! 00.0 r «.N 09. 0.20 0...N 00.0 05.0 000 0002 EN «0N 00.0 00.0 0N0 O~uz 00.0 00.0 3.2 00.0.. 00.N 00.0 0v.N 0 ..... Oa0 30 00.« 00.« 00... mm... ONO N5.5 00.5 Ou0 0.0 00.0 00.0 .... 00.0 00.2 00.0 00.0 00.0 0.0.0 000 002 00.0 0~.0 00.... .x. NN.0 ..0.0 N ...0 00.0 0:2 0«.0 0«.0 00.0 00.0 N...0 0:5 0N0 0:2 00. .. VNéN 0N. .. vmé 05d ”ONGE F. «0.. 00.. 00.. .0.~ «of. N00 v0.5 nOu‘E .00 00.0 00.0 00.0 ~00 «o... .00 00.0 00.0 00.0 00.0 «o.» 00.0 ~00 «o... .0..~ 0~.00 ~.0.00.0.~.~00~0 0.0 0.00 ..0.0u.0.-00~0 00.0~ 00.~0 ._0.0..0.0.-00.~0 .00. 00.00 20.00.300.800 0.0. -.~0 03.00.30.030 «0«.< «0.0 0.0.000 025.25 03!: «02.0 .50—«.52 05.0qu as 00.0. 00.00 0.0.0o.0.-00~0 0.0. 00.00 ..0.0o.0.-00~0 00.0. 00.0.. ._0.~o.0.-00~0 00.0. :00 20.50.30.000: .00. ~20 ..0..u.00.-00~0 6«_< «0.0 0.0.000 .800 300.02 0280.2 00.. 00.0~ 00.00 .00....0..0.00.0~00~0 0~.... 0000 >00.._0.0«..0..-00~0 .0«.< «0.0 0.0.000 5.3.0:. «.2: «02.0 320...: .260 0.0.0.0.... «aa.0 x505. 02.5.5". 0 9.0.0... 53 Table 3 continued Plagioclase Analysis Apoyo Ash-flow Shoot 020017-10-01-p1-c 55.38 020617-1o-c1-p1-Int 54.84 020617-1o-c1-p1-r 71 .55 020617-1o-c2-p1-c 56.39 020617-1o-c2-p1 4nt 55.1 0 02081740624314? 56.19 020617-1o-c2-p1-r1 56.26 020617-1o-c3-p1-c 52.94 020617-1o-c3-p1-lnt 55.85 020617-1o-c3-p1-r 56.98 020817-10-65—91-6 52.51 02061 7-1od-p1-r 68.58 020817-2c-cz-p1-c 44.77 020617-20-c2-p1-lnt 45.33 020617-2042-914 50.72 02061740031314: 56.28 020617-26—63-91-1nt 57.67 020817-2c-c3.p1-r 55.14 020617-2c-c3-p2-mp 52.45 020617-5a-c3-p1-c 54.26 02061758c3-p14nt 56.57 02061745843414 65.82 02061758-c7-p1-c 55.84 020617-58-cT-p1-lnt 53.18 02061768494114 53.55 020617-68-cz-p1-c 45.61 020617-68-62-p1-lnt 45.31 020617-68-c2-p1-r 50.53 020617-68-422-92-4: 46.86 020617-60-cz-pz4nt 50.02 02001781182924 55.43 020617-68-c3-p1-c 51.92 020617-68-c3-p1-lnt 53.47 02061748431014 50.93 Monte Golan Ash-flow Sheet Sample 810: 020620-109-c1-p‘l-c 59.19 020820-1og-c1-p14nt 59.27 020620-109-c1-p1-r 60.32 020620-109-cz-mp1-c 61.39 020620-109-c2-mp1-r 50.14 0206204 0943-91-1: 60.39 020620-109-c3-p1-lnt 59.85 020620-109-c3-p1-I' 68.66 020620-88-01-p1-c 57.25 N203 28.34 28.82 15.29 28.14 29.21 27.48 28.34 29.88 28.02 27.88 30.23 19.22 35.39 34.83 31.12 27.83 28.59 27.91 28.14 27.97 28.52 19.98 27.18 28.15 28.88 33.89 33.88 30.20 32.33 30.10 25.13 29.98 28.95 30.32 N20: 25.30 25.40 28.10 18.41 30.59 24.72 25.77 18.84 25.98 F020, 0.41 0.46 2.06 0.47 0.43 0.39 0. 43 0. 43 0. 47 0.37 0.59 1.32 0.51 0.77 0. 53 0. 34 0. 37 0. 46 0. 79 0.41 0.37 1.19 0. 46 0. 41 0. 38 0. 82 0.75 1.03 0.92 0. 79 0. 54 0. 59 0.45 0.84 F020, 0.31 0. 34 0. 37 3.63 1.33 0.30 0.33 1.89 0.46 54 680 10.40 10.83 2.60 9.95 11.18 9.57 9.78 12.51 9.92 9.30 12.76 4.79 18.90 18.82 14.47 10.00 8.83 10.68 11.35 10.55 6.48 5.31 9.38 10.15 10.98 17.59 17.71 13.39 16.00 13.46 7.75 12.35 11.77 13.41 080 7. 26 7. 09 6.98 5. 34 13.98 6.28 7.39 3.62 7.98 N820 5.51 5.16 2.13 5. 72 5. 22 6.03 5.92 4.41 5. 67 6. 04 4. 07 4.19 0.73 1.04 3. 36 5. 69 6.16 5.16 4.42 5.24 6.21 4.79 5.90 5. 44 5.19 1.41 1.33 3.56 2.34 3. 66 6. 43 4.30 4.78 3.80 7. 04 7.17 7.49 3.49 3. 23 7. 64 7.10 5.39 6.56 K20 0.17 0.17 2.28 0.19 0.11 0.19 0.18 0.12 0. 22 0.20 0.07 1.45 0. 06 0. 01 0.13 0.20 0.27 0.16 0.19 0.16 0.21 1.19 0.20 0.13 0.15 0. 00 0. 03 0. 09 0. 00 0.11 0. 22 0.10 0.13 0.09 K20 0.39 0.29 0.42 2.49 0.1 1 0.41 0.39 2.02 0.37 Total 100.22 100.28 95.91 100.85 101.25 99.84 100.91 100.28 100.16 100.57 100.24 99.53 100.37 100.79 100.32 100.35 99.88 99.51 97.33 98. 59 98.36 98.28 98.96 97. 46 98.92 99.31 99.02 98.80 98.44 98.14 95.50 99.23 99.55 99.40 Total 99.49 99.57 101.69 94.76 99.38 99.74 100.83 100.43 98.60 An 96 53.16 28.39 48.48 53.88 46.23 47. 24 60. 64 48.52 45.44 63.13 33.96 93.16 90. 86 69. 90 48.70 43.51 52.84 57.96 52.17 42.44 34.51 46.20 50.38 53.41 87.36 87.89 67.16 79. 05 66.60 39. 