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ABSTRACT

AUTONOMOUS MENTAL DEVELOPMENT IN HIGH DIMENSIONAL

AND CONTINUOUS STATE AND ACTION SPACES AND ITS

APPLICATION IN AUTONOMOUS LEARNING OF SPEECH.

By

Ameet Joshi

Autonomous Mental Development (AMD) of robots opened a new paradigm for

developing machine intelligence, using neural network type of techniques and it fun-

damentally changed the way an intelligent machine is developed from manual to

autonomous. The work presented in this thesis is a part of the SAIL (Self-Organizing

Autonomous Incremental Learner) project which deals with autonomous development

of humanoid robot with vision, audition, manipulation and locomotion. The major

issue addressed here is the challenge of high dimensional action space (5 to 10) in

addition to the high dimensional context space (hundreds to thousands and beyond),

typically required by an AMD machine. This is the first work that studies a high di-

mensional (numeric) action space in conjunction with a high dimensional perception

(context state) space, under the AMD mode. Two new learning algorithms, Direct

Update on Direction Cosines (DUDC) and High-Dimensional Conjugate Gradient

Search (HCGS), are developed, implemented and tested. The convergence properties

of both the algorithms and their targeted applications are discussed. Autonomous

learning of speech production under reinforcement learning is studied as an example.
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Chapter 1

Introduction

1.1 What is Intelligence?

The concept of intelligence has always been an issue of heated debate among the

philosophers all over the world. There are hundreds of definitions of the word intel-

ligence available, most of which are the result of playing around with words and the

nuances of their meanings. The common thought that flows in all of them is that the

intelligence has to be based on the skills acquired by experience. The type of skills

vary to a great extent from humans to other animals of birds. With the emergence of

machines and their revolution and culmination into the birth of a computer has given

a new direction to the definition of intelligence. Now it is not just human intelligence

that we deal with but also the intelligence of the machines.

Computers possess very high raw computing capabilities, which are far beyond

human scope. This fact leads to the interesting comparison of human intelligence

with machine intelligence. Although these machines possess some powerful comput-
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ing capabilities, they fail miserably when dealing with trivial things. There lies an

important distinction between the type of tasks computers find easy to do and ex-

tremely difficult to do. The tasks are called as “muddy” tasks when humans find them

trivial, but computers find them extremely difficult. For more information about the

muddy tasks readers are suggested to read [34]. However it is undeniable that these

machines do possess “something” which is better than humans. If someone wants to

make a firm statement about the comparative intelligence of a human and a machine

a clear definition of intelligence is customary. The concept of “Artificial Intelligence”

has evolved in this quest of finding the solution to this problem. The definition of

Artificial Intelligence as given by ‘Alan Turing’, a pioneering scientist and mathemati-

cian, in 1950 is considered as the most appropriate even till today by many people.

Turing’s test is defined as, ”You are talking to ”somebody” behind the curtain and if,

after talking to that ”somebody” you feel that the ”somebody” is a human then that

”somebody” is intelligent. This definition assumes that when we feel something as

‘human’ it is intelligent and associates the intelligence absolutely with each and every

human behavior.

Due to the wide popularity of the phrase ”Artificial Intelligence”, the word was

misused to represent the family of softwares which deal with complex logical computa-

tions and complex decision making processes. These softwares were called intelligent

softwares or expert systems. The performance of these machines was impressive and

they superficially used to appear ‘intelligent’, as these machines could do something

which only an expert person in that field only could do. These software were written

by experts who already knew how to solve a class of problems, hence the intelligence



shown was really a human intelligence. The program just used to act as an imitator

and do its job. There was no new task that an expert could not solve and the machine

could.

In order to make a system Artificially Intelligent it should pass through the above

mentioned Turing’s test. The most remarkable ability of humans is to learn new

things from the knowledge of old things. We, can give birth to children who can

learn new things that parents do not know, but we cannot, till date, make a machine

which can outperform the programmers in learning new things. All the intelligence

of the machine is present at the beginning of the system. With acquisition of some

extra information the performance might improve, but there is no significant change

the behavior of the system. The developmental machines proposed in this thesis do

not have any expertise in any specific task. All they possess is the the capability of

autonomously generating the symbolic representation of new things.

The developmental learning algorithm proposed by Weng [34],[32] is based on

these considerations. The difference between the evolutionary algorithms and devel-

opmental algorithm can be stated as: the evolutionary theories are based on mu-

tations or natural selection, most of which occur by accident or by chance, while

the developmental algorithm is based on human “development” from childhood to

adulthood. Another most discriminating factor in the deveIOpmental learning is the

task non-specific nature of learning. None of the behaviors is pre—programmed by

the programmer [33]. The SAIL project is aimed at making a humanoid using this

algorithm.



1.2 SAIL Robot Project

SAIL stands for Self-organizing Autonomous Incremental Learner. This project deals

with the creation of robotic machines which are capable of learning autonomously.

Any human being can learn various behaviors in his physical capabilities by getting

appropriate training throughout life while conventional machines, after their manu-

facturing, are just reproducers. The goal of this project is to break this hardwired

concept about machines and develop robotic machines that are capable of learning af-

ter their creation. The robot has various sensors that are similar to humans or other

living organisms and is capable of continuously acquiring information from them;

store it and process it. The work reported in this thesis is part of this project and,

hence, is also based on the developmental learning framework.

Speech is one of the most difficult modality even for a human baby to learn, as can

be seen from its development. An average human baby takes about a year to speak the

first word while by this time the development of the other organs is so advanced that it

can even dance to music, wave a hand, and even play meccano [18],[20]. The properties

of speech that make its learning difficult include the complicated process by which

sound is generated from our vocal tract. The extent of variation in the production

and sound of the same utterance even by the same person. Another aspect that

becomes prominent in speech learning is overlapping of sensory information with its

own action. In the early childhood the baby does not have a sense of separate identity.

The fact that the baby is a separate individual and it is not a part of it’s parents

is also a learned concept. Hence, to separate its own utterances from surrounding



sounds is also something that a baby needs to learn from experience. There are no well

defined actions in speech the way they are in locomotory organs. All these aspects

reflect in the current development of robots and other intelligent systems. Thus it

was expected that the performance of this system will be slow compared to the other

locomotory and vision related autonomous systems being developed.

1.3 Autonomous Mental Development (AMD)

and Speech

The Autonomous Mental Development (AMD) [33] paradigm is the heart of the whole

system. It is characterized by:

1. The existence of the body. The body will possess intelligence and hence

intelligence is not purely conceptual. Most traditional work in the field of AI

assumes the system as a pure computer program which can solve complicated

problems. The task is well defined and the input to the system is given electron-

ically. However, with the context of a developmental robot, the first difference

that needs to be considered for the development of the algorithm is the existence

of the body and the system should be designed to Optimize the performance that

can be obtained from that body.

2. The developmental program. This program knows the capabilities of the

body and can generate symbols for the perceptions obtained by the sensors on

the body. This part is also present in the traditional programs.



3. Birth. This is again an important difference, as the real development of the

machine starts after the birth. With the start of the program the machine

becomes alive or the robot is born. It starts interacting with the environment

and starts learning.

4. Development. The acquisition of the rewards from the environment facilitate

the development of the robot and it starts producing actions that give him more

and more rewards. This marks the final objective if the AMD.

In the view of AMD the body that is considered in this thesis consists of mouth in the

form of multimedia speakers and an ear which is in the form of microphone. The brain

of the robot and the developmental learning program is in the form of software. With

the birth of the robot, it starts blabbering random utterances and also responds to the

sounds from the environment. The rewards given by the environment help improve

the utterances based on the context in which the reward was acquired.

The research focus of this thesis is AMD learning in high dimensional context and

action spaces using generalized reinforcement learning mechanisms. The autonomous

learning of speech by robot is taken as a challenging application to test the methods

developed.



Chapter 2

Background

The system developed in the thesis is based on three main topics, ‘Speech synthesis’,

‘Reinforcement Learning’ and ‘High Dimensional Search’. This section describes the

three topics in detail. The early development of the language production in humans

from the perspective of cognitive psychology is also essential for understanding of the

system. Before discussing these details the objective of the this work is presented.

This work deals with learning of primitive vowels only and is not aimed at learning

of consonants or words.

2.1 Early Development of Language in Humans

The ‘how’ of the development of a child in its early months up to first year is one

of the most puzzling question that all the psychologists and cognitive science people

face. The absolute understanding of this development, if it is possible, may solve

most of the mysterious problems faced by the psychologists and cognitive scientists
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and also can lead to the production of real life humanoids. As this work is aimed

towards making a robot, which can learn to produce sounds like a human baby, the

development is viewed with the perspective of language acquisition in infants.

The baby starts crying and is also capable of listening immediately after the

birth. However, the linguistic development takes place much slower than the devel-

opment of other behaviors. The primary reason behind this can be given on the

basis of the structural development hypothesis [10], [6]. According to this hypothesis,

there are distinct levels in the behavior shown by the babies. The operations can

be labelled as first order and second order. The first order operations include the

logico-mathematical operations and physical operations. The logico-mathematical

operations deal with reasoning out of the perceptual information. The infants try to

correlate the observed phenomena. The physical operations include the movements

that relate with the causality and the cognition of the space, time and objects. The

infant starts building its understanding of the world from these elementary opera-

tions. The structural development also states that the development is recursive. The

abilities obtained from the first order operations are used to generate the second order

operations through experience and repeated use of the acquired behaviors. The high

level linguistic development comes in the second order development. The understand-

ing of the words and associating them with some physical objects is carried out in

this stage. The words are assigned some meaning at this stage.

The later development in the language acquisition deals with the understanding

of the grammar. This is an extremely complex process and is not discussed in detail

here due to limitation of the scope of this thesis.



The initial vocabulary of the infant is marked with some meaningless blabbering.

These utterances are produced with certain specific movement of the lips and the

inner sound producing parts. The motion is governed by the amount to which the

baby can stretch its organs. These utterances are shaped in later stages to generate

the simple words like “Mommy” or “doggy”. The shaping of the primitive words is

the main focus of this thesis. The scope limited to five vowels, ‘/a/’ as in ‘car’, ‘/e/’

as in ‘bell’, ‘/I/’ as in ‘bit’, ‘/ae/’ as in ‘hat’, ‘/u/’ as in ‘put’.

