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ABSTRACT
MODELING NON-CRYSTALLINE NETWORKS
By
MING LEI

In this thesis, the author reports the modeling of both the static and the dynamical
aspects of non-crystalline networks. Porous silicon and silica have attracted attention
recently due to their unusual photoelectronic properties. Porosity is central to these
striking properties which are not present in non-porous silicon and silica. We propose
an algorithm that is effective in building fully-coordinated amorphous networks that
are discontinuous in certain regions — that is, they contain large voids of mesoscopic
or macroscopic dimensions. Such networks can be both porous and amorphous, and
can also be finite in certain dimensions.

Voids of arbitrary shapes and sizes are first superimposed on a crystalline silicon
network. The atoms in the pore regions are removed. Local “defects” are created, then
eliminated, as pairs of them are brought together by a defect migration process. The
network is fully coordinated after the defect migration process. The Wooten Winer
Weaire (WWW) algorithm, is then applied to make the network amorphous. Oxygen
is inserted on every silicon-silicon bond to create a porous silica network. Silica
networks in the form of an amorphous fiber and an amorphous film are created by
this procedure. Distortions due to surface effects are investigated. The local atomic
arrangement in these discontinuous networks is similar to that in bulk amorphous
silica.

Covalent bond lengths and angles in amorphous networks do not vary much be-
cause of the high energies associated with bond length and angle distortions. There-
fore, they can be viewed as constraints that do not change with time in any significant

way. Proteins, viewed as another type of non-crystalline network, are glued together



by covalent bonds, hydrogen bonds, hydrophobic interactions, and other interactions.
The concentration of constraints in some regions of the proteins are so high that these
regions are rigid. The other regions are flexible. The flexible regions of protein can
exhibit large conformational changes. Protein functions and bio-activities are often
coupled with these conformational changes.

We have built an algorithm that samples protein conformations randomly. It is
called Rigidity Optimized Conformational Kinetics (ROCK). It is efficient, as it avoids
sampling conformations for the rigid regions of the proteins. The constraints in the
flexible regions of proteins inter-lock with each other to form complicated networks of
rings. ROCK closes all the rings simultaneously at every step of sampling the protein
conformations. It is the first algorithm that samples the protein conformations by
following the closure of all the rings in a complicated network. All the bond length and
angle constraints are exactly preserved in the conformations sampled by ROCK. Main
chain dihedral angles are restricted in the preferred regions of the Ramachandran plot.
The generated conformations have good stereo-chemistry properties.

ROCK samples a large scale conformational changes. Its capability is first demon-
strated on a model molecule with two degrees of freedom. The conformations sampled
by ROCK observes the same two symmetries which are present in the topology of the
molecule. A large scale motion is shown in the conformations of HIV-1 protease sam-
pled by ROCK. ROCK also samples conformational pathways between distinct con-
formations of proteins. Multiple conformational trajectories are explored by ROCK
between the closed, the occluded, and the open conformations of DHFR. Since ROCK
explores both the main chain flexibility and the side chain flexibility, it is a good tool

in the studies of protein-ligand interactions, ligand design, protein motions etc.
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Chapter 1: Introduction

Physics and geometry are “a marriage made in heaven”, as said by Sir Michael
Atiyah in his talk [1]. Geometry, which is a branch of mathematics, has been ex-
tensively utilized in the study of the physical world. Copernicus, for example, put
forward the heliocentric theory to replace the geocentric theory after pondering on
the geometrical properties of the observed planet orbits. Navigations from the middle
age till today all rely on calculations using geometry. Fractal geometry, which is a
newly invented branch in geometry, is the mathematical language of chaotic systems.
Geometry and mathematics are of the most important tools in theoretical physics
studies.

Complicated systems can of be too modeled using a few simple geometrical prin-
ciples. Graner [2] nicely reviewed comprehensive aspects of building fluid foam models
from geometrical considerations. Arns et al. [3] discuss how to build disordered ma-
terial models whose micro-structures obey particular geometrical requirements. Free
energy of the Langmuir mono-layer is examined by Losche and his co-worker [4] based
on an empirical Hamiltonian that accounts for the geometrical arrangement of micro-
structures of the layers. Many more examples can be listed. All of them address
certain properties of complicated materials from simple yet adequate geometrical
thinking.

This thesis shows two more examples of the application of geometry in condensed
matter physics. The first example is on the building of non-crystalline network models
with geometrical restrictions on bond length and angles. The second example is
about sampling conformations of non-crystalline networks. Conformations are spatial
arrangements of atoms whose bond lengths and angles are correct. Both of these
two examples show how to build complicated non-crystalline network models from

geometrical rules.



