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ABSTRACT

MODELING NON-CRYSTALLINE NETWORKS

By

MING LEI

In this thesis, the author reports the modeling of both the static and the dynamical

aspects of non—crystalline networks. Porous silicon and silica have attracted attention

recently due to their unusual photoelectronic properties. Porosity is central to these

striking properties which are not present in non-porous silicon and silica. We propose

an algorithm that is effective in building fully-coordinated amorphous networks that

are discontinuous in certain regions — that is, they contain large voids of mesoscopic

or macroscopic dimensions. Such networks can be both porous and amorphous, and

can also be finite in certain dimensions.

Voids of arbitrary shapes and sizes are first superimposed on a crystalline silicon

network. The atoms in the pore regions are removed. Local “defects” are created, then

eliminated, as pairs of them are brought together by a defect migration process. The

network is fully coordinated after the defect migration process. The Wooten Winer

Weaire (WWW) algorithm, is then applied to make the network amorphous. Oxygen

is inserted on every silicon-silicon bond to create a porous silica network. Silica

networks in the form of an amorphous fiber and an amorphous film are created by

this procedure. Distortions due to surface effects are investigated. The local atomic

arrangement in these discontinuous networks is similar to that in bulk amorphous

silica.

Covalent bond lengths and angles in amorphous networks do not vary much be-

cause of the high energies associated with bond length and angle distortions. There-

fore, they can be viewed as constraints that do not change with time in any significant

way. Proteins, viewed as another type of non-crystalline network, are glued together



by covalent bonds, hydrogen bonds, hydrophobic interactions, and other interactions.

The concentration of constraints in some regions of the proteins are so high that these

regions are rigid. The other regions are flexible. The flexible regions of protein can

exhibit large conformational changes. Protein functions and bio-activities are often

coupled with these conformational changes.

We have built an algorithm that samples protein conformations randomly. It is

called Rigidity Optimized Conformational Kinetics (ROCK). It is efficient, as it avoids

sampling conformations for the rigid regions of the proteins. The constraints in the

flexible regions of proteins inter-lock with each other to form complicated networks of

rings. ROCK closes all the rings simultaneously at every step of sampling the protein

conformations. It is the first algorithm that samples the protein conformations by

following the closure of all the rings in a complicated network. All the bond length and

angle constraints are exactly preserved in the conformations sampled by ROCK. Main

chain dihedral angles are restricted in the preferred regions of the Ramachandran plot.

The generated conformations have good stereo-chemistry properties.

ROCK samples a large scale conformational changes. Its capability is first demon-

strated on a model molecule with two degrees of freedom. The conformations sampled

by ROCK observes the same two symmetries which are present in the topology of the

molecule. A large scale motion is shown in the conformations of HIV-1 protease sam-

pled by ROCK. ROCK also samples conformational pathways between distinct con-

formations of proteins. Multiple conformational trajectories are explored by ROCK

between the closed, the occluded, and the open conformations of DHFR. Since ROCK

explores both the main chain flexibility and the side chain flexibility, it is a good tool

in the studies of protein-ligand interactions, ligand design, protein motions etc.
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Chapter 1: Introduction

Physics and geometry are “a marriage made in heaven”, as said by Sir Michael

Atiyah in his talk [1]. Geometry, which is a branch of mathematics, has been ex-

tensively utilized in the study of the physical world. Copernicus, for example, put

forward the heliocentric theory to replace the geocentric theory after pondering on

the geometrical properties of the observed planet orbits. Navigations from the middle

age till today all rely on calculations using geometry. Fractal geometry, which is a

newly invented branch in geometry, is the mathematical language of chaotic systems.

Geometry and mathematics are of the most important tools in theoretical physics

studies.

Complicated systems can of be too modeled using a few simple geometrical prin-

ciples. Graner [2] nicely reviewed comprehensive aspects of building fluid foam models

from geometrical considerations. Arns et al. [3] discuss how to build disordered ma-

terial models whose micro-structures obey particular geometrical requirements. Free

energy of the Langmuir mono-layer is examined by Lésche and his co—worker [4] based

on an empirical Hamiltonian that accounts for the geometrical arrangement of micro-

structures of the layers. Many more examples can be listed. All of them address

certain properties of complicated materials from simple yet adequate geometrical

thinking.

This thesis shows two more examples of the application of geometry in condensed

matter physics. The first example is on the building of non-crystalline network models

with geometrical restrictions on bond length and angles. The second example is

about sampling conformations of non—crystalline networks. Conformations are spatial

arrangements of atoms whose bond lengths and angles are correct. Both of these

two examples show how to build complicated non-crystalline network models from

geometrical rules.



This chapter is an introduction of the thesis. It explains the motivations of our

research work. Chapter 2 discusses the algorithm to build non-crystalline networks,

the results of which are examined in Chapter 3. The similarities and differences be-

tween glassy networks and proteins are investigated in Chapter 4. Though they share

common characteristics, amorphous networks and proteins differ in that the former

do not have multiple dynamical conformations yet the latter do. A new approach

to sample protein conformations is elucidated in Chapter 5. Two applications of the

algorithm are shown in Chapter 6. Chapter 7 summarizes this thesis and re-iterate

how simple geometrical considerations can lead to complex non-crystalline network

models.

1.1 Static Models of Non-Crystalline Networks

Short range structures of amorphous networks are very similar to those in the

corresponding crystalline networks. For example, the bond lengths and angles of

silicon atoms in the amorphous silicon networks are almost the same as those in the

crystalline silicon networks. Those properties that rely on the short range structures,

such as the vacuum UV absorption spectra and the electronic density of states curves,

differ only in detail [5] between the amorphous and the crystalline networks. On the

other hand, amorphous networks are remarkably different from crystalline networks

in the characteristics related to the medium to long range order. For example the

X-ray or neutron diffraction of amorphous materials detect broad peaks while the

diffractions from crystalline materials show many fine sharp peaks. The modeling of

amorphous networks has long been an interesting topic in condensed matter physics.



1.1.1 Continuous Random Network Models

In the early 1930s, it was hypothesized that amorphous material are composed

of numerous micro—crystals. The orientations of the micro-crystals are. not aligned so

that the long range order of the crystals is destroyed. The X-ray powder diffraction

pattern of the models built upon this hypothesis does not fit with the experimen-

tal data. Zachariasen [6] proposed that the amorphous material is not made up of

micro—crystals. The atomic arrangement in an amorphous network does not have

symmetry and periodicity. However Zachariasen did not propose an algorithm to

build a continuous three-dimensional network which lacks symmetry and periodicity.

An amorphous network model that satisfies Zachariasen’s criteria is built by

hand by Bell and Dean [7, 8]. It is an amorphous silica model with 614 atoms. A

hand built amorphous silicon model containing 440 atoms was reported by Polk [9]

in 1971. Atomic coordinates in that model were detected by laser beams and saved

into a computer for analysis [10]. These hand built models have free surfaces. The

sizes of these models are limited in the order of tens of angstroms. Moreover, since

a large portion of the atoms are at or close to the surfaces, the number of atoms

that can be used to analyze the bulk properties of amorphous material is not large.

Henderson [11] built a periodic amorphous network model by hand. There are only

61 atoms in the supercell of the periodic model.

Computational modeling is the area that thrived since the early attempt [12]

when a periodic amorphous model with 54 atoms in the supercell was generated by

computer. The scalability problem hindered further development of the algorithm be-

hind the model. Guttman [13, 14] built amorphous network models in computers by

linking atoms randomly. A subsequent relaxation procedure reduces the distortions

of bond lengths and angles. Bonds are allowed to be switched in the relaxation pro—

cedure. The most successful algorithm today in building amorphous network models

is the WWW technique proposed by Wooten, Winer, and Weaire [15]. The details



of the algorithm are discussed in Chapter 2. Several other algorithms are suggested

thereafter, all of which are modifications of the original WW\V technique. For ex-

ample the improvement by Barkema and Mousseau [16] makes the computational

modeling of device sized amorphous silicon models [17] with more than 10,000 atoms

possible.

The amorphous network models built by the WWVVV and other similar techniques

are called Continuous Random Network (CRN) models. By continuous it is meant

that the networks are infinite, without disruption in the distribution of atoms. By

random it is meant that the topology of an amorphous network model is different to

that in the corresponding crystalline network. The CRN models built by the WWW

algorithm match well with real amorphous silicon in terms of properties of electronic

states, X-ray diffraction and the pair distribution function (PDF). The success of

the WWW algorithm comes from the two geometrical principles in building CRN

networks that are the essence of amorphous networks. Atoms are maintained as fully-

coordinated. That is, all silicon and germanium atoms have four and exactly four

nearest neighbors, while all oxygen, sulfur and selenium atoms have two and exactly

two nearest neighbors. This principle originates from the preferred valences of these

elements in semi-conductors. The topology of a CRN model is different from that of a

crystalline network model. Randomly positioning atoms in a supercell will not create

a CRN model. The WWW technique is a trustworthy method in creating a network

whose topology is totally different from that of a crystalline network. The high quality

models built by the WWW algorithm prove how geometrical approaches benefit the

modeling of non-crystalline networks. As an example, we show in Section 3.4 how

to model the amorphous metal-adamantane network starting from an amorphous

gallium arsenide model. The powder diffraction pattern calculated from the model

matches well with that measured in experiment.

Molecular dynamics (MD) simulations coupled with empirical or semi-empirical



potentials have been used to build amorphous silicon network models since 1985.

Several empirical potentials have been invented and parameterized for the simulation

of amorphous silicon. The SW potential by Stillinger and Weber [18], the potential

invented by Biswas and Hamann [19], and the potential by Chelikowsky [20] are all

composed of a two-body interaction part and a three-body interaction part, the first

of which depicts the bond lengths vibrations while the latter of which describes the

bond bending vibrations. Though the potential of Tersoff [21] has only pair wise

interactions, the parameters in the interaction depend on the bond angles as well.

Therefore the three-body interaction is implicitly calculated in the Tersoff’s potential.

The semi-empirical potential by Baskes et al. [22] is more complicated in form. It is

supposed to be in good agreement with first principle calculations. The SW potential

is most widely used in MD simulations. Despite much effort, the empirical and the

semi-empirical potentials are not accurate on all phases of silicon. Furthermore, the

connectivity is not guaranteed. There are dangling bonds in the amorphous network

models built by MD simulations. Therefore MD is not the best way to generate

amorphous models as of today. Car and Parrinello [23] generated a small amorphous

silicon model of 54 atoms by first principle quantum mechanical calculations. The

calculation cost however forbids further application of such algorithms at present,

and the small size means that these models have serious strains due to the periodic

boundary conditions.

1.1.2 Discontinuous Networks

Discontinuities in atom distributions lead to intriguing and unexpected properties

that are not present in materials without discontinuities.

Porous silicon has application potential in harvesting solar energy. Canham et

al. [24] report that porous silicon is photo-luminescent. The average diameter of the

pores is about 13nm. The thickness of the silicon layers between the pores is on the



order of pm, measured by X-ray diffraction experiments [25]. Quantum confinement

effects as well as the altered gaps between electronic states [26] are the causes of

the photoluminescence phenomenon. The silicon layers between the pores are largely

crystalline [27] rather than amorphous.

Porous silicon is bio-compatible and bio-degradable [28]. The body does not

reject organs made of porous silicon. Porous silicon has the potential to be the

platform of future biomedical implants and artificial organs.

Porous silica films are easy to fabricate. They have been used as chemical sen-

sors and sources of photoluminescence. Zhao et al. [29] produced silica films whose

porosities are between 51% and 75%. McDonagh et al. [30] applied sol-gel porous

silica films to sensor the oxygen. Both Cohen and his co-workers [31] and Dag et

al. [32] observe bright photoluminescence from the porous silica films containing nan-

oclusters of silicon. Amorphous silica films, though not porous, are photo-luminescent

as well. Yoshida et al. [33] have found blue photoluminescence from slightly silicon

d0ped amorphous silica films. The origin of the photoluminescence is believed to be

in the silicon nanocrystals.

The structures and surface properties of amorphous silica films have been studied

by a variety of techniques including electron diffraction [34], infrared spectroscopy [35],

scanning reflection electron microscopy [36], Raman spectroscopy [37], and NMR [38]

et al. Ab initio simulations [39, 40], MD simulations [41, 42], and Monte Carlo (MC)

simulations [43] have all been used to study either amorphous silica films or the surface

properties of amorphous silica.

All of these materials mentioned above are not continuous in the traditional

sense in that they are not microscopically homogeneous. Porous silicon and silica

contain virtually periodic voids that break the uniform distribution of the atoms over

space. Amorphous silica films are not continuous because of the discontinuity of atom

distributions over the surfaces.



Such discontinuities result in exciting and new material properties. Bulk silicon

and silica, either crystalline or amorphous, are not photo-luminescent. On the other

hand, porous silicon, porous silica and thin silica films all show photolumiuescence

effects. Though the origin of photoluminescence in these materials is currently being

debated, it is almost certain that photo-luminescent characteristics in these materials

involve the discontinuity in the spatial arrangement of atoms.

Though algorithms to build CRN models such as the “WVW technique have been

available for a long time, there is not yet. a generic algorithm for building discontin—

uous random network (DCRN) models. Though the endeavor of building DCRN

models may seem to be unnecessary at the first glance because such materials as

amorphous porous silicon and amorphous porous silica are not much discussed in lit-

eratures yet, the author argues that these materials are not far fetched from being

manufactured, considering the facts that 1) porous silicon and silica are easy to fab-

ricate and 2) amorphous silicon and silica are stable. Since the porosity in crystalline

silicon and silica leads to new properties, the porosity in amorphous silicon and silica

is likely to bring exciting properties as well. The amorphous porous silicon models

provide the first glimpse of the likely structural properties of such materials. Though

not have been manufactured, the amorphous silicon film has been computationally

modeled by Monte Carlo simulations using empirical potential [44] and by ab initio

simulations [45]. The properties of amorphous silica films have also been examined,

as described above.

Local bond geometries in the DCRN models should be similar to those in the

crystalline networks. This requirement is the natural result of the strongly covalent

characteristics of the glass forming elements such as silicon, germanium, oxygen, sulfur

and selenium. The geometrical concepts which are the roots of the WWW algorithm

also serve as the foundations of our algorithm to build the DCRN models. Step by

step, Chapter 2 reveals the methodology to build the DCRN models.



1.2 Constraints and Flexibility Analysis

The empirical Keating potential is used in building DCRN models. The Keating

potential reaches its minimum values of zero when bond lengths and angles are of their

optimal values. The potential energy can be huge when distortions in bond lengths

and angles are large. \Vhen it costs an infinite amount of energy to distort bond

lengths and angles, every bond length and angle requirement is called a constraint.

At finite temperatures the atoms in non-crystalline networks are in constant

motions, due to the thermal fluctuation energy of kBT, in which kg and T are the

Boltzmann constant and the temperature respectively. The thermal fluctuation en—

ergy pushes the atoms so that they oscillate around the local potential minima. These

oscillatory motions do not change the averaged relative orientation between atoms,

not to mention the overall shapes of the networks. On the other hand, some non-

crystalline networks have predominantly internal motions. Proteins are such exam-

ples. The scale of the protein internal motions is large, for example the relative

distance between atoms in different conformations of HIV-1 protease can vary be-

tween 2.7A and 8.0A, shown in Section 6.2 in this thesis. These large scale motions

do not result from the thermal fluctuations of bond lengths and angles. Rather they

are caused by large thermal and ligand-induced fluctuations of the internal degrees

of freedom (DOF) in the network.

The concept of constraints simplifies the analysis of the internal large scale mo-

tions of the non-crystalline networks. When bond lengths and angles are treated as

constraints, the DOF of a network is simply the difference between the total number

of degrees of freedom and the total number of independent constraints, as explained

by Maxwell in 1864 [46]. The question of whether a non-crystalline network has large

scale internal motions is answered by the counting of the DOF. A positive DOF in a

network is correlated with the likelihood of large scale motions. Moreover, a network

shows large scale motions without breaking any constraints when it undergoes motion



by sampling the DOF.

However the iV‘Iaxwell counting is not exact. A procedure called rigidity analysis

was first used by Jacobs et al. to count constraints in proteins, based on the pebble

game algorithm [47, 48]. Since what we care about here is the flexibility properties

of networks, the author uses the phrase flexibility analysis instead of rigidity analysis

throughout this thesis. When only bond length constraints are counted, or when both

bond length and bond angle constraints are counted, the DOF calculated by this pro-

cedure is exact for generic networks in 2D. Flexibility analysis is not exact for generic

networks in 3D when only bond length constraints are included. However under usual

conditions, though this has not been proven rigorously, its application to 3D networks

is exact when both bond length and bond angle constraints are counted [49, 50, 51].

Flexibility analysis identifies the regions in generic networks that have positive

numbers of DOF. These regions can have large scale internal motions that allow

big changes in the relative orientations between atoms and the overall shapes of the

networks. They are called the flexible regions. The other regions do not have large

scale motions, hence they are called the rigid regions. Negative DOF are associated

with over-constrained, or stressed regions of the network. Chapter 4 accounts for the

details of the flexibility analysis.

1.3 Sampling Conformations

It is one matter to distinguish the flexible regions from the rigid regions in net-

works, yet another topic to search the spatial arrangements of atoms under which

the bond lengths and angles obey all constraints. A spatial arrangement of atoms

is called a conformation if bond lengths and angles in such an atomic arrangement

observe the predefined constraints. In usual cases, one conformation is already ob-

tained from modeling, from X-ray or neutron diffraction experiments, or from NMR



experiments. The problem is to find other conformations that satisfy the same set of

constraints as the original one does.

1.3.1 Conformations of Proteins

Proteins, being non-crystalline and finite networks from a topological point of

view, have one or more rigid regions and several flexible regions. The rigid regions

of proteins serve as the stabilizing cores. At least one flexible region is typically

close to the catalytic site in every protein. The catalytic functions of proteins are

always coupled with conformational changes, either involving the side chain atoms

or involving both the side chain and the main chain atoms. The main chain and the

side chain of proteins are discussed in detail in Section 4.4.1. The flexible regions

of proteins either uncover the functional sites, or make specific interactions with the

substrates, or escort the substrates to and from the function sites, or directly assist

the catalytic functions, through large scale conformational changes.

Adenylate kinase (ADK), for example, has large scale domain motions related to

its catalytic cycle. Berry et al. [52] resolved the X-ray crystal structure of the protein

in its ligand-binding conformation, which is called the “closed” conformation. The

large flexible lid domain covers one of the bound substrates in one such conformation.

The conformation of the lid domain is completely changed when there is no ligand

bound to the protein [53, 54]. The conformational transitions of ADK are believed to

be driven by the rotation of several dihedral angles at a few hinges [55]. Calmodulin,

which regulates a variety of cellular processes, is another example of a protein that

goes through large scale conformational changes in its catalytic pathway. Its binding

of calcium initiates conformational changes, which in turn forces the other proteins

that are bound to calmodulin to change their conformations also, resulting in an

activation of certain biological functions of the cells [56, 57]. Zhang et al. [58] report

the coupling of conformational changes with the electron transfer function of the
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protein cytochrome bcl.

1.3.2 Algorithms to Sample Protein Conformations

Proteins have to change their conformations to achieve certain biochemical func-

tions. It is the ability to sample different conformations with functional significance

and to carry out chemistry on their molecular particles that distinguishes proteins

from other non-crystalline networks. Unfortunately, there is no way to detect all

protein conformations from experiments. X-ray crystallography experiments iden-

tify one or several conformations of the same protein. NMR techniques reveal the

most populated conformations, but they cannot detect the less populated ones. Com-

putational modeling is indispensable in studying protein conformational transitions.

Quite naturally, there have already been numerous such studies on sampling protein

conformations.

Some algorithms on sampling protein conformations use databases of existing

peptide conformations. The database used by Deane et al. [59] in their PETRA pro-

gram stores low energy conformations of short peptide segments up to twelve residues

long. The conformations are calculated by ab initio methods. Short peptide segments

in the loop region of the proteins are then replaced by the conformations of the same

or different segments in the database. To reduce the total calculation cost, filter-

ing on several easily calculated criteria is first done to rule out the most impossible

conformations. The empirical potential of the replacement peptide segment is then

calculated and minimized. The application of algorithm is limited to the flexible loops

on the surfaces of proteins.

Another category of algorithms samples protein conformations on the grid of

dihedral angles [60, 61] systematically. Such algorithms are more appropriate for

small molecules rather than on proteins, because the number of grid points to check

grows exponentially with size.
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Protein conformations can be sampled by MD simulations, in which protein

motion trajectories are calculated by integrating Newton’s equations. Every snapshot

of the motion trajectory is a viable protein conformation. Recent developments in MD

simulations are reviewed by Wang et al. [62]. The time step within MD simulations is

typically one or two femto-seconds. Integration of Newton’s equations is carried out

at every time step. The MD simulations currently can reach one or two nanoseconds

of real motion trajectories. Some fast protein conformational changes which are in the

nanosecond time range can hence be simulated by MD algorithms. The slow protein

conformational changes which are in the milliseconds to seconds time range are still

out of the reach of the MD simulations.

Clever techniques have been presented to make the MD calculations run faster.

In the multicanonical MD simulations [63, 64], the possibility distribution of sampling

conformations at different energies is artificially flattened [65], so that the probability

of jumping over energy barriers is enhanced. Multiple MD trajectories are sampled

in parallel at different temperatures in the replica exchange MD algorithm [66, 67].

Trajectories at different temperatures are periodically exchanged so that they all

have chances to overcome high energy barriers at high temperatures. Where there

is a MD technique, there is a corresponding MC method. The multicanonical MC

method [68, 69, 70, 71] and the replica-exchange MC algorithm [72] have all been

applied on the studies of proteins.

1.3.3 Algorithms to Close Rings

Sampling conformations by MD or by MC algorithms is equivalent to exploring

local minima on the rough and complicated energy surfaces which are constructed by

the intricate potential functions. These potentials have numerous local minima and

energy barriers. One way to sample the protein conformations is to follow the saddle

points between the local minima [167]. In some studies, when to obtain an ensemble
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of conformations that are as diverse as possible is sufficient, it is not necessary to

know all the trivial peaks and troughs in the energy landscape. As discussed in

Section 1.2, flexible regions of proteins have multiple conformations even in the most

simplified potential, which is infinitely high or absolutely zero, depending on whether

bond lengths and angles are distorted. Therefore it is very attractive to sample

protein conformations obeying all bond lengths and angle constraints. The difficulty

in sampling conformations in this way is to close all the rings in the proteins at every

step otherwise the bond lengths and angles are distorted. A ring is a closed loop of

bonds which connect atoms. There are two paths connecting any two atoms in a ring.

Geometry solves the biochemical problem by providing algorithms to close the rings.

The ring closure equations (RCE) proposed by G6 and Scheraga [73] state the

conditions under which a ring is closed when the six unknown dihedral angles in the

ring are consecutively positioned, or when they are only separated by locked peptide

bonds. A peptide bond is the bond between two amino acid residues in proteins. The

ideal dihedral angle of a peptide bond is either 0° or 180°. G6 and Scheraga elucidate

a procedure to convert the RCE, which are six independent equations, to a single

variable equation with a single unknown dihedral angle. A subsequent work [74] ex-

hausts the conformational space of a short cyclic peptide segment by following the

solutions to the RCE. G6 and Scheraga [75] later developed a method to close the big

rings when the rings have C", I , or 52,, symmetry. The conformations of gramicidin

S, which is a cyclic molecule with 18 rotatable bonds, are sampled by this proce-

dure [76], assuming the molecule has an exact 02 symmetry. The conformations of

the molecule cyclo—hexaglycyl under symmetries were also generated [77] and checked

against conformations generated by MC algorithms [78].

Several algorithms have been invented to close the rings since the pioneering

work of G6 and Scheraga. Wedemeyer and Scheraga [79] discovered that a ring is

closed when its dihedral angles are roots of polynomial equations. The form and the
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solutions to the polynomial functions of seven-fold and eight-fold rings are developed

in that article. Wu and Deem [80] use three distance and angle constraints at the

break point of a ring. These constraints are then transformed to a polynomial function

of a single variable which can be solved numerically. Unlike all the other algorithms

that optimize all of the involved dihedral angles simultaneously, the cyclic coordinate

descent algorithm by Canutescu and Dunbrack [81] optimizes them one at a time.

Bruccoleri and Karplus [82] allow bond angles to be relaxed when a ring cannot be

closed exactly under the condition of fixed bond angles.

All the algorithms listed above close only a single ring. In some studies, the

whole protein main chain whose two ends are fixed in space is treated as a big ring.

In some other studies, a short protein main chain segment is the ring to be closed.

The main chain dihedral angles are varied systematically or randomly so that protein

conformations are built or sampled [83, 84, 85, 86].

A protein has multiple interlocking rings which have to be closed exactly. Gibson

and Scheraga [87] write the bond length and angle constraints at the disulfide bond

as the pseudo-potential of a ring. The ring closes if the pseudo-potential is zero.

They show several examples where three or four rings containing disulfide bonds are

closed simultaneously. Chapter 4, Chapter 5 and Chapter 6 of this thesis present our

approach to sample protein conformations by closing all the rings in a complicated

network simultaneously. Our algorithm differs from the algorithm by Gibson and

Scheraga in several aspects. First, the hydrogen bonds are treated as components

of rings in our algorithm, but not in Gibson and Scheraga’s algorithm. Second, the

fictitious potential of a ring utilized in our algorithm is different to that in Gibson and

Scheraga’s algorithm. As discussed in detail in Section 5.2, the fictitious potential of

a ring is defined to be the sum of the squares of the RCE in our algorithm. Gibson

and Scheraga define the sum of the bond length and angle constraints at the disulfide

bonds as the pseudo-potential of a ring. Third, our algorithm is able to handle a large
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number of inter-locked rings.

Though hydrogen bonds and hydrophobic interactions are important in proteins,

previous studies do not regard them as forming rings. Therefore in the research works

mentioned above few rings are identified in proteins. The flexibility analysis [88, 89,

90] has demonstrated that the predicted protein structural properties match better

with what is measured in experiments when strong hydrogen bonds and hydrophobic

interactions are counted as real constraints. Therefore proteins should be viewed

as networks composed of covalent bonds, strong hydrogen bonds and hydrophobic

interactions. The definitions of strong hydrogen bonds and hydrophobic interactions

are discussed in Chapter 4.

