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ABSTRACT

DECAY OF CORRELATIONS FOR PIECEWISE SMOOTH
MAPPINGS WITH UNBOUNDED DISTORTION
By

Charles Howard Morgan, Jr.

In [You98], Lai-Sang Young introduces a method for showing that a large class of
dynamical systems have exponential decay of correlations for Holder continuous real-
valued functions (observables). She assumes that cumulative distortion along orbits
is uniformly bounded. We extend this result to include dynamical systems which
have unbounded cumulative distortion along orbits.

Furthermore, Young shows that piecewise hyperbolic systems with finitely many
domains of invertibility fit into her theorem. We show that Young’s proof can be
extended to include systems with countably many domains of invertibility, provided

that the domains of invertibility decay at least exponentially quickly in measure.
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CHAPTER

ONE

Physically observable measures and correlation functions

1.1 SRB measures

In his 1976 paper [Rue76], David Ruelle extended the work of Sinai [Sin68] by intro-
ducing a new type of measure for Axiom A attractors. This measure is invariant!
with respect to the given map, and it maximizes a quantity related to Pesin’s For-
mula,? and it governs the behavior of a set of orbits of positive Lebesgue measure.
This measure p is supported on the attractor ¥, and for some positive Lebesgue mea-
1 n-—1
sure set of points in some neighborhood of ¥, we have lim — Zcp(f’x) — /cpd,u
n—oon
i=0
for all continuous real- or complex-valued functions ¢. We say that such a measure is

physically observable and call it a physical measure, and we call the functions

such as ¢ observables.

1A Borel measure p is said to be g-invariant if, for every Borel set E, u(g~'E) = u(E).
2We discuss Pesin’s Formula in the next two pages.



Throughout this thesis, we shall use M to denote a smooth compact finite-
dimensional Riemannian manifold (possibly with boundary). Suppose that f: M —
M is C?. Let A\; > Xy > --- > ), be the distinct Lyapunov exponents of (f, ), and
let E), Es, ..., E, be the corresponding eigenspaces, respectively. In the same paper,
Ruelle also showed that for Axiom A attractors u is the unique f-invariant measure
which maximizes the quantity h,(f) — [ >°7_, Aidim E; dj, where this sum is taken
over all Lyapunov exponents greater than 1 and where h,(f) is the metric entropy of
f with respect to p and that this maximum is zero. In other words, this measure u

satisfies Pesin’s Formula

(1.1) hu(f) = /Z X dim E; dj.
=1

In 1968, Sinai [Sin68] showed that measures satisfying (1.1) for Anosov systems had
the interesting property that their conditional measures on unstable manifolds are
equivalent to Riemannian measure on those manifolds. In [Rue76|, Ruelle proved
the same for Axiom A attractors. Later, Ledrappier, Strelcyn, and Young (both
independently and collectively in [Led84], [LS82], and [LY85]) showed that, assuming
(f, 1) has a positive Lyapunov exponenet p-a.e., Pesin’s Formula holds if and only if
the conditional measures of p on unstable manifolds are absolutely continuous with
respect to Lebesgue measure. This leads us then to a definition of SRB measure

which is as follows.

Definition 1.1 Let f, M, B, and p be as above. An f-invariant Borel probability
measure p is called an SRB measure for f if it is ergodic, if f has a positive
Lyapunov exponent p-a.e., and if the conditional measures of p on unstable manifolds

2



are absolutely continuous with respect to Lebesque measure.

We should perhaps mention that the uniqueness of the SRB measure for Axiom
A systems as discussed by Ruelle has nothing to do with Pesin’s Formula. Instead,
uniqueness is a consequence of the fact that Axiom A systems are mixing® with respect
to their SRB measures. It is possible for some dynamical systems to have many SRB
measures, and we discuss such a system in the following paragraph.

It is in general not an easy task to decide whether a dynamical system has an
SRB measure or whether it is unique when it does have one. In [Ryc83], Rychlik con-
structs a piecewise expanding interval map f : [0, 1] — [0, 1] with countably infinitely
many domains of invertibility which has finitely many SRB measures; however, Hu
and Young in [HY95] construct examples of dynamical systems which are hyperbolic
everywhere except at a single point and which do not have SRB measures at all.

In the examples we consider here, all SRB measures for piecewise expanding maps
are absolutely continuous;* however, Rychlik also considers a map f : [0,1] — [0, 1]
for which the Dirac measure §y supported at zero is an asymptotic measure. This

map is defined as follows:
(*) f(0)=0 and flz)y=2z-277*" ifze (277,277%"] forall j € N.

Rychlik’s example has two fundamental difficulties which our examples do not have,

and so we avoid the possibility of having only singular asymptotic measures (for one-

3A dynamical system (f,u) is said to be mizing if, for every borel sets A and B we have
limy 0o u (f7"AN B) = p(A)u(B).

40ur dynamical systems live on Riemannian manifolds, so when we say that a measure is ab-
solutely continuous, we mean of course that it is absolutely continuous with respect to Lebesgue
measure.



dimensional maps at least). The first of these problems is that f has countably many
invariant measures which are indistinguishable from d, by some regularity properties
(absolute continuity, for example); in fact, d,-« is an f-invariant measure for every
k € NU {0}; and the second of these problems is that f is not topologically mixing.
We say that the system f : M — M is topologically mixing if, for any two
nonempty open sets U and V in M, there is a positive integer N = N(U,V) such
that, for every n > N, f*(U)NV # 0. For Rychlik’s map (x), the point 1 is a global
repellor of the system, and 0 is a global attractor; thus, we can clearly find U and V

in the unit interval so that f"U and V never intersect.

1.2 Correlation functions

An important statistical property related to the SRB measure is the rate at which
two random variables become increasingly more independent. Let f : M — M be a
map which has a unique SRB measure y, and let ¢ : M — C and ¥ : M — C be
random variables (observables). We say that ¢ and ¢ are independent if

/¢¢du=/¢du/wdu-
M

M M

We define the auto-correlation function of ¢ as

2

Cw(n)=/(s0°f")¢du— /sodu

M 1

and the correlation function of ¢ and ¥ as

Costn) = [(oo fwau~ [odu [wan



Thus, the correlation function C, (n) is a measure of the independence of po f* and
¥; i.e., C,4(n) measures how much influence values of ¥ have on values of ¢ o f".
Clearly, ¢ o f* and ¢ are not independent random variables, but if C, y(n) tends to
zero as n tends to infinity, that tells us that values of ¢ o f* depend less and less on

the initial values of .

Definition 1.2 Let v be an f-invariant Borel probability measure on M, and let F
be some Banach space of observables (real-valued functions) on M. We say that (f,v)
has exponential decay of correlations for functions in F if there exists T € (0,1)

such that, for all o,y € F, there exists C(g, ) > 0 such that

l/(iﬂof")wdu—/godu/u’)du

< Clp,P)"

for allm > 0.
Similarly, we say that (f,v) has polynomial decay of correlations if there is

p > 1 such that

I/(Soofn)ll)(lu-—/cpdu/t/)du

< C(p,¢)n7?

for alln > 0.

In particular, we are interested in knowing the rate at which the correlation func-
tions C, (n) tend to zero as n — oo; i.e., when ¢ and 3 become increasingly more
independent. One goal of our work is to find some rapid rate of decay of these correla-
tion functions. One reason for wishing to know how quickly they decay to zero is that
this rate of decay is an important factor in determining whether the Central Limit

Theorem holds for some class of random variables. One rule of thumb is that, if the



sum Y.y Coy(n) is finite for all random variables in some class, then the Central
Limit Theorem holds for the subclass of those random variables which are in L2(p).
(See [Bal01].)

It is perhaps easier to think of the rate of decay of the correlation functions as
the speed at which mixing occurs. Recall that a dynamical system (f, i) is said to be
mixing if lim, .., u(f AN B) = p(A)u(B). If the space of observables in question

contains the characteristic functions of the Borel sets, then we have that

Ciara(n) = n(f AN B) — pu(A)u(B).

Therefore, it is sometimes said that a system (f, v) is mixing if C, ,(n) — 0asn — oo
for all p, v € L*(v).

While different speeds of mixing have been considered in dynamical systems, dy-
namical systems with exponential decay of correlations have received the most atten-
tion, in part because many elegant systems exhibit this speed of mixing; however, the
real reason they have gotten the most attention is that the two most well-understood
methods for determining the rate of decay of correlations (contraction in a Hilbert
metric on a lattice and spectral gap of a transfer operator) are designed precisely
to determine whether or not speed of mixing is exponential. These methods do not
detect slower rates of decay of correlations.

Systems with true polynomial decay of correlations (i.e., polynomial upper and
lower bounds on correlation functions) are relatively new. (See, for example, [Hu].)
Not much is known in general about these systems. To this author’s knowledge, all

dynamical systems with true polynomial decay of correlations have one of a few very



specific limited forms.

We consider here a class of dynamical systems which have exponential decay of
correlations for functions which are piecewise Holder continuous, and we do this by
looking at recurrence times of a subset of the phase space. Young has recently shown
in [You99] that the rate at which certain subsets of the phase space return to another
given subset determines the rate of decay of correlations; therefore, a slow rate of
return of these subsets causes a slow rate of mixing. It is hoped that the extension
we have been able to afford here to the work in [You98] will also work essentially
unchanged in [You99] so that we can add to Young’s library of dynamical systems

which have polynomial decay of correlations.

1.3 Invariant measures and the transfer operator

The primary tool for proving exponential decay of correlations is the Perron-Frobenius
operator; in fact, its spectrum is the key point of our discussion. Several of its
properties make this operator a natural object for study. Let u be a finite Borel
measure on (M, B), where B is the Borel o-algebra and M is as already described.
Let g : M — M be some smooth measurable function, and let ¢ : M — R (or C) be
some real- or complex-valued observable. We define the Perron-Frobenius operator

P: L'(p) — L'(p) by

(12) Po)= Y 2

det Dg(z)|
z:g(T)=y | € g(£)|
A few basic properties of P are as follows:

(i) [ (Po)vdu= [y, ¢ og) duforall g4 € L'(p);
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(i) [y Pedu= [\ pdu;
(iii) if v = ¢ p is an absolutely continuous g-invariant measure, then P¢g = ¢o; and
(iv) if Pgo = ¢o, then v = ¢y p is an absolutely continuous g-invariant measure.

