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ABSTRACT

REAL ASPECTS OF THE MODULI SPACE OF STABLE MAPS OF

GENUS ZERO CURVES

By

Seongchun Kwon

We show that the moduli space of stable maps from a genus 0 curve into a nonsin-

gular real convex projective variety having a real structure compatible with a complex

conjugate involution 011 CI?”6 has a real structure. The real part of this moduli space

consists of real maps having marked points on the real part of domain curves. This

real part analysis enables us to relate the studies of real intersection (cycles with real

enumerative problems.
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1 Introduction

A Gromov-Witten invariant and its applications to enumerative problems in the com-

plex world has been studied by many people. That invariant is defined on the moduli

space of stable maps ( Definition in section 3 ). In this thesis, we investigate the real

aspect of the moduli space MAX, 5) of stable maps from genus 0 curves when the

target space is a convex (i.e. H1(CIP1, p*(TX)) = 0, for every ,u : (C1?1 —+ X, where

TX is a tangent bundle) nonsingular projective real variety whose real structure cor-

responds to the complex conjugation map on CW“. Here, a projective real variety is

a projective variety having an anti-holomorphic involution. To search for the ways

to use the above moduli space of stable maps TV!" (X, 5) in studying real enumerative

problems, we have to see whether we can understand the moduli space Cliff-AX, 3) as

a real projective variety or not. If the answer is positive, then we need to understand

the nature of the real part ( Definition in sec 2), for example, whether each point in

the real part of MAX, B) represents real maps or not. We will show the following:

0 (Section 3, 4.2) The moduli space of stable maps of genus zero curves WAX, /. ),

where X satisfies the above conditions, is a real projective variety.

0 (Section 4.1) The real part of Mnflt’, ,8) consists of real maps having marked points

on the real part of the domain curves.

The real model (Definition in sec 2) of MAX, [3) has a Z-module Chow group fun-

damental cycle. And the real part of MAX, ,3) has Z/2Zmodule ordinary homology

fundamental cycle. So, it is natural to consider whether we can define real enu-

merative invariants on the real model or the real part of ILL-Y, ,3) which count the

number of real curves on the real model or the real part of iii-”(AZ ,3). Unfortunately,

we cannot define nice enumerative invariants using fundamental cycles. The reason is

explained in section 5. The possible way to use the real aspect of 37,,(X, .3) will be

developing an efficient method to construct real cycles meeting transversally, maxi-



mizing the number of intersection points of cycles in the real part of KTJX, 6). Its

enumerative implication will concern how many real solutions we can have for the

given enumerative problem, improving the minimum bound of the real solutions. But

the technique to construct such real cycles is open.

A Gromov-VVitten invariant in the real world with Quantum Schubert calculus

has been widely studied by F. Sottile. See [Sotl], [Sot2], [Sot4], [Sot5].

2 Preliminaries

We begin with reviews of some standard notions and facts in real algebraic geometry.

A more detailed exposition can be found in [Sil, I. sec.1,4].

Definition. Let X be a scheme over C. We will say that (X, s), or simply s, is a

real structure on X if s is an involution on X such that the diagram

X 1> X

i l

SpeC(C) 1; Spec(C)

commutes, where j : C —+ C is the complex conjugation.

We then call such a scheme X a. real scheme with a real structure 3.

Remark 2.1 If X is a projective variety over C, then having a real structure is

equivalent to having an anti-holomorphic involution on the set of complex points

X(C). See [Si], p4, (1.4) Proposition].

Definition. Let X be a scheme over C. We will say that X has a real model if

there exists a scheme XE over R such that X ”:3 XE XR C, where X3 x3; C is the fibre



product of XR and Spec(C) over Spec(R). We will call XR a real model of X, and X

a complexification of XE.

Proposition 2.1 The category of quasi-projective or projective schemes ouer IR and

that of quasi-projective or projective schemes over C, endowed with real structures are

equivalent categories.

More precisely, there exists a real structure (X, s) on a projective or quasi-projective

scheme X over C if and only if there exists a real model X?R for X and an isomorphism

(p : X —> XR XKC such that s = 99—1 0004;), where o is induced by complex conjugation

in XE x3 C. For a fixed (X, s), tp and XK are unique up to real isomorphism.

Proof. See [Si], p5] [:1

Definition. Let (X, s) be a real structure on a projective or quasi-projective scheme

X over C. We will call the fixed points by the action s in the complex points X(C)

the real part of X and denote it by X”.

If a projective scheme Y is defined over R, then it consists of real and non-real

closed points because the real number field R is not algebraically closed.

A real model of the real projective scheme X is an algebraic geometric notion

including non-real points also. But the real part of X(C) and the set. of real closed

points in a scheme Y defined over R are differential geometric notions. If X(C) is real

isomorphic to Y x13 C, then each point in the real part of X(C) uniquely corresponds

to real points in Y, and vice versa.

We will use notations ClP’k, RIP" to represent ProjC[;1:0, . . . , :rk], ProjR[.r0, . . . ,xk],

that is, projective k-spaces over C, R in algebraic geometry. Note that CP" can be

considered as a k-dimensional complex projective space in the differential geometric

sense. But RP'“, an algebraic variety containing non-real points, cannot be identified

with a differential geometer’s real projective space. The set of real points in RIP” is



identifiable to a differential geometer’s k-dimensional real projective space which we

will denote it by RIP".

Definition. Let (X, s), (Y,t) be real schemes.

We will say the morphism f : X ——> Y is a real map if the morphism f commutes

with real structures, i.e., f o s = to f.

Such a morphism f obviously preserves the real parts, i.e., f (.X”) C Y”.

If XR, YR are separated schemes of finite type over R, then giving a morphism

fR : XER —> YR is equivalent to giving a morphism f : X —> Y which commutes with

the real structures. See [Har, p107, 4.7. (c)]. We will call f3 a real model map of a

real map f, f a complexified map of f3, the restriction map f“ : X” —> Y“ of f to

the set of real points a real part map of f.

Example 2.1 1. CPI“ is a real scheme having an anti-holomorphic involution given

by a standard complex conjugation map. Then, CP'“ is isomorphic to RIP" xx C. We

illustrate a non-real point in RIP”. Let OR be the standard open set {.170 7f 0}. Then,

OR is isomorphic to SpecR[y], where y = xl/xo. Note that y2 + 1 is an irreducible

polynomial in R[y]. Therefore, it generates a prime ideal and obviously corresponds

to a non—real closed point. This non-real point splits into two complex points [1 : i],

[1 : —i] corresponding to (y + i), (y — i) in a standard open set OR XR C isomorphic

to SpecC[y] = Spec(lR[y] 89a C) in CPI. The set of these two points is preserved by

the involution. In this special case of dimension 1, there is a set theoretic one-to-

one and onto correspondence between CPI/ ~ and the scheme RP] , where ~ is the

equivalence relation by the conjugation action, because every irreducible polynomial

having degree higher than one has degree 2. Note that CPl/ ~ is diffeomorphic to a

closed disk. More generally, real points in RIP" correspond to the points in the real

4



part of CPI“ which are fixed by the involution. Each non-real point in RP,“ splits

into an even number of non-real complex points in CPI“ preserved by the complex

conjugation action.

2. We may have more than one real structure on the same scheme. Not every

real structure induces a real part. For example, Cli"1 has two non-isomorphic real

structures. One is explained in 1, having a real part diffeomorphic to RIP”, with real

model isomorphic to RIP]. The other is an anti-holomorphic map s([z : w]) = [—w : 23],

having no fixed points, i.e. no real part, with real model isomorphic to the conic in

RIP>2 given by the homogeneous equation x3 + if + x5 = 0. See [Har, p107, 4.7,(e)].

In general, if a smooth real scheme X has a real part, then the dimension of the real

part is half of that of the original scheme. i.e., dim.3X(C) = dimRX". See [Sil, p8].

3. The Deligne-Mumford moduli space TU" with it marked points, is a real moduli

space whose anti-holomorphic involution is induced by the involution in example 1 as

described in [G-M, 2.3], [F-Oh, sec.10], [Cey, sec.4.1]. More precisely,

i. For non-singular curve; (CP1,a.1, . . .,a,,) +——> (CP1,(11,.. .,(‘1.,,)

ii. For singular curve with two irreducible components;

(CP;,6;(1,1,...,a.k) U (Cl?),(5’;b1,...,bl) H (CP;,S;a,,...,ak) U (CP:,5’;I.)I,...,l-)1),

where CPL, CP}, are irreducible components after the normalization, (5, 6’ are gluing

points, a,, bj are marked points, k + l = ii.

iii. General cases are obvious from i, ii.

We will prove this map defines an anti-holomorphic involution in section 3. In fact,

this is an involution we get when we consider the C-scheme Deligne-Mumford moduli

space as a complexification of the R-scheme Deligne-Mumford moduli space. That

is, the real model of 17,, is an R-scheme Deligne-Mumford moduli space T1: with 72

marked points.

Not every universal family of curves 3,, on 37,, is real. For example, any rational

curve with 3 marked points can become a universal family over .113. But that can be



considered as a real universal family of curves only when all 3 marked points are on

the real part of CP’. To analyze the real part of fin, we need a real universal family of

curves. The real universal family of curves can be constructed by complexification of

the R-scheme universal family of curves over the R-scheme Deligne-Mumford moduli

space Hf. Obviously, the one point moduli space H3 can be represented by a rational

curve (CPI, a1, a2, (13) with 3 marked points a,- in the real part. Each general point x(;£

a,) in U3 1: (CP’, al, a2, a3) can be understood as a general point in H4 representing

a rational curve with marked points at al, a2, a3, x. Thus, non—singular curves

represented by points in the real parts of H4 are real curves with 4 real marked points.