A large number of rings appear when hydrogen bonds are treated the same way

as the covalent bonds. These rings inter-lock with each other in such complicated

ways that the rotation of any single bond can break several rings instead of one. The

algorithms designed to close a single ring are not capable of sampling conformations

for these complicated networks, because they are not created to close all the rings

simultaneously. Chapter 5 presents a new algorithm that is efficient in closing all the

rings in a network. It is a powerful tool for sampling large scale protein conformations.



Chapter 2: Modeling

Discontinuous Random Networks

As discussed in Chapter 1, porous silicon and silica networks have unique proper-

ties and application potentials. This chapter demonstrates an algorithm to build fully

coordinated amorphous silicon and silica networks with any desired characteristics of

discontinuity in atomic distributions.

Section 2.1 is a brief review of the standard WWW technique in building CRN

models. Section 2.2 explains how to build DCRN models in 3D with voids of arbitrary

shapes and sizes. Defects, such as dangling bonds and hydrogenated silicon atoms are

inevitable in real amorphous silicon and silica material. Section 2.4 discusses how to

include defects into the DCRN models. Examples of amorphous film and fiber silica

models are shown in Chapter 3.

2.1 WWW Algorithms on CRN Models

Amorphous silicon networks are made up of five—fold, six-fold, seven-fold, eight-

fold rings and a small trace of four-fold rings and bigger rings. Crystalline networks

are composed exclusively of six-fold rings. All rings mentioned in this thesis are

irreducible rings. An irreducible ring is such a ring that the shorter path between two

atoms in the ring is one of the shortest paths among all possible paths in the whole

network connecting these two atoms. The WWW algorithm introduces five—fold and

seven-fold rings to a silicon network by a bond switching process. In each bond switch

process, the WWW algorithm exchanges a pair of nearest neighbors of two randomly

chosen bonded atoms. Figure 2.1(a) shows a crystalline honeycomb network in 2D.

The atom A in the figure has three nearest neighbors of atom B, C and D. The three
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nearest neighbors of atom B are atom A, E and F. By breaking two bonds of AB

and BE and creating two new bonds of AE and BD, the W\\"W algorithm alters the

topology of the network, as shown in Figure 21(1)). The strain in the new network

is relaxed so the lengths of new bonds become acceptable, as shown in Figure 2.1(c).

Comparing the networks in Figure 2.1(a) and (c) shows that the WWW algorithm

destroys four six-fold rings in the original network, followed by the creation of two

five-fold rings and two seven—fold rings. The bond switch process works identically in

3D, though the number of six-fold rings eliminated is different than in 2D. After tens

of thousands of such bond switch processes, the topology of the network does not

have any residues of the t0pology of the original crystalline network. A subsequent

simulated annealing process with even more bond switches reduces the total energy

of bond length and angle variations. The resulting network has a totally different

topology from that of the initial crystalline network. Bond length distortions and

bond angle distortions in the networks are also low. For the sake of simplicity, the

phrase bond distortions is used from here on to denote both bond length distortions

and bond angle distortions.

The Keating potential [91] used in the relaxation process in the WWW technique

is composed of two parts: a bond length variation part and a bond angle variation

part

161:22:01 Raf +8R2B2:(Rij Rak — COSQJikRfi) (2.1)

i j<k

in which a and i3 are parameters that control the relative ratio of the bond length

variation and bond angle variation. The parameter R0 is the equilibrium bond length

between a pair of bonded atoms. This value is 1.62A for a bond between silicon and

oxygen. The parameter 6],). is the optimal angle between the two vectors of R47- and

Rm. This angle is 109.5° at silicon atoms and 147° at oxygen atoms. The sum over
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Figure 2.1: One bond switch step in the WWW algorithm is illustrated in 2D. Fig-

ure (a) shows the initial crystalline honeycomb network. Bond AD and bond BE are

cut, followed by the creation of two new bonds of AE and BD. The resulting t0pology

of the network is different from that in the original network, as shown in Figure (b).

Atom coordinates are relaxed to reduce the bond distortions. Two five-fold rings

and two seven-fold rings are produced while four six-fold rings are destroyed in this

process, as shown in Figure (c).
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i is over all atoms, and the sum over j and Is? are only over the nearest neighbors of

atom i.

The Keating potential is simple in form. CRN models relaxed by Keating poten-

tial are low in bond distortions. In this sense the Keating potential is accurate enough

in generating a static network model, though its first and second order derivatives

are not as accurate as some other potentials.

High stress in bond lengths and angles are avoided by forbidding building bonds

between two atoms if the distance between them is greater than 1.70 times the equi-

librium distance R0. Since the distance between a pair of second nearest neighbor

atoms is 1.63 x R0, this rule disallows direct connections of atoms that are further

apart than second nearest neighbors.

Four-fold rings are more stressed in bond lengths and angles than the larger

rings. The existence of four-fold ring in the network however helps the relaxation

process, as discovered by Djordjevié et al. [92]. So the overall effect of four-fold rings

in amorphous structures is positive, at least in simulations of this kind.

Figure 2.2 shows an amorphous silicon CRN model built according to the WWW

technique, starting from a crystalline silicon network. There are 1000 atoms in the

supercell. The size of the supercell is 34.865A in each side. Periodic boundary

conditions are imposed on all three directions so an atom on one surface may be

bonded to an atom on the opposite surface. All atoms have exactly four nearest

neighbors. The mean average bond length deviation is 5.33% of the equilibrium

distance and the mean bond angle deviation is 177°.
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Figure 2.2: An amorphous silicon network model. There are 1000 atoms in the

supercell. The size of the supercell is 34.865A in each edge. The model is built

according to the WWW algorithm from a crystalline silicon network.
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2.2 Procedure to Build DCRN Silicon Network

Models

The models built by the WWW algorithm do not have any internal and un-

natural voids. As discussed in the beginning of Chapter 1, it is desirable to have

an algorithm that is capable of building DCRN models such as porous amorphous

silicon network models. Because the WWW technique is efficient and reliable in build-

ing CRN models, our algorithm of creating DCRN models is built upon the WWW

method.

The WWW algorithm maintains the full coordination of atoms in every step

of switching bonds. The method itself does not discriminate against networks with

or without unnatural voids. As long as the atoms in the starting network are fully

coordinated, the WWW technique can be applied to change the topology of the

network. The effect of a bond switch step is localized. Only local topology and

geometry are affected by a bond switch step. If the starting network has an internal

void, but every atom is fully coordinated, the application of the WWW technique will

not alter the overall shapes and sizes of the voids much. Therefore our task of building

DCRN models is transformed to a simpler one of building a fully coordinated network

with voids. The WWW algorithm will take care of the remaining job of making the

network amorphous. In order for the bond distortions of the created DCRN models

to be low, the distortions at every bond length and angle should also be as small

as possible. This requirement rules out the simplest starting network of random

distributed atoms within which voids are buried.

To build a fully coordinated network with voids for the usage as the input struc-

ture of the WWW technique, we first cut voids from a crystalline network. This

procedure inevitably leaves partially coordinated atoms at the surface of the voids.

Figure 2.3 illustrates the remaining atoms in a crystalline silicon network after a cylin-
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der shaped pore is cut in the middle. Most silicon atoms are fully coordinated, shown

as the yellow spheres in the figure. These atoms also have no bond distortions. The

other atoms are partially coordinated. The atoms that have two and three nearest

neighbors, which are named as two-coordinated and three-coordinated atoms in this

thesis, are shown as the blue and green spheres in Figure 2.3. The network in the

figure does not have any atoms that have only one nearest neighbor, which are called

one—coordinated atoms. Because of existence of the partially coordinated atoms the

WWW technique cannot be applied to this network. The bonds connecting these

partially coordinated atoms have to be adjusted to make all atoms fully coordinated.

It is worth noting that network shown in Figure 2.3 is periodic in all three directions.

What shows in the figure is one supercell of an infinitely large network. The cylinder

shaped pore in the middle of the supercell is infinitely long in the z direction which

is virtually perpendicular to the paper.

Bonds linking to the partially coordinated atoms have to be rearranged for the

network to be fully coordinated. To minimize distortions in bond lengths and angles

as possible is the only principle in re-arranging the bonds in a porous network. The

deletion of bonds and atoms is more favorable than the creation of new bonds, be-

cause the creation of new bonds inevitably brings bond distortions in the network by

connecting two spatially separated atoms together. A simple rule is set that a bond

should not be created to between two atoms if the distance between them is larger

than 1.7 times the equilibrium distance. This rule is identical to the bond switching

rule in the WWW algorithm, as already discussed in Section 2.1.

One-coordinated atoms are the easiest to handle: they are eliminated. The

coordination numbers of their nearest neighbors are reduced by one. It is possible

that some two-coordinated atoms are converted to be one-coordinated after this step.

This step is repeated until the coordination numbers of all atoms in the remaining

networks are at least two.
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Figure 2.3: A crystalline network in which a cylinder is cut in the middle. The atoms

at the surface of the cylinder shaped core are partially coordinated. Two-coordinated

and three-coordinated atoms are rendered as blue and green spheres respectively. All

the other atoms are fully coordinated, which are the yellow spheres. The atoms shown

in this figure belong to one supercell of an infinite network. The network is periodic

in all three directions.
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When two three-coordinated atoms are bonded to each other, the bond can

be cut so that a pair of three-coordinated atoms is transformed into a couple of

two-coordinated atoms. In this way the number of three-coordinated atoms in the

network is reduced by two, with the result that the number of two-coordinated atoms

is increased by two. This result is favorable because the two-coordinated atoms are

not as hard to deal with as three-coordinated atoms. Therefore it is preferred that the

network has an even number of three-coordinated atoms, and any three-coordinated

atom has another three-coordinated atom in its nearest neighbors.

Suppose a network has Ng two-coordinated atoms, N3 three-coordinated atoms

and N4 four-coordinated atoms. The total number of bonds will be (N2 x 2 + N; x

3 + N4 x 4) /2. Because the first and the third terms in the denominator are all even

and because the total number of bonds should be an integer, the second term in the

denominator must also be even. Therefore the number of three-coordinated atoms

must be even. This conclusion is valid for any network that is composed of two-,

three- and four-coordinated atoms. Therefore the three-coordinated atoms can be

grouped pair by pair. It is quite possible that all pairs of three-coordinated atoms

are not directly bonded however. A three-coordinated atom may be far away from

any other three-coordinated atoms. To translate a three-coordinated atom to be close

to another three-coordinated atom, we have invented a defect migration process. It

is thus named because a three-coordinated atom is a defect with a dangling bond.

The defect of a three—coordinated atom is migrated toward another three-coordinated

atom by cutting atoms and bonds, leaving more two-coordinated atoms along the

migration pathway.

All three-coordinated atoms are first listed. The distances between the first and

any other atoms on the list are calculated. The first one on the list is called the

starting defect atom and the three-coordinated atom with the shortest distance to

this atom is called the ending defect atom. The general strategy is to cut. one bond
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between the starting defect atom and one of its nearest neighbors. Suppose all three

nearest neighbors of the starting defect are four-coordinated. In this simplest scenario

the bond between the starting defect. atom and one of its nearest neighbors whose

distance to the ending defect atom is the shortest among all its nearest neighbors is

cut. The starting defect atom has a coordination number of two after the bond is

cut. The atom at the other end of the bond now has a coordination number of three,

reduced from four before the bond is cut. The new three-coordinated atom is then

the new starting defect atom. The new starting defect atom is closer to the ending

defect atom than the old starting defect atom. This step can be repeated until the

newly created defect atom is directly bonded to the ending defect atom. Then the

bond between this pair of defect atoms can be cut, resulting in a reduced number of

three-coordinated atoms in the network.

The three nearest neighbors of the three—coordinated atoms are not always four-

coordinated. Defect migration rules are made case by case depending on the coor-

dination numbers of the three nearest neighbors of the starting defect atom. The

general principle is to remove as many partially coordinated atoms as possible in any

single step. The details of the rules are:

0 When the starting defect atom has one two-coordinated atom and two four-

coordinated atoms as its nearest neighbors, the bond between the two- and

the three-coordinated atoms is cut. The coordination number of the three-

coordinated atom is reduced to be two. Since the two-coordinated atom has

only one bond after the bond cut, it is removed according to our process of

removing one-coordinated atoms.

a When the starting defect atom has two two-coordinated atoms and one four-

coordinated atom as its nearest neighbors, both two-coordinated atoms and the

three-coordinated atom are cut from the network. The four-coordinated atom

is now the new starting defect atom with a coordination number of three.
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0 When the starting defect atom has three two-coordinated atoms as its nearest

neighbors, its three neighbors and it are all removed.

0 When the starting defect atom has one three-coordinated atom and two four-

coordinated atoms as its nearest neighbors, the bond between the two three-

coordinated atom is cut, as already stated before. This is the end of the de-

fect migration process, which converts two three-coordinated atoms to be two-

coordinated. The total number of three-coordinated atoms is reduced by two.

0 When the starting defect atom has one three-coordinated atom, one two-coor-

dinated atom and one four-coordinated atom as its three nearest neighbors, the

three-coordinated atom and the two-coordinated atom are removed. The four-

coordinated neighbor now has a coordination number of three. The coordination

number of the three-coordinated nearest neighbor of the starting defect atom is

reduced to be two.

0 When the starting defect atom has one three-coordinated atom and two two-

coordinated atoms as its nearest neighbors, the starting defect atom and the

two-coordinated atoms are removed.

0 When the starting defect atom has two three—coordinated atoms and one four-

coordinated atom as its nearest neighbors, the starting defect atom is cut from

the network. The coordination numbers of its two three-coordinated atoms are

reduced to be two. The coordination number of the four-coordinated neighbor

is reduced to be three. So the total number of three-coordinated atom in the

network is reduced by two.

0 When the starting defect atom has two three-coordinated atoms and one two-

coordinated atom as its nearest neighbors, the starting defect atom and the

two-coordinated atom are. removed.
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0 When the starting defect atom has three t.hree-co(')rdinated atoms as its nearest

neighbors, the starting defect atom is removed. The coordination numbers of

the three three-coordinated atoms are all reduced to be two. The net result of

this step is that the total number of three-coordinated atoms decreases by four.

Each defect migration step either removes some partially coordinated atoms and

the starting defect atom, or making the defect one more step closer to the ending

defect atom. When the starting and the ending defect atoms are directly bonded,

the bond between them is cut so that they are converted to a pair of two-coordinated

atoms. Since the number of three-coordinated atoms in the network is even, this

procedure always works. There are only two types of atoms in the network after

the defect migration procedure: the two-coordinated and the four-coordinated. Since

we have only been cutting atoms and bonds so far, we have not created any new

bonds whose bond lengths and angles are distorted. The distances between the two

nearest neighbors of any two-coordinated atoms are all less than 1.70 times the equi-

librium distance. Therefore by creating new bonds between the neighbors of the

two—coordinated atoms and removing the two-coordinated atoms, all the remaining

atoms in the network are four-coordinated. All the atoms are fully coordinated after

this process.

Figure 2.4 shows a porous network in which all atoms are fully coordinated. The

only type of distortions in the network is the bond length distortion at those bonds

where two second nearest neighbor atoms are connected. It is built from the porous

crystalline network which has partially coordinated atoms shown in Figure 2.3. Since

most process involved in our bond rearrangement procedure cut bonds and atoms,

the pore size of the fully coordinated network is larger than the original pore size

when partially coordinated atoms are present.

Once a fully coordinated and porous network is built, the standard WWW al-

gorithm can be applied to make the network amorphous. The resulting amorphous
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Figure 2.4: A porous network in which all atoms are fully coordinated. The porous

network is built from the crystalline porous network shown in Figure 2.3 in which

partially coordinated atoms exist, according to the bond rearrangement scheme ex-

amined in the text.
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Figure 2.5: An amorphous porous network in which all atoms are fully coordinated.

The bond length distortion is 10.1% of the equilibrium bond length and the bond

angle distortion is about 152°.

porous network is shown in Figure 2.5. The variation of bond length is 10.1% of

the equilibrium bond length, which is higher than the typical bond length variations

of 5% in CRN models. The variation of bond angles is about 152° which is about

the same as or somewhat higher than that in CRN models. The relatively big bond

length variations are caused by the bond distortions at the surface of the pore.
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2.3 From Silicon to Silica

By adding one oxygen atom between each silicon-silicon bond, the amorphous

porous silicon networks are transformed to amorphous porous silica networks. All

four nearest neighbors of the four-coordinated silicon atoms are oxygen atoms, and

both two neighbors of the two-coordinated oxygen atoms are silicon atoms. Such

amorphous porous silica models are ideal because small traces of silicon-silicon bonds

and oxygen-oxygen bonds exist in the real world amorphous silica materials.

Because the bond angle variation potential energy of the oxygen atoms are soft

compared to the stiff bond angle energy of the silicon atoms, the insertion of oxygen

atoms help release the bond length and angle stress of the silicon atoms. Some silicon

atoms are at the surfaces of the voids in a porous silicon network. The bond angle

geometry of a silicon atom requires that its four nearest neighbors should be on the

four corners of a tetrahedron. But if this bond angle geometry is satisfied, at least

one nearest neighbor of each surface silicon atom will protrude into the voids. Since

there should be no atoms in the voids, bond angles of silicon atoms at the surface

have to be bent significantly. The insertion of oxygen between silicon-silicon bonds

reduces the bond angle distortions at the surface. When an oxygen atom is placed

on the surface of a void, both of its two nearest neighbors can be placed away from

the surface. The bond angle geometry of the surface oxygen atom is correct, without

the necessity of placing its nearest neighbors in the voids. Therefore the addition of

oxygen atoms reduces the bond angle stress at the surfaces of the voids.

The amorphous fiber and amorphous film silica models shown in Chapter 3 are

built by this method from the amorphous fiber and film silicon models. The bond

angle distortions at the surface will be discussed in detail in Chapter 3.
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2.4 Defects and Hydrogen

Hydrogenated amorphous silicon a-SizH is a potential material for high efficiency

solar cells [93, 94], thin film transistors [95, 96] and other applications. Dangling

bond defects are often detected in the a-SizH material. The dangling bonds affect

the application performance of a-Si:H film. The defect migration process, which is

designed to eliminate defects, can be used to introduce and distribute defects in the

silicon network models. Therefore our algorithm can be used to build network models

with arbitrary distribution of dangling bond defects or hydrogenated defects.

A pair of dangling bond defects can be created in a fully coordinated network

by cutting a bond. The pair of defects then can be migrated to different directions.

Slightly diflerent from the defect migration rules in creating a fully coordinated net-

work, the defects migrate according to a rule similar to the bond switch procedure in

the WWW technique. Suppose atom B is a nearest neighbor atom of the defect atom

A. Suppose atom C is a nearest neighbor atom of atom B. A bond between atom A

and C is created, making atom A fully coordinated, followed by the cutting of the

bond BC. Atom B has only three nearest neighbors after the procedure so it is the

new defect atom. Atomic coordinates are relaxed to reduce the bond distortions. The

net result of this step is that the defect migrates from atom A to atom B, as shown

in Figure 2.6. The two defects are not spatially close to each other after several steps

of this defect migration process. Defects are created and migrate repetitively until a

predefined defect concentration and spatial distribution are reached. Our algorithm,

which is initially designed to build fully coordinated networks, is an efficient and

powerful procedure in planting defects in fully coordinated networks.

Most of the hydrogen atoms in the a-Si:H films are on the surfaces serving as

terminators of dangling bonds. Few hydrogen atoms are buried deeply inside of the

a-SizH film. They are connected with silicon atoms. The Si-H bond in the interior of

a-Si:H networks can be viewed as a special kind of defect involving dangling bonds
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Figure 2.6: The defect migration procedure in planting defects in fully coordinated

networks. Two defects are created when a bond in a fully coordinated network is cut.

Defects are then migrated to different directions according to the procedure shown

in this figure. A bond is created between the defect atom A and one of its second

nearest neighbor atoms C. Atom A is then fully coordinated. The bond between atom

C and atom B which is a nearest neighbor atom to both atom A and atom C is cut,

making the atom B the new defect atom. Defect atom is rendered as green spheres

while fully coordinated atoms are yellow spheres.

which are terminated by hydrogen atoms.

Hydrogen atoms can be implanted into our fully coordinated amorphous silicon

models. Two dangling bonds are created when a bond between two silicon atoms

is cut. As shown in Figure 2.7(a) a pair of hydrogen atoms can be attached to the

dangling bonds to terminate them. Each hydrogen atom can go through the defect

migration process so that these two newly inserted atoms are spatially separated.

As shown in Figure 2.7(b), in each defect migration process the bond between the

silicon atom A and the hydrogen atom is cut, followed by a creation of a new bond

between atom A and one of its second nearest neighbors atom C. The hydrogen atom

is migrated to atom B which is a nearest neighbor both of atom A and of atom C. The

bond between atom B and atom C is cut. All atoms, including hydrogen and silicon

atoms, are fully coordinated before and after this process. The net result is that the

hydrogen atom is transferred from silicon atom A to silicon atom B. A subsequent

relaxation process reduces the bond distortions. The two inserted hydrogen atoms

are spatially separated after several steps of hydrogen atom migration process. By

adding and migrating hydrogen atoms pair by pair, we can build amorphous silicon

32



 
Figure 2.7: The procedure to add and migrate hydrogen atoms in the fully coordinated

networks. Two dangling bonds are created when a silicon-silicon bond is cut. Two

hydrogen bonds are then inserted to fulfill the valency of silicon atoms, as shown

in Figure (a). Each hydrogen atom can be migrated to any random direction. The

basic migration process involves the breaking of the bonds between atom A and H

and between atom B and C, and the creating of two new bonds between atom A and

C and between atom B and H. Hydrogen and silicon atoms are shown as gray and

yellow spheres respectively.

models with any concentration of buried hydrogen atoms.
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Chapter 3: Discontinuous Random

Network Models

The algorithm described in Chapter 2 is able to build any DCRN models. The

DCRN models can be an infinite amorphous network with voids built in such as

an amorphous porous silicon model, or can be a network that is finite in certain

dimensions. This chapter discusses two amorphous network models that are finite

in certain dimensions. They are the amorphous fiber silica model in Section 3.1

which is infinitely long in the z direction but finite in the x and y directions, and

the amorphous film silica model in Section 3.2 which is continuous in the a: and y

directions but finite in the z direction. The Pair Distribution Functions (PDF) of

these two models are discussed in Section 3.3.

3.1 Amorphous Fiber Silica Model

3.1.1 Procedure to Build Amorphous Fiber Network Model

To build an amorphous fiber silicon model, a long fiber-like supercell containing

3 by 3 by 16 supercells of crystalline silicon is first set up, as shown in Figure 3.1.

Because each supercell of crystalline silicon has 8 atoms, the fiber supercell is made

up of 1152 atoms. The fiber supercell is periodic along the z axis, but finite in the

:1: and y directions. The silicon atoms at the surface of the supercell are partially

coordinated. Some atoms are one-coordinated and some are two-coordinated, shown

as the red and blue spheres respectively in the figure. The other atoms are fully

coordinated.

Silicon atoms in two adjacent side surfaces of the supercell, indicated by the two

rectangular boxes in Figure 3.1, are removed. Only the outer-most atoms are removed
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in one surface. The outer-most atoms and their nearest neighbors are also removed

in the other surface. The resulting network still has partially coordinated atoms, but.

all partially coordinated atoms are tw(_)-coordinated. By connecting the two nearest

neighbors of the two-coordinated atoms and removing the two-coordinated atoms

themselves, we obtain a fully coordinated network which is finite in the :1: and y

directions and periodic in the z direction, as shown in Figure 3.2. There are 64

cases of a two-coordinated atom connected directly to another two-coordinated atom.

New bonds are created between the two nearest neighbors of the two two-coordinated

atoms while the two-coordinated atoms are removed. In this case 64 four-fold rings are

created. We allowed the creation of four-fold rings in this case because the procedure

in building fiber model is simpler in this way. The distortions at the 64 four-fold

rings will be relaxed in the following WWW procedure. The boundary of the original

supercell is also shown in the figure to clarify how much the supercell shrinks in .r

and y directions after this procedure. This bond rearrangement procedure removes

almost half the atoms from the original supercell. There are only 640 atoms left in

the supercell after this procedure. The remaining network is uniform in radius from

top to bottom.

The WWW algorithm is then applied to the network to make it amorphous.

Oxygen atoms are inserted afterward between every silicon-silicon bond to create an

amorphous silica network. The final model which is shown in Figure 3.3 has 640

silicon atoms and 1280 oxygen atoms in one supercell. The length of the supercell is

114.8A. Because the oxygen angles are soft, the fiber model is not stressed compared

to the amorphous CRN silicon models. The root mean square deviation (RMSD)

of Si-O bond is 0.107A, which is about 6.6% 0f the optimal value. The bond angle

RMSD at silicon and oxygen atoms are 13.2° and 138° respectively.
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3.1.2 Properties of Amorphous Fiber Network Model

The radius of the fiber varies a little bit from tOp to bottom due to local relax-

ations. To determine an average radius of this model, we cut. the model into hundreds

of slices perpendicular to the z axis. Each slice has its mean average center axis. The

atomic number density of a slice is counted at all distances away from the center axis.

The step size of the histogram is 0.12A. Finally the number density is averaged over

all slices and plotted in Figure 3.4. The total number density drOps smoothly after

about 6.1A away from the center axis. It is almost zero at about 9.0A. The average

radius of the fiber model is roughly 7.2A. As revealed in the figure, the number den-

sity of oxygen is roughly twice as that of the silicon at any distance away from the

center axis as would be expected. The number density of oxygen is high at the center

axis because there happens to be several atoms at the center line.

It seems there is a trend in Figure 3.4 that the total number density increases

with the distance away from the center axis, but this is not true. Suppose there is an

atom at the center axis of the fiber. The nearest neighbor of this atom will be at a

certain distance away from the center axis, making the number density exactly zero

at the space close to the center axis. The seemingly increasing number density from

the center to the surface proves that the atoms at the center are more orderly packed

than the atoms at the surface, so that the difference in number density at certain

distances where atoms are placed and the number density at other distances where

atoms are not likely to be placed is more obvious.

