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ABSTRACT

APPLICATION SPECIFIC PROGRAMMABLE PROCESSOR FOR SENSOR BASED

NETWORKS

By

Kartik Vaidyanathan

The growing complexity of smart sensor systems has increased demands on its

control electronics to improve the overall efficiency of the system. General-purpose

controllers, though robust and cost-effective, are not optimized to meet the range of

requirements for smart sensor systems. A thorough understanding of the architectural

challenges of sensor-based systems such as wireless environmental monitoring sensors

and biomedical sensors will greatly benefit the design of their control electronics. An

application specific programmable processor for sensor-based systems has been designed.

The prominent features of the processor are a 16-bit RISC core, supported by a flexible

instruction set, 512-byte on-chip sensor data memory and a power management unit that

implements a low power sleep mode. A special port has been designed, to interface with

the network modified version of the IEEE 1451.2 standard serial bus for smart transducer

interface of sensors and actuators. A top-down design flow methodology has been

adopted using synthesis and automatic layout tools that explore designs for low power

optimizations. Results that verify the operation of the processor in a simulated sensor

environment are presented.
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1. INTRODUCTION

In the rapidly growing field of microelectronics, a promising field has carved a

niche for itself under the name of microsensors. Simply put, microsensors deals with the

design and fabrication of sensors in the domain of silicon-based microelectronics.

Microsensors are devices that convert analog parameters from the world around us into

electrical signals that can be read, calibrated and stored for a wide variety of applications.

Semiconductor sensors (another term used to describe microsensors) are sensors

fabricated using integrated circuit (IC) fabrication techniques and inherit from ICs

features such as small size, low power consumption and low cost through batch

fabrication. These sensors are further classified based on the type of data measured, some

of the categories being acoustic, magnetic, electrical and chemical sensors. Microsensors

are being used in a wide array of applications ranging from sensors in automobiles that

trigger the release of airbags to biomedical applications that monitor vital signs inside the

human body. Any application that has to be programmed to react to some action without

human intervention would have to use a sensor of sorts. The rapid growth of the

semiconductor industry in the last twenty years that symbolized the Integrated Circuit

revolution has laid the foundation for future growth in the field of microsensors [14]. The

scope of research in this field arises from the fact that all microsensors are application

specific and the list of applications is growing steadily.



1.1 Smart Sensors

Recent research in the area of sensors has led to what are known as “smart

sensors”, which are more than just dumb nodes that perform analog to digital conversion.

These nodes are packed with more power and intelligence that not only collect sensor

data but also make logical decisions based on the environment. These sensors are capable

of processing signals to produce outputs that can be read directly by microcontrollers and

computers. These smart sensors are capable of being networked, perform sensor readout

control and perform calibration and compensation of sensor readings. They distribute the

load on the central processor that would normally process the raw data coming in from an

analog sensor by sharing some of the burden and performing some of this processing at

the sensor node. As a result, the size, power consumption and cost of the sensor node

increases.

Typically these features of the smart sensor are implemented on an ASIC and the

sensor itself is placed off chip to account for environmental factors [1]. The growth of

smart sensor systems has been strongly aided by developments in the semiconductor

industry; the increasing growth of logic and memory technologies in microelectronics has

resulted in, highly reliable and performance-driven systems [2]. The driving factors of the

semiconductor industry - size, power and speed, have been coupled with traditional

sensors to bring about what is known as the smart sensor revolution [15]. Based on the

IEEE 1451.2 standard [4]; this microelectronic interface circuitry is referred to as Smart

Transducer Interface Modules (STIMS). Another feature of the smart sensor is the

capability to process sensor data and to share the data across a network with other sensor

nodes. This networking capability of the sensor further increases the complexity of the



sensor node. These networked sensors are implemented on a sensor bus, based on the

IEEE 1451.2 standard for sensor bus communication. A microcontroller or processor is

needed to host these smart sensor nodes and to arbitrate the mutual functioning of the

sensor interface modules. These microcontrollers, also known as Network Capable

Application Processors (NCAP), interface with the STIMS using a standard that has been

defined in the industry. The basic architecture of the smart sensor node and the network

capable application processor is shown in Figure 1.1.
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Figure 1.1: Architecture of the Smart Sensor Node with Interface Circuitry

The sensor is fabricated using Micro-Electro-Mechanical Systems (MEMS)

technologies that are based on the integration of sensors, actuators, mechanical elements

and electrical circuitry on the same silicon substrate. The fabrication process in MEMS-

based systems could implement any integrated circuit process (CMOS, BiCMOS or

Bipolar) wherein components, are fabricated by selectively etching parts of the silicon



wafer and adding new structures to form highly complex electromechanical systems.

MEMS are fabricated using IC fabrication techniques that make them highly reliable, low

cost and extremely high density or small size. A smart sensor STIM has been designed

fabricated and tested by the AMSAC research group at Michigan State University under

the name of Universal Micro Sensor Interface (UMSI) chip. This chip interfaces with a

wide variety of sensors with capacitive, voltage, digital and resistive outputs [3]. In

addition, UMSI provides a digital I/O port for communication with the microcontroller,

an SP1 interface that connects the chip to the Transducer Electronic Data Sheet (TEDS),

SRAM that interfaces with the analog circuitry and the multi range/resolution

temperature sensor that provides temperature compensation [3]. The sensor bus is

connected to the controller using the IEEE 1451.2 [4] standard that is used by all vendors

making possible the networking of the STIMS independent of the vendor. The IEEE

1451.2 also defines the Transducer Electronic Data Sheet that is stored on the sensor

module to define sensor specific information. In the defined architecture, the

microcontroller (or NCAP) will serve as a processing host to an array of smart sensors

receiving raw data from each of these nodes.

The microcontroller used to implement the sensor bus interface performs a wide

variety of operations. The need for more application specific processing is increasing

steadily as applications demand higher performance and lower power consumption. The

microcontroller performs operations such as sensor read, to read information from the

TEDS, and sensor write, where certain error correcting codes may be written to the

TEDS. A bus communication protocol is implemented that has Ack / Nacks, clock and

data signals for data communication. The microcontroller receives the raw data from the



sensor and may process this data. Currently, research is underway to develop a dedicated

calibration engine that processes the raw data to calibrate it to a desired range

compensating cross-parameter sensitivities. While testing the UMSI chip, :1 general-

purpose microcontroller was used that had a core-processing unit, I/O ports to implement

the sensor bus and a power management unit. As smart sensors continue to find newer

applications, the demands on the controller call for a shift from the use of general-

purpose processors to application Specific programmable processors (ASPP). These

application specific processors, in addition to having core-processing capabilities,

interface with specific integrated circuit blocks implemented to meet demands of smart

sensors. In this thesis a sensor network processor is presented that meets the processing

requirements of the host controller and interfaces with other blocks that constitute the

architecture of smart sensor based systems.

Sensor based systems are used in many different walks of life - healthcare

(diagnostic and prosthetics), weather and environmental monitoring systems,

reconnaissance for defense and military purposes and automation of industrial processes

[5]. Many of these applications have demands on different controller parameters ranging

from low power, high speed, high processing power and size of the chips designed. This

sensor network microcontroller has been designed to meet low power and small size

constraints of microsensors used in portable wireless biomedical applications. Several

integrated circuit design techniques were studied and implemented in the design to meet

the desired requirements of the controller.



1.2 Background Work and Motivation

Research in the area of microsensors and sensor-based systems is being widely

pursued. The microprocessor industry has been following Moore’s Law, from the first

Intel 4004 to the present Pentium processors, which drive the semiconductor industry to

call for a continuous influx of cutting edge technology. Microcontrollers, an application

Specific, control-oriented version of the microprocessor, are probably the most widely

used integrated circuits in the semiconductor industry. Almost all ASICs designed call for

an integrated processing core or might require a separate microcontroller to supervise,

control and clock the operation of the chip. Smart sensor based systems have been

designed using many of the general-purpose microcontrollers available in the market

from such vendors as Texas Instruments, Motorola and Hitachi, to name a few. Most of

these controllers meet the generic requirements of sensor-based systems and even provide

very reliable performance and low power operation.

The M88 low power microcontroller was designed at the University of Michigan

and is used as a generic interface for multiple sensors [6]. The M88 is a mixed signal

microcontroller that has voltage, capacitive and current interfaces, signal amplifier and an

analog to digital converter. The processor core consists of an 8-bit controller, 40-bit

accumulator and 16-bit hardware multiplier. The MS8 has a 512b boot ROM, 4Kb

program memory and a 512 byte RAM for data storage. To save power, the M88 has a

programmable clock manager capable of clocking different blocks at different

frequencies and a watchdog timer that powers up the processor from sleep mode. Other

features of the core include a universal synchronous/asynchronous receiver transmitter



(USART), parallel I/O ports, multifunction timer and capability to interface with off chip

memory.

In the AMSAC research lab at Michigan State University, the Texas Instruments

low power generic controller MSP430 was used to test the UMSI chip. The MSP430 is a

l6-bit RISC controller with 27 core instructions, a 3.3 MHz clock and an extremely low

power consumption of 4.2nW per instruction. It wakes up in normal mode from the

power saving sleep mode within 6Its [7]. This core is based on the von Neumann

architecture where the address and memory bus are shared. It has clock distribution

circuitry to generate a low frequency auxiliary clock besides the normal master clock.

The peripheral circuitry includes a hardware multiplier, USART, 16/8 bit timers, high

performance ADC and supply voltage supervisors (SVS). CALMRisc is a low power 8-

bit microcontroller with a coprocessor interface designed by Samsung semiconductor and

KAIST [10]. This controller uses many novel techniques for low power VLSI design and

later versions of this RISC core are being used in cell phones where power consumption

is a key parameter.

The goal of this research project was to design an application specific

programmable processor that meets the requirements of sensor based systems in terms of

power, speed and area. Emphasis was placed on implementing various architectural and

circuit level design techniques for a low power processor. The processor interfaces with

other design blocks such as the calibration engine, which will be used to process the data

received from the sensor. The core has a defined I/O port that interfaces with the sensor

bus (based on the IEEE 1451.2 standard) [4] between the UMSI chip and the controller.

The implementation of the chip was done based on a top down design flow. The initial



specification was done in Verilog, followed by synthesis using Ambit Buildgates and

then place and route using Silicon Ensemble. The tools were setup to implement this

project and a flow developed that catered to implementing the processor with maximum

efficiency. The process of this design flow and the effect of the tools on the design of the

processor will be discussed.

1.3 Thesis Overview

Chapter 2 of the thesis explains the architecture of the processor. The basic block

diagram, instruction set and specifications of the processor are described. Chapter 3

introduces the design flow for implementing the processor. The verification process of

the processor is discussed followed by results describing the operation of the processor.