When these curves degenerate, they make singular curves having real irreducible

components with real marked points and real gluing points. If two points on the real

part of the rational curve collide, then the colliding place becomes a gluing point with

the other new real irreducible component. And then, the collided points split into

two points in the real part of the new irreducible component. Since the construction

of Deligne—Mumford moduli space is inductive using real isomorphisms Un_1 E’ I17",

we see that points in the real part of 717", n 2 3, are represented by rational curves

with real marked points or singular curves having real irreducible rational components

with real marked and real gluing points. See [G-M, sec2.3].

Recall there is a 1-1 correspondence between isomorphism classes of locally free

sheaves of rank n on the scheme X, and isomorphism classes of vector bundles of

rank it over X. We won’t distinguish the words between a ‘locally free sheaf’ and a

‘vector bundle’. See [Har, p129, 5.18(d)].

Note that a real structure 5 on X induces a canonical morphism on the structure

sheaf 0x by

F(U7 OX) —) I‘(3(lj)701\')

f H j0f08:=f"’3



which is an isomorphism of rings, where U is any Open set in X.

Let U be an affine open set in X and .C a locally free sheaf. Then, £(s(U))

is an Ox(s(U))-module. We make £(s(U)) an OX(U)-module by changing exterior

multiplication,

0x01) >< £(«S(U)) -> C(b'(U))

(f, v) i——) (j o f o s)v

leaving the underlying additive group structure as it was. We call the locally free

sheaf £3 of (OX-modules defined in this way the conjugate vector bundle with respect

to the real structure 3 on (X, s).

For example, if £ is a sheaf of functions with values in C’, we may describe £3 by

£‘°(U) : {j 0 ho slh E £(s(U))}

We call the vector bundle V over the real scheme (X, s) a s-real bundle if its

conjugate bundle Vs is identical to the bundle V. Here, ‘identical’ means exactly the

same, not meaning isomorphic. The line bundle from the structure sheaf OX on the

real scheme (X, s) is a trivial example of a real vector bundle.

Remark 2.2 Let D = Zn,D,~ be a Weil divisor on a real scheme (X, 3). Let DS be a

conjugate Weil divisor En,s(D,~). If we consider a Cartier divisor {(0}, f,)} associated

to the Weil divisor D, then its conjugate Cartier divisor, the Cartier divisor associated

to the conjugate Weil divisor D“, can be written as {(U,, ff)}. Hence, if 0(D) is

the invertible sheaf associated to D, then its conjugate line bundle comes from its

conjugate Weil divisor, i.e. (O(D))“‘ = 0(D3). Conversely, if .C is an invertible sheaf

on X and D(£) is the associated Weil divisor, then the associated Weil divisor for the

conjugate line bundle .63 is the conjugate Weil divisor of D(£), i.e., D(£“’) = (D(£))3.

Consequently, the line bundle is real if and only if its associated Weil divisor is fixed

7



by an involution s. More generally, the vector bundle V on X is real only when there

exists a locally free sheaf l? on XLR whose complexification becomes V. See [Si], p6,

(1.8) Lemma].

Example 2.2 1. Line bundles on CP", RIP" are classified by their degree. That

is, any invertible sheaf on CP", RPk is isomorphic to (9(1) for some I E Z. See

[Har, p145]. But the restrictions of same degree line bundles on 1R1?" to the real

points, so line bundles on the differential geometer’s real projective space RIP", are

not necessarily isomorphic. Let s be a real structure from the complex conjugation

map on CP’. Then, the Weil divisors [2' : 1] + [—i : 1] and [1 : 1] + [—1 : 1] define

degree 2 s-rea] line bundles, say L1, L2 respectively. The natural holomorphic section

31 to L1 induced from the associated Cartier divisors( see [Grif-H, p135] ) vanishes at.

[i : 1] and [—i : 1] which are not in the real part of C11”. Thus, it induces a trivial line

bundle on RIP”. But the s-real line bundle L2 induces a nontrivial line bundle on RIP”.

If we restrict the s-real line bundles to the upper-hemisphere so that the fibers along

the boundary come from the real parts of L1 and L2, then these give an example of

line bundles whose Chern classes are the same after the complex double, i.e. in this

case, line bundles L1, L2 on CP’, but the real line bundles along the boundary are

not isomorphic. The invariant for line bundles on the upper-hemisphere is called a

relative Chern class.

2. Not every degree’s line bundle on Cl?”c allows a real line bundle. Let s be a real

structure on C11”1 from the antiholomorphic involution [z : w] i—> [—w : :3], which

doesn’t have any fixed point. Then, this real structure doesn’t have any odd degree

real line bundles O(2r+1) because there is a 1—1 correspondence between Weil divisors,

and invertible sheaves ( see [Har, p144] ) and none of the odd degree’s Weil divisors

can be fixed. Remark 2.2 leads us to the conclusion.



3 The moduli space of stable maps is a real moduli

space

The moduli space 37,,(X; '3) of stable maps (f, C, .271, . . . ,.1:,,) from a germs zero curve

with n-marked points consists of the equivalent classes of stable maps (f, C, x1, . . . ,x,,)

satisfying the following conditions by its definition;

(1) f...( [C]) represents the homology class ,13 in H2(X; Z);

(2) The arithmetic genus of domain curves having “ii-marked points is zero ;

(3) (stability condition) If the domain curve C has some irreducible components C?

such that f..([C,’-)]) = 0, then each of these components, C9, contain at least 3 special

points(marked or gluing points);

(4) Two stable curves (f, C, x], . . . ,1:,,). (f’, C', x’l, . . . ,.r:,) are equivalent. if there exists

an isomorphism o; C —> C’ such that f’ o o = f and o(.r,~) = x], i = 1,. . .,n.

Let (CP’,s), (X, t) be real structures. Then, it is natural to be concerned whether

the set theoretic involution (f, CP’, x1, . . . ,xn) i—> (tofos, CPI, s(.r1), . . . , s(x,,)) de-

fines an anti-holomorphic involution on 37,,(X; ,3). We will consider the real structure

coming from the complex conjugation map on CPk and real projective varieties X

related to this real structure and show the above involution is an anti-holomorphic

involution on 71/7,,(X; [3). At the end, we will see this result doesn’t. always hold for

any real structures on a domain and a target space.

We will follow Fulton-Pant]haripande's construction in [F-P]. The moduli space of

stable maps of genus zero curves was constructed by gluing the quotient of projective

varieties which are the universal space of an h-rigid stable family of degree (1 maps

(See a section 3.1 for the definition). The strategy for showing the moduli space of

stable maps is a real moduli space. is showing each of the ingredients they used are

real. The universal space for an h—rigid stable family was constructed by using a

certain locus of the Deligne-Mumford moduli space and a universal curve on it. Their



construction is not dependent on the chosen universal curve model. However, we need

a real universal curve model for our proof. The existence of a real universal curve

was explained in Example 2.1,3.

Lemma 3.1 The Deligne-Mumford moduli space Hm is a real moduli space with a

real structure induced by a complex conjugation map on CP’.

Proof. method 1: (simplest) The Deligne-h‘lumford moduli space is originally defined

over Z. So, it is defined over any field. The C-scheme Deligne—Mumford moduli space

can be obtained by a scalar extension from the lit-scheme Deligne-Mumford moduli

space. That is, the C-scheme Deligne-Mumford moduli space is a complexification

of the R-scheme Deligne-Mumford moduli space 3715,. So, Lemma 3.1 is proved by

Proposition 2.1.

method 2: (geometric) We consider the involution defined in Example 2.1 3. The

map we defined is an antiholomorphic involution because the image curve’s marked

and gluing points are induced by the complex conjugation map on that curve and the

splitting of a tangent space at (C, a1, . . . , am) is;

T(0,0,1, . . . , unfit" g H1(C,7Z;(—a1... — and) GB EB‘sésmg(C)T§ ‘39 T:

E“ €90,,:irreducszieHl(Cm Teal-'01 - - - — 0a)) G @sesing(C)Ts' 8’ T:

9: $00,,,,,,duc,bleH0(Ca,721((11 + + aa) 83 won)“ GBEBSESingijS’ (8) T;’, by Serre’s

duality. E]
.4

Remark 3.1 Araujo - Kollar constructed the moduli space of stable maps on any

Noetherian scheme in [A-K, sec.10]. However, the relation between an lit-scheme

version’s moduli space of stable maps and a C-scheme version’s moduli space of stable

maps is different from that of R-, C-scheme Deligne-Mumford moduli space. That

is, a C-scheme version’s moduli space of stable maps is not the complexification of

an R-scheme version’s moduli space of stable maps. A counterexample showing that.

the real model of the moduli space of stable maps and an lit-scheme version’s moduli

10



space of stable maps are different is given by, z i—> 7:2 and z 0—) —22. These maps are

different in R-scheme version’s moduli space of stable maps but they are equivalent

in the real mode] of the moduli space of stable maps .1/IO(CP’,2) by an isomorphism

between the domain curves defined by multiplication by i.

3.1 Fulton-Pandharipande’s construction of the moduli space

of stable maps MACH”, d)

Fulton-Pandharipande constructed the moduli space 11—1,,(C1Pk, d) for k > 0, d > O and

(n, k, d) 75 (O, 1, 1). Other cases, 21—1,,(ClP’0, 0), 717,,(CPk, O), 370(CIP”, 1) are isomorphic

to 11—1", 117,, X CP”, Spec(C) respectively.