This chapter is an introduction of the thesis. It explains the motivations of our
research work. Chapter 2 discusses the algorithm to build non-crystalline networks,
the results of which are examined in Chapter 3. The similarities and differences be-
tween glassy networks and proteins are investigated in Chapter 4. Though they share
common characteristics, amorphous networks and proteins differ in that the former
do not have multiple dynamical conformations yet the latter do. A new approach
to sample protein conformations is elucidated in Chapter 5. Two applications of the
algorithm are shown in Chapter 6. Chapter 7 summarizes this thesis and re-iterate
how simple geometrical considerations can lead to complex non-crystalline network

models.

1.1 Static Models of Non-Crystalline Networks

Short range structures of amorphous networks are very similar to those in the
corresponding crystalline networks. For example, the bond lengths and angles of
silicon atoms in the amorphous silicon networks are almost the same as those in the
crystalline silicon networks. Those properties that rely on the short range structures,
such as the vacuum UV absorption spectra and the electronic density of states curves,
differ only in detail [5] between the amorphous and the crystalline networks. On the
other hand, amorphous networks are remarkably different from crystalline networks
in the characteristics related to the medium to long range order. For example the
X-ray or neutron diffraction of amorphous materials detect broad peaks while the
diffractions from crystalline materials show many fine sharp peaks. The modeling of

amorphous networks has long been an interesting topic in condensed matter physics.



1.1.1 Continuous Random Network Models

In the early 1930s. it was hyvpothesized that amorphous material are composed
of numerous micro-crystals. The orientations of the micro-crystals are not aligned so
that the long range order of the crystals is destroved. The X-ray powder diffraction
pattern of the models built upon this hypothesis does not fit with the experimen-
tal data. Zachariasen [6] proposed that the amorphous material is not made up of
micro-crystals. The atomic arrangement in an amorphous network does not have
symmetry and periodicity. However Zachariasen did not propose an algorithm to
build a continuous three-dimensional network which lacks symmetry and periodicity.

An amorphous network model that satisfies Zachariasen’s criteria is built by
hand by Bell and Dean [7, 8]. It is an amorphous silica model with 614 atoms. A
hand built amorphous silicon model containing 440 atoms was reported by Polk [9]
in 1971. Atomic coordinates in that model were detected by laser beams and saved
into a computer for analysis [10]. These hand built models have free surfaces. The
sizes of these models are limited in the order of tens of angstroms. Moreover, since
a large portion of the atoms are at or close to the surfaces, the number of atoms
that can be used to analyze the bulk properties of amorphous material is not large.
Henderson [11] built a periodic amorphous network model by hand. There are only
61 atoms in the supercell of the periodic model.

Computational modeling is the area that thrived since the early attempt [12]
when a periodic amorphous model with 54 atoms in the supercell was generated by
computer. The scalability problem hindered further development of the algorithm be-
hind the model. Guttman [13, 14] built amorphous network models in computers by
linking atoms randomly. A subsequent relaxation procedure reduces the distortions
of bond lengths and angles. Bonds are allowed to be switched in the relaxation pro-
cedure. The most successful algorithm today in building amorphous network models

is the WWW technique proposed by Wooten, Winer, and Weaire {15]. The details



of the algorithm are discussed in Chapter 2. Several other algorithms are suggested
thereafter, all of which are modifications of the original WWW technique. For ex-
ample the improvement by Barkema and Mousseau [16] makes the computational
modeling of device sized amorphous silicon models [17] with more than 10,000 atoms
possible.

The amorphous network models built by the WWW and other similar techniques
are called Continuous Random Network (CRN) models. By continuous it is meant
that the networks are infinite, without disruption in the distribution of atoms. By
random it is meant that the topology of an amorphous network model is different to
that in the corresponding crystalline network. The CRN models built by the WWW
algorithm match well with real amorphous silicon in terms of properties of electronic
states, X-ray diffraction and the pair distribution function (PDF). The success of
the WWW algorithm comes from the two geometrical principles in building CRN
networks that are the essence of amorphous networks. Atoms are maintained as fully-
coordinated. That is, all silicon and germanium atoms have four and exactly four
nearest neighbors, while all oxygen, sulfur and selenium atoms have two and exactly
two nearest neighbors. This principle originates from the preferred valences of these
elements in semi-conductors. The topology of a CRN model is different from that of a
crystalline network model. Randomly positioning atoms in a supercell will not create
a CRN model. The WWW technique is a trustworthy method in creating a network
whose topology is totally different from that of a crystalline network. The high quality
models built by the WWW algorithm prove how geometrical approaches benefit the
modeling of non-crystalline networks. As an example, we show in Section 3.4 how
to model the amorphous metal-adamantane network starting from an amorphous
gallium arsenide model. The powder diffraction pattern calculated from the model
matches well with that measured in experiment.