Because the bond angles of the oxygen atoms are softer than those of the silicon

atoms, oxygen atoms are suitable to be positioned at the surface where the stress

concentrates. Each oxygen atom is bonded to two nearest neighbors. The oxygen

atom at the surface can point outward while its two nearest neighbors are placed

inward. A silicon atom is at the center of a tetrahedron formed by its four nearest

neighbors. Therefore it is not possible to place a silicon atom at the out most surface
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without causing big bond distortions. Based on these. arguments, we say the surface

atoms should all be oxygen atoms. To count all the surface atoms, we first place a

right circular cone on every oxygen atom in such a way that the tip of the cone is at

the atom and the axis of the cone is 1')erpendicular to the axis of the fiber. The axis

of the cone coincides with the shortest line segment. from the atom to the fiber axis.

The half-cone angle is set to be 30°. If the cone encloses any other atoms the atom on

which the cone is placed is not a surface atom. The blue atom shown in Figure 3.5 is

such an example. Otherwise the atom is at the surface, which is exemplified by the

green atom in the figure.

The surface atoms are also called the first layer atoms. Their nearest neighbors

are called the second layer atoms. The atoms that are not first layer atoms but are

bonded directly to the second layer atoms are called the third layer atoms, so on

and so forth. There are seven layers in the fiber model. Because first layer atoms

are exclusively made of oxygen atoms and because no like atoms are bonded in the

model, all odd layers are made of oxygen atoms and all even layers are made of silicon

atoms. There are 572, 503, 195 and 10 oxygen atoms in the first, the third, the fifth

and the seventh layers, and 453, 163 and 24 silicon atoms in the second, the fourth

and the sixth layers respectively. It is worth noting that the higher the layer indexes

the closer the layer to the center of the fiber.

Figure 3.6 shows the bond length and angle distortions at different layers. The

average bond length deviations from the optimal value are positive in the first two

layers, but negative in the other layers. Since the first two layers are all on the

fiber surface, we can reach the conclusion that the bond lengths are stretched on the

surface, while compressed in the interior of the fiber. Therefore it is reasonable to say

that atoms are more densely packed in the interior of the fiber model than they are

on the surface. The bond angle deviations at the odd layers are all negative, while

almost zero at even layers. Silicon atoms are at the even layer. This fact suggests that
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Fiber axrs

Figure 3.5: Surface atoms are the atoms further from the axis of the fiber (dotted line)

than any spatially closed atoms. If a right circular cone whose axis is perpendicular

to the fiber axis at an atom does not enclose any other atom, the atom upon which

the cone is placed is a surface atom, such as the green atom. Otherwise the atom

is not a surface atom, such as the blue one. Red and yellow atoms are oxygen and

silicon atoms respectively.
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Figure 3.6: The average bond length deviations from the optimal value (top left

panel), the root mean square deviation (RMSD) of bond lengths from the optimal

value (top right panel), the average bond angle deviation from the optimal value

(bottom left panel) and the RMSD of bond angle deviation from the Optimal value

(bottom right panel) in all seven layers of the fiber model. The first layer is the fiber

surface, and the highest layers are in the center of the fiber.

the average bond angles at silicon atoms are very close to the optimal value of 109°.

Average bond angles at oxygen atoms are all about 10° less than the optimal value

of 147°. This is caused by the presence of non-negligible number of four-fold rings in

the network. The RMSD of both bond length distortions and bond angle distortions

are small in all layers, proving distortions in our fiber model are acceptable.
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3.2 Amorphous Film Silica Model

3.2.1 Procedure to Build Amorphous Film Network Model

Fully coordinated amorphous film silica model can be easily built from crystalline

silicon networks that are cut along the (0,0, 1) direction. All the atoms at the (0,0, 1)

surface have two nearest neighbors, while all the non-surface atoms are fully coordi-

nated, as shown in Figure 3.7. The example in the figure is made up of 4 by 4 by 8

supercells of crystalline silicon. It is periodic in :r and y directions but finite in the

z axis. Since each supercell of the crystalline silicon network has 8 atoms, the total

number of atoms in the supercell of the film model is 1024.

Following the standard procedure described in Chapter 2, the two-coordinated

atoms at the (0,0, 1) surfaces are removed after their nearest neighbors are connected

by new bonds. The resulting network is fully coordinated. The number of remaining

atoms in the supercell is reduced from 1024 to 960 after this procedure. The WWW

algorithm is then applied on this network to make it amorphous. Oxygen atoms

are added between every silicon—silicon bond to transfer the amorphous film silicon

network to an amorphous film silica network. The supercell of the final result is shown

in Figure 3.8. There are 960 silicon atoms and 1920 oxygen atoms in the supercell.

The size of the supercell is 28.70A along the :r and y axes, and is 57.39A along the z

axis. The model is finite in 2 directions. The top and bottom surfaces of the supercell

are the surfaces of the film model.

3.2.2 Properties of Amorphous Film Network Model

Similar to our studies in the amorphous fiber silica model, we can identify the

layers in the amorphous film silica model. The atoms in the first layer are the surface

atoms. The atoms in the second layer are the nearest neighbors to the first layer

atoms, so on and so forth. All odd numbered layers in the model are made up of
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Figure 3.7: A network that is made up of 4 x 4 x 8 supercells of crystalline silicon.

Since the network is finite in z axis, atoms are not fully coordinated at the top and

bottom surfaces of the network. The network is periodic in r and y directions. Fully

coordinated silicon atoms are colored yellow, while two-coordinated atoms are colored

blue.
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Figure 3.8: The supercell of an amorphous film silica network model. The sizes of the

supercell are 28.70A, 28.70A and 57.39A along the :c, y and 2 directions respectively.

The top and bottom surfaces of the supercell are the surfaces of the film silica network

model. There are 960 silicon atoms (yellow) and 1920 oxygen atoms (red) in the

supercell.
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oxygen atoms while all even munl’wred layers are of silicon atoms. Figure 3.9 shows

the bond distortions at all layers in the amorphous film model. The average deviations

of bond lengths from the optimal value is highest at the surface, then drops almost

linearly to be about zero at the fifth layer. The distortions caused at the surface is

then limited to the outer-most five layers of the film. The RMSD of bond lengths

from the optimal value is also the highest at the surface, then decreases to be normal

within five layers. Since the amorphous fiber silica model has only seven layers, the

whole fiber silica model are influenced by the surface effect. The average deviations

of bond angles in the amorphous film silica model oscillate around zero at the silicon

atoms, but have negative values at the oxygen atoms. The smaller average bond angle

at the oxygen atoms is caused by the four-fold rings in the network. The RMSD of

all silicon-oxygen bonds is 0.09A, which is slightly better than that in the amorphous

fiber silica model. The RMSD of bond angles at silicon atoms and at oxygen atoms

are 952° and 12.64°, which are all improved when compared to the corresponding

values in the amorphous silica model.

3.3 Distribution Functions

Due to the lack of long range order in amorphous networks, there is no way to

predict positions and orientations of atoms far from the observation point based on

the spatial arrangement of atoms nearby. The only information that is available in an

amorphous network is the correlations between atomic distributions. Several distri-

bution functions have been used to depict the atomic spatial distribution correlations.

The nomenclatures of the distribution functions vary in literatures. The definitions

used in this dissertation follow what are used by Thorpe et al. [97].

The Density Distribution Function (DDF) p(r) is the probability to find an atom

in a unit volume that is at a particular distance r away observed from an averaged
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Figure 3.9: The average bond length deviations from the optimal value (top left

panel), the RMSD of bond lengths from the optimal value (top right panel), the

average bond angle deviation from the optimal value (bottom left panel) and the

RMSD of bond angle deviation from the optimal value (bottom right panel) in all

layers of the amorphous film silica network model. The first layer is the film surface,

and the highest layers are in the center of the film.
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atom. It is mathematically defined as

 p(r) = ,,..,,,1-{;Zd(r — r.) (3.1)
15:61

in which N is the total number of atoms in the network, r,-,« is the distance between

atom i and atom j and the sum is over all pairs of atoms excluding such terms as i

and j are equal. 6(r — r,,—) is a Dirac delta function.

The Radial Distribution Function (RDF) T(r) is the total number of atoms

within a thin spherical shell whose inner and outer radii are r and r + dr respectively

observed from an averaged atom. It is related to the DDF by:

T(r) = p(r)47rr2 = —— 2 6(7‘ — r,,-) (3.2)

An integration of T(r) over all distance range produces N — 1 which is the total

number of atoms in the network excluding the atom observed from.

The atomic distribution in a random network is virtually uniform when the

distance r is large. Therefore RDF should be roughly 47rr2p0dr in the limit of r —> oo,

in which p0 is the average number density of the network. Hence p(r) approaches the

average number density pa in the long distance range. It is for this reason that the

p(r) defined in Equation 3.1 is called the density distribution function. The density

distribution p(r) is not the same as the average number density p0 in the short and

intermediate distance range because the atomic distribution is far from uniform when

r is small. The DDF and its sister functions are great tools in analyzing the atomic

arrangement in the short and intermediate distance range in amorphous networks.

The Reduced pair distribution function (RPDF) G(r) is related to the DDF by

the simple transformation

G(r) = 47rr [p(r) — p0] (3.3)
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Obviously the RPDF approaches zero in the long distance range where p(r) is virtually

the same as p0. RPDF is indirectly measured in X-ray or neutron powder diffraction

experiments through a conversion from the diffraction pattern s(q) by

C(r) : — [000 [s(q) — 1] sin(qr)q(lq (3.4)

Because of the easy conversion between RPDF and the powder diffraction pattern,

RPDF and its sister functions have been extensively used as the standard tool to study

the short and intermediate atomic spatial distributions. The DDF, RDF, RPDF and

other variants are generally called the pair distribution function (PDF). There are

two typical approaches in comparing the PDF obtained from modeling and from

experiments. The first approach is to convert the diffraction pattern s(q) to PDF,

then compare the experimentally obtained PDF with the PDF from modeling in the

real space. The second approach is to convert the PDF to a diffraction pattern, then

compare the diffraction pattern from the modeling with that from the experiments in

reciprocal space. The first approach is preferred because a peak in the real space has

obvious meanings while a peak in the reciprocal space may not be so easy to explain.

One question we want to address is how much our amorphous fiber and film silica

models differ from CRN models in term of PDF in the short to intermediate distance

range. The PDF of our amorphous fiber and film models have to be close to that of

CRN models, otherwise our models are likely to be unrealistic. The comparisons of

the PDF of the amorphous fiber and film models with the PDF of the CRN silica

model are thus not only a test of the validity of the built models, but also a test on

the algorithm upon which the DCRN models are built.

But all variants of PDF are defined under the assumption that atoms are isotrOp-

ically distributed in all directions. However the atomic distributions in both the fiber

and the film models are anisotropic. Atoms in the fiber model are distributed along a
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long cylinder, and atoms in the film model are distributed within two surfaces. The

long range behaviors of the PDF of the fiber and film models are thus quite different

from the PDF of CRN models. Figure 3.10 shows the RDF of three amorphous mod-

els: the CRN model, the amorphous fiber model and the amorphous film model. The

RDF of the CRN model rises nmch faster than the RDF of the amorphous film model,

which is roughly linear in long distance range. The RDF of the amorphous fiber has

a maximum at about 10A. It is almost flat in long distance range. Therefore it is not

reasonable to compare the PDF of the amorphous fiber, amorphous film and CRN

models directly. To reveal the differences in PDF of the three models in the short and

intermediate distance range, we define a new distribution function called the Reduced

Density Distribution Function (RDDF) P(r) which is the radial distribution function

of a network model divided by the radial distribution function of a uniform media

that has the same overall shape as the model.

As discussed in Appendix A, the RDF of infinitely large uniform media, of uni-

form media in the shape of a film of thickness d, and of uniform media in the shape

of a fiber of radius (1 are

3,1».(r) = 47rr2p0 (3.5)

47rr2(1— {7);}0 0 g r < d

Tflilm(r) : (36)

27rdrp0 r > d

47rr2p0[ — fin + 5.2-mg) + 3%(1— gmgfl r < 2d

Triber(r) :

 47.13,), [ — $531+ 5;»)E(sin—l (27"), .L) + 36% — I—.)K(2d)] r > 2d

(3.7)

in which p0 is the average number density and functions E and K are the elliptic
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Figure 3.10: Radial Distribution Function of a CRN model (blue curve), of an amor-

phous film model (green curve) and of an amorphous fiber model (red curve).



integrals defined as

5

EM, 1:) : / \/1 — A72 sin2 19(10

0

 I\'(k) = f2 ‘19 , (3.8)

0 m

The merit of the RDDF is that by dividing the RDF of uniform media of the same

shapes, the RDF of amorphous models are transformed into new functions in which

the peaks in the short and intermediate distance range are manifested. Figure 3.11(a)

shows the RDF of the amorphous fiber model superimposed with the RDF of uniform

media in the shape of a fiber. The peaks in the short and intermediate distance range

are buried in the noise. Figure 3.11(b) shows the RDDF of the same fiber network

model. Compared to the RDF, RDDF clearly exposes the first several peaks of the

correlations in local atomic arrangement. The effects of the overall shapes on usual

PDF are totally eliminated.

The RDF of infinitely large and uniform media is 47rr2p0, as given in Equation 3.5.

Therefore the RDDF of CRN models which are infinite and isotopic is the RDF of

the model divided by 47rr2p0, which is identical to the definition of the DDF of the

CRN models except a constant factor p0. The RDDF of the amorphous fiber and film

models whose atomic distributions are anisotropic are different from the corresponding

DDF.

Atomic correlations in the local and intermediate distance range are better dis—

closed in RDDF than in any other distribution functions. Figure 3.12 shows the

RDDF of a CRN model, of the amorphous fiber model and of the amorphous film

model. All three RDDF remarkably resemble each other. The first sharp peak comes

from the nearest neighbor silicon-oxygen distance. The second peak is composed of

the second nearest neighbor oxygen-oxygen correlations and the silicon-silicon corre-

lations. A third peak is broad and barely visible in all three RDDF. The RDDF of
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Figure 3.11: Figure (a) shows the RDF of the amorphous fiber silica model super-

imposed with the RDF of uniform media in the overall shape of a fiber. The RDF

of amorphous fiber model divided by that of the uniform media produces the RDDF

which is shown in Figure (b). The effects of shapes on the atomic distribution func-

tions is absent in RDDF.

54



 

 

Amorphous Fiber Model

Amcrpheus Fllm MmClel

Continuous Random Model

 

 

A
l
l
l
l

 

V I i Y T I V I Y I V T

b

"
I
f
Y
Y
I
I
T
Y
Y
f
I
'
V
v
'
V
V
V
Y
'

I
A
J
L
A
A
J
L
A
A
A
L
L
‘
L
L

  
  

'
V
V
'
I
V
I
V
V
V
V

  

R
e
d
u
c
e
d
D
e
n
s
i
t
y
D
i
s
t
r
i
b
u
t
i
o
n
F
u
n
c
t
i
o
n

P
(
r
)

w

I

 

  

v
v
v
r
v
a
r
f
r
v
v

    0 l AAAAAAAAA l AAAAAAAA LLAAAAAAALALLLLALALLLI LLLLLLLLL 1 AAAAAAAAA

0 1 2 3 4 5 6 7 8

Figure 3.12: The RDDF of an amorphous fiber model (red curve), of an amorphous

film model (green curve) and of a CRN model (blue curve). The inset is the close-ups

of the second peaks in the RDDF of the three models.

all three models are featureless beyond the third peak.

The first peak in the RDDF of the CRN model is narrower and sharper than

that in the RDDF of the amorphous fiber and film models. This is due to the

smaller distortions in nearest neighbor silicon-oxygen bond lengths in the CRN model.

The atoms at and close to the surfaces in the amorphous fiber and film models are

unavoidably more distorted in bond lengths and angles than the atoms far away from

the surface. Since the CRN model does not have any surface, the average bond lengths

and angle distortions in CRN models are expected to be lower than those in the fiber

and film models in which surfaces are present. This is proved by the fact that the

RDDF of the first peak of the CRN model is sharper and narrower than that of the

other two models.



The amorphous fiber model has the largest surface area, both in absolute and

in relative terms. Therefore the distortions in the amorphous fiber model should

be the largest among the three. Since the bond length distortions incurs higher

potential penalties than the bond angle distortion does, most of the distortions are

bond angle distortions, particularly oxygen bond angle distortions because the oxygen

bond angles are softer than the silicon bond angles. The second peak in RDDF is the

distribution of second nearest neighbor distances, which is an indirect measurement

of the bond angle distortions. The second peak of the RDDF of the fiber model is the

widest of the three RDDF, indicating the bond angle distortions in amorphous fiber

model are larger than those in the other two models. The amorphous film model is

in the middle between the amorphous fiber model and the CRN model in term of the

width of the second peak.

The general forms of the RDDF of the three models are the same. The shapes

and the positions of the peaks are virtually identical. In this sense the DCRN models

generated by our algorithm — the amorphous fiber and amorphous film models shown

in this chapter — do not differ much from the CRN models in terms of local and

intermediate atomic distributions. Though the distortions of bond lengths and angles

at the surfaces play roles in affecting local atomic distributions, they are not beyond

reasonable levels so that the RDDF are not altered significantly.

3.4 Metal-Adamantane Network Model

Pivan et al. [98] synthesized a chemical material containing triogermanate ada-

mantane [Ge4Siol4— units in 1994. X-ray diffraction experiment proves this material

is crystalline. Each adamantane unit is a tetrahedron, as shown in Figure 3.13. Each

adamantane unit is composed of ten sulfur atoms and four germanium atoms. Six

out of the ten sulfur atoms -— the gold atoms in the figure — are bonded to the four



 
Figure 3.13: A [Ge4510]4~ adamantane unit. Each adamantane unit is composed of

ten sulfur atoms and four germanium atoms. Four out of the ten sulfur atoms are

connected to the sulfur atoms in the other adamantane units, or are bonded to metal

atoms. These four sulfur atoms are colored in red. The other six sulfur atoms are

bonded to the germanium atoms in the same adamantane unit. They are colored gold

in the figure. Germanium atoms are colored as yellow. The whole adamantane unit

forms a tetrahedron.

germanium atoms. The other four sulfur atoms are called the terminal sulfur atoms.

One end of each terminal sulfur atom is bonded to a germanium atom in the same

unit, and the other end may be connected to a metal atom or a terminal sulfur atom

in another adamantane unit. Later studies [99, 100, 101] report metal-adamantane

networks. All these networks are crystalline and micro-porous.

The material synthesized by Bonhomme and Kanatzidis [102] has mesoscopic

structures. Thin layers of crystalline adamantane units are separated by long or-

ganic surfactant molecules. A novel metal—adamantane material is first reported by

MacLachlan et al. [103]. Long surfactant molecules cluster to form large cylinder-

shaped tunnels. These tunnels are well organized on a hexagonal network. The metal
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atoms and the adamantane units fill between these tunnels. Therefore from a topolog-

ical point of view, the metal atoms and the adamantane units form a porous network.

A subsequent work [104] suggests that the metal-adamantane network is well ordered.

On the contrary, Rangan and his co—workers [105] propose that the metal-adamantane

network should be disordered. Later X-ray powder diffraction analysis by Wachhold

et al. [106] confirms the lack of long range order in the metal-adamantane network.

Hence the metal-adamantane network is not only porous, but also amorphous. A

schematic diagram is plotted in Figure 3.14. The organic surfactant molecules form

cylindrical channels. According to Wachhold et al. [106], the diameter of the channels

ranges from 22A to 32A, depending on the lengths of the surfactant molecules. The

separation between the channels are between 30A to 44A. Therefore the thickness of

the metal-adamantane network can be as thin as about 10A in some regions of the

material. Since the distance between a terminal sulfur atom and the center of the

adamantane unit is only 4.47A, at most two layers of adamantane units are allowed

in the thinest regions between the surfactant channels.

Metal atoms are tetrahedrally coordinated to the adamantane units. The ada-

mantane units are also tetrahedrally bonded to other atoms. In this sense the amor-

phous metal-adamantane network resembles the amorphous gallium arsenide network,

in which all atoms are tetrahedral. It is energetically favorable for the metal atoms

to be bonded to adamantane units, and for the adamantane units to be connected to

the metal atoms. All the rings in the network should be even-numbered. However a

large amount of five-fold rings and seven-fold rings exist in the networks built by our

algorithm. A large number of unlikely bonds will be present if the metal-adamantane

network is modeled by our algorithm. For this reason we turn to other models to

model the metal-adamantane network.

As the starting point we use an amorphous gallium arsenide model constructed

by Barkema and Mousseau [107]. This model contains 1000 atoms. There are not any



 

Figure 3.14: A schematic diagram of the proposed mesoscopically porous metal-

adamantane material. Surfactant molecules cluster to form long cylindrical channels.

The diameters of the channels range from 22A to 32A, depending on the lengths of

the surfactant molecules. These surfactant channels can be approximately viewed as

being on a hexagonal lattice. Average distance between channels are about 30A to

44A. These channels are sketched as the light blue circles in the figure. Metal atoms

and adamantane units form cross-linked network between the channels.
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odd-numbered rings in the model. The gallium and arsenic in the model are redefined

to become metal atoms and adamantane units respectively. Since all the rings in the

model are even-numbered, each metal atom is bonded to four adamantane units, and

each adamantane unit is connected to four metal atoms. Since this is a bulk model,

only the bulk properties of the metal-adamantane network can be studied.

The network is then relaxed by a Keating-like potential

E = $2022]- — 75,2").2 + 37'" 20.17.13" — 7'?" cos 6",)2 + €220.“ - r12 — rs’rm cos 0,)2

m i,j<k z

(3.9)

in which a, ,8," and 3.9 are the potential constants. The relative strengths of a : B", : [33

are set to be 10 : 3 : 1 in the optimization. The minimized structure is not very

sensitive to the relative values of these potential constants. The sum of i is over

all metal atoms. The sum of j and k are over all nearest neighbors of the metal

atoms. The sum of l is over all terminal sulfur atoms. The first term in the potential

optimizes the bond lengths between the terminal sulfur atoms and the metal atoms.

The second and the third term minimize the bond angle deviations at the metal atoms

and at the terminal sulfur atoms respectively. The optimal bond length rm between a

metal atom and a terminal sulfur atom is 2.43A. The optimal bond angle at the metal

atoms is tetrahedral. The optimal bond angle at the terminal sulfur atoms is set to

be 120°. Variations of the optimal terminal sulfur angle do not affect the structural

properties of the relaxed network qualitatively. Adamantane units are held as rigid

bodies in the optimization. They are rotated or translated, but their inner structures

are not altered.

Figure 3.15 shows the comparison of the synchrotron powder diffraction pat-

tern [108] of the real material with the calculated X-ray diffraction pattern of the

modeled network. The calculated and the experimental diffraction patterns match

well. There is an one to one correspondence between the peaks calculated from the
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Figure 3.15: The comparison of the X-ray diffraction patterns measured from the

real material (red curve) and calculated from the amorphous model (blue curve).

The experimental data is in courtesy of Petkov et al. [108].

model and those measured from the real material, except the peak at q : 1.5(1/A).

The good match between the experimental data and the calculated data proves that

the metal-adamantane network in the real material is amorphous. Though the real

material is porous while the model is bulk, the local short distance order of the

network model is identical to that in the real material.

We tried a variety of combinations of the potential parameters in Equation 3.9

to relax the network model. The width and the height of the peak vary with the

change of parameters. The central positions of a few peaks shift a little bit under

different parameters. But no matter under what combination of parameters, the peak

at q : 1.5(1/A) observed in experimental data is always missing in the diffraction

pattern calculated from the amorphous metal-adamantane network models. Since a
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peak at small (1 value implies a medium to long distance range order, the real ma-

terial is seemingly rnore ordered in medium to long distance range than our bulk

amorphous metal-adamantane network model. There are two possible causes of the

observed peak at q = 1.5(1/A). One is that the peak may be caused by the surfactant.

molecules. These surfactant molecules are packed in a. more ordered way than the

metal-adamantane network. Another possibility is that. the metal-adamantane net-

work in the real material is more ordered than that in our amorphous model. Since

the thinest regions between the hexagonal cylindrical surfactant channels allow up

to two layers of adamantane units, the metal-adamantane network may be more or-

dered than purely amorphous to fill the space more efficiently. However we cannot

do further studies until we can design an algorithm to generate amorphous porous

networks with only even-numbered rings, and more experimental information about

the geometry of the surfactant is acquired, which is not available now.
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Chapter 4: Constraints,

Conformations and Flexibility

4.1 Constraints and Conformations

The feasibility to build amorphous networks has been analyzed in the previous

two chapters. Amorphous silicon and silica networks have two characteristics: a topol-

ogy that is different from that. of the crystalline networks, and the spatial placement

of atoms that makes the variations of bond lengths and angles small. A bond between

two atoms is built when one or two electrons are distributed on the molecular orbitals

formed by the two atoms. Each molecular orbital has its characteristic energy and

electron density distribution. The bond is stable only when the distance between the

two atoms is in a narrow range so that the shared electrons are distributed in the

low energy orbitals. The bond breaks if the distance between the two atoms is elon-

gated from its optimal value, when the shared electron(s) are driven into high energy

molecular orbitals. This explains why the variations of the bond lengths, especially

the bond lengths of covalent bonds are small. Bond angle variations are small be-

cause the electron interactions between three insulator or semi-conductor atoms favor

certain low energy geometries.

Because bond length and angle variations are small, and because it costs energy

to distort bond lengths and angles, it is reasonable to assume that the bond lengths

and angles do not vary in time at all in moderate temperatures. We call the fixed

bond lengths and angles, the bond length and angle constraints respectively. For the

sake of simplicity, from here on the phrase bond constraints is used to designate both

bond length constraints and bond angle constraints, unless otherwise stated.

Previous chapters presented how to build amorphous silicon and silica networks
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that obey certain topology requirements and have good bond geometries. Once a

network is built, the topology of the network as well as the bond constraints are

determined. We call the spatial arrangement of atoms that satisfies a certain set of

topology requirements and bond constraints a conformation. Once an amorphous net-

work model is built, one conformation that satisfies the topology and bond constraints

specified by the spatial arrangement. of atoms in the network is found.