Chapter 4 describes the synthesis and layout process in the development of the processor.

The various simulation results and chip layouts are also presented. Chapter 5 summarizes

the research presented in the thesis and describes possible future work to further improve

the performance of the processor.



2. System Architecture

The microprocessor industry caters to a wide array Of applications ranging from

high-end general purpose processors that are used in modern day PCs to application

specific processors that are used in automobiles, robots, consumer electronics and

satellites. The factors taken into consideration before the design of a processor are the

speed, area or size of the processor and power consumed by the processor. All design

parameters of a processor can be derived from these factors. Supercomputers, desktop

machines and space stations need high-speed processors that can process large volumes

of data in minimum time. Laptops, handheld computers or cell phones are restricted by

their portability and hence need to make efficient use of power. Microsensors or nano-

robots are so small that they have to obtain processing capability in minimum area.

However, all these factors are interdependent and are important in microsensor systems.

An extremely high-speed processor will have an affect on the size and power consumed

by the processor and vice versa. Hence, different architectural techniques and circuit

design methodologies are used based on the requirement of the processor.

In this chapter, section 2.1 describes the factors taken into consideration while

making the initial specification of the processor. Sections 2.2 — 2.8 describe the processor

core, instruction set, memory, sleep mode, I/O ports and other features of the processor.

2.1 System Specification and Design

The processor was designed to work in conjunction with an array of sensors

having certain characteristics that define the features of the processor. These sensors are

used to measure analog data from the environment that are then quantified into

measurements of pressure, temperature, humidity, etc. The role of the processor is to



monitor these sensor nodes and to arbitrate the processing of the data received from these

nodes. Taking into account this application of the processor, several parameters or

features were considered in the initial specification of the processor.

The first decision made was to use a conventional Reduced Instruction Set

Computer (RISC) load store processor over a Complex Instruction Set Computer (CISC)

processor. RISC cores are based on transferring the burden to software and keeping the

complexity of hardware to a minimum. The time taken to execute a RISC instruction will

be a fixed one-clock cycle irrespective of the type of instruction versus CISC systems that

encode multiple instructions to form a complex instruction that performs a specific task.

The Application Specific Programmable Processor (ASPP) designed is not going to run

in a computationally intensive environment, making the choice of a RISC architecture

ideal [17]. To improve the performance of the processor the core was divided into a

three-stage pipeline.

The key factor taken into consideration was the low power operating requirements

of the controller. A typical application of this processor will be in wireless systems - for

example, an environmental monitoring system that runs off a battery and calls for

minimum power wastage. Several techniques can be used to exploit low power operation

such as architectural methods, circuit level techniques and special EDA tools that help

save power through the design process. Besides this, sensor-based systems perform

sensing sporadically, making a power-saving standby mode very practical. The processor

supports gated clocks and a sleep mode where the processor moves into a standby mode,

when no processing is required. The processor wakes up on an interrupt from the sensor

front end and starts processing the data received. EDA tools used in the design process

10



provide the capability of designing the processor for low power operation and include

methods to estimate the power early in the design to facilitate design changes based on

requirements. The implementation and usage of these tools will be discussed in chapter 4

of the thesis.

The Harvard architecture, with independent program and data memory, was

chosen over the von Neumann architecture. This allowed simultaneous memory access

from both the instruction and data memory thereby increasing the memory bandwidth. It

also simplified memory access by keeping the instruction and data memory separate. This

feature helped improved the speed of the processor and removed the need for dual ported

memory.

2.2 Architecture

The architecture of the processor is based on a RISC structure that implements an

instruction set tailored to sensor applications. The instructions are either register-register

or register-memory instructions, thereby reducing the bandwidth of instructions between

the CPU core and the memory. The following sections of the processor briefly describe

each architectural component (shown in Figure 2.1).

2.2.1 Block Diagram of the Processor

2.2.1.1 Central Processing Unit (CPU)

The CPU has a l6-bit arithmetic logic unit and a register file that consists of 8

registers for data. The CPU has additional registers such as the program status register

and condition code register that are used to set flags. To control the flow of execution, the

CPU uses a 10-bit program counter and 10-bit memory address register. The CPU is

11



pipelined into three stages to improve the throughput of the processor and control the

sequence of operations in the processor.
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Figure 2.1: Block Diagram of the Sensor Network Processor

2.2.1.2 Clock Divider

The clock generator is assumed to be an off chip block that provides a constant

frequency to the clock divider circuitry. The clock divider uses the off-chip clock signal

to generate clocks of different frequencies that are used to control different stages of the

pipeline. Two clock frequencies are used; one to clock each stage of the pipeline and the

other to clock blocks within a particular stage of the pipeline.

2.2.1.3 Memory

The processor consists of three separate memory blocks. The conventional

instruction and data memories are independent; the instruction memory is synthesized to

a 2Kbyte (1024 x 16bit) static RAM and the data memory a 512 byte (256 x 16bit) RAM

block. In addition a separate 256 byte (256 x 8bit) sensor data memory has been designed

to store sensor data information and interface with a calibration unit.

12



2.2.1.4 Input/Output Ports

The I/O ports are divided into general purpose 1/0 that are used to interface with

blocks such as the Direct Memory Access (DMA) controller and a specific sensor bus

port designed to implement the Intra Module Multielement (IMZ) bus. The IM2 bus is

based on a modified version of the IEEE 1451.2 standard and has been designed

specifically for the microsensor to communicate with a host controller during operation

[4]. The sensor bus port implements certain complex instructions that are used by the

processor to cormnunicate with the sensor nodes that it controls. These complex

instructions contrary to the other RISC instructions of the processor take more than one

clock cycle to complete.

2.2.1.5 Power Management and Sleep Unit

The sleep unit in the processor is used to shut down the processor to save power.

The basic application of the processor is to receive requests from a sensor node and then

to process data received from the sensor. In the sleep mode the processor clock is turned

off and the processor monitors the sensor ports for an interrupt to turn the processor back

on. After receiving an interrupt the processor shifts back into normal mode and starts

executing instructions.

2.2.2 States of the Processor

The processor has three states of operation as shown in Figure 2.2

13



1.

2.2.3

DMA

MODE 
Figure 2.2: States of the Processor

Normal Mode

In the normal mode of operation the processor executes the instruction

sequence stored in the program memory.

Sleep Mode

In the sleep mode the processor clock is shut off, basically reducing the

power consumed by the processor to static power dissipation of the processor.

The processor monitors the sensor bus, waiting for an interrupt from the sensor to

resume operation.

DMA mode

In this mode the processor is set up for Direct Memory Access (DMA)

operations. The data and address are loaded onto the I/O ports of the processor;

after receiving a dma__ack, the DMA process is initiated.

Pipeline Stages of the Processor

As shown in Figure 2.3 the processor data path is divided into a three-

stage pipeline to control the flow of data during execution.

14
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Figure 2.3: Pipeline Stages of the Processor

The three stages of the processor are

1. Instruction Fetch

After power on reset (POR) the program counter is reset to start from

instruction memory location 0x000h. There are two clocks that control the flow of

data. The internal clockl controls the flow of data within a stage, and clock2

controls the flow of data from one pipe stage to the next. On the positive edge of

clockl, data is loaded into the program counter and then on the next clock, data

moves to the memory address register. The program counter is incremented to

hold the address of the next instruction of execution. The instruction memory is

decoded (using a 10:1024 decoder) and the instruction is loaded onto a buffer

register. On the negative edge of clock2, data is loaded into a 16-bit pipeline

register.

2. Instruction Decode

The instruction is loaded from the pipeline register and is broken down

15



into individual components - namely the opcode, register address, data memory

address or immediate data. The second stage of the pipeline consists of the

register file that has 8, l6-bit registers. The register addresses are used to decode

the register file and load the data onto pipeline registers.

3. Execute / Write back

The final stage of the pipeline consists of an arithmetic logic unit that executes

the instruction and the necessary write back logic to store the result. All inputs to

the ALU are fed in from the previous stage irrespective of the type of instruction

and the data is then redirected from here to the final destination. Based on the type

of instruction the data may be written back to the original register, stored in data

memory or written to the sensor data memory. Two-byte instructions that require

two clock cycles are also handled by this stage of the pipeline.

All the stages Of the pipeline are of equal length i.e. they take the same clock

cycle length to complete execution. The length of this clock cycle is limited by the

slowest stage namely the Execute/Write back stage of the pipeline.

2.3 Processor Core

The core of the processor consists of a group of registers, the arithmetic logic unit

and control logic that directs the flow of data through the data path. The instruction set

architecture forms a major part of the processor core and defines the capabilities of the

processor. The next few sections describe in detail the CPU registers, different addressing

modes and instruction set architecture. A broad overview of the instruction set

architecture will be described in this chapter and a description with opcodes is provided

in Appendix A.
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2.3.1 CPU Registers

Figure 2.4 shows the different registers in the core of the processor. The CPU

registers consist of the data registers in the register file, Special registers (condition code

register and program status word) and pipeline registers. The register file provides the

working registers for the processor and all register-register, register-immediate, register-

memory instructions are executed using these registers. The condition code register is

used to set carry, zero, negative, equal, greater than and less than flags based on the

output from the processor. The program status word is used to indicate the state of the

processor. The states are based on the sensor interrupts generated on the sensor bus port

of the processor. This port holds the status of NINT, NSDET and NACK signals that will

be discussed in detail when discussing the M2 bus. In addition to these signals there is

also a flag for the DMA operation that is set by the DMA controller to request the start of

the DMA process. The program counter and memory address register are 10 bit registers

that are reset during the power on reset.

ADDRESS REGISTER FILE
 

 

 

 

 

 

  
 

 

 

 

 

        
 

 

         
 

 

9r JO 0X000h

PROGRAM COUNTER 0x001h

0X002h

iIEMORYAODRESS REGISTER °"°°3"
0X004h

#53: TGSANEATER EQUAL NEGATIVE ZERO CARRY 0X005h

4CONDITION CODE REGISTERo oxooeh

DMA_Req Senslntr NACK NSDET 0x007h

3PROGRAM STATUS WORDO ‘5 0

Figure 2.4: CPU Registers
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2.3.2 Addressing Modes

The three addressing modes supported are register mode, indirect mode and

immediate mode. Tables 2.1 — 2.3 describe each addressing mode with an example

 

  

 
 

 
 

 
 

 

          

 

instruction.

Table 2.1: Register Addressing Mode.