[I] Construction of the universal space 37,,(C1P’k, d, h) for the l—i-rigid stable

family of curves

We call the correspondence between irreducible components of the curve C and the

degree of the restriction of the line bundle .C to each component of C as the multidegree

of .C on the curve C. We will say bundles L, V on C satisfy equal mutidcgree condition

if their degrees on each component are the same.

Definition. [F-P, 3.2] Let crk = em), where H* 2 H0(ce’c,om,k(1)). Let

h : (ho, . . .,hk) be an ordered hyperplane basis of H“. A h-rigid stable family of

degree (1 maps from n-pointed, genus 0 curves to Cl?”C consists of the data

(7T 3 C "t 5» {Piligigm {(Ii.j}05igk.igjgd-/ll.

where

(i) (it : C —> S, {pi},/2.) is a stable family of degree (1 maps from n-pointed, genus 0

curves to CPk, where u; C —+ CP";

(ii) (7r : C —> S,{1),}1sign,{(5,303,9’199) is a flat, projective family of n. + (1(k +1)-

pointed, genus 0, Deligne-.\'Iun’1for(_l stable curves with sections {p,-} and {(11.1}?

(iii)(Transversality condition) For 0 S i g k, there. is an equality of Wei] divisors

11



MUM.) 2 (12,1 + qi,2 + - - - + (1232:-

Remark 3.2 1. An l—z-rigid stable family is a special kind of flat family of degree (1

maps from n-pointed genus O to CP" such that the image of each fibre curve inter-

sects each chosen hyperplane basis (ho, . . . , hk) of P(V) transversally at unmarked,

nonsingular points.

2. The condition (iii) implies the last d(k + 1)-marked points {qij} are from the

hyperplane intersection divisors. Fulton-Pandharipande added those ordered hyper-

plane intersection marked points to relate the geometry of the moduli space of stable

maps of genus zero with that of Deligne-Mumford moduli space.

3. Note that the condition (iii) combined with (i) implies that the number of marked

points from each set of {gm}, i = 0, . . .,k, on each irreducible component in each

fibre is exactly the same as the degree of the map on each component. That implies

k + 1 line bundles on C constructed by using Weil divisors (11,1 + . .. + g“, from the

last d(k + 1) marked points satisfy the equal multi-degree condition.

There is a universal locus B in Deligne-h-lumford moduli space fim, in : n+d(k+

1) that every h—rigid stable family in (ii) factors through. But the map’s information

we can get from the points in B is limited to the hyperplane intersection points.

To distinguish the h—stable maps sharing the same hyperplane intersection points,

Fulton-Pandharipande constructed a k-dimensional C*-fibration on B by using the

k + 1 Weil divisors (1231 + + gut. The following notion of H—balanced is satisfied

by the sublocus B and enables them to construct the desired fibre bundle, which is a

universal space for the h—rigid stable family of maps.

Notation. We will denote the line bundle 017m ((1,,1 + (1,32 + . . . + qnd) on D", by 7-1,

i = 0,. . . , k.

Definition. [F—P, 3.3] Let. .zTI—m be the Deligne-Mumford moduli space of genus

12



0, m-pointed curves. Let it : Um —> 111m be the universal curve with m-sections

{Pillsisn and {q,,j}03.,gk,1sjsd. For any morphism 7 : X —~) Mm, consider the fiber

product:

, —r 7 —r'

A X Hm D m _) U m

i 77X i W

I 7 —

(X _> .A'I f”

The morphism '7 : X ——> ll—Im is "H — balanced if

(i) for 1 g i g k, 7r,\',.'7*(?l,- 8) H61) is locally free;

(ii) for 1 S i S k, the canonical map axrrxfi’nti <8) 7-161) ——2 5"“(7-l, 8) Hg’) is an

isomorphism.

The condition (ii) implies that X goes to the locus in Wm satisfying the equal

mutidegree condition for any pair of line bundles (’Hi, H0), i = 1, . . . , k on each fibre of

the universal curve Um [7“). The reason is direct image sheaves may change the rank

of the sheaves. If that happens, then the pull back of the bundle iri-rrxfl*(7-l,- @7151)

in (ii) has different rank, preventing it from becoming isomorphic to 7*(H, <8) H61).

Examples showing the rank changes of direct image sheaves are the following :

Let it : CP’ -—> SpecC. Then,

”*(Ocel (1)) = HOWE”. Ocel (1)) E” C 69 C

”*(Ocell = H°(C1P”,0ce) ’5 C

”*(Ocelf—lll = H°(C1P”. cred—1)) g 0

and 7r*7r,((9mt (1)), 7r*7r,(0,cpi), 7r*7r,((’)C?1(—1)) are trivial bundles of rank 2, 1, 0 on

C]?1 respectively. We can calculate direct image sheaves for the reducible curve cases

by using a short exact sequence of locally free sheaves related to a normalization,

by noticing that a genus zero curve is a tree, which implies the number of gluing
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points is one less than the number of connected components, and taking a long exact

sheaf cohomology sequence induced from that. What we can see is the rank of the

line bundle is preserved by 7r*7r, only when the line bundle. is trivial on the fibre.

Hence, the image of X by a morphism 7 sits inside of a certain locus in ‘17", on

which the 91,8) ”HO— 1 are trivial line bundles on each geometric fibre, equivalently, the

locus satisfying equal multi degree conditions for any pair of (White), i = 1,. . .,k.

The universal sublocus B in Tim for the flat families in (ii) of the definition of the

l—i-rigid stable family is the largest sublocus satisfying equal multi degree conditions

for any pair of (71,310). Then, B is closed by an upper semicontinuity property [Har,

p288]. By vanishing of higher direct image sheaf 72in... for i 2 1 and the Cohomology

and Base Change Theorem [Har, p290], the. direct image sheaf of the line bundle

H,- ® 713‘ on the universal curve Um becomes a well—defined line bundle on the locus

B in 217,". The subscheme B itself is ’H-balanced by an inclusion map to W17", because

the natural morphism 7r;(7r3,(”H,- @751)» 8301 C —> (’H, @7161): (80: C is surjective

for all x E 7r’1(B) by noting ng(7r3,(7-l,- ® 7161)); (8103 C is isomorphic to the global

section sheaf of ’H, ® ”H51 on the fibre of ng’(7rg(.r)).

Lemma 3.2 The universal closed sublocus B in 211m is a real projective variety.

proof. Since B satisfies the equal nmltidegree condition, for any i and a chosen

irreducible. component in the fibre over b E B, the number of marked points from

((1,,illsjgd is the same. The closed sublocus B in the projective variety .717", is invari-

ant under the antiholomorphic involution described in 3 in Example 2.1 because the

involution preserves the number of marked points from {qtjllgEd on each irreducible

component in any pair of conjugate curves. The Lemma follows from Lemma 3.1. E]

Before we. do a fibration over B, we see how the fibration can compensate the.

missing data with an example. Recall the following standard facts.

Lemma 3.3 [Har, p150] Let C be a scheme over C.

14



If .C is an invertible sheaf on C, and if 80,...,Sk E H°(C,£) are global sections

which generate C, then there e;1:ists a unique morphism «,9 : C —> Cll’k such that

E“ 99*(0C?k(1)) and s,- : gs*(uy) under this isomorphism.

Lemma 3.4 [Har, p157] Let C be a nonsingular projective variety over C. Let Do

be a divisor on C and let I: E” C(DO) be the corresponding invertible sheaf. Then,

(a) Every eflective divisor linearly equivalent to D0 is (8)0 for some 3 E H0(C,£),

where (s)0 denotes the divisor of zeros of s.

(b) Two sections s. s' E H0(C, .C) have the same divisor of zeros if and only if there

is a A E C* such that s’ 2 As.

Example 3.1 Let’s consider the geometric fibre on a geometric point in B, i.e., 7r}; :

(ClP’l; {pi}, {q.,:,J-}) —+ SpecC ’5 b E B. We will use each set. {(11J}]Sjsd,0 S i g k from

the last (1(k + 1)-marked points as a Weil divisor, so, effective Cartier, (12,1 + . . . + (125d-

To use Lemma 3.3, we have to use. one line bundle and select 13+ 1 global sections 3,,

telling the actual morphism to ClP’k, satisfying the condition (iii) in the definition of

a h—rigid stable family of curves, i.e., vanishing at {gm-Lg“, for each i = 0, 1, . . . , k.

Let’s consider a line bundle 0c?1((10,1 + . . .+q0,d) although we may consider any other

line bundle OC?1((12',1 + + (1,0,). Note that all same degree effective divisors are

linearly equivalent since line bundles over ClP’k are classified by their degrees. Hence,

we can choose k + 1 global sections 3,- E H0(CP1,OC?1(210,1 + + (1%)) satisfying

the requirement by Lemma 3.4 (a). On the other hand, the linear system on CH”1

generated by 3,, i = 0,. . .,k, , has no base point because the (11.1 are distinct points

in CH”1 . Thus, we can use Lemma 3.3.

Now, we describe the morphism to Cl?" decided by the chosen global sections 3,,

i = 0,...,k. Let’s denote SO 2 {p E Cll’llso(p) doesn‘t vanish } and U = {uro 75

O} C ClP’k'. Then, the actual morphism restricted to So —> U comes from the ring



homomorphism C[::1, . . . , ck] —> C(SO, (950) by sending

21‘ H 53/80, (1)

and making it C-linear, where 2:,- = w,/u.v0, i = 1,. . . ,k. Since the set 50 is

ClP’1\ finite points, the above restriction map is uniquely extended to the whole space

Cll’l. Observe that the morphism in Lemma 3.3, i.e., the morphism (1), is dependent

on the actual choice of s,- E H0(ClP’1, O,g;;1((10,1 + - - ° + q0,d)), but up to ratio of .s,/.90,

i = 1,...,k. More precisely, {A0s0,...,)\ksk}, {Ag.s-0,...,/\’,.s,,}, /\,~,/\; E C" induce

the same morphism if and only if /\,/)\0 : Ag/XO, i = 1,. . . , k.

