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ABSTRACT

THROUGHPUT MAXIMIZED

PARTIAL RECOVERY CODES

By

Shirish S Karande

In this thesis, we design and optimize codes specifically for real-time multimedia

communication over packet-based erasure channels. Based on the constraints and flexi-

bilities of real time applications, we define a performance measure, message throughput

(rm ), which is suitable for these applications. We introduce the concept of “partial re-

covery” and investigate the interplay of optimal coding density and channel capacity.

Based on this analysis, we introduce a new family of linear block codes, which we refer

to as Partial Reed Solomon (PRS) Codes. These codes combine the advantages of lower-

ing the density of a code for near capacity performance with the high decoding efficiency

of Reed Solomon (RS) codes. Then, we demonstrate, through an example of a Binary

Erasure Channel (BBC), that at near-capacity coding rates, appropriate design of a PRS

code can outperform an RS-code. Moreover, as compared with R8 codes, the proposed

PRS codes provide a significantly improved graceful degradation. This is a highly desir-

able feature for real-time multimedia applications. Our video simulation results outline

that the enhanced erasure recovery yields a profound improvement in the perceived me-

dia quality. Finally we investigate the performance of the dividend rendered by PRS

codes operating above channel capacity. In particular we define a paradigm for a unique

“fixed rate” adaptive FEC scheme based on PRS codes.
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CHAPTER 1

INTRODUCTION

The past decade has witnessed a rapid convergence of the telecommunication and en—

tertainment industries. This led to a wide range of WEB-based TV-like services. Conse-

quently, the demand for audiovisual distribution of entertainment content has increased

exponentially. Applications such as audio/video telephony over the Internet have been

conceptualized, implemented and are in high demand. Concurrent to this Intemet-based

growth, wireless has emerged as one of the fastest growing sectors of the telecommunica-

tion Industry. With the advent of third generation wireless devices, broadband wireless

networks have become a reality. All these factors have contributed to the growing interest

in wireless multimedia communication.

In a typical television network, real-time data from a single transmitter is delivered to

multiple end receivers simultaneously. In order to enable similar service over the Internet,

it is required that multimedia data be transmitted real-time over multicast networks. Tra-

ditional ARQ strategies, which were originally designed for data transmission over uni-

cast computer networks, have been deemed unsuitable for multicast networks because the

transmitter will be overwhelmed by feedback. Furthermore, the Internet telephony appli-

cations require protocols with low latency, which again render ARQ strategies ineffec-

tual. Therefore, the impairments in a wireless channel and the need for a minimum Qual-

ity of Service guarantee have motivated research into possible alternatives to facilitate



reliable multicast transmission. Forward Error Correction (FEC) schemes serve as one

such alternative. Rizzo [1] showed how FEC could be used over multicast networks to

facilitate reliable transmission. Thus, design of efficient FEC schemes suitable for real

time wired and wireless multimedia communication has become an important area of re-

search.

The problem of designing an efficient error control schemes is almost as old as the

field of information theory. The efficiency of an error control scheme is bounded by the

channel characteristics. In 1948 Shannon [2] showed that the rate at which information

can be reliably transferred over a communication channel is bounded by the channel ca-

pacity (denoted by C ). Over the past 50 years numerous attempts have been made to de-

sign block codes which could achieve this bound. For example, [3],[4],[5], can serve as

some well-known contributions to this field.

A block code is usually characterized by three parameters:

C] The number of source (or message) symbols K that are transmitted in a

coded block.

D The size of the coded block N, which is the total number of symbols in the

block. Therefore, the number of redundant symbols, also known as parity

symbols, is N — K.

0 The rate of the code R = K/N.

Consequently, in attempting to construct good block codes, the major parameters of

interest have been the probability of block decoding error, denoted by Pg, the block



length N, and the rate R. It is widely accepted that for a given N and R, the least value of

Pe can be obtained by using a (N, K) Reed Solomon (RS) code [6], where K = N ~R is

the number of message symbols (as mentioned above). RS codes have become very

popular for packet loss recovery over packet networks, in general, and the Internet in par-

ticular (i.e., over erasure’ channels). In general the process of encoding and decoding for

erasure channels can be described by Figure 1.
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Figure 1 A Graphical representation of the encoding/decoding process [1].

In this thesis we introduce a new approach for design of FEC schemes suitable for

real time delivery of multimedia over heterogeneous networks. We identify the limita-

tions of some of the current RS based FEC schemes and show how our proposed “Partial

 

' A channel erasure is an error for which the position of the error is known but the magnitude is not. An

erasure in a position i of a received N ~tuple can occur as a result of the decoder receiving enough infor-

mation to decide on a symbol for that coordinate, or information indicating that a particular coordinate

value is unreliable. The task of the decoder here is to restore or “fill” the erasure position [7].



Recovery Codes” based scheme can provide improved reliability under certain network

conditions. As most FEC schemes at the application layer treat a packet drop as an era-

sure, the work in this thesis also focuses on erasure channels.

In principle, one can classify the type of applications that employ linear block codes

into real-time and non real-time. Each of these application types has its own require-

ments, constraints, and also flexibilities that can be exploited for a successful deployment

of block codes over erasure channels. For example, a powerful and successful usage of

the flexibilities and requirements of non real-time applications that demand a reliable

transmission of large data files to a large number of receivers has resulted in the recently

developed digital fountain approach [8],[9],[10]. This approach provides reliable multi-

cast transmission of a given data file with K message symbols by encoding the desired

file into a large-size block of N symbols while requiring the receiver to only acquire a

very small overhead symbols (i.e., beyond the minimum required K message symbols).

The digital fountain framework is able to achieve this reliable transmission to a very large

number of unsynchronized receivers and without feedback while maintaining a very low

computational decoding complexity when compared with a similar size RS codes.

The majority of recent proposals for the recovery of lost packets encountered in real-

time multicast and unicast applications are based on traditional RS codes (e.g., [11],[12]).

Some of these approaches are based on employing feedback information regarding the

channel condition in realtime [13], [14]. Meanwhile, there are several key requirements

and flexibilities imposed/provided by realtime applications that have not been fully con-

sidered/utilized when designing block codes that are optimized for these applications.

Under this project, we will design and develop new linear block codes that take into con-



sideration key requirements and flexibilities of multimedia applications, in general, and

realtime compressed video transmission in particular.

Before proceeding, we outline some of the key aspects of realtime applications and

related challenges that motivated the proposed work.

:1 A fundamental requirement of any realtime application is the transmission of

message data at a minimum desired rate R. In general, this minimum rate should

be maintained to achieve a certain quality. The minimum rate requirement trans-

lates to the transmission of a minimum number of K message symbols within an

N—symbol code block: R=K/N. Consequently, one of the constraints in the design

of linear block codes for realtime applications is the usage of a maximum number

(N—K) of parity symbols within the N-symbol block.

0 In general, the performance of linear block codes improves with larger values of

the code block size N. However, realtime applications can employ a maximum

number N depending on the particular application. For example, non-interactive

multimedia streaming applications can use larger values of N than interactive

(e.g., telephony) applications. Either case, there is a maximum number for the

code block size N that needs to be adhered to. Therefore, unlike non-realtime ap-

plications that may have the flexibility in selecting N and R=K/N, realtime appli-

cations, in general, have to employ (adhere to) a block code with a pair-constraint

(N, K).

D Performance criteria for LBC codes, which are used for non-realtime data, are not

always suitable for realtime applications. For example, a non-realtime LBC code

can be evaluated based on the number of symbols needed to perfectly recover all



of the original message symbols. In general, for realtime applications, perfect re-

covery, and consequently perfect reconstruction, of the original message symbols

is not a hard requirement (as explained further below). Meanwhile, it is crucial to

deliver the realtime application layer with the maximum number of the message

symbols that are transmitted by the system. Therefore, the probability of a mes-

sage symbol loss (after channel decoding) is a key performance parameter. We

denote to this probability by p,,,. Hence, the parameter tm=(1— pm), which repre-

sents the probability of receiving a message symbol by the realtime application

(after channel decoding), is a measure of the end-to-end message symbol

throughput. One of the key objectives of the LBC codes to be developed under

this proposal is to maximize this throughput measure 1;". (For the remainder of

this proposal, we will refer to t;11 as the message throughput.)

Based on a variety of multimedia processing and compression techniques, a wide

range of practical application-layer error concealment methods can be used to

compensate for lost data [15],[16],[17],[18],[19]. These techniques, however, usu-

ally work well only when the number of losses is limited to a small number of

uncovered data. In other words, practical multimedia error concealment and resil-

ience methods usually become useless when the number of losses is beyond a cer-

tain threshold. Consequently, it is very crucial for LBC codes to perform well

when the number of lost message symbols is large by recovering the majority of

these lost message symbols. Meanwhile, and although it is desirable, it is less cru-

cial for these codes to provide perfect recovery when the number of losses (before

or after channel decoding) is very small (e.g., one or few symbols) due to the ma-



turity of powerful multimedia processing techniques. Therefore, codes that main-

tain very low end-to-end (effective) message losses are more desirable than codes

that provide perfect recovery under good channel conditions (e.g., under very low

loss probability) but provide low recovery under adverse channel conditions. This

desirable feature highlights one of the key problems with current LBC codes that

are used widely for realtime video. It is well known, for example, that when a RS

code block experience a number of losses that is larger than the number of parity

symbols, then the code is incapable of recovering any of the lost message data.