43 61.00 57.21 65.74 54.22 An 96 33.18 36.53 70.03 30.50 35.69 22.95 39.34 37.37 25.61 Table 3 continued Plagioclase Analysis Monte Galan Ash-flow Sheet Sample Si02 020620-Oa-c1-p1-lnt 57.67 020620-88-c1-p1-r 63.81 020620-6ac4—p1-c 54.05 020620-68-84-p1-int 58.62 020620-6a«c4-p1-r 65.29 Las Sierras Ash-flow Sheett Sample Si02 020620-3a-c3-p1-c 61.26 020620-36-c3-p1-r 60.47 020620-38-04-p2-c 57.28 020620-3a-c4-p2-r 59.59 0206203a-p1-c 60.51 0208203a-p1-Int 61.09 020620-30-p1-r 58.89 020620-6b-c1-pZ-c 48.39 020620-6b-c1-p24nt 53.13 020620-6b-c1-p2-r 54.07 020620-68—02-91-0 49.97 020620-65-c2-p1-1nt 54.42 020620-60-cZ-p1-r 58.20 San Rafael Ash-flow Sheet 020619-1F-c1-p1-c 54.87 020619-1F-c1-p1-lnt 56.68 020619-1F-c1-p1-l' 66.29 020619-1F-c2-p1-c 59.21 020619-1F-c2-p1-lnt 57.26 020619-1qu1-7 57.65 020619-1F-c3-p1-c 57.71 020619-1F-c3-p1-r 56.62 020619-1l1-c1-p1-c 56.70 020619-1h-c1-p1-int 55.83 020619-1h-c1-p1-r 55.09 020619-1h-62-p1-c 57.06 020619-1h-c2-p1-r 57.88 Ostocal Ash-flow Sheet Sample 020624-1c-c1-p1-c 020624—1c-c1-p1-int 020624-1c-c1-p1-r 020624-16-c3-p1-c 020624-1 c-c3-p1 -int 020624—1c-c3-p1-r 8102 57.96 56.27 55.23 54.53 54.62 57.68 N203 25.54 18.28 26.62 26.47 17.26 ~an 23.98 24.83 27.00 25.49 24.28 24.17 25.04 32.69 29.42 28.82 31.33 28.70 27.12 N20: 26. 70 26.96 14. 00 25.36 27.14 28.21 25.96 26.95 26.87 27.09 26.19 26.68 19.01 A120, 25.45 26.52 26.46 27.63 27.80 25.63 F8203 0.41 1 .53 0.44 0.39 1 .72 F620; 0.31 0.36 0.36 0.33 0.29 0.29 0.29 0.76 0.69 0. 41 0. 46 0. 40 0.47 F9203 0.51 0.53 6. 59 0. 46 0. 53 0. 53 0. 66 0. 60 0.45 0.53 0.53 0.57 5.50 F8203 0. 38 0. 42 0. 43 0. 44 0. 41 1.05 55 080 7.57 3.91 11.18 8.80 3.64 (:60 5.72 6. 45 8. 94 7. 40 6.37 5.97 7.15 16.16 12.41 11.77 14.72 11.21 8.87 C80 11 .01 9. 44 3. 02 7.51 9.26 8. 84 8. 51 9.32 8.77 9.17 8. 94 9. 05 6.94 080 7. 54 8. 62 8. 96 10. 03 10.34 8.32 N320 8.79 5.19 5.07 8.31 4.70 N820 7.98 7.55 6.16 7. 00 7. 66 7. 74 7.09 2.36 4. 26 4. 81 3.15 5.05 6.32 N820 5.03 5.86 3. 68 6. 78 5.92 6.27 6. 31 5. 84 6. 24 5. 90 5. 94 6.13 4.16 N820 6.79 6.11 5. 99 5. 58 5. 49 5.86 K20 0.35 1.66 0.16 0.20 1.75 K20 0.55 0.49 0.35 0. 43 0 48 0. 53 0.37 0.06 0.12 0.10 0. 08 0. 16 0.20 K20 0.17 0.31 2.52 0.40 0.30 0.31 0.33 0.26 0.30 0.25 0.27 0.26 1.04 K20 0.31 0.25 0.16 0.17 0.15 0.39 Total 98.32 94.37 99.71 98.79 94.36 Total 99.81 100.15 100.07 100.24 99.59 99.79 98.82 100.41 100.03 99.98 99. 71 99.94 101.19 Total 100.29 99.82 96.10 99.72 100.41 99.81 99.49 99.60 99.32 98.77 96.95 99.95 94.52 Total 98.41 98.20 97.24 98.39 98.82 98.93 An “lo 54.42 43.00 25.60 76.79 82.54 An % 27.48 31.16 43.61 35.97 30.62 28.99 35.01 78.83 61.25 57.15 71. 71 54.56 43.16 An 96 46.23 23.84 37.09 45.56 43.01 41.89 46.11 42.96 45.50 44.27 44.18 39.59 38.50 An % 37.34 43.16 44.82 49.31 50.55 42.91 6I4s4 Table 3 continued Plagioclase Analysis Ostocal Ash-flow Sheet Sample 020624-1l-c1-mp1-c 020624-11-ct-mp1-r 020624-1l-c1-p1-c 0206244 i-c1-p1-int 020624-1 l-c1 -p1 4’ 0206244 i-c3-p1 -c 020624-1 i-c3-p1 -int 020624-1 i-c3-p1 -r 020624—2c-c1-p1-c 020624-2c-c1-p1-r 020624-2c-c1-pZ-c 020624-2c-c1-pZ-r 020624-2c-c3-p1-c 020624-2c-c3-p1-lnt 020624-2c-c3-p1-r Coyol Ash-flow Sheet Sample 020622-1e-c3-p1-c 020622-1e-c3-p1-lnt 020622-1e-c3-p1-r 020622-1e-c4-p1-c 020622-1e-c4-p1-lnt 020622-1e-c4-p1-r 020622-2c-c1-mp1-c 020622-2c-c1-mp1-ln1 020622-2c-c1-mp1-r 020622-2c-c2-p1-c 020622-2c-c2-p1-lnt 020622—2c-c2-p1-r 020622-2c-c4-p1-c 020622-2c-c4-p1-int 020622-2c-c4-p1-r Si02 56.53 55.76 55.40 57.28 56.73 55.09 57.23 56.37 56.39 55.85 59.83 56.98 59.42 57.05 57.63 Si02 57.32 57.50 57.20 52.16 52.37 51.96 56.79 56.56 56.09 57.11 58.79 57.95 57.60 57.37 57.75 AI203 24.89 27.26 27.92 26.71 27.25 27.77 26.27 26.97 25.77 27.97 20.16 26.68 25.43 27.23 26.53 “203 25.93 25.98 26.19 28.77 28.89 29.31 26.53 26.59 25.45 26.70 27.19 25.94 26.51 26. 64 26.49 F8203 2.07 0.58 0. 41 0. 38 0. 40 0.42 0.39 0.55 1.90 0.77 8.28 0.81 0.41 0.39 0.44 F0203 0.47 0.42 0.41 1.14 1.19 1.08 0.67 0.70 1.52 0.56 0. 56 0. 43 0.39 0.63 0.46 56 080 8.54 9. 56 10.10 8.61 9.11 9.83 8. 33 9. 22 9. 81 10.54 7.35 9.79 7.74 9.51 8.74 CaO 8.01 7.699 7.88 12.48 11.85 12.54 8. 88 9. 05 8. 83 9. 00 9. 74 8.27 8.63 8.45 8.40 N820 5.38 5.73 5.51 6. 24 6. 26 5. 42 6. 29 5. 91 5.57 5.65 5.32 5.65 6.93 5.97 6.11 M20 6.23 6.32 6.33 4.01 4.11 4.08 5.78 5.77 5.51 5. 98 5. 84 6. 35 5.96 6. 04 6.11 K20 0.37 0.24 0.17 0.25 0.26 0.16 0.29 0.21 0.16 0.19 0.33 0.23 0. 31 0. 22 0. 24 K20 0.60 0.71 0.76 0.44 0. 44 0. 40 0.58 0.63 0. 55 0. 64 0. 59 0.65 0. 70 0. 66 0. 72 Total 97.77 99.13 99.51 99.44 100. 02 98.72 98.80 99.23 99.59 100. 97 99.26 100.15 100.25 100.37 99.69 Total 98.77 98.62 98.76 99.01 98.85 99.38 99.24 99.29 97.95 99.99 100. 71 99.59 99.79 99.79 99.93 An 96 45.61 47.30 49.83 42.63 43.86 49.50 41 .55 45.72 48.87 42.30 48.28 37.47 46.24 43.55 50.53 An 96 38.93 61.60 59.81 61 .50 44.34 44. 73 45.36 43.70 46.37 40.27 42.64 41.90 41.34 . 35.50 34.75 Table 3 continued Plagioclase Analysis Las Made!