Constructing a space recording all possible ratios A,s,-/)\0so, A,, A0 E C“ is our goal.

Then, there will be a one-to-one correspondence between points in the constructed

universal space over SpccC ’5 b and maps whose hyperplane intersection points are

{qi‘j}13jgd,i= 0, . . . , k.

Let s,, i = 0,. . . , k be the chosen global sections. Observe that invertible sheaves

7i,- ® 7151 are generated by any r,(sO/s,-), r,- E C‘ and the coefficients r,-, which

are degree 0 polynomials, can be considered as elements in the H0(CIP’1,7-l,- ® H61).

Therefore, all possible ratios /\,-s,-//\0so, A,, A0 E C“ can be recorded by [HO(C1P’1,’H1®

H61) \ 0] x X [H0(CP1,Hk (8 H61) \ 0] E’ C’ X x C‘, where H,- : 03?; ((11.1 +

. . . + gm).

Let’s summarize the geometric procedure of the above construction.

Let 7r : (ClP’l, {1),}, {q,-.J-}) ——> SpecC be a geometric fibre on the geometric point b

in B and so, . . . , sk be global sections in H0(ClP’l, ’HO), whose zeros generate effective

divisors (Ii,1+...+(1,',d, i = 0,. . . , k. We constructed bundles ’H, = 03:31 (21,-‘1 +. . .+(1,-,d)

using the last d(k + 1) marked points and considered the tensor bundles H,- ® "HO— 1

on CT“. Then, we considered the direct image sheaves 7r13,(7-l, <8) H51) ’5 CC, deleted

a zero element from each i z 1,. . . ,k because of Lemma 3.4 (b), denoting them by

16



1?, and constructml a kerlimensional C*-bundle Yb :: Y,” x , ,. x 1ij on SpecC E“ I),

q

k “b '2; , 1 , 1 _r
CIP’ <— 1 xi; CIP’ —> CIP> L) BL 0,",

7r}? .L i 7T3; i 7TB

Yb 2: SpecC ”-3 b <—> B C .7le

where BUG”, is the restriction of the universal curve L7", over .l—Im to B.

The fibres of any elements in the k—dimensional C*-bun(lle Yb are naturally

equipped with k+1 sections in H0(Yb XCCP1,7b*(H0)), representing pull-back divisors

"7b*((1i,1 + . . . + (1”,). By Lemma 3.3, there is a morphism ,u. to Cl?“ whose restriction

to each fibre over Yb is similar to the morphism described in (1). In fact, that

morphism is given by z,- +——> r,-(y) -"_,w”*(s,-)/e7b*(s0), where y E Yb, 1‘,- is a C‘-valued

function on Yb which may be understood as an i—th projection map from Yb to 1;” =

H°(<CIP",H.- e H51) \ 0 2 c.

What we have seen is the construction of the universal space 717,,(C1P’k,d,h) for

the h-rigid stable family of maps over a geometric point in B. The way we construct

the k-dimensional C*-bundle Hn(CPk,d,h), which will be also denoted as Y, on B

is the same. Conditions in H-balanced allow us to globalize the above construction.

The first condition in ’H-balanced guarantees direct image sheaves n3,(’H, (8 H61)

of ”H,- ® 715 1 define line bundles on B and induce a nice geometric object, a k-

dimensional C*-fibration Y E 1] x3 .. . x3 Y], on B, where Y,- = Width 8) H61) \0,

i = 1,...,k. The second condition in H-balanced is used to get. canonical sec-

tions in H0(Y x3 BUm, “TU-l,- ® H51». Those global sections give global sections in

H0(Y x3 BU,,,,7*(H0)) representing Weil divisors 37"(qm + + (1,4,), i = 1,. .. ,k,

reflecting the meaning of each point in Y which was explained at the end of Example

3.1. By Lemma 3.3, we can define a morphism u from 1' x13 BBQ," to ClPk. Let’s

describe that more. precisely.



ClPilC A Y X 8 BF”), 1) BOLT”,

”iii i7TB

i'=i',xB...xB);, 1> B

7TB,\‘ /"Yi

1",-

VVe observe the following:

LTD-l,- ® H51) ”:‘1 'T/*7r;37r3,(7-l,- (8) H51) by the second condition in ’H—balanced

I 2 _1

”dfléfliflBJ’Hz‘ ‘8’ Ho l

II
Z

2. yfirB,(’H,- (8) H51) has a tautological section because of the definition of 1"}.

3. The pull-back of the tautological section to ngngiy; nB,(’H,®’Hg 1) gives a globally

non-vanishing section.

2 and 3 imply 71%,- ® ”HO— 1) is a trivial line bundle with tautological non-vanishing

sections 1“,, i = 1,...,k which are constant along the fibres of Y. We can treat

those sections r,- as functions from Y to C“. Now, we got the desired canonical

induced sections r,"y*(s,-) E H°(Y x3 BUm,'3"*(H0)), i = 0,. . .,k, where r0 = 1, and

r,- : Y —> C*. Lemma 3.3 gives a morphism from Y x3 BU", to ClP’k such that

[131]”): 7'1”)”(81'), l = 0, . . .,k, and [t*(OC?A-(1)) g ’7,"(H0).

All we have explained is the following Proposition.

Proposition 3.1 [F-P] The moduli space of h-rigid stable family of degree d maps

from n-pointed, genus 0 curves to ClP’k is a fine moduli space EACH”, d,h) which is

a nonsingular projective variety.
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[II] Quotients and gluing;

The moduli space of stable maps of genus zero .l—I,,(ClP’k,d) was constructed by

gluing quotients of the moduli spaces of h—rigid stable family of maps W,,(Cll’k, d. h),

where h is any basis of H* = H0(ClP’k , OClP’k (1)).

We need to consider the followings:

1. Is there any ordered basis h = (11.0,. . .,hk) in H” for a given n-marked, genus 0,

degree (1 curve to ClP’k, such that the curve intersects with any chosen hyperplane

basis It,- transversally at unmarked, nonsingular points? That is, can we get. enough

gluing pieces from the HACK)", d, h)?

2. The last d(k+1)-marked points {qi,j}ISde, i = 0, . . . , k played a role as hyperplane

intersection divisors q“ + . . . + (1,4,, i = 0, . . . , k. How can we forget orders of points

in each set {thy-hag, i : 0,. .. ,k ‘?

3. How can we glue quotients of moduli spaces 11—1,,(C1P’k, d,h) for various choices of

basis h of H*'?

The answers are the following:

1. Bertini’s theorem tells us that most hyperplanes in H* intersect with the given

curve transversally at nonsingular points. So, we can always find the ordered basis h

satisfying the conditions.

2. We make the product of the symmetric group G 2 GS x . . . x G; act on the moduli

space (7r : L! —> ET,,(ClP°k,d,h),{1),},{(1,,j}OS,-Sk,1SJ-Sd,p), where Cf, acts on the set

{Quallsjsd by permuting the orders.

Since the finite group G acts on the projective variety A—[n(ClPk,d,h), its quotient.

HACK” , d, h)/G is also a projective variety.

3. Let. h, h’ be different choices of basis of H*. There are G-invariant open subloci

 

W02, h’) , MUi’, h) in HH(CPk, d. h) , .TT,,(ClP°k, (1,?) respectively, consisting ofcurves

intersecting with all hyperplane basis ho, . . . , hk, hf), . . . , I22. transversally at nonsingu-

lar unmarked points. Clearly, il—[(h,h’) and TlT(h’,h) are isomorphic. And Fulton-
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Pandharipande showed fi(h,h’)/G and 37(h’,h)/G are also isomorphic in [F-P]

Proposition 4.

3.2 Proof: The moduli space of stable maps is a real moduli

space

First, we show that the ingredients used in Section 3.1 [I] are real with respect to the

antiholomorphic involution induced by a. complex conjugation map on C1“, ClP’k.

Lemma 3.5 The fine moduli space 111,,(C1P’k, d, h) is a real projective variety whose

real structure is induced by COfllplCIIJ conjugation maps on CH", CH”, where h 2

(ho, . . . , hk) is a real ordered hyperplane basis of H0(ClP’k, OCPk(1))'

proof. By Lemma 3.2, B is a real projective variety. Let in; : BU", —+ B be the real

universal curve with m real sections {1),}199, and {q,,j}05,_<_k,15jgd from B to Bl—Tm.

Then, the Weil divisors, (1m +. . .+q,~,d, i = 0, . . . , k and (12,1 +. . .+q,,d—q0,1 —. . .—q0,d,

i = 1,. . . ,k' are all invariant under the anti—holomorphic involution on BUm. That

implies the associated line bundles ”Hi, ’H, ® ”H; l are all real line bundles by Remark

2.2. Equivalently, there is an anti-holomorphic bundle involution on each bundle. Let

r, e, 7‘,’ denote anti-holomorphic involutions on B, ijm, H1®HJ 1 respectively and ”is

be a natural projection map from the line bundles ”H,- ® 715‘ on BU," to BUm.
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BUm —> BU",
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z 0 7734(0)) 1 0 r§‘(C.a))

”'3 i i W's

1N {pint—31(1)) N l

(Clix, = C5 —) Cflbj 2 Cl?

We’ll show the line bundles 7TB,(’H,- <8) 710-1) have natural anti-holomorphic bundle

involutions induced from the anti-holomorphic bundle involutions on the H,- ® 7‘10— 1.

