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ABSTRACT
UNIVERSAL INTEGRAL CONTROLLERS WITH NONLINEAR GAINS
By

Hyon Sok Kay

Various robust nonlinear control techniques have been developed for the regu-
lation of nonlinear systems under uncertainties and disturbances. Among the con-
trollers proposed for single-input single-output, input-output linearizable, minimum
phase, nonlinear systems, the Universal Integral Controller has a simple structure
that can be viewed as a natural extension of the classical PID controller and re-
quires minimal information about the system. While robust nonlinear controllers
ensure asymptotic regulation, they do not address the problem of transient per-
formance. In this dissertation, we extend the structure of the Universal Integral
Controller to provide more freedom that can be utilized to improve the transient
performance. We allow the integral, proportional and derivative gains to be non-
linear functions of the tracking error and its derivatives. Two possible schemes
for nonlinear integration are investigated: a nonlinearity placed before or after the
integrator. Our analysis shows that the new Universal Integral Controller achieves
regional and semiglobal regulation. More specific results are provided for the non-
linear PID controller, which is a special form of the Universal Integral Controller.
By simulation, we demonstrate that the new freedom in designing the nonlinear

gains can be used to improve the transient performance.
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Chapter 1

Introduction

For input-output linearizable, minimum phase, nonlinear systems, the univer-
sal integral controller achieves robust asymptotic tracking. The controller which
can be viewed as an extension of the classical PID controller, uses a feedback signal

of the form
drle, + dre,
Vat-1 T dte

de
ko/€1+k1€1+k2#+"'+kp__

where e, is the tracking error and the derivatives of the error are calculated using
a high-gain observer. While it achieves robust steady-state performance, it does
not address the problem of transient performance. In fact, most of the time, the
improvement in the steady-state performance comes at the expense of degradation

of the transient performance. The goals of this dissertation are

1. Extend the structure of the Universal Integral Controller by replacing the

constant gains ko to k,_; by nonlinear functions of e; and its derivatives

2. Study the design of these nonlinear functions to improve the transient perfor-

mance of the system

3. Prove the stability of the closed-loop system under Universal Integral Con-



trollers with variable gains

In the next sections, we briefly review the main background elements of this disser-
tation. In Section 1.1, we review integral control of nonlinear systems, which leads
to the review of the Universal Integral Controller in Section 1.2. In Section 1.3,
we review high-gain observers. The idea of using nonlinear gains as a tool for im-
proving transient performance is not new in the control literature. In Section 2.4,
we review the literature on this idea. Finally, we give an overview of the thesis in

Section 2.5.

1.1 Integral Control

Integral control is extensively used in control system design. It achieves robust
asymptotic tracking of a reference signal, which is constant or approaches a constant
limit asymptotically, in the presence of external disturbances and unmodeled system
dynamics. An integral controller is composed of two parts: the integrator and
the stabilizing controller. Integration of the tracking error creates an equilibrium
point, where the tracking error is zero, and the controller stabilizes the augmented
system. While external disturbances or uncertainties of the system model move
the equilibrium point, the integral action ensures that the tracking error is zero at
equilibrium, as long as the stabilizing controller maintains the equilibrium point
asymptotically stable. The control problem is to design a controller that stabilizes
the equilibrium point of the augmented system in the domain of interest in the
presence of unknown disturbances.

The theory of integral control for linear systems was developed in the seventies

by Davison (8], Francis [12], and Desoer and Wang [9], among others. In the early



nineties, the integral control theory was extended to nonlinear systems and local
results were provided. Huang and Rugh [17],[18] used the extended linearization
method and allowed slowly varying external signals. Isidori and Byrnes [21] derived
necessary and sufficient conditions for local solutions. Regional and semiglobal
results for input-output linearizable systems were reported later on. Freeman
and Kokotovic [13] used backstepping to design a state feedback controller for
systems with no zero dynamics. Mahmoud and Khalil [31], Khalil [25],[27] and
Isidori [19] designed output feedback controllers, with high-gain observers, which

achieve semiglobal regulation.

1.2 TUniversal Integral Controller

Mahmoud and Khalil [31] used integral control to design a robust min-max
output feedback controller for a single-input single-output, input-output lineariz-
able system with asymptotically stable zero dynamics. The integrator creates an
equilibrium point at which the tracking error is zero. The robust controller brings
the trajectory of the system to a positively invariant set. The size of that set can
be made small by choice of some control parameters, and inside the set the con-
troller acts as a high-gain controller stabilizing the equilibrium point. Khalil [27]
carried the work of [31] further by designing Universal Integral Controllers, where
continuous sliding mode control was used for robust nonlinear control. The control

input has the form

koO’ + k1e1 + -+ k,,_lep_l + 6,,)

, (1.1)

u = —ksign(-) sat (
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(a) A PI controller with K; = kk,/u, Kp = k/u followed by saturation
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(b) A PID controller with K; = kk,/u, Kp = kk2/u, Kp = k/u followed by
saturation
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Figure 1.1: Universal Integral Controller for relative-degree-one and two systems

where p is the relative degree of the system, o is the integrator output, e, to e, are
the tracking error and its derivatives, and sat(-) is the saturation function. Only the
information about the relative degree p of the plant and the sign of its high frequency
gain sign(-) is necessary to design the controller, and the structure of the controller
can be viewed as an extension of classical PID controller. In particular, for relative-
degree-one systems, it is the classical PI controller followed by saturation, while for
relative-degree-two systems, it is the classical PID controller followed by saturation.
Figures 1.1 shows the structure of the controller for systems with relative degree

one and two.



1.3 High-gain Observers

High-gain observers provide an important technique for the design of out-
put feedback controllers for nonlinear systems. A high-gain observer estimates
the derivatives of the output of a system. The observer gain depends on a small
parameter ¢, which can be adjusted to guarantee that the estimation error decays
to the level O(e) in an arbitrarily small time interval. Esfandiari and Khalil [10]
studied the use of high-gain observers in the design of output feedback control of
nonlinear systems, which are minimum phase and input-output linearizable. A key
contribution of their study is the use of saturation nonlinearities to overcome the
peaking phenomenon associated with high-gain observers. The observer is designed
to assign the observer eigenvalues at O(1/¢) values in the open left-half complex
plane. This results in exponential modes of the form (1/€)™ exp(—ta/e) for some
positive constant a and positive integer m. While the decay of the exponential
term exp(—ta/€) can be made faster by decreasing €, the amplitude term (1/¢)™
grows larger with such decrease. This peaking phenomenon was known for linear
systems, but Esfandiari and Khalil showed that its impact on nonlinear systems is
more serious because it could destabilize the system. They proposed a technique
to overcome the effect of peaking in the observer on the state of the system under
control, i.e., the plant. The idea is to saturate the feedback control law outside a
compact region of interest such that during peaking period the control saturates
and protects the plant from the effects of peaking. Because the peaking transients
decay rapidly, the saturation period is small. Since its introduction in 1992, the
Esfandiari and Khalil technique has received a lot of attention in the control field

and has been included in a few textbooks [33],(28],[20]. One of the important con-



sequences of this technique is the ability to separate the design of output feedback
control for nonlinear systems into a state feedback design followed by observer de-
sign, and to prove that the output feedback controller recovers the performance of
the state feedback controller. Teel and Pray [41] developed a generic separation
principle, which showed that a globally stabilizable system by state feedback with
uniform observability can be stabilized semiglobally by output feedback. Atassi and
Khalil [3] provided a more comprehensive separation principle and showed that the
output feedback controller recovers the performance of the state feedback controller
in the sense of recovering asymptotic stability of an equilibrium point, its region of
attraction, and its trajectories. Extensive survey of the use of high-gain observers

in nonlinear control can be found in [26].