“ Ash-flow Sheet Sample Si02 020622-4e-c1-p1-c 57.89 0206224e-c1-p1-int 57.55 020622-Ae-c1-pt-r 56.66 0206224e-c2-p1-c 56.35 0206224e-cZ-p1 4nt 55.1 9 02062246-c2-p1-r 52.14 0206225-c1-p1-c 54.59 0206225-c1-p1-lnt 60.36 0206225-c1-p1-r 63.44 0206225-c2-p1-c 58.97 02082264221114 57.39 0206225-c3-p1-c 53.58 020622-5-c3-p1-lnt 53.07 020622-5-c3-p1-r 56.71 0206225-c5-p1-c 54.48 020622-5-c5-p1-r 61.54 020622-5-cS-p2-c 52.73 020622-5-cs-p2-r 55.42 020622-5-c6-p1-c 56.81 0206226-c6-p1-lnt 57.73 020622-5-c6-p1-r 56.71 AI203 26.01 25.41 26.39 27.30 27.97 29.70 28.44 24.17 22.45 26.27 26.83 29.48 30.03 27.51 28.33 24.96 29.52 27.83 27.29 26.81 27.44 F8203 0.37 0.38 0.39 0.50 0.82 0.74 0.77 0.94 0.84 0.48 0.59 0.58 0.71 0.51 1.27 0.90 1.04 1.32 0.54 0.40 0.51 57 080 7.53 7.35 8.33 9.26 10.12 12.69 11.00 8.21 5.89 7.95 9.16 11.84 12.41 9.68 11.42 6.21 12.86 10.61 9.37 8.87 9.56 N820 8.53 8.42 8.10 5.78 5.24 4.22 4.91 5.43 8.50 8.48 5.94 4.50 4.21 5.90 4.91 7.70 4.11 5.19 5.77 8.11 5.85 K20 0.83 0.85 0.67 0.60 0.46 0.24 0.34 0.83 0.94 0.57 0.40 0.31 0.23 0.42 0.25 0.87 0.16 0.37 0.46 0.49 0.47 Total 99.16 97.94 98.55 99.78 99.59 99.72 100.04 99.95 100.06 100.67 100.32 100.27 100.66 100.74 100.66 101.99 100.44 100.74 100.24 100.42 100.33 An % 37.06 36.77 41.30 45.40 50.22 61.60 54.23 43.15 31.39 39.14 44.94 58.15 61.16 46.40 55.43 29.66 62.68 51.88 46.05 43.25 46.99 8.2. 8. z. 5.2. 8.8 .35. nNKo «0.3. 00. Z. to: 00.3 00.: 3.00 00.50 0N.mm 00.3 to: 0.208 3N0 00.nv 0N0 .30; 00.00 00.00 No.00 $25 «0.0 050 3&0 00.00 m .00 00.0 $0; 0*. .0? 00. 3.. 00. ..0.. 00.00 00.00 v .. .00.. 00.50 .30... 00.02 «0.3.. 00. .0? 0v. 3.. v...N0.. 00. 5.. .30h 8.0 8... 8... 8... 082 8... 8... «No of: 0.0.0 00.0 5.0 ..N.0 00.0 00.0 0.462 00.0 .. PN. ..N 00; «10.. 000 00.x... 00.0? of: 08 N06 2.3 0.4.0? .....0F 08¢ h... ..N 060 2.: 8.2 8. a 8.2 oz... 2.2 8.2 8. 2 ca... 8.2 8.2 8.2 8. 2 8.2 8.2 ca... 3.0 00.0 00. .. 0N0 0...! 00.0 50.0 05.0 0...: 50; 00.0 080 00.0 00% ..0.0 0:: 3.2 8.8 8.8 8.2 .08“. 8.2 5. F 2 8.: .08“. 8.8 8.2 8.2 8.2 8.8 3.8 .08“. 00.0 00.0 3.0 9.0 0.... 3.0 00.0 5.0 0.... N...0 00... 00.? ..n.0 0.0 00.0 0.... 8. . 8. F 88 8.» no"? 00... mad ....... 00“: 00.0 «0.0 00.0 m0é 520 end 00«.< 8.8 238.9888 3.8 . 388.888 8.8 238.388.. 8.8 «3.38.6388: «0.8 can...» 82.» 26.2.2 888.2 8.. 8.8 «3.8.2-888 2.8 833.828.82-888 8.8 8533.38.89.88": «0..» 6.85.8 82.8 26......2 .260 2.8 $339888 88 830.8888 8.8 «8.8.8.888 88 «8.8.8888 8.8 . $823888 2.8 88.3.3882 No.» 8.95» 32.0 Boa-:2 .8080 «32.22 2.6.8.5.... 8:528 a 03.... 58 00.00 05.«0 Es. 00.05 00.05 ..«.50 00.00 00. ..0 0«.50 00.00 v0.«0 00.00 ...0: 8.8 8.2 3.55 5065 0065 00.05 00.00 00.00 00.05 « ...05 002 0800 00.00 30.5 «0.«v 50.01 00.« 05.« «0.3 3.0 3.0 0«.0? 0«. 3 30; 5F. F? $02. 05.0% 05.0% 00.«v 00.«0 50... 00.« 00.«* F0.«v 000.5 00. ..0.. ..0.00 .30... 50. ..0.. ..0. ..0.. 00.«0.. 00. For 00.00.. 00.002 0«.?0.. 00. For 00.00.. .80... 00.00 F .50... 05.00 00.00 #0. ..0.. v0.00? 00.«0? 0...00.. 00. ..0F «.00? .50h 88 28 082 88 ..«8 88 88 88 88 88 88 88 032 88 082 «0.0 00.0 00.0 #00 ..0.0 ..0.0 00.0 00.0 0«02 0...0? 00.0« 000 we. ..« 00. ..« 0?... 00... 00.0« 00... 50... 00.0.. 00.0? 000 «5.0.. 000 0*. « v5.0« 0«.0« 50.0 0... .. 00.0« 00.0« 00.0 000 8.2 8.2 ca... 8.2 2.2 8.8 2.8 8.: 8.2 8.8 8. 2 8. 2 ca... 8.2 08... 55.3 0.3. ..0.0.. «0.«« 00.«« 0«.0 .. 10.0.. 00.02 002 «0.0 «.0 0:: 00.0 00.0 v«... 0... .. 0«.0 05. w «0. w 0«.0 5«.0 0:5. 50.0 002 0.0 ..0.0 00.0 00% #0... 05.0 «0.0 05... 0:2 8.2 88 .08.. 88 88 8.8 2.8 8.2 8.8 2.8 8.2 8.2 .08". 88 2 .08.. 88 88 8. 2 8.8 8.8 88 88 8.8 no"... 00.0 0«.0 0.... 0 2.0 « 2.0 0 ...0 0«.0 00. .. ««.0 0V0 00. w 0«.« 0.... 0«.0 0.... 0«.0 0«.0 00. F 0 2.0 0...0 ««.0 0«.0 0«.0 0.... 8. 2 88 «on... «0.0 00.0 #0... 3.« «0.0 580 58.... 01.0 00.5 00«.< 88 no“... 0«.F 0«.? 05.0 02.2 00.0 00.2 *0.— 50.0 00«.< 8.8 28 N0....“ 8.8 8.8 8.8 3. 8 8.8 8. 8 8. 8 8.8 8.8 «o.» 2.. 8 N0... 0«. ..0 0v. .0 0 ...0v 00.«0 0«.00 00. ..0 00.«0 0100 «0.0 «x900... To Sou... 2.0.00... Va 58.. 0.950 «02.0 Soc-:2 .053. :00 «8.3.8.888 28.8.8888 28.8.8888 8.8.8.888 8.8.888 88498888 88.3.8888 «8.8.8.888 «8.8.8.888 0.9.80 82.» 328...: 88.8 8.. 2x9u9ufio«3«o 0.8.580 82.0 300...: 5.80 8:22 88.8.8288 8.3.8.288 28.8.88 88 «8.8.8.288 2.8.8.8288 8.» 8.2-288 88.3.2288 8492-288 8.950 828 38.2.2 2.22 0.2.3.? 2.8.2.... 00:52.3 0 038... 