Molecular dynamics (MD) simulations coupled with empirical or semi-empirical



potentials have been used to build amorphous silicon network models since 1985.
Several empirical potentials have been invented and parameterized for the simulation
of amorphous silicon. The SW potential by Stillinger and Weber [18], the potential
invented by Biswas and Hamann [19], and the potential by Chelikowsky [20] are all
composed of a two-body interaction part and a three-body interaction part, the first
of which depicts the bond lengths vibrations while the latter of which describes the
bond bending vibrations. Though the potential of Tersoff [21] has only pair wise
interactions, the parameters in the interaction depend on the bond angles as well.
Therefore the three-body interaction is implicitly calculated in the Tersoff’s potential.
The semi-empirical potential by Baskes et al. [22] is more complicated in form. It is
supposed to be in good agreement with first principle calculations. The SW potential
is most widely used in MD simulations. Despite much effort, the empirical and the
semi-empirical potentials are not accurate on all phases of silicon. Furthermore, the
connectivity is not guaranteed. There are dangling bonds in the amorphous network
models built by MD simulations. Therefore MD is not the best way to generate
amorphous models as of today. Car and Parrinello [23] generated a small amorphous
silicon model of 54 atoms by first principle quantum mechanical calculations. The
calculation cost however forbids further application of such algorithms at present,
and the small size means that these models have serious strains due to the periodic

boundary conditions.

1.1.2 Discontinuous Networks

Discontinuities in atom distributions lead to intriguing and unexpected properties
that are not present in materials without discontinuities.

Porous silicon has application potential in harvesting solar energy. Canham et
al. [24] report that porous silicon is photo-luminescent. The average diameter of the

pores is about 13nm. The thickness of the silicon layers between the pores is on the



order of um, measured by X-ray diffraction experiments [25]. Quantum confinement
effects as well as the altered gaps between electronic states [26] are the causes of
the photoluminescence phenomenon. The silicon layers between the pores are largely
crystalline [27] rather than amorphous.

Porous silicon is bio-compatible and bio-degradable [28]. The body does not
reject organs made of porous silicon. Porous silicon has the potential to be the
platform of future biomedical implants and artificial organs.

Porous silica films are easy to fabricate. They have been used as chemical sen-
sors and sources of photoluminescence. Zhao et al. [29] produced silica films whose
porosities are between 51% and 75%. McDonagh et al. [30] applied sol-gel porous
silica films to sensor the oxygen. Both Cohen and his co-workers [31] and Dag et
al. [32] observe bright photoluminescence from the porous silica films containing nan-
oclusters of silicon. Amorphous silica films, though not porous, are photo-luminescent
as well. Yoshida et al. [33] have found blue photoluminescence from slightly silicon
doped amorphous silica films. The origin of the photoluminescence is believed to be
in the silicon nanocrystals.

The structures and surface properties of amorphous silica films have been studied
by a variety of techniques including electron diffraction [34], infrared spectroscopy [35],
scanning reflection electron microscopy [36], Raman spectroscopy [37], and NMR [38]
et al. Ab initio simulations [39, 40], MD simulations [41, 42], and Monte Carlo (MC)
simulations [43] have all been used to study either amorphous silica films or the surface
properties of amorphous silica.

All of these materials mentioned above are not continuous in the traditional
sense in that they are not microscopically homogeneous. Porous silicon and silica
contain virtually periodic voids that break the uniform distribution of the atoms over
space. Amorphous silica films are not continuous because of the discontinuity of atom

distributions over the surfaces.



Such discontinuities result in exciting and new material properties. Bulk silicon
and silica, either crvstalline or amorphous, are not photo-luminescent. On the other
hand, porous silicon, porous silica and thin silica filins all show photoluminescence
effects. Though the origin of photoluminescence in these materials is currently being
debated, it is almost certain that photo-luminescent characteristics in these materials
involve the discontinuity in the spatial arrangement of atoms.

Though algorithms to build CRN models such as the WWW technique have been
available for a long time, there is not vet a generic algorithm for building discontin-
uous random network (DCRN) models. Though the endeavor of building DCRN
models may seem to be unnecessary at the first glance because such materials as
amorphous porous silicon and amorphous porous silica are not much discussed in lit-
eratures yet, the author argues that these materials are not far fetched from being
manufactured, considering the facts that 1) porous silicon and silica are easy to fab-
ricate and 2) amorphous silicon and silica are stable. Since the porosity in crystalline
silicon and silica leads to new properties, the porosity in amorphous silicon and silica
is likely to bring exciting properties as well. The amorphous porous silicon models
provide the first glimpse of the likely structural properties of such materials. Though
not have been manufactured, the amorphous silicon film has been computationally
modeled by Monte Carlo simulations using empirical potential [44] and by ab initio
simulations [45]. The properties of amorphous silica films have also been examined,
as described above.

