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ABSTRACT

DECAY OF CORRELATIONS FOR PIECEWISE SMOOTH

MAPPINGS WITH UNBOUNDED DISTORTION

By

Charles Howard Morgan, Jr.

In [YouQS], Lai-Sang Young introduces a method for showing that a large class of

dynamical systems have exponential decay of correlations for Holder continuous real—

valued functions (observables). She assumes that cumulative distortion along orbits

is uniformly bounded. We extend this result to include dynamical systems which

have unbounded cumulative distortion along orbits.

Furthermore, Young shows that piecewise hyperbolic systems with finitely many

domains of invertibility fit into her theorem. We Show that Young’s proof can be

extended to include systems with countably many domains of invertibility, provided

that the domains of invertibility decay at least exponentially quickly in measure.
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CHAPTER

ONE
 

Physically observable measures and correlation functions

1 . 1 SRB measures

In his 1976 paper [Rue76], David Ruelle extended the work of Sinai [Si1168] by intro—

ducing a new type of measure for Axiom A attractors. This measure is invariant1

with respect to the given map, and it maximizes a quantity related to Pesin’s For-

mula,2 and it governs the behavior of a set of orbits of positive Lebesgue measure.

This measure ,u is supported on the attractor E, and for some positive Lebesgue mea-

1 71—]

sure set of points in some neighborhood of Z, we have lim — Ecflf'x) —> / cpdu

n—+oo n

i-O

for all continuous real- or complex-valued functions tp. We say that such a measure is

physically observable and call it a physical measure, and we call the functions

such as 99 observables.

 

lA Bore] measure it is said to be g-z'nvan'ant if, for every Borel set E, p(g‘1E) = ;1(E).

2We discuss Pesin’s Formula in the next two pages.



Throughout this thesis, we shall use A! to denote a smooth compact finite-

dimensional Riemannian manifold (possibly with boundary). Suppose that f : ll! —+

A! is C2. Let A1 > A2 > > A, be the distinct Lyapunov exponents of (f, ,u), and

let E1, E2, . . . , E, be the corresponding eigenspaces, respectively. In the same paper,

Ruelle also showed that for Axiom A attractors u is the unique f-invariant measure

which maximizes the quantity h,,(f) — f 217:, A, dim E,- du, where this sum is taken

over all Lyapunov exponents greater than 1 and where h.,,(f ) is the metric entropy of

f with respect to u and that this maximum is zero. In other words, this measure u

satisfies Pesin’s Formula

(1.1) h,,,(f) = [Z A,- dim E,- (1“.

i=1

In 1968, Sinai [Sin68] showed that measures satisfying (1.1) for Anosov systems had

the interesting property that their conditional measures on unstable manifolds are

equivalent to Riemannian measure on those manifolds. In [Rue76], Ruelle proved

the same for Axiom A attractors. Later, Ledrappier, Strelcyn, and Young (both

independently and collectively in [Led84], [L882], and [LY85]) showed that, assuming

(f, a) has a positive Lyapunov exponenet u—a.e., Pesin’s Formula holds if and only if

the conditional measures of u on unstable manifolds are absolutely continuous with

respect to Lebesgue measure. This leads us then to a definition of SRB measure

which is as follows.

Definition 1.1 Let f, 1V], 8, and u be as above. An f-inva7iant Borel probability

measure it is called an SRB measure for f if it is ergodic, if f has a positive

Lyapunov exponent u-a.e., and if the conditional measures of ,u on unstable manifolds

2



are absolutely continuous with respect to Lebesgue measure.

We should perhaps mention that the uniqueness of the SRB measure for Axiom

A systems as discussed by Ruelle has nothing to do with Pesin’s Formula. Instead,

uniqueness is a consequence of the fact that Axiom A systems are mixing3 with respect

to their SRB measures. It is possible for some dynamical systems to have many SRB

measures, and we discuss such a system in the following paragraph.

It is in general not an easy task to decide whether a dynamical system has an

SRB measure or whether it is unique when it does have one. In [Ryc83], Rychlik con—

structs a piecewise expanding interval map f : [0, 1] —* [0, 1] with countably infinitely

many domains of invertibility which has finitely many SRB measures; however, Hu

and Young in [HY95] construct examples of dynamical systems which are hyperbolic

everywhere except at a single point and which do not have SRB measures at all.

In the examples we consider here, all SRB measures for piecewise expanding maps

are absolutely continuous;4 however, Rychlik also considers a map f : [0,1] ——> [0,1]

for which the Dirac measure 60 supported at zero is an asymptotic measure. This

map is defined as follows:

(*) f(0) = 0 and f(:1:) = 2:1: — 2’].+1 if a: E (2"j,2_j+1] for all j E N.

Rychlik’s example has two fundamental difficulties which our examples do not have,

and so we avoid the possibility of having only singular asymptotic measures (for one-

 

3A dynamical system (f, p) is said to be mixing if, for every borel sets A and B we have

“mu—+00 fl (f‘"A D B) = #(A)H(B)-

4Our dynamical systems live on Riemannian manifolds, so when we say that a measure is ab-

solutely continuous, we mean of course that it is absolutely continuous with respect to Lebesgue

measure.



dimensional maps at least). The first of these problems is that f has countably many

invariant measures which are indistinguishable from 60 by some regularity properties

(absolute continuity, for example); in fact, 62-x is an f—invariant measure for every

k E N U {0}; and the second of these problems is that f is not topologically mixing.

We say that the system f : M ——> M is topologically mixing if, for any two

nonempty open sets U and V in M, there is a positive integer N = N(U,V) such

that, for every n > N, f"(U) F) V aé 0. For Rychlik’s map (*), the point 1 is a global

repellor of the system, and 0 is a global attractor; thus, we can clearly find U and V

in the unit interval so that f"U and V never intersect.

1.2 Correlation functions

An important statistical property related to the SRB measure is the rate at which

two random variables become increasingly more independent. Let f : M ——> M be a

map which has a unique SRB measure ,u, and let «p : M ——-> (C and ib : M —i (C be

random variables (observables). We say that go and t!) are independent if

/Wdu=/<pdu/¢du.

MM M

We define the auto-correlation function of {,0 as

Cw(n)=/(900f"')wdu— /s0du

1W .1

and the correlation function of cp and Il) as

Cad”) = [(WOf")'l/Jdu-/sodu [#2er-



Thus, the correlation function Own/An) is a measure of the independence of 900 fn and

’i/J; i.e., CW),(n) measures how much influence values of 21) have on values of (p o f".

Clearly, «p o f" and to are not independent random variables, but if 0%,],(71) tends to

zero as it tends to infinity, that tells us that values of tp o f" depend less and less on

the initial values of «,0.

Definition 1.2 Let V be an f—invariant Borel probability measure on 1%, and let .7:

be some Banach space of observables (real-valued functions) on NI. We say that (f, V)

has exponential decay of correlations for functions in .7: if there exists 7 E (0, 1)

such that, for all 90,119 E .2”, there exists C(tp, u?) > 0 such that

]/(990fn)1l1dI/—/cpdu/u’idu < C(nt’th"

 

for all n 2 0.

Similarly, we say that (f, 12) has polynomial decay of correlations if there is

p > 1 such that

< C(wlin'”[feoofnwdu—fsodu/wdu
 

for all n 2 0.

In particular, we are interested in knowing the rate at which the correlation func-

tions C'Wp(n) tend to zero as n —> oo; i.e., when (,9 and it become increasingly more

independent. One goal of our work is to find some rapid rate of decay of these correla-

tion functions. One reason for wishing to know how quickly they decay to zero is that

this rate of decay is an important factor in determining whether the Central Limit

Theorem holds for some class of random variables. One rule of thumb is that, if the

5



sum ZnEN C¢,,),(n) is finite for all random variables in some class, then the Central

Limit Theorem holds for the subclass of those random variables which are in L2(u).

(See [BalOl].)

It is perhaps easier to think of the rate of decay of the correlation functions as

the speed at which mixing occurs. Recall that a dynamical system (f, u) is said to be

mixing if lim,H00 u(f‘"A F] B) = p(A)u(B). If the space of observables in question

contains the characteristic functions of the Borel sets, then we have that

Guam) = u(f‘"A n B) - HUD/AB)-

Therefore, it is sometimes said that. a system (f, u) is mixing if C¢,ut(n) —+ 0 as n —> 00

for all and E L201).

While different speeds of mixing have been considered in dynamical systems, dy—

namical systems with exponential decay of correlations have received the most atten-

tion, in part because many elegant systems exhibit this speed of mixing; however, the

real reason they have gotten the most attention is that the two most well-understood

methods for determining the rate of decay of correlations (contraction in a Hilbert

metric on a lattice and spectral gap of a transfer operator) are designed precisely

to determine whether or not speed of mixing is exponential. These methods do not

detect slower rates of decay of correlations.

Systems with true polynomial decay of correlations (i.e., polynomial upper and

lower bounds on correlation functions) are relatively new. (See, for example, [Hu].)

Not much is known in general about these systems. To this author’s knowledge, all

dynamical systems with true polynomial decay of correlations have one of a few very



specific limited forms.

We consider here a class of dynamical systems which have exponential decay of

correlations for functions which are piecewise Holder continuous, and we do this by

looking at recurrence times of a subset of the phase space. Young has recently shown

in [You99] that the rate at which certain subsets of the phase space return to another

given subset determines the rate of decay of correlations; therefore, a slow rate of

return of these subsets causes a slow rate of mixing. It is hoped that the extension

we have been able to afford here to the work in [You98] will also work essentially

unchanged in [You99] so that we can add to Young’s library of dynamical systems

which have polynomial decay of correlations.

1.3 Invariant measures and the transfer operator

The primary tool for proving exponential decay of correlations is the Perron—Frobenius

operator; in fact, its spectrum is the key point of our discussion. Several of its

properties make this operator a natural object for study. Let ,u be a finite Borel

measure on (M, B), where B is the Borel o-algebra and M is as already described.

Let g : M ——> M be some smooth measurable function, and let (,0 : M ——) R (or C) be

some real- or complex-valued observable. We define the Perron-Frobenius operator

P = L101) -+ L‘Ut) by

_ 90(16)
(12) 1990(9) — 3.9%; —_|detDg(a:)|'

A few basic properties of P are as follows:

(i) It; (1090de = fit: so (if) 0 g) du for all cat/1 6 L100;

7



(iii) if V = (150 u is an absolutely continuous g-invariant measure, then P¢o :2 (to; and

(iv) if P6150 = €150, then V 2 do ,u is an absolutely continuous g-invariant measure.

All of these properties are immediate from the definition of P. We refer the reader to

[Br096] for excellent, concise proofs of all four properties. We note also that (i) alone

may be taken as the definition of P, and then the remaining four properties and the

explicit formula for P follow immediately.