It is logical to ask the following two questions once one conformation is built:

1) Is the network model we built the only conformation that obeys the topology and

constraints requirements? 2) How can we search all the other possible conformations

that observe the same topology and bond constraints if we know, by some means,

there should exist other conformations? This and the following two chapters address

these two questions. This chapter discusses what types of networks can have more

than one conformation. Chapter 5 depicts an algorithm in searching conformations

for the flexible regions in non-crystalline networks. Chapter 6 shows a couple of

examples.

4.2 Flexibility and Degrees of Freedom

A molecule is flezible when it has a positive number of internal degrees of freedom

(DOF). Otherwise the molecule is rigid. The DOF can be easily counted by the simple

equation:

DOF = 3 x N — N. — 6 (4.1)

where N is the total number of atoms in the molecule and NC is the total number of

independent constraints. The number 6 comes from the six degrees of translational

and rotational rigid body motions. The DOF represents the actual number of in-

dependently rotatable bonds in the molecules. The chain molecule in Figure 4.1(a)

has four atoms, three independent bond length constraints and two bond angle con-
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(a) (b) ’0 a)

Q»
Figure 4.1: Both the chain molecule shown in (a) and the ring molecule shown in (b)

have one DOF. The independently rotatable bonds to in both molecules are marked

as red. Figure (b) is one out of seven possibilities in selecting the independently

rotatable bonds in the seven-fold ring.

straints. Therefore the molecule has 3 x 4 — 3 — 2 — 6 = 1 DOF. This single DOF

is the rotation of the middle bond w indicated in the figure. Rotations of the bond

to produce an infinite number of conformations, all of which comply with the same

topology and bond constraints. This molecule is flexible with one DOF.

The flexibility of molecules made up of rings is also represented by the DOF,

which is counted by Equation (4.1). The ring molecule in Figure 4.1(b) has seven

atoms, seven independent bond length constraints and seven bond angle constraints.

Hence the molecule has 3 x 7 — 7 4 7 - 6 = 1 DOF. Although all seven bonds in the

molecule are rotatable, only one bond is independently rotatable. The other six bonds

have to be rotated corresponding to the rotation of the single independently rotatable

bond to close the seven-fold ring, otherwise one or more bond constraints will be

violated. Any of the seven bonds can be taken as the independently rotatable bond,

with the consequence that the remaining six bonds are not independently rotatable.

The bond w shown in the figure shows one out of seven choices of the independently

rotatable bond. A rotation of this bond will produce multiple conformations for the

seven-fold ring, as long as the other six bonds are rotated appropriately to close the

ring.



There are N bond length constraints and N bond angle constraints in an N-fold

ring. Thus 3 x N — 2N — 6 = N — 6 is the DOF of a N-fold ring. Therefore a ring

whose size is less than or equal to 6 is rigid, whereas a ring whose size is greater

than 6 is flexible. Flexibility not only means multiple conformations, but also means

these conformations are in a continuous domain. The conformations of the chain

molecule shown in Figure 4.1(a) can be labeled by the dihedral angle w of the middle

bond as shown in the figure. A conformation of the chain molecule whose to value

is too has two infinitely closed neighboring conformations at can + 6 and too — 6 in

which the deviation 6 is infinitely small. Each conformation of the seven-fold ring,

shown in Figure 4.1(b), is a point in the seven dimensional space spanned by the

seven dihedral angles of the seven bonds. For any point in the seven dimensional

space there are neighboring points that are infinitely close to it. By repetitively

transforming from one conformation to another close by, the seven-fold ring is able to

transform continuously from an initial conformation to a very different one without

breaking any bond constraints and topology requirements. It is worth noting that

there may be multiple clusters of conformations that fit bond constraints and topology

requirements. The conformations in each cluster are continuous, but bond constraints

have to be broken for the molecule to transform between clusters of conformations.

For example a generic seven-fold ring has two clusters of conformations, as will be

discussed in Section 5.2.1. It does break bond constraints for the seven-fold ring

to transform from any conformation in one cluster to an arbitrary conformation in

another cluster, but not when the seven-fold ring transform between conformations

in the same cluster.

A rigid molecule may have multiple conformations too, though its DOF is less

than or equal to zero. A generic six-fold ring has two conformations, the boat and the

chair, as shown in Figure 4.2. A six-fold ring is rigid because its DOF is zero though

it has two instead of one conformation. The difference between a six-fold ring from
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Figure 4.2: The chair (left) and the boat (right) conformations of a generic six-

fold ring. A six-fold ring is rigid due to its zero DOF, though it has two distinct

conformations. Bond constraints have to be violated for the six-fold ring to transform

from the chair to the boat conformation, and vice versa.

a flexible ring is that the two conformations are not continuous. They are isolated

single points in the six dimensional conformational space spanned by the six dihedral

angles of the six bonds. There are not any other conformations that are infinitely

close to either of the conformations, nor are these two conformations close to each

other.

In summary, a network is flexible when it has a positive number of DOF. It is

guaranteed that the network has multiple and continuous conformations. A rigid

network may have multiple conformations, but we are not interested in sampling

these conformations because bond constraints have to be violated for the network to

transform from one isolated conformation to another. The continuous conformations

of the flexible molecules are the intrinsically allowed motion of the networks, which

are what we are specifically interested in.

4.3 Flexibility Analysis

Flexibility is a local property. DOF are usually confined to local regions in a

network. For example when only bond lengths constraints are counted, the network

shown in Figure 4.3(a) has one DOF. But only the right half of the network which

are connected by gray bonds is flexible, while the left half is rigid.
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Figure 4.3: Two networks in 2D space with equal number of bond lengths constraints

and atoms. The right half of the network shown in Figure (a) is flexible, whereas the

left half of the network has an excessive constraint shown as the dashed bond. The

network shown in Figure (b) is uniformly rigid. The blue and gray bonds are rigid

and flexible bonds respectively.

Constraints and DOF should be counted in all local regions of a network in

order to count and predict the distributions of DOF exactly. It is worth noting

that only independent constraints should be counted. For example there are equal

number of atoms and bond length constraints in the two networks in a 2D plane

shown in Figure 4.3. The network shown in Figure 4.3(a) is flexible on its right half

yet rigid on its left half. The left half of the network is rigid with or without the

presence of the bond length constraint shown as the dashed bond. Therefore the

bond length constraint shown as a dashed line is not an independent constraint. It

should not be counted when calculating the DOF of the network. The network shown

in Figure 4.3(b) does not have any excessive bond length constraint. It is uniformly

rigid.

Flexibility properties of generic networks which include both bond length and

bond angle constraints can be accurately analyzed by the software Floppy Inclu-

sion and Rigidity Substructure Topography (FIRST) developed by Jacobs et al. [47,

51]. The software has been utilized to study phase transitions in random glass net-

works [51, 109].

Flexibility analysis on the amorphous fiber silica and amorphous film silica net—

works proves that all these two networks are rigid, without any flexibility in any local

regions. This is indeed expected. The topology of our amorphous SiOg models is
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that 1) every oxygen atom is connected to two silicon atoms; 2) every silicon atom is

connected to four oxygen atoms. Therefore there are 4N bond length and 5N bond

angle constraints in an amorphous silica network with N SiOg units. The DOF of

such networks are 9N —— 9N — 6 = —6 which is negative regardless of the size of the

network. Another type of non-crystalline networks, the proteins, on the other hand,

is rich in flexibility and conformations. Therefore we shift the subject of study from

amorphous silica networks to proteins in the following discussions.

4.4 Proteins

4.4.1 Amino Acids

Proteins are composed of twenty standard amino acid residues. The amino acid

residues differ from each other by their side chain groups. The side chain groups are

the R groups shown in Figure 4.4. The twenty standard amino acid residues differ

from each other in their side chain groups. Main chains of amino acid residues are

made up of a nitrogen atom, a carbon atom named as C0 to which the side chain

atom is covalently bonded, and a carboxyl group. The dihedral angle of the bond

between a main chain nitrogen atom and the Ca atom is called the angle (1‘), and the

dihedral angle of the bond between the Ca atom and the carboxyl carbon atom is

called the angle z/J. Statistical studies reveal that the angles (13 and 2/2 are distributed

in certain regions in the whole to and d) plane which is called the Ramachandran

plot [110]. Amino acid residues are connected to form a chain through the covalent

bonds between the carboxyl carbon atom of a residue and the nitrogen atom of the

next residue, as shown in Figure 4.4.

Typical proteins are composed of one or several chains of amino acid residues.

Each chain can contain hundreds of amino acid residues.
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Figure 4.4: A short chain of two amino acid residues. Amino acid residues differ from

each other by their side chain R groups. The main chain of residues is made of a

nitrogen atom N, a carbon atom Ca and a carboxyl group. The dihedral angles of

the bond between the nitrogen and the Ca atom and between the Ca and the carbon

atom are called angle q) and a respectively. Amino acid residues are connected to

form chains by the peptide bonds which are shown as the double dashed bonds in the

figure.
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Figure 4.5: A hydrogen bond is an interaction between a hydrogen atoms and a

polar atom that is not covalently bonded to the hydrogen atom. The polar atom

that is covalently bonded to the hydrogen atom is the hydrogen bond donor atom,

designated by the circled letter D in the figure. The hydrogen bond acceptor atom

which is the polar atom that is not covalently bonded to the hydrogen atom is donated

by the circled letter A in the figure. A non-hydrogen atoms covalently bonded to the

hydrogen bond acceptor atom is usually called the base atom, indicated by the circled

letter B in the figure. The hydrogen bond is shown as the dashed line.

4.4.2 Hydrogen Bonds and Hydrophobic Interactions

Hydrogen bonds and hydrophobic interactions link one or multiple chains of

amino acids into complicated networks. Hydrogen bonds are formed between a hy-

drogen atom that is attached to a polar atom and another nearby polar atom. The

polar atom that is covalently bonded to the hydrogen atom is called the hydrogen

bond donor, shown as the atom D atom in Figure 4.5. The polar atom that is close

but not covalently bonded to the hydrogen atom is called the hydrogen bond acceptor

atom, shown as the atom A in Figure 4.5. Both the donor and the acceptor atoms

can be nitrogen or oxygen atoms. A non-hydrogen atom that is covalently bonded to

the acceptor atom is called the base atom which is shown as the atom B in Figure 4.5.

Hydrogen bonds favor certain geometries [111]. The distance between the donor

and the acceptor atom is typically in a range between 2.5A and 3.5A. The distance

between the donor and the hydrogen atom is in a narrow range around 1.0A. The

distance between the hydrogen and the acceptor atom is between 1.5A to 2.5A. The

donor-hydrogen-acceptor angle, which is usually called the hydrogen bond angle, is

commonly in a large range from 120° to 180°. Strong hydrogen bonds can be distin-

guished from weak hydrogen bonds based on geometry considerations. For example
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the bond angles of strong hydrogen bonds are usually larger than 150°. There have

been several empirical hydrogen bond potentials [112, 113, 114]. All of them evaluate

energies of hydrogen bonds based on the geometries of bond lengths and angles.

Hydrophobic interactions are very important in biological systems. They arise

from the weak polarizability of water molecules around biochemical molecules. The

attraction between the water molecules is stronger than that between the water

molecules and the non-polar side chains or main chains of proteins. Therefore the

water molecules tend to weave a net. of hydrogen bonds around the proteins and force

the proteins to collapse tightly so that all the non-polar atoms are buried inside of

the proteins. This effect makes the non-polar atoms in proteins appear to attract

each other. This phenomenon is called the hydrophobic effect.

Hydrogen bonds and hydrophobic interactions lock a chain of amino acid residues

into a network. Showing only covalent bonds in its one dimensional chain configura-

tion, the protein has the maximum number of DOF. Any bond, such as the main chain

to and d) dihedral angles shown in Figure 4.4 can rotate freely in such configurations.

The protein explores the maximum allowed conformational space. When a hydrogen

bond forms between a hydrogen atom and a hydrogen bond acceptor atom, or when

a hydrophobic interaction stably forms when two non-polar atoms are close to each

other, the addition of the constraints restricts the available motions of the protein.

When more and more hydrophobic interactions or hydrogen bonds form within the

protein, motions in some regions of the protein can be restricted so much that these

regions are effectively rigid. We call these regions the rigid cores of the proteins. The

concentration of constraints may not reach the critical value in some other regions of

the proteins so that these regions of protein can still have internal motions. We call

these regions the flexible regions. The hydrogen bonds and hydrophobic interactions

collectively link the amino acid residues in proteins into networks of interactions.

It is common for a protein to have one or multiple rigid cores and one or several



major flexible regions. The rigid core functions as the stabilization cores of the

protein. The flexibility in other regions in the proteins allows the proteins to access

a variety of conformations. The constant change of conformations in proteins is the

driving force of protein motions and functions.

4.4.3 Interactions in Proteins

Potential energy of proteins in typical molecular dynamics (MD) simulations such

as the H94 [115] potential used in Amber [116] and the CHAR,l\‘IM [117] potential used

in CHARMM [118] have forms like:

E = Z K.(~r — r"")2 + 2: KM — 6"”)2 + Z [1" [1+ cos (no.6 — 7)]

  

7
bonds angles dihedrals

Al“ Bi.’ (1211'
+2 [,’2 — f] +—3 (4.2)

where the first, the second, the third and the last terms are the bond length vibration

energy, the bond angle vibration energy, the dihedral angle rotation energy and the

sum of the electrostatic and van der Waals interactions respectively. Bond length

vibration energy increases rapidly with small variation in bond length. For example

the energy increases by about 3 kcal/mol when the bond length of a typical covalent

bond deviates about 0.08A from its equilibrium value. The bond angle vibration

energy is weaker than the bond length vibration energy, though it incurs noticeable

energy changes as well. The energy increases by about 3 kcal/mol when a typical

bond angle changes by about 03°. The exact value depends on the types of atoms of

the bonds. The dihedral angle rotation energy is usually small. A deviation of about

13° in the dihedral angle increases the energy by about 3 kcal/mol. Though energies

of both bond length vibration and bond angle vibration can increases to infinity,

the dihedral angle rotation energy is capped at V", which ranges from 1 kcal/mol to

20 kcal/mol, depending upon the types of bonds. The van der Waals energy does
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not vary much in usual em'ironments where non-lmnded atoms do not closely contact

with each other.

Our constraint concept can be regarded as a result. of two steps of simplification

from the usual potentials used in MD. First, since the bond length and angle vibration

energies are high compared to the other terms, only these two terms are taken into

account while the other energies are ignored. Second, since bond lengths and angles

do not vary much under common conditions, the high frequency vibration of bond

lengths and angles are neglected. Shown in Figure 4.6 is a schematic diagram of the

energy in the conformational space. The dotted line represents the energy when all

terms in Equation 4.2 are. included. The dihedral angle rotation energies and the

van der Waals interactions produce small ripples on the smoother surface which is

shaped by the bond length and angle vibrations. When these smaller interactions are

ignored, the energy landscape is much smoother, shown as the dashed line. The solid

lines in the figure show the simplifications introduced by our constraint concept. The

energy is either zero or infinite, depending on whether bond constraints are obeyed

or violated.

Our constraint concept ignores the details of the energy surface. It has two

obvious advantages. The first one is that flexibility analysis which is based on the

constraint concept can be applied to predict those flexible regions in proteins upon

which computation resources can then be exclusively applied. The second one is that

all the conformations obeying the bond constraints comprise the intrinsic conforma-

tions of the proteins which are not affected by any other effects.

4.4.4 Flexibility Analysis on Proteins

The flexibility analysis software FIRST that has been applied on random glass

networks has been successful in predicting flexibility properties [88] and the folding

cores [89] of proteins. As stated in Section 4.4.2, hydrogen bonds and hydropho—
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Figure 4.6: Schematic figure of the simplifications of the common empirical potentials

of proteins. The x-axis is a general coordinate in the conformational space. The y-axis

is the potential energy. The dotted line represents the potential energy of proteins

when all terms in Equation 4.2 are included into the calculation. When the dihedral

angle rotation energy and the van der Waals interaction are neglected, the potential

surface becomes smoother, shown as the dashed line. The solid line represents the

energy when bond length and angle vibrations are disallowed.
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bic interactions are as important. as covalent bonds in proteins. FIRST includes the

strong hydrogen bonds and the hydrophobic interactions when counting constraints.

The methodology of treating hydrogen bonds and hydrophobic interactions are corn-

prehensively discussed by Jacobs et al. [88] and by Rader et a1. [89]. The author

summarizes the main points here for the sake of completeness and clarity.

Hydrogen bonds have a great range of energies. Some of the bonds can be

almost as strong as covalent bonds, while some others are as weak as van der Waals

interactions. The Mayo’s hydrogen bond potential [112] is used in FIRST to analyze

the strength of the hydrogen bonds. The stronger the hydrogen bonds are the lower

their energies are. FIRST utilizes a step function in selecting hydrogen bonds. Any

hydrogen bonds whose energies are less than a cut off value are taken by FIRST to be

the strong hydrogen bonds, whereas all the other hydrogen bonds are ignored. FIRST

then treats the strong hydrogen bonds the same way as it handles the covalent bonds

by counting the bond length and bond angle as constraints. Every strong hydrogen

bond brings three additional constraints to the proteins: 1) the bond length constraint

between the hydrogen atom and the donor atom; 2) the bond angle constraint of the

angle formed by the donor, the hydrogen and the acceptor atom; and 3) the bond

angle constraint of the angle formed by the hydrogen, the acceptor and the base atom.

The bond angles are counted as constraints because the strengths of hydrogen bonds

are dependent on the angles.

Contrary to the covalent and the hydrogen bonds which are highly directional

dependent, hydrophobic interactions do not have angular preferences. Thus the bond

angles of hydrophobic interactions are not counted by FIRST as constraints. More-

over, the distance between two non-polar atoms that are believed to have hydropho-

bic interactions can be in a relatively large range. Intuitively only one inequality

distance constraint should be counted for each hydrophobic interaction. After many

tests Rader et al. [89] find that protein unfolding process is better described when

76



two instead of one constraint per hydrophobic interaction are. used.

4.4.5 Validity of Flexibility Analysis on Proteins

Since l‘iydrogen bonds and hydrophobic interactions are not as clearly defined as

covalent bonds, exactly which hydrogen bonds and hydrophobic interactions to be

included in flexibility analysis as sources of constraints is prone to errors.

There are. two sources of possible errors in selecting hydrogen bonds as con-

straints. The first. one comes from the empirical hydrogen bond potential used in

FIRST. Mayo’s hydrogen bond potential assigns low energies to the hydrogen bonds

whose bond lengths and angles resemble those of typical strong hydrogen bonds. But

it may give a very high energy to a hydrogen bond whose geometry is not perfect

yet acceptable [119]. Therefore the number of acceptable hydrogen bonds is a little

underestimated in FIRST. The second source of errors is the on and off hydrogen

bond selecting switch used by FIRST. Suppose there are two hydrogen bonds whose

energies are -0.99 kcal/mol and -1.01 kcal/mol respectively. A hydrogen bond cut-off

value at -1.00 kcal/mol will render the first bond as a weak hydrogen bond and the

second one as a strong hydrogen bond respectively, though the two bonds are very

close in energies. FIRST then counts three constraints at the location of the second

hydrogen bond, but zero at the place of the first one. Since flexibility is a local pr0p-

erty, this step like function in selecting hydrogen bonds tends to lead to either an

underestimate or overestimate of local constraints at various locations.

However all the errors related to the hydrogen bonds are acceptable from the sta-

tistical point of view. The average number of hydrogen bonds per residue is 1.1 [120].

Hence there are more than 110 hydrogen bonds in a moderately sized protein having

more than 100 residues. This number is large enough that small amount of errors,

for example five mistakenly handled hydrogen bonds, do not affect the overall distri-

butions of flexibility in proteins. This explains why the flexibility analysis has been



proved to be a good tool in studying the relationship between protein structures and

functions [90].

Hydrophobic interactions used in FIRST have undergone significant fine tunings.

The improved hydrophobic interaction definition [121] are said to increase the accu-

racy of FIRST noticeably [119]. The flexibility data used in this thesis are analyzed by

a beta version of FIRST that utilizes this refined hydrophobic interaction definition.

This version of FIRST is not. available. to the public yet.

4.4.6 Advantage of Flexibility Analysis

As stated in Section 4.1, we are interested in finding the conformations of non-

crystalline networks, i.e. proteins in this specific study. Interactions such as the

covalent, the strong hydrogen bonds and the hydrophobic interactions inter-lock with

each other so that some regions of the proteins are practically rigid while some other

regions of the proteins are still flexible. By counting the concentration of constraints

in all possible local areas in proteins, we are able to distinguish the flexible regions

from the rigid cores of the proteins prior to any computationally expensive trials

involving searching conformations. In the next chapter, we show that by concentrating

our calculations on the flexible regions only, we are able to avoid wasting valuable

computational resources on the rigid cores of proteins, which should not have multiple

conformations at all due to the high density of constraints in these regions. It is for

this reason that our algorithm in sampling protein conformations is called Rigidity

Optimized Conformational Kinetics (ROCK), because the flexibility analysis helps our

algorithm avoid sampling conformations for the rigid cores of the proteins. Details of

the algorithm are discussed in the next chapter.



Chapter 5: Rigidity Optimized

Conformational Kinetics (ROCK)

As stated in Chapter 4, we want. to address two questions in the second half of this

thesis: I) How to determine whether a network has one or multiple conformations; 2)

How to search the conformations of a network if it is known from flexibility analysis

that this network should have multiple conformations?

The flexibility analysis algorithm described in Chapter 4 answers the first ques-

tion. The algorithm pinpoints the regions that have positive numbers of DOF by

counting the local bond constraints. This chapter describes an algorithm that searches

the possible conformations that obey the same topology and the bond constraints as

the input molecule.

The concept of constraints is in fact that of a simplified potential. The system has

exactly zero energy when all bond constraints are satisfied. A violation of any bond

constraint, even as tiny as one degree in a bond angle constraint or a tenth Angstrom

in bond length constraint, will increase the energy of the network to infinity.

5.1 Ring Clusters and Side Branches

Contrary to amorphous silicon or silica networks in which every atom is present

in several rings, protein networks have many dangling ends. Figure 5.1 shows the

topology graph of a small portion of HIV-1 protease. There are two types of atoms

in this network from a topological point of view: the ring cluster atoms and the side

branch atoms. Ring cluster atoms are those atoms participating in large rings linked

by covalent and strong hydrogen bonds. The rings equal to or smaller than six-fold

are not counted as parts of the ring clusters unless they are connected directly or



indirectly by other rings. For example the four fold ring shown in Figure 5.1 is not

counted as a component of the ring cluster. There are at least two sets of completely

different bonds that connect any pair of ring cluster atoms. All the other atoms are

the side branch atoms.

Traditionally atoms in proteins are classified as main chain atoms and side chain

atoms based on their biochemical properties, as shown in Figure 4.4. In most cases,

the main chain atoms are ring cluster atoms though exceptions exist. In any given

protein some of the side chain atoms are connected to form ring clusters by strong

hydrogen bonds. Side branch atoms are usually exclusively made up of side chain

atoms.

There are no ring clusters when a protein is in its random coil state, except the

single five-fold rings of proline. All atoms are side branch atoms in this stage. Ring

clusters form as hydrogen bonds appear when some residues are close to each other.

Both side chain and main chain atoms can participate in hydrogen bonding. As a

consequence the ring clusters are composed of both atom types. When protein folds,

more and more hydrogen bonds form, therefore the average size of a ring cluster grows

while the number of side branch atoms is reduced. In its native state, the protein

usually has one or several large ring clusters with many small side branches dangling

around. Whether an atom is classified as a ring cluster atom or a side branch atom

is affected by the definition of hydrogen bonds.

It is very easy to generate conformations for side branch atoms. A rotation of

any dihedral angles in a side branch produces a valid new side branch conformation,

because the rotation does not change the topology of the networks, nor does it change

the bond lengths or bond angles.

However it is not easy to search conformations for rings. A disturbance of a

dihedral angle in a flexible ring introduces large bond distortions at the point where

the ring breaks. Though such distortions can be minimized by a subsequent optimiza-
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Figure 5.1: Topology graph of a small portion of the protein HIV-1 protease. The

solid circles are atoms in the ring clusters, because there are two different sets of

bonds between any pair of atoms in the ring cluster. The open circles are atoms in

the side branches.
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Figure 5.2: A simple molecule made up of two rings. The dihedral angles in the rings

are all correlated. A disturbance in one dihedral angle, no matter in the left ring or

in the right ring, requires the changes of all dihedral angles in both rings for the two

rings to close.

tion process, the generated structures are likely to have high energies because such

an initial distortion can produce molecular conformations far away from energetically

favorable regions. The major difference between a molecule with and a molecule with-

out flexible rings is that the dihedral angles in the rings are correlated. A rotation of

one dihedral angle in a ring demands rotations of other dihedral angles for the ring

to close. The dihedral angles in a molecule without any rings can vary independently

without causing distortions in bond lengths and angles.

It is even more difficult to close all the rings in a ring cluster. Figure 5.2 shows a

simple flexible molecule with only two rings. All the dihedral angles in both the left

and the right rings are correlated. A rotation of one dihedral angle in the left ring not

only requires all the other dihedral angles in the left ring to rotate correspondingly

for the left ring to close, but also requires the rotation of dihedral angles in the right

ring, otherwise the right ring will break due to the change of dihedral angles of the

bonds shared by both the left and the right ring. All of the rings in the molecule have

to be closed simultaneously in such circumstances to avoid bond distortions.

The correlation in dihedral angles in rings requires a new algorithm in finding

conformations for ring clusters. Section 5.2 introduces the ring closure equations
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and their solutions. Section 5.3 explains how the method to solve the ring closure

equations can be applied to sample conformations of networks with multiple rings.

Section 5.4 briefly mentions the method to anchor side branch atoms back to the ring

clusters. The whole procedure of our algorithm ROCK is listed in Section 5.5.

5.2 Sampling Conformation of a Single Ring

“hen the bond lengths and angles of a ring are known, as is usual, the unknown

dihedral angles of the ring should be one set of solution to the following ring closure

equations [73] for the ring to close:

P0 + T0R1P1+ T0R1T1R2p2 + ‘ ° ' + TORI ‘ - . TN—ZRN—le—1 = 0

T0R1T1R2“'TN—zRN—iTN—1RN = I (5.1)

where

cos 0,- — sin 0,- 0 1 0 0

Ti = sin 6, cos 9,- 0 R4 = 0 cos w,- — sin w,- (5-2)

0 0 1 0 sin a), cos a),

are rotation matrices. The quantities 0, p,- and I are the zero vector (0, 0, 0)T, distance

vector ((1,,0, 0)T and unit matrix respectively. The quantities (1,, 6,- and w,- are the

bond length, angle and dihedral angle of the ith bond in the ring. The definition of

bond lengths, angles and dihedral angles are shown in Figure 5.3.