All of these properties are immediate from the definition of P. We refer the reader to
[Bro96] for excellent, concise proofs of all four properties. We note also that (i) alone
may be taken as the definition of P, and then the remaining four properties and the

explicit formula for P follow immediately.

1.4 An introduction to the tower method

In this paper, we use a construction which has only recently become fashionable
in proving exponential decay of correlations. Instead of working directly with our
dynamical system f : M — M, where M is some finite-dimensional compact Rie-
mannian manifold and f is some piecewise smooth measurable map, we construct
a tower sitting over some prudently chosen subset A of M, and we use information
about when points from A return to A under iterates of f. We discuss here how to
do this in a more general setting.

Let (X, B, 1) be some probability space, and suppose that A C X is a measurable
set such that pu(A) > 0. We do not exclude the possibility that A = X, as one
could do when considering Anosov diffeomorphisms. Suppose also that f : X — X
preserves y; i.e., u(f 'E) = u(E) for all E € B. For each z € A, let R(z) € N be

the smallest positive integer such that ff#)(r) € A. We call R(z) the return time



of z. In [Shi96] one finds the following theorem (and proof) about returns of points

in A to A.
Theorem 1.3 Let f, (X, B, ), and A be as above. Then R(z) < oo for p-a.e. x € A.

Proof: For each n € N, let us define A, = {z € A : R(z) = n}; i.e., A, is the set
of all points which return to A at time n. Let Ag = {z € A : f*(z) ¢ A for all n € N}
denote the set of points which never return to A. It is clear that all of the A,s are
pairwise disjoint, and it is clear that
A=A
n>0
Since f is measurable, all the A, s are measurable since

A =ANfIA

n—1
An=ANfTAN[) f(M\A) for n>2, and

i=1

Ao=A\ | A

neN

Because Ay C A, no points in Ay can return to Ag; in other words, if £ € Ag, then
fi(z) & Ao for all i € N, otherwise we would have a return of x to A. This implies that
f{z} N Ao = 0 for all i € N whenever z € Aq as well. Thus, the collection of sets
{f~*Ao : i € N} is pairwise disjoint. Thus, p (U;cn f7'A0) = Y ;en 2 (f7Ao). Since
this sum must converge to something less than 1 and since f preserves the measure

i, it is immediate that p(A¢) = 0, which is what we wished to prove. B

This theorem permits us to partition A, modulo a set of y-measure zero, into the



collection of A,s. For ¢ # j it is clear that all the images of A; are disjoint from all
the images of A;, except perhaps when they return to A.

For those who are familiar with the use of towers in recent results on decay of
correlations, we should note that in the current context we are not making any as-
sumptions about how the A,s return to A; in particular, we are not assuming that
they map onto A when they return.

Imagine now that we make a tower by constructing a column above each A, by
placing above it a copy of fA, and above that a copy of f?A, and so on until we
reach f"~!A,, which is the top level of the column since f™A, goes back to A, the
bottom of the tower. Let us denote this tower by A. We coordinatize the tower by
identifying each point with its preimage in A and the image of A; in which it lies; i.e.,
if y € fFA; for 0 < k < i, then let £ = f~*(y), and identify y with the point (z, k).

We say that (z, k) is on the kth level of A. We may define the tower explicitly as
A={(z,i): € Aand 0<i< R(z)}.

This tower A and the map f : M — M induce a map f : A — A which moves
points up the tower, except for points which are already at the top, and f moves

these points to the bottom of the tower. The definition of f is as follows:

. (z,2+1) if R(z)>i+1
f(z,i) =
(fR=)(z),0) if R(z)=i+1
We refer to f as the tower map, and we refer to the map f®: A — A, defined by
fR(z) = fR9(z) as the return map or (in the language of Kakutani [Kak43]) as

the induced map.

10



The measure p on M also induces a probability measure i on A. Ergodic prop-
erties of the induced system (f7, i) and (f, u) are proved in [Kak43] and in [Kac47).
Some of these results are summarized very nicely in [Shi96, pp. 23ff].

The above results are purely measure-theoretic, but because we are dealing in this
paper with differentiable dynamical systems and because our primary goal involves
mixing, we must add some additional conditions to the definition of return time to
guarantee that when the A,;s return to A they satisfy some geometric conditions which
are essential in our determination of the speed of mixing. We will have the additional
problem that two points which return at the same time to A may not be comparable
to each other because they land on opposite sides of some discontinuity set before
they return to A, and so they will have to be placed in different A;s which return at
the same time. Hence, the tower we consider in Chapter 2 will be more complicated
than the above tower. It may have countably many columns of the same height, and
this does present some complications which are not present in the above tower and
which are not present in [You98]. We will discuss in Chapter 2 the precise definition
of return time we require for our purposes.

Since the publication of Lai-Sang Young’s paper [You98], the tower method ap-
proach to proving exponential decay of correlations has become a relatively widely-
used method. We claim that this justifies our attempt to extend her result so that it
applies to a wider class of dynamical systems. In her paper, Young showed how her
method applies to piecewise hyperbolic (with finitely many pieces) systems in two
dimensions. Later Chernov in [Che99] showed how her method can also be applied to

piecewise hyperbolic systems in higher dimensions. Alvez, Luzzatto, and Pinheiro in

11



[ALP] use the tower method to show that the rate of growth of Lyapunov exponents
determines the rate of decay of the return times. These are just a few examples of
uses of the tower method in this fashion; a multitude of authors are using the tower
method in some way to determine rate of decay of correlations for various dynamical
systems.

Some authors such as Young in [You99] and Buzzi and Maume-Deschamps in
[BMD] consider only tower systems instead of beginning with a dynamical system
and constructing its tower. This approach usually assumes a priori the existence of
a bounded SRB measure for the tower system and the result of Lemma 2.4 (iii) on
p- 29; however, we shall prove Lemma 2.4 from a few assumptions on our dynamical

system; we state these assumptions in the next chapter.

12



CHAPTER

TWO

The Main Theorem

In this chapter, we prove two primary things:

1. dynamical systems satisfying certain conditions have SRB measures, and

2. dynamical systems with SRB measures which satisfy certain other properties
have unique SRB measures and exponential decay of correlations for functions

which are piecewise Holder continuous.

We follow Young’s argument very closely; however, we make two changes which allow
us to consider piecewise hyperbolic maps with countably many domains of invertibility
instead of only finitely many and maps for which certain types of distortion estimates

grow quite quickly instead of remaining uniformly bounded.

13



2.1 Setting and assumptions

We assume that M is a smooth compact finite-dimensional Riemannian manifold,
and that f : M — M is a map. In all that follows, we let m denote Riemannian
measure on M. If v C M is a submanifold, then we use m, to denote the Riemannian

measure on 7 induced by the restriction of the Riemannian structure to +.

Definition 2.1 Let H C M. We say that H has a hyperbolic product structure
if there are a continuous family of stable disks I'* = {°} and a continuous family of

unstable disks I'* = {v"} such that the following are true:
(a) for each v* € T'* and each v* € T'*, dim~*® + dim~y* = dim M;

(b) each ° disk is transverse to each v* disk, and the angles between them are uni-

formly bounded away from zero;

(¢) each +* disk intersects each v* disk in one point; and
@HE=( U »|n{ U
el™ vy ers

In other words, H is a like a rectangle which is coordinatized by two transverse
foliations. We call I'* and T'* the defining sets of H. We shall call H' C H an s-
subset if it also has a hyperbolic product structure and if its defining sets are I'* and
some proper subset of I'*. We define u-subsets similarly.

We assume that we have some set A C M with a hyperbolic product structure,
and we do not exclude the possibility that A = M. Furthermore, we require that

my(yNA) >0 for all v € ™.

14



We assume also that A is decomposed into countably many pairwise disjoint s-

subsets Aj, As, ... such that the following are true:
(a) for each v* € T*, mqu ((A\ Uy Ai) NYY) = 0;

(b) for each i € N, there is some minimal R; € N such that f®A; is a u-subset
of A such that, for all € A;, f® (v*(z)) C 7* (f*(z)) and f® (v*(z)) D

7 (FR(2));
(c) there is some Ry > 1 such that R; > Ry for all ¢ € N; and
(d) for each 7 € N and for cach v € I'*, m, (y N A;) > 0; and
(e) for each i € N, ff |Ai is injective.

We should note that in the general situation, given a collection of A;s, there is a first
return time for each A;, and it is possible that the first return time could be 1, as it
is in the examples we consider in later chapters. To make the first return time larger
than some arbitrary Ry, we simply run the system forward Ry iterates, and then pull

back A by each f l A for Ry times so that we divide each A; more finely.

The tower map and Markov partition

We obtain our results on decay of correlations by working with a new map for which

our current system is a factor system. Let |J 5 f"A denote the union of all the

neN
images of A. We shall construct a tower A and the induced map F : A — A as we
did in Section 1.4 such that there is a projection 7 : A — | J,,.n f™A with the property
that f om = m o F. For simplicity, we shall denote by R : A — N the return time

15



function RlAi = R; and by f®: A — A the return map defined by f#(z) = ff(z) if
Ol S Ai.

Let us define the set A as follows:
A={(z,l) :z€Aandl=0,1,...,R(z) — 1}.

We shall define F': A — A by

(z,0+1) if l<R(z)~-1
(fR(z),0) if 1= R(z)-1

Then it is clear that the projection m: A — J, .y f"A should be 7(z,1) = f!(x).

neN

We denote by A, the set of all points in A whose second coordinate is [. Then
Ap = A x {0}. In fact, for eachi € N, Ay = {x € A : R(z) > I} x {l}. Then each A,
is a canonical copy of the union of A;s which return after time [, and we imagine this
copy of A; as sitting over the copy of A; in Ag. The map F simply either carries the
copy of A; on A; bijectively up to the copy of A; on A4y if R; > 1+ 1 or injectively
onto a u-subset of Ag if R; =1+ 1.

The A;s induce a countable partition M; on each A; and, hence, a countable
partition M on A for which the map F : A — A is fully Markov. Throughout this
paper, we shall use A;; to denote the copy of A; on the lth level of the tower A,

provided that R; > [; i.e.,
Al,i :AIOFI(A,' X {0}), lfR4 > [.