1.4 An introduction to the tower method

In this paper, we use a construction which has only recently become fashionable

in proving exponential decay of correlations. Instead of working directly with our

dynamical system f : M —+ M, where A! is some finite-dimensional compact Rie—

mannian manifold and f is some piecewise smooth measurable map, we construct

a tower sitting over some prudently chosen subset A of [V1, and we use information

about when points from A return to A under iterates of f. We discuss here how to

do this in a more general setting.

Let (X, B, ,u) be some probability space, and suppose that A C X is a measurable

set such that u(A) > 0. We do not exclude the possibility that A = X, as one

could do when considering Anosov diffeomorphisms. Suppose also that f : X —> X

preserves u; i.e., u(f‘1E) = u(E) for all E E B. For each x E A, let R(x) E N be

the smallest positive integer such that fR(x)($) E A. We call R(x) the return time



of x. In [Shi96] one finds the following theorem (and proof) about returns of points

in A to A.

Theorem 1.3 Let f, (X,B,,u), andA be as above. Then R(x) < 00 for u-a.e. x E A.

Proof: For each n E N, let us define An = {x E A : R(x) = n}; i.e., An is the set

of all points which return to A at time n. Let A0 = {x E A : f"(x) E A for all n E N}

denote the set of points which never return to A. It is clear that all of the Ans are

pairwise disjoint, and it is Clear that

A = U An.

n20

Since f is measurable, all the Ans are measurable since

A1=Aflf‘1A

n—l

A, : A nf-"A n fl f“(M\A) for n 2 2, and

i=1

A0=A\UA,,.

nEN

Because A0 C A, no points in A0 can return to A0; in other words, if x E A0, then

f1(x) «at A0 for all i E N, otherwise we would have a return of x to A. This implies that

f_i{x} (1 A0 = (ll for all i E N whenever x E A0 as well. Thus, the collection of sets

{f’iAo : i E N} is pairwise disjoint. Thus, ,u (UieN f’iAo) = 22.61,, u (f‘on). Since

this sum must converge to something less than 1 and since f preserves the measure

u, it is immediate that MAO) = O, which is what we wished to prove. I

This theorem permits us to partition A, modulo a set of u~measure zero, into the



collection of Ans. For i 76 3' it is clear that all the images of A,- are disjoint from all

the images of A], except perhaps when they return to A.

For those who are familiar with the use of towers in recent results on decay of

correlations, we should note that in the current context we are not making any as-

sumptions about how the Ans return to A; in particular, we are not assuming that

they map onto A when they return.

Imagine now that we make a tower by constructing a column above each An by

placing above it a copy of fAn and above that a copy of fQAn and so on until we

reach fn‘lAn, which is the top level of the column since ann goes back to A, the

bottom of the tower. Let us denote this tower by A. We coordinatize the tower by

identifying each point with its preimage in A and the image of A,- in which it lies; i.e.,

if y E ka, for 0 S k < i, then let x = f‘k(y), and identify y with the point (x,k).

We say that (x, k) is on the kth level of A. We may define the tower explicitly as

A={(x,i) : xEAandOSi<R(x)}.

This tower A and the map f : AI —~> M induce a map f : A —> A which moves

points up the tower, except for points which are already at the top, and f moves

these points to the bottom of the tower. The definition of f is as follows:

- . (x,i+1) if R(x)>i+1

f (:13, 2) =

(lex)(x),0) if R(x) = i +1

We refer to f as the tower map, and we refer to the map fR : A —> A, defined by

fR(x) = fR(x)(x) as the return map or (in the language of Kakutani [Kak43]) as

the induced map.

10



The measure u on .M also induces a probability measure it on A. Ergodic prop-

erties of the induced system (fR, it) and (f, ,u) are proved in [Kak43] and in [Kac47].

Some of these results are summarized very nicely in [Shi96, pp. 23H].

The above results are purely measure-theoretic, but because we are dealing in this

paper with differentiable dynamical systems and because our primary goal involves

mixing, we must add some additional conditions to the definition of return time to

guarantee that when the Ans return to A they satisfy some geometric conditions which

are essential in our determination of the speed of mixing. We will have the additional

problem that two points which return at the same time to A may not be comparable

to each other because they land on opposite sides of some discontinuity set before

they return to A, and so they will have to be placed in different A,s which return at

the same time. Hence, the tower we consider in Chapter 2 will be more complicated

than the above tower. It may have countably many columns of the same height, and

this does present some complications which are not present in the above tower and

which are not present in [You98]. We will discuss in Chapter 2 the precise definition

of return time we require for our purposes.

Since the publication of Lai—Sang Young’s paper [You98], the tower method ap-

proach to proving exponential decay of correlations has become a relatively widely-

used method. We claim that this justifies our attempt to extend her result so that it

applies to a wider class of dynamical systems. In her paper, Young showed how her

method applies to piecewise hyperbolic (with finitely many pieces) systems in two

dimensions. Later Chernov in [Che99] showed how her method can also be applied to

piecewise hyperbolic systems in higher dimensions. Alvez, Luzzatto, and Pinheiro in

11



[ALP] use the tower method to show that the rate of growth of Lyapunov exponents

determines the rate of decay of the return times. These are just a few examples of

uses of the tower method in this fashion; a multitude of authors are using the tower

method in some way to determine rate of decay of correlations for various dynamical

systems.

Some authors such as Young in [You99] and Buzzi and Maume—Deschamps in

[BMD] consider only tower systems instead of beginning with a dynamical system

and constructing its tower. This approach usually assumes a priori the existence of

a bounded SRB measure for the tower system and the result of Lemma 2.4 (iii) on

p. 29; however, we shall prove Lemma 2.4 from a few assumptions on our dynamical

system; we state these assumptions in the next chapter.

12



 

CHAPTER

TWO
 

The Main Theorem

In this chapter, we prove two primary things:

1. dynamical systems satisfying certain conditions have SRB measures, and

2. dynamical systems with SRB measures which satisfy certain other properties

have unique SRB measures and exponential decay of correlations for functions

which are piecewise Holder continuous.

We follow Young’s argument very closely; however, we make two changes which allow

us to consider piecewise hyperbolic maps with countably many domains of invertibility

instead of only finitely many and maps for which certain types of distortion estimates

grow quite quickly instead of remaining uniformly bounded.

13



2.1 Setting and assumptions

We assume that Al is a smooth compact finite-(1imensional Riemannian manifold,

and that f ‘: [M -—> A! is a map. In all that follows, we let m denote Riemannian

measure on M. If 7 C A! is a submanifold, then we use m, to denote the Riemannian

measure on 7 induced by the restriction of the Riemannian structure to 7.

Definition 2.1 Let H C M. We say that H has a hyperbolic product structure

if there are a continuous family of stable disks F3 = {73} and a continuous family of

unstable disks F" = {7"} such that the following are true:

(a) for each 78 E F3 and each 7" E F“, dim 73 + dim 7" = dim AI;

(b) each 7S disk is transverse to each 7" disk, and the angles between them are uni-

formly bounded away from zero;

(c) each 73 disk intersects each 7“ disk in one point; and

(d) H = U 7“ 0 U 78

71‘ E F" 73 E F3

In other words, H is a like a rectangle which is coordinatized by two transverse

foliations. We call FS and F" the defining sets of H. We shall call H' C H an s-

subset if it also has a hyperbolic product structure and if its defining sets are P“ and

some proper subset of F3. We define u-subsets similarly.

We assume that we have some set A C A1 with a hyperbolic product structure,

and we do not exclude the possibility that A = M. Furthermore, we require that

m,(7 0 A) > O for all 7 E F“.

14



We assume also that A is decomposed into countably many pairwise disjoint s—

subsets A1, A2, . . . such that the following are true:

(a) for each 7" E F", my; ((A \ UieN A,-) H 7") = 0;

(b) for each i E N, there is some minimal R, E N such that fR‘A, is a u-subset

of A such that, for all x E A,, f”“ (73(x)) C 73 (fR'(x)) and fR" (7“(x)) D

7“ (fR" (15));

(c) there is some R0 > 1 such that R, 2 R0 for all i E N; and

(d) for each i E N and for each 7 E F", m, (7 O A,) > 0; and

(e) for each i E N, fR‘ lAi is injective.

We should note that in the general situation, given a collection of Ais, there is a first

return time for each A,, and it is possible that the first return time could be 1, as it

is in the examples we consider in later chapters. To make the first return time larger

than some arbitrary R0, we simply run the system forward R0 iterates, and then pull

back A by each f IAi for R0 times so that we divide each A, more finely.

The tower map and Markov partition

We obtain our results on decay of correlations by working with a new map for which

our current system is a factor system. Let U"EN f"A denote the union of all the

images of A. We shall construct a tower A and the induced map F : A —> A as we

did in Section 1.4 such that there is a projection 7r : A ——+ U f"A with the property
nEN

that f 0 it = 7r 0 F. For simplicity, we shall denote by R : A —> N the return time



function RlA, E R, and by f3 : A ——+ A the return map defined by fR(x) = fR'(x) if

113 6 Ai-

Let us define the set A as follows:

A: {(x,l) : xEAandl=O,1,...,R(x)—1}.

We shall define F : A —> A by

(:c,l+1) if l<R(g:)_1

(fR(33),0)
if [2 12(33) _1

N f"A should be 7r(x, l) = f’(x).Then it is clear that the projection 7r : A —+ U"E

We denote by A, the set of all points in A whose second coordinate is I. Then

A0 = A x {0}. In fact, for each i E N, A, = {x E A : R(x) >1} x {t}. Then each A,

is a canonical copy of the union of A,s which return after time t, and we imagine this

copy of A, as sitting over the copy of A, in A0. The map F simply either carries the

copy of A, on A, bijectively up to the copy of A, on A,“ if R, > Z + 1 or injectively

onto a u-subset of A0 if R, = l -l- 1.

The A,s induce a countable partition M, on each A, and, hence, a countable

partition M on A for which the map F : A —> A is fully Markov. Throughout this

paper, we shall use A,,, to denote the copy of A, on the lth level of the tower A,

provided that R, > t; i.e.,

A1,, = A,flFl(A, X {0}), IfIf/i >1.

A useful tool for defining a metric on the tower A is a function called the sepa-

ration time function 3 : A x A —> N, which we shall define now. Let x, y E A, and

16



let M(x) and M(y) denote the element of M containing x and y, respectively. We

may now define s as follows:

s(x,y) = sup {n E N : M(ij) = M(ij) for all 0 _<_j S n}.

In other words, the separation time of x and y is the last time that they are together

is they travel through the elements of the partition M, or it is equal to 00. It is not

necessary to say what s(x, y) should be if M(x) sé M(y) since all of our conditions

are concerned only with two points which start in the same element of M anyway;

however, one could for completeness simply set s(x,y) = 0 if M (x) # M(y). The

separation time function 3 : A x A —> N induces a separation time function on A x A,

and we will deliberately be sloppy and call them both 3.