1.4 Controllers with Variable Gains

Numerous researchers in various fields have proposed to use variable gains as
a tool to improve the performance of controllers. The idea has been applied to
aircraft control [39], traffic control [6], vibration control [1] and power systems [42],
among other areas. In particular, as PID controllers are widely employed in control
systems, controllers with nonlinear PID gains have been designed to improve the
performance. Experimental and simulation results showing superior performance
of nonlinear proportional and derivative gains are found in Fertik and Sharp [11],
Clark [7], and Ni [32]. While integral control achieves asymptotic regulation, it has
been observed that the integrator can degrade the transient performance. Krike-
lis [29] proposed ‘intelligent’ integrators where a deadzone nonlinearity was placed

in a feedback loop around the integrator to prevent the buildup. This idea was



applied to digital systems by Ghreichi and Farison [15]. The idea of decreasing the
integral gain when the error is large can be found in Luo, Jackson and Hill [30] and
Fukuda, Fujiyoshi, Arai and Matsuura [14]. Shahruz and Schwartz [38] developed
a computer aided design technique for tuning nonlinear PI controllers. Izuno [22]
designed integral gain as a function of desired speed.

Only a few analytical results are available for nonlinear PI and PID controllers.
Seraji [35],[36],[37] used Popov criterion to obtain the range of the nonlinear gains
that stabilize the linear systems. Huang [16] showed Lyapunov stability of a non-
linear PD controller for second-order stable linear systems. Armstrong, Neevel and
Kusik [2] showed the stability of a nonlinear PID controller for linear systems by
switching off the nonlinearity which contributed to the positive terms of the deriva-
tive of Lyapunov function. Xu, Ma and Hollerbach [43] showed Lyapunov stability

for second-order robotic systems.

1.5 Overview of the Thesis

In Chapter 2, we describe single-input single-output minimum phase systems
with a well-defined normal form. A brief review of ideal sliding mode control, con-
tinuous sliding mode control and Universal Integral Controllers is provided. We find
that the input-to-state stability of the dynamics of the system on the sliding surface
is the essential property for the analysis. To prevent the buildup in the integrator,
we propose to place a nonlinearity that satisfies a sector condition before or after
the integrator. The nonlinear integrator is driven by an augmented error, which is a
weighted sum of the tracking error and its derivatives. Our analysis shows that the

controller with nonlinear integration achieves regional and semiglobal regulation.



We compare the performance of the controllers for linear integrator, nonlinearity
before integration and nonlinearity after integration schemes.

In Chapter 3, we investigate the use of nonlinear proportional and derivative
gains. We consider a nonlinear gain of the form k; = k;(e;) where v(e;) = k;(e;)e;
satisfies a sector condition. The dynamics of the system on the sliding surface can
be represented as a Lure system. Linear Matrix Inequalities are used to find the
sector condition for the nonlinear gains, so that a Lyapunov function on the sliding
surface can be obtained. Our analysis shows that if the LMI problem is feasible,
then the controller, with nonlinear proportional, integral and derivative gains, will
achieve regional and semiglobal regulation. The effect of nonlinear gains on the
performance is investigated by simulation.

In Chapter 4, we consider systems with relative degree two. A Universal In-
tegral Controller with nonlinear gains reduces to a PID controller with nonlinear
proportional and integral gains. In Chapters 2 and 3, the augmented error is used
to drive the integrator for systems with higher relative degree. For relative degree
two systems, we also consider nonlinear integrators driven by the tracking error,
which is the classical form of the nonlinear integration found in the literature. In
Chapter 3, LMIs were used to find sector conditions for proportional and deriva-
tive gains. For systems with relative degree two, a Lyapunov function is obtained
analytically. Our analysis shows that a PID controller with nonlinear gains, with
the nonlinear integrator driven by either the augmented error or the tracking error,
achieves regional and semiglobal regulation. By simulation, we investigate the effect
of nonlinear gains on the performance of the controller.

Our findings and some remarks are summarized in Chapter 5.



Chapter 2

Universal Integral Controllers with

Nonlinear Integral (GGains

2.1 System Description

Consider the single-input single-output nonlinear system
& = f(z,6) + g(z,0)u, y=h(z,6) (2.1)

where z € R™ is the state, u € R is the control input, y € R is the measured out-
put, and 6 € R' represents unknown constant disturbances and parameters. The
functions f, ¢ and h depend continuously on 8, which belongs to a compact set
© € R'. We assume that for all § € ©, f, g and h are sufficiently smooth on Uy, an
open connected subset of R™ that could depend on 6.

In this work, we consider input-output linearizable, minimum phase nonlinear sys-

tems, which have well-defined normal forms.

Assumption 1 The system (2.1) has a uniform relative degree p < n for all



zecUyand 6 c O, re.,

Lgh(z,8) = LyLsh(z,8) = --- = L,L5 *h(z,0) = 0

|LeLf  h(z,8)| > co > 0 (2.2)

where ¢y 1s independent of 8. Moreover, there exists a diffeomorphism

" = 7(z,0) (2.3)
3

of Uy onto its image that transforms (2.1) into the normal form

n= 4(77, &1 9)

=&, forl1<i<p-1

: (2.4)
£P = b("l, E’ e) + a(ﬂ, f) e)u

v==64

Under the conditions given in Byrnes and Isidori [5, Proposition 3.2b, Corollary
5.6], Assumption 1 holds locally or globally when 6 = 6, is known. Global con-
ditions when 7 = g(7,£) is also given in [5, Corollary 5.7]. In our assumption,
the mapping in (2.3) is a diffeomorphism from U, onto its image. Necessary and
sufficient conditions for a mapping from U to V to be a diffeomorphism of U onto
V is provided in Sandberg [34]. A mapping M : U — M(U) is a diffeomorphism
of U onto its image if and only if detJ, # 0 for all p € U and M is a proper map
of U into M(U), where J, is the Jacobian matrix of M at p € U. The results that
guarantee the existence of a diffeomorphism for a given Uy is not available in the

literature. For most systems satisfying the local conditions, a region over which the

10



normal form exists is determined in the process of transforming the system into the
normal form. While the requirement of the existence of normal form uniformly in 8
is more restrictive, there are many examples of physical systems where the normal
form exists uniformly over a compact set of system parameters.

We consider the tracking problem where y(t) is to asymptotically track a ref-

erence signal r(t). The reference signal has the following properties:

e r and its derivatives up to the pth derivative are bounded and r(¥) is piecewise

continuous, for all ¢t > 0;
o lim; ,o 7(t) = w and lim, ,o, 7™ (¢) =0 for 1 <1 < p.

Define v(t) by v = [r — w,r(V),... | #(~~1]T. By construction, v(t) is bounded for
all £ > 0 and lim, ,,v(t) = 0. Let W C R, A C R?, and I" C R be compact sets
such that w(t) € W, v(t) € A, and r?)(t) € T" for all t > 0. Set d = (w,8) and

D=W x ©.

Assumption 2 For each d € D, a unique equilibrium point Z = Z(d) € Uy and

a unique control 4 = u(d) ezxist such that

0= f(z,8) + 9(z,0)a(d), w = h(Z,6)

With the change of variables (2.3), the equilibrium point Z(d) maps into

(7(ad), f_(d))r where E(d) = [w,0,---, O]T'

For the tracking problem, let

11



and rewrite the system (2.4) as

z2=qo(z,e+v,d)
é;=¢€, forl<i<p-1

(2.5)
é, = bo(z,e+v,d,7?) + ao(z,e + v,d)u

Ym = €1

where y,, is the measured tracking error.

Assumption 3 There erists positive constants r, and r,, independent of d,

such that for alld € D and v € A,

lle]l <71 and ||z|| <72 = T € Up

Define the balls £ = {e € R* : |le|]| < 1} and Z = {z € R*" : ||z|| < r2}.

Since A is compact, there exists 73 > 0 such that

llv|| <7y forallveA (2.6)

Therefore, |le+v|| <71+ 73 foralle € £ and v € A.