59 Table 4: Four possible cases during stage 3 in Figure 27 (see Figure 28 for cartoon) Possible Scenario at stage 3 Evidences Representative Ash-flow Sheet Case A: ascent of both silicic - eruption of both silicic and mafic Apoyo Unit and mafic magma without pumice fragments in a single ash- mingling flow sheet Case B: mafic magma - presence of mafic enclaves Las Maderas and intrudes ponded silicic magma - calcic plagioclase rims Ostocal Units at the chamber and/or during - with matrix glass more mafic ascent than whole pumice fragment (low Si02 With low K20 and high MgO wt %). Case C: silicic magmas - abrupt shifts of plagioclase Las Sierras Unit intrude pockets of ponded composition from a more calcic mafic magma core to a sodic rim - glass composition in terms of San Rafael, Coyol, Si02 and K20 content is similar to Monte Galan the whole pumice fragment with distinct compositional gap Case D: evolving intermediate - normal zonation in plagioclase Any unit magma that is continuously Elenished from the source - no mafic enclaves 6O APPENDIX B Figures 61 .Amoomv .3 6 howom Soc BEBE aaE dzwgfiz coca: Sci 880 he 28 83:33 38058 .585 E flung: 63 252.5 grog 35:00 2: mac? 388.9» 358.30 68952 3355 v2 “300% Boas?“ Subway N. 05 «o 5:32 wEEEam E8052 8.85 ”88 >95 we n52 A onE >>.mm >>Rw 62 2b— .S: . . , mmuzocoI .. 10"," Em..,co_mao .y ,l. 3 $531 323:. macaw... .x 33.90 23>... 963303.! 3835?: 206992306 Eb : :Euxfio. r .3236 2mm.m m 9:490 33., an. Sass 94.90 u 2a: 5.4;. 3380 «6&6 03392.5 :23. 331.5); A .8532 3 €2-94 .830 HAOMrOU .38me H€00.50 4an §mUOm< “29:0 up. 5 38% Bowing Eflobfi h 05 me 8:82 main—am .N 059m a ...”.x in! .6) ._ r ...—end. ~.‘ x . " .II ' y: . ‘ v , . l _ I. Figure 6. (A) Corroded plagioclase cores observed in Las Maderas unit (020622-5). (B) Melt inclusions found in plagioclase phenocryst San Rafael unit (020619-10. 67 Figure 7. Phenocrysts of clinopyroxene and orthopyroxene (Apoyo unit, 020617-2c). Distinction between these 2 pyroxenes is difficult from petrography alone. 68 Figure 8. Banded pumice fragment observed under the microscope (Apoyo unit, 020618-5a). 69 " - '- - ,"v r - . Va u hound .va- l4 an annual...” A ~JJ¢I) .4 - -, (vi-u x ’ . if Figure 9. Mafic enclave within a silicic pumice fiagment (Las Maderas 020622-5). (A) under plane polarized light and (B) under crossed polars. The phenocrysts content of the enclave are the same as the host pumice but are smaller in size. 70 Figure 10. Intrusive-like feature of Fe-Ti oxide within an enclave into the silicic glass host (Ostocal unit, 0206 24-20). 71 Figure 11. Dove-tail texture observed in plagioclase crystals within the enclave indicating quenched crystallization (Ostocal unit, 020624-2c). 72 62.. 2:59» :62 8 Bum—«Eco: noon 0%: c883 8389. =< .U 853284 .6. .930 . O 3035 . la, .33 5m .4 93.5% 3 .x 530 3.82 .0323 ”322 E238 5 83% 26:53 BNEwooB :38 05 Eat agape £82. no 693: .3 .0 amen ac 83% Susanna 92. d 2%: mm N9m mu o» no em mm on me ow I_..:_:::_::____:_:___fi: :_ ____._l .33 I 55 I H . .mmmmMmogmmmm H I gawk. -fioummv I W. . _ «.... u u Hesse”. 25.0“. H I oxfimmmm I I $655. I TI:__::__:_:____:::vbb—ZZZZZI w or we 3. or of +062 73 "7F¢2°: Illllllll 9 o so 65 7o 75 75 Bio; Figure 13. Major element variation against Si02 (wt. %) among ash-flow units in Nicaragua~ ApoyoO, Monte Galena , Las Sierras A, San Rafael * , Ostocal O , Coyol 5') , Las Maderas (:1. Filled area represents trend for low Ti02 Quaternary Nicaraguan lavas. 74 Las Sierras 12' 8 'Nazs 4 .moan=70.16 std dev=0.99 o 0) Frequency A Frequency N=12 ‘ mean=64.03 std dev=1.27 A San Rafael Coyol _ N=8 moan=67. 1 8 std dev=1.26 2 0 12 _ Ostocal . Monte Galan ' I 8 I- a 4 ' N=12 . N=11 . mean=67.15 - moan=70.18 1 std dev=0.54 std dov=0.76 0 I Apoyo 50 60 70 80 20 ' ' Si02 16 ' ‘ 8 . N=35 mean=67.78 4 rstd dev=0.67 O KOUODber Figure 14. SiO2 histogram of the seven silicic ash-flow sheets. Mean and stande deviation are for the high silica pumice fragments only. 75 .32: 5“@3582 E as. as oz .2 “Ema a 083 83 BE .D 8.022 v.3 ..n. E8 . o 3088 . u. .83 8m .4 3:05 3 .8 .58 882 .0 as? ..528 ~05 mam—Q, £35 Boas—ma 22% 05.8 nous—80:8 E0820 83H .2 Semi 6% «ca mu 9. mo om mm mu on we ow mm om 76 .D 3032 80 . .0 .38 . o 3850 . a. Beam 50 .4 seem as .x 5.6 282 .0 32$ .255 manna m3 ..825 .0.» .8305 8:56 26% flofio 55¢ :08 Sec 8.50% 03 :5 .208 8080.0 08.5 05 8 count? 2:: 327. 3005. Boning 05 we «88 me FOLD .38: Boeing :0>0m 06 mo 8:2 E0820 0080 me an“: 83:0 zoausaoa 033:an . 2 053m ad or w v N 0N <><><><><>“. 38022 E80500 00.3 00.8 was 82: <>00< .35.oowowofiusooowmoEmoszoflows“.GREENE»: 80¢ See 35. gsmfiaomz baa—080:0 06 00 5:05 0:8 PCB .32 mm: .93“? £0: 08950» RF .0022 £8022 2.80:2 05 E 00002030 A808 3.0 00 «:05 00 00:87. 