Now that we have established a separation time function, we may state the re-

mainder of our major assumptions. In the following, let f“ denote the restriction of

f to 7“ disks, and let Df“ denote its derivative, called the unstable derivative; we

call det Df“ the unstable jacobian. We suppose that there exists a E (0,1) and

that, for each i E N, there exists some C(i) > 0 such that:

(A) for all x, y E A, such that y E 73(x), we have d (fnx, fny) S C(i)a" for all n 2 0;

(B) for all x,y E A, such that y E 7"(x) and 0 g k S n < s(x,y), we have

(a) d(f"x,f"y) S C(i)as(f‘y)‘", and

deth"((fix)

10g.1:Ideth“((ny)

 £000088(Iy)-n

(C) for all x, y E A,,

17



det Df“(fjx)

det Df"(f”J)

 (a) for y E 73(x), we have logH 3 C(7)0" for all n > O, and

(b) for 71,72 E F“ and 971.72 : 7, (i A, —-+ 72 (1 A,, the stable holonomy map,

. . . d d’lm .

we require that 071.72 18 absolutely continuous and that —————(* 72) =

('m71

00 deth“((fjx) .

Hdeth"((fJ((0x))

 

(D) there is a function g : N ——> R such that 9(a) —> O as n —+ co and, for all n E N

772., (7OUA,) S p n

i>n

(E) the sum 26N C((i)“”90) converges.

and for all 7 E I‘",

2.2 Statements of main results

Theorem 2.2 (Existence of SRB measures) Suppose that f : M —> M with A C

M satisfies the construction given in the previous parts of this chapter and that the

following additional criteria are satisfied:

(i) ZEN C(i)aR‘ converges;

(ii) ZieN Ee0(i)g(i) < 00 for some 7 E F“.

Then f has a finite SRB measure, which we call V.

Let 0 < n < 1, and let 5,, be the space of observables defined by

z {901 M —> (C 302(99) > 0 such that ]p(x)— go(y__)|< 6(9/)d(:,1: y)" }
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Theorem 2.3 (Decay of correlations) Suppose that f : M —> M with A C M

satisfies the construction given in the previous parts of this chapter and that there are

some Co > O and do < 1 such that m, {x E 7 O A : R(x) > I} < Coda, and

(i) gcd{R,} = 1, or

(ii) (f, V) is totally ergodic (i.e., (f",V) is ergodic for all n E N).

Then (f, V) has exponential decay of correlations for functions in 55,, for all 0 < n < 1.

2.3 Differences between Young’s result and ours

It is important here to list some of the ways in which our approach here is fundamen—

tally different from that of Young in [You98].

Countable Markov partition

The proof of the quasicompacity of the Perron-Frobenius operator in [You98] requires

that the Markov partition M, on A, be finite for each l E N. To construct this

partition, one requires a separation time function so, as we discuss below, which is

different from the one we define above. This function so is used to define the Markov

partition and to define a new separation time function s like the one we constructed

above.

By including the rate of decay of the A,s in our estimates of the spectrum of the

Perron-Frobenius operator, we are able to allow for a countable partition M, on A,

for each I E N. We are also able to take the natural partition of A into copies of
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the A,s so that the partition is given by the behavior of the map f on A. An added

advantage comes in the way we are able to define a universal separation time function,

as we discuss next.

Universal separation time

The construction of a partition similar to our partition M as given in [You98] requires

the a priori existence of some separation time function so : A X A -—> N satisfying the

following three conditions:

(a) so(x, y) 2 0 depends only on the 73—disks containing x and y;

(b) for 33,3] E Air SOC/Bay) Z If, + 80 (fszafR‘y);

(c) for x E A, and y E A,- with R,- = R,- and i #j, so(x,y) < R, — 1.

This function is not necessarily unique for any given dynamical system, but it is in

some way intrinsically constructed for a particular dynamical system. Note that a

fourth condition in [You98] that only finitely many A,s are separated by time n for

all n E N is not satisfied by our set of assumptions, but we show in this thesis that

this requirement is no longer needed.

Instead of requiring the a priori existence of some function 3 : A XA —> N satisfying

the four conditions given above and then defining the partition M so that 3 may be

extended to so to be compatible with it in terms of those four conditions, we define

our partition M by the natural structure of A, and then we use M to define a return

time function 3 which trivially satisfies the first three properties for any dynamical
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system satisfying Condition (B). The fourth property of so cannot be satisfied since

we may have countably many A,s returning at any given time, but we avoid this

problem as we mentioned above.

The disadvantage of our approach is that our Conditions (A)-(C) (See p. 17.)

cannot be stated without first constructing the tower A; however, this is only an

aesthetic problem, not a fundamental one since the tower is a canonical structure

given by the hyperbolic product structure of A and the fact that fR is fully Markov.

Non-uniform contraction

Recall that C and a are fixed in [You98] and that, for each i E N, C(i) is fixed in our

result. By Condition (P3) in [You98] for the case n = 1, we have

(2-1) d(f$,fy) S Ca;

however, by Condition (A) in our result we have that, for each i E N,

(22) d(fm$,fmy) S C(ilam

for all m E N. In other words, in [You98] all stable disks grow to a fixed size before

contracting. In our result, for every m E N, there can be i E N such that C(i)am > 1

so that only finitely many stable disks need to contract by the mth iterate, but

countably infinitely many may still be growing before their contraction begins.

21



Unbounded distortion

By assumption (P4)(b) in [You98], the distortion along unstable leaves is uniformly

bounded; i.e., for x,y E A, with y E 7"(x) and S = s(x,y). Then

det Df“(fo) 0

(2'3) dethuUSy) S 8 °
 

1

however, in our paper we allow that

det Dfu(fs$) < 600')

(2'4) deth“(fSi/) '—
 

for all y E 7”(x) (1 A,. The only restrictions on the speed of growth of C(i) is that

the sums ZR,eC(i)g(i), ZemilaR‘, and ZC(i)eC(i)g(i) must converge; thus, as

iEN iEN iEN

long as p(i) decays sufficiently quickly, C(i) can grow quite quickly as well. Hence,

the distortion between two points is not necessarily uniformly bounded.

Worsening of absolute continuity of stable foliation

Let x, y E A,. Assumption (P5)(b) in [You98] requires that

d(9:lm7’)

S 60,
dm,

(2.5)

but in our paper we allow the Radon-Nikodym derivatives to grow but require

—1

(25) Ml S 800‘).

dm,

In particular, the Radon—Nikodym derivatives may grow without bound as i tends to

infinity.
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2.4 Proof of Theorem 2.2

We follow very closely the proof in [You98]; however, there are some significant differ-

ences between our proof and that one because we allow countably many A,s to return

at any given time, so we include the entire proof, but the biggest complications come

because we allow C(i) to vary with i E N. Let 70 be some arbitrary 7u-disk which

is full-width in some A and let uo 2: m , . We have already assumed that
’70 A70

1 . dllefflo

(flax/40(7) dm,

'70 (1
i0)

uo(7o) > 0. For eachj E N and for each 7 E F“, let p} = 

whenever (fR)Zuo(7) > 0; otherwise, let p} E 0.

Suppose that 7 E F“ is such that (fR)i ,uo(7) > 0, and let x,y E 7 n A,. Let

xo, yo E 7o F‘lA,0 be such that (fR)Jxo = x and (fR)jyo = y. Since x and y are both in

A,, we know that s(xo, yo) 2 Rj. Suppose that xo, yo E 7o (1 Aio’ Then, by Condition

(B)(b) for all 0 S k g Rioj -1 we have

R- j—l

(2’7) 1'1 det Dfu(fm$o) C , astrayo) — Iii-(n+1.

det Dfu(fmyo) ( 0)

 

l
/
\

m=k

By the Change of Variables Theorem and the Chain Rule we have,

u R- j R- j-l

pflx) : (18th (f 20 (150) 20 det Df"(fmxo)

pf(y) det, Df" (fRiOJyO) m=0 det Dfu(fmy0)

Ri j-l

_ det Df"(x) 10—1 det Df"(fmxo)

dethue) m2, deth"(f'"i/o)

Bibi—1 d Df (f )_ Ct u meo

< C i

- ( l ,1}, deth“(f’"yo)

   

 

 

s C(i)C(iO)o,5(J?oa yo) — 12,0, + 1

< C(i)C(io)aS(“’y)
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because s(xo, yo) Z R“,j + s(x, y). Recall that our separation time function 3 satisfies

the condition s(x, y) 2 R, for all x, y E A,. We may then define

. ' 8(any) ' Pa

L:= sup eClzla Ssurpecula ,
. v .

x,yzEE’iflA, 16

which is bounded since we assume that 2,61,, C(i)aR‘ converges. We have then that

jet)

7(y)

‘
b

 (2.8) S C(io) logL for all x, y E 7 F) A,,

(
P

 and thisIS independent of j and 7. This implies that <pj(xx) < Mo(i) for all
Moe) —

x E 7 0A, for some A/fo(i) > 1. In fact, AIo(i)= C(io) logLsupyemA p].(y). We must

show that lilo is also independent of i. Let x, y E 7 H A with x and y in different A,s,

and let c : [0, 1] —> A be a smooth curve connecting x and y such that, for each i E N,

we have c([0, 1]) fl cl E,, where cl denotes the closure, contains at most one connected

component. For convenience, let us say that x is on the “left” of the curve c and that

y is on the “right.” Let x, = aloft“ O A,). Then

()2: _p__,(:rz)

iwHUT—iEN pj(x1+l)

iEN

: eZiEN C’(Z)CIR1

 

which is also finite. Therefore, there exists Mo > 0 independent of j, 7, and i such

that

(2.9) <pj S lilo on 7 F] A.

1V_Io

Let V] = p} m,. Then V} is a finite measure on 7. Let Vo be an accumulation point of
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{3; 2:,“fR){;io}nEN in the weak“ topology, and let V3 be the conditional measure

of Vo on the u-disk 7.

We claim that V3 << m, for almost every 7 with bounds mil—(5 S 2%}; S Ml(i) for

some A11(i) > 1. The remainder of our proof is identical to Young’s proof; however,

we include it here for completeness.

Let w C 7 F] A, be open in 7 n A, with m,(0w) = 0, and let 8,, denote the s-

subset of A whose section in 7 is w. Let U be a u-subset which is also a compact

neighborhood of 7. Then (2.9) together with (C) imply that for all j we have

   
1 _mxs...) S (fRHMoWfl S...) < Arrows“)

(2.10) . . _

1111(2) m,(A) (fR){,,O(U) m,(A)

for some AI,(i). The bounds in (2.10) also apply to Vo. By taking U arbitrarily small,

the Martingale Convergence Theorem gives us that

1 .m,(Sw)

911(1) m,(A)

7n'7(Sw)

772.7(A)

  
S Vd(5w) S 1111(1) '

for almost every 7. Since w is arbitrary, the density statement for V3 follows.