Local bond geometries in the DCRN models should be similar to those in the
crystalline networks. This requirement is the natural result of the strongly covalent
characteristics of the glass forming elements such as silicon, germanium, oxygen, sulfur
and selenium. The geometrical concepts which are the roots of the WWW algorithm
also serve as the foundations of our algorithm to build the DCRN models. Step by

step, Chapter 2 reveals the methodology to build the DCRN models.



1.2 Constraints and Flexibility Analysis

The empirical Keating potential is used in building DCRN models. The Keating
potential reaches its minimum values of zero when bond lengths and angles are of their
optimal values. The potential energy can be huge when distortions in bond lengths
and angles are large. When it costs an infinite amount of energy to distort bond
lengths and angles, every bond length and angle requirement is called a constraint.

At finite temperatures the atoms in non-crystalline networks are in constant
motions, due to the thermal fluctuation energy of kg7, in which kg and T are the
Boltzmann constant and the temperature respectivelv. The thermal fluctuation en-
ergy pushes the atoms so that they oscillate around the local potential minima. These
oscillatory motions do not change the averaged relative orientation between atoms,
not to mention the overall shapes of the networks. On the other hand, some non-
crystalline networks have predominantly internal motions. Proteins are such exam-
ples. The scale of the protein internal motions is large, for example the relative
distance between atoms in different conformations of HIV-1 protease can vary be-
tween 2.7A and 8.0A, shown in Section 6.2 in this thesis. These large scale motions
do not result from the thermal fluctuations of bond lengths and angles. Rather they
are caused by large thermal and ligand-induced fluctuations of the internal degrees
of freedom (DOF) in the network.

The concept of constraints simplifies the analysis of the internal large scale mo-
tions of the non-crystalline networks. When bond lengths and angles are treated as
constraints, the DOF of a network is simply the difference between the total number
of degrees of freedom and the total number of independent constraints, as explained
by Maxwell in 1864 [46]. The question of whether a non-crystalline network has large
scale internal motions is answered by the counting of the DOF. A positive DOF in a
network is correlated with the likelihood of large scale motions. Moreover, a network

shows large scale motions without breaking any constraints when it undergoes motion



by sampling the DOF.

However the Maxwell counting is not exact. A procedure called rigidity analysis
was first used by Jacobs et al. to count constraints in proteins, based on the pebble
game algorithm [47, 48]. Since what we care about here is the flexibility properties
of networks, the author uses the phrase flexibility analysis instead of rigidity analysis
throughout this thesis. When only bond length constraints are counted, or when both
bond length and bond angle constraints are counted, the DOF calculated by this pro-
cedure is exact for generic networks in 2D. Flexibility analysis is not exact for generic
networks in 3D when only bond length constraints are included. However under usual
conditions, though this has not been proven rigorously, its application to 3D networks
is exact when both bond length and bond angle constraints are counted [49, 50, 51].

Flexibility analysis identifies the regions in generic networks that have positive
numbers of DOF. These regions can have large scale internal motions that allow
big changes in the relative orientations between atoms and the overall shapes of the
networks. They are called the flexible regions. The other regions do not have large
scale motions, hence they are called the rigid regions. Negative DOF are associated
with over-constrained, or stressed regions of the network. Chapter 4 accounts for the

details of the flexibility analysis.

1.3 Sampling Conformations

It is one matter to distinguish the flexible regions from the rigid regions in net-
works, yet another topic to search the spatial arrangements of atoms under which
the bond lengths and angles obey all constraints. A spatial arrangement of atoms
is called a conformation if bond lengths and angles in such an atomic arrangement
observe the predefined constraints. In usual cases, one conformation is already ob-

tained from modeling, from X-ray or neutron diffraction experiments, or from NMR



experiments. The problem is to find other conformations that satisfv the same set of

constraints as the original one does.

1.3.1 Conformations of Proteins

Proteins, being non-crystalline and finite networks from a topological point of
view, have one or more rigid regions and several flexible regions. The rigid regions
of proteins serve as the stabilizing cores. At least one flexible region is typically
close to the catalytic site in every protein. The catalytic functions of proteins are
always coupled with conformational changes, either involving the side chain atoms
or involving both the side chain and the main chain atoms. The main chain and the
side chain of proteins are discussed in detail in Section 4.4.1. The flexible regions
of proteins either uncover the functional sites, or make specific interactions with the
substrates, or escort the substrates to and from the function sites, or directly assist
the catalytic functions, through large scale conformational changes.