The bond lengths and angles are fixed parameters and the dihedral angles are

unknown variables. The fact that a ring is flexible if and only if the size of the ring is

bigger than six determines that only six out of twelve equations in Equation 5.1 are

independent. If N — 6 dihedral angles of a single N-fold ring are known, the values of
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Figure 5.3: Definition of bond lengths, angles and dihedral angles in ring. Bond

length d,- is the distance between the ith and (i — 1)th atoms. Bond angle 0, is the

supplementary angle of the angle formed by the (i — 1)th, the ith and the (i + 1)th

atoms. The dihedral angle a),- is the angle between the two planes: one plane passes

through the (i—2)th, the (i—1)th and the ith atoms and the other plane goes through

the (i — 1)th, the ith and the (i + 1)th atoms.

the six unknown dihedral angles can be solved from the six independent ring closure

equations. G6 et al. [73] prove that the ring closure equations can be reduced to

four nonlinear equations each of which has only one variable. Each of these single

variable equations can have zero or multiple solutions. Each solution to the single

variable equation corresponds to a set of solution of the six unknown dihedral angles

to the ring closure equations. Therefore, if N — 6 dihedral angles are set, there can

be multiple or no solutions of the six remaining dihedral angles to the ring closure

equations. These solutions are discrete in generic cases, where there is no special

symmetry. A case of no solution implies that the combination of N — 6 dihedral

angles is so inappropriate that the ring does not close no matter how to adjust the

other 6 dihedral angles.

Ring closure equations cannot be reduced to single variable equations when the

six unknown dihedral angles are not consecutive in the ring, unless they are separated

by locked bonds such as peptide bonds. Only numerical methods can solve the ring

closure equations in generic cases. G6 and Scheraga’s method is also limited to single
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rings. Their method cannot be used to sample conformations of complicated networks

in which many rings are inter-locked with each other. For these reasons we introduce a

new approach which is appropriate to sample conformations of macromolecules which

contain more than just a single flexible ring. The fictitious ring closure potential is

given by f

l

i: [P0 + T0R1P1+"'+ TORl ° "TN—2RN—1PN—1l2

3

+ Z [T0R1T1R2-- -TN_2RN_1TN_1RN — 11?, (5.3)

i,j=l

which is the sum of the squares of the differences between the left and the right sides

of the original ring closure equations 5.1.

We solve the ring closure equations by minimizing the fictitious ring closure

potential f which is zero only at those points that are solutions to the original ring

closure equations. To sample the conformations of a single N-fold ring with N > 6,

one can systematically or randomly try all the possible combinations of N -— 6 dihedral

angles of the ring, and minimize the fictitious ring closure potential f with respect

to the six unknown dihedral angles at every step. Each zero fictitious potential f

corresponds to a set of solutions to the ring closure equations, which in turn suggests

a new conformation of the ring. We have utilized the limited-memory BFGS source

code [122], which is a quasi-Newton unconstrained nonlinear optimization algorithm,

to minimize the function f. The optimized fictitious potential may not have a zero

value at some combinations of the N —- 6 dihedral angles. It may be due to the

nonexistence of a solution of the remaining six dihedral angles, or it may be due to

the inefficiency of the L-BFGS method to find a solution. The L-BFGS algorithm

is a local potential optimization algorithm so it is not capable of finding the global

minimum point under any conditions. Only when the function value of f is zero do

we consider a set of solutions to all the ring closure equations has been found.



5.2.1 Conformations of a Seven-Fold Ring

At every step while working on a single N-fold ring, ROCK first randomly se-

lects and rotates N — 6 dihedral angles from their values in the previously accepted

conformation. Then it minimizes the fictitious potential f with respect to the six

remaining dihedral angles. The new conformation, if the fictitious potential is zero,

is subjected to checks on van der Waals overlaps before accepted. A van der Waals

overlap occurs when the distance between two non-bonded atoms is smaller than the

sum of their van der Waals radii times a coefficient. A small coefficient such as 0.6

or 0.7 represents a soft van der Waals repulsion between non-bonded atoms. A large

coefficient such as 0.9 or 1.0 represents a stifl van der Waals repulsion. A generated

conformation is rejected if the number of van der Waals overlaps is not zero. The

whole process is a random walk process. It is not exactly a Monte Carlo approach

because it does not accept or reject conformations based on Metropolis [123] criterion

on the energy of the generated conformations. Since ROCK searches conformations

in the vicinity of the last one it accepted, it is capable of exploring the conformations

space in a quasi-continuous manner. It is not able to jump from one cluster of con-

formations to another cluster of conformations, if there are multiple conformational

clusters. This point is manifested in the conformational space of a seven-fold ring.

The bond lengths and angles are exactly 1.54A and 67° for all bonds (it is worth not-

ing that bond angle values are given according to the definition shown in Figure 5.3).

Due to the perfect seven-fold symmetry, three pairs of dihedral angle correlations are

enough to describe the conformational space of the seven-fold ring. They are: the

correlations of the nearest neighbor dihedral angles 4’51 vs. (152, the correlations of the

second nearest neighbor dihedral angles (:51 vs. ((53, and the correlations of the third

nearest neighbor dihedral angles (t1 vs. Q54, as shown in figure 5.4.

Go and Scheraga’s algorithm [73] of reducing ring closure equations to four non-

linear single variable equations is able to find all possible conformations of the seven
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Figure 5.4: A seven fold ring whose bond lengths and angles are exactly the same.

Correlations of (151 vs. (:52, (151 vs. $3 and 451 vs. 4)., reveals the whole conformational

space of the seven fold ring due to its seven-fold symmetry.

fold ring in a single run. The left column in Figure 5.5 shows the conformations

sampled by Go and Scheraga’s method. The seven-fold ring has two well separated

clusters of conformations. One cluster of conformations forms a twisted loop in the

seven dimensional conformational space which is spanned by the seven dihedral an-

gles. The other cluster of conformations forms an ellipse in the conformational space.

Go and Scheraga’s algorithm is able to find all possible conformations in both clusters

in one run.

Our algorithm ROCK solves the ring closure equations by minimizing the fic-

titious ring closure potential. It does not jump between clusters. Starting from a

conformation in the twisted loop cluster, it is able to find all the other conformations

in the same cluster, as shown in the middle column of Figure 5.5. But it is not able

to find any conformation in the ellipse cluster. Or, if the starting conformation is in

the ellipse cluster, ROCK will find all conformations in the ellipse cluster, but not

any single conformation in the twisted loop cluster, as shown in the right column in
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Figure 5.5. The. fact that ROCK is not capable ofjumping between clusters of con-

formations can be viewed as a disadvantage in sampling conformations. Or it in fact

can be regarded as a safeguard against jumping over high energy barriers. The bond

distortions, which are. necessities for the ring to transform from a conformation in one

cluster to a conformation in another cluster, are equivalent to high energy barriers.

Since our goal is to explore low energy protein conformations at room temperature, it

is an advantage of ROCK that it does not overcome obvious potential barriers easily.

5.3 The Complexity Associated with a Network of

Rings

As stated in Section 5.1, it is difficult to generate conformations for a flexi-

ble network with lots of inter-connected rings due to the correlations between all of

the dihedral angles in the network. Go and Scheraga’s method, although it is able to

generate conformations for single rings when the six unknown dihedral angles are con-

secutively arranged, is not efficient in searching conformations for networks. ROCK

can be applied on any ring system because of its simplicity. We define a fictitious

total ring closure potential of all the rings in a network as

f: E f (5.4)

all rings

which is the sum of the fictitious ring closure potential of every ring in the network.

The total fictitious potential of the whole network can then be minimized with respect

to all the rotatable and unknown dihedral angles, in the hope to find a zero potential

point that is the new conformation of the ring network.

However the computation cost of solving multiple nonlinear equations simulta-

neously makes it infeasible to solve ring closure equations of all rings concurrently.
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Figure 5.5: Complete conformations of a seven-fold ring calculated by G5 and Scher-

aga’s algorithm (left column) and by minimizing the fictitious ring closure potential

(middle and right columns). The top, middle and bottom rows show correlations

between nearest neighbor, second nearest neighbor and third nearest neighbor dihe-

dral angles respectively. The seven-fold ring has two clusters of conformations. One

cluster of conformation form a twisted loop in the conformational space. The other

cluster looks like an ellipse. G6 and Scheraga’s algorithm is able to find both clusters

of conformations in one run (shown in left column). Our method of minimizing the

fictitious ring closure potential however does not jump between clusters. The confor-

mations sampled by ROCK are either confined to the twisted loop cluster (shown in

middle column), or to the ellipse cluster (shown in right column), depending on the

initial conformation of the seven-fold ring.

89



Suppose a generic network of rings has N bonds and M DOF. In principle one can

randomly select and disturb M dihedral angles in the network, and minimize the

total fictitious ring closure energy of all the rings in the network, with respect to the

total number of variables N = N — M. Since the computational cost of minimizing

such nonlinear potential increases in the order of N3, this method is not capable of

handling networks with hundreds of bonds, which are common in the flexible regions

in small to moderate sized proteins.

It is more preferable to handle a network of rings in a ring by ring fashion.

Suppose the number of rings in the network is n, the average number of variables per

ring is thus N/n. The computational cost of solving ring closure equations for every

ring one by one for one time is thus on the order of (JV/703 x n = N3/n2. Since

both total number of rings 72. and total number of variables N—M scale linearly with

the total number of bonds N in common protein structures, the computation cost in

theory scales linearly, if ring closure equations of all rings can be solved one by one.

In practice, however, any other rings in the network break when dihedral angles in

one ring are rotated to close the ring, as have been explained in Section 5.1.

In order to solve the ring closure equations for all rings in a network as efficient

as possible, we design a procedure that minimizes the fictitious ring closure potentials

of an expanding network. The algorithm first tries to close the ring which has the

smallest number of unknown dihedral angles in the whole network. This ring is called

the seed. After succeeding at closing this ring, the algorithm then minimizes the sum

of fictitious ring closure potentials of the seed and of up to five more rings that share

bonds with the seed. The newly added rings and the old seed is now the new seed

of the network. If all rings in the seed can be closed simultaneously, ROCK then

adds up to five more rings that share bonds with the seed to be the newly expanded

seed. Step by step, ROCK adds rings to the expanding seed, and then minimizes the

sum of the fictitious ring closure potential of all the rings in the seed. Because all the
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Figure 5.6: A simple network with two DOF. The left side eight-fold ring and the

right side seven-fold ring share one bond which is shown as the dashed line.

rings in the seed are already closed when new rings are added, only small adjustments

in dihedral angles are. necessary to close all the rings in the seed concurrently. The

whole process stops when all the rings in the network are added to the seed. The

total calculation cost of this procedure is lower than minimizing the total fictitious

ring closure potential of all the rings directly.

One crucial step in generating a new conformation for a network of rings is to

select a set of bonds to be randomly rotated about their original values. Inappropriate

selections of bonds results in unsuccessful trials and wasted computation time. For

example there are two DOF in the network in Figure 5.6. One can select and rotate

two bonds in order to find a new conformation for the network. But the selections of

the two bonds cannot be arbitrary. If two selected bonds are all in the seven-fold ring,

there are only five variables left unknown in the ring closure equations of the seven-

fold ring. But each set of ring closure equations has six independent equations. In

most cases, there is not a solution for the five variables in six independent equations.

This trial is most likely to be unsuccessful due to the wrong combination of selected

bonds to be randomly rotated. The possibility to close the rings after two bonds are

rotated is greatly enhanced if one selected bond is in the seven-fold ring and the other

is in the eight—fold ring, or if both selected bonds are in the eight fold ring.

ROCK utilizes the following procedure to select a set of bonds to rotate. It is
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designed to avoid choosing the wrong combination of bonds to rotate from constraint

theory point of view.

1. Randomly select a freely rotatable bond.

2. Count the DOF in the ring to which the selected bond belongs. Go back to

step 1 if the DOF is negative which means the ring is over-constrained. One

more constraint is counted because a randomly selected bond is equivalent to

one more constraint on the dihedral angles. The ring is considered to be the

seed of the network.

3. Expand the seed by one more ring by adding one ring that shares bonds with

the rings in the seed to the seed. The DOF of the seed is calculated. Every

randomly selected bond is counted as one more constraint. Go back to step 1

if the DOF is negative.

4. Repeat step 3 until all rings in the network are included in the seed. The bond

selected in step 1 is then officially selected to be randomly rotated. Any local

area the network is not over constrained by the rotation of this bond.

0. Repeat step 1 to step 4 until a desired number of bonds has been selected.

The procedure listed above ensures that the randomly selected bonds do not over

constrain any local area of the network. Though it does not guarantee that there are

six unknown variables for each set of ring closure equations, it does help reduce the

rate of unsuccessful trials. Randomly selecting and rotating fewer bonds than the

DOF further improves the rate of successful trials.

The discussion carried so far assumes every bond in a network is freely rotatable.

There are bonds which, however, should be considered to be locked. The peptide

bonds, for example, favor either trans or cis conformation. There are energy barriers

between these two conformations. The dihedral angles of these bonds should be kept
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unchanged from their values in the initial conformation. Each fixed bond adds one

constraint to the network. A seven-fold ring with one fixed bond has zero DOF which

is the same as that of a six fold ring.

5.4 Conformations of Side Chains

Once new conformations of the flexible ring clusters are generated, side branch

atoms are anchored back to the ring clusters with correct bond lengths and angles.

Side branch atoms are first randomly disturbed to sample the conformations of the

side branches. The coordinates of the side branch atoms are then relaxed in the

Cartesian coordinates so that 1) bond lengths and angles of side branch atoms are

undistorted from the original values; 2) there are no van der Waals overlaps between

side branch atoms themselves and between side branch atoms and ring cluster atoms;

and 3) chiralities at side branch atoms are not changed. An atom is called a chiral

center if the atom has equal to or more than three nearest neighbors. The bond

lengths and angles between the chiral atom and its nearest neighbors are the same as

those in the mirror image. The atomic arrangement of a chiral center and its three

nearest neighbors is not identical to that in the mirror image. A chiral center atom

and its three nearest neighbors are illustrated in Figure 5.7.

Since the bond lengths and angles are equality constraints, while the checks

against van der Waals overlaps and chirality flips are inequality constraints, ROCK

calls the program DONLP2 [124] to minimize the function

fa): Z ('r—r0)2+ 2 (49—00)? (5.5)

bonds angles

subject to a collection of inequality constraints of van der Waals repulsions

g1 .17 = r2. — r2 2 0 (5.6)
2] v
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Figure 5.7: A chiral center atom c and its three nearest neighbors of atom 1, atom 2

and atom 3. Figure (b) shows the mirror image of Figure (a). The bond lengths and

angles between the chiral center atom and its nearest neighbors are the same as those

in the mirror image. The atomic arrangement of the chiral center and its nearest

neighbors is not identical to that in the mirror image. It goes counter-clockwise from

atom 1 to atom 2 to atom 3 in the original image, but it goes clockwise from atom 1

to atom 2 to atom 3 in the mirror image.

and a set of inequality constraints that chirality at atoms should not be flipped

, _ 0 0 0 .-

920") — lrij ' (I‘z‘k X rall [rt-j ' (rt/c X Full 2 0 (0-7)

in which r and 0 are bond lengths and angles in the trial conformation, r0 and 60 are

the bond lengths and angles in the initial conformation, rij is the distance between

two non-bonded atoms of atom i and atom j, rv is the sum of the van der Waals

radii of the atom i and atom j, r”, rik and r“ are the vectors between atom i and

0

ij’
its bonded neighbors in the trial conformation, and r r3, and r9, are the vectors

between atom i and its bonded neighbors in the initial conformation. The function

f (:r) is minimized to be zero when the bond lengths and angles of the side branch

atoms are identical to the corresponding values in the initial conformation. The sign

of the dot and cross product of the three vectors rij, rik and r“ specifies the chirality

of atom i. The chirality of atom i in the generated conformation is identical to the

chirality of the same atom in the initial conformation if and only if the sign of the

dot and cross product of the three vectors at the atom in the generated conformation

is the same as the sign of the same product in the initial conformation. DONLP2

is a non-linear optimization program that can optimize a function subject to both
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equality and inequality constraints. The inequality constraints of van der V-Vaals

overlaps forces the distances between any pair of non-bonded atoms to be larger than

a critical value rv which is the sum of van der Waals radii of these two atoms. When

all the inequality constraints are satisfied there are no van der Waals overlaps between

any pair of atoms in the protein, nor chirality at any atoms are flipped.

After randomly disturbing the side branch atoms from their original Cartesian

coordinates, ROCK checks the distances between every pair of non-bonded atoms to

build the van der Waals overlap list. It constructs the inequality constraints gl(;r)

according to the list. Then it minimizes the function f (51:) subject to the inequality

constraints. Once the function is minimized to practically zero, ROCK builds a new

van der Waals overlap list to begin a new round of minimization. A new conformation

of the side branch is found when there are no van der Waals overlaps, when the

function f (1') is practically zero, and when the chirality at every atom is not flipped.

5.5 Workflow

According to the algorithms outlined above, we wrote a FORTRAN program

package ROCK to sample conformations of the flexible regions in proteins. Since

it relies on flexibility analysis to sort the flexible regions from the rigid cores of the

proteins, it is preferable to have the flexibility analysis result from FIRST ready before

the program is run. The program works in the following procedure:

1. Read in the initial protein conformation. Calculate the bond lengths and angles.

2. Read in the flexibility properties of the protein analyzed by FIRST. If the

rigidity analysis result is not available, ROCK counts the distribution of DOF

by itself by counting constraints in all local regions in the protein.

3. Find the rigid cores in the protein. Starting from one non-rotatable bond as

the seed, ROCK adds nearest neighbor non-rotatable bonds to the seed until
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10.

there are no non-rotatable bonds can be included. ROCK finds all rigid cores

in the proteins by this method. It then fixes the orientation and position of the

largest rigid core in space. All the other smaller rigid cores and flexible ring

clusters move relative to the largest rigid core.

. Find all flexible ring clusters and side branches.

. Randomly select and rotate several bonds in each flexible ring cluster according

to the procedure described in Section 5.3.

Minimize the total fictitious ring closure potential F of the ring cluster defined

in Equation 5.4 by the L-BFGS algorithm [122]. Go back to step 5 if the

fictitious potential cannot be minimized to be zero.

. Check for van der Waals overlaps between the ring cluster atoms themselves and

between the ring clusters atoms and the rigid core atoms. Go back to step 5 if

van der Waals overlaps exist.

Randomly disturb the side branch atoms away from their positions in the pre-

vious conformation.

Utilize the DONLP2 [124] algorithm to find a new conformation of each side

branch with zero bond distortions, with correct chiralities at every atom and

without any van der Waals overlaps. Go back step 8 for nine extra trials on

each branch if new conformations cannot be found, or go back to step 5 to start

from the beginning if ten consecutive searches of side branch conformations fail.

Accept the new conformation. Go back to step 5 to search for another confor-

mation by using this new conformation as the starting point. Stop the whole

process when a predefined number of new conformations are generated.
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ROCK also checks the quality of main chain 95 and t": angles against the Ra-

machandran plot [110] to ensure the stereo—chen‘iical quality of the generated confor-

mations. Eighteen out of the twenty standard residues (alanine, arginine, asparagine,

aspartic acid, cysteine, glutamine, glutamic acid, histidine, isoleucine, leucine, lysine,

methionine, phenylanaline, serine, threonine, tryptophan, tyrosine and valine) are

checked against the Ramachandran plot generated by Morris et al. [125]. The other

two residues, glycine and proline, are checked against two Ramachandran plots spe-

cially designed for glycine and proline. The Ramachandran plots of glycine and proline

are discussed in Appendix B. The main chain d) and it) angles of the twenty standard

residues are restricted to the core and the allowed regions of the Ramachandran plot

by default. ROCK rejects any conformations which have one or more residues whose

96 and if) angles are not in the allowed regions of the Ramachandran plot.
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Chapter 6: Results and Discussions

ROCK has been tested on several macromolecules. This chapter shows three

examples. The first example is a model molecule made up of four ten-fold rings. The

second example is the conformations of the human immunodeficiency virus type 1

(HIV-1) protease, which is one of the most important proteins controlling the life cycle

of the virus. The third example shows multiple randomly generated pathways between

the occluded, the closed and the open conformations of the protein dihydrofolate

reductase (DHFR).

6.1 Model Molecule H8CSSQO

Figure 6.1 shows the model molecule HBCSSQO. Figure 6.1(a) shows the topology

of the molecule, while Figure 6.1(b) shows a low energy conformation. From the

topological point of view, eight carbon atoms are positioned on the corners of a

rectangular box, connected either by double or by single sulfur atoms. Eight hydrogen

atoms complete the valency of the carbon atoms. The bond lengths between carbon

and sulfur, sulfur and sulfur, and carbon and hydrogen atoms are 1.805A, 2.019A and

1.120A respectively. These values are the optimal bond lengths used in the MM3 force

fields [126]. All the bond angles at carbon atoms are exactly tetrahedral (109.5°). To

avoid van der Waals overlaps, the bond angles of sulfur atoms are increased to be

135°, rather than a more realistic value such as 95°.

The model molecule has 36 atoms, 60 independent bond angle and 40 bond length

constraints. Note that there are only 5 not 6 independent bond angle constraints at

the carbon atoms. The total number of DOF is thus 2. The molecule was chosen by

us to have both many interlocking rings as well as two internal DOF, to make the

conformational space both non-trivial and easy to display. The conformational space
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Figure 6.1: The model molecule HgCgS-Zo. In the topological graph shown in Fig—

ure (a), eight carbon atoms (green spheres) are at the corners of a rectangular box.

Di-sulfur linkages are at eight out of twelve edges of the box. Single sulfur linkages

occupy the other four edges. Sulfur atoms are represented by large yellow spheres.

Hydrogen atoms (small Gray spheres) are connected to carbon atoms. A low energy

conformation is shown in Figure (1)). This molecule has two DOF.

of the molecule can be plotted on a 2D graph, in which the two variables representing

the two DOF are the two axes. Any two dihedral angles can serve as the two axes

on which the conformational space is projected. A convenient choice is the two

dihedral angles 961 and (1)2 as shown in Fig. 6.1(a). As illustrated in the figure, these

two dihedral angles are equivalent in the sense that they are interchangeable. The

topology of the model molecule also shows mirror symmetry over the plane cutting

through the centers of (251 and 4);. Because a dihedral angle changes its sign under

a mirror symmetry operation, and because the mirror image of a ring has the same

bond lengths and angles as the ring does, a ring is closed when all its dihedral angles

change sign. Therefore if there is a conformation at a certain combination of (151 and

$2. there is also a conformation when the signs of d), and (152 are changed. Because of

these two symmetries, one quarter of the whole 27r x 27r plane expanded by the two

dihedral angles $1 and 922 is enough to depict the conformational space accessible to

the molecule. These symmetries are {$1, $2} —> {(152, (151} and {051, (92} —> {—¢1,—¢2}.

Symmetries in conformational space hold true in the model molecule because it
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does not have any bond length and angle variations. The lengths of all bonds between

carbon and sulfur atoms are the same, the lengths of all bonds between sulfur and

sulfur atoms are the same, the angles of all carbon atoms are the same, and the angles

of all sulfur atoms are the same. The symmetries discussed above are not apparent

in any single conformation of the model molecule, but are obvious in the ensemble of

all conformations.

6.1.1 Conformations of Model Molecule H8C8820

Our program successfully generates 10,000 conformations in 53 hours on an

Athlon AMD MP 1900+ processor. The search was carried out with a random walk

procedure in the (.51, $2 space. Van der Waals overlap is allowed in the first 5,000

conformations but not in the later 5,000. As shown in Figure 6.2(a), the conforma-

tions cover almost the whole two dimensional space when van der Waals overlaps are

allowed. The conformations are not as densely packed in the vicinity of (1)1 ~ 0 or

(1)2 ~ 0 as in the other regions. This is because the distribution of number of solutions

to the ring closure equations is not uniform. As discussed in Section 5.2, 6 dihedral

angles in a single N—fold ring can have zero or several solutions to the RCE, if the

other N -— 6 dihedral angles are given. Similarly, because our model molecule has two

degrees of freedom, for a given pair of (251 and (b2 values, there can be none to mul-

tiple sets of solutions of the remaining dihedral angles to the RCE. There are fewer

solutions to the RCE at points in (251 ~ 0 and €752 ~ 0 than at points in other regions.

The distribution of the number of solutions in the ((1)1, (252) plane is directly reflected

by the frequency of our program finding solutions in any regions. A low resolution

grid search and a random search in conformational space confirm this point.

Our program implements a hard sphere model in checking for van der Waals

overlaps. The distances between any two non-bonded atoms have to be greater than

the sum of their van der Waals radii otherwise the conformation is abandoned. Van

100



 

  

   
 

  

      

130 130 :......... , ......... , ......... , ......... , ......... , .........:

, (b)

120 3 120 r ‘:

6° 6° - ’“r :5".
_ 75:11..“ - :1].- ‘

'9' O 0 "LI... ‘ ,

_ '1‘: . f it": 1‘

-60 -60 - , “\‘Sfig '-

-120 420 E- -

'180 '180 :......... I ......... I ......... I ......... I ......... I .........

~180 120 -60 O 60 120 180

180 : ’70 VVVVVVVVV I vvvvvvvvv

: - r i

E (d) + + l
__ _1 P + + 4

120 , 5 _ + . + +

: : + * +‘-O- + + ‘

= Q ' g + ++ + it, .
so .- -, + . ,1“... , ,

3 1 ++4"

: : P e + l

E - b + l

a: o . ‘1 '80 r + . * " 1
+ l + t. + + ‘

‘60 E- + + "1 b + f

E «f t a * + .
: : + s

-120 .- -' , + ,

E : l I
'180 i......... I ......... I ......... I ......... I ......... I .........: _90 ......... I .........