008 FED 32 05: 3.30 0:0 35002 03 was: 520 .038 PCB 00 00.80800 03800.2 E 38.7. Bouému 22V. :38 05 .00 wow“ 02.30% .mm 0.59m FED ON mé o._‘ md od _ * — “mom—50> l l 32: #353000 gr 1 $ther 3 no 0 .. 982 l X 8» a J .500 8:02 I «SEE m3 I d. g I .3qu 5m . o o ‘30 - .395 l $.33 l .980 I D as EU I 3.532 23 I +§+ 1 33. 0:322 . _ . om< 030.20% 0ED 83 An% 80 T I I I I 1 60 7o -1 50 so . 40 An % 4o - 30 so A 20 l s 4 J. : J, 20 so a a a so so - so An % 40 ° 0 0 30 A § ‘ 4° 20 Ljas lMaLderlas l 1 l L 1 coyoll l l l L 1 L l 1 30 V U T I T T T 1 I T U 1 1 T I 1 I I I I l' U T 70 50 u o - l- 4 so 1* ° 5 _ 4 so An% 0 40 a . t o ‘ 40 l A 0 A «w so Ostocal I I Monte Galan 1 8 30::s:.4-r::,*"-' L+- 20 . o 20 40 so so 1,00 80 * core %dstance fromme core run 8 4 Figure 23. Plagioclase composition 0 . so ’5 . for all analyses With respect to a A o z - distance from the core for each 40 ‘ ° . 4 crystal in the pumice fragments of 2 q the seven ash-flow sheets. Each Apoyo . , . 20 ' . ' L ' . . symbol represent one plagioclase o 20 40 so so 100 - - - ' M v n core % n I "om me com um crystal analyzed thm the g1 e ash-flow umt. 84 .98ng xv 380. o .825 . d. .oflam cum .4 8:05 3 . Mm 530 2.82 .O 989w aces—mat 0283 20:? mo 88:8 NOE 953 25.. 3d.o¢.&£n we E350 22:92 .3. var— «05 ms on no om mm om d _ ON «M - u a m 1 On 0 0 <3 <1 GD 0 WWO 0 O 1 0.? l on o\oc< .. J 8 I x . 0 ion 85 om 3.2 8 . . .D 8332 m3 :9 380 0 38:0 .4. Eng 5m .4 seem a: . x 5.8 382 6&2? aw: 16 0mg 02? a 96: $85. Bomfima 205m 05 .«o moaoxoba vowing .mm mama ov co o 0.. am $03 on ov on 86 .U 3832 m3 , 0 3880 .4 3:08 93 . O 323 68393 8: 0.53 .8 x3 03: 8: cu was: 650 A 82 :3 B egocfixv c :28? “350 8.2on ocoxoba-m 05 mi? SE: 93.3. 28 .335 .3032 m3 .mabuE m3 .3 mohsfioafifl 33.330 .3 oSwE E: 33.52 22.5 4. 8m .. @ 1 com 2.8 AV 1 nun... 1 000—. 1 .1 AV. .. LI - 8: - «AV 4 89 / I .. 82 L — n [P L — — - OOVP (3°) eJmeJedurel 87 4.5 . 3.0 4.0 b Las Sierras g . 2.5 3.5 ' 2.0 K20 ‘ 15 K20 3.0 g ‘ 1.0 2.5 "' g ‘ 0.5 2.0 ‘ ‘ 0.0 65 60 65 70 7 - . . 7 s . Las Maderas Coyol e s - o . 5 4 " 4 m3 b 3 m 2 L 0 - 2 1 - i 1 O ‘ 0 50 55 60 65 70 3.0 i ' 1 r 5 . Monte Gal 25 Ostocal an ‘ 4 2.0 q 3 K2015 ' K20 1.0 ‘ 2 0.5 ~ ‘ 1 0.0 «1W. . i . 0 45 50 55 60 65 70 55 60 65 70 75 3.0 r r r m l Si02 2.5 ’ Apoyo 3} {3) Figure 27. Whole pumice fragment 2.0 . 8;; . and matrix glass (encircled areas) composition of the ash-flow sheets showmg distinct large composnional 1.0 ' 0 gap. Gray area represents mafic 0.5 '_ matrix glass, stippled area represents [0 _ _ - ‘ , silicic matrix glass, vertical pattern 0'050 55 60 65 70 75 represents mafic enclaves and SK) horizontal pattern represents melt inclusion in plagioclase. 88 21) 2!) Las Sierras ‘L5 P ' *‘L5 “'90 M90 10 L 1 1.0 22A 4 (15 P hiya {Elfin} ' 015 (10 4 ' 0!) 65 70 75 70 5 r r v 4 Ni Las Maderas 4 P 1 MN 1 3 3 P M90 :1 4 2 M90 2 b I a [J 3 J 1 ‘ J ° 0 ,7 in r . . . “ o 50 55 60 65 70 50 55 60 65 70 75 15 b r 1 v w v r . 1.5 12 :m » Ostocal Monte Galan p . 9 I in“ x " J 1'0 Moo Z in M90 6 : . ‘lflm - 0.5 3 l 0 A 0 ’ r r, . .‘EgTD . . 0‘) 45 50 55 60 55 7o 55 so 65 7o 75 ' 6 7 1 ' ' T SK); 5 Lo Apoyo 1 4 1 Figure 28. MgO vs Si02 of the M903 _ © 4 whole pumice fragment and 4 matrix glass (encircled areas) of 2 . E the ash-flow sheets. Symbols 1 ' E33 ' same as Figure 27. o ...... £79 SK); 50 55 60 65 70 75 80 89 data—axe Sm i8 com .038 8 8: mm 5:08-380 3885 5 $85 Bowing 20:8 05 mo £35» 2.: 15m .082 .3 vii 0:58 can: ® _ .. .1 ()))))(((( .538 858 £52 t gs. inflow 8 8: 5:03-880: .{(,))\((((I . (12(5) .. s .. ) . 59:0 .032 .5th 8.58 «Ema—a 0.55m u , . . ....2.-(7‘.v.o\0’\2‘ .. . . (§;\((((((((:((,))\(((((<((. amazon? Egg 8 BE .msfiwafi 305m @ v.8 own:— uo mam—mag mgO .. mac—On 5 5.8353256 52 a; . ... m2 A] VT Jr'— 3m 5.85 38.5 568509 can—mane? .cozacaaxo no.“ 5on 8m SN onE E m owsm 9:56 85:09. 0538 v 930.5% .5330 .om oBmE \./ir1.i--:.. . p I; “cw/pgno «gnaw. it 1 i i 1 d: I 1/ “ban—r5 4&2». III . \\ ill, 4 5 4-- i ‘\ I'll- .I“ 91 .383 .3 a 2255th Ea 88$ .3 5 €55 52. 5% 552 580 3.5 8A N99 585 Boaéma :33 5.80 088 53> scam—8&8 E 33% Boga—ma 3832 8m 2:sz m> 2.555 .3” 0.59m 2.438 o.~ od 3 3 3 0.0 o . m 4 o I I — l OP 1 L ... u 1 OF r 4 r n L 23}; om .. . u . $33.. I L W m J on . . u i on 1. T u 1 ow t . . ow 92 REFERENCES 93 References Alvarado, G.E., and Carr, M.J., 1993. The Platanar-Aquas Zarcas volcanic centers, Costa Rica: spatial-temporal association of Quaternary calc-alkaline and alkaline volcanism. Bull. Volcanol. 