We have so far constructed an fR-invariant finite Borel measure Vo on A with

absolutely continuous conditional measures on 7“-leaves. We may clearly identify Vo

with an FR-invariant measure i7o on Ao. We define a measure V on A by

I; I: ZFBEOl{R>J}.

yes

The fact that V3 << #0 along with our assumption that m,(7 H A) 21.61,, R,eC(flg(i) <

00 for some 7 E I‘" implies that i7(A) is finite. We now define the measure V to be

the push-forward measure induced 011 A by the canonical projection from A to A; i.e.,

~

*V . . . . .

V := %A_)’ where it : A ——> Un6N f"A is the prejection 7r(x,l) = fl(x). Clearly, V 18

V
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f-invariant and the SRB property is clear since fflV clearly has absolutely continuous

conditional measures on {fj7u} for every j E N, and these are unstable manifolds.

This proves Theorem 2.2.

2.5 Proof of Theorem 2.3

A related expanding system

It is not difficult to see that the Perron—Frobenius operator (1.2) improves the Holder

continuity of observables when the map g : M -—+ [W is an expanding map and that it

worsens the Holder continuity of observables when the map 9 is contracting. Because

our dynamical system f : A —> A has both expansion and contraction coexisting, we

must somehow “eliminate” the contracting direction. Expanding systems are mixing

with respect to a measure equivalent to Lebesgue measure, but contracting systems

clearly are not. Furthermore, expansion causes the Perron-Frobenius operator to

improve certain properties of observables (e.g., Holder continuity or essential vari-

ation), but contraction causes the operator to worsen these properties. There are

two common methods for “factoring out” the contracting direction: (1) identifying

points in the same stable leaf and considering the resulting quotient space, and (2)

taking averages of observables along stable leaves with respect to some cone (in the

lattice theory sense) of densities and considering the action of the Perron—Frobenius

operator on these averages. The latter method requires a good deal of knowledge

about the smoothness of the stable bundle (the collection of stable leaves); however,
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the former method requires only absolute continuity of the stable foliation. We use

the former method in our work, while Viana uses the latter method. (In particular,

see pp. 79-122 of [Via].)

We have a tower A and a map F : A —> A induced by the map f : A —+

A. We want to define a related dynamical system which is expanding so that the

related Perron-Frobenius operator will reduce the norm of observables in the sense

that ”in” S Allrpll + Klap], for some n E N, some A < 1, some K > 0 and for some

appropriately chosen norm || - I] on some space of real-valued functions on A1. If x

and y are in A, let x ~ y if and only if y E 73(x). Then ~ defines an equivalence

relation on A, so A = A/ N is a quotient space. Let F : A —+ A be the map defined

by F(f) 2 FE, where E is the equivalence class of the points in 73(x). Because F

maps 73 disks to 73 disks, it is clear that, if f 2 7y", F(f) 2 fly); therefore, F is

well—defined. In all that follows, we shall let A, A“ A“, and 77?- have the obvious

meanings as given by the equivalence relation ~.

We show here that for many dynamical systems there is a measure u on A whose

conditional measures 011 7“ disks are preserved by the stable holonomy map; i.e., if

0%,: is the stable holonomy map taking points from 7 to 7’ by sliding them along

the stable foliation, then 0w, = [1,]. This fact allows us to “collapse” A to A as

described above in a way that. ensures that the essential properties of the dynamical

system F : A ——> A are carried to F : A ——> A.

We shall define a reference measure I2 011 A and then extend it to all of A by letting

= 7‘71
 
A: 1. We shall also use the name fl when talking about this measure onIll—51

A. This measure R will be such that JF E 1 on the points in A which are not on
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the top level of the tower, but JF = fl? 0 F_(R_l) at the points which are on the top

level of the tower.

Let 7 E F" be some fixed 7“ disk. For each x E A, lot if denote the single point of

Ain73(x)fl7. ForeachnE,N let

deth(fix)

dothu(fif)'

      

 

By our assumption (C)(a) (See p. 17.) on each A, the sequence of u,,s converges

uniformly to some function ulA,‘ On each 7 E F“, we define u, to be the measure

a, = e“ - 1mm 771,. By Conditions (D) and (E), the measure u, is a finite measure for

each 7 E F“.

We note that f3'“ (1 At is nonsingular with respect to the measures u, If we

have fR' (70A,) C 7’, then we shall write J(fR)(x) for Jllmflv' (fR‘IVnAi) (x),

d(T:1m2)

d7". 1

where Jm,,m2(T) z: , since it will be clear in our estimates in which A, a

particular x lies.

Lastly, we note that

iEN

S ZR,eC m,(7flA)

zEN

S m,(7 O A) Z R,eC(i)g(i),

iEN

and this sum is finite by assumption (ii) of Theorem 2.2; therefore, fl is a finite

measure on A.

We prove next a lemma which shows that this measure fl allows us to collapse A

along the stable foliation F3 in a way that preserves J (fR).
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Lemma 2.4 Let 7 and 7’ be two unstable disks in F“, and let 6 = 6,7, : 70A ~—> 7'flA

be the stable holonomy map discussed earlier. Then the following are true:

(i) 9,117 = M;

(ii) J(f”)($) = J(fR)(?/) for all y E 73(18); and

(iii) for each i E N, there exists C,(i) such that, for all x and y in 7 n A,,

< C1(,)as(IRI,IRy)/2.————1
|J(fR)($)

J(f”)(y)  

The proofs of (i) and (ii) are exactly the same as in [Y01198]. For (iii) we follow this

proof but take C,(i) 2 5C(i) The proofs of all three parts are very short, and we

refer the reader to [Y01198] for them.

A space of observables for the factor system

We shall define a space of real—valued functions E : A —> R. We use the bar notation

for the function names as well since we will introduce later a related class of functions

(,0 : M —+ R. It is this latter class of functions in which we are interested; however, we

will demonstrate decay of correlations for the factored expanding system with respect

to the former class of observables and then show how the correlation functions of the

original system are related to the correlation functions of the factored expanding

system.

Throughout the rest of this paper, we shall let IE], and Ifloo denote the L1 and

L°° norms of E, respectively, with respect to the reference measure 17. By “951,, we shall

mean ’g'o'I—A— , where AL, has the same meaning as earlier. We choose 6 > 0 such that

1.1
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e‘do < 1. (See Theorem 2.3, p. 19, for the definition of do.) For future reference, we

note here also that there is some K > 0 such that

”(130)211W)e“<K

(,1:

(2.11)  

where K depends upon our choice of e and where the Axis are the ANS which get

mapped by F onto Ao, the base of the tower —A—. (In other words, the Kits are

the Ans at the top of the tower.) This is true because of our assumptions that

H (A7,) < D (A1,) < Codi, and that Hoe‘ < 1. In fact, we may choose 6 so that K = 2,

if we wish; however, it is not necessary. For each i E N, let 0 < [(i) S m, (7 0A,)

for each 7 E F“. Also, for each i E N, we may choose d(i) E (0,1) such that

(10’) S [(090)-

We choose N E N large enough so that

(2.12) (1 + [3N] e‘N" + 3K/3N (Z C,(i)e(’“(i)g(i)) < 1,

iEN

where H = (11/2. We shall then require that, for all i E N, R, Z N. As we show in the

examples we consider in subsequent chapters, we may choose A differently so that we

may make the first return time as large as we require.

Let us define “Phillh by

Ila-ill. = (988831) lac/38—.—.fen) (W)

ESQEAL,

 

and ”ECU ”00 by

 

Then we define

”Frill, : Z||¢1.illh

ieN
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and

Halt. = Z Ila-II...
iEN

Lastly, we take

Hell, = sup Hall, and Hello, = sup Hell...
leN IeN

and then define

ll'i‘éll = NEH}. + ”Ella. +|§5|1-

 

For convenience in later parts, we shall let

llfill' = ”Elli + “Wise

and write

Hell = Ilell’ + Irli.

Now we define our space .7: of observables by

f: {pzZ—MR : ||§5|| <oo}.

While the norm I] - [I looks quite complicated, we shall see near the end of the proof

that a very natural class of piecewise Holder continuous observables is relate to it.

Our first step now is to show that there is some absolutely continuous F—invariant

measure whose density belongs to .7.

Lemma 2.5 Assume the setting of Theorem 2.3, and let S be as above. Then F :

A —> A has an invariant absolutely continuous probability measure V : pp, where

‘p‘ satisfies cg] S p S co on AL, for some co > 1. Furthermore, [73(5) ——‘p(‘y‘)| S

C’(i)fis(f*m for some C’(i).
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Proof: We take Young’s proof as it is, but we make the obvious changes required

 

71-1
1 _.

b our use of C i . For each n E N, let V” = -— FJ (" — ). Consider V" —- , and

y ( ) n 14:; * ”Jle 8 A0

_ dfin _ 1 _. _- ._ . —-k _
let pn = 5. Then '0"le = R 2,031, where p}, is the density of F, (ulaj), and the

36

03s are the components of F‘on fl Ao for i S n. Let x,y E Ao,, the ith rectangle

—i

on Ao, and let E'j' E of be such that Fif' = T and F ,7 = y. Then

 

 

where i, < 12 < - .. < 2,, = i are the times when F 0] C Ao. Furthermore, we have

that

J? (EH?)

J’F‘ (EVE)

 

5 exp (01(2‘1/33(f“5"_”"y’)) 3 exp (Clev‘is‘i'w) -

Thus, we have that ,6}, ('y’) S 727,, (T) exp (Cfiiflislffl); hence, it follows that p" (y) S

7),, (T) exp (C1(i)fisl'_*§l). Letting n —> 00, we have p (y) S p(f) exp (C1(i)[33(f’yl) for

all ff, Eq— 6 ADJ.

Following the proof of Theorem 2.3, we know that the sequence {fin} has an
nEN

accumulation point, which we call V on A with 0 < V (A) < 00 because of our

assumption that ZEN R,eC(i)g(i) is finite. Also by the proof of Theorem 2.3, we have

some co > 0 such that cgl S p S co 011 A. Thus, we have that

b
l

— —— j - sir—,—

lfifi) -’fi(y)| S lpIZX—ul -]—[—y-]— —1]:£ some“ ‘y’

E
l

whenever ify‘ E A,,,. I
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Decay of correlations for the factor system

_—

The Perron-Frobenius operator P associated with the dynamical system F : A —> A

with the reference measure fl is defined as usual by

 

In order to prove that the factor system (F, F) has exponential decay of correlations

for functions in f, we have to demonstrate three properties of the Perron-Frobenius

operator, to which we shall simply refer hereafter as the transfer operator. We

must show that

o it is a bounded operator with its spectrum is contained entirely within the unit

disk;

0 it can be approximated by a compact operator from f to f; i.e., there is some

compact operator Q : .7: —> .7: such that ”PN — Q” < AN for some N E N and

some A < 1; and

0 its only spectral point of modulus 1 is 1 and the corresponding eigenspace is

one-dimensional.