Experiencing a number of losses that is larger than the number of parity symbols

is quite feasible over channels with time-varying characteristics (e.g., the Internet

[20], [21] and wireless networks [22], [23]), even if, “on average”, the message

rate R is lower than the channel capacity. This is particularly true when the mes-

sage rate R is close to (but may still be lower than) the channel capacity. More-

over, and due to (a) the large amount of data that is inherently needed for repre-

senting multimedia (in particular video) signals, and/or (b) the compressed repre-

sentation of these signals are normally encoded ahead of time at a certain rate that

cannot be reduced in realtime by the sender, it is quite often when multimedia ap-

plications operate very closely to channel capacity. This phenomenon is quite

common for a wide range of applications such as popular streaming applications

on the web, IP multimedia telephony, and multicast video.

Consequently, one of the main objectives of the proposed work is the design of LBC

codes that are capable of achieving high message throughput 1;" when the rate is close to

(but still lower than) channel capacity and when the number of losses L exceeds the num-



ber of parity symbols (N—K). Unlike traditional RS codes, which exhibit a very sharp deg-

radation in their ability to recover lost packets around the point (LzN—K), the proposed

LBC codes will provide a graceful transition in their lost-message-recovery capabilities

while maintaining a very high message throughput Tm over this transition point and be-

yond.

The rest of the thesis is organized as follows:

In Chapter 2 of this thesis we give a brief introduction to coding theory. We elaborate

the equivalence between solving a system of equations and decoding for erasures. An

overview of some of the basic concepts of graph theory is also provided. This facilitates a

discussion on the subject of Graph Codes and decoding algorithms for such codes.

In Chapter 3 we show that though complete recovery of lost information is impossible

when the number of losses are greater than the number of parity symbols it is still possi-

ble to recover a part of the message. We show initially for binary codes and then for an

example of code based on higher fields, that the density of a code graph can be changed

to improve performance. We show that depending upon the number of losses there exist

an optimal density that can facilitate maximum message throughput. The analysis in this

chapter lays the foundation for the work in the rest of the chapters.

In chapter 4 based on the proposed measure, we combine the advantages of lowering

the density of a code for near capacity performance with the high decoding efficiency of

Reed Solomon (RS) codes, in order to design optimum PRS codes. Then, we demon-

strate, through an example of a Binary Erasure Channel (BBC), that at near-capacity cod-



ing rates, appropriate design of a PRS code can outperform an RS-code. We extend this

analysis and optimization for a general BEC over a wide range of channel conditions.

As compared with RS codes, the proposed PRS codes provide a significantly im-

proved graceful degradation when the number of losses exceeds the number of parity

symbols within the code block. This is a highly desirable feature for realtime communica-

tion. Thus in Chapter 5 we investigate the applications of these PRS codes for transmis-

sion of real-time video. It will be shown that throughput improvement facilitated by PRS

code does indeed translate into an improvement in media quality. In this chapter we also

set paradigm for a unique fixed coding rate based adaptive FEC scheme. We compare the

performance of such a scheme with other possible RS based adaptive FEC schemes.

In Chapter 6 we summarize our results and conclusions and make a brief remark

on the possible future directions to the proposed work.



CHAPTER 2

INTRODUCTION TO CODING THEORY

In this chapter we provide a brief overview of basic channel coding and related infor-

mation theory material that is relevant to the contributions of this thesis. Discussion

throughout this chapter will be limited to linear block codes. The focus of the discussion

in this chapter will be on decoding of linear block codes in presence of erasures. A com-

prehensive treatment of coding theory can be found in [7], [24], [25], [26], [27].

Decoding algorithms with linear time complexity have been described as processes

on graphs. Hence, a brief introduction to some concepts of graph theory will be given.

This facilitates a discussion on how any system of equations and hence any linear block

code can be represented as a bi-partite graph code. Finally we discuss how a graph code

in a binary Galois Field, GF(2), can be decoded by using what-is-known as the bit-

flipping algorithm. This leads to a discussion on possible extensions for higher order

fields.

2.1 Finite Fields and Algebra

We assume that the reader is conversant with the definitions of a group, finite field,

vector space, and sub-space, linear dependence, rank of a matrix etc. Interested reader is

referred to [28] for an in depth explanation of abstract and linear algebra. Any of [7],

[24], [25], [26], [27], should again provide sufficient detail for a reader specifically inter-

10



ested in the area of error control coding. Here, we try to give a brief overview of some

important concepts related to finite fields. Before we proceed further, it should be noted

that a finite field is characterized by having finite number of elements. A field is closed

under the operations of addition and multiplication. Also, an important property of finite

fields is that most of the properties of linear algebra are applicable to finite fields also.

2.1.1 Prime Fields

If p is a prime number2 the set of integers {1, 2, ..., p-l} is a commutative group

under modulo- p addition. Modulo— p multiplication is distributive over modulo— p

addition. Therefore the set {1, 2, ..., p-l} forms a finite field of order p under

modulo— p addition and modulo— p multiplication. A finite field with p elements is

denoted by GF(p), where GF stands for “Galois Field”. Since p is a prime number we

refer to such a field as a prime field.

2.1.2 Extension Fields

It has been shown that finite fields with q = pm elements exist. (For all m > 1).

Fields with q = pm elements where p is a prime number are called extension fields and

can be represented3 by GF ( pm) or GF(q). The sum and product in the extension fields

 

2 We use the symbol p for probability of erasure also. The meaning of symbol p will be evident from

context. The meaning of the symbol p will be stated explicitly if it is not contextually obvious.

3 Throughout this thesis the terms GF(q) and Fq are used interchangeably.

ll



are not computed modulo-q. Rather, field elements can be considered as polynomials of

degree m—l with coefficients in CF(p). The sum operation is just the sum of coeffi-

cients (modulo-p) and the product operation is the product of polynomials, computed

modulo an irreducible polynomial4 of degree m.

An interesting and important property of prime and extension fields is that there

exists at least one (i.e., may be more than one) special element, denoted by 61, whose

powers generate all the non-zero elements of the field. As an example, a generator for

CF(7) is 3, whose powers, starting from 3°, are 3, 2, 6, 5, 4,1, . . .. Powers of a repeat

with a period of length q—l. Thus the elements of GF(2'") can be represented as

m—

{0,l,a,az,...,ar2 1}.

2.1.3 Vector Spaces

FqN is a N -dimensional vector space over Fq. The elements of FqN are the qN N -

tuples denoted by row vectors V = [v0,v1,...,vN_1], where each v,- e Fq. The elements

 

‘ Mathematical operations like addition, subtraction, division and multiplication can be carried out on poly-

nomials just as done on numbers. Thus even modulo operation can be carried out on polynomials. An irre-

ducible polynomial cannot be factorized any further and hence is equivalent to a prime number. Thus

modulo operation can be cam’ed out on polynomials with respect to these irreducible polynomials. Tables

of irreducible polynomial are available in [29]. Chapter 2 of [26] can be referred to get the details on how

irreducible polynomials are used for construction of extension fields i.e., GF (2m).

12



of Fq are called scalars. The definition of vector addition and scalar multiplication in this

vector space is similar to matrix addition and multiplication.

2.2 Linear Block Codes

A (N,K ) linear block code with data (message) word length K and code word

length N is a K -dimensional subspace of FqN . The rate R of this code is defined as

R=K/N.

Thus the encoding process of any linear block code can be represented by a matrix

operation as i7 = 17 -G where,

V = [v0, v1,. . ., VN-1] is a row vector representing the encoded codeword,

t7 = [u0,u1,...,u K-1] is a row vector representing the original message data and

— -i

 

gOO gOl g0.N-l

810 311 81,N-1 . .

G = . . . , IS the KxN generator matrix where, gi, j E Fq.

_gK-1.0 gK-l,l grew-1] 

Thus V = 17 -G can be looked upon as a system of equations where each equa-

N-l

tion is represented by vi = 2 u,- ' gN , for ie [0,N —1]. Therefore, the ith element of the

j=0

code vector 7 = L? -G is a weighted sum of the elements of the message vector

it" = [u0,u1,...,uK_1] , weighted by the ith column of the generator matrix G.

13



2.2.1 Systematic Linear Block Codes

A (N, K) linear block code is a systematic code if the encoded vector V has a replica of

the message vector t7, in particular v,- = ui, \7’ i=0,...,K —1.