2.2 Speech Synthesis

The field of speech synthesis finds its origin at the beginning of the twentieth century.

From early 70s the real efforts towards the implementation of a machine or IC capable

of synthesizing some form of speech were visible [2]. The speech synthesis was studied

with different approaches and depending on the approach different methods were

devised. Although I have discussed them briefly here, it is beyond scope of this thesis

to describe all the approaches and methods, but an interested reader can find them

from, [26] and [16].

The approaches to speech synthesis can be broadly classified on the basis of (1)Tar-

get Vocabulary, (2)Target “Intelligibility-Quality” tradeoff and (3)Consideration of

biological and psychological aspects of speech production by humans. The third

criteria primarily differs from the former methods on the issue of purely synthetic

methods versus biologically motivated methods.



2.2.1 Classification based on Target Vocabulary

The target vocabulary can be limited to few words or it can have a large set of words.

In the former case the system can be customized for the required utterances and

system design is simple at the cost of loss of generalization. However if the target

vocabulary is large then the customization does not work and more sophisticated

model needs to be used. The systems targeted towards small vocabulary generally

use synthesis by rule technique and have a database of the utterances. The details of

such algorithms are discussed in [7].

2.2.2 Classification based on Target “Intelligibility and Qual-

ity” tradeoff

Some systems are required to produce voices which are supposed to be understood as

commands. For example, the voices in the automated telephone answering machine.

In such cases the quality and the fidelity of the sound are not important but the only

requirement is to have an utterance which can be appropriately ‘recognized’ or in

other words, the utterance should have good intelligibility. Other applications might

demand for a good quality sound. For example, a machine capable of singing songs

like human singers. With small vocabulary good quality of speech can be produced at

a reasonable cost, but with large vocabularies the cost of the system can be astronomic

if it is implemented using similar techniques [4].

10



2.2.3 Classification based on Synthetic versus Biologically

motivated methods

For simple systems, discussed in the previous two classifications, the purely synthetic

methods can be effectively used. Synthetic methods refer to algorithms which con-

sider speech data as data obtained from a general non—stationary statistical process.

These methods do not take into consideration the processes involved in the production

of sound by humans. The data is then modelled using different techniques like Linear

Predictive Coding (LPC) [2], Cepstral or Homomorphic Analysis [23], Vocoders [19],

Formant Synthesizers [19], Hidden Markov Models (HMM) [19], etc. Although the-

oretically speech is a non-stationary process, for all practical purposes it is assumed

to be stationary for a small time factor of ‘twenty milliseconds’. Exploiting this lim-

itation, these systems use a sampling window of twenty milliseconds and encode the

data in each window. To make the operation smoother, overlapping windows are also

used, e.g. hamming windows. The templates corresponding to each window are used

for representing the utterances. For high quality sound representation the amount

of data needed for encoding is enormous and the systems cease to be practical for

large time requirements. The biologically motivated methods are more effective in

these situations. These methods try to model the human vocal tract with a “source

and filter model”. The sources are models of the air puffs generated inside and the

filters are models of the various organs in the auditory channel. To model a human

vocal tract it is essential to have a complete understanding of the acoustics involved

in human sound production. The structure of our vocal tract is shown in Figure 2.1.

11



The air puffs originating in the lungs form the source for sound production. It is then

modulated as it travels through the various organs in the vocal tract until it comes out

of the mouth. The entire column serves as filter for sound modulation. The nature
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1‘! MS“ I‘ velum

,. , nasal it 0' vocal folds

”,2 cavity I ’
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larynx 5 ‘

trachea esophagus

Figure 2.1: The vocal tract structure

of acoustics needed for modelling is complicated and requires an involved analytical

computation and approximation to arrive at a set of parameters which represent the

structure of the vocal tract. Obtaining the correspondence between the parameter

values and the generated utterances remains after establishment of the model.

In view of the objective of this thesis, choice of biologically motivated method was

mandatory. The most widely accepted model of the vocal tract, developed by Klatt

12



[1], is used in this project. The details of this model are discussed in the next chapter.

The Klatt model has been in use since 1988 and since that time many systems have

been developed based on it. The current trends in speech synthesis revolve around

such combinations [16] and also use psychological information in generating more

human—like speech. Some of the modern systems use extremely sophisticated methods,

targeted towards obtaining generalized results in multilingual speech synthesis [27].

In the background of existence of such systems, one might question about devising

a new method to implement speech synthesis. However, this thesis should not be

confused with a pure speech synthesis system. The objective of this thesis is to have

a developmentally learning system like a human baby, which is capable of learning

different behaviors based on the utterances of the five vowels. These behaviors can

be unknown to the programmer and are designed by the teacher. The algorithm is

task independent and speech synthesis is just an application of it. The following

discussion, deals with reinforcement learning.

2.3 Reinforcement Learning

The reinforcement learning is the most intuitive way of learning based on experience.

It is also the commonly observed learning mechanism in living organisms. In simple

terms, the reinforcement learning means mapping the usefulness or effectiveness of

actions to the situations, based on the rewards obtained. One interesting aspect of

this learning is the delayed acquisition of rewards. This may not seem absurd in real

life, as we are used to it, but in the background of computer algorithms, this makes

13



the problem quite complex. After an action is taken by machine a reward is obtained

from the environment which is to be used to improve the action, which is already

taken in previous context. Hence its effect can only be seen when the same context

repeats. When the same context repeats the machines identifies its similarity with the

previous context and also recollects the action taken before and the reward obtained

in response. Using this information the machine then improves its performance. In a

fundamental reinforcement learning experiment, we have three objects, the learner,

the environment and the rewards, as shown in Figure 2.2. The steps in learning can

be listed as:

Action

 

    

Figure 2.2: The fundamental mode] of reinforcement learning.

2.3.1 Reinforcement Learning Algorithm

1. The agent senses the current state of the environment and performs some action.

2. A reward is given to the agent from the environment in response to the action.

14



3. The action by the agent changes the state of the environment, also the environ-

ment is active itself and it can change its state on its own on top of the changes

made by the agent. As a result a new state is created.

4. Go to step 1.

This cycle continues indefinitely. In most of the practical situations, there lies a fixed

goal in the form of some desired action or a set of actions for given state or states.

The rewards are generated in such a way that the actions taken by the agent keep

improving and then ultimately they converge to the desired ones.

The mathematical modelling of the state and action spaces is the most crucial

aspect of reinforcement learning. In a simple problem the number of states is small

and the number of actions the agent can take can be modelled with few integer

numbers. Maze solving problem is a typical case in such problems. Most of the

research in this area assume these conditions and many strategies are devised and are

tested in this area [13], [30]. However many times the situation is not as simple and

the number of state spaces is large [14] or the space might also be continuous [17] and

real valued. The continuous and real valued case is the most challenging as in this

case we cannot have a discrete set of actions. Hence either a quantization has to be

imposed on the state space or the whole search algorithm needs to be implemented in

a different way. If in the case of continuous state and action spaces, the dimensionality

is also high the problem becomes more challenging. Very few research examples are

observed who have tried to tackle this problem [15]. The problem considered in this

thesis has one of the most general framework of state and action spaces. The search
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dimensions also suffer from inter-dependencies. This is discussed in more detail in

chapter 4. Many times the same situation is described using Bayesian Network(BN) or

Markov Decision Process (MDP). Few interesting examples of reinforcement learning

with this framework can be found in [14],[3]. Although all these models model similar

situations the mathematical framework is entirely different in them.

The reward can be obtained in variety of ways. It can be boolean in the form

of ‘Good’ and ‘Bad’ or sometimes it can be tristate with possibility of no reward or

zero reward. However sometimes the situations demand to have more information

in the rewards and then we can have integral or even real numbered rewards. For

most cases and especially for the situations where learning lasts for long time or for

large number of iterations, the boolean reward is sufficient. When the process is long

lasting the improvement in each iteration is also proportionally less, consequently the

effect of the reward in the improvement is also less. In other words the reward carries

lesser information.

The reinforcement learning is generally defined by the policy used by the agent,

to improve the mapping of the actions to the states based on the rewards obtained.

Although the nature of state and action spaces is variable the objective of the policy

is unique and can be stated as “to reach the target as soon as possible”. Although

this goal is apparently simple it needs to be defined as a mathematical expression in

order to implement it using computers. This conversion is not at all obvious. There

were many attempts made to fix this, but every approach seems to lack something

[30]. The most widely accepted goal is to maximize the long term rewards. The

policy which achieves this is called as optimal policy. The definition of the long term
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Table 2.1: The simulation of Reinforcement Learning

 

 

Iteration No. State Action Reward

1 S1 A1 0

2 81 A4 0

3 S4 A3 0

4 83 A2 B

5 S2 A1 0

6 S3 A1 B

7 81 A1 0

8 83 A3 G

9 S3 A3 G       
reward is also relative to the task at hand. Generalizing this statement, if we want to

maximize the reward in next h iterations, then the optimal policy can be defined as

the one which maximizes, E(2?:0 rt). A simple numerical example of reinforcement

learning will make the whole discussion easier to understand.

2.3.2 Numerical example of reinforcement learning

Consider a system with six states denoted as ‘Sl’ to ‘86’ and four possible actions

as ‘A1’ to ‘A4’. The reward is tristate in nature, with ‘G’ for good, ‘B’ for bad and

‘Zero (0)’ for no reward. The objective is to train the agent to take action ‘A3’ in the

state ‘S3’. A sample learning is shown in table 2.1. The policy used here is choose

actions randomly and avoid actions which received ‘Bad’ reward before.

The table illustrates the reinforcement learning as it occurs in discrete state and

action spaces with specific target available. When we start generalization of the

algorithm by making the state and action spaces continuous and hence infinite and

then further making the availability of the goal obscure, the design becomes more

and more complicated. Devising fast learning and also consistently convergent policy
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in this situation becomes challenging.

2.3.3 Mathematical model of reinforcement learning

With reference to Figure 2.2 the mathematical model of reinforcement learning is now

presented. Let “3” denote the current state of environment. Let “a” be the current

action taken among the entire set of actions “A” available and “r” is the reward

obtained by the agent in response to it. “s’” be the next state of the environment.