Assumption 4 There erist a C* proper function V, : Z — R, , possibly depen-
dent on d, and class K functions a;, 0,03 : [0,72) - Ry and 7 : [0,7; + 73) —

R., independent of d, such that

a(|l2]]) < Vo(t, 2,d) < ax(]|2]) (2.7)

o o

5 3;‘10(2,8 +v,d) < —as(llz]]) Vllz]| > (/e +v|]) (2.8)

12



forallec &, z€ Z, ve A and d € D. Furthermore,

v(r3) < az (e (r2)) (2.9)

Moreover, the equilibrium point z = 0 of z = go(z,0,d) ts exponentially stable
uniformly wn d, i.e., there exist positive constants ay, By and ry, independent

of d, such that
lz(®)ll < Boe™*||2(0)[], V [|2(0)|| < 7o, VE >0 (2.10)

The system 2 = go(z, e + u,d) is said to be input-to-state stable, viewing (e + v)
as the input, if there are a class KL function §(-) and a class K function a(-) such
that for any initial state z2(0) and any bounded input e(t) + v(t), the solution z(t)

exists for all ¢t > 0 and satisfies

=00 < (1=}, 1)+ & ( sup lett) + o)) (211)

It is said to be locally input-to-stable if there exist positive constants c; and ¢, such
that the inequality (2.11) is satisfied for ||z(t,)]| < c1 and sup,s, |le(t) + v(2)|| <
c2 [40].

The inequalities (2.7) and (2.8) in Assumption 4 imply that, viewing (e +v) as
the input, the system z = go(z, e + v, d) is locally input-to-state state in the domain

of interest.

13



2.2 Sliding Mode Control

Robust asymptotic tracking can be achieved by sliding mode control. A slid-
ing surface is chosen such that asymptotic tracking is achieved when motion is
restricted to the surface. Then, a discontinuous control is designed to render the
surface attractive and guarantee that all trajectories will reach the surface in finite
time. Assumption 4 ensures that the system is minimum-phase and allows us to
concentrate on stabilizing the motion of the e; variables. Therefore, it is typical to
choose the surface s = 0 such that s is a weighted sum of the tracking error and its
derivatives:

p—1
s=) kieite,
i=1

where the positive constants k; to k,_; are chosen such that the roots of
Ml p b, A2+ ko A+ k=0 (2.12)

have negative real parts. The dynamics on the surface s = 0 are described by

— 0 1 0 0 -
0 0 1 0
(= : D CEAC
0 0 0 1
[~k ks —ks ko)

14



where ( = [e;,- - ,ep_l]T and A is Hurwitz. The variable s satisfies a first-order

differential equation of the form
§=A() + (LyL5 ' h)s
where A(-) is a continuous function of z, e, d, v and r(?). The sliding mode control
u = —ksign(L,L% ') sgn(s)

where

1, fors>0

sgn(s)
-1, fors<0

ensures that

s§ < —pols|, forall s#0

provided the control gain k is sufficiently large to satisfy

A()

- <k-po
L,Ly'h

over the domain of interest.

While ideal sliding mode control achieves zero steady-state error, it is well
known (28, pages 198, 215] that, in practice, sliding mode controllers suffer from
chattering due to nonideal effects such as switching delays and unmodeled dynamics.

One approach to avoid chattering is to approximate the signum nonlinearity sgn(s)

15



by the saturation nonlinearity sat(s/u), where

(

1, forp>1

sat(p) = {p, for |p| <1

-1, forp< -1

\

and u is a positive constant. In the presence of nonvanishing disturbance, the

continuous sliding mode controller

u = —ksign(L,L}*h) sat(i)

can guarantee only ultimate boundness with respect to a compact set, which can
be made arbitrarily small by decreasing u. However, a too small value of u will
again induce chattering due to nonideal effects [28, page 215].

Zero steady-state error can be achieved by including integral action in the controller.
This was done in Khalil [27] by augmenting the system with an integrator driven

by the tracking error: ¢ = e;. The sliding surface is taken as

p—1
s=koo+ > kie;+e,=0 (2.13)

1=1
where the positive constants kq to k,_; are chosen such that the roots of

Motk N4 kA4 ko =0

have negative real parts. The augmentation of the integrator creates a closed-loop

equilibrium point where the tracking error is zero. Since ss < —py|s| for |s| > u, s

16



reaches the boundary layer {s < |u|} in finite time. The dynamics of o and ( are

described by

r } [ ]
0o 1 0 0 0
0o 0 1 0 0

ba=| : Dot |i]s

(2.14)
0 0 0 1 0
~ko ~ky —k2 o —kp 1
4 A4oCs + Bas

where ¢, = [0, €1, - ,e,_1]T and A, is Hurwitz. The fact that {, = A,(, + B.s is
input-to-state stable, viewing s as input, together with Assumption 4, ensures that
the trajectory of the system enters a positively invariant set. Inside the set, the
controller acts as a high-gain controller that stabilizes the closed-loop equilibrium
point. The controller of [27] is called “Universal Integral Controller” because it
works for a class of nonlinear systems that have the same relative degree and sign
of the high-frequency gain LgL'}‘lh. Only bounds on the uncertain terms are needed

to tune the controller parameters.

2.3 Design of Nonlinear Integral Gains

While integral control ensures asymptotic tracking, it has been observed that
the buildup in the integrator can cause poor transient performance. Simulation
results of a continuous sliding mode controller and a Universal Integral Controller

for a field-controlled DC motor are shown in Figure 2.1. A field-controlled DC

17



motor, described in a normalized form by [28, page 30]

dig

Vg = cli,w + Co dt + 1,

dw—cii Ca
dt—3ja 4

has relative degree two, viewing the field voltage v as input and the angular velocity
w as output. For simulation, we use the numerical data ¢; = 0.8484, ¢c; = 0.1,
c3 = 4.242, ¢4 = 1.2. The control parameters are chosen as k =1, 4 = 0.5, kg = 1.5
and k; = 5 and the reference signal is 7 = 0.9. While Universal Integral Controller
achieves zero steady-state regulation error, the buildup in the linear integrator
causes large overshoot and settling time.

To prevent the integrator buildup and improve the transient performance, we
propose to use a nonlinearity. We consider two possible design choices, where a

nonlinearity is placed before the integrator:

p—1
og=1vy(e1), s=o0+) kieite,

1=1

or after the integrator:
p—1
cg=e, s=y(o)+) kieite,
1=1

We would like to choose 9(-) as a locally Lipschitz function that belongs to a sector

(c1, c2) for some positive constants c; and c; > ¢, i.e.,
ap’ < py(p) < cop? (2-15)
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Figure 2.1: Simulation results of the continuous sliding mode controller and Uni-
versal Integral Controller for the field-controlled DC motor

19



The freedom in choosing the nonlinearity 1(-) can be exploited to improve perfor-
mance. For example, choosing 9(-) to be small when |e, | is large reduces the effect
of the integrator during the transient period. The presence of the nonlinearity (),
however, complicates the dynamics of ¢,. It is no longer true that the dynamics
can be represented as a stable linear system driven by s, as in (2.14). The diffi-
culties encountered in studying the stability of the system are discussed further in
Appendix A where it is shown that such difficulties may be overcome if we use an

augmented error, e, = 22’;11 lie; + e,. The two possible schemes are:

e a nonlinearity, driven by the augmented error, is placed before the integrator:

p—1
cd=1vY(e), s=0+) kie.+e, (2.16)
i=1
e a nonlinearity is placed after the integrator, which is driven by the augmented
€rror:
p—1

c=€, s=9((0)+) keite, (2.17)

1=1

The foregoing integrators provide the desired integral action since, at steady state,
0=0= (¢Y(e;) =0)=>e,=0=>e€, =0

due to the fact that e, to e, are derivatives of e,. For the case of (2.16), the dynamics

of the integrator have the form

p—1 p—1
g = ‘([)(S—O’+Zl,‘€,‘ - Zk,-ei)
1=1

1=1

20



and by choosing l; = k; for 1 <2 < p — 1, we obtain

& =9(s— o) (2.18)