Assembler Code Opcode

Mov Regl Reg2 0x6350h

Length One word instruction

Description Moves the content of Reg2 to Regl. Both registers are a

part of the register file. The 3 bits [10:8] are used to

address register 1 and the 3 bits [7:5] are used to address

register 2.

Example Mov (R3) (R5)

Before After

R2 0x00ffh R2 0x00ffh

R3 0x13ach R3 0xfa34h

R4 0x02d3h R4 0x02d3h

R5 0xfa34h R5 0xfa34h

R6 0x1234h R6 0x1234h

Table 2.2: Indirect Addressing Mode.

Assembler Code Opcode

Load Regl &(dmem) OXOBth

Length One word instruction
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Table 2.2 (cont’d).
 

Description Loads the contents of Regl with the data stored in the data

memory address location. PC is incremented and continues to

execute instructions normally.

Example Load (R3) &(0x0f)

  

  

  

 
 

 
 

        

  

  

 
 

  

  

Before

Register File Data Memory

R2 0x00ffh 0x0d Oxaaf1h

R3 0x0001h 0x0e 0x12fah

R4 0x02d3h 0x0f 0x000ah

R5 0xfa34h Oxlf Ox0001h

R6 0x1234h Ox2f 0x00ddh

After

Register File Data Memory

R2 0x00ffh 0x0d Oxaaf1h

R3 0x000ah Oer 0x12fah

R4 0x02d3h 0x0f 0x000ah

R5 0xfa34h Oxlf OxOOOlh

R6 0x1234h Ox2f 0x00ddh          
 

Table 2.3: [mediate Addressing Mode

 

 

Assembler Code Opcode

OR Regl #Immediate Ox5B00h

0x00deh

Length Two Word Instruction
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Table 2.3 (cont’d).
 

  

  

  

  

  

        

  

  

  

  

  

Description The contents of Regl are ORed with the following 16-bit

immediate data. The result is stored in Regl. PC is

incremented and continues to execute instructions normally.

These types of instructions are two byte instructions and

take two clock cycles.

Example OR (R3), &(0x01)

Before Before

Register File Instruction Memory

R2 0x00ffh 0x0d Oxaaf1h

R3 0x13ach 0x0e 0x12fah

R4 0x02d3h 0x0f 0x00deh

R5 0xfa34h Oxlf 0x0001h

R6 0x1234h 0x2f 0x00ddh

After After

Register File Instruction Memory

R2 0x00ffh 0x0d Oxaaf1h

R3 0x13feh 0x0e 0x12fah

R4 0x02d3h 0x0f 0x00deh

R5 0xfa34h Oxlf 0x0001h

R6 0x1234h 0x2f 0x00ddh          
 

2.3.3 Instruction Set Architecture

The major types of instructions implemented in the processor are Arithmetic

o Load/Store

0 Logical

0 Control/Branch

0 Rotate/Shift

0 Sensor Bus

The instruction set architecture was developed based on the instruction set of the

Texas Instruments processor (MSP430) [7].
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2.3.3.1 Arithmetic Instructions.

The arithmetic instructions implemented in the processor with their Operations are

listed in Table 2.4. The arithmetic operations can support either the register-addressing

mode or the irnmediate-addressing mode. The condition code register is used to reflect

the conditions generated by the result of the arithmetic Operation. The zero, negative,

carry, equals, greater than and less than flags are set in the condition code register. The

result of the arithmetic operation is stored in the target register and hence results in the

change of data of the operands; the exception to this being the compare instruction

(CMP) where the two operands are compared and the flags are set based on the

 

 

 

 

comparison.

Table 2.4: Arithmetic Instructions

Instruction Description Operation

Add RegX, Rng Add contents of RegX and Rng; Result RegX (— RegX +

stored in RegX; Flags Set: C, Z, N Rng

Sub RegX, Rng Subtract contents of Rng from RegX; Result RegX (— RegX —

stored in RegX; Flags Set: C, Z, N Rng

Add RegX, #data Add contents of RegX to immediate value; RegX (— RegX +

Result stored in RegX; Flags Set: C, Z, N #data
 

Addc RegX, Rng Add with carry RegX and Rng; Result RegX (— RegX +

 

stored in RegX; Flags Set: C, Z, N Rng + C

Cmp RegX, Rng Compares the contents of RegX and Rng; Temp (— RegX -

No result stored; Flags Set: C, 2, N, GT, LT 11ng
 

 

    
Inc RegX Increments the contents of RegX by 1; Result RegX (— RegX + 1

stored in RegX; Flags Set: C, Z, N

Dec RegX Decrements the contents of RegX by 1; Result RegX (— RegX — 1

stored in Rng; Flags Set: C, Z, N

2.3.3.2 Load/Store Instructions

The load — store instructions implemented in the processor are listed in

Table 2.5. As described previously the architecture of the processor is based on a load-

store RISC structure with very limited direct memory operations. Data has to be loaded
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onto the register file and then stored back in the data memory using the load store

Operation. These instructions are implemented using the register-addressing, indirect-

addressing and the immediate addressing mode. The load instruction is a two-byte

instruction where the next word holds the immediate data.

Table 2.5: Load/Store Instructions.

 

 

 

 

 

 

Instruction Description Omration

LDA RegX, #data Load the Immediate data into RegX; Flags RegX (— #data

Set: None

STA RegX, &mem Stores the contents of RegX in mem location Dmem[&addr] (—

specified by Inst [7:0]. Flags Set: None RegX

Mov RegX, Rng Move contents of Rng to RegX. Flags Set: RegX (— Rng

None

Mov RegX, #data Moves the immediate data to RegX; Flags RegX <— #data

Set: None  
 

2.3.3.3 Logical Instructions

The logical instructions implemented in the processor are listed in Table

 

2.6. Logical instructions are implemented using the register-addressing and immediate-

addressing mode. All results of logical operations are stored in the source operand. The

logical instructions implemented using immediate addressing mode are all two-word

 

 

instructions.

Table 2.6: Logical Instructions.

Instruction Descripnion Operation

Inv RegX Invert contents of RegX; Result stored in RegX (— ~(RegX)

RegX
 

AND RegX, Rng AND contents of RegX and Rng; Result

stored in RegX

RegX (— RegX &

Rng
 

OR RegX, Rng OR contents of RegX and Rng; Result

stored in RegX

RegX (— RegX |

Rng
 

XOR RegX, Rng XOR contents of RegX and Rng; Result

stored in RegX

RegX (— RegX "

Rng
 

 AND RegX, #data  AND contents of RegX with immediate data;

Result stored in RegX  RegX (— RegX &

#data
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Table 2.6 (cont’d).
 

 

 

   

OR RegX, #data OR contents of RegX with immediate data; RegX <— RegX I

Result stored in RegX #data

XOR RegX, #data XOR contents of RegX with immediate data; RegX <— RegX "

Result stored in RegX #data

TWO RegX Two’s complement of RegX; Result stored in RegX (— ~(RegX)

RegX + 1
 

2.3.3.4 Control/Branch Instructions

The control / branch instructions implemented in the processor are listed in Table

2.7. The control instructions are implemented using the indirect addressing mode and are

all single byte instructions. The BRA EN and BRA GL are actually four separate

instructions. Based on the bit set in the instruction sequence, the branch instruction will

check the equal, negative, greater than and less than flags. The branch instructions are

evaluated in the Execute stage of the pipeline thereby generating a two-cycle delay in

evaluation of the branch. Hence there is a delay-slot immediately following the branch

instruction that can be utilized by the programmer to schedule instructions.

Table 2.7: Control/Branch Instructions

 

Instruction Description Operation
 

BRA #Imm Branch to the location Specified in the 8-bit PC (— &BrAddr

address encoded in the instruction; Change

PC to new value.
 

BRA EN #Imm Branch if EQ or N flag are set to address PC (— &BrAddr

encoded in the instruction; Change PC to new

value
 

 
BRA GL #Imm Branch if GT or LT flags are set to address PC (— &BrAddr

encoded in the instruction; Change PC to the

new value.   
 

2.3.3.5 Rotate/Shift Instructions

The rotate / shift instructions implemented in the processor are listed in Table 2.8.

There are four rotate instructions that are all implemented in the register-addressing

mode.

23

 

 



Table 2.8: Rotate / Shift Instructions

 

 

 

 

 

    

Instruction Description Operation

RRA RegX Rotate right the RegX through no. of bits RegX (— Rt(RegX)

specified; Store Result in RegX

RLA RegX Rotate left the RegX through no. of bits RegX (— Rt(RegX)

specified; Store Result in RegX

RRC RegX Rotate right the RegX through the Carry flag RegX (— Rt(RegX)

in the condition code register; Flags Set: C

RLC RegX Rotate left the RegX through the Carry flag in RegX (— Rt

the condition code register; Flags Set: C (RggX)

2.3.3.6 Sensor Bus Instructions

The sensor bus instructions were designed to implement the sensor bus

cormnunication protocol called the Intramodule Multielement Microsystem (1M2) bus.

These instructions are discussed in section 2.6 along with detailed description of their

functions.

2.4 Memory

The memory of the processor as in most integrated chips occupies the majority of

the area in the chip. This processor has been designed with three individual blocks of

memory each designed to serve a specific purpose. The entire processor has been

designed in RTL code, which will be discussed in the next chapter. The RTL code for the

memory was written to synthesize the memory as a volatile Static RAM circuit with the

necessary read write circuitry. The following sections describe the three memory blocks

in the processor.

2.4.1 Program Memory

Figure 2.5 shows the block diagram of the program memory. The memory

cells are word aligned and are addressed by lO-bit memory address register. The

instruction sequence is stored in the program memory and is decoded in the fu'st stage of
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the pipeline. The total number of cells addressed through this decoding process is 1024;

i.e. the memory has 1024 cells of 2-bytes each. The program memory also supports the

Direct Memory Access (DMA) from an off chip DMA controller through the I/O ports of

the processor. To start a DMA process the controller sends a DMA request to the

processor. Upon receiving the request, the processor sends a DMA acknowledge signal

and then the data transfer is initiated. The DMA controller sends a read/write signal based

on the request through the dma_rw line. Then it sends the data and address through the

DMA ports of the processor.

 

 

 

   

DATA IN [15:0]

ADDRESS [7:0]

H M _ I PROGRAM DATA OUT [15:0]

MEMORY ———-_ ______,
READ ENABLE; (16 bit * 1024)

WRITEENAELE,

Figure 25: Program Memory

2.4.2 Data Memory

Figure 2.6 shows a block level diagram of the data memory. The data memory in

the processor is used for temporary data storage during program execution. The data

memory is 512 bytes in size and is addressed by an 8-bit address register. The memory

cells are word aligned i.e. each memory cell is 1 word in length. There are a total of 256
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cells of 2-bytes each. The data memory is used in the write-back stage of the pipeline and

during the load/store instructions.