The action chosen by the agent is the result of a certain policy that is being followed

by it to decide a particular action among the set of available actions. Let us denote the

policy as “(I)”. Now as this policy is function of the set of possible actions and also the

current state of the environment let us denote it as “<I>(s, a)”. In order to choose one of

the possible actions and also to update their probabilities of occurrence based on the

rewards obtained it is necessary to have a value system associated with the actions.

These are commonly called as “Q” values. As there is a “Q” value associated with each

action there exist a one-to—one mapping between them and we can we will use notation

of Q(s, a) for “Q” values. Thus the updated notation for the policy is “<I>(Q(a, s), a)”.

With this understanding of the system setup, we can write the symbolic mathematical

formulation of the learning algorithm as Q’ (s, a) = f (Q(s, a),r), where Q'(s,a) is

the updated set of Q values from the reward 7‘.

Among the different variations of the above formula we will be considering only

the algorithm called Q-learning first designed by Watkins in his PhD dissertation [5].

The information about the other variations and their scopes can be obtained from
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[30].

2.4 Q-Learning

We have described the process of Q-learning in a symbolic way with the introduction

of the policy of the action choosing and the function of Q-value update. The Q-

learning is also called as an Off-Policy TD control. The value update rule is given in

equation 2.1.

Q(s, a) = (1 — a)Q(s,a) + a(r + 7 man Q(s', a’)). (2.1)

The may in equation 2.1 means the Q-value of the action having maximum Q-value

in the state 3’. Let us call this value as maxQ. Here the usage of the future Q-values

might seem to be absurd, but as this whole process is iterative and the same states

are going to be visited again and again the future values for current states might

already have occurred before. This makes the use of future Q-values justified. In

the beginning of the process all the Q values are initialized to zero. ‘a’ is called as

learning rate. There are no theoretical ways to decide the value of this learning rate,

but most of the time a positive value which is very close to zero is used, e.g. ‘0.1’.

This equation can be interpreted as, the current Q-value is updated by adding the

difference between weighted maxQ and the current Q-value of the chosen action and

the reward, both weighed by the learning rate to the original value. In this algorithm

only one future reward r and one future Q-value is used to update the current Q—value

Q(a, 3). This concept can be extended and multiple future discounted rewards and

Q-values can be used to update current Q-value Q(a, s). For proof of the convergence
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of this method and its variations can be found in [30]. The former methods are called

TD(1) while the generalized methods are called as TD(A) methods.

2.5 Exploration and Exploitation

The choice of maximizing the immediate reward always points towards the action

with maximum Q-value. If we just keep on taking that action, the system will soon

be stagnated at a local optima and there will be no scope of improvement. In order

to take other than optimal action we need to choose some action which has a Q-value

less than the maximum. This raises a question as to which one to choose among a

set of actions all of which are not optimal. The second best or third or the worst?

This question is vague due to lack of information and most of the time the answer

is to choose any action arbitrarily or randomly. The method of choosing the optimal

action is called as exploitation and the method of choosing the action non-optimally is

called as exploration. In order to have the system working well and reach the target in

desired time we need to have suitable tradeoff between exploration and exploitation.

The exploration always aims at reaching the absolute Optima while exploitation uses

the learned behavior and tries to give optimal performance in given situation, which

might not be the globally optimal performance.

The considerations about the choice of exploration and exploitation are based

on the situation where the learning is to be performed. Broadly the strategies of

exploration can be classified into two types [31]: (1)Directed and (2)Undirected.
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2.5.1 Directed Exploration

These methods exploit the process or task specific information and thus are more

efficient. Mostly these methods give superior performance in small time duration tasks

with fast convergence requirements [24]. However they do not have generalization

capabilities.

2.5.2 Undirected Exploration

There are basically two types of undirected methods, (1)Random walk and (2)Boltz-

mann Exploration.

Random walk

The random walk exploration is purely random process as the name suggests and

hence not useful in situations where the system needs to settle after some time even

if the absolute Optimal solution is not found.

Boltzmann Exploration

Before dealing with the mathematical formula of the Boltzmann exploration, it is

essential to know the underlying concept. This method starts with almost random

exploration and all the possible actions have equal probability of occurrence. However

as time progresses the system starts giving more and more preference to the actions

with higher Q-values. As the system learns it starts choosing the actions leading to

optimal learned solution more often. Thus this method makes a smooth transition
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from the learning phase to the testing phase. The details of the method are discussed

in the following subsection.

Let us denote the probabilities of all the “n” actions as ‘p,,z’ = 1 to n’ and Q-values

as ‘q,-,z' = 1 to n’. Then the probabilities are generated based on following equation.

”ma-1)

Llama-0‘1) (2'2)

 

1'—

0 is called as Boltzmann temperature. Essentially this factor controls how much

importance the Q-value will get in deciding the individual probability of each action.

The more the value of the temperature the lesser the importance of the Q-values.

The lesser importance of Q-values means that almost all the actions will get equal

probability irrespective of their Q—values. This is illustrated in Figure 2.3.

When Boltzmann temperature is infinity, all the actions are equally probable.

This is ideal random case. The importance of this method is that the parameter 0

can be controlled programmatically and thus the randomness in exploration can be

monitored. As the machine learns, the Q—values start getting closer to their optimal

values. The tendency towards using the previously learned actions should be increased

along with. Maturity of a machine can be a controlling parameter in the randomness

of the exploration. This modification in the randomness that is introduced through

the Boltzmann temperature has not originated from any task specific information and

hence it is general.

After the creation of cumulative density functions (cdfs) for all the actions using

Boltzmann exploration formula, a random number between ‘0’ and ‘1’ is generated

and the corresponding action is taken. This method essentially gives one action

22



0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0 2 4 6

The variation of the pdf’s of the q-values with theta

 

   
The q value of 1.5

The q value of 1.0

/The q value of 0.5

/

/

 

I I I I f

 
 

L l l 4 l

8 1 0

theta

12

Figure 2.3: The variation in the probability distributions (pdf’s) of the actions with change

in Boltzmann temperature “0”.

among a set of actions from their Q-values. This limits the scope of this method to

only discrete action space problems. When the action space is continuous and the

number of actions is practically infinite, this method cannot be directly used. One

way is to discretize the space and create Q—value system and then use the method,

but in some cases and especially the one used in this project this was not feasible and

hence a new system of exploration was developed. Though the mechanism is different

it is based on the principle of slow maturation in time and based on that reduction

in exploration probabilities. The method is explained in the chapter 4.
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2.5.3 The Search Methods

In a generalized case of a learning environment, the state and action spaces are

continuous and high dimensional. To have an efficient search algorithm, the problem

of the curse of dimensionality that arises has to be tackled. The solution becomes

more difficult when the data is unstable or sparse. The parameters used in this thesis

for speech synthesis have sparsely distributed data and inter-dependency among the

dimensions. The sparse distribution of data in reduced dimensionality is shown in

Fig. 6.1. The inter-dependency in the dimensions arises due to the fact that the five

formant frequencies need to have monotonically increasing values. I did not find any

reference to this type of problem in the literature that I read during the two years

of the deve10pment. Few had dealt with high dimensional cases, but the work that

comes closest to mine is [15]. However, in this referred paper, the main objective

was to solve the maze-like problems with well-defined goals. They did not have the

problem of the sparseness of the data and dimensional inter-dependency.

The problem is tackled with two approaches, (1)Direct Update On Direction

Cosines (DUDC) and (2)High-Dimensional Conjugate Gradient Search (HCGS). Both

algorithms are discussed in detail in chapter 5

2.6 DeveIOpmental Learning

The most important aspect of developmental learning is that it tackles the problem

of computational representation of the cognitive learning observed in human infants.

Autonomous Mental Development (AMD) framework is capable of producing typical
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classical conditioning described in the cognitive psychology [34].

The AMD mode of operation discussed in chapter 1 is the building block of the

system. The most distinguishing property of the developmental program is that the

programmer does not know the tasks the the robot ends up learning after the birth.

Therefore a developmental program must be able to generate internal representation

on the fly for virtually any task. The capability of the machine is developed through

real time interactions with the physical world. It depends on five constraints: (1)

sensor, (2) effector, (3) computational resource, (4) developmental program and (5)

the way robot is taught. Before going into the details of the system architecture the

main challenges that AMD tackles are discussed.

2.6.1 The eight challenges of AMD

1. Environmental openness: Due to the task non-specific nature, AMD must deal

with unknown and uncontrolled environments, including various human envi-

ronments.

2. High-dimensional sensors: AMD should be capable of dealing with continuous

digitized signals coming from the different sensors. The problem of curse of

dimensionality arises here which needs to be tackled.

3. Completeness in using sensory information: There is no way the robot can

determine which information is more useful and which is not. Hence it must try

to utilize all the information that is available to it. All it can take advantage of

is the statistical similarity in it.
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Online processing: The robot itself is affecting the state which is sensed by it.

Off-line processing is unable to accomplish AMD.

. Real-time speed: The sensory/memory refreshing rate must be high enough so

that each physical event (e.g., motion and speech) can be temporally sampled

and processed in real time (e.g., about 15Hz for vision). The notion of pseudo

parallelism explains the duration of one second that is used in this thesis.

. Incremental processing: Acquired skills must be used to assist in the acquisition

of new skills, as a form of “scaffolding.” This requires incremental processing.

Thus, batch processing is not practical for AMD. Each new observation must

be used to update the current complex representation and the raw sensory data

must be discarded after it is used for updating.

Perform while learning: Conventional machines perform after they are built.

An AMD machine must perform while it “builds” itself “mentally.”

Muddy tasks: For large perceptual and cognitive tasks, an AMD machine must

handle multi-modal contexts, large long-term memory and generalization, and

capabilities for increasing maturity, all without catastrophic memory loss.
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Chapter 3

Working of the Organs

The system comprises of three main organ simulations. ‘The brain and associated

memory’ and ‘the ear’ and ‘the mouth’. Before going into the details of the working

of the system as a whole the individual organs (ear, mouth and memory) and their

functionality is discussed in this chapter.

3.1 Working of Ear

The ear is a purely sensory organ and does not have any action associated with it.