Similarly, for (2.17), with the same choice of I;, the dynamics of o are given by

o =s— (o) (2.19)

For any #(-) in the sector (c;,c;), the origin of & = —4(o) is asymptotically sta-
ble, and when s # 0 equations (2.18) and (2.19) are locally input-to-state stable
viewing s as input. For the Nonlinearity Before Integration scheme, we choose the

nonlinearity ¢(-) to satisfy the sector condition

ap® < py(p) < cp?, forallpe Q (2.20)

where Q is any compact set. When |s| < ¢, the solution o of (2.18) is ultimately

bounded with the ultimate bound (1 + §)c where § is a positive constant, i.e.,

lo(t)]| < (1+0d)c, forallt>T

for some T > 0. For the Nonlinearity After Integration scheme, the ultimate bound

on |o| for (2.19), when |s| < c, is given by

o) < 39 frane>T

(5]
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when we choose the nonlinearity (-) to satisfy the sector condition

ap® < pyY(p) < cp?, forallp (2.21)

The dynamics of ( are described by
¢ =AC¢+ B(s—0)
and

{ = AC+ B(s — ¥(0))

respectively, and they are input-to-state stable since the roots of (2.12) have nega-
tive real parts; hence A is Hurwitz.
To design the output feedback controller, we estimate the state ¢ using high-gain

observer:

éi =61+ (Bi/e)(er— &), for1<i<p-—-1

(2.22)
€, = (Bo/€”)(e1 — &1)
where the positive constants §; to B, are chosen such that the roots of
NP4 4B A+ B, =0 (2.23)

have negative real parts, while the positive constant € is chosen to be small enough.
To overcome the peaking phenomenon associated with high-gain observers, we want
the right side of the & equation to be a globally bounded function of of e, [10]. This
can be achieved by saturating e, outside a compact set of interest. In particular, if

L is greater than or equal to the maximum of |e,| over the domain of interest when
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state feedback control is used, we can define the function £ by

D, for |p| < L
L(p) = (2.24)

Lsgn(p) for |p| > L
and replace é, by L£(€,). In the case when the nonlinearity is placed before the

integrator, o equation is given by

¢ = 9(L(&))

We can combine 9(-) and £(-) in one nonlinearity defined by

ap’ <py(p) < cop?, for |p| <L
(2.25)

aL < [Y(p)| < coL, for |p| > L

A nonlinearity satisfying (2.25) will lie in the shaded area of Figure 2.2. In summary,

the Nonlinearity Before Integration scheme is described by

S=0+é,
o =9P(éa) (2.26)
p—1
€a=kier+)_kiéi+é,
1=2

where 9(-) satisfies (2.25). This scheme is shown in Figure 2.3(a). The Nonlinearity

23



¢(-)A

slope = ¢,

Figure 2.2: Nonlinearity 9(é,) for the Nonlinearity Before Integration scheme

After Integration scheme is described by

§=1Y(0)+é,

& = L(&) (2.27)
p—1

éa = k1e1 + 2 k,‘é,‘ + ép
=2

where 1(-) satisfies the sector condition (2.21) and £(-) is defined by (2.24). This

scheme is shown in Figure 2.3(b).
To overcome chattering, we replace the signum nonlinearity sgn(s) by a con-
tinuous function ¢(s/u). We do not limit ourselves to the choice of ¢(p) = sat(p) as

in [27]. Instead, we allow any function ¢(p) that is locally Lipschitz, odd, strictly
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(b) Nonlinearity After Integration

Figure 2.3: Two possible schemes for nonlinear integrators

increasing for all |p| < 1, increasing for all |p| > 1, ¢(0) = 0, lim,_,, ¢(p) = 1, and

(p2 — p1)[0(p2) — ¢(p1)] > ca(p2 — )%, for |pa, |p2| < 1 (2.28)

It follows that

|¢(p)| > ¢(1) > c5, forp>1 (2.29)

Typical examples are ¢(p) = sat(p), ¢(p) = tanh(p), ¢(p) = (2/)arctan(rp/2),

and ¢(p) = p/(1 + |p|)- The continuous sliding mode control law is taken as

u = —ksign(L,L; 'h) ¢(%) (2.30)
with k, to k,_, and B, to B, chosen such that (2.12) and (2.23) are Hurwitz, the
remaining design parameters are the positive constants k, u, and €. The analysis
of the next section will determine the conditions that should be satisfied by these

constants.
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2.4 Closed-loop Analysis

2.4.1 Nonlinearity before the integrator

For the integrator of the form (2.26), where a nonlinearity is placed before the

integrator, the closed-loop system can be represented in the form

Z = qo(z2,e+v,d)

(= A+ B(s-0)

9 =¥(s = Nle)p o) (2.31)
s = A() — g = N(e)e
= A0) - Haa(l0(*=52%)

€p=A;p+€B, [bo(°) _ k|a°(.)|¢<s - Z(e)w)]

where

p—1
A(z,e,0,v,d,77) = P(s - N(e)p — 0) + 3 kieip1 + bo(z,€ + v,d, 7)) (2.32)

1=1

o a1 0
: : : : 1 A _
p= ) Af: y Yi = p_l-(ei_ei) fmlf‘SP
: ~Bp-1 O 1 €
-(pp‘ i _ﬂp 0 .o OJ
and
N(E) =10 k2€p_2 k3€p_3 ce k,,_le 1
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With the parameter € of the high-gain observer chosen sufficiently small, the closed-
loop system has a singularly perturbed form where the scaled estimation error ¢ is
the fast variable, and z, {, o and s are slow variables. The matrices A and Ay are

Hurwitz by design. Let P = PT > 0 be the solution of the Lyapunov equation
PA+ ATP = -1
and take V(¢) = ¢TP¢. Consider
Q.Y {(z,e,0): |s| < ¢, |o] < (1 +8)c, V() < Ep1, Volt, z,d) < ag(cps +73)}

where the positive constants c, §, p;, p2 and the class K function a4 are to be
specified. We require that our assumptions hold in the set Q,, i.e., (z,e,0) € Q.
implies that (z,e) € Z x €. Since e, = s — 0 — K where K = [ky,---,k,_1], the

inequality
llell < 1IKI + leol < (1 + IKIDICH + |s] + |o] < cp2 <14

should be satisfied, where

4!
Amin(‘P )

p2 > (1+||K||) +2+946 (2.33)
From inequality (2.7) we require that

llz]] < ay'(as(cpz +13)) < T2
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where the class K function a4 is defined as ay def ay 07, and from (2.9), a, satisfies
the inequality a;'(a;(r2)) > r3. Thus, for any § and p;, we can ensure that our
assumptions are valid in the set Q2. by choosing p, to satisfy (2.33) and then choosing
c to satisfy

cpz < min{ry, a; (i (r2)) — 73} (2.34)

From (2.9), a4 satisfies the inequality az'(c;(r2)) > 7s.
We start the analysis by showing that, for sufficiently small ¢, the scaled estimation
error ¢ will decay to a level of the order of O(e) after some arbitrarily small time.

Let Py = P,T > 0 be the solution of the Lyapunov equation
PfAf + A}'Pf =-I
and take V;(p) = 9T P;p. The derivative of V; satisfies the inequality:

: 1
Vs < —lloll* + 2ll@lll| Py Bal1(c)

where

71(c) = max{|by(z, e + v, d)| + k|ao(z,e + v,d)|}

and the maximum is taken over all (z,e,0) € Q,d€ D,v€ Aand r® € T'. In
arriving at the preceding inequality, we have used the property |¢(p)| < 1 for all p.
For V; > €2ps, where p; = 16||P; B, ||?|| Pf||73(c), we have V; < —2||p||2. Therefore,
¢(t) enters the set

. def {(p € R : Vi(p) < €2p3}
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within a finite time interval [0, Ty(€)], and stays therein. We note that lim,_,o Ty(€) =
0.