A useful tool for defining a metric on the tower A is a function called the sepa-

ration time function s : A x A — N, which we shall define now. Let z,y € A, and

16



let M(z) and M(y) denote the element of M containing = and y, respectively. We

may now define s as follows:
s(z,y) =sup{n € N : M(Flz) = M(F'y) for all 0 < j < n}.

In other words, the separation time of r and y is the last time that they are together
is they travel through the elements of the partition M, or it is equal to co. It is not
necessary to say what s(z,y) should be if M(z) # M(y) since all of our conditions
are concerned only with two points which start in the same element of M anyway;
however, one could for completeness simply set s(z,y) = 0 if M(z) # M(y). The
separation time function s : A x A — N induces a separation time function on A x A,
and we will deliberately be sloppy and call them both s.

Now that we have established a separation time function, we may state the re-
mainder of our major assumptions. In the following, let f* denote the restriction of
f to ~* disks, and let D f* denote its derivative, called the unstable derivative; we
call det Df* the unstable jacobian. We suppose that there exists a € (0,1) and

that, for each i € N, there exists some C(i) > 0 such that:
(A) for all z,y € A, such that y € v°(x), we have d (f"z, f*y) < C(i)a" for all n > 0
(B) for all z,y € A; such that y € v*(z) and 0 < k < n < s(z,y), we have

(a) d(f"z, fry) < C(i)a*=¥)~" and

det Df* (fix) ).
longethu Fv) < C(i)a* =¥~

(C) for all z,y € A,

17



det Df* (f’x)

(a) for y € 7°(z), we have log H det Df* (fy)

< C(i)a™ for all n > 0, and

(b) for 71,72 € I'* and 0,, 4, : 1 N A; — ¥ N A;, the stable holonomy map,

i ; . d0;'m
we require that 0, ,, is absolutely continuous and that —( . M) =

(m‘h
= det Df* (fix) .
l_-[deth“ (fi(6x))’

(D) there is a function g : N — R such that g(n) — 0 as n — oo and, for all n € N

m, (m ,UA") < o(n)

(E) the sum Y,y C(i)e“@o(7) converges.

and for all v € T,

2.2 Statements of main results

Theorem 2.2 (Existence of SRB measures) Suppose that f : M — M with A C
M satisfies the construction given in the previous parts of this chapter and that the

following additional criteria are satisfied:

(i) Y ;enCli)a™ converges;

(i) > ;en Rie€Wo(i) < 0o for some v € T

Then f has a finite SRB measure, which we call v.

Let 0 < 7 < 1, and let §),) be the space of observables defined by

N, = {cp : M — C :3€(p) > 0 such that |¢(z) — ¢(y)| < €(¢)d(z,y)" }
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Theorem 2.3 (Decay of correlations) Suppose that f : M — M with A C M
satisfies the construction given in the previous parts of this chapter and that there are

some Co > 0 and 6 < 1 such that m, {z € yNA : R(z) > 1} < Cob}, and
(i) ged{R:} =1, or
(i) (f,v) is totally ergodic (i.e., (f*,v) is ergodic for alln € N).

Then (f,v) has exponential decay of correlations for functions in $, for all0 <5 < 1.

2.3 Differences between Young’s result and ours

It is important here to list some of the ways in which our approach here is fundamen-

tally different from that of Young in [You98].

Countable Markov partition

The proof of the quasicompacity of the Perron-Frobenius operator in [You98] requires
that the Markov partition M; on A, be finite for each [ € N. To construct this
partition, one requires a separation time function sy, as we discuss below, which is
different from the one we define above. This function sg is used to define the Markov
partition and to define a new separation time function s like the one we constructed
above.

By including the rate of decay of the A;s in our estimates of the spectrum of the
Perron-Frobenius operator, we are able to allow for a countable partition M; on A

for each I € N. We are also able to take the natural partition of A into copies of
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the A;s so that the partition is given by the behavior of the map f on A. An added
advantage comes in the way we are able to define a universal separation time function,

as we discuss next.

Universal separation time

The construction of a partition similar to our partition M as given in [You98] requires
the a priori existence of some separation time function sg : A x A — N satisfying the

following three conditions:
(a) so(x,y) > 0 depends only on the vy*-disks containing z and y;

(b) for z,y € Ay, so(z,y) > Ri+ so (fz, fy);
(c) forz € A; and y € Aj with R; = Rj and ¢ # j, so(z,y) < Ri — 1.

This function is not necessarily unique for any given dynamical system, but it is in
some way intrinsically constructed for a particular dynamical system. Note that a
fourth condition in [You98] that only finitely many A;s are separated by time n for
all n € N is not satisfied by our set of assumptions, but we show in this thesis that
this requirement is no longer needed.

Instead of requiring the a priori existence of some function s : AxA — N satisfying
the four conditions given above and then defining the partition M so that s may be
extended to so to be compatible with it in terms of those four conditions, we define
our partition M by the natural structure of A, and then we use M to define a return

time function s which trivially satisfies the first three properties for any dynamical
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system satisfying Condition (B). The fourth property of sy cannot be satisfied since
we may have countably many A;s returning at any given time, but we avoid this
problem as we mentioned above.

The disadvantage of our approach is that our Conditions (A)-(C) (See p. 17.)
cannot be stated without first constructing the tower A; however, this is only an
aesthetic problem, not a fundamental one since the tower is a canonical structure

given by the hyperbolic product structure of A and the fact that f® is fully Markov.

Non-uniform contraction

Recall that C and « are fixed in [You98] and that, for each i € N, C(2) is fixed in our

result. By Condition (P3) in [You98] for the case n = 1, we have

(2.1) d(fz, fy) < Co;

however, by Condition (A) in our result we have that, for each i € N,

(2.2) d(f"z, f"y) < C(i)a™

for all m € N. In other words, in [You98] all stable disks grow to a fixed size before
contracting. In our result, for every m € N, there can be ¢ € N such that C(:)a™ > 1
so that only finitely many stable disks need to contract by the mth iterate, but

countably infinitely many may still be growing before their contraction begins.
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Unbounded distortion

By assumption (P4)(b) in [You98], the distortion along unstable leaves is uniformly

bounded; i.e., for z,y € A; with y € v*(z) and S = s(z,y). Then

det Df*(f5z)

. det D7) =

however, in our paper we allow that

(2.4) det Df*(f .’L‘) < €W

det D f*(f5y )

for all y € v*(x) N A;. The only restrictions on the speed of growth of C(z) is that

the sums Z RieC® g Ze B and ZC o(i) must converge; thus, as
ieN ieN ieN

long as p(i) decays sufficiently quickly, C(z) can grow quite quickly as well. Hence,

the distortion between two points is not necessarily uniformly bounded.

Worsening of absolute continuity of stable foliation

Let z,y € A;. Assumption (P5)(b) in [You98] requires that

d (07 'm,
(2.5) (—,n_'t,,_) < e,
dm,

but in our paper we allow the Radon-Nikodym derivatives to grow but require

d(6;'my) < €W

(2.6) S

In particular, the Radon-Nikodym derivatives may grow without bound as ¢ tends to

infinity.
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2.4 Proof of Theorem 2.2

We follow very closely the proof in [You98]; however, there are some significant differ-
ences between our proof and that one because we allow countably many A;s to return
at any given time, so we include the entire proof, but the biggest complications come
because we allow C(i) to vary with i« € N. Let 7, be some arbitrary y*-disk which

is full-width in some A;,, and let pg := m70| o NA; - We have already assumed that
10 .

1 . d(f R)illo
(fRipo(y)  dmy

to(¥0) > 0. For each j € N and for each v € T, let p] =
whenever (fFf)Juo(v) > 0; otherwise, lebt p] =0.

Suppose that v € '™ is such that (fR)i to(y) > 0, and let z,y € y N A;. Let
To, Yo € YoN A, be such that (fF)Izy = z and (f®)/yo = y. Since z and y are both in
A;, we know that s(zo,yo) > Rj. Suppose that zg,yo € Yo N Aio‘ Then, by Condition

(B)(b) for all 0 < k < R; j — 1 we have

R; j—1

W det DFY(f™zo) -\ s(z0,y0) — Rigj + 1
(2.7) m[:Ik dot DS fmyo)gc*(zo)as( Yo oJ+1

By the Change of Variables Theorem and the Chain Rule we have,

pita) _ det DI* (£"0750) "7 get Do smay)
p}W)  det Dy (f"io’yo) oo det DF(/™w0)
R, j-1
_ det Df*(z) 1"-I det D f*(f™x)
~ detDf*(y) 1L det Dfe(fmyo)

Rjo i1
. det D f*(f™zo)
< C('l) '!_:IO det Df“(f’"yo)

< C(#)Cio)a®(%0:%0) = Rigj + 1

< C(i)Clig)a*¥)
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because s(zo,¥0) > Ri,j + s(x,y). Recall that our separation time function s satisfies

the condition s(z,y) > R; for all z,y € A;. We may then define

L:= sup ec(i)aS(I'y) < supec(i)a&,

ieN ieN
z,y€YNA;

which is bounded since we assume that Y, C(¢)a’™ converges. We have then that

(2.8)

< Clip)log L for all z,y € yNA;,

and this is independent of j and 7. This implies that < pj(z) < My(3) for all

Al ( Mo(i)
z € yNA; for some M (i) > 1. In fact, My(i) = C(io) log Lsup,c,ma, P, (y). We must
show that My is also independent of i. Let z,y € yN A with z and y in different A;s,
and let ¢ : [0,1] — A be a smooth curve connecting = and y such that, for each ¢ € N,
we have ¢([0,1]) Ncl E;, where cl denotes the closure, contains at most one connected
component. For convenience, let us say that z is on the “left” of the curve ¢ and that
y is on the “right.” Let x; = Qjug (v N Ai). Then

7(z) p] x,)
(ol | i)

AL
< HeC(z)a
ieN

= eziEN C(Z)QR‘

which is also finite. Therefore, there exists My > 0 independent of j, 7, and 7 such

that

(2.9) < p] < My on yNA.

Mo, =

Let V;.’ = p;’ m.,. Then 1/;7 is a finite measure on 7. Let vy be an accumulation point of
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{r_l; Z;:(;(fﬁ){/to}neN in the weak* topology, and let v be the conditional measure

of v on the u-disk ~.