The function of ear is to collect the speech data as obtained from the multimedia

sound card and encode it into some parameters, which can then be processed. The

human ear perceives the sound information through the vibrations on the diaphragm

and eventually it is converted into some form of electrical signal which is then carried

to the brain through neurons. The choice of encoding is based on few criteria like the

capability of representation and compression power. There need not be any hard and
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fast rule about choice of encoding. Also it is not quite essential from the conceptual

point of view that the parameters should be similar to what humans use. However,

it is still unknown to us how exactly the encoding of speech signal works in human

ear.

Out of the other possible alternatives like Linear Predictive Coding (LPC) pa-

rameters or the formant frequencies, the cepstral parameters were chosen. The main

advantage of these parameters is their ease of computation.

The processing of the raw speech to cepstral parameter extraction is now explained

in detail.

3.1.1 Cepstral parameter encoding

The speech is sampled at 11.025 Khz and with eight bit resolution for each sample.

Thus one second duration of speech contains 11025 samples. A hamming window

of size 256 is used to extract the cepstral coefficients. Instead of using separated

hamming windows the neighboring windows are overlapped. An overlap of 56 samples

is maintained in order to have smoother performance. Hence the effective window

size is reduced to 200 samples as can be seen from Figure 3.1. The 200 samples

correspond to precisely 18.14 milliseconds. The fastest response time for human

ear is experimentally found to be near 17 milliseconds [19]. One set of cepstral

coefficients contains 13 parameters. Thus, one second sample of the raw speech data

is converted to total of 55 sets of cepstral coefficients, or total of 55 x 13, i.e. 715

cepstral parameters.
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Figure 3.1: The hamming window schema.

These parameters are kept in a queue and as new parameters arrive, the queue is

updated. The old items are discarded from one end and new items enter from another.

The brain keeps track of this queue and acquires the information after the end of every

one second. This forms the dimensionality of the external sensory information as 715.

3.2 Working of Mouth

The speech producing organ is the only active action generation organ or effector in

the system. The speech synthesizer developed by Klatt, known as KLSYN88 [21], [1]

is used. There are total of 40 parameters in the original model developed by Klatt.

This model was later enhanced by Stevens and Bickley [28] who came up with total

of ten constraints which were able to control the actual forty parameters. These ten

parameters were called as ‘High Level’ parameters of HL parameters. This model is

not an artificial speech generation model, but is entirely based on human vocal tract.

These ten HL parameters can be broadly divided into two categories. Five of them

represent the various physical dimensions of the vocal tract and its components and

the remaining five represent the pitch and the formant frequencies. The structure of
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vocal tract along with the HL parameters is shown in Figure 3.2
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Figure 3.2: The vocal tract with HL parameters.

The block diagram of the KLSYN88 synthesizer is shown in Figure 3.3. The

“SensimetricsTMInc.” used this model to develop a software called as ‘HLsyn’. This

software is used for this thesis. The program of HLsyn directly maps the HL param-

eters to raw speech data. This data can then be converted into wave file or played

directly through program. The ‘dll’ file of the HLsyn is called directly from the main

program to generate the sound from the HL parameters. The block diagram of HLsyn

is shown in Figure 3.4.

3.3 Working of IHDR Tree

The associative memory is implemented using the HDR tree. HDR stands for Hi-

erarchical Discriminant Regression. The incremental version of the HDR was then

modified for incremental update as the data is acquired sequentially. This reduces

the memory requirements drastically. The new version is called as IHDR. Here IHDR

tree is described in brief as required for this thesis. Basically IHDR is a statistical
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Figure 3.3: The block diagram of KLSYN99 synthesizer.

decision tree and its details can be found in [11] and [12]. The IHDR tree is a bimodal

tree. One lobe of the tree (lobe A) is developed using the statistical or mahalanobis

distance metric, while the other lobe (lobe B) is developed using euclidian distance.

Two main operations can be performed on the tree, (i) adding a sample and (ii) re-

trieving a sample. The sample is always in the form of a set of two vectors, called X

and Y. Vector X goes to lobe A while vector Y goes to lobe B. During the process

of adding a sample to the tree the sample is first searched for a nearest neighbor

in lobe A. When a suitable match is found, it is added into that node. Then the

corresponding node in lobe B is extracted from the mapping that is maintained with

the development of the tree. Then the second vector is added to that position. As

the samples are added to the tree only the statistics of the node is updated and only
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Figure 3.4: The block diagram of HLsyn.

limited number of samples are preserved. After a node is accumulated with sufficient

number of additions the node is frozen and it spawns into child nodes. The number of

maximum nodes that can be created in a tree is predetermined. In the initial phase

the new nodes are created when the incoming sample has large distance from the

pre-existing nodes. In the later cases when all the nodes are populated, the incoming

sample is classified into one of the existing nodes.

The IHDR tree structure is capable of handling the seven stringent requirements

that any regression tree should. The requirements are listed below.

1. It must take high-dimensional inputs, with unknown correlation between the

components. Some input components might not be related to output at all.

2. It must perform one—instance learning. An event represented by only a single

input sensory frame must be learned and recalled. Thus, iterative learning

methods such as back-propagation learning are not applicable.

3. It must dynamically adapt to increasing complexity. It cannot have fixed num-

ber of parameters, like a traditional neural network, since the complexity of the

desired regression function is unpredictable.
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4. It must deal with the problem of local minima. Due to the online real-time

learning requirement, the tree being built must be successful. Simultaneously,

keeping multiple networks, each starting with a different random initial guess,

and then selecting the best performing network, is not applicable to real-time

online learning

5. It must be incremental. The input must be discarded as soon as it is used for

updating the memory. It is impossible to save all the training samples since the

space required is too large.

6. It must be able to retain most of the information of the long-term memory

without catastrophic memory loss. However, it must also forget and neglect

unrelated details for memory efficiency and generalization. With an artificial

network with back-propagation learning, the effect of old samples will be lost if

these samples do not appear later.

7. It must have low time complexity in computing and update so that the response

time is within fraction of a second for real-time learning, even if the memory

size has grown very large.

This outlines the development of the IHDR tree. When the sample is to be re-

trieved it is extracted using the vector Y from lobe B, using the euclidian distance.

Then from the mapping, its counterpart, vector X from lobe A is extracted. Though

the tree has two different lobes, different distance metric is used to classify them.

Hence to exploit this feature both the vectors X and Y used in the sample are iden-

tical, and represent the context. The context consists of external sensory information
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as discussed in ‘Working of Ear’ and internal sensory information in the form of HL

parameters as discussed in ‘Working of Mouth’.
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Chapter 4

System Architecture and Objective

4.1 System Architecture

After dealing with the working of the individual organs, in this chapter the functioning

of the ‘system as a whole’ is discussed. Although all the organs function as separate

threads, a certain synchronization needs to be maintained. The issue of the true

parallelism versus pseudo parallelism becomes important in this scenario. The next

subsection discusses the need of having the pseudo-parallelism.

4.1.1 The Notion of Pseudo-Parallelism

As we are aware of our surroundings and at the same time we can listen to some music

and also think about something and tapping hands on the table and also shaking

legs we did not event notice the kind of parallelism that our body is performing.

The brain is getting flooded with data from all the sensory organs which needs to

be processed and based on that responses are to be generated for all the effectors
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which will implement it. These processes are going on continuously, however we are

unaware of it. However when it comes to design a system which is aiming at imitating

human, it is customary to have clear understanding of these processes. Although we

say our body is performing all the actions simultaneously, the brain is unique. It

can be argued that there are multiple parts of brain and all of them are processing

simultaneously (which is partly true also), but there can always be instances where

the same part of the brain has to take multiple decisions at the same time. This

is ideally impossible. However if the same processing part carries out a time slicing

and take the different decisions one after the other, and if the time it takes for each

one is sufficiently small the discontinuity would be unnoticed. In this case the actual

processing is sequential but the observed type of processing is parallel. Also the notion

of ‘same time’ is practically limited to the smallest portion of time as constrained by

the flexibility of the organs. For example, gap of a microsecond in processing the

information received by the ear is not going to make any difference in the resulting

observed response. In other words we can say that all the observed parallelism in

humans is limited by a certain small fraction of time. This emphasizes the fact that

all the observed parallel human activities are quantized. In reality, these actions might

be carried out sequentially one after the other. This ‘observed’ parallelism is termed

as pseudo-parallelism. Most of the times we do not really come across activities

which occur at a speed near our quantization limits, however sometimes it becomes

impossible to explain things without its notion. A classic example is of television.

It makes us believe that there is a motion picture going on, when its actually a

series of colored dots running serially left to right and top to bottom on the screen.
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If we could sense the picture in infinitesimally small time the television would not

have come to existence. For, a simple sequence of few seconds would require almost

infinite amount of data. The objective behind stressing the importance of pseudo-

parallelism is the fact that it is impossible to have a machine which will process the

data infinitely fast. Also the machine developed in the thesis is to be executed on

a standard PC, which has only one processing unit and also it has to execute the

operating system processes and some other programs along with this system. Hence

the processing mechanism involved is inherently pseudo-parallel. The primary goal of

this thesis is to generate an algorithm which is capable of learning to produce speech

like human babies in an interactive context based environment using reinforcement

learning. After considering all the practical aspects of the speech production using

multimedia computer a time quantization of one second is fixed for the system. This

time quantization is apparently large and unacceptable for humans, but for the scope

of this thesis this is sufficient. The working of the system in this constraint will

prove the validity of the algorithm and then this time quantization can be arbitrarily

reduced with use of more powerful systems of using dedicated processors.

The pseudo-parallelism in this system is implemented by parallel running VC++

threads. There are exactly three threads, one for each organ. As the sensory and

effector organs are working the brain keeps collecting the data and at the end of one

second it performs its action by making the decision. The decision is based on the

external data obtained from the ear and also on the internal data obtained from the

mouth. The context is formed based on both the data streams. The rewards from

the environment can come at anytime and as and when they are available they are
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recorded by the brain thread. The rewards are used by the brain along with the

context for decision making.

The timing diagram shown in Figure 4.1 gives precise idea of the system behavior.
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Figure 4.1: The temporal behavior of the system.