-180 -120 -60 0 60 120 180 ~90 -80 -70

$1 4’1

Figure 6.2: The distribution of conformations projected on the two axes (231 and

452. The top left Figure (a) shows the generated conformations when van der Waals

overlaps are allowed. The top right Figure (b) shows the generated conformations

when van der Waals overlaps are prohibited. The bottom left Figure (c) shows the

optimized conformations in the MM3 force field. The bottom right Figure ((1) shows

a close up of one of the four clusters of optimized conformations in Figure (c). Two

degenerate global minimum states are shown as solid circles in Figure ((1)
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der Waals radii used in our program are 1.632A, 1.72A and 1.296A for carbon, sulfur

and hydrogen respectively. These values are all 0.8 times the optimum radii used in

the van der Waals interactions in the MM3 force field. The van der Waals potential

in MM3 force field is soft at the optimum distance. It does not rise sharply until the

distance between two atoms is considerably shorter than the sum of their optimum

radii. The potential increases by roughly 4 kcal/mol when the distance between

two atoms decreases to 0.8 times the optimum distance. By allowing a maximum

4 kcal/mol potential penalty in the van der Waals interactions, our program samples

as large a conformational space as possible, while avoiding generating conformations

whose van der Waals potentials would be unreasonably high. Therefore our hard

sphere radii of atoms are set to be 0.8 times the optimum radii used in the MM3

force field. As shown in Figure 6.2(b), the conformational space sampled when the

hard sphere interaction is turned on is considerably reduced from the conformational

space when the van der Waals overlap effect is not included. This is indeed expected.

The figure shows clearly that some regions are sampled more frequently than other

regions. Van der Waals constraints, in addition to the uneven distribution in the

number of solutions to the RCE, cause the nonuniform distribution of conformations.

The 5000 conformations without van der Waals overlap are Optimized further

by an external software package TINKER [127] with the MM3 force field. To be

consistent with the model molecule, the optimal angles of sulfur atoms in MM3 force

field are adjusted to be 135°. The conformational space of the optimized structures is

plotted in Figure 6.2(c). The energies of most optimized conformations are all below -

58 kcal/mol. The global minimum energy is -61.998 kcal/mol. All but a few optimized

conformations lie in one of the four symmetric clusters. The 5000 conformations

generated when van der Waals overlap is included are also optimized by the same

force field. The energy of the global minimum structure is also -61.998 kcal/mol, and

has the same conformation as above.
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It is worth noting that the ensen‘ible of conformations sampled by our pro—

gram shows the two expected symmetries of {491.62} —> {o2,qo1} and {¢I,¢2} —>

{—51,—og}. As shown in Figure 6.2, these two symmetries can be vaguely identi-

fied among the 5000 conformations generated when the van der Waals overlaps are

allowed, and is obvious among the 5000 conformations generated when the van der

Waals overlaps are disallowed. The fact that the two symmetries required by the

topology of the molecule are manifested in the ensemble of conformations sampled

by our program is a necessary yet insuflicient proof that our algorithm samples the

whole conformational space of this model molecule.

It is clear that our algorithm samples conformational space efficiently by using

this hierarchical approach. Maximum conformational space is sampled when van der

Waals overlaps are allowed. As expected, the conformational space is considerably

reduced when van der Waals overlap is prohibited. The conformational space is fur-

ther reduced when the molecular structure is Optimized in a full force field such as

MM3. By exploring the conformational space with only bond length and angle con-

straints while forbidding van der Waals overlap, our algorithm is able to explore the

conformational space where local minima of full force field are most likely to reside.

Without bond length distortion, bond angle distortion and van der Waals overlaps,

every generated conformation is accessible by the model molecule at moderate tem-

peratures.

6.2 Conformations of HIV-1 Protease

6.2.1 Structures and Functions of HIV-1 Protease

HIV-1 protease is vital for the reproduction of the HIV virus. The HIV virus

replicates several proteins that are essential for the viral maturation process on a long

peptide chain which is called the “polyprotein”. The proteins in the long polypro-
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tein chain are not active. There is a time window for the HIV-1 protease to cut the

polyprotein into several pieces to activate these proteins before the polyprotein de-

grades. The binding of prohibitory molecules to the HIV-1 protease therefore hinders

the activation of the proteins in the HIV polyprotein, with the consequence that the

HIV virus cannot reach its matured stage. The importance of the HIV-1 protease

in the life circle of the HIV virus has made itself the primary pharmaceutical target

for curbing the acquired immune deficiency syndrome (AIDS) which is caused by the

HIV virus. Several drugs designed to bind to the HIV-1 protease with great affinity

have shown positive effects on AIDS patients.

Since the first 3D structure of the HIV-1 protease was published [128], more

than 200 structures of the protease have been reported on various resources [129].

Most of the structures are bound with inhibitors. The inhibitor-free structure of

HIV-1 protease contains two identical amino acid chains. Each chain is made up of

99 residues. The two chains are glued together by hydrogen bonds and hydrophobic

interactions. The molecule has an exact C2 symmetry. Shown in Figure 6.3 are a

ligand-free HIV—1 protease structure (lHHP) obtained from X-ray crystallography

experiment [130]. The two chains are shown as red and blue ribbons respectively.

The big free volume in the middle of the protein is the binding site. Polyproteins

are locked and cut in this region. The catalytic sites ASP25-THR26-GLY27 in both

chains are rendered as spheres.

It is worth noting that all conformations of the HIV-1 protease observed in ex-

periments are either bound with ligands or are in the closed conformation, similar to

the one shown in Figure 6.3. In such a conformation the catalytic site is not covered

by the two flaps at the top of the protease due to the large void that is immediately

above the site, but the short distance between the two flaps forbids the polyprotein

to approach to the catalytic site from the top. There should be many open conforma-

tions where the two flaps are widely open so that the polyprotein can pass through.
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Figure 6.3: The ligand-free structure of the HIV-1 protease (IHHP). The two identical

chains are rendered as red and blue ribbons respectively. The flexible flaps at the top

of the protein are rendered as widened strands. The catalytic site is indicated by

spheres.

These open conformations are not observed in X-ray crystallography because other

molecules in adjacent unit cells in the protein crystal force the protease to take a

unique and closed conformation.

The two flaps at the top of the protease are flexible. NMR experiments show

that the two flaps, residue 48 to 55 which are shown as the widened ribbons in

Figure 6.3, have two types of motions in different time range. One motion is the

slow motion of the flexible flaps in the time range of [.tS-mS [131]. The other motion

is the fast curl in and curl out motion of the tips of the flexible flaps (residue 49

to 53) which is in the sub-ns time range [132]. The fast motion confirmed what is

seen in the MD simulation [133], though Freedberg et al. [132] do not agree on the

scale of the flexibility shown in the simulation. Another MD simulation by Carlson‘s

group [134] shows that the fast curl motion of the tips of the flaps is absent when water

molecules are first equilibrated before the MD simulation. Carlson argues that the
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curl motion observed in MD simulations is actually caused by the voids between water

molecules and the flaps, if the water molecules are not in their optimal positions at

the beginning of the simulation. Whether the curl motion is real is yet to be cleared.

The MD simulation shows that the characteristic of the curl motion is that the c3 and

'u’; angles of the GLY51 residue are in different regions in the Ramachandran plot as

other glycine residues in the protease are.

The motion of the flexible flaps is important in the function of HIV-1 protease.

The distance between the two tips of the flaps in crystal structures is only 2.7A. Such

distance is not large enough for the polyprotein to pass through, bearing in mind

that the diameter of a water molecule is 2.8A. The two flaps have to undergo a large

range of conformational transformations to catch a small part of the polyprotein. The

fast sub-us range motion enables the protease to adapt to a suitable conformation to

better interact with the polyprotein that is passing nearby. The flaps then drag a

part of the polyprotein chain to the reaction center via the slow motion.

We would like to answer two questions pertaining to the conformations of the

flexible flaps of the HIV-1 protease: 1) How large the distance between the tips of

the flexible flaps can be in all possible conformations? This distance have to be large

enough so that the amino acid chain of the polyprotein can pass through the voids

between the flaps. 2) Are there conformations in which the tips are curved inward?

Are the (13 and 112 angles of the GLY51 residue different than those of other glycine

residues in the protease? We utilize the combination of FIRST and ROCK to address

these questions.

Our algorithm samples the possible conformations but not the dynamical tra-

jectories. Therefore our algorithm can study the statistical behavior of possible tra-

jectories such as the maximum distance between two atoms and the distribution of

dihedral angles et al. Our algorithm cannot answer the questions related to the abso-

lute dynamical trajectories. However we do get hints of what a real trajectory looks
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like by studying the statistical behavior of an ensemble of possible conformations.

6.2.2 Flexibility Analysis on HIV-1 Protease

The software package FIRST is used to analyze the flexibility properties of the

HIV-1 protease. FIRST assumes a hydrophobic interaction whenever two non-bonded

carbon atoms are within a certain distance. This criterion works well in the interior

of the proteins where hydrophobic interactions are stable. On the other hand, the

hydrophobic interactions on the surface of the proteins are fragile. The only in-

teraction between two non-bonded carbon atoms is the van der Waals interaction,

which is weak and easy to break. The hydrophobic interactions in the interior of

the protein are stable not because of the interactions between the non-bonded atoms

themselves are strong, but because of the overall confinement and compression ef-

fects of the water molecules around the proteins. The presence of water molecules

around the proteins strengthens the hydrOphobic interactions in the interior of the

proteins. However water weakens or even destroys the hydrophobic interactions on

the surface of the protein. Two non-bonded carbon atoms on the protein surface may

accidentally be close to each other in fractions of the whole protein motion trajec-

tory, but the contacts are easily destroyed by the collision of water molecules which

are always in thermal motion. Another argument of why the hydrophobic interac-

tions are stable in the interior but not on the surface is that the concentration of

hydrophobic interactions in the interior of proteins is higher than that on the surface.

The high concentration hydrophobic interactions interlock with each other so all of

the interactions are strengthened. Therefore the analysis of hydrophobic interactions

should consider the environments in the surrounding of the potential hydrophobic

interactions. FIRST however does not take the environmental effects on hydrophobic

interactions into consideration. Its simple definition of hydrophobic interactions may

produce false positives in some cases.
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FIRST identifies six hydrophobic interactions between the two flexible flaps.

From the fact that these two flexible flaps are in constant motion between the open and

the closed states, though the open states are not observed in X-ray crystallography

experiments, we know that. these six hydrophobic interactions must be short lived

and weak, otherwise the two flexible flaps will be always in the closed conformation.

The fact that these six pairs of non-bonded carbon atoms are in close contacts in the

crystals does not mean these atoms always stay together. For this reason we manually

removed these six hydrophobic interactions. A flexibility analysis without these six

interactions shows that majority of the HIV-1 protease is rigid with small flexible

regions, as shown in Figure 6.4. The two flaps on the top are flexible, as required by

the biochemical function of these two flaps. The four additional flexible regions in

the protein are not of interest to us. Not shown in the figure are many other smaller

flexible regions which are exclusively made up of flexible side chain atoms.

6.2.3 Conformations of HIV-1 Protease

ROCK generates 600 conformations of the protein HIV-1 protease obeying all the

constraints specified in the flexibility analysis. Because a large portion of the protease

is rigid, the calculational power of ROCK is concentrated on the two top flexible flaps

and on the other smaller flexible regions shown in Figure 6.4. ROCK also generates

conformations for the small flexible regions which involve only side chain atoms. The

total CPU time is 6 hours and 40 minutes on an AMD Athlon 1900+ (real frequency

is 1.6GHZ) processor. All of the generated conformations do not have van der Waals

overlaps. All main chain (b and i!) angles are restricted to the core and the allowed

regions in the Ramachandran plot. The Ramachandran plot is discussed in detail in

Appendix B.

Figure 6.5 shows the superimposition of the 600 conformations in the ribbon

diagram. The top figure is viewed from the side and the bottom figure is viewed from
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Figure 6.4: The flexibility properties of the HIV—1 protease. The protease has one

major rigid core as shown in blue and gray. The blue regions are over constrained.

Lots of bond constraints have to be cut to make the blue regions flexible. The gray

regions are almost flexible but still rigid. The two flaps on the top of the protein

are flexible, indicated by the color gold. Four additional regions in the protease are

flexible, shown as the yellow regions in the figure. The regions colored by gold have

greater density of DOF than the regions colored by yellow.
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the top. Only the protein main chain motion is shown in the figure. The flexible

and the rigid regions of the proteins are colored by yellow or gold and blue or gray

respectively. Figure 6.6 shows the superimposition of the same 600 conformations in

wire diagram. All bonds are shown in the figure. The motion of flexible side chains

is revealed in this figure but not in Figure 6.5.

The distance between the tips of the two flexible flaps in all conformations indi-

cates how big the conformational space the protein can sample. The distance between

the flaps is defined as the smallest distance between any atom in one flap and any atom

in the other flap. The distance between the two flaps is 2.7A in the crystal structure.

This distance is too small for any peptide chain or small molecules to pass through.

The distance can be as large as more than 8.0A however, as shown in Figure 6.7.

As shown in the figure, the distance between the two flaps is smaller than 3.0A only

occasionally. The distance oscillates around 5.0A in most of the conformations. The

distance of 5.0A is large enough for water molecules to pass through, but not large

enough for a thick peptide or a big inhibitor molecule to pass. So the protein does not

open up enough in most of the time. There are occasions however that the distance

is larger than 8.0A, which is large enough for a peptide chain to go through. Once a

short segment of polyprotein can go through the gap between the two flexible flaps,

the flaps falls back to the closed conformations to hold the polyprotein tightly. The

catalytic residues in the HIV-1 protease then cut the polyprotein. Our calculation

shows that the first step of the whole catalytic function of the protease, which is the

opening of the two flexible flaps, is indeed possible without any external driving force.

The RMSD of Cu atoms indicate the average deviation of the main chain atoms

in generated conformations from those in the crystal structure. Its mathematical

form u is calculated by
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Rigid lsostatic Flexible

Figure 6.5: Superimposition of 600 conformations of HIV—1 protease generated by

ROCK shown in ribbon diagram. The residues in the rigid regions of the protein are

plotted in blue and gray. The flexible residues are shown in yellow, gold and red.

Figure (a) shows the side view while Figure (b) shows the view from the top.
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Figure 6.6: Superimposition of 600 conformations of HIV-1 protease generated by

ROCK shown in wire diagram. Atoms are not shown in the figure but the bonds

are colored by the atom types at the two ends of the bonds. Carbon, nitrogen,

oxygen and hydrogen atoms are colored in green, blue, red and gray respectively. The

conformations shown in this figure are the same as those in Figure 6.5. Figure (a)

shows the side view while Figure (b) shows the view from the top.
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Figure 6.7: Distance between the two flexible flaps in all generated 600 conformations.

The distance is only 2.7A in the crystal structure. The distances in most of the

generated conformations are around 5.0A. The largest distance is more than 8.0A.
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for the RMSD of the CC, atom of the jth residue. r?) is the coordinate of the CO

atom of the jth residue in the ith conformation. r?) is the coordinate of the Ca atom

of the jth residue in the crystal structure. The sum is over all N conformations.

Atoms are in constant motion even in crystal structures. The averaged atomic

motion in X-ray crystallography data is given by the Debye-Waller B factor which is

related to the RMSD by

B‘“ = 8mm)? (6.2)

Figure 6.8 shows the calculated and the measured RMSD of the CO, atoms. The

calculated data is based on the coordinates of the Ca atoms in the 600 generated

conformations. The measured data is converted from the measured Debye-Waller

factor provided in the crystal structure of the HIV-1 protease [130]. Because the

motion of the protease is restricted in the crystal, the RMSD of the Ca atoms in the

crystal structure does not have much interesting features. It oscillates around 0.7A

without any major peaks. The protease in the crystal structure does not sample many

conformations because of crystal contacts and volume constraints. Our calculation

shows that the protein should have large conformational changes in three regions:

from residue 15 to residue 18, from residue 35 to residue 42 and from residue 45 to

residue 56. Prominent motion is shown in residue 45 to residue 56, which are the

flexible flaps at the top of the HIV-1 protease.

The calculated RMSD is only non-zero in the flexible regions. This is expected

because our algorithm fixes the positions of the atoms in the rigid cores of the proteins.

Our algorithm artificially eliminates the small scale fluctuations of all atoms around

their equilibrium positions. It illustrates only the large scale conformational changes

that are beyond the averaged fluctuations.

The calculated RMSD of the two chains, shown as the red and the blue curves

in Figure 6.8 do not overlap with each other. This is because our calculation is not

able to sample all possible conformations. These two curves will be identical when
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Figure 6.8: The comparison of the calculated and the measured RMSD of the main

chain Ca atoms in each residue. The red and the blue curves are calculated based

on the 600 generated conformations. The black curve is converted from the Debye-

Waller factor in the X-ray crystallography data of the crystal structure of the HIV-1

protease.
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the generated conformations of one chain are the same as those of the other chain.

Since the conformations of the two chains are independently generated, the generated

conformations of the two chains will be symmetric only when they are the complete

conformations of the two chains. Given the number of DOF in the HIV-1 protease is

large, the calculation time required to sample the complete conformations would be

astronomical.

Scott et al. [133] publish a similar figure in the discussion of their MD simulation

on the same protease. Because MD simulation catches both the slow and the fast

motions in proteins, the RMSD calculated from the MD simulation has a oscillating

background of 1.2A. The highest RMSD value of about 48A is observed at the 50th

residue in one chain. This data is comparable to the RMSD of the 50th residue

in our generated conformations. The RMSD of the CO, atoms in the three flexible

regions identified by FIRST are all distinguishable from the background in the MD

simulation. MD simulation shows that the RMSD of the C, atoms in residue 75 to

residue 83 are higher than the background noise, which implies residues from 75 to

83 are flexible. However flexibility analysis predicts these residues to be rigid. The

flexibility analysis may have falsely identified a few hydrogen bonds or hydrOphobic

interactions in this region.

The distribution of the main chain ¢ and if) angles of the glycine residues in the

conformations generated by our algorithm are qualitatively different from the those

of the conformations sampled by the MD simulation reported by Scott et al. [133].

As shown in the four panels in Figure 6.9, the distributions of d) and if) angles of four

glycine residues that are on the tips of the flexible flaps are very narrow in the whole

Ramachandran plot. The main chain ab and 1/2 angles of the GLY51 residue in both

chains are distributed in such a narrow range that they can be considered as not

having changed at all in all of the 600 conformations. A structural analysis reveals

that these two dihedral angles are all included in a ten-fold ring which is formed by
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the main chain atoms of GLY49, ILE50 and GLY51. The hydrogen bond between the

GLY52 main chain hydrogen atom and the GLY49 main chain oxygen atom closes the

ten-fold ring, as indicated by the dashed bond in Figure 6.10. The peptide bond of the

ILE50, GLY51 and GLY52 residues are also included in this ten-fold ring, as indicated

by the red bonds in the figure. Because peptide bonds are not rotatable, the ten-fold

ring has in fact only one DOF. The dihedral angles of all rotatable bonds, including

the main chain at) and to angles of the residue GLY51, are hence much limited.

On the contrary, the distribution of the main chain (b and 2,!) angles of the GLY51

residue in the conformations created by the MD simulation [133] covers a significant

portion of the whole Ramachandran plot. Assume the bond lengths and angles of the

covalent bonds do not vary much in the MD simulation, the bond length and angle

of the hydrogen bond that closes the ten-fold ring must undergo great distortions to

allow the (b and ll) angles of GLY51 to vary much. This implies that the hydrogen

bond of the ten-fold ring is not stable in the MD simulation. Because the energy of

the hydrogen bond is -3.14 kcal/mol in the crystal structure, which is a typical value

of a strong hydrogen bond, flexibility analysis by FIRST lists this bond as stable

constraints. The discrepancy between the hydrogen bond stability predicted by the

flexibility analysis and that by the MD simulation has to be eliminated in future

studies.

Since the distribution of the main chain (15 and a angles of the GLY51 residue is

limited to a small region in the Ramachandran plot, the flexible flaps in the conforma-

tions generated by our algorithm do not have the curl in motion discovered in the MD

simulation. Even then, the two flexible flaps are widely open in some conformations,

for example the distance between the two flaps can be as large as 8.0A. Therefore

we conclude that the curl motion is not related to the open and close motion of the

flexible flaps at the top of the HIV-1 protease.
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Figure 6.9: The distribution of main chain (13 and 21) angles of the GLY48 residue in

chain A (top left panel), of the GLY48 residue in chain B (top right panel), of the

GLY51 residue in chain A (bottom left panel) and of the GLY51 residue in chain B

(bottom right panel). The distribution of main chain (2) and ii) angles of GLY48 in

both chains covers much larger space in the Ramachandran plot than the distribution

of <13 and ti) angles of the GLY51 residues does.
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Figure 6.10: The tip of the flexible flaps at the top of the HIV‘I protease is made up

of GLY49, ILE50, GLY51 and GLY52. The main chain (15 and d; angles are included

in the ten—fold ring which is closed by the hydrogen bond between the main chain

hydrogen atom of GLY52 and the main chain oxygen atom of GLY49. The hydrogen

bond is indicated as the dashed bond. Three non-rotatable peptide bonds, which are

the red bonds in the figure, are also in the ten—fold ring. Green, blue, red and gray

spheres are carbon, nitrogen, oxygen and hydrogen respectively.
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6.3 Conformational Pathways of DHFR

6.3.1 Structures and Functions Of DHFR

The enzymatic protein DHFR catalyzes the reduction of 7,8-dihydrofolate (DHF)

or folate to 5,6,7,8-tetrahydrofolate (THF) with the help of the coenzyme nicoti-

namide adenine dinucleotide phosphate (NADPH). THF is the one carbon carrier

in the synthesis of many amino acids. It also plays a key role in the bio-synthesis

of purine and thymidylate, which are essential components of DNA. Therefore the

activity of DHFR, which transforms folate or DHF to THF, indirectly controls the

bio-synthesis of DNA. The inhibition of DHFR inevitably results in the blocked DNA

synthesis, which ultimately leads to the death Of the cells. The key role it plays in

the DNA metabolism has made DHFR the target of anti-cancer drugs [135]. These

drugs hinder the growth of cancer cells by blocking the activity of DHFR. Because

cancer cells grow faster than human cells, anti-cancer drugs that bind to DHFR do

not affect the human cells as much as they do cancer cells.

Because of the importance it bears, the protein DHFR is present in all living or-

ganisms, including archae, prokaryotes and eukaryotes. It is also extensively studied.

Structures of DHFR complexed with various ligands have been determined by X-ray

crystallography and by NMR techniques. Up to date there are already 105 DHFR

structures in the Protein Data Bank (PDB) [136]. Statistical analysis [137] shows

that there are three Escherichia coli DHFR (ecDHFR) conformations: the Open, the

closed and the occluded conformations. Crystal structures of vertebrate DHFR pro-

teins are always found in one conformation which resembles the closed conformation

of ecDHFR [138, 139].

Figure 6.11(a) shows the superimposition of the three conformations of ecDHFR.

The closed, the occluded and the Open conformations are represented by the protein

1RX1, 1RX6 and 1RA9 respectively [140]. The three conformations are almost iden-
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tical except in the loop region of residue 14 to 24, which are conventionally called the

M-20 loop. Figure 6.11(b) shows the close up of the loop region.

The M-20 loop covers the binding site of the ecDHFR. Its movement is believed

to be coupled with the catalytic reaction of the protein. The M-20 loop catches the

ligands when it is in a particular conformation. The loop then escorts the ligand to the

binding site through proper conformational changes. Once the ecDHFR finishes the

catalyzing process, the M-2() loop then Opens, guides the reduced ligands out of the

binding site, and then releases it. The NMR experiments by Falzone et al. [141] prove

the frequency of the M-20 loop conformational change is the same as the disassociation

rate of the THF.

Beyond the function of steering the ligands in and out of the binding site, the

motion of the M-20 loop may participate in the catalytic reaction directly by coupling

with the reaction coordinates, according to the theory that protein motions may acti-

vate catalytic reactions [142]. Through their hybrid Quantum Mechanics/Molecular

Mechanics (QM/MM) simulation, Agarwal et al. [143] identify the coupling between

the side chain motions and the reaction coordinate of the ecDHFR. Simulation of

Shrimpton et al. [138] reports similar results on chicken DHFR.

Sawaya et al. [137] conclude from systematic studies that the closed conforma-

tion of the ecDHFR is in the first half cycle Of the catalytic reaction of the protein,

while the occluded conformation is in the second half cycle. There must be confor-

mational pathways between these two distinct conformations. The role of the open

conformation is not clear though. The Open conformation is not seen in either the

first or the second half of the catalytic reactions of ecDHFR. The Open structure,

shown as the blue bend in Figure 6.11, is not in the middle of the closed (the yel-

low bend) and the occluded (the red bend) conformations in real space. However,

Sawaya et al. find that the open conformation is in the middle of the closed and the

occluded conformations in terms of structural and biochemical characteristics, such
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Figure 6.11: The superimposition Of the open (blue), the closed (yellow) and the

occluded conformations (red) of ecDHFR. The closed, the occluded and the open

conformations are represented by the protein 1RX1, 1RX6 and 1RA9 respectively.

Figure (a) shows the whole proteins while Figure (b) shows the close up of the M-20

loops.
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as the pattern of hydrogen bonds, the packing with ligands, the secondary structures

and the distribution of main chain dihedral angle.

The importance of the motion of the M-20 loop requires studies of its detailed

motion patterns. There are two questions to be answered in understanding the confor-

mational changes of the M-20 loop. The first question relates to the conformational

pathways. Since the occluded and the closed conformations of the M-20 loop are

detected and proved to be intermediates of the catalytic reactions, there must be

conformational pathways between these two distinct conformations. It is not clear

whether there is only one conformational pathway, or there are many. The second

question concerns the existence of the Open conformations. The open conformation

is in the middle of the occluded and the closed conformations when examined from

the point of the main chain dihedral angles, but is outside of the range of these two

conformations in real space, as shown in Figure 6.11. It is not clear whether the con-

formational pathways between the occluded and the closed conformations involved

the open conformation.