Since n3,(7-l.- 68> H61) is a bundle over the real scheme B, it is enough to show that

there is a natural anti-holomorphic involution between fibres over b and r(b). Let‘s

see the bundle map iflflgl (Cb) restricted to the pointed curve Cb E «g1(b) and its

pointed conjugate curve CT“) E ugl(r(b)), where b E B represents a nonsingular

pointed curve isomorphic to C11“. Then, Cm) is isomorphic to C11"1 with conjugate

marked points. For notational convenience, we denote both Cb, Cm) as ClP’l. Since the

divisor Di,b E (127.1 (b) + . . . + q,,d(b) — qoj (b) — . . . — q0,d(b) has degree zero on Cll’l, it is

a principal divisor. Let Di,b be defined by f, - fo‘l E H0(ClP’l, IC“), where IC‘ consists

of invertible elements in the sheaf of total quotient rings of Owl. Then, Orczs1(D,~,b) is
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globally generated by f0 - ffl. The divisor me) on the conjugate curve is defined by

fB-fi—l E HO(ClP1,lC*) because Dig“) is 6,,1(b)+. . .+(j,~,d(b)—(]0j(b)—. . .—(]0,d(b), where

f,- is a conjugate polynomial whose coefficients are complex conjugates of the f,-. Then,

0m}: (Dmm) is globally generated by fo- f—fl. So, the restriction of the globally defined

anti-holomorphic bundle involution 7‘,’ on ’H, <8) 713‘ to the map between O€P1(D,j,)

and OCP1(D,-,T(b)) is the map sending f0 - ffl to f0 - f—fl. We can describe the similar

situation when b E B represents a pointed singular curve with a little more work by

using the sheaf exact sequence of a normalization.

The canonical anti-holomorphic bundle involution r; on 7TB,(7-l,- <8) ”Hg 1) is induced

from ”fi’. Observe the restriction map Ti'jb : n3,(7'l,- <8) 7151”,, —-> NBA/Hi <8) HJIMTM)

can be considered as a complex conjugation map on the induced local charts because

7r3..(7-£.,- ® Ho’l) b ”:‘2’ H0(CP1,O.CF.1(D,,,,)) ’5 C and the bundle map r,’|7r2_1(cb) goes

a - f0 - ff1 r—> d - f0 . ff] for any a E C, where a denotes a complex conjugate of

02 E C. This shows T,’ is an anti-holomorphic bundle involution on r3,(’H,~ 63) 713‘).

Let 1‘}, i = 1, . . . . k. be the C*—bundle coming from n3,(?'l,- 8) H51) by removing

a zero section. The restriction maps of r,’ to 1'}, i : 1,. . .,k are anti-holomorphic

C*-bundle involutions. The k-dimensional C*—bundle Y E Y1 x3 x3 Yk has an

induced anti-holomorphic bundle involution. That means fin(ClP’k,d,h) E Y is a

quasi-projective real variety.

Since the moduli space of l—z-stable degree d, n-pointed curves WACIP" , d, h) is a

fine moduli space, we want to show 117,,(C1P’k,d,h) is equipped with a real universal

curve and a real projective morphism from the universal curve over 37,,(le’k, 21, T2.) to

err.

Note that. Y has a universal family Y x3 BU," induced from the real universal

family BU", ——> B C Em and Y x 3 BC", has a. natural morphism to ClP’k as explained

in section 3.1 [I]. We will show Y x 3 BB", is real and u is a real morphism to ClP’k.

It is easy to see Y x B BU", is real. Note that. Y, B, BU", are real varieties. Since
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a question is local, we may consider Y, B, BU", as Spec(y_n.g @R C), Spec(BR <83 C),

Spec(BURm @341 C) respectively. Let’s denote 32R (83:, C := 32, BR (8319; C := B, BUR", (83

C :2 BUm, real models Sp8(5(ng) :2 YR, Spec(BR) :2 BR, Sz)ec(BU3m) := BUS

3’ (EB BU"; g [ya (33],, (Be Gila Cl] (33,, @R C (BURm ®R C)

(yR ®BR BURm) ®R C

H
Z

This means Y x3 BU", 2 (YR x BR BUi) xR cc.

. . . . ——IR
Fmally, we see that there 1s a canonical morphism uIR from YIR x BR BUm to RI?"

by the similar construction we saw in the section 3.1 [I]. Therefore, we may consider

the morphism u as a complexification of uk. So, the Lemma follows. [3

We are ready to prove the main Theorem in this section. We will consider the

similar questions written in section 3.1 [II] in a real setting.

Theorem 3.1 The moduli space of stable maps of genus zero Hn(ClPk,d) is a real

moduli space whose real structure is induced from anti-holomorphic involutions by

complex conjugations on Cll’l, ClP’k.

proof. Recall that Fulton-Pandharipande’s construction was about the moduli

space MACH”, d) for k > 0, d > 0 and (n, k, d) yé (0,1,1). Other cases, HACK“), O),

MACH”, 0), 170(C1P’1, I) are isomorphic to fin, 717,, x ClP’k, Spec(C) respectively and

so, they are obviously real moduli spaces.

We showed L7,,(le’k, d, h) is a real fine moduli space, where h is a real ordered basis

of H* = H0(C1P’k , OCPk(1))' We have to consider the following questions :

1. Is there any real ordered basis h 2 (ho, . . . , hk) in H* for a given n-marked, genus

0, degree (1 curve to ClF’k such that the given curve intersects with any chosen hyper-

plane basis h, transversally at unmarked, nonsingular points?
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2. Does the product of the symmetric group G action on the moduli space

ill—1,,(le’lIt , d, h) commute with the anti-holomorphic involution on EACH”, (1, h)

so that the quotient space EACH” , d, h) /G has an anti-holomorphic involution, (i.e.

becomes a real variety)?

3. Does the gluing commute with an anti-holomorphic involution so that the anti-

holomorphic involution on each MACH”, d, h) /G extends to the whole moduli space

17,,(crk, d)?

The answers are the following:

1. As F. Sottile [Sot3] pointed out, real points are Zariski dense in ClP’k. That implies

we can always find a real ordered basis satisfying the transversality condition.

2. The symmetric group G action on 17,,(C1P’k,d,h) to forget the orders of the marked

points {gig} in each of the last k + 1 sets commutes with the anti-holomorphic invo-

lution.

(Cb, {Pi}: {(11.1}, Nb) it (Cb: {pilv {Qua-(1')}. ltb)

I..€ \L 7"
i TI

0'

(CT(b)3 {iii}: {aidia fir(b)) _‘> (CT(b)7 {pi}, {qi,0(j)}3 fir(b))

,where r’, T denote the involution on Hn(ClPk,d,h) described in the proof of

Lemma 3.5, on B respectively, and o is an element in G.

Note that the description in the above diagram is about up to isomorphism according

to the equivalence relation in the moduli space 717,,(C1P’k, (1, 71) rather than about the

actual model (Cb, {1),}, {q,,(,(j)}, uh). But there is no problem.

For example, if (Cb, {pi}, {(1,300)}, uh) is isomorphic to (Cg, {pi}, {qu}, pbr),

then (C70,), {13,-}, {q,,a(j)},flr(b)) is isomorphic to (CW),{13;},{gffij},;7,(b2)). More pre-

cisely, if the linear fractional transformation (az + b) / (c2, + (1), ad — be gé 0, gives an

equivalence relation between (Cb, {1),}, {qwm}, [11,) and (C52, {1):}, {Qijlv It”), then the
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linear fractional transformation ((13 + (3)/(52 + d) gives an equivalence relation be-

tween (Cab), {13,-}, {(‘1',,,,(j)},fl7(b)) and (6.452), {132}, {fight-Iraq), where a, b, ad are the

complex conjugates of a, b, c, d if Cb is nonsingular.

3. It is easy to see that the isomorphism which is a gluing map between Em, l—LI) /G

and Kflh’, h)/G commutes with the anti-holomorphic involutions on TV!" (ClP’k, d, h) /G

and on Mn(ClP’k,d, 717) /G from the proof of [F-P] Proposition 4. Here, H(h,h’)

denotes a Zariski open sublocus in fin(CPk,d,h) consisting of maps intersecting

transversally with each of the hyperplanes in the basis h, of H0(09", OCIPM1))

Since the gluing maps commute with the anti-holomorphic involutions on each of the

quotients of the projective varieties WT"(CP'°, d,h), the moduli space of stable maps

of genus zero MACH”, d) has a globally well-defined anti—holomorphic involution. We

are done. [:1

Corollary 3.1 Let X be a real projective variety having a real structure corresponding

to the complex conjugate involution on ClP’k. Then, 37,;(X;t’3) is a real projective

variety.

proof. It is natural from the construction. See section 5 in [F-P]. D

Remark 3.3 1. Corollary 3.1 cannot be extended to any real structures (Cll’l, s),

(X, t). Sometimes, the natural set theoretic correspondence f +—-> to f 03 doesn’t define

an anti-holomorphic involution on HMX, [3). Let’s consider the case on HACK”, d).

An anti-holomorphic involution on 1W"(C1P’k,d) comes from an anti-holomorphic in-

volution on the projective variety MACH”, d, h) where the h form a real hyperplane

basis. But not every involution on ClP’k allows a real hyperplane basis h. For example,

an involution 2 H —1/L~' on Cll”1 does not allow such a basis h. Then, there is no way

to make real gluing pieces.

2. The implication of this section is that the moduli space of stable maps of germs
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zero T7,,(Cll’k,d) is isomorphic to TlTn(CPk,cl)R x3 C, where fin(ClP’k,d)R is a real

model. Hence, there is a natural Chow ring homomorphism from Ad(fi,,(ClP’k, d)§‘)

to Ad(Hn(ClP’k, d)), induced by complexification of cycles.