Since the right side of the slow equation of (2.31) is bounded uniformly in ¢, for
all (z(0),e(0),0(0)) € Q, with b < c, there is a finite time T, independent of ¢,
such that (2(t),e(t),o(t)) € Q. for 0 < t < T;. By choosing € small enough, we can
ensure that Ty(€) < T;. Therefore, there exists e} > 0 such that, for each 0 < € < €},
every trajectory, starting at a bounded é(0) with (e(0), z(0), o(0)) € €2, enters the
set Q. x X, in finite time.

In the next step, we establish that the set 2. x X, is positively invariant. Let us
choose u small enough that x(1 + §) < c and € small enough that |N(€)p| < du.
For u(1 + 8) < |s] < ¢, we have

Using (2.29), we obtain

55 < |A()lIs| — esklaol|s| (2.35)

We require the controller gain k to be large enough to overcome the disturbance.

If k is designed to satisfy the condition
k > cq + '72(C) (236)

where ¢4 > 0 and
A(z,e,0,v,d,r(P)
csao(2, € + v, d)

72(c) = max

with the maximum taken over all (z,e,0) € Q, d € D, v € A and r? € T,

then ss < O on the boundary |s| = c¢. On the boundary |o| = (1 + §)c, since
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|s — N(e)¢| < c+6u < |o| and

sign(y(s — N(e)p — 0)) = —sign(o)

we have

06 =oy(s— N(e)p —0) <0

Due to the inequality

V <~ ¢l + 2Ii¢lIPBI(Is| + |o]) (2.37)

< =€l + 2li¢lll|PBlle(2 + 6)
we can show that V < 0 on the boundary V = ¢?p,, by choosing p; to satisfy
p > 4||PB|*||P||(2 + 6)* (2.38)

From (2.7) and (2.8) and by defining the class K function ag as as & az 0 v, we
can verify that Vo < 0 on the boundary V; = a4(cps + r3). Therefore, there exists
p1 > 0 and €3(u) > 0 such that for each 0 < p < u} and 0 < € < €3, the set . x X,
is positively invariant.

Next, we show that s(t) enters the boundary layer {|s| < u;} in finite time, where
i1 is chosen as p; = pu(1—9) to ensure that |(s— N(€)p)/u| < 1 inside the boundary
layer. Let us consider s in the set {u; < |s| < c} and choose § to satisfy

C.
< = <

1
- 2.39
4k " 3 (2.39)
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Notice that sign(¢(8/u)) = sign(3/u) = sign(s), since |[N(€)p| < dp < u(1-9) < |s|.
If |3| > p, inequality (2.35) holds and from (2.2) and (2.36) we can show that

s$ < —coC3cqls]
On the other hand, if |§| < u, using (2.28), (2.36), (2.39), and the fact that

(i)

c c
> flsns — N(e)p| > fISI(u — 26p)

¢(§) = ssgn(s)

we can show that
) s c3C
53 < 1Al - Haalso( £ ) < 22

The latter bound on ss holds for both cases and we conclude that s(t) reaches the
boundary layer {|s| < u:} in finite time and stays therein. After s(t) reaches {|s| <
@1}, consider o in the set {(1+8)u < |o| < (1+ d)c}. Since |s — N(€)p| < p < |o},

we have

sign(y(s — N(e)p — o)) = sign(s — N()p — o) = — sign(o)

|s — N(e)p —a| 2 |o| = |s — N(e)p| > ou
Moreover,

|s—N(e)p—0o| <pu(l-8)+pud+(1+d0)c=pn+(1+0d)c

[¥(s — N(e)p — 0)| 2 &|s — N(e)p — o]
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where

. L
¢ = clmm{l,———} >0
L

Using these facts, we show that

06 = osign(y(s — N(e)p — 0))|3(s — N(e)p - 0)| < —&16u|o|

Thus, o(t) reaches the set {|o| < (1 + J)u} in finite time and stays therein. Then,
from inequality (2.37), we show that V < —2|I¢||? for V(¢) > u?py, by choosing p,
to satisfy

p1 > 64||PB|?|| P (2.40)

Inequality (2.40) implies (2.38) and from now on, we fix p; as chosen above. Thus
e(t) reaches the set {V(¢) < u?p;} in finite time and stays therein. From the
inequality |le|| < ||¢|| + |e,l, it follows that ||e]| < wup.. Since lim, o »(t) = 0, we
have ||v(t)|| < u in finite time. Using ||e(t)|| + ||[v(2)|| < mp2 + u together with (2.7)
and (2.8), we can show that for Vo(z) > ag(ups: + 1), Vo < —as(||2||). Thus, z(t)
reaches the set {Vp < as(up2+ 1)} in finite time and stays therein. Therefore, every
trajectory in Q. x I, enters ¥, x L, in finite time and stays therein, where the set

V¥, is defined as

¥, = {(z,e,0) : |s| < pu, lo| < (1+6), V() < #p1, Volt, z,d) < au(ppz + p)}

Finally, we show that every trajectory in ¥, x £, approaches an equilibrium point

as time tends to infinity. When v = 0 and r(?) = 0, the closed-loop system (2.31)
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has a unique equilibrium point (z = 0,e = 0,0 = &, ¢ = 0), where

F=— sign(Ls,L’f’_lh)udf1 (@)

and ¢~!(p) is defined for all |p| < 1. Let 5§ = & be the corresponding equilibrium
value of s.
Inequality (2.10) of Assumption 4 implies that in some neighborhood of z = 0

there is a Lyapunov function such that

A%
2 <dlzl 2

oV,
Ml < Vi <l San(z,0.0) < xlal?, |

for some positive constants A; to A4, independent of d. Consider
1 1
Vo = Vi(z,d) + As¢TP¢ + 5,\5&2 + 552 + ¢T Py (2.42)

where As and )¢ are positive constants to be chosen, 6 = o0 — G and § = s — 5. The

derivative of V, can be arranged in the form
Va < =xTPox + (Mllell + Asl3] + AsllzID 1] + (Asollel] + A l3]) 7 (2)] (2.43)

where x = [||z]| |I¢]| 16] 13| |l¢]|]T and A7 to Ay, are positive constants. The sym-
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metric matrix P, has the form

A3 _A12 -A13 _'A14 —AIS
A5 —)\23 —A24 ‘A25
P2 = AGC], —‘)\34 _A35
k
0% - A44 ""A45
g 1
- = A55
L € J

where the nonnegative constants A;s to As; are independent of €, A;4 to Ajq are
independent of u, A;3 and A,3; are independent of Ag, and A;, is independent of As.
In arriving at (2.43), we have used (2.28). The detailed derivation of (2.43) and
expressions for all the constants in P, are given in Appendix B. By choosing As
large enough then A¢ large enough then p small enough then e small enough, we
can make P, positive definite. Since lim;_,o, ¥(t) = 0 and lim,_,,, 7(?)(t) = 0, there
exists a ball B around the equilibrium point, whose radius is independent of x and
€, such that every trajectory in B approaches the equilibrium point as time tends
to infinity. We can choose u and e sufficiently small to ensure that ¥, x £, C B.
Hence, there exists 3 > 0 and e3(x) > O such that for each 0 < g < uj and
0 < € < €3, all trajectories in ¥, x L, approaches the equilibrium point as time
tends to infinity.

Our conclusions are summarized in the following theorem.

Theorem 1 Suppose that Assumptions 1 to 4 are satisfied and consider the
closed-loop system (2.31) formed of the system (2.5), the observer (2.22), the
nonlinear integrator (2.26) with nonlinearity satisfying the condition (2.25),

and the output feedback controller (2.30). Suppose €(0) is bounded and

34



(2(0),€e(0),0(0)) € Qy, where b < c and c satisfies (2.34) and (2.86). Then,
there ezists u* > 0 and for each 0 < p < u*, there ezists €* = €*(u) > 0 such
that for each 0 < p < p* and 0 < € < €*(u), all the state variables of the

closed-loop system are bounded and lim;_,, e(t) = 0.