We claim that 1] < m,, for almost every v with bounds m < ;’_"”13; < M,(z) for
some M, (z) > 1. The remainder of our proof is identical to Young’s proof; however,
we include it here for completeness.

Let w C v N A; be open in v N A; with m,(dw) = 0, and let S,, denote the s-
subset of A whose section in v is w. Let U be a u-subset which is also a compact

neighborhood of 7. Then (2.9) together with (C) imply that for all j we have

1 .'mq(Sw)
M, (i) m,(A)

MimoUNS)

2.10 g
(2.10) T Rme) -

<

for some M;(i). The bounds in (2.10) also apply to vg. By taking U arbitrarily small,
the Martingale Convergence Theorem gives us that

1 m4(S.) N o ma(SL)
W@ ) =) S M0 g

for almost every 7. Since w is arbitrary, the density statement for v follows.
We have so far constructed an fR-invariant finite Borel measure v, on A with
absolutely continuous conditional measures on v*-leaves. We may clearly identify v,

with an F®-invariant measure 7, on Ao. We define a measure 7 on A by

vi= Y Flo| py

jEN
The fact that vJ < po along with our assumption that m,(yNA) Y,y RieWo(i) <

oo for some v € I'* implies that v(A) is finite. We now define the measure v to be

the push-forward measure induced on A by the canonical projection from A to A; i.e.,

V= ~7E‘AV)’ where m : A — |J,on /™A is the projection n(z,l) = f!(z). Clearly, v is
v
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f-invariant and the SRB property is clear since fJv clearly has absolutely continuous
conditional measures on {f7v*} for every 7 € N, and these are unstable manifolds.

This proves Theorem 2.2.

2.5 Proof of Theorem 2.3

A related expanding system

It is not difficult to see that the Perron-Frobenius operator (1.2) improves the Holder
continuity of observables when the map g : M — M is an expanding map and that it
worsens the Holder continuity of observables when the map g is contracting. Because
our dynamical system f : A — A has both expansion and contraction coexisting, we
must somehow “eliminate” the contracting direction. Expanding systems are mixing
with respect to a measure equivalent to Lebesgue measure, but contracting systems
clearly are not. Furthermore, expansion causes the Perron-Frobenius operator to
improve certain properties of observables (e.g., Holder continuity or essential vari-
ation), but contraction causes the operator to worsen these properties. There are
two common methods for “factoring out” the contracting direction: (1) identifying
points in the same stable leaf and considering the resulting quotient space, and (2)
taking averages of observables along stable leaves with respect to some cone (in the
lattice theory sense) of densities and considering the action of the Perron-Frobenius
operator on these averages. The latter method requires a good deal of knowledge

about the smoothness of the stable bundle (the collection of stable leaves); however,
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the former method requires only absolute continuity of the stable foliation. We use
the former method in our work, while Viana uses the latter method. (In particular,
see pp. 79-122 of [Via].)

We have a tower A and a map F' : A — A induced by the map f : A —
A. We want to define a related dynamical system which is expanding so that the
related Perron-Frobenius operator will reduce the norm of observables in the sense
that | P*¢|| < All¢ll + K|¢l) for some n € N, some A < 1, some K > 0 and for some
appropriately chosen norm || - || on some space of real-valued functions on M. If z
and y are in A, let x ~ y if and only if y € v*(x). Then ~ defines an equivalence
relation on A, so A = A/ ~ is a quotient space. Let F : A — A be the map defined
by F(Z) = F(x), where T is the equivalence class of the points in v*(z). Because F
maps 7° disks to 7° disks, it is clear that, if T = 3, F(T) = F(y); therefore, F is
well-defined. In all that follows, we shall let A, Ay, Z,,,-, and F have the obvious
meanings as given by the equivalence relation ~.

We show here that for many dynamical systems there is a measure g on A whose
conditional measures on y* disks are preserved by the stable holonomy map; i.e., if
6, is the stable holonomy map taking points from 7 to 4" by sliding them along
the stable foliation, then 6,u, = j,. This fact allows us to “collapse” A to A as
described above in a way that ensures that the essential properties of the dynamical
system F : A — A are carried to F : A — A.

We shall define a reference measure fi on A and then extend it to all of A by letting
ﬁlzt = 7.;7] Ay We shall also use the name 1z when talking about this measure on

A. This measure & will be such that JE = 1 on the points in A which are not on
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the top level of the tower, but JF = fR oF Y

at the points which are on the top
level of the tower.
Let 4 € T'* be some fixed ¥* disk. For each z € A, let T denote the single point of

A in v*(x) N 7. For each n € N, let

| det Df* (fiz)
Ldet Df(fi7)|

By our assumption (C)(a) (See p. 17.) on each A; the sequence of u,s converges
uniformly to some function u| Ay On each v € T'*, we define p, to be the measure
fy = €" - 1,np m,. By Conditions (D) and (E), the measure p. is a finite measure for
each v € I'™.

We note that fR‘l,y NA, is nonsingular with respect to the measures p.,. If we

have f (yNA;) C 7/, then we shall write J(f?)(x) for Jiny, py (fR‘IfmA,-) (z),
d(T:lm‘))

where J, m,(T) := -
1

, since it will be clear in our estimates in which A; a
particular z lies.
Lastly, we note that
B (A) = Z Rz (Do)

ieN

<Y Rie®Om, (v N AY)

ieN

< m,(ynA) 3 RieO(i),

ieN
and this sum is finite by assumption (ii) of Theorem 2.2; therefore, Iz is a finite
measure on A.
We prove next a lemma which shows that this measure 7z allows us to collapse A

along the stable foliation I'* in a way that preserves J(f%).
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Lemma 2.4 Lety and ' be two unstable disks in ', and let @ = 6., : yYNA — v'NA

be the stable holonomy map discussed earlier. Then the following are true:
() Bupty = piy;

(i) J(fR) () = J(FR)(y) for all y € v*(x); and

(iii) for each i € N, there exists C,(i) such that, for all x and y in yN A,

J(fR)(fC)_ (Dot BT RY)/2
Ty 1| < o '

The proofs of (i) and (ii) are exactly the same as in [You98]. For (iii) we follow this
proof but take C,(i) = 5C(i). The proofs of all three parts are very short, and we

refer the reader to [You98| for them.

A space of observables for the factor system

We shall define a space of real-valued functions @ : A — R. We use the bar notation
for the function names as well since we will introduce later a related class of functions
@ : M — R. It is this latter class of functions in which we are interested; however, we
will demonstrate decay of correlations for the factored expanding system with respect
to the former class of observables and then show how the correlation functions of the
original system are related to the correlation functions of the factored expanding
systern.

Throughout the rest of this paper, we shall let ||, and |[#|. denote the L' and
L norms of , respectively, with respect to the reference measure . By ¢, ; we shall

mean EI—A— , where A;; has the same meaning as earlier. We choose € > 0 such that
Li
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€0y < 1. (See Theorem 2.3, p. 19, for the definition of 6y.) For future reference, we

note here also that there is some K > 0 such that

1 e\
(2.11) ) Z./‘ (A,‘i) de < K

where K depends upon our choice of € and where the _A—Zis are the A;;s which get
mapped by F onto Ay, the base of the tower A. (In other words, the Zzis are
the A;;s at the top of the tower.) This is true because of our assumptions that
7] (E,) <n (Z“) < C()Hf, and that fyc¢ < 1. In fact, we may choose € so that K = 2,
if we wish; however, it is not necessary. For each ¢ € N, let 0 < [(3) < m, (YN A;)
for each v € T*. Also, for each i € N, we may choose d(i) € (0,1) such that
(i) < 1(i)eli).
We choose N € N large enough so that
(2.12) (1+ ") e M +3KpY (Z Cl(i)ec‘l<i>g(z‘)) <1,
ieN

where 8 = a'/2. We shall then require that, for all i € N, R; > N. As we show in the
examples we consider in subsequent chapters, we may choose A differently so that we
may make the first return time as large as we require.

Let us define ”@,i”h by
, @) = 2@ -1y
[1Z1all, = (E:;JZUIP Hv_/}W) e”d(i)

and ”Zﬁ’,i”oo by

120l . = [P0l e d(i).

Then we define

“@”h = Z ||¢l,i||h

ieN
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and

ieN
Lastly, we take
120, =sup izl and (1l = sup |7l
leN leN
and then define
121 = 171, + 17l + 12, -

For convenience in later parts, we shall let
121 = 1IZlle + 1]l
and write
171l = 121" + €.
Now we define our space F of observables by
F={p:A-R: 7] <oo}.

While the norm || - || looks quite complicated, we shall see near the end of the proof
that a very natural class of piecewise Holder continuous observables is relate to it.
Our first step now is to show that there is some absolutely continuous F-invariant

measure whose density belongs to F.

Lemma 2.5 Assume the setting of Theorem 2.3, and let 3 be as above. Then F :
A — A has an invariant absolutely continuous probability measure = pfi, where
p satisfies ¢;' < p < co on Ay, for some ¢y > 1. Furthermore, |p(T) — p(y)| <

C'(i)B3*ED for some C'(3).
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Proof: We take Young’s proof as it is, but we make the obvious changes required

n-1
. _ 1 i [— o
by our use of C(z). For eachn € N, let 7,, = - E 0 F (;L]ZO). Consider U”IZO’ and
J:

dv 1 . A —
let p,, = ?ﬁ'l Then /_)"IZO = ;ﬁ;, where P, is the density of F’: (ﬁlaj), and the
je
o’s are the components of F7*AygN Ag for i < n. Let T,5 € Ay, the ith rectangle

on Ay, and let T',% € o7 be such that F'# =7 and _P—’i?}' =7. Then

73 _JF @)
(T)  JF (%)

where i; < iy < -+ < ¢, = ¢ are the times when F’¢3 c A,. Furthermore, we have
that

Jf (Fi-k__lnil) < exp ( () ﬁs(f'kf’f'*y’)> < exp (C1 () D) .

JF (F"‘ v)

Thus, we have that 77, (7) < 7, (T) exp (C1(2)3°7¥); hence, it follows that 7, () <
P (T) exp (C1(i)B°EP). Letting n — oo, we have 5 (7) < 5 () exp (C1(i)8°P) for
all Z,7 € Ag,;.