 

 

  
 

DATA IN [15:0]
_>

ADDRESS [7:0]

, - >

DATA ”STAF’UTJP‘OI
MEMORY

READ ENABLE

~ _ W» (16 bit * 256)

WRITE ENABLE

Figure 2.6: Data Memory

2.4.3 Sensor Data Memory

The sensor data memory was specifically implemented to interface with a

calibration engine that is being designed to process data received from the sensor nodes.

The processor serves as a host controller that receives the data over the sensor bus and

stores the data in the sensor data memory. This memory block is dual ported to enable the

calibration engine to read data from the memory. The size of this memory block is 256

bytes and is byte aligned, i.e., each cell in the memory unit addressed is l-byte long.

Furthermore the memory will be segmented into two areas; one to store the permanent

sensor TEDS information (loaded when a sensor node is added to the network) and the

second memory segment to store sensor data readings.
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PROCESSOR DATA IN [7:0]
 

 

 

TEDS R’T‘EE’T [7:2]

READ ENABLE DATA
 

WRITE ENABLE,

 

FP DATA IN [7:0]

_, -~ -vw*~+-~>

FP ADDRESS 8:0 FP DATA OUT [7:01

A a I [E], SENSOR H _,

DATA

FP READ ENABLE

~~ u

FP WRITE ENABLE
    

Figure 2.7: Sensor Data Memory

2.5 Sleep Mode

CMOS circuits attribute their power consumption to two types of power

dissipations - static power and dynamic power dissipation. Static power dissipation is the

power consumed by a circuit when there is no change in the inputs. It is usually the

power dissipated due to the leakage currents in the transistors. The dynamic power

consumption, on the other hand, is the power dissipated when the inputs are changing and

is characterized by three components.

denmc oc f (frequency, supply voltage, capacitance in the circuit)

The frequency corresponds to the frequency at which the inputs of the circuit are

changing. In the case of the processor, the frequency of the input is dependent on the

clock frequency. Thus by shutting off the clock the frequency component of the dynamic

power dissipation function is brought to zero, reducing the dynamic power to zero.
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The Sleep mode was designed to move the processor into a low-power sleep state

when the processor did not need to run. The typical application of the processor in

controlling the sensor nodes over the sensor bus (M2) is very sporadic. It can be

characterized as a burst of data processing requirements interspersed with dormant time

when the processor has to monitor the bus waiting for sensor interrupts. To save power

during these dormant periods, the sleep mode was implemented as an instruction so that

the programmer can preprogram the processor to go into sleep mode after sensor data

processing. Once the processor goes into sleep mode the clock is shut down, hence

turning off the processor.

Once in the sleep mode the processor monitors the sensor bus for an interrupt

signal from any of the sensor nodes. When the processor receives an interrupt it moves

back into normal mode and the clock is turned on. The processor resumes operation from

the next instruction that could branch back to the top of the program to repeat the sensor

bus implementation.

2.6 Input / Output Ports

There are two basic I/O ports in the processor - the general-purpose I/O ports and

the sensor bus [[0 port.

2.6.1 General-Purpose [[0 ports

The general-purpose I/O port consists of a 16-bit data line and a 10-bit address

line. The processor supports direct memory access (DMA) operations and has signals

such as dma_req, dma_ack and dma_rw on the I/O port. These ports are used to perform

DMA operations and can read and write data to the memory block. The DMA operation
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is also flagged in the program status register to indicate that a DMA operation is in

progress.

2.6.2 Sensor Bus Input/Output port

A special port was implemented in the processor to communicate with the STIM

(Smart Transducer Interface Circuit) also called the UMSI (Universal Microsensor

Interface Chip) implemented in [10]. The processor designed will serve as a host

controller that arbitrates the operation of a network of sensor nodes. The IM2 (Intra-

Module Multielement) bus is used to communicate between the processor and any sensor

node. The 1M2 bus is based on the IEEE 1451.2 standard [11] extended to meet certain

requirements of the sensor interface communication. The IM2 bus supports both digital

and analog data and has the controllable power supply lines that facilitate normally off

operation. The [M2 bus was developed in the AMSAC laboratory at Michigan State

University described in [12].

The descriptions of the 1le signals are listed in Table 2.9. This table lists each

signal, basic function and the driver. All the signals except the supply voltage and the

controllable power supply are implemented in the sensor bus on the processor. The

normal sequence of operations starts with an interrupt from the sensor node by pulling the

NINT line low. After receiving this interrupts the processor, when ready, pulls the NIOE

line low, which signals the beginning of the data transfer. The processor then sends the

data over the DIN line to the sensor node. The data sent over this line is a series of

instructions to control the sensor node and perform readout. The NTRIG is used to send a

trigger to the UMSI chip to trigger the shift-in process and control the counter of the
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temperature sensor on the UMSI chip. The DOUT line is used to send sensor data back to

the processor where it can be calibrated and processed.

Table 2.9: 1M2 Bus Signals [12]

 

 

 

 

 

 

 

 

 

 

  

Signal Description Driver

DIN Address and data transmitted from microcontroller to Processor

interface module

DOUT Data transmitted from interface module to microcontroller Sensor Node

DCLK Positive-going edge latches data on DIN and DOUT Processor

NIOE Signals that data transport is active and delimits data Processor

framing

NTRIG Performs triggering function Processor

NACK Trigger acknowledge and data transport acknowledge Sensor Node

NINT Used by interface module to request service from Sensor Node

microcontroller

NSDET Used by microcontroller to detect the presence of new Sensor Node

interface module

Power Normal 3-V power supply

szitch Controllable power supply. It will be at low when system

in sleep mode.    
The signals that are driven by the processor are DCLK, DIN, NIOE and NTRIG.

This communication is a serial communication protocol where 8 bit data is sent serially

over the DIN bus to the UMSI chip. A separate processor instruction has been

implemented to transfer data over the DIN bus. The processor loads the specified data

and serially transmits the data over the bus. Another instruction has been implemented to

pull the NTRIG and NIOE line high or low. Finally an instruction has been implemented

to receive and store the data sent from the sensor node to the processor and store it in the

sensor data memory. Table 2.10 lists the sensor bus signals implemented in the processor

with a brief description of each instruction.
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Table 2.10: Sensor Bus Instructions

 

 

 

 

 

  

Instruction Description

Snd #data Sends the data over the DIN line of the sensor bus; 1 byte of data is

sent over 8 clock cycles on the DCLK line;

ch #data Receives data over the DOUT line of the sensor bus; 1 byte of data is

received over 8 clock cycles on the DCLK line;

Str #addr Received data is stored in #address of the sensor data memory;

Pull #Sig Pull the NIOE/NTRIG lines high/low
 

The Snd and ch instruction take two clock cycles to complete, so there is a stall

in the pipeline that will float through after any of these instructions are executed. The Str

instruction has to be executed immediately after the ch to store the received data in the

sensor data memory. The Pull instruction can chooses between NIOE and NTRIG line by

setting the bits [10:8] of the instruction and chooses between pulling high and low by

setting the bit [0] of the instruction.

2.7 Clock Module

The clock fed to the processor is passed through a clock divider circuit to generate

two clocks of different frequencies. The clock with lower frequency is used to clock each

stage of the pipeline while the higher frequency clock is used to clock blocks within a

particular stage of the pipeline. A simple clock divider circuit based on JK flip-flops was

implemented for this purpose. Figure 2.8 shows the schematic of this clock dividing

circuitry.
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Figure 2.8: Clock Divider Circuitry
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3. Design Flow, Verification and Results

A wide variety of CAD tools were used to implement the design of the processor.

The number of transistors on modern-day processors is touching the one billion mark,

calling for complex CAD tools to support such designs. The design approach chosen also

plays a role in the performance of the chip designed. The initial part of this chapter

describes the design flow, followed by a description of the tools used for verification. The

last section describes the results of the verification process followed by an example for

sensor node control using the designed processor.

3.1 Design Flow

The design flow implemented in Integrated Circuit design and fabrication is

shown in Figure 3.1. This typical approach is most widely used both in the industry and

in academia. There are basically two approaches one could adopt based on the size of the

design, the granularity of parameters to be controlled and the time to market. They are the

top-down and bottom-up design flow.

The first step in the design flow involves developing a system idea, in this case

the design of an application specific programmable processor for sensor network data

processing. The idea has to be verified at the system level to check if it meets the

requirements, i.e., does it meet requirements of speed, data storage, programmability and

interfacing capabilities. Then the designer has to choose between the top-down (standard

cell) and bottom-up (full custom) approach.
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Fig 3.1: VLSI Design Flow
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A full custom approach is chosen for the following reasons —

o Relatively small design size.

0 Requirement for tailor made blocks that could not be synthesized by standard

cells.

0 To meet specific design requirements such as speed, power and size.

The first step involves designing the schematic for the circuit and verifying the

functionality using transistor level simulation (spice models) for a particular target library

such as AMICSN (3 metal process) or TSMC 0.25pm (5 metal process). The layout of

the schematic is generated and extracted to include the parasitic parameters. The

extracted design is passed through a layout versus schematic check where a one-to—one

correspondence is checked between the layout and the schematic to make sure that the

nets and devices match. The post layout simulation is performed to verify the

functionality of the layout and to obtain timing and power characteristics.

The standard cell approach or top-down design flow (adopted in this thesis) starts

with the RTL (Register Transfer Level) Specification of the design in a hardware

description language such as Verilog or VHDL (Very High Speed Integrated Circuits

Hardware Description Language). This description is synthesized using a synthesis tool

such as Ambit Buildgates (from Cadence Design Systems) or Synopsis Design Compiler.

A target library is provided to the synthesis tool to map the design to a particular

technology such as AMICSN, TSMC 0.25pm and UMC 0.18pm. The synthesis process

results in a gate level netlist mapped to the target design library. Post synthesis simulation

can be done to verify the functionality of the processor. The gate level netlist and the

library files are the inputs to an automatic place and route layout tool that generates the
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layout of the design. Silicon Ensemble from Cadence Design Systems was used for this

process. In designing the processor Ambit Buildgates and a library developed by the

VTVT group at Virginia Polytechnic Institute and State University were used [8].