The estimate of the region of attraction €2, is limited by two factors: the region
of the validity of our assumptions shown (2.34), and the requirement (2.36) on the
controller gain k. If all the assumptions hold globally and & can be chosen arbitrarily

large, the controller can achieve semiglobal regulation.

Corollary 1 Suppose that Assumptions 1 to 4 are satisfied globally, t.e., Uy =
R", oy, a;, as and v are class Ko, functions. For any given compact sets
N € R**! and M € R?, choose c > b > 0 and r3 > 0 such that N € Q,, and
choose k large enough to satisfy (2.86). Then, there exists u* > 0 and for each
0 < p < p*, there exists € = €*(u) > 0 such that for each 0 < p < p* and
0 < € < €*(u), and for all initial states (z(0),e(0),0(0)) € N and é(0) € M, the
state variables of the closed-loop system (2.31) are bounded and lim, ,, e(t) =

0.

The control parameter k can be chosen as the maximum magnitude of the actuator.
The choice of small u is limited by the system and controller delays, since too
small u can cause chattering problem. Since high-gain observer is an approximate
differentiator, in practice, the choice of small € is limited by measurement noise and

unmodeled high-frequency dynamics of the senor.
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2.4.2 Nonlinearity after the integrator

For the integrator of the form (2.27), where a nonlinearity is placed after the

integrator, the closed-loop system can be represented in a form similar to (2.31):

z=qo(z,e+v,d)
{ = AC+ B(s — 9(0))
6 =L(s— N(e)p — ¥(0)) (2.44)

= 80) - Halo( =)

€p=Asp+e€B, [bo(') - klad-)l‘ﬁ(#)]

where

-1
A(Z, €0V, d) T(p)) = ¢'(a)(3 - N(e)‘p - ¢(U)) + pz kiei+1 + bO(zl e+v, dt T(p))

=1

Only the dynamics of {( and o and the disturbance term A(:) are different from
(2.31) and the analysis follows the same steps. We will mention only the parts that

are different from the previous section. Consider

def
QC 'i‘ {(z,e,a) : |S| S C, |Ul S

u - O ¢, V(¢) < oy, Vilt, 2, d) < ca(cps +7a)}

We can show that our assumptions are valid in the set Q2. by choosing p; to satisfy
(2.45) and then choosing c to satisfy (2.34), since from e, = s — ¥(o) — K(, the

inequality

llell < 1ISI+ leo] < (L + [IKIDICI + Is] + (o) < cpa <71
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should be satisfied, where

P1
Amin(P )

p2 > (1+ ||K])) +1+ z—j(l +6) (2.45)

As in the previous section, we show that every trajectory, starting at a bounded
€(0) with (e(0), 2(0), 0(0)) € Q, with b < c, enters the set Q. x Z, in finite time.
After showing that ss < 0 on the boundary |s| = ¢, consider o on the boundary

lo| = (1 4 d8)c/c,. We have
o0 =0L(s— N(e)p —yY(o)) <0
since

|s — N(e)p| < c+du < alo| < |¢(0)|

sign(L(s — N(e)p — ¥(0))) = sign(s — N(e)y — ¥(0)) = —sign(o)
Due to the inequality

V < =<1 + 20 IPBII(Is] + [9(a)]) (2.46)

c
< =<1 + 20lIPBlie (1 + 2(1 + )
we can show that V < 0 on the boundary V = c2p,, by choosing p; to satisfy

2
o> 4IPBIFIIPY (1+ 2(1+9)) (2.47)
1
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Then we verify that V; < 0 on the boundary V, = as(cps + r3). Therefore, the set
Q. x I, is positively invariant.
After showing that s(¢) reaches {|s| < u,} in finite time, consider o in the set

{(1+8)u/c1 < o] £ (1+4d)c/ci}. Since |s — N(€)yp| < < a1lo| < |¢(o)|, we have

sign(L(s — N(e)p — 9(0))) = sign(s — N(e)p — ¥(0)) = —sign(o)

|s — N(e)p — ¥(0)| > cilo| — [s — N(e)p| > dp
Moreover,

|s — N(€)o — $(0)| < u(L — 8) + ué + g(l +o)c=p+ ﬁ—j(l +6)c
|L(s — N(e)p — 0)| > &|s — N(e)p — 0]

where
L

p+ 21+ 6)c
(4]

¢; = min<1, >0

Thus,

06 = osign(L(s — N(e)p — ¥(0)))|L(s - N(e)p — %(0))] < ~&bulo]

Therefore, o(t) reaches the set {|o| < (1 + d)u/c1} in finite time and stays therein.

Then, from inequality (2.46), V < —1||¢||? for V/(¢) > u?p if

2

C:
o1 > 16||PB|]||P|| (1 + 21+ 5)) (2.48)

By choosing p; to satisfy Inequality (2.48), which implies (2.47), e(t) reaches the

set {V(¢) < u?p} in finite time and stays therein. Thus, z(t) reaches the set
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{Vo < ay(pp2 + 1)} in finite time and stays therein. Therefore, every trajectory in
Q. x L, enters ¥, x I, in finite time and stays therein, where the set ¥, is defined
as

(1+9)

(5]

¥, ¥ {(2,6,0) : |s| < pu, o] < , V(C) < u2p1, Volt, z,d) < au(ups + p)}

When v = 0 and r(?) = 0, the closed-loop system (2.44) has a unique equilibrium

point (2 =0,e =0,0 = 7,9 = 0), where

provided ¥ ~!(-) exists in the neighborhood of 5. Considering the composite Lya-
punov function of the form (2.42), we can show that all trajectories in ¥, x I,
approaches this equilibrium point as time tends to infinity.

Our analysis shows that the sector condition (2.15) is not sufficient to guarantee
asymptotic tracking of Universal Integral Controller with nonlinear integral gain
(2.27). The nonlinearity (-) should be invertible in the neighborhood of 5. In
practice, due to unknown system dynamics and disturbances, we cannot predict s,

thus the nonlinearity should be designed such that
Y (p)existsfor 0 <p< pu (2.49)

Notice that the sets Q2. and ¥, are dependent on the sector condition (ci,cz). The
conditions for p; and p,, in (2.48) and (2.45), include the term c,/c;, and the bound
of o is proportional to 1/c;.

The following theorem summarizes the conclusion of our analysis.
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Theorem 2 Suppose that Assumptions 1 to 4 are satisfied and consider the
closed-loop system formed of the system (2.5), the observer (2.22), the non-
linear integrator (2.27), with nonlinearity satisfying the conditions (2.21) and
(2.49), and the output feedback controller (2.80). Suppose é(0) is bounded and
(2(0), e(0),0(0)) € Q, where b < c, the size of Q, depends on the sector condi-
tion (2.21) and c satisfies (2.84) and (2.36). Then, there exists u* > 0 and
for each 0 < p < u*, there exists €* = €*(u) > 0 such that for each 0 < p < p*
and 0 < € < €*(u), all the state variables of the closed-loop system (2.44) are

bounded and lim,_,, e(t) = 0.

When the controller gain k can be chosen arbitrarily large, the controller

achieves semiglobal regulation.

Corollary 2 Suppose that Assumptions 1 to 4 are satisfied globally, t.e., Uy =
R, a;, az, a; and v are class K, functions, and k can be chosen arbitrarily
large. For any given compact sets N € R**! and M € R?, choose ¢ > b > 0
and r3 > 0 such that N € Q,, and choose k large enough to satisfy (2.36).
Then, there ezists u* > 0 and for each 0 < pu < u*, there exists €* = €*(u) > 0
such that for each 0 < pu < p* and 0 < € < €*(u), and for all initial states
(2(0),e(0),0(0)) € N and é(0) € M, the state variables of the closed-loop system

(2.44) are bounded and lim;_,, e(t) = 0.