Adenylate kinase (ADK), for example, has large scale domain motions related to
its catalytic cycle. Berry et al. [52] resolved the X-ray crystal structure of the protein
in its ligand-binding conformation, which is called the “closed” conformation. The
large flexible lid domain covers one of the bound substrates in one such conformation.
The conformation of the lid domain is completely changed when there is no ligand
bound to the protein [53, 54]. The conformational transitions of ADK are believed to
be driven by the rotation of several dihedral angles at a few hinges [55]. Calmodulin,
which regulates a variety of cellular processes, is another example of a protein that
goes through large scale conformational changes in its catalytic pathway. Its binding
of calcium initiates conformational changes, which in turn forces the other proteins
that are bound to calmodulin to change their conformations also, resulting in an
activation of certain biological functions of the cells [56, 57]. Zhang et al. [58] report

the coupling of conformational changes with the electron transfer function of the
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protein cytochrome bc,.

1.3.2 Algorithms to Sample Protein Conformations

Proteins have to change their conformations to achieve certain biochemical func-
tions. It is the ability to sample different conformations with functional significance
and to carry out chemistry on their molecular particles that distinguishes proteins
from other non-crystalline networks. Unfortunately, there is no way to detect all
protein conformations from experiments. X-ray crystallography experiments iden-
tify one or several conformations of the same protein. NMR techniques reveal the
most populated conformations, but they cannot detect the less populated ones. Com-
putational modeling is indispensable in studying protein conformational transitions.
Quite naturally, there have already been numerous such studies on sampling protein
conformations.

Some algorithms on sampling protein conformations use databases of existing
peptide conformations. The database used by Deane et al. [59] in their PETRA pro-
gram stores low energy conformations of short peptide segments up to twelve residues
long. The conformations are calculated by ab initio methods. Short peptide segments
in the loop region of the proteins are then replaced by the conformations of the same
or different segments in the database. To reduce the total calculation cost, filter-
ing on several easily calculated criteria is first done to rule out the most impossible
conformations. The empirical potential of the replacement peptide segment is then
calculated and minimized. The application of algorithm is limited to the flexible loops
on the surfaces of proteins.

Another category of algorithms samples protein conformations on the grid of
dihedral angles (60, 61] systematically. Such algorithms are more appropriate for
small molecules rather than on proteins, because the number of grid points to check

grows exponentially with size.
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Protein conformations can be sampled by MD simulations, in which protein
motion trajectories are calculated by integrating Newton's equations. Every snapshot
of the motion trajectory is a viable protein conformation. Recent developments in MD
simulations are reviewed by Wang et al. [62]. The time step within MD simulations is
typically one or two femto-seconds. Integration of Newton’s equations is carried out
at every time step. The MD simulations currently can reach one or two nanoseconds
of real motion trajectories. Some fast protein conformational changes which are in the
nanosecond time range can hence be simulated by MD algorithms. The slow protein
conformational changes which are in the milliseconds to seconds time range are still
out of the reach of the MD simulations.

Clever techniques have been presented to make the MD calculations run faster.
In the multicanonical MD simulations [63, 64], the possibility distribution of sampling
conformations at different energies is artificially flattened [63], so that the probability
of jumping over energy barriers is enhanced. Multiple MD trajectories are sampled
in parallel at different temperatures in the replica exchange MD algorithm [66, 67].
Trajectories at different temperatures are periodically exchanged so that they all
have chances to overcome high energy barriers at high temperatures. Where there
is a MD technique, there is a corresponding MC method. The multicanonical MC
method [68, 69, 70, 71] and the replica-exchange MC algorithm [72] have all been

applied on the studies of proteins.

1.3.3 Algorithms to Close Rings

Sampling conformations by MD or by MC algorithms is equivalent to exploring
local minima on the rough and complicated energy surfaces which are constructed by
the intricate potential functions. These potentials have numerous local minima and
energy barriers. One way to sample the protein conformations is to follow the saddle

points between the local minima [167]. In some studies, when to obtain an ensemble
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of conformations that are as diverse as possible is sufficient, it is not necessary to
know all the trivial peaks and troughs in the energyv landscape. As discussed in
Section 1.2, flexible regions of proteins have multiple conformations even in the most
simplified potential, which is infinitely high or absolutely zero, depending on whether
bond lengths and angles are distorted. Therefore it is very attractive to sample
protein conformations obeying all bond lengths and angle constraints. The difficulty
in sampling conformations in this way is to close all the rings in the proteins at every
step otherwise the bond lengths and angles are distorted. A ring is a closed loop of
bonds which connect atoms. There are two paths connecting any two atoms in a ring.
Geometry solves the biochemical problem by providing algorithms to close the rings.