The output of the layout tool can be merged with any blocks designed by the full

custom method using a conventional layout editor. The target library has to be attached to

this tool as well and will specify information such as the layer map table (defines each

layer in the layout) and the spice models for the transistors. The design imported into the

conventional full custom layout tool is then checked for design rule check (DRC) errors

and layout versus schematic (LVS) errors. The final Simulation is then performed to

validate the functionality of the design known as the top-level verification. The design is

then exported to a GDSH format that is a universal format accepted by all foundries and

then sent for fabrication. The fabricated chip is then tested using either an automatic

tester or manual-test equipment

3.2 Design Verification

Verification corresponds to the first stage of the top-down design flow. The initial

specifications are used to write HDL code to implement a design. This process includes

the functional simulation, which verifies the functionality of the RTL specification. This

verification is not an exhaustive (fault-tolerant) testing process of the design but tests its

functionality for a sequence of instructions specified in a testbench. The next few sections

briefly describe the tools used for the verification process of the designed processor.

3.2.1 NC Verilog

NC Verilog developed by Cadence Design Systems is a Verilog digital logic

simulator based on the Interleaved Native Compiled Code Architecture (INCA) designed
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by Cadence Design Systems. The NC Verilog compiler was used to parse code written in

Verilog, which is then fed to an elaborator similar to the linking process in normal

programs [9]. The elaborator generates a single executable code stream that can be fed to

a simulator. NC Verilog is compliant with the IEEE 1364 standard described in the IEEE

standard Hardware Description Language based on Verilog HDL.

3.2.2 Signalscan

Signalscan is a powerful waveform-viewing tool developed by Cadence Design

Systems to view waveforms and analyze simulation data generated by the design.

Signalscan is used in the SimVison analysis environment to either view the simulation as

it is generated or from a database. Signalscan generates SST2 database of the simulation

or can convert a VCD (Value Change Dump) file into a SST2 design [9]. A VCD file

records the changes in the signals specified in the testbench of the design that can be used

to obtain characteristics about the input data. This VCD file will be used in the synthesis

tool for power estimation. Additionally Signalscan has many features that help a user

easily analyze the generated waveform, such as markers and radix converters (permits

viewing results in hexadecimal, decimal and binary format).

3.3 Results

This section describes results to verify the operation of the processor. The digital

waveforms were obtained using Signalscan waveform viewer.

3.3.1 Instruction Sequence 1

Figure 3.2 shows the first instruction sequence verifying the functionality of

Invert (Opcode 0), Add (Opcode 3), And (Opcode 5), Xor Immediate (Opcode 11). The

Invert, Add, And operations use the register addressing mode and the XOR is
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implemented in the immediate addressing mode. Datal [15:0] and Data2 [15 :0] hold the

two operands (only Datal is used for immediate addressing mode) and Dataout [15:0]

holds the result of the operation. Writebck_sig is used to indicate a write back to the

register file, while the imm_out signal is used to indicate an immediate operation where

the successive word holds the immediate data. The ConditionReg sets any flags resulting

from the operation. In the XOR instruction (Opcode 11) the operands are 0x000Ah and

OxEEOOh resulting in 0xEEOAh as the result.

 
Figure 3.2: Simulations of Instruction Sequence 1

3.3.2 Instruction Sequence 2

Figure 3.3 shows the second instruction sequence verifying the functionality of

Two’s complement (Opcode 14), Add with carry (Opcode 15), Rotate left through

accumulator (Opcode l9) and Rotate right specified number of bits (Opcode 17). The

signals are the same as those described in the previous section. In the Add with carry
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instruction the flag is set in the ConditionReg and is used in the rotate through carry

instruction. There is a bubble in the pipeline with no output as shown between outputs

0x000Dh and 0x0001h. This occurs because of the two-byte instruction Rotate right

specified number of bits (Opcode 17) that has immediate data to wait for, leading to a

delay in the output of the pipeline.
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Figure 3.3: Simulations of Instruction Sequence 2

3.3.3 Instruction Sequence 3

This instruction sequence is a combination of the previous two sequences with a

branch instruction inserted. The new Opcode sequence of the combination is

(0,3,5,21,11,29,14,15,19,17) with 21 being the Opcode for the branch immediate

instruction and a branch to Opcode 19. So as shown in Figure 3.4, the Opcode sequence

after 21 goes to 19. Opcode 11 with its immediate data is executed between the branch
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because the branch instruction is resolved in the execute stage of the pipeline leading to a

two clock cycle delay.

 
Figure 3.4: Simulations of Instruction Sequence 3

3.3.4 Sensor Bus Instruction Sequence

The sensor bus implementation was described in section 2.6.3 along with a

description of the special instructions designed. This section shows results verifying the

functionality of those instructions and describes a sequence of instructions that could be

used in a network controlling an array of sensors. Figure 3.5 shows the implementation of

the sensor bus write (Opcode 0x1Dh), sensor bus read (Opcode OxlCh), store sensor data

(Opcode OxlBh) and pull NIOE / NTRIG signal (Opcode OxlEh). The instruction

sequence, shown in Table 3.1, starts with pulling NIOE low and then sends data on the

sensor bus. The data sent on the bus are the chip ID of the UMSI chip, instruction

opcode, address and data.
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Figure 3.5: Sensor Bus Instruction Sequence 1

Table 3.1: Description of Sensor Bus Instruction Sequence 1

 

 

  

Instruction Opcode Description

0xF000h OxlEh Pull NIOE signal on bus low

0xE853h Oxth Send Data 0x0101b (UMSI chip ID) and 0x0011b (Write

memory instruction to UMSI chip) on Din port.  

0xE8AAh Oxth Send Data 0x10101010b (Address to be written to UMSI

 

 

ch31) on Din port.

0xE80Fh Oxth Send Data 0x00001111b (Data to be written to UMSI chip) on

Din port.

0xE850 Oxth Send Data 0x0101b (UMSI chip ID) and 0x0000b (Read

memory instruction to UMSI chip) on Dinport. 

0xE8BBh Oxth Send Data 0x10111011b (Address of Memory location to be

read on UMSI chip) on Din port. 

0xE000h 0x1Ch Receive Data on DOUT port of processor
 

0xDF01h OxlBh Store Received Data from DOUT port on Sensor Memory at

address location (0x01h)     OXFFOOh Oxth Put the processor in Sleep mode (power save mode) 
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In the sequence described, the processor first identifies the chip ID of the UMSI

chip it is talking with and then instructs it to write to memory. The processor then sends

the instruction to read data from the memory of the UMSI chip. The next instruction is to

receive the read data received from DOUT port of the UMSI chip and store it in the

sensor data memory. The processor then goes to sleep, thereby moving into low power

sleep mode as shown when the gateClk signal is pulled low to turn off the clock. The

signal Din and din_data show the data sent on the din port and dout_data shows the data

received on the Dout port.
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Figure 3.6: Sensor Bus Instruction Sequence 2

Figure 3.6 describes the instruction sequence after the processor receives the

interrupt from the UMSI chip. This interrupt wakes up the processor from sleep mode as

shown when sensIntr signal is pulled high. This in turn pulls the gateClk signal high
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turning on the processor clock and executing the first instruction, which is a branch

immediate instruction. Then control shifts back to the top of the code and repeats the

entire program. A detailed description of all sensor bus instruction and the IM2 bus is

given in section 2.6.2.
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4. Synthesis, Place and Route Results

This chapter deals with the implementation of the processor after system level

specification and logic verification. The next two steps to implement the design of the

processor are synthesis (the HDL code is converted to a gate level netlist) and place and

route (the gate level netlist is used to generate the layout of the chip). The tools used to

implement these two steps were studied and a design flow developed to use them at

Michigan State University. Finally the results obtained at the end of each step are

described.

4.1 Synthesis

Synthesis is the process of converting a Register-Transfer Level (RTL)

description to a gate-level netlist. This mapping converts all the logic developed in the

hardware description language to a netlist that has a one-to-one correspondence to a set of

logic cells described in a library.

4.1.1 Need for Synthesis

The architectural description of any system specifies the set of inputs and

expected outputs from the system without delving into the details of the circuit

implementation of the system. Architectural descriptions are specified as a combination

of behavioral, structural and logical descriptions that define a system. Synthesis is used to

map these descriptions into a physical entity that will actually be used to implement the

system. A synthesis tool converts the description into a netlist of combinational gates and

registers that will implement the specified architecture. This netlist should meet the

requirements of the system functionally and performance, such as speed (timing), power



and area. Figure 4.1 shows a Simple example of synthesis of a behavioral description to a

synthesized netlist. The behavioral description performs the addition of two l6-bit

numbers; the synthesized netlist has to map this addition to an appropriate 16-bit ripple

carry adder. It could also map, for example, to a carry lookahead adder or a carry save

adder depending on the timing and area requirements specified by the designer. The

specification of the adder to be synthesized is made in the Verilog code written by the

designer. The synthesis tool has the capability of generating the adder based on this

specification. Besides the physical implementation, the synthesis tool also performs

various optimizations such as removal of redundant logic, exploiting don’t care

conditions, detecting unused states and making state assignments.

 
 

 

   

 
  

          

Behavioral description A

" "r Ripple z

module adder (A. B. Z) . B COITY . _,

output [15:0] 2; SVnIhGSIS “T" Odder

IDDUI [15'01ABI A T

_ _ _ _ _ I _ _ _ _
always@(AorB) .- ' . - . I -t

= I I i I
Z=A+B; I ' 3" I

IN FA * FA * FA P,

I OI I I I5v ', 
   
 

Figure 4.1: Synthesis of a 16-bit Adder

4.1.2. Tools and Requirements

Ambit Buildgates from Cadence Design Systems was used as the synthesis tool

for this thesis. This industry standard tool supports rapid synthesis of multimillion gates

with very high efficiency.

Features [9]
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Buildgates Extreme version of Ambit supports physically knowledgeable

synthesis of chips by integrating datapath synthesis, static timing analysis and low

power synthesis.

Buildgates performs automatic partition of the datapath and control logic in a

design when fed in as one single piece of code.

Supports Verilog, VHDL and mixed language synthesis

Performs operator merging, critical path optimization and removal of redundancy

to improve the overall efficiency of the design.

Performs RTL power optimizations using accurate timing and power information

from the library files. This helps make power estimations early in the design that

facilitates design changes to meet power and speed requirements.

Performs clock-gating and sleep mode logic optimization by automatically

inserting the necessary logic to further reduce power consumption.

Integrates with place and route tools to complete the design flow.

The necessary files required to perform synthesis using Ambit Buildgates are

Verilog Code: The RTL level description of the design to be synthesized

TLF File: Tinting Library Format file provided by the library vendor. In this

thesis the VT library based on the TSMC 0.25um process [8] was used.