4.2 Context Based Learning

The learning is context based. The rewards are the only inputs given to the system

to shape its behavior. The learning is non-supervised (the internal parameters are

never controlled directly by the teacher) as an ideal human learning should be. With

the reinforcement learning algorithm the system learns based on the rewards. The

details of the context parameters and their acquisition is now explained.
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4.2.1 Obtaining Context

The parameters taken from the ear are cepstral parameters and one set of cepstral

parameters correspond to a duration of about 18 milliseconds. It is found experimen-

tally that, although human ear can recognize sounds of a duration as short as 17 ms,

most of the time it accumulates the sound of duration 200 ms [19] and then processes

it. The detailed description of the functioning of an ear is given in the chapter 3.

The parameters used to model the mouth are HL parameters. Useful HL pa-

rameters are ten. There are actually 13 parameters in one set of HL parameters,

as specified in the original model, but the parameters after ten are basically used

to classify different speakers. We can use a constant set for implementing all of the

sounds for a single person. Also, our robot is supposed to be a single person with

some specific voice.

4.2.2 Normalization of the Parameters

There are total 715 parameters obtained from the ear and ten parameters obtained

from the mouth. The context is based on the combination of both of them. Although

there are lot more parameters from the ear the importance of them in deciding the

context is equal to the ten parameters obtained from the mouth. The overall impor-

tance of the parameters should be independent of the number of the parameters and

also on their values. For example, one set of parameters can have larger values and

small quantity and vice versa. Hence, in order to remove the effects of these proper-

ties, the variance of each set is considered as the fundamental quantity and based on
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that the parameters are normalized. The variance of both the sets is estimated by

simulation data and the values are used in the program. In later course this can be

done on the fly and the variance constants can be updated in each iteration.

4.2.3 Information Storage and IHDR

The most important aspect of the working of brain is the storage of the informa-

tion. The storage and retrieval of the data from the memory is not sequential like

traditional computer memory, which plays a key role in system architecture. It is

not known till date the precise information about the information storage in brain.

However, the associative learning observed in brain strongly points towards existence

of a tree structure where the data is stored on the basis of its statistical similarity.

The structure that is used in this thesis is called as ‘IHDR’ which stands for Incre-

mental Hierarchical Discriminant Regression as discussed in chapter 3. As soon as

the context is given to the brain, it searches the IHDR tree and tries to retrieve the

nearest neighbor for that context. If a good neighbor is found, it is extracted. The

choice of good neighbor is based on a threshold of the distance. The actions taken

in the past in the similar context are retrieved along with their Q—values. Due to the

continuous and real valued nature of actions, they are represented in the form of fixed

number of sets of micro-clusters of similar actions or a single set of direction cosines

along with a step size. The details about the creation of these micro-clusters and the

direction cosines is described in chapter 5. The brain then uses this information and

applies the policy of choosing action and generates a new conceptual action. The new
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conceptual action is a ten dimensional vector in HL parameter space. The real action

is then taken by the mouth. The policy of the brain to choose the next action is now

discussed. This involves reinforcement learning and gradient search algorithms and

also the tradeoff between exploration and exploitation.

4.3 Reinforcement Learning

The fundamental model of reinforcement learning and its algorithm are discussed in

the chapter 2. In the traditional reinforcement learning model there is a distinct

boundary between the environment to be served and the agent. However with the

complex architecture of a humanoid robot, which is considered in this thesis, this

model becomes inadequate. The humanoid robot has a physical body which consists

of locomotory organs like hands, feet and mouth, sensory organs like ears and eyes

and also has a brain that controls the organs. The brain is more of an abstract organ.

In order for the robot to function properly its brain should have precise knowledge of

the relative positions of the organs along with their limitations. During the response

of the robot to the environment the conceptual action is generated by the brain and

real action is taken by its organs. Hence, it is essential that the brain keeps track of

the state of its own organs. Thus with regards to the brain the state of the organs is

external, however this state is internal for the humanoid robot. This state information

is called as internal sensory information and brain obtains it by communicating with

respective organs. Figure 4.2 shows the picture of the modified reinforcement learning

system that is used in this thesis.
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Figure 4.2: The modified reinforcement learning model used in the thesis.

The complete state information is generated by the combining the set of external

state information and the set of internal state information. The external sensory

state information is in the form of cepstral coefficients obtained from the ear and the

internal sensory state information is in the form of the HL parameters obtained from

the mouth. The total cepstral parameters are 715 as explained in chapter 3 and there

are ten HL parameters, hence the total state space is of dimensionality 725.

Any reinforcement learning system has to deal with certain search space. The

learning of the system is characterized by multitude of variations depending on the

specifications of the search space and the different constraints imposed by it on the

learning. The possible combinations of them are discussed below.

The search space can be ‘n’ dimensional, the ‘n’ can be small (in the range from

one to three), or it can be large (more than three). The space can be discrete or

continuous. In discrete case the number of actions in any state are fixed while con-
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tinuous case the number of actions are always unlimited. With this discrimination

we can have different possible combinations of the search spaces ranging from small

dimensional discrete to high dimensional continuous.

One more aspect that often affects the learning is the various constraints imposed

by the search space due to the practical limitations. The basic constraints arise due to

boundaries of the search space in all the dimensions, as we cannot go from negative

infinity to positive infinity in all the dimensions. The other limitation arises due

to dependency among the various dimensions. For example, certain combinations

of values are not possible to obtain practically, even all the values in each of the

dimensions are within their individual specified range. This leads to a new concept

of variable range in each dimension dependent on the other dimensions.

The other parameter that is crucial in the performance of the reinforcement learn-

ing method is the generation of rewards. The reward is the only guiding parameter

that is used in reinforcement learning. The reward can be boolean (‘1’ and ‘0’) or it

can be tristate (‘—1’, ‘0’ and ‘+1’) or it can be quantized with more than three levels

or it can be real valued. In the traditional reinforcement learning paradigm as given

by the equation 4.1 any of these values can be used.

Q(s, a) = (1 — a)Q(s, a) + oz(7‘ + 7 menu Q(s', a')). (4.1)

The mathematical modelling of the Q-learning or any other variations of it is based on

the ultimate goal of maximizing the reward. The time duration in which to maximize

the reward is a crucial aspect in modelling the learning equation. In the cases with

less time duration and also small dimensionality and discrete nature of search space
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the reward need to be utilized heavily in order to improve while in the other extreme

case when the search space is large and high dimensional and continuous and also

having inter-dependency among the different dimensions, the time duration has to be

large and the use of rewards is minimal. Most of the cases studied in this field focuss

on the simpler cases and optimizing the learning performance in specific learning

environments. Even the more general cases considered by many deal with optimizing

the performance of the system to apply for some specific environment.

The current work started with the intention of developing a learning system to

tackle the most general case in reinforcement learning with high (ten) dimensional and

continuous state space. Each dimension having different ranges and also there exists

an interdependency among the values in all the dimensions. The specific goal to be

achieved is use this system to generate a robotic system capable of learning to speak

like a human baby. There is absolutely no supervised learning and also the learning

has to be general. The baby should learn to respond in the way the teacher desires.

With the consideration of the most generalized case and also the imposition of not

exploiting the task specific information which is not known to the baby, development

of the algorithm is a very difficult task.

The system presented here has the objective to keep working for unlimited time.

Hence, it should be capable of handling unlimited number of interactions. This goal

is drastically different from the commonly used objective of achieving some desired

behavior in limited number of steps. Hence it is important for the system to be

capable of unlearning certain things learned in the past and also keep learning with

the new data. The speed of learning is not very important criterion as time is not a
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critical parameter, however system should continuously improve in certain direction,

based on the interaction with the environment and in long run the program should

converge to the target with probability of unity.

During the development of the system two different approaches and their vari-

ations are experimented and evaluated and the summary of each approach and its

performance in specific cases is discussed in the next chapters.
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Chapter 5

The Two Approaches

This chapter deals with the two approaches that are developed during the research.

As described in the earlier chapters, the challenging issue in the research is to use

the reinforcement learning model effectively in the areas which are more complicated

that the assumptions of the traditional reinforcement algorithm assumes. In practi-

cal situations it is difficult to have a discrete set of actions which will be constant

irrespective of the context state. However, the quantification used in reinforcement

learning required it. The same applies to the existence of finite state while in reality

there are infinite variations of states. Hence some modifications in the algorithm are

mandatory. To tackle this problem two different approaches are tried. The details of

the algorithms are discussed in the following sections.
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5.1 Learning with Direct Update on Direction

Cosines (DUDC)

The most important change in this method is removal of a set of actions and replac-

ing it with a single set of direction cosines, “\I!(z'), z' = 1, ..., 10”. This set represents

the attempt of the optimal direction in the given search space and in a given hierar-

chy of step size. The objective of the reinforcement learning is to find the optimal

set of direction cosines. The set of direction cosines when coupled with the step

size represents the action. Hence now we have just one set of action and the ob—

jective is to shape it using reinforcement learning. As this framework is different

from the traditional learning a new mathematical model of learning is mandatory.

Before explaining the new model of reinforcement learning it is essential to explain

the exploration-exploitation tradeoff mechanism for this framework.

5.1.1 EMMP

The EMMP stands for “Exploration with Maturation with Multidimensional Pertur-

bation”. With the given set of direction cosines, ‘\Il(z')’, the concept of exploration is

to change the given direction randomly, so that all the possible directions are equally

likely. The concept of maturation comes with the tradeoff between exploration and

exploitation. As the ‘\I1(z')’ are shaped with the reinforcement learning, the direct use

of them is the exploitation. With the well known fact - ‘exploration leads to find-

ing the global optima and exploitation leads to using the learned local optima’, the

exploration is slowly reduced as the system matures. ‘K.’ is used as the quantitative
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measure of the maturation. The mathematical model that is developed with this

concept is described below.

K, = log(1+%) (5.1)

9(2) 2 6+\Il(2)n (5.2)

.5 = (Z; 92(0)”? (5.3)

mi) = —€?— (5.4)

‘e’ is a real valued random number between —1 and +1 such that it can take all

the values in the range with equal probability. ‘2’ is the iteration number, which is

incremented with the arrival of a context. The number ‘40’ is chosen from the empir-

ical evaluation of various other values. The first step calculates ‘n’, the quantitative

measure for the maturity of the system from the number of iterations. The next

three steps describe how the new set of \I'(2') are obtained from the old ones using

the EMMP method. The weights, denoted as ‘Q(2')’ are the intermediate variables

used before the normalization. ‘5’ is the normalizing variable. This method uses a

variation of the exploration and exploitation tradeoff, which is based on the principles

of the Boltzmann Exploration. The ‘\II(2')’ represent the original direction cosines and

the ‘\II’(2')’ represent the new direction cosines obtained after doing the exploration.