The ring closure equations (RCE) proposed by Go and Scheraga [73] state the
conditions under which a ring is closed when the six unknown dihedral angles in the
ring are consecutively positioned, or when they are only separated by locked peptide
bonds. A peptide bond is the bond between two amino acid residues in proteins. The
ideal dihedral angle of a peptide bond is either 0° or 180°. G6 and Scheraga elucidate
a procedure to convert the RCE, which are six independent equations, to a single
variable equation with a single unknown dihedral angle. A subsequent work [74] ex-
hausts the conformational space of a short cyclic peptide segment by following the
solutions to the RCE. Go and Scheraga [75] later developed a method to close the big
rings when the rings have C,, I, or S5, symmetry. The conformations of gramicidin
S, which is a cyclic molecule with 18 rotatable bonds, are sampled by this proce-
dure [76], assuming the molecule has an exact C, symmetry. The conformations of
the molecule cyclo-hexaglycyl under symmetries were also generated [77] and checked
against conformations generated by MC algorithms [78].

Several algorithms have been invented to close the rings since the pioneering
work of Go and Scheraga. Wedemever and Scheraga [79] discovered that a ring is

closed when its dihedral angles are roots of polynomial equations. The form and the
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solutions to the polynomial functions of seven-fold and eight-fold rings are developed
in that article. Wu and Deem [80] use three distance and angle constraints at the
break point of a ring. These constraints are then transformed to a polynomial function
of a single variable which can be solved numerically. Unlike all the other algorithms
that optimize all of the involved dihedral angles simultaneously, the cyclic coordinate
descent algorithm by Canutescu and Dunbrack [81] optimizes them one at a time.
Bruccoleri and Karplus [82] allow bond angles to be relaxed when a ring cannot be
closed exactly under the condition of fixed bond angles.

All the algorithms listed above close only a single ring. In some studies, the
whole protein main chain whose two ends are fixed in space is treated as a big ring.
In some other studies, a short protein main chain segment is the ring to be closed.
The main chain dihedral angles are varied systematically or randomly so that protein
conformations are built or sampled [83, 84, 85, 86].

A protein has multiple interlocking rings which have to be closed exactly. Gibson
and Scheraga [87] write the bond length and angle constraints at the disulfide bond
as the pseudo-potential of a ring. The ring closes if the pseudo-potential is zero.
They show several examples where three or four rings containing disulfide bonds are
closed simultaneously. Chapter 4, Chapter 5 and Chapter 6 of this thesis present our
approach to sample protein conformations by closing all the rings in a complicated
network simultaneously. Our algorithm differs from the algorithm by Gibson and
Scheraga in several aspects. First, the hydrogen bonds are treated as components
of rings in our algorithm, but not in Gibson and Scheraga’s algorithm. Second, the
fictitious potential of a ring utilized in our algorithm is different to that in Gibson and
Scheraga’s algorithm. As discussed in detail in Section 5.2, the fictitious potential of
a ring is defined to be the sum of the squares of the RCE in our algorithm. Gibson
and Scheraga define the sum of the bond length and angle constraints at the disulfide

bonds as the pseudo-potential of a ring. Third, our algorithm is able to handle a large
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number of inter-locked rings.

Though hydrogen bonds and hydrophobic interactions are important in proteins,
previous studies do not regard them as forming rings. Therefore in the research works
mentioned above few rings are identified in proteins. The flexibility analysis [88, 89,
90] has demonstrated that the predicted protein structural properties match better
with what is measured in experiments when strong hydrogen bonds and hydrophobic
interactions are counted as real constraints. Therefore proteins should be viewed
as networks composed of covalent bonds, strong hydrogen bonds and hydrophobic
interactions. The definitions of strong hydrogen bonds and hydrophobic interactions
are discussed in Chapter 4.

A large number of rings appear when hydrogen bonds are treated the same way
as the covalent bonds. These rings inter-lock with each other in such complicated
ways that the rotation of any single bond can break several rings instead of one. The
algorithms designed to close a single ring are not capable of sampling conformations
for these complicated networks, because they are not created to close all the rings
simultaneously. Chapter 5 presents a new algorithm that is efficient in closing all the

rings in a network. It is a powerful tool for sampling large scale protein conformations.



Chapter 2: Modeling

Discontinuous Random Networks

As discussed in Chapter 1, porous silicon and silica networks have unique proper-
ties and application potentials. This chapter demonstrates an algorithm to build fully
coordinated amorphous silicon and silica networks with any desired characteristics of
discontinuity in atomic distributions.

Section 2.1 is a brief review of the standard WWW technique in building CRN
models. Section 2.2 explains how to build DCRN models in 3D with voids of arbitrary
shapes and sizes. Defects, such as dangling bonds and hydrogenated silicon atoms are
inevitable in real amorphous silicon and silica material. Section 2.4 discusses how to
include defects into the DCRN models. Examples of amorphous film and fiber silica

models are shown in Chapter 3.