The first two properties are proved by showing that P satisfies what is commonly

referred to as a Lasota-Yorke inequality:

_ I _ I _

(2-13) IIPNwH S A” He?” + K hell,

for some N E N, some /\ < 1, and some constant K > 0, all of which are independent

of a This is precisely the inequality found in [IM50] and used there to prove the first
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two properties as well. The third property is a consequence of our assumption that

(f, u) is totally ergodic or gcd{R(;r) : :1: E A} = 1. In other words, the third propery

will be true if the system (f, V) is mixing.

Having derived (2.13), one could conceivably use the classical result of Ionescu

Tulcea and Marinescu [IMSO] to prove the first two desired properties; however, this

author has found it a more difficult approach than the one in which one approximates

P by a compact operator.

Recall that the function F : E ——+ K is one—to—one on the parts of E which move

up the tower under F, but it certainly is not one-to—one on the parts of K which get

mapped onto 30. Also, we have assumed that there is some N E N such that R,- 2 N

for all 2' E N. This means that the first N levels of the tower Z are complete copies of

A; i.e., they all contain all copies of the Ais; therefore, as we try to prove (2.13), we

will have to consider how P behaves on the first N levels of A— separately from how it

behaves on the levels above N. To prove (2.13), we shall require four estimates; two

estimates for each of the norms II ' ”h and H ' ”00 on each of these two pieces of 3.

Estimate 1 For alll 2 N and for every a e f, ”(19%),,” = e-CN ||¢,_N,,||oo.

. . —N . ——N—

Proof: Fix 1 and 2. Because I Z N, F 18 one-to—one on F AM, so we have

“(131W
  

= “PA/While.) e—"d(z')
00

= ess sup |¢(§)| e_(l”N)‘d(i) e‘N‘

17677—sz

_ 7 —N(

— llama-Ilse ,

which is what we wanted to show. I
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Estimate 2 For alll with 0 S l < N and for all §5 E 7:, we have

 

 

   

Cl“)

”(PAH—’5) 2'” S _e_ eflkdfi) 9—5'1—-N— +
1‘ 0° ;H(Al,i) F Ali 1

K C1(i) N —16 —.1_— _ .

6 B 6 Q(’) W F NAM h

Proof: Fix 1 and 2'. Then we have

1

2.14 H P”? I < —-—--1__ _ . .—-1__ _ "‘d ',
( ) ( 9’)” 00 _ ; I‘I—FN F NA” 00 ’99 F NA” 006 (Z)

  
 

. ——N
where Z,” means that we sum over all the inverse branches of F . We note now

that

 

7.1__ __

“V F ”AL,-   

1 jL _

_<_ _ _ $06177 +
.___ .2. N

00 — F "A i F AJ

(2.15) ”( l’) I

ess sup '35 @1) ‘ @(lbll-

51326F—~ZM

By (2.15) we decompose (2.14) into the sum of two parts:

1 1

S —_—°1———N— l ' __ _ ‘/___. _ Ed—M 346d“)
 

”(10%),.-
  

———-1——~— esssup My )“WWI e‘l‘dfil-——N . __ _ l 2

JF F Al" 0° ylvy‘ZEF NAM
  

For convenience, let us call the former sum (Suml) and the latter sum (Sum2). Then

the distortion estimate

 

 

 

1

(2-16) T ° 1——N— _ e _ —

JFN F Am 00 MAM)

yields

(8 1) Z 601“) 1 ‘d()um S _ _ E- __N_ e-6 2'.

b, #(Am') F I: 1  



. 1
2 01(2) ,—-,1__ _ _z._d.

a e *9 F NA“- 8 [(2') (2)
v1

|
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|
/
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Cl“) — —f€ '

e '1__ __ e 2 .EM 90 F NA1,,- 9( )

1

. . . —-N-—

To estimate (Sum2), let us use lb, to denote the level of the tower in Wthh F A1,,-

in the branch in question, and let 3;, = ZR,” where 3;,” is the element of the top

level of the tower through which the branch in question passes. Then the distortion

 

 

 

 

    

estimate

_ Z )

I—IT’ 1—-N— S 8010)“ (—br
*-

JFI F Al] 00 fi(Al,i)

yields

(Sum2)

1 _ 7 —_ 7
S 2 _—_N 1 —N I GSSSUP l‘p(y13(y 3:0)(y2)|e—lbre elbrf BRIG—led“)

b, JF F Al: 00 EfflzEEF—NEIJ (3 1 2

. 1 _* .
<eCI(z)fiN Tp‘-1 N__ _ 21(A )elbrf e"l‘d(2’)

F AU h WA“) 1;,- hr

<KeCI(i) N .1_~ _ 6—16 2

5 xi? F NAu h ,9()

    

Combining (Suml) and (Sum2), we have immediately the inequality which we sought

to prove. I

Estimate 3 For alll Z N andfor all? E f, we have II(PN¢)HIIh S BNe‘N‘ IIQEIJ-Ilh.

Proof: As in Estimate 1, this estimate is very quick to prove since F is one-to—one

 

on the first N levels of the tower. From the definitions of II ' II}, and P, we have

PN_ 7 — PN’ .-

II(PN¢)“II : ess sup N (p) (1:?)- (_ (p) (”H e’l‘d(z')
, h 51,5263” ,8'5 ($1, .172)
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2 ess sup Iii—'5 (.171): CEWQIB—(z—Ny

171326F_N31,i [38 (yll y2)

= ( 6388 sup '90 (ll/1) _ 90 (y2)le—(l—N)e) fiNe~Ned(Z-)

yi~y2€Zl—N,i fig (guy-2)

 fi”e“”‘d(i)

 

,—- N —NE

S “Wt—Millhfi 8 1

which is what we wished to prove. I

Estimate 4 For alll with 0 g l < N and for all? E f, we have

    

    

_ Cl(’l)€Cl(i) _ . _

PNcp . g —-—_———e "d(z) 90-1__N_
”( )l,z h 2b,; fi(Al,i)

F AMI

+KC,(,)€c.mfi~e—ug(,)
elf-”KL.- .

+ K CV1“) N ' j,— . 1—_ — ,

8 [3 9(2) a0 F NAM h

 

   

Proof: Consider 51,52 6 EU. We write @3- = F_ij for j = 1, 2 for the preimages

of El and 3132 in a given branch of 74". In our estimates here, we shall restrict our

attention to one branch of E-N, show that the estimates are the same for all branches,

and then sum over all the branches to obtain the final estimate.

We have from the definition of II - H h that

_ ——N_ _ ——N__

H<P~¢>,..n,,=esssup 2: ”(F “l -— “05” “l
ELM/3,, b, J?” (F‘N351) J? 154252)

(2.17) . fi-S(F‘N§1,—F_N§2) e—l€d(’l)

_<_: esssup (

._ _ —-N—

am) _ W172)

JFWI) .1?”sz  

B—S(§1.372)) ,BNd(i).

For each of the inverse branches we have that

WE) _ 90(y2)

ff” ('91) WW2)

 

 

<1wa W2)! __

g   



< ml) 45%)!
 

_ +

1F” (a)

._ __ —'—(lbr-N) _ —“‘(lbr_N) __

, s F '1 ,Ftiff/93: 01W ( o.) (99)),

JP (92)

where l is as before the level on which 3;, lies in its branch. Combining this with

(2.17) we have the following:

<2 esssup ((I¢@Q;g(y2)l+

57‘ 311#261?NAM JF (yl)

IESgQN Cl(i)fls(f—(zbr—N)(yl)f—ubr—Nuyfl)) H—s(y,,yz))fiNd(z-)

 

||<W”)   

 

  

 

  

JF (T19)

S g 7%? 1F_NAII 00 El _3::S;11PAI I?¢(yfl12(y—ly:)(y2ll fiNd(Z-)

+;CI(9);|J;N F NA. '.,9. 1F_N_A_Hoo5~d(9).

Note that we used the fact that

93 (TM—MT,FWMW) S 9491,99)

because 8 (F_(lbr_N)yl,f—(lbr—NEQD Z s(y,, yg). We have already seen both of these

sums in Estimate 2, and so we simply now follow our work there from which we get

  

 

 

  

  

  

_ 01(0601“) _

PNLP .II S ———_———8 lcd(l) 90' 1—_N—

ll( )1" h Z»: fl(Al,,-) F Au]

KC ' (31(1') N 1__ __+ Me Beem a F NAM h

+KeCI“)/3Ng(z') ,9 1—_N—

Am h

and this is the inequality we sought. I

Combination of Estimates 1 through 4. We now derive our Lasota-Yorke in-

equality (2.13). Combining the above estimates and using the definitions of ”$1,;- II we
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have

”PA/9’3“ < 8—1“ ”9/3”“, + KBN (28)Cl“ 9(1)) llfllh

iEN

+ [3Ne_N‘ ”:9”, + 21m” (201096“"20)) Ilffillh

 

 

iEN

6‘7“"(10') 7 01(i )6“Md“) 7
+ (2]; 21(3”) ) l‘l’ll + (g; [_12(Al,i) ) lcf’ll

s ((1 +fi“’)e“+31%” (201(2))9‘1“)9(0)) IIZEH'

iEN

01(2)eC‘(i)d(2) 7

+ 2(1462 71- (31,1) ) lLFll

g ((1 +,{3N)eN‘+3K;3N (201(2)22‘1‘l 920)) II;II’

ieN

+ 2 (201(1)>600)?(2)) Iii/“I1

iEN

Choosing N large enough so that it satisfies (2.12), we have some A < 1 so that

._ , . _ _
(2.13) ”PM; SANII¢II'+K'I¢|1

  

for some K’ > 0 since the sums in the last two lines are finite by Condition (E) on

p. 18. This is the Lasota-Yorke inequality (2.13) which we sought to verify.

Spectral radius of P. In order to make use of the approximation of P by a compact

operator, a fact which we prove in the next section, we require that the spectrum of

P is contained in the unit disk. By (2.13) we know that, for all k E N,

._ _ I _. -—PM 1)N¢)H SANHP(k-_)1)NSPIH +KI|P(k— 1)N50|1°

            

It is a basic property of the Perron-Frobenius operator that |P¢|l = [Ell for any real-

valued function a (See [Br096] for an excellent discussion of important properties of
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P.) By this property and by induction on the above inequality we have

k—l

llPst‘éll’ s W H¢II’ + (WE/V”) lell

i=0

for all k E N; therefore, we obtain

 “We  

= ||PkN¢||'+ |P’°N¢|l g (1+/\’°N + K’COZAJ'N) ”a“.

jEN

Thus, “PkNEH g [C ||E|| for all k E N, for some [C > 0, and for all E E 7-". Let n E N.