55: 443-453. Anderson, A.T. Jr., 1984. Probable relations between plagiocalse zoning and magma dynamics, Fuego volcavo, Guatemala. Am. Mineral. 69: 660-676. Andersen, D.J., Lindsley, DH. and Davidson, PM, 1993. QUILF: A pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Computers and Geosci. 19: 1333-1350. Annen, C. and Sparks, R.S.J., 2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet. Sci. Lett. 203: 937-955. Bacon, CR. and Druitt, TH, 1988. Compositional evolution of the zoned calc-alkaline magma chamber of Mt. Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol. 98: 224-256. Baker, RH, and McBirney, A.R., 1985. Liquid fractionation Part III: geochemistry of zoned magmas and the compositional effects of liquid fractionation. J. Volcanol. Geotherm. Res. 24: 55-81. Beard, J .S., and Lofgren, G.E., 1991. Dehydratioin melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1,3,and 6.9 kPa. J. Petrol. 32: 365-401. Bergantz, G.W., 1989. Underplating and partial melting: implications for melt generation and extraction. Science 245: 1093-1095. Bourgois, 1., Azema, J., Baumgartner, P.O., Tournon, J., Desmet, A., Aubouin, J., 1984. The geologic history of the Caribbean-Cocos plate boundary with special reference to the Nicoya complex (Costa Rica) and DSDP results (Legs 67 and 84 off Guatemala): a synthesis. Tectonophys. 108: 1-32. Brophy, J.G., Whittington, CS, and Young-Rok, P., 1999. Sector-zoned augite megacrysts in Aleutian high alumina basalts: implications for the conditions of basalt crystallization and generation of calc-alkaline series magmas. Contrib. Min. Petrol. 135: 277-290. Burbach, G.V., Frohlich, C., Pennington, W.D., Matumoto, T., 1984. Seismicity and tectonics of the subducted Cocos plate. J. Geophys. Res. 89: 7719-7735. 94 Carr, M.J., Feigebson, M.D., Benett, EA, 1990. Incompatible element and isotopic evidences for tectonic control of source mixing and melt extraction along the Central American arc. Contrib. Mineral. Petrol. 105 (4): 369-380. Cigolini, C., and Chaves, R., 1986. Geological, petrological and metallogenic characteristics of the Costa Rican gold belt: contribution to new explorations. Geol. Rundsch. 75: 737-754. Criss, J .W., 1980. Fundamental parameters calculations on a laboratory microcomputer, advances in X-ray analysis. 22223 293-97. DeMets, G., Gordon, RG., Argus, D.f., Stein, 8., 1990. Current plate motions. Geophys. J. Int. 101: 425-478. Dengo, G., 1969. Problems of tectonic relations between Central America and the Caribbean. Trans. Gulf Coast Assoc Geol. Soc., 29: 311-320. Di Marco, G., Baumgartner, P.O., Channel, J.E.T., 1995. Late Cretaceous-Early Tertiary paleomagnetic data and a revised tectono-stratigraphic subdivision of Costa Rica and western Panama. Geol. Soc. Am. Spec. Pub]. 295: 1-27. de Silva, S.L., and Wolff, J .A., 1995. Zoned magma chambers: the influence of magma chamber geometry on sidewall convective fi'actionation. J. Volcanol. Geotherm. Res. 65:111-118. Ehrenborg, J ., 1996. A New stratigraphy of the Tertiary volcanic rocks of the Nicaraguan Highland, GSA Bull. 108 (7): 830-842. Eichelberger, J .C., 1978. Andesitic volcanism and crustal evolution. Nature, 275; p. 21- 27. Eichelberger, J .C., Chertkoff, D.G., Dreher, S.T., Nye, C.J., 2000. Magma collision: rethinking chemical zonation in silicic magmas. Geology 28: 603-606. Eichelberger , J .C. and Izbekov, PE, 2000. Eruption of andeisite triggered by dike injection: contrasting cases at Karymsky volcano, Kamchatka and Mount Katmai, Alaska. Philos Trans Roy Soc 358 (1770): 1465-1485. Elming, S.A., Layer, P., Ubieta, K., 2001 . A paleomagnetic study and age determination of Tertiary rocks in Nicaragua, Central America. Geophys. J. Int. 147: 294-309. Escalante, G., 1990. The geology of southern Central America and western Colombia, in Dengo, G., and Case, J.E., eds., The Caribbean region: Boulder. Coloradg, Geological Society of America. The Geology of North America, v. H, 201-230. 95 Feely, TC. and Davidson, MA, 1994. Petrology of calc-alkaline lavas at Volcan Ollague and the origin of compositional diversity at central Andean stratovolcanoes. J. Petrol. 35: 1295-1340. Ginibre, C., Worner, G., Kronz, A., 2002. Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contrib. Mineral. Petrol. 143 (3): 300-315 ' Grove, T.L., Donnelly-Nolan, J .M., Housh, T., 1997. Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California. Contrib. Mineral. Petrol. 