2.1 WWW Algorithms on CRN Models

Amorphous silicon networks are made up of five-fold, six-fold, seven-fold, eight-
fold rings and a small trace of four-fold rings and bigger rings. Crystalline networks
are composed exclusively of six-fold rings. All rings mentioned in this thesis are
irreducible rings. An irreducible ring is such a ring that the shorter path between two
atoms in the ring is one of the shortest paths among all possible paths in the whole
network connecting these two atoms. The WWW algorithm introduces five-fold and
seven-fold rings to a silicon network by a bond switching process. In each bond switch
process, the WWW algorithm exchanges a pair of nearest neighbors of two randomly
chosen bonded atoms. Figure 2.1(a) shows a crystalline honevcomb network in 2D.

The atom A in the figure has three nearest neighbors of atom B, C and D. The three
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nearest neighbors of atom B are atom A, E and F. By breaking two bonds of AB
and BE and creating two new bonds of AE and BD, the WWW algorithm alters the
topology of the network, as shown in Figure 2.1(b). The strain in the new network
is relaxed so the lengths of new bonds become acceptable, as shown in Figure 2.1(c).
Comparing the networks in Figure 2.1(a) and (c) shows that the WWW algorithm
destroys four six-fold rings in the original network, followed by the creation of two
five-fold rings and two seven-fold rings. The bond switch process works identically in
3D, though the number of six-fold rings eliminated is different than in 2D. After tens
of thousands of such bond switch processes, the topology of the network does not
have any residues of the topology of the original crystalline network. A subsequent
simulated annealing process with even more bond switches reduces the total energy
of bond length and angle variations. The resulting network has a totally different
topology from that of the initial crystalline network. Bond length distortions and
bond angle distortions in the networks are also low. For the sake of simplicity, the
phrase bond distortions is used from here on to denote both bond length distortions
and bond angle distortions.

The Keating potential [91] used in the relaxation process in the WWW technique
is composed of two parts: a bond length variation part and a bond angle variation

part

16 R2 ZZ + gﬁ ZZ (R'U ik T COSOJ,kR ) (21)

i j<k

in which a and 3 are parameters that control the relative ratio of the bond length
variation and bond angle variation. The parameter Ry is the equilibrium bond length
between a pair of bonded atoms. This value is 1.62A for a bond between silicon and
oxygen. The parameter 6;; is the optimal angle between the two vectors of R;; and

R.;. This angle is 109.5° at silicon atoms and 147° at oxyvgen atoms. The sum over
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Figure 2.1: One bond switch step in the WWW algorithm is illustrated in 2D. Fig-
ure (a) shows the initial crystalline honeycomb network. Bond AD and bond BE are
cut, followed by the creation of two new bonds of AE and BD. The resulting topology
of the network is different from that in the original network, as shown in Figure (b).
Atom coordinates are relaxed to reduce the bond distortions. Two five-fold rings
and two seven-fold rings are produced while four six-fold rings are destroyed in this
process, as shown in Figure (c).
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1 is over all atoms, and the sum over j and & are only over the nearest neighbors of
atom z.

The Keating potential is simple in form. CRN models relaxed by Keating poten-
tial are low in bond distortions. In this sense the Keating potential is accurate enough
in generating a static network model, though its first and second order derivatives
are not as accurate as some other potentials.

High stress in bond lengths and angles are avoided by forbidding building bonds
between two atoms if the distance between them is greater than 1.70 times the equi-
librium distance Ry. Since the distance between a pair of second nearest neighbor
atoms is 1.63 x Ry, this rule disallows direct connections of atoms that are further
apart than second nearest neighbors.

Four-fold rings are more stressed in bond lengths and angles than the larger
rings. The existence of four-fold ring in the network however helps the relaxation
process, as discovered by Djordjevié et al. [92]. So the overall effect of four-fold rings
in amorphous structures is positive, at least in simulations of this kind.

Figure 2.2 shows an amorphous silicon CRN model built according to the WWW
technique, starting from a crystalline silicon network. There are 1000 atoms in the
supercell. The size of the supercell is 34.865A in each side. Periodic boundary
conditions are imposed on all three directions so an atom on one surface may be
bonded to an atom on the opposite surface. All atoms have exactly four nearest
neighbors. The mean average bond length deviation is 5.33% of the equilibrium

distance and the mean bond angle deviation is 17.7°.
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Figure 2.2: An amorphous silicon network model. There are 1000 atoms in the
supercell. The size of the supercell is 34.865A in each edge. The model is built
according to the WWW algorithm from a crystalline silicon network.
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2.2 Procedure to Build DCRN Silicon Network
Models

The models built by the WWW algorithm do not have any internal and un-
natural voids. As discussed in the beginning of Chapter 1, it is desirable to have
an algorithm that is capable of building DCRN models such as porous amorphous
silicon network models. Because the WWW technique is efficient and reliable in build-
ing CRN models, our algorithm of creating DCRN models is built upon the WWW
method.