Then there exists 2' E N such that 0 g i < N and such that n = kN + 2'; therefore,

||P"E|| S [C ”PE” 3 IC (supOSKN ||P2||) HE”. Since this is true for all n E N and for

all E E f, the spectrum of P lies entirely within the closed unit disk.

Approximation of P by a compact operator

In this section, we shall construct a finite—rank operator and show that this operator

is close to P in the sense used in [D858]; i.e., that there is To < 1 and m E N such that

||Pm — Q“ < Tm. Let M denote our original partition of E into the 31,,- components.

Recall that each Z, is partitioned into countably many pieces. For k E N, let Pk be

some finite collection of Ems for l S k such that 2 H (Km) 8’6 < 6k, where 6k -+ 0

3,,”th _

as k ——> 00. We can do this for the following reasons. The partition on each level A,

of the tower Z is countable, and Ii (31) is finite. On the first [C levels of the tower,

we include in Pk sufficiently many of the _A-Ms so that what remains has measure as

small as we wish. For the levels above k, we know that their total measure is not

more than C068.

For convenience of notation, we will use Pk for both the finite collection and the

union of its elements. Let E9C = E- 179k and E>k = E — E“. For E : Z ——> R, we shall
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let EN (E) denote the conditional expectation of E with respect to the partition M and

the reference measure fl. Let Qk : f —-+ .7: be defined by (2;, (E) = PN (EN (Esk)).

Because the number of Ems in ”Pk is finite, Qk is clearly a finite—rank operator.

Let E = (E — EN (E))Sk. Then

EN (E) = EN (55' 1m) — EN (EN (315' 119;.» = 0.

Note that

(P” — Qt) (a) = P” (W + a”) — P” (EN ($90)

= P” (as — EN W» + P” (wk)

In order to estimate H (PN — Qk) (E)||, we must break this down into the four pieces

corresponding to those in Estimates 1 through 4. In fact, we will encounter here nearly

those very same estimates; however, these estimates will be easier since certain terms

which appear in Estimates 1 through 4 will not be present here because EN (E) = 0.

Estimate 5 Forl 2 N, we have ”(PW)“l
 

S BNe—Nf l $1—NJHh'
00

 

. —N . —-N— . .
Proof: Since I Z N, F 18 one—to—one on F A”, from the definition of H - “00

we get

”(WM   

 

 

: —. 1__ —-l(d '

lw F NAM 006 (z)

I — — _ —, _ _6 .

S ___N_ / wdfi + esssur) l1/J(:t/1)-w(y2)| 8 “1(1)-
_. __N_

[1(F A”) r—"z and A1,.

(,1'
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By the definition of E, the integral above is zero. Furthermore, we also note that

lw (3&1) — E (val = lab" (a) — EN (a) (a) — a (a) + EN (:5) (a)!

: WW1) " $(y2)l

because EN (E) (ijl) 2 EN (E) (ij2) since both 5, and fig are in the same branch of

——N . . .

F and, therefore, in the same element of the partition Pk. Thus, we have

N (PNELJ. g ess sup WW1) _ PWNI e—Iedm

_ _ -——N—

311412617 Ala

 IOO

 
, |¢(§i)_¢(lj2)l —(l—N)c —Ne N -

_ _ _ ‘— . [33(ylvy2) 6 6 ’8 (1(2)

-— —N N
S llWi—N,i|lh€ ((3 ,

and this completes this estimate. I

Estimate 6 Perl 2 N, we have

 

 

(PNEhJHh 5 ”PI—Nallil/BN‘Z—M'

 

  

 

Proof: From the definition of H - ||h we get

_ PN— —- _ PN_ 7".

||(PN¢)I. = esssup |( 1/1)(:i:1)_ _( 2'1’) (“DH e—ied(z-)

,1 h 53152631,.- [841132)

2 esssup (111(1),):—j/J(g/2))€_(,_N),E e"N‘,8Nd(z')
_ __ —_N_.. [33(y1iy2)

yliy2EF A13

3 IIEI—NJHh’BNe—Nf’

which is what we wished to prove. I

Estimate 7 For I < N, we have “(PNELHOO S KflNeC‘“)Q(i) E 1P_N—A_ .

l,i h    
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Proof: All of the hard work for this estimate was done in Estimate 2, but here

= 0. Therefore,

1

we have only the latter term from Estimate 2 since

 

_.1__ _—

IP F NAM

 

the estimate we seek follows immediately. I

Estimate 8 Forl < N, we have

+

h

E1__N_HeatsKeaneCWe-m» F 

 

  

Kemwgm
    

7.1__ ,_

9” F “AL,-
h

Proof: Analogous to Estimate 7, this argument mimics the proof of Estimate 4

, . 1__ —

‘1’ F ”A...
= 0. Thus, our estimate follows immediately. I

1

except that again

  

Combination of Estimates 5 through 8 and estimate of IIPN (E>'°) II. Com-

bining Estimates 5 through 8 and using the definitions of II ' ”00 and II - II h we have

7'

”PW” = HPWII' + IPWII = IIPWII'

s 2/3Ne‘N‘ Halt. + KHN Hell. 2: 60““90)

iEN

+ K3” Halt. Z 01(z')e01<”g(z‘)+ K6” Hall}. 2: e""“’e(i)

ieN
‘EN

3 r3” (2 + 3K2 Cl(i)eC‘“’e(i)) Hell-
iEN

Lastly, we show the most difficult calculation for IIPN (E>k)II, and the others are

nearly identical. We have the following:

 

    

 

1

PN 55>}: I S I '1_—N— 7'1—-N— ([(i) '7 00
II( ( ))l,l 00 ; J—F—i'V F A” 00 5" F A” 00 IV’II

>1:

1Z J?" F ”A,.-I... .. F NA .0 MIMI...
   

Ewen :sz
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CiIi) III-(FA,Ali) eflbr —

S :6 C1(z)# IV’"00“

37c

   

NEH)

+ Z __1_W.1__N_ I¢.I__N_ dawn...
E¢1> :l<k JF F Alf-00 F ALI-00

SeC‘(')(1——I%II_IImZ—II(AI)

l>k

+ 66.,(.):(,)_@ Hall... 2 g (EM) 6:.

[(i)

s (eCMidufiig) II¢II' (at + ck),

for some 6;: —> O as k ——> 00. Also

31363:: :19.-

IPN(¢>k)II=I¢>kII= 2 I901; I <€Z|¢|1

31.4731;

forsomeek—+0ask—>oo.

We may then choose k E N and N E N sufficiently large so that

2:: (6k+ek+€Z))Zeclh) @22()+fiN (2+3KZCIU(1")d()) <1.

iEN iEN

Let To be such that Z < 76" < 1. Then II(PN — Qk) EII 3 “r6" IIEII. We now apply

the following proposition from Dunford and Schwartz. (See pp. 709-711 IDS58I for

the proof.)

Proposition 2.6 IfP is a bounded linear operator, if there is some compact operator

Q, if there is some r0 < 1, and if there is some N E N such that IIPN — QII < ”r6",

then any spectral point A such that I)\IN > IIPN — QII is isolated and its eigenspace is

finite-dimensional.

Thus, P is quasi-compact, and our only task now is to isolate 1 as the only spectral

point on the unit circle.
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Showing that (P,U) is mixing

We have established that the Perron-Frobenius operator P : .7: —> .7: is quasi-compact;

i.e., that all spectral points lie in the closed unit disk and that there is some disk of

radius r < 1 such that all spectral points outside this small disk are isolated. When

this happens, it is often said that P has a gap in its spectrum. In order to prove

that (T5,?) is mixing, we must show that 1 is the only spectral point of modulus 1.

Young proves in [You98] that (7,?) is exact, and her proof works here unchanged

since this part of the proof does not rely upon the behavior of C(i); thus, we refer the

reader there for the complete very brief proof. It is a basic fact that exact systems

are mixing.

Decay of correlations for (7,7))

It is worth noting that the mixing property of (PE) along with the quasicompacity

of P implies directly that 1 is the only spectral point of P on the unit circle (and it

is of course an eigenvalue since it is isolated) and its eigenspace is one-dimensional.

To see this, let (15 E L1(fi) and 1,0 6 L°°(fi), and suppose that P45 = 0gb. Then

1930/11)(P"¢)dfi = "1330 (w of") (bdfi

= lim (w o P”) 12—5- (ii?

a... (5)

Wu—
=/¢(fi/¢dfi) am.
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Thus, onq§ = P"E converges pointwise to E f Edfi, which implies that o = 1 and that

the eigenspace of o is one-dimensional.

We will show explicitly at the end of this chapter how this puts an exponentially

decaying bound on the correlation functions of (FE) as well as for (F, V), which is

the goal of our proof.

Decay of correlations for the original system

In this section we show that we may compare the correlation functions, which we

derived in the previous sections for the factor system, to the correlation functions for

the original dynamical system (f, V). \Ne have so far a Markov system F : (A, E) ——>

(A,i7) over the dynamical system f : (M, V) —+ (ll/1,11) where V is an SRB measure.

~

7r...V

We note also that we have a projection 7r : A —> M such that V 2 ~(A

have the factor system F : (A, ‘1?) —+ (3,?) and the projection if : A —+ A such that

. We also
 

v

t

if = i}. For E: [W ——> (C we let E := E 0 7r : A —> IR denote the lift of E to the tower

A. Recall that 7r is simply an identification between the lth level of the tower and

f‘A. Let 77 > 0 be as we previously defined it. We defined our space of observables

56,, earlier.

For convenience of notation, let us use Dn(E, E; V) to denote the nth correlation

function with respect to the measure V:

Bdrm/AV) =/so(wof") dV—/EdV/Edu

and the analogous definition of Dn (E, E; E), the nth correlation function with respect

to the measure 3. Note that Dn(E, E; V) is with respect to the map f : [W —> A1, but
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that Dn (E, E; D) is with respect to the map F : A —+ A. It is obvious by the Change

of Variables Theorem that

(2.18) Dun/mm) = D, (a 215; a) .

It is our goal in the remainder of this chapter to show that Dn (E,E;§) can be

approximated arbitrarily closely by quantities involving things related to the system

(F,—A_, E) which we know already has exponential decay of correlations for functions

in f. Because of (2.18), we shall show that Dn (E, E; I7) can be approximated well

by the correlation functions of the system (F,_A_, '17). We Show in the last two pages

how the observables E : [W -—> IR in f)" are related to observables in f for the factor

system (F,A,v).

We state now a lemma which will be of much use later. We shall fix It later. In

what follows, let A(i) denote the part of A sitting over A,.