3. We introduce an adequate notion of a real group action which gives a natural

correspondence in equivariant Chow cycles similar to Remark 3.3 2. We introduce

the concept of a real group action on a real scheme X.

Definition. Let G be a real Lie group, i.e. Lie group having an antiholomorphic

involution, and X be a real scheme. We call a group action G a real group action on

X if a morphism u defining a Lie group action

u:GXX——>X

commutes with real structures, i.e. ,u. is a real morphism.

With this notion, we have a natural equivariant Chow ring version’s morphism

from A"‘(XR x G2; EG?) to .4*(X x0 BC) by complexification of cycles.

We see examples of real group actions.

Example 3.2 1. Let T = (C"‘)k+1 act on C1?" in the following way;

T x CW —2 CW

(th---9tk)'[30;-..;Zk] +——> [tAO-zo;...;t)‘k-zk]

Then, it naturally induces a T-action on 71—1,,(le’k, d). We can check it is a real

group action.

2. Group actions inducing Cl?" and Oust-(m) are real group actions. i.e.,



and

cxckac 1’2 ck+1xc

L},

(t; :0, . . . , 2k; 2) r—i (1‘30, . . . , tzk, t’":)

are real group actions.

4 Real part of the moduli space of stable maps and

Projectivity

4.1 Real part of the moduli space of stable maps

We describe the last section’s construction more concretely. All homogeneous co-

ordinate forms on a domain curve C1?” in discussion will be standard homogeneous

coordinate forms. We will denote any irreducible component as ClP’l for easier look-

ing without mentioning a normalization. We may interpret choosing a real ordered

hyperplane basis 72. 2 (ho, . . . , 12),) of H0(CPk,OCPk(1)) as choosing a homogeneous

coordinate system for ClP’k. Then, the last d(k + 1) marked points in the defini-

tion of l—i-rigid stable family gives us some information about the morphism’s nature

with polynomials” splitting forms. For example, if we express the hyperplane inter-

section points {(Ii,j}0§igk,lgjgd by homogeneous coordinates {[qflj) : QE3)]}OSiSk,ISde,

then a degree d morphism f can be expressed with a homogeneous polynomial form

[an - Hj:1(q((f}z —q((,3 w) : . . . : ak-nglmgz — (1:11). w)], a,- ¢ 0, where a domain curve is

irreducible. we know there is a universal closed locus B in Ivn+d(k+l) through which

every morphism from the base scheme 3 of a h-stable family factors. But marked

points information doesn’t contain enough data to recover an actual morphism. To

recover an exact morphism f, we need to record the ratios a,/ao, i = 1. . . . , It. That

could be done by constructing a k-dimensional C*-bundle on a universal closed 10-

cus B. Roughly, an associated morphism f with a point ((i'1,...,o:k) in a fibre
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[H0(ClP’1,7-l1 (8 H51) \ O] x x [H0(CIP’1,7-l;C <8) ”HO—1) \ 0] on a geometric point rep-

 

resenting an irreducible curve (ClP’l. {1)i}1gisn, {[qjy; qf3)]}OS,SkJSJ-Sd) can be thought

of as

d (1((1) (1 (1(1) (11:1)

),I
1“

[H(‘° - T23) ) 01 “(Z — (2])Ul). . . .,ak H(Z — —(—Zl)ui)]
(2)

~2:1 (10,] 1:1 1] ]:1 (1kg

, where z — ((1:1)) /qf3))w = w if qf’ljl / (152]) = qflj)/0.

Giving an anti-holomorphic involution on the quotient of the moduli space

11—1,,(Cll’k, d, h)/G is just sending (CP1,{a,},:1,,_,,n, [120(z;w);...;pk(z;w)]) to

(CPI, {52}2:1,...,n2 [170(.:; w); . . .;1—)k(::;ur)]), where G is a product of symmetric groups

(see the proof of Theorem 3.1), 6,- denotes a complex conjugate point of (1,, and

p,(z; w) denotes a homogeneous polynomial whose coefficients are the complex conju—

gates of those of p,(z; 222). Note that although the polynomial expression depends on

a chosen hyperplane basis h, the anti-holomorphic involution defined as above isn’t

dependent on the choice of a real ordered basis h because they are related by the

PGL(R, k + 1) action which commutes with the anti-holomorphic involution on CP".

Thus, we may think of the homogeneous polynomials’ image by an anti-holomorphic

involution as their conjugate polynomials regardless of which chosen ordered real hy-

perplane basis makes that polynomial expression. The same way of thinking works

when we consider reducible curve cases by gluing Operation and restricting our polyno-

mial expressions to each irreducible component. Since the quotients of moduli spaces

of various h—rigid stable families with real hyperplane basis h cover the moduli space

17,,(C1P’k,d), we may think of a global anti-holomorphic involution on HJCP", d) in

the same way.

Definition. The '27-th evaluation map €l.’,' is a morphism from .ll,,(ClP’k, d) to ClP’k,

sending (Cb,p1, . . . ,p,,,f) to f(p,-).

It is easy to see that an evaluation map commutes with an anti-holomorphic

involution. The definitions and properties of forgetting maps in Corollary 4.1 can be
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found in [C-K][7.1.1, 10.1.1].

Corollary 4.1 (i) The evaluation map is a real morphism.

(ii) The forgetting morphism from EACH“, (1) to .rTI—n is a real morphism.

(iii) The forgetting morphism from EACH“, (1) to TlTn_1(CPk, d) is a real morphism.

proof The proof is immediate from the above explanation and the way we gave the

anti-holomorphic involution on MACH)", d,h) in Lemma3.5 because that involution

commutes with the product of the symmetric group actions and gluing maps, i.e. we

can globalize the anti-holomorphic involution to the whole moduli space. [:1

Corollary 4.1 implies that we have corresponding real model maps for the evalu-

ation map from HACK”, d)R to RIP" and forgetting maps from MACH”, d)R to ES,

from MACE“, d)R to 317n_1(CPk, (1)73. Note that real points MACH”, d)” go to real

. —'7'€

pomts Mn .

Lemma 4.1 Every point in the real part of A1,,(ClP’k,d), before a compactification,

represents a real degree (1 map with real marked points if n 2 3.

proof Let (CPl,p1, . . . , p,,, f) be a real point. Then, there is a linear fractional

transformation T such that T(p,~) : 1"),- and f o T = f, where f : (CP1,p1,. . .,pn) —>

ClP’k is a conjugate map of f. As we have seen in Example 2.1, 3, real points of the

Deligne-Mumford moduli space are represented by real pointed curves. By Corollary

4.1 (ii), we see the domain curve (CP1,p1, . . . , p,,) of the map f representing a real

point is equivalent to a real pointed curve (ClP’l, r1, . . . , r,,) by a linear fractional trans-

formation R such that R(r,~) 2 pi. Note that the conjugation map of a composition

map f o R is that map itself because of the number of marked points(n 2 3) in a

domain curve. That implies f is a real map. E]

Lemma 4.1 can be generalized to any n.

Proposition 4.1 Every point in the real part of ilIn(ClP’k, (1) represents a real degree

d map with real marked points on the domain curve for any n.
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proof The domain curve’s marked points condition comes from Corollary 4.1 (iii).

The map’s condition follows from Lemma. 4.1 because a forgetting morphism from

A—In(CPk, d) to A—1n_1(ClPk, d) is a submersion. [:1

Corollary 4.2 If X is a real projective variety, having a compatible real structure to

the complex conjugation map on CW“, then every point in the real part 211,,(X, ,3)”

represents a real map with real marked points on the domain curve for any n.

proof It is obvious. E]

In contrast to the stable map with a nonsingular domain curve case, the image

of the stable map with a singular domain curve by a forgetting map to 717,, is not

necessarily equivalent to a domain curve of the map because of contractions due to a

stability condition.

Typical type’s degenerations of domain curves on the real points are:

1. Singular curve with real marked, real gluing points

2. Singular curve with or without components described in 1 and added conjugate

pairs of irreducible components without marked points

3. For n = 0 : Singular curve with two irreducible components having a real gluing

point such that the gluing point is the unique point in the real part

i.e., Singular curve we get by squeezing the equator of the sphere

Note that a forgetting map to fin semis all domain curves of type 1 or 2 to the

real points of If", by a. contraction.

A stable map in the real part 174C111”, 2)” with a singular domain curve having

3 irreducible components CPL, CPL, ClP’g, P.Deligne [Del] constructed is:

A component CIR]B has marked points at O, 1, 00

A point 0 in Clip}, is glued to i in CF},

A point 0 in CPA, is glued to —i in Clip]3

An anti-holomorphic involution on a domain curve is given by:
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ClP’j, ——> CPg, z +—> E

ClP’f, —+ OPE,” z »—> E

CPL, —> C131,, 2 +—> E

A stable map is defined by:

Identity maps on CPL, CPI,

1
A zero map on CPR

 

 
Figure 1:

A real h—stable family of maps is a h—stable family of maps which comes from a

complexification of an R-scheme stable family of maps, i.e. wcmpj‘i + + pf) 68>

[LR*(ORP]¢(3)) is ample on CR, satisfying similar conditions in the h-stable family of

maps. The real part of this family of maps consists of stable degree d real maps

having marked points on the real parts of the domain curves.

Definition.

Let CI?" = P0"), where V" = H0(le”k, OCPk(1))-
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Let h 2 (ho, ..., llk) be an ordered real basis of V“.