The NMR technique, which measures an ensemble of conformations, is the right

tool to gain the structural data of the most populated conformations, but not the

tool to extract the structures of a conformation that is less populated. For this

reason the intermediate conformations between the occluded, the closed and the open

conformations are never observed in experiments. Simulation techniques have to be

utilized to gain insight into the conformational pathways of the M-20 loop.

MD simulation, being the standard method in exploring protein conformational

changes, is in practice not be able to sample the whole conformational pathways

between the Open, the closed and the occluded conformations of ecDHFR, because

the time range of the ecDHFR conformational changes its conformation is beyond

the calculation capacity of current MD simulation techniques. The ecDHFR changes

its conformation at a rate of about 203‘1 [144]. The best MD simulations reach a
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couple of microseconds while the majority of MD simulations in literatures are in the

nanosecond time range. Yet several MD simulations have been tried on ecDHFR [145,

146]. The MD simulation by Rod et al. [147] shows very promising results. It shows

multiple transitions between the three distinct conformations, though the simulation

is only 10ns long which is far less than the 203“1 conformational change rate reported

in experiments. It also predicts several other distinct conformations that are not

detected by experiments.

In practice, the MD simulation is limited in its capacity to sample long time

scale protein conformational changes partly because it wastes time on high frequency

motions, partly because it includes the whole protein in calculation. The protein

ecDHFR is very stable. Except in the M-20 loop region, the protein does not undergo

much structural transformation under usual conditions. The structural stability of

the protein support our interpretation of proteins as flexible regions anchored on

motionless rigid cores. The rigid core of DHFR does not change its conformation in a

full catalytic reaction cycle. MD simulations waste time on calculating the dynamic

trajectory of the rigid cores of proteins which is not of interest in our study of the

motion of the M-20 IOOp.

ROCK eliminates calculation endeavor on any high frequency motions by fixing

the bond lengths and angles. The flexibility analysis enables our algorithm to sample

the conformations of the flexible regions of the proteins only. These two advantages

make our algorithm a powerful tool in sampling the conformational changes that is be-

yond the scope of present MD simulations. Our algorithm is capable of sampling the

conformational pathways between the occluded and the closed conformations of the

protein ecDHFR. We would like to answer the questions of how similar these confor-

mational pathways are and whether the open conformation appears in the pathways.

Section 6.3.2 examines the flexibility characteristic of the protein. It is worth noting

that our algorithm samples the protein conformations by a random walk procedure.
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Section 6.3.3 shows how a small modification enables our algorithm to search the

random yet directional pathways. Section 6.3.4 discusses the calculation results. Un-

like the MD simulation which determines whether a snapshot of a trajectory is closer

to which of three conformations (open, closed or occluded ) according to the char-

acteristics of the main chain dihedral angles, our analysis are mainly done in real

space.

6.3.2 Flexibility Analysis on DHFR

Experiments extract more than one distinct conformation for some proteins, such

as HIV-1 and DHFR. The existence of multiple conformations makes it easier to pre-

dict which hydrogen bonds or hydrOphobic interactions are stable in the whole path

of the protein conformational changes. If a hydrogen bond or a hydrophobic interac-

tion is present in one conformation but not in the others, it is safe to say that this

interaction is not stable. Therefore by comparing the distinct protein conformations

we can identify those interactions that are truly stable. The quality of the flexibility

analysis is improved by including only the interactions that are truly stable in the

whole protein motion trajectory.

In principle the more distinct conformations of a protein there are the more

reliable the prediction of the stable hydrogen bonds and hydrophobic interactions is

in flexibility analysis. We use only one conformation in the flexibility analysis of HIV-

1 protease however because our algorithm is powerful enough to provide much insight

into the intrinsically allowed motions of proteins on the basis of only one structure.

After all, many proteins have only one distinct structure which is determined from

experiments.

Since the occluded and the closed conformations are two observed intermediate

states in the catalytic pathways of the enzyme ecDHFR, these two structures are good

indicators of which hydrogen bonds and hydrophobic interactions are stable in the

 



whole enzyme reaction pathways. \Ve exclude the unstable hydrophobic interactions

and hydrogen bonds from our flexibility analysis. Of those hydrogen bonds that are

present in both conformations, the energies are taken to be the higher values (weaker

bonds) of the same bonds in the two conformations, because the higher energy of a

bond in two conformations tells how unstable the hydrogen bond can be.

Information from the open conformation is not used in the analysis of stable

hydrogen bonds and hydrophobic interactions. One question we would like to address

is whether the open conformation is accessible on the pathways for the protein to

transform between the closed and the occluded conformations. The inclusion of any

information from the open conformation in the flexibility analysis would bring bias

in favor of showing Open conformation in the pathways.

The protein structures 1RX1 and 1RX6 [140] are used in this study to represent

the closed and the occluded conformations of ecDHFR. The two conformations are

identical in amino acid residues. Therefore the covalent bonds are the same in the

two conformations. Both conformations are bound with ligands. Ligands and sur-

rounding water molecules are removed since they are irrelevant to the sampling of

intrinsically allowed conformations of the protein. Both protein structures are from

X-ray crystallography with a resolution of 2.0A. Polar hydrogen atoms are added to

both conformations by the Unix version of the software WhatIF99 [148].

The software FIRST [88] is applied to both conformations. It first calculates

the energies of the potential hydrogen bonds based on geometrical considerations.

Hydrogen bonds in the two conformations are then re—organized so that the hydrogen

bonds are identical in both conformations. A potential hydrophobic interaction is

listed when a pair of hydrophobic centers is closer than 0.7A plus the sum of the van

der Waals radii of the two centers. According to Dr. Zavodszky’s experience [119]

on the usage of FIRST on several proteins, biochemical properties match better with

the predictions from FIRST when the critical distance of hydrophobic interactions is
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0.7A plus the sum of van der “'aals radii of a pair of hydrophobic centers. A possible

hydrophobic interaction is taken as a stable hydrophobic interaction when it is present

in both conformations. This procedure creates a list of interactions and constraints

that are common to both conformations. The two conformations, when obeying this

single set. of constraints and interactions, are identical in flexibility properties.

The selection of hydrogen bonds depends on the hydrogen bond cut off energy.

Figure 6.12 shows the structural properties of the protein under different hydrogen

bond cut off energies. Each horizontal line represents the protein under one particular

hydrogen bond cut off energy. The thick bar shows rigid cores while the thin lines are

flexible loops. The red and thick bars in the figure denote the biggest rigid cluster in

the protein. From top to bottom, hydrogen bonds are accumulatively cut according

to their energies. Majority part of the protein is in the single and large rigid core until

hydrogen bonds whose energies are higher than -2.661 kcal/mol, which is equivalent

to more than 2300 K in temperature, are all cut. The structure of ecDHFR is very

stable in this sense.

In ambient temperatures those hydrogen bonds whose energies are less than

—1.0 kcal/mol should be considered as stable interactions. The flexibility properties

of ecDHFR, when all hydrogen bonds whose energies are less than —1.0 kcal/mol are

counted as constraints while all the other hydrogen bonds are eliminated, is shown in

Figure 6.13. The core of the protein is rigid as expected. The M-20 loop is flexible.

The PRO21 residue is shown as a rigid residue because its main chain ()5 angle is locked

by a five fold ring. Appendix 83 discusses the distribution of main chain dihedral

angles of proline residues in detail. In addition to the M-20 loop, the residues from 118

to 129 and from 142 to 150 are also flexible. Because these two ranges of residues are

Close to the M-20 loop in the coordinate space, the conformational changes of these

two ranges of residues are coupled to the conformational fluctuation of the M-20 loops

through van der Waals interactions, hydrogen bonds and hydrophobic interactions.
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Residues from 63 to 72, which are shown in color red at the top of the protein in the

figure, are also flexible. The conformational changes in these residues do not have

obvious biochemical functions.

6.3.3 Sampling Directed Pathways

ROCK samples conformations randomly. Starting from one conformation, it

searches a nearby conformation in random directions. In order to search pathways

directed from the occluded or the closed conformation of ecDHFR to the other, a

simulated annealing procedure [149, 150] is incorporated in our algorithm. The RMSD

d between the main chain atoms in a generated conformation and the corresponding

atoms in the target conformation is the pseudo-energy of the generated conformation.

It is calculated as
 

1 N

d 2 iv' gm — r§)2 (6.3)

in which r,- is the coordinate of the ith atom in the generated conformation and the

rf is that of the same atom in the target conformation. The sum over the index i

is over all main chain atoms of interested residues. In this case the sum is over all

main chain atoms in the M-20 loop region. Those conformations whose RMSD to the

target conformation are smaller than those of their immediately proceeding accepted

conformations are always accepted. The other conformations are accepted with a

probability of exp [—-Ad/T*], in which Ad is the change of the RMSD to the target

conformation since the last accepted conformation and T"‘ is the pseudo-temperature.

The pseudo-temperature is always proportional to the current RMSD to the target

conformation by

T" = d7 (6.4)

In this way the pseudo-temperature is high when the RMSD to the target confor-

mation is big so that it is possible for the protein to overcome some pseudo-energy
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Rigid Isostatic Flexible

{-fll 'i 72:}

Figure 6.13: Flexibility properties of ecDHFR. The protein shown in this figure is

1RX6 which is in the occluded conformation. Only those hydrogen bonds and hy-

drophobic interactions that are present in both the occluded and the closed confor-

mations are included in the flexibility analysis. Residues shown in blue and gray are

rigid. Residues shown in yellow, gold and red are flexible. The flexibility property is

analyzed by the software FIRST.
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barriers. The pseudo-temperature. is low when the RMSD to the target conformation

is small so that only those conformations which are closer to the target conforma-

tion than their previously accepted conformations are accepted. The setting of the

parameter 7 depends on the properties of the conformational space of the proteins

being studied. It is set to be 0.05 in this calculation.

The generated conformations are dragged toward the target conformation when

the RMSD decreases. Because the trajectories generated by our algorithm are not

driven by any empirical potential, they are not the real dynamic pathways of the

proteins. However since all of the conformations generated by our algorithm are

feasible conformations, the connections of all these conformations link to form possible

conformational pathways. These conformational pathways are statistically correct.

The properties of an ensemble of possible conformational pathways generated by

our algorithm will be the same as those of an ensemble of conformational pathways

generated by MD or any other algorithms, when the size of the ensemble is large.

6.3.4 Conformational Pathways of DHFR

Pathways from the Occluded to the Closed Conformation

Six trajectories starting from the occluded conformation targeting at the closed

conformation are generated by our algorithm. All of these calculations generate thou-

sands of conformations within two to three days of CPU time on a single AMD Athlon

1900+ processor. The parameter settings for all of the six pathways are the same ex-

cept the initial random seeds. The random numbers used in the program ROCK are

generated by the program authored by L’Ecuyer et al. [151].

The region of our interest is the M-20 loop. There are 11 residues in the M—20

loop. Each residue has four main chain atoms. Therefore the conformations are best

defined in a 3 x 4 x 11 = 132 dimensional space. To simplify the analysis, we define

three reference points in the high dimensional space, which are the occluded, the
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Figure 6.14: The correlation of RMSD of the six trajectories to the occluded and

to the closed conformations. The RMSD of all six trajectories are exactly 0.0A to

the occluded and roughly 4.0A to the closed conformations in the beginnings. The

calculations are terminated when the RMSD to the closed conformations are below

1.0/3..

closed and the open conformations. All the conformations in the high dimensional

space then can be projected to a simpler three dimensional space, in which the RMSD

of a conformation to the three reference points are its coordinates. Trajectories of

conformations are easily tracked and examined in the three dimensional space, at

the cost that some information is lost when trajectories in high dimensional space is

expressed in the newly built three dimensional space.

Figure 6.14 illustrates the correlations between the RMSD of generated confor-

mations to the occluded and the closed conformations. Since the calculation begins

from the occluded conformation, the RMSD of conformational trajectories to the oc-

cluded conformation are exactly zero at the beginnings. The RMSD of trajectories
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to the closed conformation are more than 4.0A at the first several snapshots. Our

calculations are terminated when the RMSD to the closed conformation are below

1.0A. Because the bond lengths and angles in the starting conformation, the occluded

conformation in this case, are not exactly the same as those in the ending conforma-

tion which is the closed conformation, our calculation is not capable of driving the

RMSD to be exactly zero because the bond lengths and angles are not changed in

our algorithm. In a simple test, we build a conformation in which the bond lengths

and angles are identical to those of the occluded conformation, and the dihedral an-

gles are the same as those of the closed conformation. The RMSD of the best fit of

this manually built conformation to the closed conformation is about 0.6A. Therefore

driving the RMSD down to the vicinity of 0.6A is the limit of our algorithm when

the bond lengths and angles are not disturbed. In reality the lowest RMSD observed

in calculations is between 0.8A and 1.0A.

All six trajectories do not pass the open conformation, as shown in Figure 6.15.

All six trajectories are distinctly away from the open conformation at any point. The

smallest RMSD of the trajectories to the open conformation is about 2.0A. This fact

is repeated in Figure 6.16 in which the correlations of RMSD to the closed and to the

open conformations are shown.

All the correlations between the RMSD of the trajectories to the three confor-

mations prove that these six trajectories do not differ from each other much. All

trajectories fall into same regions in all correlations shown in Figure 6.14, Figure 6.15

and Figure 6.16. This is reasonable considering that there are not obvious barriers

among the occluded, the closed and the open conformations. As shown in Figure 6.11,

it is not as crowded in the M-20 loop region as it is in other regions in the protein,

even when the van der Waals repulsion of the side chains are taken into account.

Therefore the M-20 loop can transform from the occluded conformation to the closed

conformation without as much difficulty as conformational changes in other regions
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any point.
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of the protein encounter. Since the overall shapes of the correlations are almost linear

in all of the three figures, we hypothesize that the conformational pathways between

the occluded and the closed conformations are roughly linear connections between

the two.

Real vs. Main Chain (1) and 2.x"; Space

Similar to the analysis in real space, we define the dihedral angle RMSD 0

(DARMSD) of the trajectories to the three conformations as

 

1 IV I C ‘7

9 = WE [(e. — a)? + (w.- — z/ )2} (6.5)

in which (15, and w,- are main chain dihedral angles of a generated conformation and

96f and 2,525 are the corresponding dihedral angles in the closed conformation. The sum

is over all residues of interest, which are residues in the M-20 loop in this case.

Since there are 11 residues in the M-20 loop, the conformations are best described

in a 22 dimensional space which is spanned by the 22 main chain dihedral angles.

Similar to the analysis in real space, we define three reference points which are the

closed, the occluded and the open conformations respectively. Any conformation is

then expressed in a smaller three dimensional space in which the RMSD to the three

reference points are its coordinates.

Figure 6.17 shows the correlations of DARMSD of the six trajectories to the

occluded and to the closed conformations. Surprisingly, the DARMSD of the six

trajectories to the closed conformation are always bigger than 50°. Some trajectories

do not show any inclination to smaller DARMSD values at all. The DARMSD of

the six trajectories to the closed conformation in real space are all below IDA when

calculations are terminated, but the DARMSD of the same trajectories to the closed

conformation in dihedral angle space oscillate around big values.
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Figure 6.17: Correlation of the RMSD of the six trajectories to the occluded and to

the closed conformations. The DARMSD is defined in Equation 6.5.
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To further investigate the difference between the RMSD in real space and the

DARMSD in dihedral angle space, we analyzed the similarities between a generated

conformation and the closed conformation. This generated conformation is one of the

conformations which are. very near to the closed conformation in term of RMSD in real

space. Table 6.1 lists the difference in coordinates of the main chain atoms of the l\I-20

loop between the two conformations. The RMSD between these two conformations

is mere 1.057A in real space. The biggest distance between corresponding atoms

in the two conformations is only 121613;. All these data prove that the generated

conforn‘iation is almost identical to the closed conformation.

Figure 6.18 shows the M-20 loop main chain atoms of both the generated and

the closed conformations. Though not perfectly matched, the two conformations wind

around each other like the two chains of the double helix. It is obvious that these two

conformations resemble each other.

Though these two conformations are virtually the same in real space, they are

quite different in the main chain ¢ and I/J angle space. Table 6.2 lists the main chain

(1') and 111 angles of the M-20 loop in the generated and in the closed conformations.

The main chain dihedral angles are calculated by the software ViewerLite 5.0 [152]

to eliminate the possibility that our program may be erroneous in calculating the

main chain d) and w angles. The DARMSD between the two conformations is 569°.

Differences in (15 and 1/1 angles are also listed in the table. The difference between some

corresponding dihedral angles can be more than 100°.

When the RMSD between two conformations is exactly zero in real space, the

DARMSD between them must also be zero in dihedral angle space. Therefore, it is

intuitive to assume that when the RMSD is small in real space the DARMSD must

also be small in dihedral angle space. In contrast our calculations show that the

RMSD in dihedral angle space can be very large even when it is small in real space.

It is easy to prove that the case of small DARMSD in dihedral angle space
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3.1: A}; A; R

N -0305 1.112 -0073 1.155

1LE14 C0 -0550 1.077 0.132 1.216

C -0.163 0.298 0.123 0.361

N 0.016 0.344 -0248 0.424

GLv15 Co, 0.406 -0391 -0202 0.599

C 0.259 0.023 -0.600 0.654

N 0542 -O.683 0.308 0.925

.\IET16 Ca 0.288 -0304 0.111 0.433

C -0402 -0.164 0.169 0.466

N 0.457 -0.281 0.196 0.571

GLL’IT CO -0001 -0152 0.190 0.250

C -0852 0.139 0.762 1.151

N 0302 -0.736 0.025 0.796

ASl\'18 Ca -0.136 -0.632 0.371 0.745

C —0.450 -0377 0.056 0.590

N -0030 -0244 -0312 0.397

ALAIQ CO 0169 -0111 -0544 0.580

C 0.584 —0.081 -0498 0.772

N -0195 0.045 0.246 0.317

MET20 CO 0.390 0.190 0.425 0.607

C 0.277 0.104 0.076 0.305

N 0.458 0.357 —0.045 0.582

PR021 CO 0.375 0.277 -0130 0.484

C -0147 0.102 0.492 0.524

N -0015 0.643 -0.783 1.013

TRP22 CO -0403 0.590 -0427 0.832

C 0.241 0.223 -0141 0.357

N -0.708 0.421 -0152 0.838

AS.\"23 CO -0333 -0092 0.132 0.370

C -0414 -0053 0.349 0.544

N 0.052 -0372 -0545 0.662

LEU24 Ca 0.054 -0352 -0477 0.595

C -0237 0.000 -0701 0.740
  

 

 
Table 6.1: Difference in coordinates of main chain atoms in the M-20 loop between

the generated and the closed conformations. The difference in coordinates in :r, y

and z are listed, together with the distance R between corresponding atoms in the

generated and in the closed conformations.
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Figure 6.18: Superimposition of the M-20 loop of the generated and of the closed

conformations. One conformation is colored red while the other is colored blue. The

two conformations are almost identical.
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Generated Closed

4(0) 410) 44°) 44°) 444°) 444°)
ILE14 -79.8 -46.1 -111.7 -13.4 -31.9 32.7

GLY15 179.1 133.7 —162.0 161.4 18.9 27.7

.\IET16 -54.0 167.6 -147.4 109.8 ~93.4 -57.8

GLU17 29.3 -58.9 50.6 59.6 21.3 118.5

ASN18 163.0 24.0 53.9 31.8 -109.9 7.8

ALAIQ -153.7 105.9 -148.3 154.7 5.4 48.8

MET20 -54.1 127.3 -99.9 123.5 -45.8 -3.8

PRO21 -79.7 57.6 -66.8 —46.5 12.9 -104.1

TRP22 —120.1 -145.9 -65.6 178.0 54.5 -37.1

ASN23 165.5 118.1 -134.8 89.2 59.7 -28.9

LEU24 176.2 92.2 -117.4 78.2 66.4 -14.0           
 

 

Table 6.2: Main chain (25 and 1,0 angles of residue 14 to 24 in the generated and in the

closed conformations. Angles larger than or close to 100.0° are marked by bold font.

and large Rh‘ISD in real space is also possible. Suppose one dihedral angle in a

chain molecule is rotated by 180°. The RMSD between the resulting and the initial

conformations is large because the flip of one dihedral angle can drag part of the

molecule far away from its original coordinates. The DARMSD between the two

conformations is small because only one dihedral angle is altered.

The lack of correlations between the RMSD in real space and the DARMSD in

dihedral angle space has been seen before. In their study of the variations of main

chain (15 and d) angles in different conformations of proteins, Kern and Rose [153]

discover that the main chain conformation of a protein is not deformed when the

main chain dihedral angles are rotated compensatorily. The effect of a big change in

the main chain 212 angle in one residue may be offset either by the rotation of the main

chain (0 angle in the next residue by the same amount in the opposite direction, or by

small rotations of several main chain dihedral angles in nearby residues. Vieille [154]

observes the same phenomenon in her analysis of the conformational fluctuations in

a MD simulation trajectory.

The counter-intuitive fact that the RMSD in real space is not correlated with the
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DARMSD in dihedral angle space disqualifies the usage of the main chain dihedral

angles in the analysis of the similarities between conformations. Whether two confor-

mations are alike should be investigated in real space. On the other hand, the analysis

of the variations of the main chain 05 and 2,0 angles can be used to pinpoint the exact

positions of the conformational changes. Whether to inspect the deviations in real

space or in dihedral angle space therefore depends on the questions to be answered.

Pathways from the Occluded and the Closed Conformations to the Open

Conformation

The six conformational trajectories between the occluded and the closed confor-

mations do not pass the open conformation. It is not clear whether it is because the

trajectories do not need to pass by the open conformation, or because the constraints

in the occluded and the closed conformations inhibit the sampling of the open con-

formation. To clarify this point, two more conformational trajectories are sampled

by the ROCK. One trajectory starts from the occluded conformation targeting at the

open conformation. The other one starts from the closed conformation targeting at

the open conformation.

A trajectory between the closed and the Open conformations is successfully ex-

plored. The RMSD between generated conformations and the open conformation

drops to around 1.014 after ROCK samples about 2000 conformations. A trajectory

between the occluded and the open conformations is also found. The best RMSD

between generated conformations and the open conformation is around 1.214.. The

closed conformation is not on the trajectory between the occluded and the open con-

formations. The occluded conformation is not on the trajectory between the closed

and the open conformations too.

To summarize, ROCK successfully generates direct pathways between any two

of the three conformations _ the closed, the occluded and the open conformations.
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The pathways between any two conformations do not pass the third one. Therefore

it is possible that the three conformations form a triangle in the high dimensional

conformational space. Direct pathways between any two conformations can be built,

without the necessity of passing through the third.

However our calculations are not conclusive. The trajectories are sensitive to

the constraints. The addition or removal of one or more constraints could change

the characteristics of the trajectories. The removal of constraints enables a protein

to sample larger conformational space. The addition of constraints compresses the

conformational space of a protein. For example an addition of one or few crucial

constraints may disqualify the six conformational trajectories between the occluded

and the closed conformations. The ecDHFR may have to go through the open confor-

mation along its pathways between the occluded and the closed conformations in this

case. The influences of the constraints on the properties of protein motion trajectories

deserve further analysis.
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Chapter 7: Summary and

Perspectives

7. 1 Summary

This thesis covers two sub-topics of modeling non-crystalline networks: the mod-

eling of discontinuous networks and the sampling of conformations of non-crystalline

networks. We propose and test two algorithms on these two topics. The first algo-

rithm is dedicated on the rearrangement of dangling bonds in network models so that

1) all atoms in the resulting networks are all fully coordinated and 2) the bond length

and angle distortions are within acceptable limits. The second algorithm samples

conformations of non-crystalline networks which are composed of complicated ring

clusters. Proteins are such networks.

The building of the DCRN models starts from crystalline networks. Voids are

cut from the networks, resulting in dangling bonds at the surface of the voids. The

defects involving dangling bonds at three-coordinated atoms are transferred to their

nearest neighboring atoms at each step of the defect migration process. The defects

are then removed when they come together. The defect migration process creates

fully coordinated networks.

The networks are randomized to be amorphous by the WWW technique. Since

the bond switch process is local in the WWW technique, the voids in the initial

networks are roughly unchanged before and after the WWW process. The resulting

network is random, but discontinuous in the sense that it can have built in voids of

any shapes and sizes. The insertion of oxygen between all silicon-silicon bonds makes

amorphous silica models. This algorithm is demonstrated to build the amorphous

fiber silica and the amorphous film silica models. The distortions of bond lengths

 



and angles are reasonable in both models. The variation of distortions in atom layers

suggests that the surface effects diminish within five layers to the surfaces.

Since the overall shapes of the amorphous fiber silica and film silica models are

confined in one or two dimensions, the PDF of these two models are not directly

comparable with that of the CRN silica models. The effects of the overall shape

on the PDF can be eliminated by dividing the RDF of the models over that of the

continuous and uniform media of the same shape. The obtained RDDF of both the

amorphous fiber silica and film silica models are quantitatively in good agreement

with that of CRN silica models, except a small shoulder at the second peak which is

caused by distortions at the surfaces.

The procedure to build the DCRN models can be used to build any glassy network

models. Moreover, defects and hydrogen can be introduced into a fully coordinated

random network by reversing the defect migration process used to build the fully

coordinated networks. Hydrogenated networks can be built with any concentration

and distribution of hydrogen.

If desired, models produced by this algorithm can be further optimized by other

techniques, for example by MD simulations with empirical potentials or by ab initio

algorithms. The refined models are then suitable for the studies of the electron

states of defects, of the photo luminescent characteristics of voids, and of the electron

distributions around hydrogen atoms et al.

The amorphous metal-adamantane network is modeled starting from a CRN

gallium arsenide model. Gallium and arsenic atoms are replaced by the metal atoms

and the adamantane units respectively. Since the amorphous gallium arsenide model

does not have odd-numbered rings, each metal atom is bonded to four adamantane

units and each adamantane unit is bonded to four metal atoms. The calculated X-ray

powder diffraction pattern fits that measured in the synchrotron experiment.