The reinforcement learning model is based on the EMMP method and the equation

is given below.

\II(2') <— \I'(2') + ar(\Il'(2') - \Il(2')) (5.5)

The value of ‘0.1’ is normally used for the ‘a’, which is also called as learning rate.
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The EMMP followed by the reinforcement learning constitute first step in the

entire hierarchical search mechanism. The complete action is obtained by multiplying

the direction cosines with the step size (5. The choice of the step size 6 is crucial in

the working of the method. With any given step size 6 there is limitation to how

close we can reach to the target. In order to get desired proximity towards any given

target and starting from any arbitrary point coarse-to-fine search is necessary. With

change of step size the previously learned direction becomes useless. As can be seen

from Figure 5.1. After reaching certain point with certain step size the step size

is reduced. The direction required with new step size is totally different from the

direction that was required with the previous step size. The method described here

tries to improve the direction by trying different possible directions and does not try

to model the possible distribution of the rewards and thereby this method does not

seek the information form the neighborhood. The advantage of this method is speed

of convergence as is discussed in chapter 6.

5.1.2 Robust Learning

The EMMP method finds the near optimal direction towards the target under the

constraint of the given step size. With each reduction in the step size 6, the search

becomes finer and sc0pe of the search also reduces. The reduction in 6 is solely con-

trolled by the rewards, the details of which are discussed in the following subsection.

In order to take into account the possible errors in the rewards, and make the algo-

rithm converge in spite of erroneous rewards, the following rule is applied to change
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Figure 5.1: The solid circle represents the target and the hollow circle is the starting

point. The arrow denotes the direction of the previous action and its end denotes the

new start position. The different variations of the positions of the new starting point

and the target are shown. Although in each case the distance from the target is same,

the direction towards the target is entirely different from the starting direction.

the step size.

Reversible step size change algorithm:

1. Initialize 6.

2. Initialize counter for bad rewards.

3. Use EMMP for updating the \II(2') also keep updating the bad reward counter.

4. If the number of bad rewards exceed the threshold then increase 6 and restart
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the EMMP.

The above algorithm makes sure that the EMMP is not stagnated at certain point

in the search space due to the acquisition of a erroneous reward leading to unwanted

reduction in 6. This makes the algorithm robust.

5.1.3 Consideration about Rewards

As is discussed before, the nature of rewards also play substantial role in overall

performance of the system, the assumed behavior of the rewards in this mechanism is

now discussed. In general, the rewards can be relative or absolute. In former case the

‘Good’ reward means that the performance of the system is improved compared to the

previous attempt, while in latter case the ‘Good’ reward means that the performance

of the system is within certain predetermined bounds irrespective of the previous

performance. In this particular case, both the types of rewards are expected by the

system in certain Specific way. The rewards are of three types, ‘Good’, ‘No reward’

and ‘Bad’. The ‘Good’ reward is considered as absolute, and the latter two rewards

are considered as relative. The ‘Good’ reward means that the search has reached

sufficiently close to the target and the step size can be reduced. The ‘Bad’ reward

means that the performance is getting worse compared to previous performance. ‘No

reward’ can mean the performance is unchanged or that it has improved compared

to the previous attempt, but the improvement is still not within the predetermined

bounds to go to the next hierarchical level. This structure of rewards is constructed

based on the real time evaluation, where the rewards will be obtained from the human
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teacher. It is observed that the ‘Good’ reward definitely means sufficient proximity to

the target. When the system is exploring in areas away from the target, it is diflicult F

for a human teacher to determine whether the system is going in right direction.

Hence, in such cases no reward is offered. However, when the performance deteriorates

giving ‘Bad’ reward is possible.

Algorithm

1. Initialize the start point.

2. Initialize the direction cosines in all the dimensions. The values are normalized

with the norm as unity.

3. Initialize number of iteration, n : 1.

4. Start iterations.

5. Get the reward from the iteration.

6. Use the reinforcement learning equation to update the direction cosines.

7. Take the action.

8. Increment the iteration number n = n + 1.

9. Go to step five. (No Stop.)

The architecture is shown in Figure 5.2
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Figure 5.2: The system architecture with DUDC.
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5.2 Learning with High-dimensional Conjugate

Gradient Search (HCGS)

In the traditional Q-learning as is described in chapter 2, there are number of dis-

crete actions and a Q-value is associated with each action. Depending on the policy

an action is chosen and it is implemented. This method proves inadequate with the

continuous and real valued state and action spaces. However, with the proven con-

vergence properties of Q-learning and its robustness to occasional incorrect rewards

[29], it is suitable for this problem. In order to fit current problem in Q—learning

architecture, ‘Vector Quantization’ (VQ) of the action space is required. The VQ

used in this thesis is called as amnesic VQ. The method is discussed in the following

section.

5.2.1 Amnesic VQ in Action Space

The quantized actions in the action space are called as micro~clusters. Using a suitable

threshold the actions are quantized. Each micro-cluster represents a single action

and possesses a Q-value. Each context is limited to have a specific number of micro-

clusters of actions. After trying values from ‘10’ to ‘100’ for this number, it was

finally fixed to ‘30’. The mean value that represents a micro-cluster is updated using

the method of ‘Amnesic Average’. In traditional update with accumulation of large

number of actions the contribution of the new action is reduced to infinitesimal. In

practice this is not acceptable as all the system properties need to change with time.

Amnesic update eliminates this drawback by using a different amnesic factor based
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on number of updates on the action [34]. The amnesic update is based on amnesic

parameter l(n), which is defined as,

[(71) z 2(22 — n1)/(n2 - 221) if 721 < n S 21.2 (5-6)

2+(n—n2)/m ifn>n2

The typical values of ‘221’ and ‘222’ are ‘20’ and ‘2000’. Thus when the number of

updates is less than ‘20’, the update is same as traditional average, however after

that the amnesic parameter ‘l(n)’ is designed in such a way that more priority is

given to the incoming action vector. After 222 updates the weight of the incoming

sample is changed again and it increases with a rate 1/m. The value of ‘m’ is chosen

to be around ‘1 / 1000’, so that after ‘2000’ updates the weight of the incoming sample

is almost constant at about ‘0.1%’. The update equation using this amnesic factor is

stated as,

+ ——+—V (5.7)

Where ‘R"’ and ‘Rnfl’ denote the ‘n‘”’ and ‘(n + 1)"” updated vector respectively

and ‘V’ denotes the new action taken in ‘(n + 1)"” iteration.

With the learning process the micro-clusters are developed and their Q values are

updated. Action micro-clusters and actions are used interchangeably for representing

the same list. These micro-clusters are used to generate the interpolation function

for Q value in composite context and action space, as described in the next section.
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5.2.2 Interpolation Using Q-values

In order to use the Q values of the various actions effectively to find optimal direc-

tion, it is essential to have an interpolation function representing the distribution of

the Q-values in context-action space. The CG method can then effectively find the

optimal action using this distribution. In order for CG method to work effectively it

is important that the interpolation function is smooth and has a single well defined

local minima. In order to get these properties in the function, a new interpolation

method called “Density Sensitive Kernel Interpolation” (DSKI) is used. The details

of the method are listed below,

Gfl($;$13$21'"1xn) = Zwi($)y(i) (5-8)

2:,- E B“, y,- E R". Value of ‘d’ is ‘10’ in the current context. x1,z2,...,:r,, are n

nearest neighbors of a: E R“ from S. S is a set of micro-clusters in R“ representing

the approximation of reciprocal of density in R“. S can also be called as a set of finite

number of neurons for each state. The definition of the weights w,- is based on the

squared local sparseness 02, which is defined as,

k n

02 = 5 E Z ”$2 - 33“? (5-9)
i—l

where, ‘k’ is called as ‘kernel variance factor’. The more the value of ‘k’, the more

is kernel variance and more flat the interpolated function is. The effect of ‘k’ on the

distribution is shown in the figure. The expression for weights is,

HI - will?
22 ), i=1,2,...,n (5.10)
0'

w,- = Cezp(—
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The constant ‘C’ is computed such that 23;, w,- = 1. y,- = f (2,) is the function to

be approximated. In this case, y, denotes the Q-value of the action. The action list

contains about 30 samples. Hence the top—15 neighbors out of the 30 are chosen to

interpolate the function. The sample plots generated from the DSKI method from

the sample simulation one dimensional data are shown in Figure 5.3
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Figure 5.3: The plots of the Interpolated functions and its gradients for various

combinations of the distribution of sample points and their Q-values.
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5.2.3 Conjugate Gradient Method

The Conjugate Gradient method tackles the problem of searching in high dimensions

in an elegant and sophisticated way. There are many iterative methods which deal

with finding the minima of a function in multi-dimensions, for example Steepest

Descent or Conjugate Directions [25]. Conjugate Gradient method is the best of all

in terms of efficiency and memory usage. Originally the method is develOped for

finding minima of a symmetric quadratic function in the form

f(x) = ngAx—bx+c (5.11)

where ‘A’ is a positive definite and symmetric matrix. This method guarantees con-

vergence in ‘n’ steps, where ‘n’ is the number of dimensions of x. The entire theory

behind the development of the method is beyond the scope of this thesis and can be

found in [25]. The same method can be extended to find the minima of a non-linear

function. In this case the function along'with its first and second order derivatives

should be known either analytically or they should be easily computable numerically

with less numerical errors. Nonlinear CG does not assure convergence in ‘n’ steps, it

can also converge to a local minimum or it might just diverge depending on the given

function characteristics. The detailed analysis of the convergence of the method in

various cases can be found in [8]. However, most of the work in this area only con-

centrates towards finding global minimum in a bunch of local minima [9] [25], while

the case of a function having a maxima in a neighborhood is not studied in detail.