Following the proof of Theorem 2.3, we know that the sequence {7,} has an

neN
accumulation point, which we call 7 on A with 0 < D(Z) < oo because of our

assumption that 3, Rie“®p(3) is finite. Also by the proof of Theorem 2.3, we have

some co > 0 such that ¢;! < p < ¢o on A. Thus, we have that
0 P

5(@) - 5@ < Iﬁmn‘lm' Hg

I

— 1' S CoC] (i)[))s(f‘y)

whenever T,y € A;;. B
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Decay of correlations for the factor system

The Perron-Frobenius operator P associated with the dynamical system F : A — A

with the reference measure 1z is defined as usual by

rR@= Y S0

In order to prove that the factor system (f, U) has exponential decay of correlations
for functions in F, we have to demonstrate three properties of the Perron-Frobenius
operator, to which we shall simply refer hereafter as the transfer operator. We

must show that

e it is a bounded operator with its spectrum is contained entirely within the unit

disk;

e it can be approximated by a compact operator from F to F; i.e., there is some
compact operator ) : F — F such that HPN — Q” < AN for some N € N and

some A < 1; and

e its only spectral point of modulus 1 is 1 and the corresponding eigenspace is

one-dimensional.

The first two properties are proved by showing that P satisfies what is commonly

referred to as a Lasota-Yorke inequality:
—_1’ —n! —
(2.13) Pl < AV Il + K Tl

for some N € N, some A < 1, and some constant K > 0, all of which are independent
of @. This is precisely the inequality found in [IM50] and used there to prove the first
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two properties as well. The third property is a consequence of our assumption that
(f,v) is totally ergodic or gcd{R(z) : = € A} = 1. In other words, the third propery
will be true if the system (f, ) is mixing.

Having derived (2.13), one could conceivably use the classical result of Ionescu
Tulcea and Marinescu [IM50] to prove the first two desired properties; however, this
author has found it a more difficult approach than the one in which one approximates
P by a compact operator.

Recall that the function F : A — A is one-to-one on the parts of A which move
up the tower under F, but it certainly is not one-to-one on the parts of A which get
mapped onto Ay. Also, we have assumed that there is some N € N such that R; > N
for all i € N. This means that the first N levels of the tower A are complete copies of
A; i.e., they all contain all copies of the A;s; therefore, as we try to prove (2.13), we
will have to consider how P behaves on the first N levels of A separately from how it
behaves on the levels above N. To prove (2.13), we shall require four estimates; two

estimates for each of the norms || - ||, and || - || on each of these two pieces of A.
Estimate 1 For alll > N and for every ¢ € F, “(PNa)lill =e Vo vl .-
? oo

. . =N . ——N—
Proof: Fix [ and i. Because l > N, F' is one-to-one on F' = A;;, so we have

|75,

_ |(PN¢)LiLoe"‘d(i)

‘OO

= | esssup |@(7)|e ""Med(i) | e ¢
ng—NZ['i
= [[Fnill o™,

which is what we wanted to show. B
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Estimate 2 For alll with0 <1 < N and for all p € F, we have

ecl(i)
PYg) || < — e "d() |- 1l——N— | +
[0, < S et e |
Ke1WpNe=lep(i) |1 - 1__N_
Alt h
Proof: Fix [ and i. Then we have

2.14 “ (P"%),,|_ = N 1 e~td(i),
(219 Z‘ VAL "" Al ¢

. —-N
where )", means that we sum over all the inverse branches of ' . We note now

that

1 —
dloo = m#wzhs@dﬁ +

(2.15)

esssup @ (7,) — Z(Fy)|-
yl,mef_NZu

By (2.15) we decompose (2.14) into the sum of two parts:

1 — _le 3/ -
|(P9), <ZI ERp- A:.im'g(f—m—_,j_)/ﬁ‘”z,,i“omeld(z)

+ Z' Nz X, esssup |7 (¥,) — 7 (%)l | e7d(0).

— — _=—N-—
00 \ Y, J26F Ay

For convenience, let us call the former sum (Sum1) and the latter sum (Sum2). Then

the distortion estimate

— N—
NBVF T A
(2.16) %N-l__,v_ <O )
JF F Ayl 7 (A:)
yields
£C1(0) ]
Suml) < —— B 1N | ed(i




1
<) 40 '¢ Y et ——d(i)
zbr: F A[, 1 [(l)
< ZeCl(l) [-¢ 1 NAI le_kf.’(i)
br i

To estimate (Sum?2), let us use I, to denote the level of the tower in which F'NZ,,i
in the branch in question, and let A, = Z;,,i,, where Zl",i’ is the element of the top

level of the tower through which the branch in question passes. Then the distortion

estimate
_ Z’)
;N'l “N— Secl(i)ﬁ(_—br
JF F Al B (AL)
yields
(Sum2)
1 e (U) —7 @) ! N _—le q(:
< )——_—N-l__;v_ ess sup TP e e et | BYe " d(q)
; JF F Al,i o \7, f;iZEF-NZL,- ﬁ (91.92)
- 1 .
Sec‘(’)[}N —¢ l— N— — E(A elbr‘ e—-led(i)
F oAl \ 7 (B) %: ")
<K C1 (1) N -1 N —le (- .
SKeTWpT 7 14 YAl € “0(3)

Combining (Sum1) and (Sum2), we have immediately the inequality which we sought

to prove. B
Estimate 3 Foralll > N and for allp € F, we have “(PN@““h < BNe—Ne ||¢,‘,-”h.

Proof: As in Estimate 1, this estimate is very quick to prove since F is one-to-one

on the first IV levels of the tower. From the definitions of || - ||, and P, we have
PN— =\ _ PN— =
“(PNE) ” = | esssup l( ?) (Il)_ (_ ?) (12” e 'd(3)
Li|lp 7172600 38 (Z1,T2)

36

by



_ ess sup |7 (y1): Si(?/‘z)le—(z—zv)e BNe"N‘d(z')
y—l vy2€F—NZl,I ﬁs (yl’ yQ)

= ( ess sup 2 @) —2 ()] e (- N)c) BNe Ned()

Y1.92€01-N ﬂs (yl’y2)

< |Br-wall, BY e

bl

which is what we wished to prove. B

Estimate 4 For alll with0 <l < N and for allg € F, we have

_ Cy(6)eCr)
N, < 1 le N
H(P ‘p)l,i”h - %: ﬁ(zll) d() e IF NAL,' 1
C1(i) aN — _
+ KO, ()00 5¥e 1 o(i) ‘w —
C1(i) N
+ KeOYo(0) |7 1w s,

Proof: Consider T,,7, € A;;. We write y; = F—NTJ- for 7 = 1,2 for the preimages
of T, and T, in a given branch of F V. In our estimates here, we shall restrict our
attention to one branch of F—N, show that the estimates are the same for all branches,
and then sum over all the branches to obtain the final estimate.

We have from the definition of || - ||, that

- z (F'" Tl) 7 (F‘N Tg)
|2, f;?i?.( =\ (F ) IF (F ')
(2.17) g r-N-fl,f-N-x—z))e_,f a6)
? (1) ? (2)

<Z esssup (

br U1.92€F "By

_ -5(7,.93) Nd ).
Gy I @) )ﬁ ¥

For each of the inverse branches we have that

@) 7@) 1 1
Y @) JF @)

. 2@ -7 @)
JFY @)  JF (%)
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P @) -2 @),
JF" (3,)

AT (F> ™). F ™ @)

JF" (7) ’

<

where [ is as before the level on which y; lies in its branch. Combining this with

(2.17) we have the following:

“(PN ” <Z ess Sup. (('a(zg;(zl()%”_}_

br Y1Y2€F T Ay,
|¢ (ﬁ?)‘ Cl( )/j ( ~r- (y )_F_—“b'“N)(yQ))) ﬁ_s(yl’§2))ﬂNd(Z)

—N ,_
JF (9,)

1
< —x " l=-N ess sup .
; JFN F A o 9,.9.6F VAL, (35(9:.92)
1
Gil I_ne | BYd().
+Z l(l)%:'JFN FVA,, 'vo 7 NA“ BNd(i)

Note that we used the fact that
FUsr=N)_ = lsr=N)_ o
X (F Ui, F yZ)) < ﬁs(ylv?h)

_N)yl’Tj“(lbr—N)-g-2)) > s(¥,,7Y,). We have already seen both of these

——(lpr
because s (F (e

sums in Estimate 2, and so we simply now follow our work there from which we get

. C’(z’)ecl(i) ~
PN ) < E —1—:——— l(d 1 _
’I( W)l,llh_ br ﬁ(Al.i) ‘ () ¢ NAlil
C1(i) N .
+KC () ﬁ Q(Z) P IF—NZ“
KeCrON oVl 1 _ v
+ Ke“'W3%(i) |7 - 1 FVALL

and this is the inequality we sought. B

Combination of Estimates 1 through 4. We now derive our Lasota-Yorke in-
equality (2.13). Combining the above estimates and using the definitions of “cp,‘, || we
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have

|PYE|| < e 7l + KBY (2 Ol )) 1211

1€EN
+pNe N2l + 2K 8" (ZCI e @ g( )) 12|,
ieN
eClﬁ)d(i)) B ( C,('i)ec‘(‘)d(i)) B
+ —= | [&l, + — = |7
(; I (D) : ieZN 7 (D) :
< ((Hﬁ‘v) N+ 3KB" (ZC 10 ())) Izl
ieN
C) (1) Vd(i )) _
+2 7]
(; i (Ar) v
< ((1 +8Y) e N+ 3KBN (Z Cl(i)ec‘(i)g)(i)>) 1=
1EN
+ 2 (ZC ('(t) ) |Y|1
ieN

Choosing N large enough so that it satisfies (2.12), we have some A < 1 so that

(2.13) |

21,

for some K’ > 0 since the sums in the last two lines are finite by Condition (E) on

p. 18. This is the Lasota-Yorke inequality (2.13) which we sought to verify.