There are only covalent bonds in the DCRN models. The concentration of the
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covalent bonds in DCRN networks is so high that DCRN models we examined are

all rigid. The concentration of bonds in another type of non-crystalline network,

namely the protein, is not high enough to restrict the relative positions of atoms,

so some regions of proteins have multiple conformations. Proteins have evolved in

such a way that some regions of the proteins are rigid while the other regions are

flexible. Constraints in the rigid regions stabilize the proteins and define a template

for interacting with other molecules. The flexible regions of proteins can carry out

biological functions. Since distortions of bond lengths and angles are energetically

unfavorable, it is preferred to sample the conformations without disturbing the bond

lengths and angles. This task is not easy for proteins, because there are lots of rings

in proteins which are composed of covalent and hydrogen bonds. The concentration

of the bonds is high, so virtually all these rings are inter-locked with each other. The

bonds linking the rings bring extra constraints on how rings are relatively positioned

against each other. It is therefore vital to build an algorithm that closes all the rings

simultaneously.

Inspired by the RCE proposed by Go and Scheraga [73], we define a fictitious ring

closure potential which is the sum of the squares of the RCE. A set of dihedral angles

is the solution to RCE if and only if it makes the fictitious ring closure potential

to be zero. Since the fictitious potential is non-negative everywhere, the potential

is at one of its minima whenever its value is zero. Therefore by minimizing the

fictitious potential, our algorithm is able to numerically solve the RCE. This method

can close any rings, regardless of how the non-rotatable and rotatable dihedral angles

are mixed. The main advantage of this method is that by minimizing the total

fictitious potential of all the rings in a complicated ring cluster, it is able to close

all the rings simultaneously. All the bond constraints are concurrently satisfied. The

ability to close all rings and to generate stereo-chemically correct structures makes

our algorithm efficient in sampling conformations for proteins, which are composed
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of numerous inter-locked rings.

Our method of solving the RCE is tested on a model molecule, which is made up

of four inter-connected rings. The molecule has only two DOF, so its conformations

can be easily projected on a 2D graph. The distributions of the conformations gener-

ated by our algorithm show two symmetries which are identical to the two symmetries

of the topology of the molecule. This fact supports the claim that, given enough cal-

culation time, our algorithm can sample all conformations of a small macromolecule,

if these conformations are continuous in the conformational space. While all the dihe-

dral angles in a large macromolecule cannot be sampled exhaustively, the combination

of ROCK and FIRST makes ROCK sample the important DOF in the system.

The application of flexibility analysis [88] to proteins reduces the calculation cost

by differentiating the flexible regions from the rigid regions in proteins. The rigid re-

gions of proteins have negative or zero DOF. They may have multiple conformations,

but these conformations are well separated in the conformational space, so that it is

reasonable to assume these rigid regions do not sample more than one conformation

under usual conditions. The program ROCK samples conformations only for the flex—

ible ring clusters which are identified from the flexibility analysis. It saves calculation

time by avoiding sampling conformations for the rigid regions of proteins.

ROCK first perturbs the rotatable dihedral angles in the flexible regions of pro-

teins by modest rotations which are typically within 5° to 10°. It then closes all the

rings by minimizing the total fictitious ring closure potential. It randomly samples

side branch conformations as well. It has three minimal requirements on side branch

conformations: 1) the bond lengths and angles should be undistorted from their orig-

inal values; 2) there should be no van der Waals overlaps between non-bonded atoms;

and 3) the chirality at all chiral centers should not be inverted. In the case when

a bond in the side branch is not rotatable, a distance constraint between the two

nearest neighboring atoms of the two ends of the bond is imposed, so that the bond
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is effectively locked.

ROCK also checks the quality of the generated protein conformations on the

main chain Ramachandran plot. It rejects those conformations whose main chain

(,0 and 17' angles are not in the preferred regions in the plot (see Appendix B). The

distributions of the dihedral angles in the side chains have certain patterns [155]. An

additional check on the quality of side chain conformations against the dihedral angle

distributions in the rotamer library [156, 157] could be added to the program. However

the additional check would bring an additional calculational cost to our algorithm.

The side chains often adopt to non-rotameric dihedral angles. Moreover, at least in the

examples of HIV-1 protease and DHFR, the main interest of sampling the main chain

conformations does not require elegant algorithms on the side chain conformation

sampling, if there is a feasible set of side chain conformations for the given main

chain conformation. By keeping only the bond length and angle constraints, ROCK

samples the conformations that are consistent with the constraints.

ROCK has been applied on two proteins, the HIV-1 protease and DHFR. Our

algorithm did a very good job on sampling the conformations of the HIV-1 protease.

The distances between the tips of the flaps can be as large as 8.0A in some confor-

mations. This is indeed a big distance considering the fact that such distance is only

2.7A in the crystal structure of the protease which is used as the initial conformation.

Our calculation shows that a curling motion is not necessary for the two flaps to

open. A detailed analysis of the bond constraints in the tips of the flaps suggests that

such curling motion may not exist at all. Because the hydrogen bond between the

main chain hydrogen atom of the residue GLY52 and the main chain oxygen atom

of residue GLY49 encloses the main chain 05 and 0) bonds of residue GLY51 into a

ten-fold ring which has only one DOF, the distribution of the main chain 03 and 1,0

angles of GLY51 is limited in a very narrow region in the Ramachandran plot. One

explanation is that this hydrogen bond is not dynamically stable, though it has a
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favorable energy in the crystal structure. However, it is safe to say that any curling

motion is independent of the slow flap motions.

ROCK has been used to generate six conformational trajectories between the

occluded and the closed conformations of the protein ecDHFR, one trajectory between

the closed and the open conformations, and one trajectory between the occluded and

the open conformations. Based on the prOperties of these conformational trajectories,

we hypothesize that the open, closed and occluded conformations of ecDHFR form

a triangle in the conformational space. The direct conformational pathways between

any two conformations do not necessarily pass the third one. The six conformational

trajectories between the occluded and the closed conformations are very similar to

each other.

We also analyzed the similarities between the generated conformations and the

closed conformation. The RMSD in real space between the generated conformations

and the target conformation can be as low as 1.0A. The DARMSD in dihedral angle

space between the same conformations and the closed conformation are always large.

This analysis yields the surprising fact that there are virtually no correlations between

the RMSD in real space and the DARMSD in dihedral angle space. Two conforma-

tions that are close in terms of RMSD in real space may have little similarity in their

dihedral angles. Real space RMSD values of two conformations that are similar in

their dihedral angles may be large. Therefore, caution should be taken in choosing

how to analyze protein trajectories. Conformations should be compared in real space

to answer the question of whether they are similar. The analysis in dihedral angle

space is good at locating the dihedral angles that have big variations and result in

conformational changes.
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7.2 Limitations

Both the algorithms to build the DCRN models and to sample protein confor-

mations are somewhat limited in their applications. The former algorithm is suitable

for modeling amorphous networks made of strong covalent bonds. The atoms in the

network models are limited to the group IV semiconductor elements of silicon and

germanium, and to the group VI elements of oxygen, sulfur and selenium. The four

strong covalent bonds of group IV elements usually form a tetrahedron. Covalent

bonds of group VI elements favor certain geometries too. The bonds of all elements

mentioned above can be described simply by geometries of bond lengths and angles.

It is for this reason that our algorithm to build the DCRN models and the WWW

technique to build the CRN models are able to predict the characteristics of these net-

works based on simple geometry considerations. Both our algorithm and the WWW

technique do not apply when the covalency of elements is weak. Two other group IV

elements, tin and lead, bond with their nearest neighbors more like metal than cova-

lent elements. Our procedure is not appropriate in building glassy networks for these

two elements. Valency electrons in the metallic atoms flow freely around, causing

the bonds around metallic atoms to lack fixed bond angle geometries. Therefore, our

algorithm is not suitable for the building metallic glassy networks or semi-conductor

glassy networks with metal atoms.

Proteins are mainly built of carbon, nitrogen, oxygen and hydrogen. All these

atoms are bonded together by covalent bonds and by hydrogen bonds with certain

optimal geometries of bond lengths and angles. Our algorithm to sample protein

conformations is also based on these simple geometry considerations. Care should be

taken when sampling conformations of proteins with buried metallic atoms to model

their bonds correctly.

All of the limitations in both algorithms are caused by the lack of consideration

of quantum effects and electronic states. In general, our algorithms cannot be used to
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study reactions related to the re-distribution of electrons. The initial and final states

of the hopping of a hydrogen atom in the amorphous silica network can be simulated

in our algorithm, but the detailed bond breaking and reforming mechanism cannot be.

Though our program ROCK can sample conformations of ecDHFR, it does not study

such questions as how a hydrogen atom is transferred from NADPH to the DHF in

ecDHFR. These types of questions can be addressed by QM/MM hybrid simulations.

7.3 Applications and Perspectives

Non-crystalline networks have rich physics due to the lack of long range or-

der. Local atomic arrangements in non-crystalline networks are roughly identical to

those in crystalline networks. For example, the bond angles at silicon atoms in non-

crystalline networks are all roughly 109°, which is the optimal silicon bond angle in

crystalline networks. But non-crystalline networks do not have any long range order

as crystalline networks do. The absence of long range order brings two difficulties

in simulations: the complicated energy landscape and the large number of atoms

included in the simulation.

The number of atoms involved in ab initio calculations is usually between 10

and 100. Due to the long range translational and rotational symmetries, electronic

properties of roughly 10 or more atoms in a small supercell in the crystalline network

are identical to those of all of the other atoms in the whole network. Therefore, the

simulations in crystalline networks can be very accurate through the use of ab initio

algorithms. Simulations in non-crystalline networks, however, do not have such an

advantage. Because of the dearth of long range order, an infinite number of atoms,

in principle, should be included in the simulation. The supercell of an amorphous

network typically has thousands or even millions of atoms. The supercell of MD

simulations on proteins with explicit water contains one large protein surrounded
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by tens of thousands of water molecules. In all of these cases, the precise quantum

calculations have to be confined to a small region of the network, for example a

dozen or fewer atoms on the surface of amorphous silica, or ten atoms or so in the

catalytic sites of proteins. The large scale structures and the long range motions of

non-crystalline networks have to be modeled by empirical algorithms.

The local distortions in bond lengths and angles lead to complicated energy

landscapes. Since atoms in one supercell are equivalent to the atoms in all the other

supercells in a crystalline network, the energy levels of the one supercell are degenerate

with those of the other supercells. The energy landscapes of crystalline networks are

clean and easy to interpret. The degeneracy is lost when bonds are distorted. The

consequence of the distortions is a very complicated energy landscape with numerous

local energy minima. The energy barriers between these local energy minima may vary

a lot. The energy barriers of the amorphous networks, for example, are high enough

so that the networks are trapped in local minima even under high temperatures. An

amorphous silicon network is in one local minimum in the whole energy landscape

of silicon networks, because its potential is higher than that of a crystalline silicon

network. The energy barriers of proteins, on the other hand, are low enough so that

proteins can transform from one conformation to another fairly freely under room

temperature.

Our model molecule described in Section 6.1 exemplifies how complicated the

energy landscape can be even for small molecules. It has more than 230 local minima,

some of which are shown in Figure 6.2. The energy landscape of this simple molecule

containing only 36 atoms is already complicated, not to mention a large protein or a

large amorphous fiber silica network.

The protein energy landscapes have been studied by various techniques [158, 159,

160, 161]. The funnel picture [162, 163, 164, 165] has been accepted by many scientists.

It states that a protein has one global minimum conformation, which is the folded



state, and many other local minimum conformations, which are the intermediate or

the unfolded states. The whole. landscape is very rough, with numerous local minima.

The sampling of all local energy minima is not possible for large proteins. The

sampling of all minima for small molecules and for large proteins in the vicinity around

a. given conformation are computationally feasible. Our program ROCK cannot be

utilized directly to sample the local minima in protein energy landscapes, because

the effective force field used in ROCK is not the same as the usual ones used in MD

simulations. The force field used in ROCK is a sum of a series of infinitely high step

functions. Any violations of the bond length and angle constraints or any van der

Waals overlaps push the effective potential to be infinitely high. The dihedral angles

are freely rotatable, as long as the rotations do not result in van der Waals overlaps

and the break of rings. The force fields used in standard MD simulations are much

more complicated. Potentials of bond length and angle variations are high but finite.

Many weak interactions, such as the dihedral angle rotation interaction and the elec-

trostatic interaction, are included in the force fields used in standard MD simulations.

The advantage of ROCK is that by ignoring the details of energy variations caused

by the weak interactions, it is capable of easily jumping over small energy barriers

that require calculation cost in other algorithms utilizing more complex force fields.

The coupling of ROCK and commonly used force fields enables a fast sampling of

conformations without losing details of energy landscape. Such an algorithm can be

a good tool in scanning the maps of local minima of the protein energy landscape.

The sampling of local minima of the model molecule in Section 6.1 is such an ex-

ample. There are also methods of predicting saddle points [166, 167, 168] around

local minima in complicated energy landscapes. Once all local minima and saddle

points are known, statistical quantities such as transition rate, relative populations

and conformational pathways are easy to obtain.

The goal of protein docking is to filter tens of thousands of potential ligands
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(drugs) for their ability to match the binding sites of proteins. In principle, both the

flexibility of ligands and that of the proteins should be taken into account in docking

studies. In many studies. however, only the flexibility of ligands is considered, for

example. the methods used in DOCK [169] and in a modified version of DOCK [170],

and the more complicated approach by Given et al. [171]. Or, in some cases, only

the side chain flexibility of the proteins is included in the calculations [172, 173]. It

is only recently that the flexibility of main chains of proteins catches the attention in

the protein docking studies [175]. Since ROCK is efficient at sampling conformations

for ring clusters, it is a perfect tool to build conformational libraries in which protein

main chain and side chain conformations are stored. Zavodszky et al. [176, 177]

report improved docking when flexible drugs are docked to the ensemble of protein

conformations created by ROCK. Flexibility of the ligands is handled by the tool,

SLIDE [178, 179].

It is interesting that the length scale of both the pores in the mesoscopic porous

network models and proteins are in the order of nanometers. Physics on the length

scale of angstroms requires quantum mechanics to interpret. Physics on larger length

scales such as micrometers and millimeters can be safely described by classical me-

chanics of continuous media. It is in the length scales of nanometers to micrometers

that classical mechanics based on single atoms is the suitable tool, on the condition

that the interactions involved are not subject to large fluctuations. Covalent bonds

are the stable interactions in amorphous material. We include covalent bonds, strong

hydrogen bonds and hydrophobic interactions as stable interactions in our sampling

of protein conformations. The algorithm to build DCRN models, the algorithm of

ROCK, and MD simulations, are dedicated trials to build a set of geometrical lan-

guage that is precise and fast to describe the physics in the nanometer length scale and

up. All these efforts will facilitate future studies and simulations of larger and more

complicated systems, such as protein-protein interactions, viruses, semiconductors in

 



the nanometer range and the niicro-machines.
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Appendix A: Radial Distribution

Function of Uniform Media

RDF of infinite and uniform media is T(r) = 477r2p0 in which p0 is the average

density. The RDF is proportional to r2 in any distance range in the infinite media.

The RDF of uniform media distributed in the shape of a film and in the shape of a

fiber do not follow this square law due to the anisotropic mass distribution.

Suppose uniform mass is distributed in an infinitely wide and flat film of thickness

d in space. Let. 2 = 0 plane is the center of the film and let 3 = d/2 and z = —d/2

be the top and bottom surfaces of the film. Suppose a point (0,0, 20)T which is on

the z axis is the observation point. Due to the mirror symmetry of mass distribution

about the z = 0 plane, the RDF observed from a point whose z coordinate is positive

is the same as that observed from its mirror point about the z = 0 plane. Therefore

we limit our considerations to points above the z = 0 plane. Since the observation

point should be inside of the mass distribution we have 20 g d/2.

RDF at distance 7' observed from this point is proportional to the surface area of

a sphere of radius 7‘ that is buried in the film. When the distance r is small, as shown

in Figure A.1(a), complete surface of a sphere that is centered at the observation

point is within the top and the bottom surfaces of the film. In this case, the RDF

T iobserved from the particular point at (0, 0, 20) s

T(r; zo) = 47772720 (A.1)

which is valid in the range of 7" E [0, d/2 — 2:0).

When the radius r of the sphere increases beyond the point of r = d/2 — zo,

the sphere crosses with the top surface of the film, as shown in Figure A.1(b). The
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surface area of the sphere that is still buried inside of the film is less than 4777’). Simple

calculation shows that the RDF observed from the point of (0. 0, 20)T is

T(/'; :0) = (27775“) + 7rrlr - 277207')p0 (A2)

which is valid when I‘ is in the range of r E [(1/2 — :0, (1/2 + .20).

When the radius r of the sphere is larger than (1/2 + 20, the sphere crosses with

both the top and the bottom surfaces of the film, as shown in Figure A.1(c). The

RDF in the large distance range is

T(‘ :30) : 277(17'p0 (A.3)

which is valid when r E [(1/2 + 20. +00).

Therefore the RDF observed from one particular point of (0, 0, 2:0)T is:

47772;)0 0 S 1‘ < % — :0

T(7‘§ 30) = (2777'2 + 7rd]: — 277:07‘)p0 % — zo S r < g+ 20 (A4)

277(1‘rp0 % + 20 g r

RDF of the whole mass distribution is the averaged RDF observed at every point

in the media. Because of the translational symmetry in the :c and y directions, any

point whose 2 component is :0 observes the same RDF as shown in Equation A.4.

Therefore the average is only necessary along the z axis where :0 ranges from 0 to

(1/ 2.

When 0 S 7‘ < (1/2, the first case in Equation A.4 is valid when 0 S 2.0 < d/2 - 7',

while the second case in the equation is valid when d/2 — r g 20 < d/2. There is no

20 in the full range of 0 S 20 S (1/2 satisfies the third condition in Equation A.4. The
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Figure A.1: A sphere of radius T. It can be totally inside of a continuous media of

the shape of infinitely wide film (Figure (a)), or it may cross with one surface of the

film (Figure (b)), or it may cross with both surfaces of the film (Figure (c)).
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RDF of the film media is hence

 

[- d d

1 5"" 2

T(7‘) = E / T(-r; :0)(1:0 +/ T(r; 20)(le

5 _ 0 g—r

1 P i” . :’ .
: U / 4777‘zporlzo + / (2777‘2 + 7rrl-r — 277207‘)p0d20

7; _ 0 g_r

. ‘7'

= 477r2(1 — a)“, (A.5)

which is valid when r E [0, (1/2).

When d/2 S r < d, the first case in Equation A.4 is invalid for all possible values

of 20 in the range of [0, (1/2]. The second case is valid in the range ofr—d/2 S zo S d/2

while the third case is valid in the range of 0 S 2.0 < r —— d/2. An average of T(r; 20)

over all possible :0 values produce

T(r) = 477r2(1 — £8“) (A.6)

which is valid when r E [d/ 2, d). The RDF of the whole media in this distance range

happens to be in the same form as that in the range of r E [0, (U2). Similar analysis

produces

T(r) = 27rdrp0 (A.7)

when r > d.

Therefore the RDF of an uniform mass distribution in a film of thickness d is

47rr2(1— filpo 0 S r < d

T(7') : (A8)

277d'rp0 7‘ > d

The RDF of the film mass distribution is proportional to 7 instead of r2 in the

large distance. Similar to the RDF of infinite uniform distribution, the RDF of mass

distribution in the shape of a film is proportional to 4777‘2 in the small distance range
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where r ——> 0.

The RDF of the mass distribution in a form of a fiber can be calculated by

the same technique, though the derivation is much more complicated due to the

complicated integration of the spherical surface area that is buried inside. ofa cylinder.

The final result is

 

 

‘ r2 r ( 7'2 ' r

47fl'2/)0[1— f—rfirt(1+lrl3)E(2—d)+:71r(1_ m)1\(:a)] T<2d

T(r) =

4777'2/)0[ — £0 + {(1:._.)E‘(sin-1 (27"), 2%,) -l- .]:‘:;(1 — :_(:2)A(Z’t_1)] r > 2d

(4.9)

in which (1 is the radius of the fiber and functions E and K are elliptic integrations

defined as

 
<25

E(g$, k) =/ \/1 — k72811120(19

0

 

 
11'(k) = [2 do , (4.10)

0 \/1— k2si1120

The RDF of mass distributions of an infinitely long fiber is proportional to 4771"2

in the short distance range, and approaches to a constant in the long distance range.

Figure A.2 shows the RDF of mass distribution in infinite media, in a film of

thickness d and in a fiber of radius d. The difference in the three RDF in the long

distance range is obvious.
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Figure A.2: RDF of uniform mass distribution in infinite (red curve), in a film

thickness d (blue curve) and in a fiber of radius (1 (green curve).
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Appendix B: Ramachandran Plot

B.1 Ramachandran Plot of Residues Other Than

Glycine and Proline

As discussed in Chapter 4, proteins are made up of 20 amino acid residues. As

shown in Figure 4.4, the main chain 05 and the 1/2 dihedral angles are freely rotatable.

Certain values of these two dihedral angles would bring the side chain groups in

close contact with the main chain atoms, resulting in high van der Waals potential

energies, which are unfavorable. Ramachandran et al. [110] systematically examined

the intra— and inter-residue van der Waals contacts at all possible combinations of

the main chain 05 and w dihedral angles. Their study led to the construction of the

Ramachandran plot, which shows the favorable combinations of the 05 and 21) angles

that do not produce van der Waals collisions.

The Ramachandran plot was later refined to reflect the statistical preferences

for (15 and 11) dihedral angle values observed in high resolution crystal structures of

proteins [125, 180, 181]. These distributions are used to assess the quality of experi-

mentally determined or predicted protein structures.

Except for glycine and proline, the other 18 standard amino acid residues share

a similar distribution of favored 05 and 112 angles in the Ramachandran plot, shown

in Figure B.1. The values of the (15 and w angles are most likely to be in one of

the three large regions of the plot. The (15 and 1/2 angles of right handed a helices,

of left handed a helix’s, and of 13 sheets are in the regions whose centers are at

(05 = —100°, 11) = -30°), (¢ = 60°, 212 = 50°) and (0’) 2 —120°, 0) = 150°) respectively.

The plot by Morris et al. [125] is widely used in protein structure validation.

Based on the experimentally observed statistical preferences, the boundaries of these

regions can be set at various cut off values, depending on what percentage of the angles
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Ramachandran Plot (Excluding Gly and Pro)

180 :zjzl

 

120

60

-1

89180 —120 -60

Figure B.1: Reproduction of the Ramachandran plot by Morris et al. [125]. Red,

yellow and brown blocks represent the core, allowed and generously allowed regions,

respectively. White regions represent the disallowed regions. A residue has van der

Waals collisions with its adjacent residues if its db and 1,11 angles are in the white regions

in the plot.
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fall within the given boundaries. Over 90% of the residues in the protein structures

fall in the core regions. Most of the remaining 10% of the residues are in the allowed

regions. Morris et al. designate the regions that are within 20° of the allowed regions

as generously allowed regions. The percentage of the residues in the generously allowed

regions is at most 1% or 2% in well-resolved protein structures. The remaining areas

of the plot are the disallowed regions. Figure BI is a reproduction of the original

data by Morris et al. [125]. The core regions, the allowed regions, and the generously

allowed regions are represented by red, yellow and brown blocks in the figure. Our

program ROCK utilizes this Ramachandran plot to check the stereo-chemical quality

of residues other than glycine and proline in generated conformations, and can be

set to discard those conformations that have (I) and 0) angle values in the generously

allowed and/or disallowed regions.

B.2 Ramachandran Plot of Glycine

Unlike the other standard amino acid residues, glycine has only one side chain

atom, which is hydrogen, as shown in Figure B.2(a). All other residues contain larger

side chains. Because the van der Waals radius of a hydrogen atom is small, the d and

w angles of a glycine residue can be in a large range without introducing intra— or

inter-residue van der Waals contacts. The Ramachandran plot for glycine is therefore

qualitatively different from the plot of the majority of residues which is shown in

Figure 8.1.

The Ramachandran plot containing the distribution of d) and w angles of glycine

residues in high resolution crystal structures [182] was provided to Dr. Zavodszky

by Dr. Laskowski (University College London) . The data show the numbers of

occurrences of glycine main chain (0 and w angles in protein structures in 8° x 8° blocks.

The number of occurrences in every block is first converted into the frequency of
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(a)

side chain

 

Figure B2: The glycine residue shown in Figure (a) has only one hydrogen atom

in its side chain. The side chain of proline shown in Figure (1)) links with the main

chain to form a five-fold ring. Carbon, nitrogen, oxygen and hydrogen atoms are

represented by green, blue, red and white spheres respectively. The side chain atoms

in both residues are enclosed in circles.

occurrence by dividing the number of occurrence by the total number of occurrences of

d and w angles in the whole 360° x 360° range. Starting from the block with the highest

frequency of occurrence, we mark the blocks in order of their decreasing occurrence

until 90% of occurrences are accounted for. These blocks form the core regions in

the glycine Ramachandran plot. All the other blocks with a non-zero frequency of

occurrence are labeled as allowed regions of the glycine Ramachandran plot. The

generously allowed regions were defined following the same procedure as in the case

of the non-glycine and non-proline residues. The final glycine Ramachandran plot

is shown in Figure B.3. Our glycine Ramachandran plot is in qualitative agreement

with the plot created by Lovell et al. [181].

B.3 Ramachandran Plot of Proline

Proline is a unique amino acid. Unlike all the other residues whose side chains

are bonded to their main chains through one bond, proline has two covalent bonds

between its main chain and side chain forming a five—fold ring, as shown in Figure B.2.



Glycine Ramachandran Plot

 
'18-0180 -120 -60 0 60 120 180

Figure B.3: The glycine Ramachandran plot shown in 8° x 8° resolution. The red,

yellow and brown blocks are the core, allowed and generously allowed regions. The

white regions are disallowed regions.
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As discussed in Chapter 4, a five-fold ring is rigid, so the main chain 6) angle which

is in the five-fold ring of proline is not rotatable. The (f) angles of proline residues in

all high resolution protein structures are therefore restricted within a narrow range.

Following the same procedure by which we created the glycine Ramachandran

plot, as explained in Section 8.2, we generated the proline Ramachandran plot from

the data generously provided to us by Dr. Laskowski. The proline Ramachandran

plot is shown in Figure 8.4. Our proline Ramachandran plot is in agreement with

the one shown in the paper by Lovell et al. [181].

169

 



Proline Ramachandran Plot
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Figure 8.4: The proline Ramachandran plot shown in 8° x 8° resolution. The red,

yellow and brown blocks are the core, allowed and generously allowed regions. The

white regions are disallowed regions.
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