Thus the system of equations V = L? -G consists of K trivial equations and only

(N —-K) non-trivial equationss. We call the non-trivial equations as parity check equa-

tions and the elements of V which are not exact replicas of a message symbol are called

parity symbols. Thus the parity symbols form the (N —K) redundant symbols and the

codeword can be broken down into two parts i.e., the message part and the redundant

check part as shown in Figure 2.

 

MESSAGE PART REDUNDANT PART

K DlGlTS N — K Dtorrs

   
 

Figure 2 Systematic format of a code word

The generator matrix G of a systematic code can be written as

G 2 [1K IAKx(N—K)] where 1K is an identity matrix of dimension K and the non-trivial

part of the generator matrix is given by

 

5 A trivial equation refers to equation type v,- =“i~ while a non-trivial equation will usually refer to an

N-1

equation of type Vi = 2 u,- - g 13" where atleast two coefficients g j.i are non-zero. Sometimes in very

i=0

low rate codes, like repetition codes, some of the parity check equations (non-trivial equation) can also as—

sume the form ”1' = “i .

14



' T

“00 “01 aO,N-K—l

010 “11 al,N—K—1

AKXUV-K) = _ _ . . where a“ E Fq .

fix—1,0 arr—1,1 aK—l,N—K—1d  

It is a well-known result in Linear Algebra that any matrix G can be column reduced

to the form [1K lAKx(N—K)]- This implies that any linear block code can be reduced to

a systematic block code. Thus without any loss of generality all further work in this thesis

focuses on systematic codes.

2.3 Erasure Recovery and Systems of Equation

As has already been shown, the encoding process can be represented by a system of

N equations and K unknowns. In the absence of errors, solving this system of equations

allows us to reconstruct the message data, which can be considered equivalent to decod-

ing the code. In fact, any error-free system of equations, expressed in term of the message

symbols, with a rank K should allow us to completely reconstruct the message data. As

each encoded symbol represents an equation in the system of equations, if during trans-

mission an encoded symbol is erased, we cannot use the equation represented by that en-

coded symbol to solve for the message symbols. If the channel under consideration is

such that the only type of possible channel failure is an erasure, then all the equations

represented by non—erased encoded symbols can be used to solve for the message sym-

bols. It is noteworthy that if the underlying code is a systematic code then some of the

equations will be trivial equations like vi = ui.
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As at least K equations are required to solve for K unknowns, it will be impossible

to completely reconstruct the message data if the number of encoded symbols received

during transmission is less than K . Thus a decoding algorithm based on solving a linear

system of equations cannot recover complete data if the number of erasures L is greater

than N —K . If the N equations are designed such that any subset of K equations are

independent of each other then, such a system of equation guarantees complete recovery

of message data, for any random erasure pattern of weight less than or equal to N — K .

Thus a code that can recover any random erasure pattern up to a loss of N - K era—

sures, are called Maximum Distance Separable or Reed Solomon type codes. The poly-

nomial based Berklamp and Euclidean algorithms can also be modified to work for era-

sures but modern implementations or erasure decoding based on systems of equations

have been shown to have lesser time complexity [l 1].

For a systematic code if the K non-trivial equations are independent and all the co-

efficients for each equation are non-zero, then any subset of K equations obtained from

the N equations of the systematic code will be independent. This is common to the de-

sign of RS-Codes for erasures described on the basis of Vander monde matrices in [1]

and Cauchy matrices in [11]. If K encoded symbols and hence K equations are avail-

able to the receiver then the K equations can be solved by matrix inversion as shown in

Figure 3. The time complexity of codes described in [11] is lesser than that in [1] because

of novel way of performing finite field calculations but the basic idea (i.e. solving a sys-

tem of equations) in both algorithms is identical.
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Figure 3 Encoding and Decoding process of as systematic erasure code. The gray area

identifies the encoded symbols that have been transmitted successfully and the corre-

sponding equations that can be used for reconstructing the message data [I].

As a systematic code has some trivial equations, the decoding algorithm can concen—

trate on solving only the non-trivial equations. This further improves the time complexity

of the decoding algorithm. In such a system of equations that are formed by the non—trival

equations, the message symbols (equal to the trivially encoded symbols) that do not get

erased during transmission don’t have to be treated as unknowns.

2.4 Concepts in Graph Theory

The last few years has seen an increased interest in the area of coding theory, one of

the primary reason for this has been discovery6 of decoding algorithms with low time

 

6 The actual word should be rediscovery as this work was initially presented by Gallager [5] and only was

recently rediscovered by Luby, Mackey, et. al.
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complexity. These algorithms are based on concepts of graph theory and are described as

processes on graphs representing codewords. At this stage, we will give a brief introduc-

tion to relevant concepts from Graph Theory by providing some basic definitions. A

reader interested in more details can refer to [30], [31].

Definition 2.4.] A graph7 G is an ordered pair of disjoint sets (V, E) such that E is a sub-

set of the set Va) (i.e. w.l.g V”) = {(i, j) l i> j and vi,vj E V}) of unordered pairs of

V . The set V is the set of vertices and E is the set of edges.

Definition 2.4.2 A graph G = (V, E) is a bipartite graph with vertex classes V1 and V2 if

V 2 V1 UV2 , V1 0V2 = (b and every edge joins a vertex of V1 to a vertex of V2 .

Definition 2.4.3 A graph G with a number associated to each edge is called a weighted

graph.

Definition 2.4.4 A graph G‘ = (V', E‘) is a subgraph of G = (V, E) if V* CVand

E,“ C E.

Definition 2.4.5 Two vertices are adjacent to each other if they are connected by an

edge. A sequence (without repetitions) of edges forms a path on graph. Two nodes or

vertices in a graph are said to be connected if there exists a path from one edge to an-

other. A graph is called connected if every vertex in a graph is connected to every other

 

7 We use G to represent a generator matrix also. This conflict of notation will be persisted with to be

consistent with the available literature. The meaning of G if not contextually obvious shall be explicitly

specified.

18



vertex in the graph. A maximal connected8 subgraph of a graph is called the component

of a graph. Thus every graph is a union of the disjoint subgraphs represented by its com-

ponents

Definition 2.4.6 The degree of a node is equal to the number of edges incident on the

node. The degree sequence of a graph is the sequence of degrees of each node in the

graph. A graph is said to be regular if each node has equal degree. A bipartite graph is

said to be regular if all nodes belonging to each of V1 and V2 have equal degree.

Definition 2.4.7 A cycle on a graph is a path that starts and ends on the same node. A

tree is a subgraph that does not have any cycles. The n-star Sn graph is a tree on n+1

with one node having vertex degree n and the others having vertex degree 1.

Definition 2.4.8 A graph is complete if all the vertices are adjacent to each other. A bipar-

tite graph is called complete if every vertex belonging to V1 is adjacent to every vertex

belonging to V2 .

Definition 2.4.9 The density of a graph (and hence the density of a code defined on a

graph) is defined as the ratio of number of edges in the graph to the number of edges in a

corresponding complete graph.

 

8 Here maximal implies the subgraph with the maximum number of nodes. Thus a maximal connected

subgraph is a connected subgraph containing maximum possible nodes. Any subgraph with more nodes

will not be connected.
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2.5 Graph Codes

Most of this work in this field has been constrained to the binary field GF(2) but can

be extended to bigger fields GF(q). The advantage of working in GF(2) is that codes

field operations can be reduced to simple XOR operations. To begin with we introduce

all the concepts for GF(2) and then extend them for CF(q).
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(a) (b)

Figure 4 (a) Equation in GF(2) with three unknowns represented by star graph S3

(b) Equation in GF(2) with two unknowns represented by star graph 82

Any linear equation in CF(2) can be easily represented by a star — graph. A non-

zero coefficient is represented by an edge on the graph. Figure 4 (a) and (b) represents

two equations “1 + u2 + u3 2 v1 and u1+ u3 2 v2 respectively. These two equations can be

combined and the system of equation can be represented by a bipartite graph as shown in

Figure 5.
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Figure 5 A bipartite graph representing a system of equation over GF(2)

Similarly, a system of equations in GF(q) can be represented by a weighted graph,

where each edge in the graph is weighted by an element from GF(q). This weight is

equal to the appropriate coefficient form the system of equations defining the block code

under consideration.

In the previous section it was shown that, decoding linear block codes for erasures is

basically equivalent to solving a system of equations. As systems of equations can be rep-

resented by graphs, we can solve these equations by defining processes on graphs. In the

next section we present an algorithm called the bit-flipping algorithm, which can be used

for solving systems of equations over GF(2) and hence can be used for decoding of lin-

ear block codes for erasures over GF(2) . The algorithm we present is exactly identical to

the decoding algorithm used in [8].

2.5.1 Bit Flipping Algorithm

DAny equation in a binary field with more than two unknowns cannot be used for

erasure recovery. It should be noted that in binary field no two non-trivial simultaneous

equations can be independent, i.e. in a binary field no two non-trivial equations can be

used to solve for two unknowns.
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D As has been already discussed, if an encoded symbol is erased during transmission

then the parity equation represented by that symbol cannot be used for any erasure recov-

ery.