There are two variations of the method that are used in non-linear case, the ‘Fletcher-

Reeves’ method and ‘Polak-Ribiere’ method. The ‘Polak-Ribiere’ method is better
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among the two in most cases [25]. Both the algorithms share most of the steps, and

vary only in the way an intermediate variable ‘8’ is designed. The algorithm is given

below,

5.2.4 The Algorithm

1. d(0) = 7(0) = -f'($(o)

2. Find 01(1') that minimizes f (330) + a(,)d(o)),

3. scum = 13m + Omdm),

4. 7'i+1 = —f’($(i+l))v

 

r? i . _ r i _ e

5. Fletcher-Reeves: 50'“) = w, Polak - Ribzere . rtt+1)(’< +1) '( l)
T

"(iirm 7mm)

6. dew) = mu) + fiends)

In this nonlinear version of CG there is no direct way to estimate the step size

‘a’ as it is in linear version. Hence line minimization techniques are employed to find

it. This step size denotes the optimal distance to be travelled in the direction ‘d’

as found by the CG algorithm. Iterative methods like ‘Newton—Raphson’ or ‘Secant’

are generally used for this purpose. Both the methods are based on the Taylor series

expansion of the a function. The analysis of secant method is now presented.

f(.r + ad) z f(x) + a[£f(r + ad)]a=o + 23-[553 (:1: + ad)]a=0 (5.12)

z m) + a[f’(:r)]Td+ %de"(x)d (5.13)

iflx + ad) z [f’(a:)]Td + ade"(:r)d (5.14)
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The secant method tries to express the second order derivative of the function with

the first order derivative at different positions. The expression is given below,

[déa- (II: + ad)]a=a — [ii-ft]: + ad)]a:0
 if(:i:+ozd)dag (5.15)

[fif’f’r + 0(1)] - [firm]

0'

 22 (5.16)

Using the equations 5.13 and 5.16 we can write the derivative of ‘f (:1: + ad)’ as,

fife: + ad) a 012:)le + g lf’(x + ad)le - lf’(:v)de (5-17)

Now in order to minimize the function the first order derivative ‘f (x+ozd)’ is equated

to zero. This gives us an expression for ‘a’.

_ 1112:)de

" ‘ _0lf’(x+0d)le-[f’($)le (5'18)
 

Secant method suffers from subtle drawback. When it tries to find the expression for

‘a’, it can reach maxima or minima depending on which is closer. There is no way the

method can guarantee that the optimum is a maxima or a minima. The immediate

solution to this problem can be thought of as looking at the second order derivative to

decide about the maxima or minima. This method has two main practical problems:

(i) finding second order derivative is highly computation intensive and it also becomes

considerably error prone when dealing with small neighborhood and slow changing

functions; and (ii) most of the times the second order derivatives return arrays filled

with zeros. In order to make remove this drawback and make the system always

seek the minima a the algorithm is slightly modified. When a suitable step size

‘oz’ is computed using the secant method, (the Newton-Raphson method requires

computation of second order derivative, hence secant method is preferred over it)
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the value of function in the direction opposite to that suggested by secant method is

checked with the value in the suggested direction. If the value in the opposite direction

is less than the value in opposite direction, it is assumed that the secant method is

trying to get maxima instead of a minima and the opposite direction is chosen instead.

It is also observed that sometimes due to the rapid changes in the value of gradients

the step size is incremented drastically and the algorithm is diverging from the target.

In order to restrict the performance of the secant method the value of the function at

the consecutive values of x produced with the secant method are compared and if it is

observed that the method is diverging it is immediately terminated to the previously

found value of ‘z’ and the CG method then takes over. The effects of these changes

are shown in the figures 5.4, 5.5, 5.6, 5.7.

However both the methods bear a considerable drawback when the function also

has a maxima in the neighborhood. Both the methods rely on finding the point in the

neighborhood of the given point where the first order derivative of the given function

reduces to zero. This inherently finds either maxima or minima.

The function generated using DSKI is feeded to the CG search to find the minima.

The Q-values are sign reversed before generating the interpolated function so that the

minima of the function corresponds to maximum Q-value and hence optimal action.

The plots of the interpolated function and performance of the CG method are shown

in Figure 5.8 The performance of the CG in two dimensional case is shown in Figure

5.9. The starting point along with the trajectory followed by the CG to reach the

optimal point is also shown.
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Figure 5.4: Modified Conjugate Gradient method applied to simulation data similar

to practical data. The starting point is chosen arbitrarily.
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Figure 5.5: Modified Conjugate Gradient method applied to simulation data similar
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Figure 5.8: The plots of the Interpolated functions and performance of CG on it.

In each figure first plot shows convergence of CG v/s starting point of the search

and second plot shows the interpolated function. The dotted lines enclose the region

where the CG search is deviating from the target.
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Figure 5.9: The Search trajectory of CG in two dimensions. The real trajectory in

3D and its contour path are shown.

Due to inherent limitations of linear line minimization methods they cannot be

used to give optimal performance in all the situations. Hence to preserve the generality

of the algorithm the line minimization part of the CG algorithm is removed. The

initial guess for the step size is calculated based on the density of the samples at the

starting point.

5.2.5 Q—Learning

The mathematical description of the Q-learning is explained in chapter 2. A queue

of the ‘n’ recent states is maintained called a ‘Prototype Updating Queue’ (PUQ)

and with each incoming reward the Q-values of the states in PUQ are updated. The

Q-value of the most recent state is updated using the direct Q-learning rule as given

in equation 2.1. The Q-values of the succeeding states are updated using,

Q(S, 0‘) = (1_ a)Q(s, 0') + 0(7Q). (519)

where ‘Q’ represents the updated Q value of the preceding state in PUQ.
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5.2.6 Boltzmann Exploration

The details of Boltzmann exploration are given in chapter 2 and equation 2.2. The

Boltzmann exploration also requires the actions in discrete nature, as is the require-

ment of the Q-learning, in order to make a choice. The generation of micro-clusters

solved the problem with the Q-learning, but with careful investigation it can be

understood that we still cannot use the Boltzmann exploration directly on these ac-

tions. The subtle difference in this list of action micro-clusters and traditional set is

the traditional set encompasses all the possible actions, while current set does not.

The actions outside the list of action micro-clusters can also be taken and they can

even be better than the ones in the list. Hence a separate random exploration is

used along with the choice of exploitation using CG search. The random exploration

uses the upper and lower bounds on the action along with the inter-dependencies in

the action values to generate a random action, while CG search uses all the action

micro-clusters to generate new action. These two choices are feeded to Boltzmann

exploration with probabilities which are based on the status of the action list. If the

action list contains sufficient actions with good Q-values, then more probability is

assigned to the exploitation and vice versa. However, ultimately the decision is taken

by the Boltzmann Exploration whether to use the exploitation or random exploration.

5.2.7 The Detailed Behavior of the Action Micro-Clusters

During the initial phase when the action micro-clusters are being created for the

first time a default distance threshold is used. In the later stages the micro-clusters
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are updated with new samples. With each update the micro-clusters move towards

the new sample. The amnesic averaging mechanism makes sure that even after large

number of updates the new samples still makes noticeable impact on the micro-cluster.

It is observed that with the exploitation superseding the exploration some of the

micro-clusters being closer to the target are updated more often than others. Also

due to this most of the micro-clusters are under utilized. As an implication of this

phenomenon, the required uniform convergence is not observed. After the search

reaches a certain proximity, the algorithm stagnates. In order to address this issue

the re-organization of the micro-clusters is performed after the context is repeated

certain number of times. The mechanism of the re-organization is now discussed.

The weighted mean of the micro-cluster distribution is evaluated and then all the

micro-clusters are pulled towards it based on the number of times each one is visited.

This is followed by reduction in the search space. The reduction in search space

ensures that the random exploration is also restricted to explore the important area.

After the repositioning of the micro-clusters the count of the number of updates on

each micro-cluster is initialized along with their Q-values. This starts the new search

in the reduced space. This mechanism basically represents the hierarchical coarse to

fine search.

In another approach the top ‘n’ clusters with highest Q-values are selected and

remaining clusters are removed. They are then filled with the new incoming data.

The search boundaries are also reduced along with this in order to restrict the random

exploration. However, this method suffered from the drawback that many times the

main target remains outside the reduced search space after few iterations of the cluster
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re—organization. This causes the search to stop after reaching certain accuracy level.

Considering more detailed picture of learning. The IHDR tree is initialized with

maximum of five clusters in each node and maximum number of samples that can be

held in a node is restricted to 200. The sample list is maintained as a common list

for the entire node and each sample is marked with the membership number which

corresponds to the cluster in the node. With each context retrieval the nearest sample

is found and if the distance to the nearest sample is above a threshold (a threshold

of 7.0 is used) then it is assumed that there is a new context and it is added to the

tree and a default action which is “keeping silent” is taken. If the distance to nearest

neighbor is less than the threshold then it is assumed that the context is similar to

the one that is observed in the past and the action list corresponding to that context

is extracted and then using the policy as described above an action is chosen and is

taken.

The block diagram of this method is shown in Figure 5.10.
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Figure 5.10: The system architecture with HCGS.

70



5.3 Developmental Learning

Finally all these components are grouped into a complete system in the Developmen-

tal Learning paradigm [36]. The software platform of SAIL project is used for the

development of the system. The sound acquisition part using cepstral components

is already developed and is directly used. The other components for the mouth and

the learning system for the speech are independently coded and integrated into the

system. The multi-threaded architecture of the system made it easy to add com-

ponents having separate threads to execute. The IHDR tree is at the heart of the

system providing the associative memory similar to human memory. The sensory

information, internal as well as external is combined, normalized and added to the

tree continuously as the system starts learning. The block diagram of the system

architecture and the flow chart of all the parallel running processes in the system are

shown in figures 5.11 and 5.2 respectively.

This thesis is part of the SAIL project, where an entire humanoid robotic system

is being developed capable of having vision, and locomotion. The basic block diagram

of the system as part of SAIL is shown in Figure 5.12. In the entire block diagram

of SAIL the block of sensory mapping consists of all the sensory organs including the

vision and locomotion. The details of the system can be found in [35].
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Chapter 6

Results and Discussion

The testing of the system is performed in multiple stages. The testing of the two

different approaches is performed independently according to their requirements and

objectives and the results are discussed. The distribution of the four vowels ‘/a/’,

‘/e/’, ‘/i/’, ‘/u/’ to be learned in their formant space is shown in Figure 6.1. The data

related to the fifth vowel ‘/ae/’ was not present and hence is not shown in the figure.