2.5 Simulation Results

Example 1: In Figure 2.4, the simulation results for the field-controlled DC motor
is shown. We use the same parameters as the simulation of Figure 2.1, and take

L(-) with L = 5. The tracking error, integrator output and control effort are shown
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for controllers with linear integral gain and the following nonlinear integral gains:

G=91(8), S=0+é, (2.50)

0 =L(E), 5=1v(0)+é, (2.51)

We use the nonlinearities shown in Figure 2.5. The buildup in the linear integrator
causes overshoot and large settling time. The transient performance of the nonlin-
ear integrator (2.50), where the nonlinearity is placed before the integrator, shows
no overshoot and smallest settling time. The nonlinearity ,(-) is designed so that
the gain is small when the augmented error is large to prevent the buildup in the
integrator during the reaching phase. It behaves similar to a PD controller until
it reaches the boundary layer; then during the sliding phase the integrator drives
the tracking error to zero. The transient performance of the controller with the
nonlinear integrator (2.51), where the nonlinearity is placed after the integrator,
shows better settling time compared to the linear integrator, but it does not im-
prove the overshoot. To satisfy the conditions (2.21) and (2.49), we choose ¥(-)
as a monotonically increasing function, which restricts the freedom of choosing a
nonlinearity that reduces the effect of integration on the control input during the
transient period.

Example 2: The advantage of the Nonlinearity Before Integration Scheme is

demonstrated for the motion on a horizontal surface with friction and disturbance.

j+019° =u—1

The control gains are chosen as 4 = 0.5, k = 2.5, ko = 0.98, k; = 1.4 and L = 5.
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Figure 2.4: Simulation results of Universal Integral Controllers with nonlinear in-
tegrators for the field-controlled DC motor
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v,(e,), v,(o)

Figure 2.5: Nonlinearities 1, (e,) and 1,(o) for the simulation of the field-controlled
DC motor
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Figure 2.6: Simulation results of motion on a horizontal surface
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We use the nonlinearities shown in Figure 2.5. The simulation results are shown
in Figure 2.6. The Nonlinearity Before Integration scheme maintain the integrator
output small and shows better performance than the Nonlinearity After Integration
scheme. The settling time for the Nonlinear After Integration Scheme is increased
by 100%. The buildup in the linear integrator causes 68% overshoot.

Example 3: A magnetic suspension system, where a ball of magnetic material is
suspended by an electromagnet whose current is controlled by the ball position, is

described by [28, page 31]

o . N L2
mjj = —ky + mg + F(y,1) F(y”)__m
. . , L
v=¢+Ri, ¢=L(y) L) = It 17

With the vertical position of the ball y as output and voltage v of a voltage source
which controls the electromagnet as input, the system has relative degree three.
For simulations, we use m = 0.01 kg, k = 0.001 N/m/sec, g = 9.81m/sec?, a = 0.05
m, Lo = 0.01 H, L, = 0.02 H and R = 10Q2. The controller gain is chosen as
u = 0.05 k=40, ky =1, k; = 2, k; = 2 and L = 0.5 for nonlinear integration.
Simulation results for controllers with linear integration ¢ = e; and nonlinear in-
tegration ¢ = y(e,), with 9(-) designed as in Figure 2.8, are shown in Figure 2.7.

While controllers with nonlinear integration improves transient performance,
the augmented error e, is small and the nonlinear integration is operating in the
linear region: 0 = e,. This suggests that we may gain the benefits of the nonlinear
integrator if we simply drive the linear integrator by the augmented error. This is
indeed the case since the input-to-state stable dynamics of the integrator, 6 = s—o

keeps the integrator output small when s reaches the boundary layer fast. Linear
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Figure 2.7: Simulation results of the magnetic suspension system
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Figure 2.8: Nonlinearity 1 (e,) for the simulation of the magnetic suspension system
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integrators driven by the augmented error, o = e,, can be used to prevent integra-
tor buildup if the maximum control level k is large enough to force s to reach the

boundary layer fast.

2.6 Conclusions

We designed Universal Integral Controllers with nonlinear integrators driven
by the augmented error. We considered two possible schemes: Nonlinearity Before
Integration and Nonlinearity After Integration. Our analysis shows that the con-
troller achieves regional and semiglobal regulation. Simulation results show that the
Nonlinearity Before Integration scheme prevents the integrator buildup and achieves
better transient performance than the Nonlinearity After Integration scheme and
the linear integrator, when the maximum permissible control level k is not large
enough to ensure fast reaching phase. In the case of fast reaching phase, the benefit
of using a nonlinearity may not be significant, but driving the linear integrator by
the augmented error rather than the tracking error may still improve the transient

performance.
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Appendix A Stability of Nonlinear Integrators

Consider the case

p—1
og=vyY(e1), s=o0+> keite,

=1
On the surface s =0,
p—1
e, =—0— > kie,
=1
and the system can be represented by the feedback connection of Figure 2.9 with

1
T os(sPt + kpast 2 4o+ ky)

The transfer function G(s) has all poles in the left half plane, except a simple pole
at the origin. Application of the Popov criterion [28, Exercise 7.8] shows that the
feedback connection will be absolutely stable for ¥ in the sector (0, k] if we can
choose a positive constant 7 such that

1 ) .
P Re[(1 + jwn)G(jw)] >0, Vw
For this inequality to hold with arbitrarily large k, we need the Nyquist plot of

(1 +ns)
s(sP~t + ko_15P72+ .-+ ky)

(1+ns)G(s) =

to lie in the right-half plane, which is possible only if (1+7s)G(s) has relative degree
zero or one. This will be the case if p = 1 or p = 2. For p > 3, (1 + 7s)G(s) will
have relative degree higher than one and its Nyquist plot must cross in the left-half

plane. To overcome this difficulty we can use ¢ = 9(e,) instead of & = 9(e,), where
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¥() e

Figure 2.9: Nonlinearity before integrator when s = 0

€, = Ef_—ll lie; + e,. In this case the system, on the sliding surface s = 0, will be

represented by the feedback connection of Figure 2.9 with

% (lp—-l — k,,_l)s"‘z + -+ (ll — kl) +1

G =
(S) sp—l + kp_lsp—-2 + -+ kl

so that the transfer function (1 + 7s)G(s) will have relative degree zero. In fact,
the choice

li=k; for1<i<p-1

yields G(s) = 1/s and for any n > 0, the Nyquist plot of (1 + ns)/s will be in the

right half plane.
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Appendix B Derivation of (2.43)

The derivative of V; of (2.42) is given by

. oV,
Vo = 5;1410(2,8 +v,d)

- xsl¢]1? + 22s¢TPB(s - o)
+ AedY(s — N(e)p — o) (2.52)

~ llgl? + 247 P B, [bo(.) — Klaol(-)9 (_s - ’Z (6)“’)]

We arrange (2.52) in a quadratic form of x = [||z|| ||<|| |5] |3] ||¢]|]T. From (2.42),

we have

oV

v v
—3-;410(2,6 +v,d) = 52 g(2,0,d) + P [g0(z, e + v,d) — go(2,0,d)]

< =sllll® + AaLqllzl|(llell + 1))
where L, is a Lipschitz constant of go(-). Since
lell = [ls — o — K(|| = ||5 — & — K{|| < |KIJIIC]] + 18] + |61
where K = [ky,- -, k,—1], the first term of (2.52) satisfies
v, 2 1L 1=
55 (2 e+ v,d) < =Xsllzll® + ALg|l2|( KIMCI + |61 + 3] + lIvll)  (2.53)
The following inequality is satisfied for the second term of (2.52).