CIThus, the decoding algorithm for a systematic code is equivalent to solving the par-

ity equations represented by the un-erased parity symbols, where the unknowns are repre-

sented by the message symbols that were erased during transmission. We setup a bipartite

graph to represent this system of equations, the left side of the bipartite graph has the

erased message nodes and the right side of the graph has the un-erased parity nodes. We

remove all the isolated parity nodes on the right side of the graph, i.e. parity nodes with

degree zero. These parity nodes represent the parity check equations in which there are

no unknowns, i.e. all the message symbols in this parity equation have been received un-

erased.

D In a parity check equation, if the value of the parity bit and values of all but one

message bit are known, then the equation can be solved by setting the value of the un-

known bit as equal to the XOR of all known bits in that equation.

CI The decoding process can now be described as follows. We begin by looking for

parity nodes of degree 1 on the right hand side of the bipartite graph. This represents a

parity check equation with a single unknown. On finding such a node, we set its adjacent

node equal to the XOR of all the known bits in that equation as described above. We re-

move the parity node and message node from the graph and again search for a check node

with degree 1. This process is repeated till we cannot find any more check nodes of de-

gree 1
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RECOVERY 
(d) (e) (f)    
 

Figure 6 All stages of recovery. (a) Original graph (b) Graph induced by the set of lost

nodes on the left. (c)- (f) Recovery process

Figure 6, which has been adopted from [8], describes the entire decoding process

through an example. It should be noted that Figure 6 shows a specific example, where

complete recovery of message data was possible. This does not have to be the case al-
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ways. Sometimes the decoding algorithm could terminate with some isolated nodes on

the left side or the decoding process might have to terminate with nodes on both sides.

The first case is possible only when all the parity nodes that a message node was depend—

ent on have been erased. The second case is when all the parity nodes left in the graph

have degree greater than one.

a It is possible to extend the above algorithm for higher order fields. A possible de—

coding algorithm could be as follows.

> Construct an induced graph as in the case of GF(2), but this time the

edges in the graph will have weights assigned to them. Use steps identical

to the GF(2) algorithm till the algorithm terminates and continue further

if there are some un-isolated message nodes on the left hand side.

Now look for K 22 (complete bipartite graph with two nodes on each side)

sub-graphs on the remaining graph. This represents the case of two equa-

tions, two unknowns. Unlike the binary codes, in a higher order field it

might be possible to do erasure recovery with two equations and two un-

knowns. Solve these two equations if they are independent and remove the

K 2,2. If the equations are not independent do not choose this K 22 again.

Continue till no K 2,2 are left or no non-isolated nodes are left on the left

hand side of the graph. Again go to Step 1. Go to the next step, if no parity

nodes of degree less than I exist and neither do any K 2,2 subgraphs exist,

but some non-isolated nodes are still present on the left hand side.
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F» Repeat the above process with K 3.3 , and so on till K K,K .

The above extension of the bit—flipping algorithm to GF(q) is very complex and has

a much higher time complexity than the simple bit-flipping algorithm. Matrix inversion

which has a time complexity O(n3) is the most efficient algorithm for a general code on

GF(q). This is the primary reason that, in this thesis, we restricted our partial recovery

codes to a specific graph structure and do not consider general graph codes based on

GF(q). Fast algorithms do exist for decoding of RS type codes. Thus we shall specifi-

cally attempt to describe our code design in terms of RS codes. Nevertheless it is impor-

tant to mention that if we restrict ourselves to solving single equations and single un—

knowns, the extension of bit flipping for higher order fields will work fine. Mackay [32]

infact showed for errors such codes can exhibit record breaking performance. Hence ex-

tension of Mackay’s work for erasures and design of iterative decoding algorithms for

more generalized structures of GF(q) based graph codes are topics for future research.
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CHAPTER 3

PARTIAL RECOVERY CODES

The majority of research in channel coding in the past century has attempted to re-

duce the probability of block decoding error. In chapter 1 we argued in favor of a new

measure (message throughput I ) for evaluating the efficiency of modern channel cod-
m

ing techniques, especially those designed for real-time communication. As the aim of

coding technique is to maximize 13m and hence not necessarily facilitate complete recov-

ery of message data in a code block each time, it is worth considering codes which are

capable of partial recovery of information. Though such codes can be inferior to some

commonly known coding techniques, as far as full recovery is concerned, the average

message throughput afforded by such codes can be higher. In this chapter, we develop

and analyze the performance of new linear block codes that can achieve maximum

throughput. In the first part of this chapter we shall consider ensembles of codes on

GF(2) and show how these codes can facilitate partial recovery of information even when

the number of losses are well above total number of parity bits. Moreover, it will be ob-

served that for different channel conditions there is a different optimal code density.

Though the codes we consider in this section are very simple codes, they give some im-

portant insight into the design of more complicated codes. We use this insight to design

codes on higher fields. A simple coding technique based on RS coding is used to show
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how partial recovery can be facilitated by codes on higher fields and conclusions about

binary codes can be extended to higher fields.

3.1 Density Dependence of Binary Erasure Codes

Here we present the results of some exhaustive simulations carried out for very short

block length codes. Though the codes experimented with are of very short block lengths

and, therefore, may not have a lot of practical significance, the observations we make can

be applied to larger block length codes. The advantage we have of using a short block —

length is that we can run exhaustive simulations, which work as a “ definite proof of con-

cept”.

For a given (N, K), the number of possible codes or code graphs are 2KX(N_K).

It should be noted that for a systematic binary code the number of entries in the non-

trivial part of the generator matrix are N x (N — K). Thus the number of possible generator

2KX<N VK). Naturally some of the generator matrices are not good code de-matrices is

signs and are trivial in nature. Nevertheless they are a part of the code ensemble. This set

of all possible codes can be divided into smaller subsets depending on the density of their

graphs. The density of a code graph is equal to the number of non-zero entries in the non—

trivial part of the generator matrix. Thus for a (N, K) family of codes the density varies

from O to K x (N — K). The erasure recovery performance for a given number of erasures

is averaged over each subset. Here we assume that all erasure patterns of equal weight

are equally likely. As the block length is not large we exhaustively generate each erasure
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pattern. Thus the erasure recovery performance is averaged over all possible permutations

of erasures of a given weight and over all possible codes of a given density.

The results of a few such exhaustive simulations are provided in this section. The

value of N is chosen to be equal to 10 in all the simulations. The coding rate is varied by

varying the value of K. The maximum value of code density is 9, 16, 21, 24, 25 for val-

ues of K = 9, 8, 7, 6, 5 respectively. For each of these combinations of (N, K) the above-

described simulation was conducted. The results of such simulations are as shown in the

Figure 7, Figure 8, Figure 9, Figure 10, Figure 11. In all figures the performance in terms

of message throughput is plotted as a function of density. The number of losses L is used

as a parameter for generating the different performance plots. It should be noted that as

the number of losses increases the performance deteriorates, thus in each figure the high-

est curve represents the minimum number of losses while the lowest curve represents the

maximum number of losses.

Here, we highlight the following observations:

0 It can be observed that the optimal density is a function of block-length, the number

of losses and the coding rate. Here, the optimal density is the one that provides

maximum throughput.

D It can be observed that as the coding rate decreases for a given value of L the per-

formance of the optimal density improves. This is in agreement with our intuition. In

other words, as the code operates at rates further away from the channel capacity (i.e.,

at lower and lower rates), the performance is expected to improve.
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D For a given block-length and coding rate, as the number of losses increase the value

of the optimal density decreases. This can be explained by considering a single parity

check equation. (At this point, let us assume that the code is represented by and con—

sists of a single parity equation.) It should be noted that the number of message sym-

bols in a single equation (i.e. the degree of a particular parity check bit) is inversely

proportional to the probability of that particular parity check equation (parity check

bit) facilitating any recovery. The higher the number of message symbols in an equa-

tion, the greater is the number of average number of unknowns in that equation. Thus

as the number of losses increases it becomes necessary to decrease the degree of par-

ity check nodes. This naturally translates into an overall reduction in density.