The WWW algorithm maintains the full coordination of atoms in every step
of switching bonds. The method itself does not discriminate against networks with
or without unnatural voids. As long as the atoms in the starting network are fully
coordinated, the WWW technique can be applied to change the topology of the
network. The effect of a bond switch step is localized. Only local topology and
geometry are affected by a bond switch step. If the starting network has an internal
void, but every atom is fully coordinated, the application of the WWW technique will
not alter the overall shapes and sizes of the voids much. Therefore our task of building
DCRN models is transformed to a simpler one of building a fully coordinated network
with voids. The WWW algorithm will take care of the remaining job of making the
network amorphous. In order for the bond distortions of the created DCRN models
to be low, the distortions at every bond length and angle should also be as small
as possible. This requirement rules out the simplest starting network of random
distributed atoms within which voids are buried.

To build a fully coordinated network with voids for the usage as the input struc-
ture of the WWW technique, we first cut voids from a crystalline network. This
procedure inevitably leaves partially coordinated atoms at the surface of the voids.

Figure 2.3 illustrates the remaining atoms in a crystalline silicon network after a cylin-
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der shaped pore is cut in the middle. Most silicon atoms are fully coordinated, shown
as the yellow spheres in the figure. These atoms also have no bond distortions. The
other atoms are partially coordinated. The atoms that have two and three nearest
neighbors, which are named as two-coordinated and three-coordinated atoms in this
thesis, are shown as the blue and green spheres in Figure 2.3. The network in the
figure does not have any atoms that have only one nearest neighbor, which are called
one-coordinated atoms. Because of existence of the partially coordinated atoms the
WWW technique cannot be applied to this network. The bonds connecting these
partially coordinated atoms have to be adjusted to make all atoms fully coordinated.
It is worth noting that network shown in Figure 2.3 is periodic in all three directions.
What shows in the figure is one supercell of an infinitely large network. The cylinder
shaped pore in the middle of the supercell is infinitely long in the z direction which
is virtually perpendicular to the paper.

Bonds linking to the partially coordinated atoms have to be rearranged for the
network to be fully coordinated. To minimize distortions in bond lengths and angles
as possible is the only principle in re-arranging the bonds in a porous network. The
deletion of bonds and atoms is more favorable than the creation of new bonds, be-
cause the creation of new bonds inevitably brings bond distortions in the network by
connecting two spatially separated atoms together. A simple rule is set that a bond
should not be created to between two atoms if the distance between them is larger
than 1.7 times the equilibrium distance. This rule is identical to the bond switching
rule in the WWW algorithm, as already discussed in Section 2.1.

One-coordinated atoms are the easiest to handle: they are eliminated. The
coordination numbers of their nearest neighbors are reduced by one. It is possible
that some two-coordinated atoms are converted to be one-coordinated after this step.
This step is repeated until the coordination numbers of all atoms in the remaining

networks are at least two.
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Figure 2.3: A crystalline network in which a cylinder is cut in the middle. The atoms
at the surface of the cylinder shaped core are partially coordinated. Two-coordinated
and three-coordinated atoms are rendered as blue and green spheres respectively. All
the other atoms are fully coordinated, which are the yellow spheres. The atoms shown
in this figure belong to one supercell of an infinite network. The network is periodic
in all three directions.
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When two three-coordinated atoms are bonded to each other, the bond can
be cut so that a pair of three-coordinated atoms is transformed into a couple of
two-coordinated atoms. In this way the number of three-coordinated atoms in the
network is reduced by two, with the result that the number of two-coordinated atoms
is increased by two. This result is favorable because the two-coordinated atoms are
not as hard to deal with as three-coordinated atoms. Therefore it is preferred that the
network has an even number of three-coordinated atoms, and any three-coordinated
atom has another three-coordinated atom in its nearest neighbors.

Suppose a network has N, two-coordinated atoms, N3 three-coordinated atoms
and Ny four-coordinated atoms. The total number of bonds will be (N x 2 + N3 x
3+ Ny x 4)/2. Because the first and the third terms in the denominator are all even
and because the total number of bonds should be an integer, the second term in the
denominator must also be even. Therefore the number of three-coordinated atoms
must be even. This conclusion is valid for any network that is composed of two-,
three- and four-coordinated atoms. Therefore the three-coordinated atoms can be
grouped pair by pair. It is quite possible that all pairs of three-coordinated atoms
are not directly bonded however. A three-coordinated atom may be far away from
any other three-coordinated atoms. To translate a three-coordinated atom to be close
to another three-coordinated atom, we have invented a defect migration process. It
is thus named because a three-coordinated atom is a defect with a dangling bond.
The defect of a three-coordinated atom is migrated toward another three-coordinated
atom by cutting atoms and bonds, leaving more two-coordinated atoms along the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>