Spectral radius of P. In order to make use of the approximation of P by a compact
operator, a fact which we prove in the next section, we require that the spectrum of

P is contained in the unit disk. By (2.13) we know that, for all £ € N,
[P = [P (PEDNZ)][ < WY [[ PS04 K [P0V,

It is a basic property of the Perron-Frobenius operator that | Pg|, = |¢|, for any real-
valued function @. (See [Bro96] for an excellent discussion of important properties of
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P.) By this property and by induction on the above inequality we have

k-1
[Pl < X el + (K’D’”) el

3=0

for all k£ € N; therefore, we obtain

1P

= | P + | P*Ve|, < (1 + AN 4 K'Cy \;W) Il -

jEN

Thus, |P*¥g|| < K||#| for all k € N, for some K > 0, and for all 7 € F. Let n € N.
Then there exists i € N such that 0 < i < N and such that n = kN + ¢; therefore,
|P*z|| < K||P'@ll < K (supocicn IP]l) II]]- Since this is true for all n € N and for

all € F, the spectrum of P lies entirely within the closed unit disk.

Approximation of P by a compact operator

In this section, we shall construct a finite-rank operator and show that this operator
is close to P in the sense used in [DS58]; i.e., that there is 7o < 1 and m € N such that
|P™ — Q|| < 7™. Let M denote our original partition of A into the A;; components.
Recall that each A, is partitioned into countably many pieces. For k € N, let P, be
some finite collection of A, ;s for { < k such that Z o (Zl,i) e < €x, where €, — 0
Ai¢Px .
as k — 0o. We can do this for the following reasons. The partition on each level A;
of the tower A is countable, and (Zl) is finite. On the first k£ levels of the tower,
we include in Py sufficiently many of the A;;s so that what remains has measure as
small as we wish. For the levels above k, we know that their total measure is not
more than Cofy.
For convenience of notation, we will use P;. for both the finite collection and the

=>k _

union of its elements. Let =¥ = @-1p, and @ 7 — @<k For %: A — R, we shall
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let En (¥) denote the conditional expectation of ¥ with respect to the partition M and
the reference measure fi. Let Q : F — F be defined by Qi (p) = PV (EN (@5'“)).
Because the number of A;;s in Py is finite, Qy is clearly a finite-rank operator.

Let ¥ = (7 — En (#))=*. Then

En (¥) = En (7-1p,) — En (En (7 - 15,)) = 0.
Note that
(P¥ = Q) () = P¥ (7 +77%) - P¥ (Ex (7))
- P (e = B (7)) + P ()
= PV (@) + PN (7).
In order to estimate ” (PN - Qk) (®) ||, we must break this down into the four pieces
corresponding to those in Estimates 1 through 4. In fact, we will encounter here nearly

those very same estimates; however, these estimates will be easier since certain terms

which appear in Estimates 1 through 4 will not be present here because Ey (—1/7) =0.

Estimate 5 For ! > N, we have “(PNE)“HOO < BNe Ne ”@—NJH;{

Proof: Since l > N, F" is one-to-one on F‘”Z,,i, from the definition of || - ||
we get
(P9,
— o 1 _ —lcd .
Vo lgeN A€ (2)
1 — — — le a/ -
< L [ vanl+ s [B@)-T@)| | e do.
p— __N_
\ ) (F An) Ry Y1.9.6F VA,




By the definition of %, the integral above is zero. Furthermore, we also note that

[0 @) ~ ¢ @) =2 @) - Ex (3) (1)) — 7 (%2) + En (?) (72)]

=2 @) — % (W)

because Ey (¥) (7,) = En (¥) (¥,) since both 3, and 7, are in the same branch of

——_N . oy
F  and, therefore, in the same element of the partition Px. Thus, we have

[(PY9),]| < esswp @) -B@etde)
o yl'g2€l_7_NZl,l

@) -9 @
< essiup l‘t’ (y;}z(yl‘;i)(JQ)le—(l——N)ee-—NCﬁNd(i)
Y1 V2€AI- N,

— —~NegN
< Bnill, e 8",
and this completes this estimate. B

Estimate 6 Forl > N, we have

’(PNi)l,i”h < Hal—N,i”h BNe=Ne,

Proof: From the definition of || - ||, we get
_ PNY) (7)) - (PYY) (z.
[¥9),,], = ( esssup EZAEIZ PTG o
g 21726808 (35(x1.72)
= ess sup |w(yl)__jb(y2)|e_“‘m‘ e_N‘ﬁNd(i)
== N— /js(ylvy’z)
Yuv€F A
< |lB-all, B e
which is what we wished to prove. B
Estimate 7 Forl < N, we have ||(PNE)I||Oo < KpBNe“Wp(i) |7 - IF_NZ .
Lillp
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Proof: All of the hard work for this estimate was done in Estimate 2, but here

= 0. Therefore,
1

we have only the latter term from Estimate 2 since

V- 1F—N——

11

the estimate we seek follows immediately. Il

Estimate 8 Forl < N, we have

+
h

y 1—-‘_N_

[N RCXer) R—.

Ke“1OaNo(i) ||

1__N_

A,

h

Proof: Analogous to Estimate 7, this argument mimics the proof of Estimate 4

el N

= 0. Thus, our estimate follows immediately. Il
F Ay

1

except that again

Combination of Estimates 5 through 8 and estimate of |PN (p>*)||. Com-

bining Estimates 5 through 8 and using the definitions of || - || and || - ||, we have

P45 = 1P+ P, = 1P

<28 M|z, + KBV 17, D e@ Do)

ieEN
+ KBY 1711, Y Ci()e”Do(i) + KBY |7, Y e Po(i)
ieN ieN
<pN (2+3K201 )e“1 @ g(d )) Il -
iEN

Lastly, we show the most difficult calculation for ||PY (7>*)||, and the others are

nearly identical. We have the following:

N (= < 1 — -
”(P (‘r/ : Z' =N F Al.iloo ¥ IF NA“ Ood(t) 171l
1
+ l—_n l Z-1—__N— l d(i) 17l
4, Q;k:l<k JF F Alx s F Al,i - ( ”‘V”




< ZeCl(t)d (F A ) lb,c ” ”
CE@) T

1
MR = N o 0L 2
soamack JE O F T Bul 1T F T Al
< @04 2D 151 S5 (@) e
S(Z) 1>k
+end) ()”—” Y EB) e

I(2)

A,',QEP,; <k

< (em“d(z')%) 11 (e + ),

for some ¢;, — 0 as k — oco. Also

P @ = = X et <,

Kl,tgrl)k

for some €}, — 0 as k — oo.

We may then choose k € N and NV € N sufficiently large so that

Z:=(ex+e.+¢ Zecl (i) + B (2 + 3K ZCI Cl(i)d(z’)) <1

ieN ieN

Let 7o be such that Z < 7' < 1. Then |[(PY — Qi) ¥|| < 7' ||Z|l. We now apply
the following proposition from Dunford and Schwartz. (See pp. 709-711 [DS58] for

the proof.)

Proposition 2.6 If P is a bounded linear operator, if there is some compact operator
Q, if there is some 19 < 1, and if there is some N € N such that ||PN - Q” <7y,
then any spectral point X such that |A\|V > ”PN — Q” 1s 1solated and its etgenspace s

finite-dimensional.

Thus, P is quasi-compact, and our only task now is to isolate 1 as the only spectral
point on the unit circle.
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Showing that (F,7) is mixing

We have established that the Perron-Frobenius operator P : 7 — F is quasi-compact;
i.e., that all spectral points lie in the closed unit disk and that there is some disk of
radius v < 1 such that all spectral points outside this small disk are isolated. When
this happens, it is often said that P has a gap in its spectrum. In order to prove
that (F,7) is mixing, we must show that 1 is the only spectral point of modulus 1.
Young proves in [You98] that (7, U) is exact, and her proof works here unchanged
since this part of the proof does not rely upon the behavior of C(7); thus, we refer the
reader there for the complete very brief proof. It is a basic fact that exact systems

are mixing.

Decay of correlations for (F,7)

It is worth noting that the mixing property of (f, U) along with the quasicompacity
of P implies directly that 1 is the only spectral point of P on the unit circle (and it
is of course an eigenvalue since it is isolated) and its eigenspace is one-dimensional.

To see this, let ¢ € L' () and ¢ € L*(i), and suppose that P¢ = g¢. Then

lim /1,/1 (P"¢) dup = lim (w ofﬂ) odn

= lim [ (o) Sav

Joa] o
=/w(ﬁ/¢dﬁ> a5
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Thus, o™¢ = P"¢ converges pointwise to p [ ¢ dfi, which implies that o = 1 and that
the eigenspace of o is one-dimensional.

We will show explicitly at the end of this chapter how this puts an exponentially
decaying bound on the correlation functions of (F,7) as well as for (F,v), which is

the goal of our proof.

Decay of correlations for the original system

In this section we show that we may compare the correlation functions, which we
derived in the previous sections for the factor system, to the correlation functions for
the original dynamical system (f,v). We have so far a Markov system F' : (A, V) —

(A,v) over the dynamical system f : (M,v) — (M,v) where v is an SRB measure.

~

WU
We note also that we have a projection m : A — M such that v = ~7EA)

have the factor system F : (Z, v) — (Z, V) and the projection 7 : A — A such that

. We also

<

T =0. Forp: M — C welet ¢:=¢pom: A — R denote the lift of ¢ to the tower
A. Recall that 7 is simply an identification between the I[th level of the tower and
f'A. Let n > 0 be as we previously defined it. We defined our space of observables
$y earlier.

For convenience of notation, let us use D, (p, ;) to denote the nth correlation

function with respect to the measure v:

Dn(p,¥;v) =/<p("¢}°f") dv—/sodV/wdv

and the analogous definition of D, (6, 1,/;; '17), the nth correlation function with respect

to the measure v. Note that D, (¢, ;) is with respect to the map f: M — M, but
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that D, (cﬁ, QZ; 17) is with respect to the map F : A — A. It is obvious by the Change

of Variables Theorem that
(2.18) Dalip,93v) = Dn (7,037

It is our goal in the remainder of this chapter to show that D, ([,5, i[)v; f/’) can be
approximated arbitrarily closely by quantities involving things related to the system
(7, A, 17) which we know already has exponential decay of correlations for functions
in F. Because of (2.18), we shall show that D, (;5, v; E) can be approximated well
by the correlation functions of the system (F, A, U). We show in the last two pages
how the observables ¢ : M — R in $), are related to observables in F for the factor
system (_F_', _A_, T/).

We state now a lemma which will be of much use later. We shall fix k later. In

what follows, let A(Z) denote the part of A sitting over A;.
Lemma 2.7 Let x € A(i). Then diam (nF* My (z)) < 2C(3)ak.