0 However it should be noted that excessively decreasing the density of the graph could

lead to deterioration in performance. This can be explained by considering the degree

of message nodes in a graph. Higher the degree of a message node in a graph, more is

the number of parity check bits that depend on that particular message symbol. Thus

higher is the number of available parity check equations to recover the message sym-

bol and hence higher is the probability of recovery of that particular symbol. Thus

excessively reducing the density of a graph can excessively reduce the protection

given to each message symbol and thus deteriorate performance. Thus there is a

tradeoff between reducing the density to increase the robustness of the parity check

equations against providing adequate amount of protection to all the message sym-

bols. If the coding rate is low (approx 1/2) and the block-length is large (>5000) the

number of parity check equations is high and thus probability of paying a penalty for

reducing density beyond a certain threshold is not high. We tried to repeat the above
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experiments for certain ensembles of LDPC codes but were unable to capture the ef-

fect of density because of the above stated phenomenon. It is a topic of future re-

search to closely study the role density plays in conjunction with channel conditions

for large block-length. Finally it is important to note that for all coding rates, even

when the number of losses are higher than the available redundant symbols it is pos—

sible to recover some information. Complete recovery of lost data is not possible but

the values in the figure indicate that there exist codes capable of partial recovery of

lost data even when the number of losses are much greater than the redundancy. We

shall show later in the thesis that when the coding rate is close to channel capacity

such codes can be suitably exploited to outperform codes attempting full recovery.
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Figure 7 N=10, K=9, L 2to6
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Figure 8 N=10, K 8,L=2to7

Density

10 13 16

0.4

0.5 ~

9 o
r

A
v
e
r
a
g
e
M
e
s
s
a
g
e
T
h
r
o
u
g
h
p
u
t

.
0
\
l

.
0
o
n

0.9 ~

 

 

 

 

 



33

Figure 9 N 10,K=7,L=2to6
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Figure 10 N=10, K =6, L 2to7
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Figure 11 N=10, K 5,L= 2t08

Density

 

A
v
e
r
a
g
e
M
e
s
s
a
g
e
T
h
r
o
u
g
h
p
u
t

.
0

.
0

.
0

.
0

.
0

.
0

.
0

0.2   
  
 



3.2 Partial Recovery in Codes on GF(q)

The analysis in the previous section can be easily extended to non-binary codes. We

shall use a simple code based on RS codes to exhibit the phenomenon of Partial Recovery

in codes based on GF(q). It will be shown that in this case too the density can be varied

as a function of the number of losses to improve performance. In this scheme, if the num—

ber of losses L are greater than the threshold N — K , then we use the N — K redundant

symbols to protect a smaller subset K ' < K number of message symbols. The proposed

solution is based on shortening an (N,K) RS-code to an (N — K + K.,K.) RS-code. We

refer to a (N,K ) code in which all the redundancy symbols are used to protect only

K. <K symbols using a shortened(N-K+K',K') RS-code as a (N,K,K') Partial

Reed Solomon code (PRS-code)9. As mentioned above, here we assume that all K mes-

sage symbols in the block of N code symbols are equally important. Consequently, in

general, the encoder could select any subset K . < K message symbols to be protected by

the parity symbols. The structure of these codes is shown in Figure 12

 

9 Partial Reed Solomon Codes introduced over here are actually just a special (but important) case of a

more general farrrily of codes. We give an introduction to a more generalized family of Partial Reed Solo-

mon Codes in the next chapter. It can be noted then that the code we are discussing here are actually PRS

codes of order 1. The notation used in this chapter is slightly different from the one used for the general

PRS codes. Never the less we find the notation introduced in this chapter to be more convenient if the dis-

cussion is to be limited to PRS — 1 code.
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Figure 12 A Simple Partial Reed Solomon Code

It should be noted that if L— (N — K) > K — K. i.e. if K' > N - L then the number of

losses in the shortened (N —K + K',K') RS sub—code section of the PRS code will be

greater than N — K .In such a scenario even the (N , K , K') PRS code will not be able to

do any recovery of the lost message data. Thus in order to achieve recovery of losses the

value of K ' must satisfy the inequality N — L _>_ K . .

If the number of losses in the entire block of length N is equal to L then the mini-

mum number of losses in the (N —K +K.,K') sub-code section will be equal to the

greater number between L—(K —K') and zero. The maximum number of losses in

the(N —K +K',K') section, which allows recovery of lost data, will be equal N -K .

Similarly if the total number of losses in a block is L then maximum number of losses
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possible in the (N — K + K',K') subcode is the smaller number among L and N—K +K'.

Obviously, if any packet among the unprotected K — K ' packets is dropped during trans-

mission then that packet cannot be recovered. Finally it should be noted that even if a de-

coder is unable to recover any erased data, a message packet that has not been dropped

could always be forwarded to the source decoder. Thus for a given value of L the mes-

sage packet throughput is given by

Tm = (Tl-PTA?) K

L

N-K ' . ‘ .

where. T1 = 2 (K +(K-K)-(L-i))- N-K+K . K-K

i=max(0,L-(K-K)) ,- l”,-

N-K . .

which 2 T1: 2 (K—L+i). N-K+K , K-K

i=max(0,L-(K-K)) i 14-,-

min(L,N—K+K') . ' g .

and similarly T2 = 2 ((K -i)+(K-K )-(L-i))- N-K+K . K-K

i=N‘K i L4
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min(L,N-K+K')

which :> T2: 2 (K-L)- N-K+K' , K-K'

i=N-K t' L-i

it The term T1 represents the performance of the code when the decoding of the sub-

code is successful (i.e. number of losses in the sub-code are less than N — K ).

> The term T2 represents the case when the decoder for the sub-code has decoding

error, i.e. cannot recover any lost message packet. This will happen when the number of

losses in the sub-code section is greater than N — K .

> The term K - N represents the total number of message packets that were

L

transmitted. This term takes into account all possible permutations of L losses with N

symbols. For each possible permutation, K message symbols are being transmitted. Since,

for given N and L, all of these permutations are equally likely, then the total number of

message symbols transmitted under all possible permutations is the product of the two

terms.

Figure 13 shows the performance of an example PRS code. The coding rate is fixed at

0.88. If L > N — K then the performance of an (N, K) RS-code will be equal to that of a

code in which none of the message packets are protected, i.e. the performance of

(N, K, K) and (N, K,0) PRS code will be identical. Any performance improvement over

(N , K,0) code would imply that partial recovery improves reliability and affords a better

average recovery then RS codes. It can be observed that there indeed exist values of K '

for which the performance of (N,K,K ') PRS code is better than (N,K,O) PRS code.
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Moreover it can be observed for each value of L there exist an optimal value of K '.

Thus appropriate choice of K ' can help recover substantial number of lost packets even

when the number of losses is greater than N — K .
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Figure 13 Tm is plotted as a function of K' with L as a parameter for N = 100 and

K = 88. K ' takes values from 0 to 88, and value of L is varied from 13 to 30. A legend

hasn’t been included because, for given K as L decreases the value of I'm also decreases.
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It should be noted that when the value of K ' is reduced the density of the graph is re-

duced. Thus choosing an optimal value of K ' is equivalent to choosing an optimal den-

sity. Thus the results in the above figure are synergistic with our conclusions for binary

codes. Just as observed for binary codes, as the number of losses increase the optimal

value of K ' (density) reduces. Moreover it can be again observed that an over-reduction

in density can deteriorate performance instead of improving it. Thus almost all the con-

clusions made about binary codes can be extended to these codes based on higher fields.

It can be seen in figure Figure 13 that when 13 packets are dropped (13 is greater than

the redundancy 12 in the code) an appropriate choice of K ' can improve Tm by over

0.09. When 13 packets are dropped, “on-average” 0.88x13 = 11.44 of these packets are

message packets. An improvement by 0.09 implies that “on-average” 0.09x88 z 8 out of

the dropped 11.44 message packets can be recovered. This can translate into significant

improvement in the quality of the perceived media. In fact even when the number of

losses are much greater than N —K , PRS codes can improve the performance. Similar

observations were made for a varied choice of coding rates, block-lengths and losses.

Thus it can bee seen that even a simple scheme based on protecting a subset of the

message data can allow us to recover some part of the lost data and thus improve the reli-

ability of the overall scheme. In the next chapter we show that optimal designs of PRS

codes can provide a better throughput than RS codes for Binary Erasure Channels.
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CHAPTER 4

PARTIAL REED SOLOMON CODES FOR

BINARY ERASURE CHANNEL

Before we introduce the family of PRS codes we will outline the motivation for the

design of PRS codes. In the previous chapters it was shown that the decoding of a code-

word transmitted over an erasure channel is equivalent to solving a system of equations.

The erased symbols represent the unknowns in the system of equation. Thus for a given

(N, K) and a given graph density representing an LBC code, as the probability of chan-

nel erasure p increases, the average number of unknowns in each parity check equation

also increase. Also, as the number of unknowns in parity check equation increase, the

probability of that equation being successfully solved decreases. Due to this, when the

coding rate is near (or above) channel capacity, it becomes necessary to reduce the num-

ber of message symbols that are protected by each parity symbol. This is equivalent to

reducing the density of the code.

Moreover, the iterative algorithms used for decoding current LDPC codes, limit the de-

coding process to decoding of graphs without short—cycles. This constraint has influenced

the design of most of the current LDPC codes. If a code is based on GF(2), then the

above constraint of designing a graph without short cycles is not a severe one. But, for
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codes based on GF(q), limiting the code design to graphs without short cycles can be a

severe one. This can be explained by the following discussion.