TCF File: Toggle Count Format file contains information about the switching

activity of the nets throughout the system. The TCF file is generated from a Value

Change Dump (VCD) file during the logic simulation of the design.
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4.1.3 Design Flow and Results

Figure 4.2 describes the design flow to synthesize a netlist. This section will

describe each step in the design flow with the command to execute the instruction.
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Figure 4.2: Synthesis Design Flow

Read the Librm and Desigp Files

The first two steps in the synthesis design flow are to read the design and the

library files. The design files used are usually RTL hardware language descriptions used

to design a chip. The design files used were the Verilog description of the processor

described in the previous section. The design files are read using the commands:

read_verilog designfile.v

read_vhdl designfile.vhd
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The design files could also be of EDIF format - Exchange Design Interchange

Format that is mainly used to exchange gate level designs between EDA tools. The

library files used can be either the Cadence Tinting Library Format (TLF) file or a

Synopsys .lib format file. In the VT library the .lib file was provided and a syn2tlf

converter was used to convert a .lib file to a .tlf file:

syn2tlfsynopsstib -output cadencetlfltlf

The files are read in using either of the commands:

read_tlfcadencelibraryfile.tlf

read_lib synopsyslibraryfiledlf

Build a Generic Netlis_t

The design read in is mapped to a technology independent hierarchical gate level

netlist based on generic ATL (Ambit Technology Library) and XATL (extended ATL)

logic components.

do_build_generic

Set Constraints on the Desigg

In this step timing constraints can be defined on the design by setting an ideal

clock for the design. The top-level module is also defined using the

set_top_timing_module filenarne command.

timize

The optimization is the final step of the synthesis process. The do_optimize

command starts the optimization process by invoking a series of do_xform commands. In

the optimization process the tool defines the structure, removes redundancy, resizes cells,

adds buffers and fixes design rule violations. do_optimize
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Genergte Reports

In this Step the tool generates reports that provide information about the design.

The tool can generate reports about timing, area, library information, hierarchy of the

design and design rules. The synthesis reports for the area and hierarchy of the design for

the processor are listed in section 8.1 of Appendix B.

Cheg Constrafits

Based on the reports, if the synthesized design meets the required design criteria

the designer proceeds to the next stage. If not, the constraints have to be changed or the

core design files have to be changed iteratively until the design requirements are met.

4.1.4 Low Power Synthesis

Low Power Synthesis was performed to see if this feature of the tool could help in

reducing the area and power consumed by the processor. The Synthesis tool explores the

possibility of introducing clock-gating and sleep.mode logic in the design to reduce the

power consumption. Besides this, the tool also explores the option of removing redundant

blocks in the design to further reduce the area of the chip.

Design Flow and Results

Figure 4.3 shows the basic design flow using the low power synthesis option in

Ambit Buildgates. The first few steps are the same as running Buildgates in normal

mode.

Read in the Verilog Design and Libm

This is the same process as described in the previous section 4.1.3. The library

files must have the necessary power models required to estimate the power. This can be

verified using the check_library -power command.
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Figure 4.3: Low Power Synthesis Design Flow

RTL Level Synthesis and Power Exploration

The synthesis is started with the do_build_generic -sleepmode command that

synthesizes the netlist while simultaneously exploring the possibility of inserting sleep

mode logic into the design. The next command is the do_xfonn_optimize_generic -

clockgate command that explores the possibility of inserting clock-gating logic to save

power.
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Read in the Toggle Count Formgt File

This step reads in the TCF file that describes the RTL level switching activity,

which is needed to estimate the power of the design. The TCF file is generated from a

Value Change Dump (VCD) file using a program called lpsvcd2tcf converter. The VCD

file is generated during logic simulation by using certain directives in the testbench to

record the change in activity of the signals in the design. The toggle count format file is

read in using the command:

read_tcftcfilenamedcf

Committing Logic and Optimizing the design

The last step is to commit the clock gating and sleep mode logic that was

generated. This is done using the command:

do_optimize -power

Genergte Reports

The power estimated in the synthesis process can be generated using the

command. All other reports described in the previous design flow can also be generated

using the same procedure. The reports for the low power synthesis are listed in section

B2 of the appendix.

report_power

4.1.5 Power and Area Results from Synthesis

The synthesis tools are used to estimate the power and area of the design. This

early estimation helps the designer to see if the results obtained meet the design criteria.

It facilitates making changes early in the design cycle to improve the performance and
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reduce the design time. Table 4.1 lists the area and power estimates of the top module

micro of the design obtained through both low power synthesis and normal synthesis.

Table 4.1: Area and Power Results of the Processor

 

 

 

   

Synthesis Type Area Power

Normal Synthesis 534386624 smmicrons 5.3417 mW

Low Power Synthesis 5061774.73 sq.microns 3.6241 mW
 

The results obtained here are an estimate using the Toggle Count Format (TCF)

file discussed earlier. The power consumed by a circuit is a function of the frequency of

change of inputs (discussed in section 2.5) and the TCF file records the activity of the

input signal. The power estimates made above are for a random sequence of instructions

chosen to test the working of the processor.

4.2 Place and Route

Place and Route is the process of automatic layout generation from the

synthesized netlist. The place and route tool used the netlist generated from Builgates

along with library files to automatically place and route the cells thus saving time

involved in manual layout.

4.2.1 Need for Place and Route Tools

Place and Route tools form an integral part of the top down design flow

methodology. The main advantage of using place and route tools is the significant design

time saved when designing chips with a high transistor count. This layout process uses

the netlist mapped to a target technology library, which is generated by a synthesis tool,

such as Ambit Buildgates. The tool also uses another file from the target technology

library vendor that maps all the cells defined in the .TLF file to their corresponding

layouts. The place and route tool has the capability of laying out power and ground rails,
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input/output cells of the chip, as well as the core cells of the design. The tool also reports

statistics such as area of the chip, the number of wires used, number of pins and

percentage utilization of the defined chip area. These features help improve the overall

efficiency of the design and reduce the time to market.

4.2.2 Tools and Requirements

Silicon Ensemble version 5.3 from Cadence Design Systems was used as the place

and route tool to implement the complete physical layout of the processor. This tool is

currently being used in the industry and can support large designs with up to one million

transistors.

Features

0 Provides the basic place and route features — floor planning, placement, routing,

clock tree generation, extraction and timing analysis.

0 Performs restructuring of sub-optimal netlists from synthesis tools and transforms

to an optimized netlist based on actual physical information.

0 Silicon Ensemble includes advanced features to meet requirements of up to

130nm technology.

4.2.3 Design Flow and Results

This section describes the step-by-step process of the Silicon Ensemble design

flow. The results obtained during the physical layout of the processor will also be

described.

Import Data

The following data has to be imported into Silicon Ensemble:
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0 LEE Import the Library Exchange Format file that contains the necessary

technology and cell information

0 Verilog Description- Import the verilog netlist that was generated by Ambit

Buildgates after the synthesis process.

0 DEF- Read in any extra information such as comer cell information in the design

exchange format.

Iniglize the Design

Initializes the floorplan based on the design that was read in the previous Step.

Silicon Ensemble creates a core area (height and width), defines the number of rows, I/O

to core spacing and also calculates the core utilization. Figure 4.4 shows the Initialized

floorplan for the processor. The row defined is a geographical boundary (that corresponds

to the pitch of the standard cells) used to place cells from the library. The percentage

utilization of the cell defines the area of the row that is actually occupied by cells from

the library. The rows are also flipped and abutted against each other to share the power

and ground lines thereby reducing the area required. Table 4.2 shows the information

obtained after initializing the floorplan. The results define an aspect ratio of 1.0 (square

chip) with an area of 595501528 sq.microns.

Table 4.2: Parameters specified in the Initialize Floorplan step

 

 

 

 

 

 

 

  

Aspect Ratio: 1.00

Width: 2440.29 microns

Height: 2440.29 microns

Core row utilization 85.13%

Chip Area 595501528 sq. microns.

10 to Core Distance (microns) X: 50.00 Y: 50.00

Number of Standard Cell Rows 188
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7

(a) View of the entire Chip (b) Zoomed in View

Figure 4.4: Initialize the Floorplan to Define the Chip Area

Place U05 and Blocks

The U0 pads are placed before the blocks and can be placed based on constraints

specified in the I/O constraints file. Figure 4.4 shows the floorplan after the placement of

the 1/0 pads.

Plan Power Routing

In this step the power grid is placed both as a ring around the entire chip and as

stripes in the core of the design. Figure 4.5 shows the core after power routing was

completed.
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(a) View of the entire Chip (b) Zoomed in View

Figure 4.5: Power Planning to Place the Vdd and Gnd Rings

Place Cells

This step places all the core cells of the design. If the placement is unable to fit in

the given size, changes have to be made to the floorplan to complete the placement.

Figure 4.6 shows the chip after the cells have been placed.

 

(a) View of the entire Chip (b) Zoomed in to show Power

Lines and Cells

Figure 4.6: Placing the Cells in the Design
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(c) loomed in to show Internal Cell View

Figure 4.6 (cont’d): Placing the Cells in the Design

Route

After the placement process is completed we have a chip with all the cells in the

design; however, no connections have been made between the cells. First the power rings

are connected to the power lines of the cells. Then the cells are routed using the wroute

command. Figure 4.7 shows the chip after the routing process has completed.

 

(a) View of the entire Chip (b) loomed in View

Figure 4.7: Routing the Design by Physically Connecting the Placed Cells



Exmrt Desigg

The routed design is then exported to either a GDSII format or DEF (Design

Exchange Format) so that it can migrate to a custom chip design tool for final testing.

This completes the usage of the place and route tools. The design when exported

to a full custom design tool such as Virtuoso Layout editor from Cadence Design

Systems can be used to perform the analog simulations of the chip. The analog simulation

will provide the necessary timing information of the chip that can be used to estimate the

speed rating or MHz rating of the processor.
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5. Conclusion

This chapter summarizes the research and the results obtained in the thesis. Future

work in this area is proposed to further improve the overall design of the processor.

5.1 Summary

The research in this thesis studies and implements the architecture of an

application specific programmable processor for sensor network data processing. The

work describes the application of the processor with respect to sensor networks and

identifies the motivation behind this research. A l6-bit RISC processor with a flexible

instruction set architecture was presented. The features and processing capabilities of the

processor were described. A special sleep mode was implemented to reduce the overall

power consumption of the processor. Further, the Intramodule Multielement Microsystem

bus used in sensor networks was interefaced to a special port on the processor.

Instructions to send and receive data Over the bus were implemented.