Proof: Let y;,y2 € Mo (x)NA(Z). Then there exists § € v*(y1)Ny*(y.). Suppose
without loss of generality that Ma(z) N A(i) C A;. Then nF~'§, nF 'y, € A;, and

they both lie in the same ~*-leaf. By (P3) we have
d(nF*jg, mF*y,) < C(1)a'** < Ci)at.

Similarly, 7 F~'g, nF~'y, € A;, and they both lie in the same ~y¥-leaf. By (P4)(a) we
have

d(nF*g, nF*y,) < C(z’)as(Fkg‘Fky‘)—(”k) < C(i)ak.
Thus, we have that d(mF*y,, nF*y,) < 2C(i)c*. B
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Estimate 9 Define v, on A by —d’_klA = inf{{j;(:c) : © € FFA} for every A € Myy.

Then

Dk (7,80 F*7) = Daci (5,3557) | < C'(0, 1)

for some C'(p,¢) >0

Proof: Note that

Dn——k (@JO Fk"ﬁ) - Dn—k (@Ek,'ﬁ)\

/5(JOF'=OF"-'°) @—/@@/JOF‘CGIU
_/g(akof‘"-k) d17+/g5dv/$kd;;

!/(woF -G [ v

s'/(z/?oFk B) o F"*G

It follows from Lemma 2.7 that

)/(Joﬁ—@k)o

+]/<'$0F'°—Ek)dv-/~

Z/ (o F¥ —%,) o F** G di| + Z/ (Yo F* wkd~/¢d*

ieN ieN

<Y | @er-wertem+ | [ Gort—ym- [ G
ieN ieN Ai
<2Z€ dlam 7rF'c (Mai(z f |2 dv
iEN
< 20: d))ZC l‘PlooU( )
ieN
< 2¢(¥) Y C(i) [@*]” ¢l Beo (As)
ieN
< C'(p, )™,
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for some B > 0 where C'(p, ¥) = 2€(¢0) 3",y C(i)|¢|looBo (Ai), and this sum is finite
by our assumptions on £),. B

Note that each set A € My, is a union of stable leaves; thus, %c is constant on
stable leaves, and so ak induces a well-defined map on A, and we shall also call this
map Ek without confusion since it will be clear from the context the particular map

to which we are referring.

Estimate 10 Let ¢, be as defined above, and let @, be defined analogously. Let

¢V denote the signed measure whose density with respect to v is ¢, and let ¢ =

d (F.k(_@k;))

o . Then

| Dn—k (&, ¥4; ) — Dok (@k, ¥; )| < C" (0, )™
for some C"(p,v) > 0.

Proof: Just as in the proof of Estimate 9, Lemma 2.7 gives us

Z/ (Y0 F*) (5 — &) dv Z/wkcr/

ieN ieN

<Y [ Gy G-l @+ Y [ |wk|d~/|¢—¢o‘k|d5

i€eN ieN

< 2B max |¢| - Z /I\p Ck| dv

ieN

< 2Ba* max || - Z C(p)C(3)o(7)

ieN

S C’z(w» ¢)0kn,

where 7 is chosen as before and Cy(yp,¥) = 2Ba* max |¢|€(¢) 3,5 C(?)o(2), and
this sum is also obviously finite.
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Note that in Estimates 9 and 10, we did not use the fact that ¢ and i) were Holder
on M with a uniform Holder coefficient. Rather, we could have simply required that
both ¢ and ¥ were Holder on each A; with some Holder coefficient €(z, ¢), for example,
such that the sum .y €(4, ¢)C(2)o(2) is finite. In particular, this would allow €(3, ¢)
to grow without bound as 7 — oo.

We now observe that Dn_k(&'k,ak;i?) can be expressed in terms of objects only

from F : (A,7) — (A, 7). First,

/ (@ 0 F"*) G db = / B d (Fr™ (3:7))

= / (Yo F") (pip) dpt
= / e P" (pip) di.

Also, we observe that

[t [~ [ a0 [t [uao [0

Estimation of the correlation functions and end of the proof

We note that we have

Do (P ¥i; 7) = ‘/ (Yr 0 F" %) Grdv — /@k(fﬁ'/ak dv
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where || - || is the norm on F we introduced earlier.
Next we observe that D, (p, ¥;v) = D, (c,?, J; D) = Dp_& (;9', Jo F*, ‘17). We have

proved earlier that P is quasi-compact, so we may define
7 = sup{|(| : ¢ € o(P) such that ¢ # 1}.
By Estimates 9 and 10 we have

Dn(/ﬁo’ d)v U) S IDn(QO’ d)vl/) - Dn—k (‘Eksa}—kva)l + Dn—-k (&kvakag)

PrP — (/@kﬁdﬁ) ﬁ“ .

Now choose k =~ 2 and 7; = max{a*7,7}. Then 7 is the rate of decay of the correlation

< (C'(p,¥) + C"(0, ) & + [0 Lo @) Co "

functions, and we define

C(p,v) =C'(p, %) + C" (o, ¥) + |9 L=@Co

Pup — (fmﬁdﬁ) 79” ,

and the last factor is finite since it is clearly bounded above by |[&pl| + ||( [ #pdR) B||,

and this completes the proof of Theorem 2.3.
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CHAPTER

THREE

One-dimensional examples

In this chapter, we construct some one-dimensional dynamical systems which do not
fit into Young’s original construction but which fit into the setting of our extension of
Young’s theorem. We begin with a map with two domains of invertibility and show
how our technique extends trivially to a map with finitely many domains of invert-
ibility as long as we choose A prudently. Finally, we show that under an additional
assumption about the speed of decay of the measures of the domains of invertibility,
we may extend our result to include maps with countably many domains of invertibil-
ity. Some of the properties of our examples are not really essential for the dynamics
we consider; however, our aim is to construct simple examples of dynamical systems
which are not (as far as this author knows) covered by previously known theorems.
We claim that it is clear which properties of our examples are essential and which are

merely asthetic.
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3.1 Two domains of invertibility: a motivational

example

Let a € (0,1). We partition the unit interval [0, 1] into two pieces [0,a) and [a, 1].
Furthermore, we partition the interval [a, 1] (mod 0) into subintervals by a countable
collection {r_; : i € N} such that a < -+ < 7_; < 741 < ... < 7_; = 1 and
such that [a,1] = ;e [T-i-1,7-i]. To use the notation of Chapter 2, we let A; =
(T_iz1,T—i)-

For the moment, we wish to define our function f : [0,1] — [0,1]. We let

() {0, a)(@) = =

Then for each ¢ € N we suppose that f | A isC 2 and f satisfies the following condi-
1
tions:

1
Z—>1’
(04

(ii) there is @ < 1 such that, for each 7 € N,

F'la,
(iii) for each i € N, fA; = (a",ai“l)71

(iv) there is K > 0 such that for each ¢ € N we have sup
T, yEA;

f'(z)
f’(y)l <K

(v) for each ¢ € N there is D; > 0 such that

f”|Ai‘ = D;, and

f" (=)

Flay) <5

(vi) for each i € N,

-1
We shall also assume that there is b < e~! such that m (U A,-) < b* . We shall
i>l
see later that this will ensure that Condition (E) is satisfied.

!This property is not essential, but we use it here to make all the estimates easy.
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To understand how this map fits into our scheme from Chapter 2, let us examine
how it behaves on each A;. First, we let A = (a,1). The subinterval A, is mapped
onto A in the first iterate, so its return time is Ry = 1. Then f maps the subinterval
A; onto (a*,a’"!) and then onto (a'~!,a'~?) and so on until it is finally mapped onto
A. The return time of A; is R; = 4, so we have the simplest possible example with
one A; returning at each time n € N.

Let z,y € A;, and let C(i) = K'a™**!, where K’ = K 3~ ya™7. We claim that

<iKY a7 < K'a™ =Cli)a".

ny)

JEN
First, let us note that, if z and y are far enough apart in A;, they will separate
n .
. (fz)
when they return to A, and so we need only look at the quantity log H =
oL (fy)

Condition (B)(b) for 0 < n < s(z,y). (See p. 17.) We should note that Conditions
(A) and (C) are vacuous here since we do not have a contracting direction. For these

z and y, we have

f'(flz)
f'(fiy)

f'(z)
o

-2tz

which is what we require.

On the other hand, if x and y are quite close together in A;, they could return
together to another A;, in A. If they land close enough together in A;,, they could
return together to another A;,, and so on; however, because of the minimum expansion
by a~!, they must separate in finite time. Let us consider the case when |z — y| =
am(A;), where m denotes ordinary Lebesgue measure. Because f I[O, a) is linear,

distortion is introduced only when f’z and f’y are in A. If they land back in the
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same A; in which they started, then they must now be far enough apart to separate

when they return again, and so we would have

n

log H

Jj=0

[ (fiz)
' (fiy)

’ <(1+a)K <C(i)a™!

In fact, the only way that z and y can avoid separating when they return to A is if the
land together in some A; with j < i. If they land near the left endpoint of A;, then
they will certainly separate on their next return, and so they will pick up no more
distortion. It is not hard to see that the most distortion which can be introduced is

given by

1[5

Continuing this line of reasoning for any two points £ and y in A;, we see that

7 Fia) ‘ <iK < Ka'=C@)a.

o | f ()| _ L L
logg) f,(ij)‘gngaJSKa = C(i)a™".

We should point out that because of assumption (iv) above, these systems do

not fit into the original theory in [You98]. This is because Young’s original theorem
f'(z)
f'(y)

requires that there is some § < 1 such that, for all z,y € A;, < T§* for some

T >0.
Finally, we note that Condition (D) (See p. 18.) is clearly true, and Condition

—1

b = (eb)o‘_i, and this decays

—1

(E) is true by our choice of b since e“Wp(i) < e®
faster than exponentially since eb < 1 and a < 1.
Note that we have only verified the conditions for Theorem 2.3. With the amount

of distortion present on each A;, we cannot verify the assumptions of Theorem 2.2.

In particular, the sum ), _y e“WDat does not converge, but this is not important since
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the existence of SRB measures for systems satisfying assumptions (ii) and (vi) above

has been proved by Broise in [Bro96.