A short cycle in a graph implies the existence of two parity check equations with more

than one message symbol in common. Thus in case both the symbols are erased, limiting

the decoding the process to “one equation one unknown” approach is not going to facili-

tate any recovery. In case of binary codes this is not a major constraint as simultaneous

equations cannot be solved in GF(2). However in higher order fields it is possible to re—

cover erased data by appropriate design. Thus by constraining ourselves to a simple Bit-

flipping like decoding scheme, we are reducing the efficiency (with respect to erasure

recovery) of the decoding algorithm and also reducing the flexibility of our code design.

Since a key objective of our effort is to maximize the message throughput (i.e., lost-

symbol recovery), we did not want to constrain our code-design to graphs without cycles.

Meanwhile, decoding algorithms for a general code (with cycles) based on GF(q) can

have a very high time complexity. Thus we found it necessary to limit our code design to

a family of codes, where the entire codeword could be broken down into sub-codes that

resemble RS codes. This allows us to use algorithms developed for efficient decoding of

RS codes, for decoding of these RS based sub-codes. Decoding of individual subcodes

can facilitate the decoding of the entire codeword. After this brief discussion of the moti-

vation for the proposed PRS codes, we introduce the general structure of these codes.
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4.1 Partial Reed Solomon Codes

For a given realtime-pair constraint (N, K), we denote a general PRS code of order s

by (N, K,As )q. Here q represents the underlying field"). The order of the field is con-

strained by the equation q > N , where N represents the total number of symbols in a

single codeword and K represents the number of message symbols in a codeword. AS

N

represents a 2x(s+l) matrix given by [ 1 5+1]. The entries of matrix A, are con-

Kl H°Ks+l

strained by the following equations:

N,- > K,Vte[1,s], K,- > OVl€[1,S], N3+1=Ks+1

and N=ZN,, K=ZK,.

i 1'

Thus A5 gives an s-partition on the set of parity symbols and a (s+1) -partition

on the set of message symbols. The code is designed such that, V iE [1,s], the pair

(N,,K,-) forms an RS-subcode over GF(q) and the K3+1 number of message symbols

are transmitted without any protection. Thus the code-graph can be divided into (3+ 1)

disjoint sub-graphs. Obviously such a code graph does not have full density and the den-

sity of the overall code has been lowered. It should be noted that an order 1 (s21) PRS

 

‘0 In all further discussion we shall drop q from the notation and assume that the order of the field on

which the code is based has been pre-specified.



code with N2 = K2 = Ois equivalent to the traditional full density RS code. In general, a

PRS code with N5H = K5H = 0 does not include any subset of message symbols that are

not protected. The above description can be clearly understood vis—a-vis Figure 14.

Figure 14 shows a second order PRS code.
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Figure 14 Reduced Density Partial Reed Solomon Code of Order 2

4.2 Optimal Partial Reed Solomon Codes

In this section we identify the class of optimal PRS codes for a Binary Erasure

Channel (BEC) based on the message throughput criterion. We show, and with the sup-

port of some experimental evidence that, for a BBC, the optimal PRS code is given by an

order 1 PRS code (i.e., PRS-1). The parameter used to measure performance of a code

45



here, is message throughput. Thus a code that maximizes this parameter will be the opti-

mal code. We shall prove two lemmas, these lemmas help us to limit the ensemble of

codes we have to consider to find the optima. The following notations and propositions

are used by the lemmas.
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Figure 15 (a) PRS-1 Codes (b) PRS-2 Codes with no symbol unprotected.

Thus the above figures represent the elements of set lPNKo-
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N K

0 Let ‘1’ N, K, K, be a set containing all PRS codes of order 1 with A1 = [K1 K2] and

‘ l 2

N1 N2 K3
all PRS codes of order 2 with A2 2

K1 K2 K3

]. An example of WN,K,K, is the set

‘I’ N, K,O- In addition to all possible PRS codes of order 1, ‘I’ N, K,0 includes only a subset

of all PRS codes of order 2 (i.e., PRS-2). This subset represents PRS-2 codes where each

message symbol is protected by at least one parity symbol. In other words, no message

symbols in this particular PRS-2 subset, which is included in TN.K.0’ is left unprotected.

0 Proposition 1 (P1): V (N, K) the optimal PRS code in the set ‘1’ N, K1) is an order 1

PRS code.

0 Proposition 2 (P2): V (N, K), V K3 < K the optimal PRS code in the set ‘1’ N, K, K,

is an order I PRS code.

0 Proposition 3 (P3): V (N, K),3 an order s PRS code, that performs better than all

order (s +1) PRS codes.

LEMMA]: For a BBC P1 2 P2. In other words, if the optimal code within the set

WN,K,0 is a PRS-1 code, then the optimal code in the more general set ‘1’N K K

V K3 < K, is also a PRS-l code.

Proof: Consider the optimal code on the set \P(N—K,),(K—K,),0- P1 implies that the

optimal PRS code on this set is a PRS code of order 1. Since adding unprotected symbols
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to a block will not change the relative performance of two codes on a BEC, the optimal

PRS code in the set ‘I’ N, K, K. is also an order 1 PRS code. Thus for a BBC P1 :> P2.

LEMMA 2: For a BBC P1 :> P3.

Proof: Let the optimal PRS code of order (5+1) be given by (N, K,As+1) , such that

N ICON

A5+1=[ 1 5+2]. Using P1 we can conclude that optimal PRS code in
K IOOK

1 5+2

‘I’Wl +N,).(K, + K2).0 is an order 1 PRS code. For a BEC the relative performance of two

codewords is not going to change due to addition of identical code sections. This implies

that there exists K* < (K1 + K2) such that, the performance of (N, K,As) PRS code with

will be better than any PRS
*

S

K K3 Ks+1 (Ks+1+K1+K2—K*)

{WNW/2) N3 Ns+1 (Ks+l+Kl+K2—K*)

code of order (3 +1) . Thus we can conclude that for a BEC P1 :> P3.

Lemma’s l and 2 reduce the ensemble of codes over which we need to search for an

optimal code to the set ‘1‘ N,K,0- Now, we present experimental evidence, which allows

us to formulate the following conjecture.

CONJECTURE 1: For a BEC channel P1 is true

We verified the validity of conjecture 1 for different values of N , K and p.

Here, we present some results for N = 100 and K = 88. Any PRS code of order 2 be-

1v1 N—N1 0

.Furtherrnore,

K1 K—Kl 0]

longing to the set 111100.88’0 can be represented by A2 =[
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the search space to find the optimal PRS code can be further reduced by noting that the

, , N — N1 N1 0

performance of the above PRS code Will be unchanged even if A2 = .

K — K1 K1 0

Thus we constraint the values of N1 and K1 by the following equations:

(NI—Kl)>(N—K)/2 and K1 >K/2.

Thus in all the figures in this section the x-axis shows the value of (N1 — K1), the

y-axis shows the value of K1 and the z-axis shows the message throughput of the corre-

sponding code. In each figure, P1 is validated if the code that has maximum message

throughput satisfies N1 — K1 = N — K . This represents a PRS-l code since all of the parity

codes are being allocated to protect only one subset (with K1 elements) of the message

symbols. The other subset of message symbols (with K —Kl elements) is either empty

(i.e., K —K1 =0) or not protected at all. In the case when K—Kl =0, we have a tradi-

tional RS code where all of the message symbols are protected by all of the parity sym-

bols.

Figure 16 and Figure 17 show the experimental results for p = 0.05 and p =0.l,

where the channel capacity is 0.95 and 0.90, respectively. It should be noted that in both

of these cases the coding rate (0.88) is below channel capacity. It can be seen in the

above figures the optimal PRS code for a BEC in “1100880 is an order 1 PRS code. Thus

using lemma’s l and 2 it can be concluded that for a BBC the optimal code is given by

PRS code of order 1. In Figure 16 it can be seen that the optimal code is actually a RS

code. Thus it is possible that the optimal PRS code turns out to be a RS code depending
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on the channel condition. Meanwhile, it should be noted that in Figure 17, though the

coding rate is lower than the channel capacity, the optimal code is given by a PRS code

of order 1 that is not equivalent to a RS code.

It has been explained in chapter I, that though “on-average” the coding rate is

lower than channel capacity, the time varying nature of a channel can make the scenarios

when the number of losses are greater than N — K , or when the coding rate is higher than

channel capacity possible. A possible way to mitigate this problem is to use some feed-

back information to adapt the channel code. Thus to help in design of adaptive FEC

codes, analysis of PRS codes with rates greater than channel capacity is an important

topic. In the above two figures it can be observed that even when the coding rate is

greater than channel capacity the optimal PRS code is a PRS code of order 1.