Lemma 2.7 Let :1: E A(i). Then diam (anM2k(:r)) g 2C(i)ok.

Proof: Let y1,y2 E M2k($)flA(i). Then there exists g E 'y“(y1)fl'ys(y2). Suppose

without loss of generality that M2k(.’E) fl A(i) C A,. Then nF‘ly), 7rF“’y2 6 A;, and

they both lie in the same 73-leaf. By (P3) we have

d(7rFky),7rFky2) S C(i)a’+k S C(i)ak.

Similarly, nF‘lg}, nF‘lyl 6 A,, and they both lie in the same vu-leaf. By (P4)(a) we

have

d(7rFk§/,7rFky1) g C(i)aS(Fk9'Fky‘)’“+kl g C(mk.

Thus, we have that d(7rFky1, ani/g) S 20(i)ozk. I
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Estimate 9 Define E, on A by EkIA E inf{E(:1:) : :1: E FkA} for every A E Mgk.

Then

IBM (a, 27} o Fk; 5) — DH ((25, a; 27) I s C’(<p, work"

for some C’(E, E) > 0

Proof: Note that

 
Dn—k (giJOFkiD)-Dn—k(¢iz/jkil/V)I

/E(E0FkoF"_k) dU—fEdU/EodeD

—/E(EkoF"_k) dD+/Edi7/Ekdi7

+I/(E0Fk—i3kw’z7-fs‘o'dv

 

 

s I/(EoFk—‘z/iquHw
  

It follows from Lemma 2.7 that

I f(2%W 4/3,.) elm—WU
 

+wkI/(EOFk—EkM’J-fEdi}

=Z/A((EoFk_ — )c,—Fnk¢d~+ Z/A(EoF —¢k)d~/A<pd§

iEN iEN

 

  

    

< Z/A(EoFk—Ek)oF"‘kEdi7 +Z/((EoFk—EkMTJ-f Edi?

ieN ieN Ai

S 2 C(E) Idiam (an(M2k(:c ”Inf IEI dV

iEN

3 NW)2 C(i) Ian" IioIoov (An

iEN

s 2W)Z 0(2) WI" IIoIooBg (A1)

ieN

S C’(<p, Walk”,
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for some B > 0 where C’(<p, 2/9) = 26(9)) ZEN C(i)|<p|ooBg (A,), and this sum is finite

by our assumptions on I)". I

Note that each set A E M2,, is a union of stable leaves; thus, Ek is constant on

stable leaves, and so ibk induces a well—defined map on K, and we shall also call this

map Ek without confusion since it will be clear from the context the particular map

to which we are referring.

Estimate 10 Let 17% be as defined above, and let EL. be defined analogously. Let

Ekfi denote the signed measure whose density with respect to U is Eh, and let (5;, =

d (PHI/117))

(117

. Then
 

an—k (571%; D) — Dn-k (fikagk; ;)| S C”(909 1100,")

for some C”(99, 1b) > 0.

Proof: Just as in the proof of Estimate 9, Lemma 2.7 gives us

Z/A-(“(Wylie)“? W) MZ/AWar/A90- 9006117

iEN iEN

<Z/Ail([(I/JkOFnkH(90— final-2A Wield” ARE—Edd?

iEN iEN

    

s 2Bmaxlwl 29(1) /A IQE— a: d?
ieN 1'

S 2Bak"111ax |z/1| - Z €(90)C(i)g(z')

iEN

S (12(va w>akna

where 77 is chosen as before and 02(90, 9’2)—— 2Bok77max|1/)|€()216NC(139)(z), and

this sum is also obviously finite.
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Note that in Estimates 9 and 10, we did not use the fact that 99 and 1/1 were Holder

on M with a uniform Holder coefficient. Rather, we could have simply required that

both 90 and 1,!) were Holder on each A,- with some Holder coefficient €(z', 90), for example,

such that the sum ZieN {(i, 90)C'(z')g(z') is finite. In particular, this would allow €(i, (p)

to grow without bound as i -—> 00.

We now observe that Dn_k(§6k,;fik; 3) can be expressed in terms of objects only

from f : (3,?) —> (3,7). First,

/ (a. o F“) :03. d3 = j a. d (Fr—k ($1.27))

= fEkd(F:l(¢ki;))

= [namew»

= /W?" (W) dfi-

Also, we observe that

[ma/adv:farms»jam/adv-fadv.

Estimation of the correlation functions and end of the proof

We note that we have

 

DH (nae) = If (a o F"-’~‘) adv— / sad;- fad;

5O



 

  

  

    
S li/llem) '06, P" (W? —

where H . H is the norm on f we introduced earlier.

Next we observe that Dn(99,'9’1;1/) 2 0,, (975, 12;?) = Dn_k (93', E0 Fk; 3). We have

proved earlier that P is q1.1asi-compact, so we may define

T = sup{|(| :C E 0(P) such that C 751}.

By Estimates 9 and 10 we have

13110709711); V) S (1912.019, #1; V) — Dn—k (Saki/:53” + Dn-k (amid?)

55k? “ (f—kpdfi) :5“.

Now choose k z 721 and T1 = max{ak’7, 7'}. Then 7' is the rate of decay of the correlation

3 (CW: 2/2) + C"(<.0,1/1))01k" + lwlmmfla’w

  

functions, and we define

C(so, 1/2) = C'W, E) + Wet/0 + Whom—006'

  

and the last factor is finite since it is clearly bounded above by ”W” + H (f Wdfi) 'p'“,

and this completes the proof of Theorem 2.3.

51



 

CHAPTER

THREE
 

One—dimensional examples

In this chapter, we construct some one-dimensional dynamical systems which do not

fit into Young’s original construction but which fit into the setting of our extension of

Young’s theorem. We begin with a map with two domains of invertibility and show

how our technique extends trivially to a map with finitely many domains of invert-

ibility as long as we choose A prudently. Finally, we show that under an additional

assumption about the speed of decay of the measures of the domains of invertibility,

we may extend our result to include maps with countably many domains of invertibil-

ity. Some of the properties of our examples are not really essential for the dynamics

we consider; however, our aim is to construct simple examples of dynamical systems

which are not (as far as this author knows) covered by previously known theorems.

We claim that it is clear which properties of our examples are essential and which are

merely aesthetic.
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3.1 Two domains of invertibility: a motivational

example

Let a 6 (0,1). We partition the unit interval [0,1] into two pieces [0,a) and [a, 1].

Furthermore, we partition the interval [a, 1] (mod 0) into subintervals by a countable

collection {T_,- : iEN} such that a < < L,- < 'r_,-+1 < < 7-1 = 1 and

such that [a, 1] 2 (Jim [T_,-_1,'r_,-]. To use the notation of Chapter 2, we let A,- =

(T_,_1,T_,).

For the moment, we wish to define our function f : [0, 1] —> [0, 1]. We let

(i) inlays) = 3

Then for each 2' E N we suppose that f IA- is C2, and f satisfies the following condi—
1

tions:

1

’ >—>1,

flAil—o 

(ii) there is a < 1 such that, for each 2' E N,

(iii) for each i E N, fA, = (ai,ai_l),1

f’(=r)

f’(y)

 
SK,(iv) there is K > 0 such that for each 2' E N we have sup

x,yEAi   

(v) for each i E N there is D,- > 0 such that

 

fill/M] :— D,-, and

f”($)

f’(a:) < K'
(vi) for each i E N,  

 

—I

We shall also assume that there is b < e‘1 such that m (U A.) _<_ b0 . We shall

i>l

see later that this will ensure that Condition (E) is satisfied.

 

1This property is not essential, but we use it here to make all the estimates easy.
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To understand how this map fits into our scheme from Chapter 2, let us examine

how it behaves on each A,. First, we let A = (a, 1). The subinterval A1 is mapped

onto A in the first iterate, so its return time is R1 = 1. Then f maps the subinterval

A,- onto (at, ai’l) and then onto (at-1, ai‘2) and so on until it is finally mapped onto

A. The return time of A,- is R,- = 2', so we have the simplest possible example with

one A,- returning at each time n E N.

Let :13, y 6 A,, and let C(i) = K’a“i+1, where K' = szeN oz‘j. We claim that

     -—E%3]< iKZCFj < K’a_' = C(i)a_1.

jEN

First, let us note that, if :1: and y are far enough apart in A1, they will separate

_(___fj$)

f’ (f’)

Condition (B)(b) for 0 S n < sa:(x,yy.) (See p. 17.) We should note that Conditions

  

when they return to A, and so we need only look at the quantity in     

 

(A) and (C) are vacuous here since we do not have a contracting direction. For these

:1: and y, we have

_(___f':c

M———-§=| gm];—

which is what we require.

  

 
     

   

On the other hand, if :1: and y are quite close together in A,, they could return

together to another A], in A. If they land close enough together in A3,, they could

return together to another A1,, and so on; however, because of the minimum expansion

by a“, they must separate in finite time. Let us consider the case when Ia: — yl =

m(A,), where m denotes ordinary Lebesgue measure. Because f “0, a) is linear,

distortion is introduced only when fig; and fj'y are in A. If they land back in the



same A,- in which they started, then they must now be far enough apart to separate

when they return again, and so we would have

     
f’(fj$) - —1
m] S (1+a)K _<_ C(z)a

In fact, the only way that :1: and y can avoid separating when they return to A is if the

land together in some AJ- with j < 1'. If they land near the left endpoint of A], then

they will certainly separate on their next return, and so they will pick up no more

distortion. It is not hard to see that the most distortion which can be introduced is

given by

f—’——(if? S z'K S K'a‘i = C(i)a"1.logEIT—

Continuing this line of reasoning for any two points :1: and y in A,, we see that

logf1

jzo

  

    

 

z'KZa’j S K’a‘i = C(i)oz‘1.

jEN
f’f3-———-]_<_]

We should point out that because of assumption (iv) above, these systems do

not fit into the original theory in [You98]. This is because Young’s original theorem

f’($)

f’ (y)

< T6i for some
 requires that there18 some 6 < 1 such that, for all :1: ,y E A,,

  

T > 0.

Finally, we note that Condition (D) (See p. 18.) is clearly true, and Condition

(E) is true by our choice of b since eC(‘)Q(z') S ea_ibo‘—i = (eb)a_i, and this decays

faster than exponentially since eb < 1 and a < 1.

Note that we have only verified the conditions for Theorem 2.3. With the amount

of distortion present on each A,, we cannot verify the assumptions of Theorem 2.2.

In particular, the sum ZEN 60(001 does not converge, but this is not important since
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the existence of SRB measures for systems satisfying assumptions (ii) and (vi) above

has been proved by Broise in [Br096].