The implementation of the processor was based on a top-down design flow that

reduced the design time and complexity of the project. The tools used in this research

were from Cadence Design Systems. The register transfer level description of the

processor was done using the NC Verilog compiler and simulation was done using the

NC Sim package. Results were provided verifying the instruction set of the processor, the

sleep mode and the special port design to communicate with the sensor nodes. The design

was then synthesized using Ambit Buildgates to generate a netlist. Finally Silicon

Ensemble was used to generate the layout of the processor. Detailed design flows were

developed to setup and run these tools in Michigan State University labs.
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5.2 Future Work

The processor designed meets the basic requirements of a programmable

processor for sensor-based networks. Future improvements in the following areas will

improve the functionality and performance of the processor.

The data received from the sensor nodes, i.e., the raw sensor readings, has to be

processed through a certain calibration and compensation scheme. The need for this

calibration engine arises from the non-linearity’s and cross sensitivities that are

introduced into the transfer curve of signals that are transformed from one domain to

another. This block is currently under development at the AMSAC Research Laboratory

at Michigan State University and will, in the future, be integrated onto the same chip as

the processor. Design changes Should be made to the processor to Operate and control this

block that processes the data received by from the sensor nodes.

The 3-Stage pipeline designed in the processor does not account for data and

control hazards that could affect the Operation of the processor. At present the processor

would generate an error in results if affected by data hazards. The processor being a

single-issue processor does not have any structural hazards. In the future data hazards

such as read after write (RAW) and write after read (WAR) should be accounted for. A

register-renaming scheme could be adopted with a pool of registers to keep track of those

used thereby avoiding the mentioned hazards [24].
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APPENDIX A

A.l Instruction Set Architecture

This table lists the instructions of the processor along with the opcode

Table A.1: Instruction Set with Opcodes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Opcode Instruction Description

(hex)

0x00h Inc RegX Increments the contents of RegX by 1; Result stored in

RggX; Flags Set: C, Z, N

0x01h LDA RegX, #data Load the Immediate data into RegX; Flags Set: None

0x02h STA RegX, &mem Stores the contents of RegX in mem location specified by

Inst [7:0]. Flags Set: None

0x03h Add RegX, Rng Add contents of RegX and Rng; Result stored in RegX;

Flags Set: C, Z, N

0x04h Sub RegX, Rng Subtract contents of Rng from RegX; Result stored in

RegX; Flags Set: C, Z, N

0x05h AND RegX, Rng AND contents of RegX and Rng; Result stored in RegX

0x06h XOR RegX, Rng XOR contents of RegX and Rng; Result stored in RegX_

0x07h OR RegX, #data OR contents of RegX with immediate data; Result stored

in RegX

0x08h Add RegX, #data Add contents of RegX to immediate value; Result stored

in RegX; Flags Set: C, Z, N

0x09h AND RegX, #data AND contents of RegX with immediate data; Result

stored in RegX

0x0Ah XOR RegX, #data XOR contents of RegX with immediate data; Result

stored in RegX

OxOBh OR RegX, #data OR contents of RegX with immediate data; Result stored

in RegX

0x0Ch Mov RegX, Rng Move contents of Rng to RegX. Flags Set: None

0x0Dh Mov RegX, #data Moves the immediate data to RegX; Flags Set: None

OxOEh TWO RegX Two’s complement of RegX; Result stored in RegX

OxOFh Addc RegX, Rng Add with carry RegX and Rng; Result stored in RegX;

Flags Set: C, Z, N

0x10h Cmp RegX, Rng Compares the contents of RegX and Rng; No result

stored; Flags Set: C, Z, N, GT, LT

0x1 1h RRA RegX Rotate right the RegX through no of bits specified; Store   Result in RegX
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Table A.1 (cont’d): Instruction Set with Opcodes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Opcode Instruction Description

(hex)

0x12h RLA RegX Rotate left the RegX through no of bits specified; Store

Result in RegX

0x13h RLC RegX Rotate left the RegX through the Carry flag in the

condition code register; Flags Set: C

0x14h RRC RegX Rotate right the RegX through the Carry flag in the

condition code register; Flags Set: C

0x15h BRA #Imm Branch to the location specified in the 8-bit address

encoded in the instruction; Change PC to new value.

0x16h BRA EN #Imm Branch if EQ or N flag are set to address encoded in the

instruction; Change PC to new value

0x17h BRA GL #Irnm Branch if GT or LT flags are set to address encoded in

the instruction; Change PC to the new value.

0x18h Inc RegX Increments the contents of RegX by 1; Result stored in

RegX; Flggs Set: C, Z, N

0x19h Dec RegX Decrements the contents of RegX by 1; Result stored in

Rng; Flags Set: C, Z, N

OxlAh Noop No Function Performed; Flags Set: None

OxlBh Str #addr Received data is stored in #address of the sensor data

memory;

0x1Ch ch #data Receives data over the DOUT line of the sensor bus; 1

byte of data is received over 8 clock cycles on the DCLK

line;

Oxth Snd #data Sends the data over the DIN line of the sensor bus; 1 byte

of data is sent over 8 clock cycles on the DCLK line;

OxlEh Pull #sig Pull the NIOE/NTRIG lines high/low

Oxth Sleep Mode Changes to Sleep Mode; Clock Turned off; waits for  Senslntr 
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APPENDIX B

Synuheshilhaudts

This appendix briefly describes the results obtained from the synthesis. They are

summarized reports of area and hierarchy of the cells. All units are in size are in microns

and area in square microns.

B.1 Ambit Synthesis Results

The following report shows a summary of the area information Obtained from the

Ambit Buildgates. The report shows the area of the top most module micro to be

534386624 sq. microns and lists the area of each sub module within the topmost

module. A sample report after that also list the number of instances within a particular

module, area of each instance, number of combinational and non-combinational

instances. This was done hierarchically for all the modules in the design .

 

 

  

l
+

I
+

Date | 20030426.195408

l

I

|
+

I

Tool ac_shell

Release v4.0-SOO8

Version Apr 20 2001 04:20:50

+------------------------------- +

| Module micro I

+ -------------------------------- +

 

+ -------------------------------------------------------------------------- +

I Module | Wireload | Cell Area I Net Area I Total Area

I ---------------------- +------------ +------------ +------------+------------

| micro | NONE | 5343866.24 | 0.00 | 5343866.24

| clkGen | NONE | 1707.61 | 0.00 | 1707.61

| pipeStagel | NONE | 4024317.93 | 0.00 | 4024317.93

I pipeStage2 I NONE I 87172.07 | 0.00 I 87172.07
 

Figure B.l: Area Report of the Processor in Normal Mode

 



 

       

pipeStage3 NONE 1229884.81 0.00 1229884.81

pswreg NONE 307.93 0.00 307.93

sleepmode NONE 475.89 0.00 475.89

buff NONE 0.00 0.00 0.00

jkff_0 NONE 447.90 0.00 447.90

jkff_1 NONE 447.90 0.00 447.90

jkff_2 NONE 447.90 0.00 447.90

jkff_3 NONE 363.92 0.00 363.92

dmasig NONE 643.85 0.00 643.85

imem NONE 4007045.88 0.00 4007045.88

memaddRegister NONE 3373.23 0.00 3373.23

piperegll NONE 4926.87 0.00 4926.87

programCounter NONE 7250.34 0.00 7250.34

pleontrol NONE 923.79 0.00 923.79

AWMUX_1024_16 NONE 1713992.14 0.00 1713992.14

AWACL_UNS_INC_10_C NONE 2617.40 0.00 2617.40

pipereg21_data1_0 NONE 4297.02 0.00 4297.02

pipereg21_data1_1 NONE 4297.02 0.00 4297.02

pipere921_data1_2 NONE 4297.02 0.00 4297.02

pipere922_opcode NONE 1371.69 0.00 1371.69

pipereg23_data2 NONE 2169.50 0.00 2169.50

pipereg24_addr NONE 839.81 0.00 839.81

pipere926_immin NONE 685.84 0.00 685.84

regfile NONE 69060.21 0.00 69060.21

AWMUX_8_16_0 NONE 11533.36 0.00 11533.36

AWMUX_8_16_1 NONE 11253.43 0.00 11253.43

alu NONE 190566.43 0.00 190566.43

din_comm NONE 4898.88 0.00 4898.88

dmem NONE 1007993.54 0.00 1007993.54

dout_comm NONE 11295.42 0.00 11295.42

mux3to1 NONE 4129.06 0.00 4129.06

pipereg31 NONE 2225.49 0.00 2225.49

pipereg32_0 NONE 4297.02 0.00 4297.02

piperegBG NONE 4325.01 0.00 4325.01

AWACL_UNS_ADD_16_C_0 NONE 14948.58 0.00 14948.58

AWACL_UNS_ADD_16_C_1 NONE 14290.73 0.00 14290.73

AWACL_UNS_DEC_16_C NONE 4940.87 0.00 4940.87

AWACL_UNS_GT_16_C NONE 4884.88 0.00 4884.88

AWACL_UNS_INC_16_C_0 NONE 4786.91 0.00 4786.91

AWACL_UNS_INC_16_C_1 NONE 5794.68 0.00 5794.68

AWACL_UNS_INC_16_C_2 NONE 5766.68 0.00 5766.68

AWACL_UNS_LT_16_C_0 NONE 4311.01 0.00 4311.01

AWACL_UNS_SUB_16_C NONE 16670.19 0.00 16670.19

AWMUX_256_16 NONE 417734.50 0.00 417734.50

mux NONE 335.92 0.00 335.92

+ ------------------------------------------------------------------------- -+
 

Figure 3.1 (cont’d): Area Report of the Processor in Normal Mode

The Toggle Count Format was used to estimate the power of the systems in

normal mode without any low power optimizations. Figure B.2 shows the power

estimated in the normal mode to be 5.3417 mW for a random sequence of instructions.
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Table 8.1: Power Estimated using the Synthesis tool in Normal Mode

 

 

 

 

 

 

 

 

 

 

Micro

Internal Cell Leakage Net Total

Module Power (mW) Power (mW) Power (mW) Power (mW)

3.6654 6.285e-08 l .6763 5.3417

PipeStagel 0.0318 3.000e- 12 923103 0.0410

PipeStage3 1.4527 1.279e-08 0.6400 2.0927

PipeStageZ 1.7804 6.990e- 10 0.7922 2.5726

PipeStagel 0.2965 4.934e-08 0. l 108 0.4074

SleepModulel 0.0142 3.000e-l 1 0.0798 0.0940

Clkmodule 0.0898 1.600e-1 1 0.0000 0.0898       
This report shows the hierarchy of the design from the topmost module to each

module within.