We also tried to find the structure of the optimal PRS codes when the numbers of

losses were known. In the previous chapter we constrained our analysis when the number

of losses were known to only PRS codes. Thus we wanted to investigate whether more

complicated code designs could yield better performance. Thus we again considered the

set ‘1’ N,K.O for our analysis. Though a thorough investigation of this problem is still a

topic under study, our simulation results allow us to conclude the optimal PRS codes in

this case to are order 1 PRS codes.
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Figure 17 N=100, K=88, p=0.1

51



 
Figure 19 N =100, K =88, p :02
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Figure 20 and Figure 21 show the results of some example simulations. It can be seen

that for a varied block-length, coding rate and channel conditions the optimal code is a

PRS — 1 code. If we consider a channel model where the receiver always knows the num-

ber of losses, then as N —9 00, p —> (L/ N) and thus for large N . Thus for large N the

channel can be approximated by a BEC channel. Thus the results obtained in Figure 20

and Figure 21 should not be surprising and are in accordance with our conclusions for a

BEC.

4.3 Performance Comparison of PRS v/s RS

In this section we further evaluate and analyze the performance of PRS codes of

order 1 (PRS —l ). As the design of a PRS code is completely determined by our choice of

K1, we use a shortened notation for order 1 PRS code. Thus a PRS code denoted by

(N,K,Kl) is equivalent to a PRS code denoted by (N,K,Al) where

_|:N—K+Kl K-Kl
A1 -— . Thus the optimal PRS code will be obtained by choosing

K1 K — K1

an optimal value of K1, denoted by K* . It should be noted that the probability of a mes-

sage symbol loss (after channel decoding) for a (N, K, Kl) PRS-1 code over a BEC with

probability of erasure p is given by

f \

(K_Kl).p + [L] o

(N—K)+Kl

Z "( ’l'p' -(1—p>‘N"‘)+"1“]
\ i=(N-K)+l

Equation 1

  
J
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The optimal value of K1 can be obtained by minimizing Equation-l. Since

an=(1— pm), this is equivalent to maximizing the message throughput. For Figures 22 — 24

we choose the block-length of the code as N = 100. For this block-length the behavior of

the performance of optimal PRS —1 code and the behavior of the optimal value of K1 is

observed. In all the three figures y-axis shows the coding rate R = K / N and the x-axis

shows the probability of erasure p .

In Figure 22 the z-axis shows the message throughput for the optimal PRS —1

code, while in Figure 23 the z-axis shows the ratio K*/ N for the corresponding optimal

codes. It can be seen that for given N the dependence of K* (and thus the performance

of the optimal PRS —1 code) on the coding rate and (1 — p) is symmetrical. It can be ob-

served that for a given loss probability p , as the coding rate increases, the message

throughput decreases. . For coding rates below channel capacity the decrease in message

throughput with increase in coding rate is very gradual, and the drop in performance

when the coding rate is beyond channel capacity is much severe. Nevertheless, it can be

observed that even for coding rates beyond channel capacity it is possible to get a reason-

able message throughput and drop in performance that is graceful.

In Figure 23 it can be observed that for coding rates less than channel capacity, the

optimal PRS code is a RS code, since (K*/ N ) = R. For coding rates beyond channel ca-

. . * . .

pacrty the ratio K /N decreases at a fast rate. Thus as the coding rate increases the den-

sity of the code needs to be decreased to facilitate optimal decoding efficiency. It can be

observed that the decrease in the value of K* / N with increasing coding rate despite be-
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ing very fast maintains its gracefulness. This property could be utilized to obtain a closed

form approximation of the dependence of K* / N on the coding rate and probability of

erasure. A closed form approximation could facilitate a fast encoding scheme for near

optimal PRS codes.

The z-axis in Figure 24 shows the difference in performance of RS code and an opti-

mal PRS code in terms of message throughput. Thus it can be clearly observed that near

and above channel capacity the performance of PRS - 1 code can be better (may be much

better) than an RS code of a similar rate. Thus an adaptive scheme based on PRS codes

could take advantage of this to improve the overall efficiency of the FEC scheme.
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Figure 22 N = 100: Performance of optimal PRS —1 code
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Figure 24 N = 100: Difference between RS and PRS-1
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At this stage it is important to emphasize the fact that there exist coding rates below

channel capacity for which an optimal PRS code can outperform an RS code of similar

rate and block-length. Figure 25 shows one such example. Message throughput perform-

ance of optimum (N, K, K*) = (100, 88, K*) PRS codes is compared with the RS (N,

K)=(100,88) code over different Binary Erasure Channel (BEC) conditions. The coding

rate K/N = 0.88 is lower than the channel capacities. It is clear that the optimum PRS

codes are maintaining better overall message throughput under these conditions. Figure

26 shows the optimum value of K ' as a function of p. It can be observed that as value of

p increases the optimal value of K ' decreases. This is equivalent to reduction in density.
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Figure 25 (100, 88, K*) PRS codes as compared with the RS (N, K)=(100,88) code

over different Binary Erasure Channel (BEC) conditions.
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As the dependence of optimal PRS codes on channel capacity and coding rate is

symmetric, it can be concluded that for a given probability of erasure and block-length

there exists a critical coding rate lesser than channel capacity, such that, for all coding

rates above this critical value, there exists an optimal PRS code that can outperform the

traditional RS code. Moreover, it can be shown for the PRS-l codes,

K1+(l—p)(K—Kl)):>

As N-—)°°,pm-—)l-( K

As N-—>oo, K1 —>(l—p)-(Kl+(N-K)):'>,

(1-p)-(K1+(N-K))+(1-P)-(K-K1)]
As N—>°°,pm—)l—[ K

i.e. as N—->oo, pm al—[Wl

59



Thus, since N —-)oo, C-—>(1-—p) and R = K/N , we can conclude that as N —>oo,

p,,.—>1—(%).

By combining the (inverse of the) channel coding theorem with this result, we can

conclude that as N ——> co, the critical rate becomes equal to the channel capacity of the

BEC.

Thus in this chapter it has been clearly shown that for a Binary Erasure Channel, if

the coding rate is close to channel capacity then the erasure recovery performance of PRS

codes is much better than RS codes. Moreover it was shown that the optimal PRS codes

are simple order 1 PRS codes. In the next chapter we look at the applications of these

codes. In particular we investigate with some multimedia examples whether the im—

provement in throughput performance does indeed translate into improvement in media

quality. We shall also investigate the role PRS codes could play in adaptive FEC

schemes.
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CHAPTER 5

APPLICATION OF PRS CODES

In this chapter, we extend our work, which employed Partial Reed-Solomon (PRS)

Codes at coding rates near channel capacity on a Binary Erasure Channel (BEC). We

demonstrated that an appropriately designed PRS code outperforms the classical Reed-

Solomon (RS) code for a performance criterion tailored for realtime applications. In this

chapter we shall illustrate that PRS codes exhibit a graceful degradation in erasure recov-

ery performance and, hence, are suitable for multimedia communication. Our video simu-

lation results will outline that the enhanced erasure recovery yields a profound improve-

ment in the perceived media quality. Finally we investigate the performance of the divi-

dend rendered by PRS codes operating above channel capacity. In particular we define a

paradigm for a unique “fixed rate” adaptive FEC scheme based on PRS codes.

5.1 Graceful Degradation in Performance

Figure 27 shows the comparative performance of (100,88) codes of rate R = 0.88 as a

function of number of packet losses (L). It should be noted that the avg. no. of packets

dropped = R . L . The performance of an RS code is compared with PRS — 1 code opti-

mized for various erasure probabilities. It can be observed that when a RS code block

experiences a number of losses that is larger than the number of parity symbols, then the

code is incapable of recovering any of the lost message data. Experiencing a number of
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losses that is larger than the number of parity symbols is quite feasible, even if, “on aver-

age”, the message rate R is lower than the channel capacity. This is particularly true when

the message rate R is close to (but may still be lower than) the channel capacity. On the

contrary the performance of PRS — 1 code shows a graceful degradation in performance.

Depending on the channel conditions, this property can be suitably exploited to provide

better packet recovery than an RS based FEC scheme. The above phenomenon is also

responsible for PRS-1 codes showing better performance than RS codes in Figure 25.

Video simulations provided in the next section shall further illustrate the significance of a

graceful degradation in performance
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5.2 VIDEO SIMULATIONS

The overall performance due to the graceful degradation in performance of PRS

codes, as the number of losses in a code block increase, is further improved when the per-

formance is measured in terms of perceptual image quality instead of message through-

put. This can be attributed to the limitations of error concealment algorithms, which are

effective only when the numbers of losses (after channel decoding) are not substantial.

We used the newly emerging JVT standard [33] as an underlying video coding technique

to compare the performance of RS and PRS channel coding schemes under identical

channel conditions and identical loss patterns.