127: 205- 223. Halama, R., Waight, T., Markl, G., 2002. Geochemical and isotopic zoning patterns of plagioclase megacrysts in gabbroic dykes from the Gardar Province, South Greenland: implications for crystallisation processes in anorthositic magmas. Contrib. Mineral. Petrol.144(1): 109-127. Hannah, RS, 2002. Origin of the chemical variation in the Valle Central tuff,Costa Rica. M. Sc. Thesis, Michigan State University, East Lansing, MI. Hauff, F ., Hoernle, K., Schmincke, H.U., Werner, K, 1997. A mid-Cretaceous origin for the Galapagos hotspot: volcanological, petrological, and geochemical evidence from Costa Rican oceanic crustal segments. Geol. Rundsch. 84: 141-155. Hauff, F., Hoernle, K., van den Bogaard, P., Alvarado, G., Garbe-Schonberg, D., 2000. Age and geochemistry of basaltic complexes in western Costa Rica: contributions to the geotectonic evolution of Central America. Geochem. Geophys. Geosys. 1, paper number 1999GC000020. Hildreth, W., and F ierstein, J ., 2000. Katmai volcanic cluster and the great eruption of 1912. Geol. Soc. Am. Bull. 112 (10): 1594-1620. Kerr, AC, Tarney, J ., Marriner, G.F., Nivia, A, Saunders, AD, 1997. The Caribbean- Colombia Cretaceous Igneous Province: the internal anatomy of an oceanic plateau. In Mahoney, J .J ., and Millard, C.F., eds. Large Igeous Provinces: Continental Oceanic and Planetary Flood Volcanism. Geophysical Monograph 100, 123-144. Kuritani, T., 1998. Boundary layer crystallization in a basaltic magma chamber: evidence from Rishiri volcano, northern Japan. J. Petrol. 39: 1619-1640. Kuritani, T., 2001. Replenishment of a mafic magma in a zoned felsic magma chamber beneath Rishiri volcano, Japan. Bull. Volc. 62: 533-548. Lyle, M., Dadey, K.A., Farell, J .W., 1995. The Late Miocene (11-8Ma) eastern Pacific carbonate crash: evidence for reorganization of deep-water circulation by the 96 closure of the Panama gateway. In Pisias, N.G., Mayer, L.A.: Proceedings of the Ocean Drilling Program, Scientific results, Vol. 138: College Station, Texas, Ocean Drilling Program, p. 821-838. Marsh, ED, 1984. Mechanics and energetics of magma formation and ascent. In Boyd. F.R. (ed.) Studies in geophysics, explosive volcanism: inception. evolution a_r_rd hazards. National Academy Press, Washington DC, pp. 67-83. McBirney, A.R. and Williams, H, 1965. Volcanic history of Nicaragua. Univ. California Publ. Geol. Sci. 55:1-65. McBirney, A.R., 1980. Mixing and unmixing in magmas. K. Volcanol. Geotherm. Res. 7: 357-371. McBirney, A.R., and Nielson,R.H., 1986. Reply to “Liquid collection in sidewall crystallization of magma: a comment on ‘liquid fractionation’ by Morse, S.A. J. Volcanol. Geotherm. Res. 30: 163-168. McBirney, A.R., Taylor, H.P., Armstrong, KL, 1987. Paricutin re-examined: a classic example of crustal assimilation in calc-alkaline magma. Contrib. Mineral. Petrol. 95: 4-20. Meschede, M., and Frisch, W., 1998. A plate-tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean Plate. Tectonics 296: 269-291. Mittlefehltd, D., and Miller, C .F., 1983. Geochemistry of the Sweetwater Wash pltuton, California: implications for “anomalous” trace element behavior during differentiation of felsic magmas. Geochem. Cosmochim. Acta 47: 109-124. Morris, J .D., Leeman, W.P., Tera, F., 1990. The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature 344: 31-36. Nakagawa, M., Wada, K., Thordarson, T., 1999. Petrologic investigations of the 1995 and 1996 eruptions of Ruapehu volcano, New Zealand: formation of discrete and small magma pockets and their intermittent discharge. Bull. Volcanol. 61 (1-2): 15-3 1 . Nakajima, K. and Arima, M., 1998. Melting experiments on hydrous low-K tholeiite: Implications for the genesis of tonalitic crust in the Izu-Bonin-Mariana arc. Island Arc 7 (3): 359-373. Nystrom, J.O., Levi, B., Skiold, T., Fallick, A.E., Darce, M., 1993. Cenozoic volcanism within the Nicaraguan geotraverse. Rev. Geol. Amer. Central 16: 107-111. Pallister, J.S., Hoblitt, R.P., Meeker, G.P., Knight, R.J., and Siems, DR, 1992. Magma mixing at Mount Pinatubo: petrographic and chemical evidence from the 1991 97 deposits. In Newhall, CG, and Punongbayan, R.S., eds. Fire and Mud: Eruptions and lahars of Mount Pinatubo, Philippines. Seattle: Univ. of Washington Press, 687-731. Patino, L.C., Carr, M.J., Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib. Mineral. Petrol. 138: 265-283. Petford, N. and Gallagher, K., 2001. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet. Sci. Lett. 193: 483-499. Pindell, J .L. and Barrett, SF, 1990. Geological evolution of the Caribbean region: a plate-tectonic perspective, in Dengo, G., and Case, J.E., eds., The Caribbean mu: Boulder. Colorado. Geologic—a] Society of America. The Geolng of North America, v. H, 405-432. Plank, T., Balzer, V., Carr, M., 2002. Nicaraguan volcanoes record paleoceanographic changes accompanying closure of the Panaman gateway. Geology 30 (12): 1087- 1090. Rapp, R.P. Watson, E.B., Miller, CF, 1991. Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalities. Precambrian Res. 51: 1-25. Rapp, RP. and Watson, EB, 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental grth and crust-mantle recycling. J. Petrol. 36: 891- 931. Roberts, MP, and Clemens, JD, 1993. Origin of high-potassium calc-alkaline, I-type granitoids. Geology 21: 825-828. Rogers, RD., Karason, H. van der Hilst. RD, 2002. Epeirogenic uplifi above a detached slab in northern Central America. Geol. 30: 1031-1034. Sawyer, E.W.,1994. Melt segregation in the continental crust. Geology 22: 1019-1022. Sen, C. and Dunn, T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib. Mineral. Petrol. 117: 394-409. Sigurdsson, H, Kelly, S., Leckie, R.M., Carey, S. N., Browning, J .M., Rogers, RD, 2000. History of Circum-Caribbean explosive volcanism: Ar/Ar dating of tephra layers. In Leckie, R.M., Sigurdsson, H, Acton, G.D., Draper, G., eds, Proceeding of the Ocean Drilling ProgLam. ScieLific Resulta, v. 165: 299-314. 98 Sinton, C.W., Duncan, R.A. Denyer, P., 1997. Nicoya Peninsula, Costa Rica: a single suite of Caribbean oceanic plateau magmas. J. Geophys. Res. 102 (B7): 15,507- 15,520. Sisson, T.W., and Grove, TL. 1993. Experimental investigations of the role of H20 in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol. 34: 143-166. Smith, I.E.M., Stewart, R.B., Price, RC, 2003. The petrology of a large intra-oceanic silicic eruption: the Sandy Bay Tephra, Kermadec Arc, Southwest Pacific. J. Volc. Geotherm. Res. 124: 173-194. Sparks, R.S.J., Sigurdsson, H., and Wilson, L., 1977. Magma mixing; a mechanism for triggering acid explosive eruptions. Nature, 267; p. 315-318. Stimac, 1A, Pearce, T.H, Donnnelly-Nolan, J .M., and Hearn, BC, 1990. The origin and implication of undercooled andesitic inclusions in rhyolites, Clear Lake, California. J. Geophy. Res., 95; p. 17,729-17,746. Sun, S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders, A.D., Norry, M.J. (eds) Magmatism in the ocean basins. Geol. Soc. Spec. Publ. 42: 313-345.s Sussman, D., 1985. Apoyo caldera, Nicaragua: a major Quaternary silicic eruptive center. J. Volc. Geotherm. Res. 24: 249-282. Snyder, D. and Tait, S., 1998. The imprint of basalt on the geochemistry of silicic magmas. Earth Planet. Sci. Lett. 160: 433-445. Szymanski, D.W., Patino, L.C., Vogel, T.A., Alvarado, G.E., 2002. Generation of Continental Crust in Central America: New Field and Geochemical Observations on Silicic Magmatism in Costa Rica. Eos Trans. AGU, 83(47), Fall Meet. Suppl, Abstract V12C-O9. Tamura, Y. and Tatsumi, Y., 2002. Remelting of an andesitic crust as a possible origin for rhyolite magma in oceanic arcs: an example from the Izu-Bonin arc. J. Petrol. 43: 1029-1047. Tatsumi, Y., 1986. Formation of the volcanic front in subduction zones. Geophys. Res. Lett. 13 (8): 717-720. Turner, J .S., and Gustafson, LB, 1981. Fluid motions and compositional gradients produced by crystallization or melting at vertical boundaries. J. Volcanol. Geotherm. Res. 1 1: 93-125. 99 Van Wyk de Vries, B., 1993. tectonics and magma evolution of Nicaraguan volcanic systems. Unpublished Ph.D. thesis, Department of Earth Sciences, The Open University, UK, 328 pp. Walther, C., Flueh, E.,Ranero, C, von Huene, R., Strauch, W., 2000. Crustal structure across the PAcific margin of Nicaragua: evidence for ophiolitic basement and a shallow mantle sliver. Geophysic Journal International 141: 759-777 Weinberg, RF, 1992. Neotectonic development of western Nicaragua. Tectonics 11: 1010-101 7. Wilson, D.S., 1996. Fastest known spreading on the Miocene Cocos-Pacific plate boundary. Geophys. Res. Lett. 23: 3003-3006. Wolf, MB. and Wyllie, RI, 1994. Dehydration melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib. Mineral. Petrol. 115: 360-3 83. 100 M IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 'Illrlllllgllllfll14mll ll! 5