 

 

—micro(m)

-clkGen(m)

-buff(m)

-jkff_0(m)

-jkff_1(m)

-jkff_2(m)

-jkff_3(m)

-pipeStage1(m)

—dmasig(m)

—imem(m)

I-AWMUX_1024_16(m)

-memaddRegister(m)

—piperegll(m)

-programCounter(m)

I-AWACL_UNS_INC_10_C(m)

—pleontrol(m)

-pipeStage2(m)

~pipereg21_data1_0(m)

—pipere921_data1_1(m)

-pipereg21_data1_2(m)

-pipere922_opcode(m)

-pipere923_data2(m)

-pipereg24_addr(m)

-pipereg26_immin(m)

-regfile(m)

I-AWMUX_8_16_0(m)

I-AWMUX_8_16_1(m)

—pipeStage3(m)

~a1u(m)

-AWACL_UNS_ADD_16_C_0(m)

-AWACL_UNS_ADD_16_C_1(m)

—AWACL_UNS_DEC_16_C(m)

| -AWACL_UNS_GT_16_C(m)

-AWACL_UNS_INC_16_C_0(m)

-AWACL_UNS_INC_16_C_1 (m)

-AWACL_UNS_INC_16_C_2(m)

~AWACL_UNS_LT_16_C_O(m)

-AWACL_UNS_SUB_16_C(m)

 

     
Figure B.2: Hierarchical Report of the Processor in Normal Mode
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—din_comm(m)

-dmem(m)

I -AWMUX_256_16 (m)

-dout_comm(m)

-mux3tol(m)

—pipere931(m)

I —pipereg32_0(m)

-pipereg36(m)

-pswreg(m)

-sleepmode(m)

|—mux(m)

 

  
 

Figure B.2 (cont’d): Hierarchical Report of the Processor in Normal Mode

B.2 Low Power Synthesis Results

This section reports the area and hierarchy of the design when optimized for low

power synthesis. In the low power synthesis mode sleep mode and clock gating logic was

inserted into the design. Besides that the tool also optimizes the design by removing

redundant blocks to further reduce the area of the design. The area of the processor now

after low power synthesis optimization is 5061774.73 sq. microns.

 

 

 

Report I report_area

.........+------___--____-_-__-_

Options I -summary

+--------- +---------------------- +

Date I 20030426.195450

Tool I ac_she11

Release I v4.0-5008

Version I Apr 20 2001 04:20:50

+ --------- +---------------------- +

I Module I micro I

+ -------------------------------- +

Summary Area Report

+ -------------------------------------------------------------------------- +

Module I Wireload | Cell Area Net Area | Total Area

----------------------+--—--------—+------------+——----------+---—--------

micro NONE 5061774.73 0.00 5061774.73

clkGen NONE 1707.61 0.00 1707.61

pipeStagel NONE 3821182.37 0.00 3821182.37

pipeStageZ NONE 96381.97 0.00 96381.97

pipeStage3 NONE 1141718.96 0.00 1141718.96

pswreg NONE 307.93 0.00 307.93

sleepmode NONE 475.89 0.00 475.89

buff NONE 0.00 0.00 0.00

jkff_0 NONE 447.90 0.00 447.90  

 

    
Figure 3.3: Area Report of the Processor in Low Power Mode
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jkff_1 NONE 447.90 0.00 447.90

jkff_2 NONE 447.90 0.00 447.90

jkff_3 NONE 363.92 0.00 363.92

dmasig NONE 643.85 0.00 643.85

imem NONE 3803098.51 0.00 3803098.51

memaddRegister NONE 4059.07 0.00 4059.07

piperegll NONE 4772.91 0.00 4772.91

programCounter NONE 7488.29 0.00 7488.29

ps1Control NONE 909.79 0.00 909.79

AWMUX_1024_16 NONE 1609673.99 0.00 1609673.99

AWACL_UNS_INC_10_C NONE 2197.50 0.00 2197.50

pipere921_data1_0 NONE 4297.02 0.00 4297.02

pipere921_data1_1 NONE 4297.02 0.00 4297.02

pipere921_data1_2 NONE 4297.02 0.00 4297.02

pipereg22_opcode NONE 1371.69 0.00 1371.69

pipere923_data2 NONE 2169.50 0.00 2169.50

pipere924_addr NONE 839.81 0.00 839.81

pipereg26_immin NONE 685.84 0.00 685.84

regfile NONE 78270.11 0.00 78270.11

AWMUX_8_16_0 NONE 11155.45 0.00 11155.45

AWMUX_8_16_1 NONE 11155.45 0.00 11155.45

alu NONE 156890.13 0.00 156890.13

din_comm NONE 4101.06 0.00 4101.06

dmem NONE 954497.77 0.00 954497.77

dout_comm NONE 11701.33 0.00 11701.33

mux3tol NONE 3821.13 0.00 3821.13

pipereg31 NONE 1931.56 0.00 1931.56

pipere932_0 NONE 4297.02 0.00 4297.02

pipereg36 NONE 4325.01 0.00 4325.01

AWACL_UNS_ADD_16_C_0 NONE 11575.35 0.00 11575.35

AWACL_UNSdADD_16_C_1 NONE 11575.35 0.00 11575.35

AWACL_UNS_DEC_16_C NONE 4115.06 0.00 4115.06

AWACL_UNS_GT_16_C NONE 4227.03 0.00 4227.03

AWACL_UNS_INC_16_C_0 NONE 4269.02 0.00 4269.02

AWACL_UNS_INC_16_C_1 NONE 4269.02 0.00 4269.02

AWACL_UNS_INC_16_C_2 NONE 4269.02 0.00 4269.02

AWACL_UNS_LT_16_C_0 NONE 4227.03 0.00 4227.03

AWACL_UNS_SUB_16_C NONE 11981.26 0.00 11981.26

AWMUX_256_16 NONE 401512.21 0.00 401512.21

mux NONE 335.92 0.00 335.92

+--------------------------------------------------------------------------+
 

Figure 8.3 (cont’d): Area Report of the Processor in Low Power Mode

Table B.2: Power Estimated in Low Power Synthesis Mode

 

 

 

 

 

 

 

 

 

  

Micro

Module Internal Cell Leakage Net Total

Power (mW) Power (mW) Power (mW) Power (mW)

2.5151 6.280e-08 1.1090 3.6241

PipeStagel 0.0166 3.0000- 12 4.759e-03 0.0213

PipeStage3 0.9301 1.277e-08 0.3554 1.2855

PipeStageZ 1.2352 6.780e-10 0.5759 1.8111

PipeStagel 0.2361 4.934e-08 0.0864 0.3224

SleepModulel 7.321e-03 3.000e-12 0.0424 0.0498

Clkmodule 0.0898 1.600e-l 1 0.0000 0.0898     
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Figure B.4 shows the power estimated in the low power synthesis mode where the

synthesis tool perform optimizations such as removal of redundancy and resizing of gates

to reduce the power consumed in the design. The total power of the processor in this

mode was estimated to be 3.6241 mW for the same random sequence used in the normal

mode. The hierarchical report has is the same as the report in the normal.
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Appendix C

C.l Place and Route Results

This section briefly describes the reports obtained from Silicon Ensemble - the

place and route tool. Figure C.1 describes the Silicon Ensemble Design summary report

that lists number of components, pins and nets used.

 

 

********************SILICON ENSEDIBLE DESIGN SUMD/IARY REPORT ************

Time: 11:18:31, 16 April 2003

Design name: micro

Report file name: microFroute.summary

page 1

Number of macros: 74

Number of components: 47327

Number of pins: 256654

Number of regular pins: 162112

Number of special pins: 94542

Number of unused pins: 0

Number of nets: 47325

Average number of pins per net: 5.42

Number of subnets: 0

Number of routing tracks available: 4706

Number of GCELLS per layer: 56169
 

Figure C.1: Silicon Ensemble Design Summary Report

Figure C.2 describes the wiring report of the design that lists features such as total

wire length, number of vias and type of metal used for wires.

 

 

********************SILICON ENSEMBLE WIRING REPORT********************

Time: 11:22:34, 16 April 2003

Design name: micro

Report file name: ./rpts/microl/microFroute.wires

page 1

** (only DETAILED wiring are reported for REGULAR nets)

Total vias in regular wiring: 448642

Total segments in regular wiring: 373604

Total vias in special wiring: 2132

Total segments in special wiring: 472
 

Figure C.2: Silicon Ensemble Wiring Report
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LAYER name: metall

Total wire length: 567171.06 microns

Length of regular wires: 94638.24 microns

Length of special wires: 472532.82 microns

LAYER name: meta12

Total wire length: 1191706.80 microns

Length of regular wires: 1136079.00 microns

Length of special wires: 55627.80 microns

LAYER name: metal3

Total wire length: 1775969.28 microns

Length of regular wires: 1775969.28 microns

Length of special wires: .00 microns

LAYER name: metal4

Total wire length: 1580730.12 microns

Length of regular wires: 1580730.12 microns

Length of special wires: .00 microns

LAYER name: metals

Total wire length: 321681.24 microns

Length of regular wires: 321681.24 microns

Length of special wires: .00 microns

Total wirelength in regular wiring: 4909097.88 microns

Total wirelength in special wiring: 528160.62 microns

Total wirelength in regular+special wiring: 5437258.50 microns
 

Figure C.2 (cont’d): Silicon Ensemble Wiring Report

Figure C.3 describes the routing layers used such as the metal layers, poly layers,

the number of vias etc.

 

 

********************SILICON ENSEMBLE DESIGN SUMMARY REPORT*******

Time: 11:18:32, 16 April 2003

Design name: micro

Report file name: microFroute.summary

page 10

** LAYER INFORMATION

Total layers: 27

Routing layers: 5

Layer information by layer number:

1 ==> metall prefers horizontal routing

2 ==> meta12 prefers vertical routing

3 ==> metal3 prefers horizontal routing

4 ==> metal4 prefers vertical routing

5 ==> metals prefers horizontal routing

6 ==> nwell can't route

7 ==> active can't route

8 ==> nactive can't route
 

Figure C.3: Silicon Ensemble Layer Information Report
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==> pactive can't route

1 ==> tactive can't route

11 ==> nselect can't route

12 ==> pselect can't route

13 ==> poly can't route

14 ==> glass can't route

15 ==> pad can't route

16 ==> sblock can't route

17 ==> text can't route

18 ==> res_id can't route

19 ==> cap_id can't route

20 ==> metalcap can't route

21 ==> nodrc can't route

22 ==> cc can't route

23 ==> via can't route

24 ==> via2 can't route

25 ==> via3 can't route

26 ==> via4 can't route

27 ==> VIRTUAL can't route

Layers in process order (top to bottom):

nodrc

metalcap

metalS

via4

metal4

via3

meta13

via2

meta12

via

metall

cc

cap_id

res_id

text

sblock

pad

glass

poly
 

Figure C.3 (cont’d): Silicon Ensemble Layer Information Report
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