We use the standard test sequence foreman to present our results. The sequence was

coded at lMBps at 30 HZ. A GOP size of 15 with a frame sequence IPPP was used. A

packet size of 512 bytes and slice size of 512 bytes were used for the purpose of our

simulations. Figure 28 and Figure 29 just show instances in a particular ensemble of the

simulations, but similar results were observed for numerous repetitions of the experi-

ments. These figures show the results obtained by using (100,88) RS and (100,88,72)

PRS-1 (optimized for p=0.11) codes. When the number of losses in a code block is less

than N-K the performance of RS codes is better than that of the PRS code. The difference

in performance between the two schemes is the maximum when L=N-K. As against this

the performance of a PRS code is better than an RS code when the number of losses are

greater than N-K. The improvement due to a PRS code is the least significant when the

number of losses L = N-K+ l.
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Figure 28 Clockwise an instance in the foreman Sequence for

L: 12 RS code, L=12 PRS — 1 code optimized for p=0.11,

L=13 PRS — 1 code optimized for p=0.11, L = 13 RS code.



 
Figure 29 Clockwise an instance in the foreman Sequence for

L: 12 RS code, L=12 PRS — 1 code optimized for p=0.11,

L=13 PRS — 1 code optimized for p=0.1], L = 13 RS code.
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In our simulations we forced the number of losses in each code block to be equal to L.

The Figures shown here present the results for the cases when L = N—K and L =N-K+l.

Moreover for L = N-K these figures show the comparison of the worst affected frames for

a PRS coded sequence. In addition, for L=N-K+1, comparison of frames when the im-

provement due to PRS codes is not exaggerated" has been presented. Thus Figure 28 and

Figure 29 show the performance comparison of a RS and PRS for a “worst case scenario”

for PRS.

It can be clearly seen in the above mentioned figures that when L=12 the image quality

for an RS coded sequence is better than that of a PRS coded sequence. Nevertheless the

distortion in the PRS coded sequence is not very significant. On the contrary the per-

formance of the RS coded sequence when L=13 is much worse than that of the PRS code.

It can be seen that though the quality of the image for a PRS sequence also deteriorates,

the increase in distortion is not significant. However the increase in distortion for an RS

coded sequence is high enough to almost make the frame unintelligible. For such low

quality images PSNR does not reflect the true quality of the image and hence only visual

results have been presented.

In the above experiments no knowledge about the source model was used for alloca-

tion of parity symbols i.e. the symbols to be protected in a PRS code block were chosen

without taking into consideration the importance of I frames or the temporal proximity of

P frames to a particular I frame. Thus we are not attempting to provide a new unequal

 

” There were many instances when a particular frame in an RS coded sequence was significantly distorted

but a PRS coded sequence had absolutely no artifacts, we avoid presenting such comparisons.
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error protection scheme, however in this case the best PRS code for a BEC is an unequal

distribution of parity. A more appropriate interpretation of such a code would be to rec-

ognize it as an irregular graph code [34]. In addition the error robustness features in the

standard were kept at a minimal. i.e. features such as forced intra coded blocks, data par-

titioning, use of B—frames etc. were turned off. Taking all the above features into consid-

eration can significantly improve the performance of PRS codes, but even without these

features and even for worst cases the performance improvement of PRS codes is signifi-

cant.

5.3 PRS-l BASED ADAPTIVE FEC SCHEMES

Over channels with time-varying characteristics multiple code blocks can experience

a number of losses that are larger than the number of parity symbols. Thus, though “on-

average” coding rate is lesser than channel capacity, it is possible for the coding rate to be

greater than the channel capacity for a period of time. If the change in channel conditions

is slow enough and if a channel can provide some feedback information about the chan-

nel conditions, then the underlying error control code in an FEC scheme can be changed

to adapt to the channel conditions. The feedback information can be provided to the

transmitter using many possible approaches depending on the application. Also, the par-

ticular approach used by the system to use this information for channel coding purposes

can be achieved in several ways. For example, the parity symbols can be transmitted in a

delayed and synchronized way relative to the original message symbols and in response

to the feedback information. Also, the number of losses L may represent some form of a

“current average” of losses that being experienced by the channel over a recent history.
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This way, the feedback information may be updated periodically and not necessarily for

every block of N transmitted symbols. This approach could be feasible for channels that

change relatively slowly. In this case, L/N would represent a current (updated) average

for the packet loss ratio.

Most of the current FEC schemes adapt to the channel conditions by changing the

coding rate R. If the loss probability increases the number of parity symbols are also in-

creased (thus the rate is adapted to always transmit below channel capacity). For a real—

time application this is equivalent to increasing the transmission bit-rate. Increasing the

transmission bit-rate is not always feasible and thus changing the coding rate in an adap-

tive FEC scheme is not always suitable.

Using a PRS code based adaptive FEC scheme can mitigate the above problem. In

such a scheme the coding rate is kept fixed, but the underlying PRS -1 code can be

changed. The feedback information about the erasure probability from the channel can be

used to optimise the design of the underlying PRS —1 code. It should be noted that the

coding rate of the PRS code could be greater than channel capacity for a limited period of

time. Thus a performance analysis of PRS codes with rates greater than channel capacity

is required. Figure 30 shows such a analysis. It compares the performance of (100,88)

PRS — 1 codes optimised for different channel conditions, with the performance of

(100,88) RS code. It can be observed that the PRS — 1 codes perform significantly better

than an RS code and can recover more than 85% of the lost message information even

when the coding rate is well above channel capacity.
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It should be realized though, that it is possible to design an RS based fixed transmis-

sion rate adaptive FEC scheme. This can be achieved by changing the rate of a code with-

out changing the block-length and transmission rate. The two possible ways to achieve

this are

(a) Transmitting only a subset of K* message packets out of the K message pack-

ets and protecting these K* message packets by N —K* parity packets in-

stead of N— K.

(b) Transmitting only a subset N -(l— p) message packets out of the K message

packets and protecting these N 0(1— p) message packets by N - p parity pack-

ets instead of N — K .

Figure 30 shows that performance of scheme (a) is much worse than optimal PRS -1

code. The performance of scheme (b) is better than RS code but still inferior to that of an

optimal PRS code. Never the less we believe that it is possible to get performance compa-

rable to the optimal PRS —1 codes by optimally dropping packets before transmission and

decreasing rate as described in (a) and (b). Even such a hypothetical scheme, on account

of being an RS based scheme will not exhibit graceful degradation. This can be explained

by noting that, the feedback about channel conditions is an estimate over multiple code

blocks, it is possible for an R8 code to be ill designed for individual blocks. In such an

event the performance of a PRS-1 code will not deteriorate as rapidly as an RS based

code.
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Figure 30 Comparison of (100,88) optimal PRS -—l with (100,88) RS, (100,K*) RS and

(100,100-p) R8 for coding rate greater than channel capacity.

Thus it can be appreciated that despite a comparatively simple design, PRS codes can

be used for real-time multimedia applications. More generalized code structures and ap-

plication of such coding schemes to problems other than Multimedia streaming are t0pics

of future research.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we studied the interplay of density of a good channel code and channel

conditions. We introduced the concept of Partial Recovery. The existence of codes that

could facilitate partial recovery of information, in adverse channel conditions, when full

recovery is impossible, was exhibited. We introduced a new family of linear block codes,

which we refer to as Partial Reed Solomon (PRS) Codes. These codes are specifically

designed and optimized for real-time multimedia communication over packet-based era-

sure channels. Based on the constraints and flexibilities of real time applications, we de-

fine a performance measure, message throughput (rm ), which is suitable for these appli-

cations. This measure differentiates the notion of optimum codes for the target multime-

dia applications as compared to performance measures that are used for non-realtime

data. Based on the proposed measure, we combined the advantages of lowering the den-

sity of a code for near capacity performance with the high decoding efficiency of Reed

Solomon (RS) codes, in order to design optimum PRS codes. Then, we demonstrated,

through an example of a Binary Erasure Channel (BEC), that at near-capacity coding

rates, appropriate design of a PRS code can outperform an RS—code. We extended this

analysis and optimization for a general BEC over a wide range of channel conditions.

Moreover, as compared with R8 codes, the proposed PRS codes provide a significantly

improved graceful degradation when the number of losses exceeds the number of parity

symbols within the code block. This is a highly desirable feature for realtime multimedia
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applications. . Our video simulation results outlined that the enhanced erasure recovery

and graceful degradation in performances yields a profound improvement in the per-

ceived media quality. In particular we defined a paradigm for a unique “fixed rate” adap-

tive FEC scheme based on PRS codes.

Future research direction of the presented work can be summarized as follows:

)‘v

V
’4/

More generalized constructions of codes.

Designing of faster decoding algorithms and better decoding efficiency for short

block-length codes.

Increase gracefulness in performance degradation of the code and better

adaptability to channel conditions.

Generalization of current schemes to more generalized channels. Specifically de-

sign of codes for channels with memory and for channels with errors where the

location of the error is not known.

Optimizing the performance of codes from a multi-user point of view

Extension the proposed work to prioritized data streams. In case of video, this

would be equivalent to designing codes for multi-resolution streams.

Explore possible applications in Joint-Source Channel Coding scenarios.
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