A real h-stable family of degree (1 maps from n-pointed, genus 0 curves to Cl?" consists

of the data:

(it 3Cyl: Xe. C —* 3R Xe. Cs {Pi}2=1,...,n,{02,1}2=0,..,k,j=1,...daIt)» where

(i) (71?“ : CR —> 83', {pf}, #3) is an R—scheme stable family of degree d maps from

n-pointed, R-scheme genus 0 curves to RH)" and 7r comes from a complexification of

an R-scheme map n3.

(ii) (7r : CR x;.:, C —> 83 X}, C2{1):}2'21.....n2{(1231lizO....k.j:1,...d) is a flat, projective family

of n + d(k + 1)-pointed, genus 0, Deligne-Mumford stable curves with sections {[2,}

and {(12.2}

(iii) For 0 _<_ i S k, there is an equality of Cartier divisors, u*(t.,~) = q“ +q,:,2 + +q,,d

Remark 4.1 (a) By base changes, (it : C3 x3,C —> 8K X}; C, {1’1}i=l.....na u) is a stable

family of degree (1 maps to CP".

(b) Along real points in 83 x3, C, {gig} consists of reals and complex conjugate pairs

because each fibre along this locus comes from complexifications of R-scheme maps.

More precisely, let f : CIP’l —> ClP’k be a real degree d map. Then, f can be repre-

sented by real degree d homogeneous polynomials with standard hyperplane basis of

C11“, CPk. Since a chosen basis in the definition of a real h—stable family of maps

is real, that basis is related to a standard basis by the PG'LUR, k + 1) action. And

we get another real polynomial representation which splits into linear factors. It is

obvious that solutions of each homogeneous polynomial consist of reals and complex

conjugate pairs.

(c) Note that the restrictitm of an anti-holon‘iorphic involution on CR x3, C along

real points 8” is complex conjugation maps on each fibre fixing the first 22. marked

points. (b) in this remark says the complex line bundles H,- defined by Cartier di-

visors u*(h,-), i = 0, . . .,k are real line bundles on each geometric fibre along real

points 8” of the base scheme because Cartier divisors ,22.‘(l2,). i = 0, . . . , k are fixed
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by an anti-holomorphic involution. That means those line bundles come from the

complexifications of the line bundles /,1,R*(h§°), i : 0,. . . , k on each fibre. See remark

2.2.

((1) Along the real points 8”, an associated morphism [23' with the last d(k+1) marked

points {[qfljl; Qij)]}0gzigk,1gjgd can be related by real homogeneous polynomials

d (1) 1) d (1)d

[H(z — %<2tr);aj H(z — q—j%u);... elk-(Hz — %w)]

jzl ‘10,} 3:1 (11,]? 3:1qu

, where z— ((1513) /q,if,))w = to if (12(3) Mi? 2 21%) /0. The data (m, . . . ,a'k) can be recorded

by constructing a h-dimensional Eff-bundle induced from ;2R*(h§i), i = 0, . . . , k.

(e) As we have seen, the topology of 117,,(Cll’k,d) is related to the closed sublocus B

in LTMMH). But the topology of real points Mn(Cll’k,d)'e of Mn(CPk,d) doesn’t

come from real points of B. It comes from an extended sense’s real locus in B on

which we can construct real line bundles to record the additional data ((21, . . . ,ak) in

(d). The reason is explained in (b), (c), (d) in this remark.

(f) Note that the first n-marked points are on the real points C” of the domain curves

along the geometric fibres of real points 8". But the last d(k + 1) marked points are

not necessarily on C”.

Definition. The derived real h-stable family of degree d maps for a real h-stable

family of degree (1 maps from n-pointed, genus 0 curves to ClP’k

(71 3 CR Xe. C ‘2 5R Xe; C» {P2}2:1,...,n2 {(12,j}i:0,..,k.j:1,...da #) i5

(7T3 3 CR —> 5”, {P2}2:1,...,m {(Ii.j}i:0,...k,j=1,...da #11:), where CR = ”IT—1(5Tela NR 3 CR —>

(319*.

Remark 4.2 The construction of real points tends to be geometric because we have

to use an extended sense’s real locus B" in B. The following picture helps to under-

stand the construction in proposition 4.2.
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72.691151 H3®H§‘l

\ /

crk —> ark

7r.(7-l.®7t61) \ tr ivr' / wimfefli”)

specC —> speclR

Note that r.(’H2 8) H31) '5 721m? 82 725“) as C.

Proposition 4.2 There is a universal real sublocus fin(CPk,d,h)" for the derived

real h-stable family of degree (1 maps in T7,,(C1Pk,d,l—i). The real part Hn(CPk,d)re

of the moduli space of stable maps Wn(CPk,d) is obtained by gluings of the quotient

by the product of a symmetric group action G. See section 3.2 [II] for the definition

of G.

proof Let h be given. The universal closed sublocus B is a real projective variety.

The quotient variety B/G has an antiholomorphic involution induced from that of

B. Then, the points in the real part (B/G)”6 represent pointed curves with n first

real marked points and d(k + 1) last reals and complex conjugate marked points and

singular curves described right after Proposition 4.1.

BUn+d(k+l)

i 7TB

B 11) B/G

Let’s denote n51 opr‘1((B/G)“’) by BUR,,+d(k+1). When we restrict our attention

to the locus BUR-”+41,“ ), ”H, has a natural fibrewise antiholmnorphic automorphism.

So does H,- ® 710— 1. This fibrewise antiholomorphic automorphism induces a. fibrewise

antiholomorphic automorphism when we consider the direct image sheaf 773..(’H.- <8)

7215‘). See remark 4.2. This allows us to construct real line bundles and then, the

desired k-dimensional IR*-l)11ndle W12(CPk,(l,l_2)" over B".
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To see the constructed space TITn,(CPk, d, h)" is a universal locus for the derived real

h—stable family of maps, we observe that the natural morphism from SR XR C to

B sends the real points of a real h—stable family to B" due to the types of the last

d(k+ 1) marked points. Then, the additional information canonically corresponds to a

point in the k-dimensional R*-bundle as described in remark 4.1. This correspondence

is consistent with what Fulton-Pandharipande did in [F-P]. We will see a concrete

example right after this proof. This locus is preserved by a symmetric group G action.

And the moduli space we get by gluing the quotient spaces MR(CPk,d,h)er/G for

various h is the real points 717,,(CPk, d)” of the moduli space of stable maps of genus

zero. El

Example 4.1 We see the concrete case.

CP2 <f— (Cw 3) (CPL {05,j}) 39+ (CPL {mall C BURn+d<k+1>

i 7T' i W i i

8’6 3 s ——> c E B"

Let (CPZ, f) be a real degree 2 map to CPQ, where

f(lz; w]) = [new w]); arses; wl);a2f2(lz; w])] = [22 — Mae? +w‘2);a2(222+w?)t

where a, E R \ 0. Assume marked points from the hyperplane intersection points

{qu} in CPé, i.e. zeros of f,, are given by

{{[1; 1], [1; —1]}, {[i; —1], [i: 1]}, {[i; —\/2], [i; \/2]}}. And assume CP}, has marked

points {{[i;llali;-1l}a{[-1;-1l,[-1:1]}2{[-1;-\/2—l»[-1;\/§l}}-

(i) Then, we see (CPj, {21,-,j}) and (CP;, {qu}) are equivalent by «,9( z;w]) = [iz; w],

where go; CP}, —+ CPg.

(ii) Note that there is a bundle isomorphism between 71',- ® 712,-] and ’H, ® H51,

sending a generator go/g, to a generator 90 o 922/9,- 0 <29 2 fé/fi', where ”HQ, ’H, come

from effective Weil divisors (1],, + gag, (1,,1 + gig and [g0([::; w]); g1([z; w]); g2([z; w])]

= [—z2 — w2; —z2 + wQ; —2z2 + w2].

That induces an isomorphism



between 7T:(Hli ® [Hg—1)\0 = H0((Cll)(l,, H’i (8 715—1) \0

and 7r,(7-t.- (8 710-1) \ 0 = H°(CP,§,’H.- (8) H51) \ 0. Both are isomorphic to C“ and

we may consider the numbers a, ( of course, degree 0 polynomial) as elements of

7r:(7't’,- 69 716—1) \0 and 7r,(7-£. <8) 715‘) \ 0, which canonically correspond to each other

by an induced isomorphism. The reason is a,- - g, o (,9 = a,- - ,-’, where 020 = 1. It is

easy to see that a,- E IR \ 0.

The way we extend what we observed with geometric points to the morphism from

8"" to 317,,(CPI‘ , d, h)" is similar to what we saw in section 3.2 [11].

Remark 4.3 1. The general construction for the real part W,,(X, )3)“ comes from

the modification of sec.5 in [F-P].

2. The general procedure to decide the number of connected components of the real

points 717,,(CPI‘, d)” is not yet well understood. Note that the number of connected

components in the Deligne-Mumford moduli space 317,, is (33—3—12 which is from half of

the possible cyclic orderings of marked points, before a compactification. But it is

connected after a compactification.

3. Orientability of T7,,(CPk,d)"e is also not yet clear. But we may expect most of

the cases are non-orientible even for the degree 0 cases because the Deligne—Mumford

moduli space 717”, n 2 5 is non-orientible. Note that Wis is from blowing up four

points of CP2 whose corresponding real model is non-orientible.

4.2 Projectivity of the real model MAX, fl)IR

Fulton-Pandharipande have shown the moduli space ELACP'CJ) is projective in

[F-P]. They used Kollar’s semipositivity approach in [K01] to apply the Nakai-

Moishezon criterion to a certain power of a determinant line bundle Det(Q). Ample-

ness of Det(Q)” implies the projectivity of 37,,(CPk, d). \Ve summarize the definition
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of a vector bundle Q on :I\_I,,_((C1P’k,d) in [F-P]. The moduli space HACK” , (1, h) is a

fine moduli space equipped with a universal family (ml! —+ WAGE“, (LI-L), {12,-}, [1).