3.2 Finitely many domains of invertibility

It is clear from the construction in the previous section that we may easily consider

a function f : [0, 1] —> [0, 1] with finitely many domains of invertibility. Suppose now

that we have some finite collection of a,s such that O < a1 < a2 < < a, < 1. We

suppose that

ID

(i) f|[0,a1)($) 2 (TI,

and we suppose that each subinterval (aj, aj+1) is partitioned (mod 0) into countably

many subintervals A}, such that

(ii) for each j and for each 1' E N, f IA- _ satisfies all the assumptions for f l A- in the

.711 1

previous section mutatis mutandz’s with a replaced here by al.

In particular, for every j we assume that fAJ-J- maps onto (a],a']"1). Also, we replace

the assumption m (U A,) < b‘rl for some b < e‘1 by the corresponding assumption
i>l

m (UR,>1Ai) = m(Ui>1Aj.i) < b“—'. We define A = (a1,1). In each subinterval

(a,, a,-+1), there is precisely 011 Aid which returns at time R,- = i, and since there are

finitely many such subintervals, it is clear that the sums we consider in the previous

example are all still finite here.
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3.3 Countably many domains of invertibility

In this section, we show how we can extend our work in the previous section to include

maps with countably many domains of invertibility. As one imagines, the extension is

not trivial. In fact, we require further knowledge of the rate of decay of the domains

of invertibility.

We assume that we have some countable collection of ais such that 0 < a1 <

< a, < a,“ < 1. All of the assumptions in the previous section, including the

assumption that m (U A“) < ba_l for some b < e", are taken here. Even in this

i>l

case, [Br096] proves the existence of SRB measures under assumptions (ii) and (vi),

which we established at the beginning of this chapter; therefore, we only have to show

that the sum ZEN eC(i)g(2') converges, where 9(2) 2 ba_i. First, note that

(3.1) Z e50(i)g(2) = Z Z 650(i)g(2).

iEN nEN 13531;

Let us use Ej to denote the subinterval (aj,aj+1). In our construction, there is

precisely one A, in each subinterval Ej which returns at time n, and C(2) is the same

for all of these As with R,- = n. We see that we require sufficiently fast decay of

the lengths of the intervals Ej in order to guarantee convergence of the sum (3.1).

In particular, exponential decay will suffice. We assume that there is p < 1 such

that IE3] S p7 ]E1|, where |Ej| denotes the length of the interval Ej. There is some

constant K2 > 0 such that [AM] S Kgpl|ALn| for all j E N and for all n E N. Note

that C(2) is constant on U iem A,, so without ambiguity we shall write C(n) for this

Ri=n
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constant. Then (3.1) is bounded above term-by—term by

Z ESQ") IA1,n|K2 2 pi,

nEN jEN

and this is clearly finite since this is the same sum as we have in the system with only

two domains of invertibility, except with a constant. multiple.
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CHAPTER

FOUR
 

Newhouse-Jakobson maps

We finally address the maps which motivate all our work. In [JNOO], Jakobson and

Newhouse prove that certain types of piecewise smooth hyperbolic maps on the unit

square in R2 have finite SRB measures. Furthermore, they prove that the natural

extensions of the systems they consider are K—automorphisms; therefore, they are

mixing, but the issue of the speed of mixing is left open. We make some meager

progress in addressing this issue through the use of our theorem, but unfortunately we

are not able to include the family of Newhouse-Jakobson maps in their full generality

under the umbrella of our theorem. For the convenience of the reader, we give here

a brief summary of some Newhouse—Jakobson maps which do fit into our theory, and

we refer the reader to [JN00] for a discussion of them in their more general context.

We assume that the unit square I2 is partitioned (modulo a set of measure zero)

into countably many full-height curvilinear rectangles {Ei : 2 E N}. For convience we

shall use the notation and vocabulary of [JNOO] and call E,- the 2th post. The upper
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and lower boundaries of each E,- are subintervals of the upper and lower boundaries

of I2; the left and right boundaries of each E,- are the graphs of smooth functions

1132

dy

2,. We assume that F I E- extends to a 02 map on some neighborhood 8,- of E, and
1

 

 

1,-(y) such that l S a for some a 6 (0,1) which is independent of the function

that S,- := FE,- C I2 is a full-width strip. The left and right boundaries of each S,- are

subintervals of the left and right boundaries of I2; the upper and lower boundaries of

dyi

S a. For eachi E N,

d2:

each S, are the graphs of smooth functions y,(:1:) such that

  

we do not permit the upper and lower boundaries of S,- to meet, nor do we permit

the left and right boundaries of E,- to meet. For each 2 E N, we let f,- := F I E2 denote

the restriction of F to the 2th post. There are some technical requirements on the 8,3

which are essential in the proof of the existence of SRB measures; these requirements

are discussed in [JNOO], but they are not important to our work here since they do

not enter into the discussion about the correlation functions.

For each 2 E 12, let lz denote the horizontal line containing 2. We define the

following:

62 (E,) = diam (12 (1 E1)

62,1nax : 1:133 62 (E2)

(Si,min = min 52 (E2) 3

zEQ

and we assume the following conditions on the geometry of the ES:

(H1) int E,- flint Ej = (b if 2' # j,

(H2) m (12 \ Um int E1) = 0,
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(H3) — ZiEN 62.max 10g 62,min < 00.

We assume also that Q := I2 \ UieN int E,- is hyperbolic for F; i.e., for each :1: E a?

there is a splitting TIM = E; E) E: which varies coninuously with :1: E Q, a constant

K0 > 1, and a Riemannian norm I - I such that

1. 0.192;) = E2...) and D.) <E:)= E12),

2. |Dxf(v)| S Kiol’o] for all 21 E E3, and [sz(v)] 2 KOI’U] for all 21 E E3.

For each 2 E N and for all (x,y) E E,, we write f,(:1:,y) = (f,1(:1:,y),f,-2(a:,y)),

where we are using the canonical coordinates on the unit square, and we use film,

filmy: f22W, etc. to denote the partial derivatives of f“ and fig for each 2 E N. For

each 2 E N, let

ID2f2($01 310)] = £11211); lfijklwm 90)]

(k1): (1.x).(r.y).(y.y)

denote the maximum second derivative at (1:0, yo). We may now state the final con-

dition found in [JNOO]:

D2 ,

(D1) There18 some C0 > 0 such that sup I f (2)]

EN ifilx(z )|

26

_6z(Ei)<Co.

The reason we are not able to include all Newhouse-Jakobson maps in our theo-

rem is that Newhouse and Jakobson make very weak assumptions about the stable

foliations of their systems. Aside from the requirement that the stable foliation F3

is preserved by F, the only condition relating to the absolute continuity of F3 is

Condition (H3).

Let 7 E F“. Horn (H3) Newhouse and Jakobson show that for every 6 > 0,

there is some compact set A C '7 and some constant K; = K4(A) > 0 such that
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m7 (7 \ A) < e and such that, for all z E A and all n 2 0,

(4.1) < K4,
 

" deth“((sz)

I1&3th" (fJ(62))

where 6 is the stable holonomy map we introduced in Chapter 2. This is very nearly

Condition (C) for C(2) = const independent of 2, but of course we have no idea how

the ratio on the left-hand side of (4.1) behaves off the set A.

Thinking of K4 as a function of e, we then have to make some comparatively strong

assumption on the regularity of the stable foliation [‘5 so that we can guarantee how

K4 will behave as m, (7 \ A) —> 0. One way to do this is to assume that det Df“ is

Lipschitz; i.e.,

(4-2) Idet Dfu(1‘0) — det Dfu(fl/0)l S Kslxo — gel

for some K5 > 0 whenever yo 6 73(20). Note that

  

det Df“(:1:) _ 1+ det Df“($) —— det Df“(y) < ex (det Df“($) —' det Df“(y))

det Df“(y) ‘ det Df“(y) — p deth“(y) °

Thus, if y E 73(23), we have

log 10—01 = i log

j=o i=0

1 u j u '

Sgldewfumyn 'lde‘Df (f xl‘deth (ny)|

oo

2: |det Df“(fJx) — det Df"(f”y)|

i=0

K . .

S RE 2 lf’w - f’yl

  

det Df“(fj:r)

(f. )

det Df“(fj:1:)

det Df“ (dethu ny)    

 

y
_
_
;

<__
_Ko

8

1:0

K °° 1 J

Six—ylZ(R—)

0 j=0 0
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=2 K6,

since :1: and y are in the same stable leaf. Similarly, for each n E N we have

  

    

deth"( °° deth“(fJ?)

lOgH deth“(f =210gdeth“fy)

5 0° 1 J

S:)I_(—lI—y|JZ-;(T{—)

Thus, the system satisfies Condition (C) for C(2) 2 K6 for all 2 E N and for o: 2 K51.

As we (lid in the previous two chapters, let us take A = U22 E,. As with the

previous examples, this will allow us to define the A,-s so that each E,- has precisely

one A,- which returns at time n for each n E N. Furthermore, because F maps each

full-height. post Ej onto a full—width strip 33-, it will be very easy for us to define the

As explicitly. In more general hyperbolic systems in which full-height sets might be

mapped across some proper subset of the posts, constructing the As is significantly

more difficult. Let us fix a post E,. We shall define Am to be that part of E,- which is

mapped across A by F; i.e., A“ = fflA. We define A132 to be that part of E,- which

is first mapped to E1 by F and then across A; i.e., Am 2 ff] ff 1A. We continue

inductively so that we may define Aid- 2 ff] f1—j +1A. We do this for each 2 E N. Then

AM is that part of E, which returns to A at time j.

The final condition we must verify is that there is C > 0 and 00 < 1 such that

m7 {1‘ 6 70A : R(.I:) >1} 3 066 for all ”y E F“ and for all I E N. For general
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hyperbolic systems, this requires a bit of work to prove; however, for the system we

are considering here, this is easily seen to be true since each full—height post E, is

mapped onto a full-width strip 8,. This is clear from our construction of the Aid-s

above. Let ’7 E PuflA be a full-width u—disk in A, and let '7' E ImflAid- be its preimage

in A133”; i.e., F377’ = '7. Then by the hyperbolicity of F, the length of 7’ is no greater

than KO—j - 62.max- As we did in Section 3.3, since we have countably many domains

of i1’1vertibility, we assume that there is some p < 1 such that 62,max < p‘. Then

my {1: E '7 H A : R(:1:) 2 j} S ng 21ers 5mm, which is what we wanted to verify.

Notice that. we did not worry about verifying the conditions of Theorem 2.2 to

determine existence of SRB measures; however, this is not important here since New-

house and Jakobson prove the existence of SRB measures whose conditional measures

on unstable leaves are equivalent to Lebesgue measure, and this is precisely what we

require in order to apply Theorem 2.3. Furthermore, they prove that the natural

extension is a K-automorphism; therefore, the dynamical system we consider here is

exact and, thus, mixing.
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