The original data is obtained from [22]. As can be seen there lies a considerable

overlap among them which is a challenging issue in the learning.

6.1 Testing of DUDC

The objective of the system is to learn in a context based environment. The method

of DUDC is designed to learn fast in high dimensional space by utilizing the absolute

rewards. The distinction between absolute rewards and relative rewards is discussed

in chapter 5. Although the system can handle erroneous rewards, it demands more
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Figure 6.1: This figure shows the distribution of the four vowels in the reduced dimensions

(using PCA). The point in the left top corner represents one end of the search space and

the point in the right bottom corner represents the other end. The distribution as can be

seen is sparse and also overlapping.

from rewards than the HCGS method. As the learning occurring at two different

contexts is independent of each other, it is essential that the validity of the learning

in individual context is tested first. With the mechanism of obtaining the context

in place the rest of the functioning is extension of single context learning. Before

tackling the actual system, the algorithm is tested using a simulation program. A

data with variable dimensions from two to ten is used for the testing. The different

locations of the target relative to the starting point are chosen and the results are

tabulated in the table 6.1. The start point is chosen arbitrarily as its position is not
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Dim. Error Rate Target Point Location Avg. no. of steps

Center 29.91

0% Boundary 3.44

2 Random 54.48

Center 35.24

25% Boundary 3.84

Random 44.32

Center 257.37

0% Boundary 55.66

5 Random 319.18

Center 303.49

25% Boundary 50.12

Random 856.04

Center 1248.22

0% Boundary 445.27

10 Random 1089.82

Center 1844.08

25% Boundary 717.64

Random 2279.45

 

     
 

Table 6.1: The table displaying the average learning rate with variable dimensions

and variable error rates in rewards.

important, but the target point location is varied in three stages as ‘near the center of

the search space’, ‘near the boundary of the search space’ and ‘arbitrarily anywhere

in the search space’. The testing is carried out for two, five and ten dimensions. Each

experiment is conducted for 100 iterations of search to get near perfect statistics of

the data. The table 6.1 shows the average values of iterations for each dimensional

data and also in each case the rewards without error and with 25% error are used.

The measure of convergence is defined as the reduction in the target distance by the

factor of 20 with respect to the starting distance. This corresponds to 5% of the

initial distance. The percentage rise of the average steps for convergence is plotted

in Figure 6.2
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Figure 6.2: The variation in convergence rate with variable dimensions and error rate

in rewards.

After establishing the convergence of the algorithm, it is incorporated in the main

system having all the three organs working parallel, the brain, the mouth and the

ear. The test results with different methods are now discussed.

6.1.1 Testing with Synthetic Teacher

The concept of a Synthetic Teacher (ST) is introduced. This ST is implemented as a

standalone program running parallel with the system and doing the job of a human

teacher. The testing with the ST is carried out in two stages. In the first stage, the

ear and mouth are disabled and the learning context is not varied. This approach is
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similar to the testing of the simulation data. The HL parameters, generated in the

form of action, are directly fed to the ST to receive a reward. Due to the absence of

delay due to utterance, the learning is fast. The plots of convergence are shown in

the Figure 6.3

In the second stage, the ear and mouth are enabled. The system produces sounds

and also listens to the environment. The ST produces sounds as pre-recorded wave

files every alternate second to provide the context. However, the rewards are gener-

ated from the distance to the target using the HL parameters. Because this learning

requires the one second wait in each state, the learning is slow. Also as the context is

obtained from the external and internal sensory parameters, there are multiple con-

texts the system has to deal with. The plots of convergence are shown in Figure 6.4.

6.1.2 Testing with Human Teacher

Although the final goal of the system is to have it interact with humans and learn from

the rewards obtained, some practical problems with this testing are pre-identified:

1. The synchronization of the states of the machine and the utterance of the teacher

is difficult to obtain, which is needed for optimal performance.

2. The inherent variation in the human voice and change in the volume can make

the similar utterances sensed as different contexts. This is theoretically accept-

able but it will delay the learning process.

3. The teacher is likely to get confused in giving rewards when robot is speaking
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Table 6.2: Difference in the two methods of testing
 

 

Testing with ST Testing with Human Teacher

1. Accurate. 1. Prone to errors.

2. Have a single and well 2. The target is a cluster of different

defined target. utterances which are recognized by the

human teacher as similar.    
 

simultaneously.

4. The similarity in the utterances is sometimes difficult to identify and this makes

the learning process slow.

These problems are only going to make the learning slow while the capability of the

system to converge remains unhindered. The results are plotted in Figure 6.6. Two

plots are shown for each convergence one of them shows the distance from the final

utterance and the second one shows the actual positions of the parameters in reduced

dimensions. The dimension reduction is performed using PCA. As can be seen the

convergence is faster, but the final utterance is not of very good quality as is obtained

with the ST. The reason being all the rewards given by ST are perfect (excluding the

case of erroneous rewards). The testing has been conducted for more than two hours.

The temporal description of the mechanism is shown in the Figure 6.5.

6.2 Testing with HCGS

The method of learning with HCGS is designed to tackle the problem of developing

the system to handle very large amount of interactions. The demand from the rewards

is relaxed in this method and it can take absolute as well as relative rewards. The
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objective is to have a convergence rate is not as fast as in the previous method,

however the system should not deviate from the target in the long run.

The testing framework is similar to the previous method, except that due to slow

rate of convergence the last two real time testing steps are not carried out. The

simulation results on the generalized sine-cosine function and also on a sample data

obtained from the real testing are discussed in chapter 5. The performance of the

system in real time simulation with ST is now discussed.

The number of micro-clusters in the action list is the most crucial parameter in the

overall performance. With the curse of dimensionality constructing an interpolation

function in ten dimensions and then using the CG search on it to get the minima

depends a lot on the number of samples available. The number of micro-clusters is

varied from ten to 100 and in each case the convergence plots are generated. The

convergence plots as shown in Figure 6.7 need some further explanation. The case

with number of micro-clusters as 30 the convergence is better compared with the other

case when the number of micro-clusters is 100. However in either cases the search does

stagnates after certain level of convergence. The reason behind this can be explained

as below. ‘Initially as the micro-clusters are formed by random exploration some of

the clusters are close to the target. However, along with learning the micro—clusters

start moving with amnesic average, only the ones that are close to the target are

chosen according to the HCGS method and the same clusters keep getting updated.

As a result the other clusters remain unchanged and the clusters which are already

closer to target keep moving.

Research has been carried out in order to organize these clusters after certain
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stage and various approaches tried are discussed in chapter 5. However the results

are not satisfactory in this direction as of now. It is kept as a future work to find the

optimal method for the reorganization of the action micro-clusters.
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Figure 6.3: The Convergence plots generated during the learning of different vowels

during 600 iterations using ST. The plots in the order of left to right and top to

bottom are for vowels ‘/a/’, ‘/e/’, ‘/i/’, ‘/ae/’ and ‘/u/’. The context used in this

testing was the direct internal sensory information in the form of HL parameter.
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right figure shows the trajectory of the search is plotted in reduced dimensional space.

The dimension reduction is done using PCA.
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Figure 6.7: The figure on left shows the convergence with number of micro-clusters

as 100 and figure on right shows the convergence with number of micro-clusters as

30.
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Chapter 7

Contributions and Conclusions

7. 1 Contributions

During the development of the thesis and working towards the objective of developing

the system in AMD architecture, some new areas in the field of reinforcement were

explored. The previously existing methods were found insufficient or in some cases

incompatible with the current architecture. The pursuit of the problems resulted in

some new contributions in the related areas. The main contributions are listed below.

(1) The first work on learning action in high dimensional action space (5 to 10

dimensions) using the new AMD mode.

(2) A new technique of DUDC is developed for reinforcement learning in continu-

ous and high dimensional action space along with the development of the alternative

for Boltzmann exploration as EMMP.

(3) The method of Conjugate Gradient is modified for use in high dimensions.

The secant method, which is used for line minimization suffers from the drawback of
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not being able to identify the neighboring optima as maxima or minima. The method

is modified to tackle this issue successfully.

(4) The first work towards learning of speech production interactively using the

reinforcement learning framework without supervised learning mode.

7.2 Conclusions

The methods developed in this thesis appear promising towards tackling the problem

of autonomously developing a robotic system capable of learning to produce high

dimensional (e.g. 10D), action interactively and autonomously. The techniques de-

signed and implemented in this work seem capable of realizing the initial development

of basic, early behaviors in a high dimensional space through the AMD mode.

In the later stages of the speech learning deve10pment the system shows goal-

directed behaviors, which facilitates faster learning. It is marked by a representation

of the goal from the early learning experience, using the goals to activate actions,

changing direction explicitly (e.g., understanding the goal by biting down on one’s

tongue and giving it a few tries).

The current work is, however, new and very important in bootstrapping higher

level goal directed learning in the later development stage.
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Chapter 8

Future Scope

8.1 Future Scope

In this thesis the most generalized case in reinforcement learning is considered with

the objective of making robotic system capable of learning vowels. After the lit-

erature survey conducted throughout the research it is found that even the proven

sophisticated methods seem insufficient to handle the situation. Practical problems

in learning are also identified and it gives a direction towards the future research

that needs to be carried out. Two new methods, DUDC and HCGS are developed

and tested. The former method worked well in the given circumstances, however the

latter method also seems promising with some more research in the ways to organize

the action micro-clusters.

The current thesis limits its scope at the production of simple vowels where the

position of human mouth and vocal tract system is unchanged during the entire

utterance. This also means that the HL parameters that are used for modelling the
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vocal tract also do not change. There are numerous possibilities for enhancing the

project. The ultimate goal is generation of a machine, which is capable of speaking like

an adult human. Although the approaches discussed here are intended towards speech

production, they are also useful in the general motor mapping in the developmental

SAIL robot or in any situation where one has to deal with high dimensions and

continuous real values search spaces.

This work marks the first step towards modelling high dimensional sensory inputs

and effector outputs with reinforcement learning. All the new deve10pments in the

field of Artificial Intelligence cannot escape from these problems. Hence this work

will provide some useful feedback in this direction.

The learning algorithm is motivated from the learning behavior observed in the

human infants, however the current work does not claim to be the exact replica of a

human baby. However, this work does provide an engineering solution to the type of

problems in this area.
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