Let IF’(L,*) be a projective bundle coming from the projectivization of fibres of L“,

where L; = 7r..(w§r(:?:l 1),) <8) p*(0(3l))). We can decide the power 1 which allows

a EACH”, (1, h)-canonical embedding e : U —> lP’(L,*) by using Riemann-Roch Theo-

rem and Lemma3.3. The morphism p. induces a 37,1(C1P’k , (l, h)-canonical embedding

e : U —+ IP’(L;‘) x (CHM and the 72 sections {pi} define it sections {(e 0 pi,” 0 pi)}

of IP(L;‘) x ClP’k over W,,(Cll’k,d,h). Let 7r’ denote a natural projection map from

IP’(L{) x (Cll’k to Til—”(CPL d, h) and P,- a subscheme defined by the i-th section, Ll’ an

embedded U by e. The sum of direct image sheaves 7r:(£m (8) Out) EB 63?:17r1(£’" (8 Opt)

of the line bundles .0” along Ll’ and H becomes a vector bundle for sufficiently large

m by vanishing of higher direct images. That is the definition of the vector bundle

Q. We consider the determinant line bundle det(Q) on Win(CPk, d, h). EACH)", (1) is

locally a quotient of TEACH)", (Ll—1.). The induced line bundle Det(Q) is a well-defined

line bundle except at the singular points. But we get a well-defined line bundle

Det(Q)p by raising the power of p for p large enough.

In Lemma 3.5, we showed that the moduli space W,1(C1P’k, d,h) is a real fine moduli

space equipped with a real universal family (7r : U —> il—I—H(C1Pk,d,h-), {pi}, [1). As

we explained in section 2, that implies that there exists a corresponding real model

map (FR : UK —> Til-”(Clipkflflfi, {pf}pF). Fulton-Pandharipande’s construction

to show projectivity of 37,,(Cll’kfl) works in this setting and it shows the following

Proposition.

Proposition 4.3 The real model W,1((Cll"k,d)F of H,,(<Cll’k, d.) is real projective.

—, r / 3- ,—— r ,, - . . _ , .

Corollary 4.3 The real model A]"(A , ,3) of 1l[n(.\, ii) is real proycctive, where .\ is

a nonsingular real projective variety having real structure compatible with the complex

conjugation map on ClP’k.
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proof. It is obvious because X is a real projective variety. E]

Remark 4.4 1. The real dimension of the real model 717,,(X, (5)31 has a pure di-

mension equal to the complex dimension of MAX, [3). 2 in Remark 3.3 implies that

717,,(X, B)1R carries a fundamental cycle in Chow group.

2. When we pick a triangulation on the real part HAX, ,8)”, the sum of n-dimensional

simplexes is a cycle modulo 2 of MAX, 6). Therefore, the real part WAX, B)“ car-

ries a fundamental cycle with Z/2Z - module version’s ordinary homology.

3. Fukaya-Oh-Ohta-Ono’s moduli space FMn of pointed disks consists of all iso-

morphism classes of pointed stable disks with 72 marked points on the boundary,

where (Z, 21, . . . , z”) and (2’, 2'1, . . . , 2;) are isomorphic if there exists an orientation

preserving diffeomorphism r : E —+ 2’ such that 7(2,) 2 2;. ‘Stable’ means each

irreducible component has at least three special points, i.e., marked or gluing points.

Geometrically, FMn has (n — 1)! contractible diffeomorphic orientable components.

After the compactification, its number of connected components doesn’t change and

each component is diffeomorphic to an n — 3 dimensional disk with boundary. Thus,

717,, doesn’t have a Z-module version’s fundamental cycle. It is interesting to see

the differences of geometric properties of a real part of a Deligne—Mumford moduli

space before and after the compactification. Before the compactification, a real part

of Deligne-Mumford moduli space Mn consists of 9—3—12 contractible diffeomorphic ori-

entable components and FM” is a double cover of Mn. But after the compactification,

a real part of Deligne-Mumford moduli space :17", n > 4, (resp. H3, H4) becomes a

non-orientable( resp. orientable) smooth connected manifold, having a Z/2Z—module

version’s fundamental cycle. This big difference in geometric preperties after a com-

pactification comes from differences in equivalence relations, i.e. whether it preserves

orientations or not. We see more equivalence relation tends to make more conver-

gence property and so make the moduli space have a fundamental cycle. An intuitive

example for this is when the number of marked points is 4. We may think of the
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real part of M4 as a circle with 3 points removed, FM4 as two circles with 3 points

removed from each. But after the compactification A74 becomes diffeomorphic to a

circle and W4 to 6 disjoint closed intervals. We observe that F—M-4 is a generically

double cover of 794, but at. the singular divisor, it becomes a 4-uple cover. Generally,

the number of inverse images at the compactification divisors are dependent on the

number of connected components and the number of marked, gluing points on each

component. See [F—Oh, sec.10], [F-Oh-Ohta—Ono] for more detailed descriptions

about Fukaya-Oh-Ohta-Ono’s moduli space.

5 The Gromov-Witten invariant and real enumer-

ative problems

As we have shown in the previous sections, the moduli space of stable maps Tiff—”(A2 [3)

is a real moduli space if X is a convex real projective variety, having a real structure

corresponding to the complex conjugate involution on CP'". The analysis of the real

part of MAX, ,8) and the existence of the fundamental cycle as described in Remark

4.4,1,2 allows us to consider whether there is any way to define a real enumerative

invariant on the real part WAX, ,8)“ or on the corresponding real model MAX, mg

by using homology and cohomology, or Chow group and Chow ring bilinear pairing.

In this section, we assume that the variety X is a homogeneous variety. More detailed

properties about the homogeneous variety can be found in [F-P, sec.0.2, sec.7].

Since in most cases, the real part 11—42(43)" is non-orientable, it is natural to consider

working with a Z/QZ-module ordinary (co)homology. The invariant on 37,,(X, )3)”

can be defined by using the real part maps evf" of evaluation maps,

i.e., < [ii—1,.(X, )3)"’], e'z.:’1"‘°-*(£1) U . . . U evf,”(fn.) >, where <, > is the bilinear pairing

<, >: H,(.i1,,(X,3)raZ/2Z) x H’mnm’, 3) Z/2Z) ——> Z/‘ZZ,
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the dimension of H,,(X,/3)r€ is l and the real part map of the evaluation map is

evfe : H,,(X,B)"e ——> X”. Note that the Poincare duality doesn’t hold in this case

because MAX, [3)” is an orbifold.

We can define an invariant on the real model WAX, .3)R by using the real model map

eviR of the evaluation map. We use Z-module Chow group and Chow ring’s bilinear

pairing < [fin(X, B)“],evR*(£R) . . . ei!§*(£§) >, where

<, >2 A[(.’l[n(){', 3)?) X Al(ll[.n(.\r, 5)?) ——) Z,

 

l is the dimension of A7,,(X, 1.3)R and the real model map of the evaluation map is

ev?‘ : Hn(.\’,3)R —> XR. This time, the invariant is equal to the usual Gromov-

Witten invariant < [Hn(X,g/)],evf(£1)...ev;(£,.) > on M,,(X,l3) coming from the

bilinear pairing of the complexifications of cycles in WAX, [3)R. So, the invariant

defined in this way cannot have a significance as a real enumerative invariant. To

relate the previous sections’ results with the real enumerative problem, we will start

with the explanation about why the Gromov-VVitten invariant has an implication in

enumerative problems in C-scheme case. Readers can see more explicit details in

[F-P, sec.7], [C-K, Chapter 7].

Let E), ..., {n be given classes in a Chow ring A“(X) corresponding to subvarieties

F1, ..., R, in general position in X. The Gromov-W’itten invariant

15(51, . . .,€n) = ffinma’i) ev’f(£1) - - ev;(§n) =< [W,,(X,,8)],evf(€1)...ev;({") >,

where ev, is an i-th evaluation map, can be well-defined only when ZCodimf‘, is the

same as the dimension of the moduli space.

Roughly speaking, when it has an enumerative meaning, this invariant counts the

number of pointed maps (C421,. . . ,pn; f) such that f..([C]) = [3 and f(p,~) E I}. That

is, it counts the number of points in 6131—1011) H . . . fl e'12;1(1“,,).

Now, suppose I}, i. : 1,...,n., is a real subscheme in X, i.e. f‘, comes from the

complexification of PR in XR‘. Then, eLfl(F,-) is a real subscheme in WAX, 1.3). So,

the real subscheme evf1(l‘1) fl . . . fl ev;1(l",,) consists of points preserved by the anti-
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holomorphic involution on 37,,(X, ,3). Counting real curves for the given enumerative

problem will be related to the number of points in evfl (R) H. . .flev;1 (PR) in the real

part of 11—1,.(X, 1’3) when cycles meet transversally. But the number of points in the

real part is dependent on the choice of the actual cycle representatives because the

real number field R is not algebraically closed. Note that those numbers are Z/QZ-

module invariant because the complex number field C has a field extension degree 2

over R.

Therefore, to relate the previous sections’ results with real enumerative problems,

studying the existence of real cycles rationally equivalent to the pull-back of real

cycles, meeting transversally at real points 21—1,,(X, )3)“ becomes important. Equality

in the Gromov-Witten invariant and the actual numbers of intersection points means

curves whose i-th marked points go to the real part of I“, are all real curves, i.e. the

given enumerative problem is fully real. Developing methods to construct real cycles

to improve the expected number of real solutions for the enumerative problems should

be the main goal of further study.
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