3.2 Finitely many domains of invertibility

It is clear from the construction in the previous section that we may ecasily consider
a function f : [0, 1] — [0, 1] with finitely many domains of invertibility. Suppose now
that we have some finite collection of a;s such that 0 < a; < ay, < --- < a; < 1. We

suppose that

T

(i) fl[(),al)(f) =

a
and we suppose that each subinterval (a;, a;j41) is partitioned (mod 0) into countably

many subintervals A;; such that

(ii) for each j and for each i € N, fIA- _satisfies all the assumptions for f|A- in the
75t 1

previous section mutatis mutandis with a replaced here by a;.

In particular, for every j we assume that fA;; maps onto (a’i, a‘i—l). Also, we replace
the assumption m (UD, A,-) < b3 for some b < e~! by the corresponding assumption
m (UR.>, A,-) = m(Ui>, AJ-,,-) < b*'. We define A = (a1, 1). In each subinterval
(ai,ait1), there is precisely on A;; which returns at time R; = 7, and since there are
finitely many such subintervals, it is clear that the sums we consider in the previous

example are all still finite here.
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3.3 Countably many domains of invertibility

In this section, we show how we can extend our work in the previous section to include
maps with countably many domains of invertibility. As one imagines, the extension is
not trivial. In fact, we require further knowledge of the rate of decay of the domains
of invertibility.

We assume that we have some countable collection of a;s such that 0 < a; <
.-+ < a; < ai4; < 1. All of the assumptions in the previous section, including the
assumption that m (U Aj‘i) < ba_l for some b < e}, are taken here. Even in this

i>l
case, [Bro96] proves the existence of SRB measures under assumptions (ii) and (vi),
which we established at the beginning of this chapter; therefore, we only have to show

a

that the sum Y,y €“Yp(i) converges, where o(i) = b . First, note that

(3.1) Zesc(i)g(i) = Z Z e‘r’C(i)g(z’).

ieN neN }%.G-En
Let us use E; to denote the subinterval (aj,a;+1). In our construction, there is
precisely one A; in each subinterval E; which returns at time n, and C(%) is the same
for all of these A;s with R; = n. We see that we require sufficiently fast decay of
the lengths of the intervals E; in order to guarantee convergence of the sum (3.1).
In particular, exponential decay will suffice. We assume that there is p < 1 such
that |E;| < p? |E\|, where |E;| denotes the length of the interval E;. There is some

constant K> > 0 such that |A;,| < Kp?|A;,] for all j € N and for all n € N. Note

that C(z) is constant on |J ien A;, so without ambiguity we shall write C(n) for this

i=n
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constant. Then (3.1) is bounded above term-by-term by

Z 650(")IA1,n|K2 Z Pj,

neN jeN

and this is clearly finite since this is the same sum as we have in the system with only

two domains of invertibility, except with a constant multiple.
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CHAPTER

FOUR

Newhouse-Jakobson maps

We finally address the maps which motivate all our work. In [JN0O], Jakobson and
Newhouse prove that certain types of piecewise smooth hyperbolic maps on the unit
square in R? have finite SRB measures. Furthermore, they prove that the natural
extensions of the systems they consider are K-automorphisms; therefore, they are
mixing, but the issue of the speed of mixing is left open. We make some meager
progress in addressing this issue through the use of our theorem, but unfortunately we
are not able to include the family of Newhouse-Jakobson maps in their full generality
under the umbrella of our theorem. For the convenience of the reader, we give here
a brief summary of some Newhouse-Jakobson maps which do fit into our theory, and
we refer the reader to [JNOO] for a discussion of them in their more general context.

We assume that the unit square I? is partitioned (modulo a set of measure zero)
into countably many full-height curvilinear rectangles {E; : i € N}. For convience we
shall use the notation and vocabulary of [JN0O] and call E; the ith post. The upper
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and lower boundaries of each F; are subintervals of the upper and lower boundaries

of I?; the left and right boundaries of each E; are the graphs of smooth functions

T
dy

z;. We assume that F | E. extends to a C? map on some neighborhood &; of E; and
1

z;(y) such that

l < a for some a € (0,1) which is independent of the function

that S; := FE; C I? is a full-width strip. The left and right boundaries of each S; are

subintervals of the left and right boundaries of 72; the upper and lower boundaries of

dy;

each S; are the graphs of smooth functions y;(z) such that 7
T

< a. Foreachi € N,

we do not permit the upper and lower boundaries of S; to meet, nor do we permit
the left and right boundaries of E; to meet. For each i € N, we let f; := F l E, denote
the restriction of F' to the ith post. There are some technical requirements on the &;s
which are essential in the proof of the existence of SRB measures; these requirements
are discussed in [JNOO], but they are not important to our work here since they do
not enter into the discussion about the correlation functions.

For each z € I?, let I, denote the horizontal line containing z. We define the

following;:
J, (E;) = diam (I, N E;)
5i,ma.x = Izleaé( 62 (Ez)

6i,min = min 62 (El) y
z€Q

and we assume the following conditions on the geometry of the E;s:
(Hl) int E,' Nint Ej = @ if 7 7£ j,
(H2) m (I?\U,cnint E;) =0,
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(H3) - ZiEN Ji.max lOg 6i.min < 00.

We assume also that é = 1%\ Uien int E; is hyperbolic for F; i.e., for each z € Q
there is a splitting T, M = EZ @ E? which varies coninuously with z € é, a constant

Ko > 1, and a Riemannian norm | - | such that

1. D, f(E}) = Ej,, and D, f (E?) = E} ,,,

2. |D.f(v)] € =|v| for all v € EZ, and |D, f(v)| > Ko|v| for all v € EY.

1
Ko

For each i € N and for all (z,y) € E;, we write fi(z,y) = (fu(z,y), fiz(z,v)),
where we are using the canonical coordinates on the unit square, and we use fi;z,

firzy, fioyy, etc. to denote the partial derivatives of f;; and fi» for each 2 € N. For

each i € N, let

|D2f:‘(l‘o, yo)l = ?i% |fijkl(-'l'0a yo)l

(k)=(z,z),(z.¥).(v.¥)

denote the maximum second derivative at (g, yo). We may now state the final con-

dition found in [JNOO]:

2f
(D1) There is some Cy > 0 such that sup Méz (E;) < Co.

ziég,- | firz(2)]

The reason we are not able to include all Newhouse-Jakobson maps in our theo-
rem is that Newhouse and Jakobson make very weak assumptions about the stable
foliations of their systems. Aside from the requirement that the stable foliation I'*
is preserved by F, the only condition relating to the absolute continuity of I'® is
Condition (H3).

Let v € I'. From (H3) Newhouse and Jakobson show that for every ¢ > 0,

there is some compact set A C < and some constant K4y = K4(A) > 0 such that
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m+ (7\ A) < € and such that, for all z € A and all n > 0,

5 det Df*(f7z)
115

(4.1) et DJ (/3(02))

< Ky,

where 6 is the stable holonomy map we introduced in Chapter 2. This is very nearly
Condition (C) for C(i) = const independent of Z, but of course we have no idea how
the ratio on the left-hand side of (4.1) behaves off the set A.

Thinking of K4 as a function of €, we then have to make some comparatively strong
assumption on the regularity of the stable foliation I'* so that we can guarantee how
K, will behave as m, (7 \ A) — 0. One way to do this is to assume that det D f* is

Lipschitz; i.e.,
(4.2) |det D f*(zo) — det Df"(yo)| < Ks|zo — yol

for some K5 > 0 whenever yo € v°(zo). Note that

det Df*(z) i+ det Df*(z) — det Df*(y) < ox <det Df*(z) — det Df“(y))
det Df*(y) det Df*(y) =P det Df*(y) '

Thus, if y € 4*(x), we have

7 |det Df(fiz)| =, |det Df*(fiz)
‘°gj11 det Df*(fiy) ‘Jz:;’ det Df*(f7y)
> 1 u( £J u ]

< R—é |det Df*(f’x) — det Df*(f’y)|
< f;— 2_; |Fz — fiy|

S (4
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=: Ks,

since z and y are in the same stable leaf. Similarly, for each n € N we have

log H

det Df*(f
det Dfu(f

det Df*(f’x)
& |det D ( f’y)

Thus, the system satisfies Condition (C) for C(i) = Kg for all i € N and for a = K.

As we did in the previous two chapters, let us take A = |J;5, E;. As with the
previous examples, this will allow us to define the A;s so that each E; has precisely
one A; which returns at time n for each n € N. Furthermore, because F' maps each
full-height post E; onto a full-width strip Sj, it will be very easy for us to define the
A;s explicitly. In more general hyperbolic systems in which full-height sets might be
mapped across some proper subset of the posts, constructing the A;s is significantly
more difficult. Let us fix a post F;. We shall define A;; to be that part of E; which is
mapped across A by F;ie., A;j = fi_lA. We define A, » to be that part of E; which
is first mapped to E; by F and then across A; i.e., A;2 = f'f{'A. We continue
inductively so that we may define A; ; = f[lffj“l\. We do this for each 2 € N. Then
A;; is that part of E; which returns to A at time j.

The final condition we must verify is that there is C > 0 and 6, < 1 such that

m,{z € yNA : R(z) >1} < C0) for all v € T* and for all | € N. For general
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hyperbolic systems, this requires a bit of work to prove; however, for the system we
are considering here, this is easily seen to be true since each full-height post E; is
mapped onto a full-width strip S;. This is clear from our construction of the A, js
above. Let v € '"NA be a full-width u-disk in A, and let 4/ € I'*NA, ; be its preimage
in A;;; i.e., F7y' = . Then by the hyperbolicity of F, the length of 4’ is no greater
than K 7. 8; max. As we did in Section 3.3, since we have countably many domains
of invertibility, we assume that there is some p < 1 such that §; max < p'. Then
m,{z €YyNA : R(z) > j} < K,;’ Y ien 9i,max, which is what we wanted to verify.
Notice that we did not worry about verifying the conditions of Theorem 2.2 to
determine existence of SRB measures; however, this is not important here since New-
house and Jakobson prove the existence of SRB measures whose conditional measures
on unstable leaves are equivalent to Lebesgue measure, and this is precisely what we
require in order to apply Theorem 2.3. Furthermore, they prove that the natural
extension is a K-automorphism; therefore, the dynamical system we consider here is

exact and, thus, mixing.
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