=sI¢I1* + 22s¢TPB(s — o) < =Xs|IC|I? + 25| PBIIIICII(13] + 15]) (2.54)
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We choose u small enough that
L>(2+6)u>|s— N(e)p -0

then ¢;p? < py¥(p) < c,p? and the third term of (2.52) is arranged in the form

= —X6(5 — N(e)p — 3)P(5 — N(€)p — &) + As(5 — N(e)p)¥(3 — N(e)p — )
< —X6c1(5 — N(€)p — )% + Asc2|5 — N(€)p||5 — N(e)p — 5|
S —A5C15'2 + Ae(Cg — C1)§2 + As(Cz — C1)“N(€)”2(p2 + A5(2C1 + C2)[§||5’I

+ Ae(2¢1 + c2)[IN()llllell] + 2A6(cy + c2)lIN ()l ll]3] (2.55)

Consider the fourth term of (2.52) and divide it into three parts. The first part

satisfies the inequality

$9(s — N(e)p — o) = 59(5 — N(e)p — )

< ¢|3](13] + [|N(e)llllll + I61) (2.56)

The second part can be rewritten as

p—1 -p—2
s Z ke, =35 Z ke, 1 + k,,_le,,]

1=1 [1=1

Il
wn

s
Yo kieiv1+kpi(s—o - KC)]

=1

< S([KAIICI + Kp-18] + Kp1151) (2.57)
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where K1 = [_kp—lkly kl - kp_1k2, s ,kp..g - kg—l]‘ Since
a(d) = —ksign(L, L’ *h)¢ (2)
we can arrange the remaining part of the fourth term of (2.52) as

bo(2,e + v,d, r°) — klao(2, e + v,d)|¢ (s — N(E)‘P)

n
= bo(2,e + v,d,r°) — by(0,0,d, 0) + by(0,0,d, 0) + ae(0, 0, d)u(d)

+ k|ao(0,0,d)[¢ (%) — k|ao(0,0,d)|¢ (§ +$ :‘N(e)‘P)

+ klao(0,0, d)|¢ (s—‘—’l‘f“—)‘f) ~ klao(z, e + v, )| (———s = (‘)"’)

(2.58)

Recalling that at equilibrium,
by(0,0,d,0) + ae(0,0,d)u(d) =0

and inside the boundary layer ¥,

S—N(€)¢>
(1=t
we have

5 [bo(z,e +v,d,7%) - Klag(z, e + v, d)|¢ (E.— JZ(E)cp)]

< I3 {Lu(llz]l + Nlell + 1w]] + [7#]) + kLa(ll2]l + llell + [1¥]])] (2.59)

+ 5 | klao(0,0,d)|¢ (%) ~ klas(0,0,d)lé (%)]
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where L, and L, are Lipschitz constants of ao(-) and by(-), respectively. Moreover,

using property (2.29) of ¢(-), namely

(p1 — p2)(¢(p1) — d(p2)) > cs(p1 — p2)?

and the minimum ¢; of ay(-), as in (2.2),

5 [k|ao(0, 0,d)|¢ (i) — k|ao(0,0,d)|¢ (s +5 —“ N(e)tp)]

= —k|aq(0,0,d)|(5 — N(€)p + N(e)p) [d’ (s - ;N(E)q,) ¢ (%)]

< —-cz—klao(O,O, d)|(3 - N(e)p)* + E—%l%(O,O,d)HN(e)tpH's’ ~ N(€)yp|
<~ 208 5 — N(e) + 21aa(0,0, NN (@IS + [N (@l (260

where L, is the Lipschitz constant of ¢(-). From (2.58), the last term of (2.52)

satisfies

~ clel? 2672, ) - iol0 (%)

1
< —Zllell® + 2llellllPrBall [Lo(llzll + llell + [1w1] + [r]) + ELa(llz]] + llell + [[¥]])]

+2)l0llIB,Bdl [lc%lao((), 0,d)|(15] + IIN(e)IIleI)] (2.61)
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We choose € small enough that || N(e)|| < N; for some positive constant N; > 1.

From (2.53) to (2.57) and (2.59) to (2.61), we set

1
Az = 5(A4Lq|IK”)
1
A13 = §(A4Lq)
A23 = A5”PB”
1
A14 = §(A4Lq + Lb + kLa)
1
24 = 5[226[|PBI| + || Kul| + I K[|(Ls + kLs)]
1
A34 = '2-[A5(2C1 + Cz) + ca + kp—l + Lb + kLa]
A“ = As(CQ - Cl) +c + kp_1 + Lb + kLa
A5 = || Py B,l|(Ls + kL)
Azs = || Py Ball||K||(Ls + kLa)

1
Azs = E[As(zcl + Cg)N]_ + 2||PfBa||(Lb + kLa)]

2coc3k Ny + kLg|ao(0,0,d)|N,
m m

1
A45 = = [CgNl + 2A5(C1 + C2)N1 +

2
|| f a” (Lb+kl! + | ( )|)‘

kL¢la0(o»0) d)Ile + 2k|leBd||L¢|a'(0) 0, d)INl
M

Ass = Ag(cz — €1)NE +

A7 = 2||PsB,||(Ly + kL)
As = Ly + kL,

Ag = AL,

Ao = 2||PyBal|| L

An =Ly
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Chapter 3

Universal Integral Controllers with

Nonlinear Gains

3.1 Introduction

In Chapter 2, we designed Universal Integral Controllers with nonlinear inte-
gral gains. In this chapter, we investigate the use of nonlinear proportional and
derivative gains in addition to nonlinear integral gains. We consider only the Non-
linearity Before Integration scheme, which showed the best transient performance in
simulations. Nonlinear proportional and derivative gains provide us more freedom
in designing a controller and can be utilized to further improve transient perfor-
mance.

For a Universal Integral Controller with a nonlinearity placed before the inte-
grator, from the closed-loop equation (2.31), the error dynamics have the form of a

stable linear system driven by (s — o):

(= A(+ B(s-0)
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If the nonlinearity is designed to hold the integrator output o small, the response
of the system depends on the eigenvalues of A, which are determined by the gains
k; to k,_,. But, the design of the proportional and derivative gains k; is limited by
the control level k. Large k;’s increase the disturbance term A(-) in (2.32), and a
higher controller gain k is required to overcome the disturbance (2.36), which may
violate the actuator limit.

We propose to replace the constant proportional and derivative gains k; with
nonlinear gains k;(-), which can be functions of the tracking error and its derivatives
¢. Our goal is to design a Universal Integral Controller with nonlinear proportional,
integral and derivative gains that improve the transient performance, while preserv-

ing the stability properties of the systems, both regional and semiglobal.

3.2 Design of Nonlinear Proportional and Deriva-

tive Gains

Taking nonlinear proportional and derivative gains is equivalent to designing

a nonlinear sliding surface:

p—1
s=koo+ > ki(-)ei + e,
=1
def =
= koo + »_ui(-) +e,

1=1
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where k;(-) is a nonlinear function of e, to e,_; and v;(-) = ki(-)e;. The dynamics

of ¢ =[e1,- - ,e,-1]7 have the form
010 -0 0 0 0 - 0] w() 0
001 --- 0 0 0 0 --- 0] w() 0
(= ¢+ : + il (s—0)
000 --- 1 0 0 0 --- 0f]|va()] |0
000 --- 0 -1 -1 -1 - =1 |v,,()| |1
© AnC + Bnv(-) + B(s — o) (3.1)
where v(-) = [v1(-), -, v,-1(-)]7. Finding a class of nonlinear functions v;(-), which

ensure that the dynamics of { are asymptotically stable when (s — o) = 0, is a

challenging problem. In this work, we consider nonlinear gains of the form

v; = v;(e;) = ki(ei)e;

where v;(e;) satisfies the sector conditions

Lie? < ewi(e;) <mee?, for1<i<p-1 (32)

i.e., the nonlinear gains k;(e;) that are bounded by

liski(ei)smb fOI‘l::l,"',p—l

Then, the study of stability of the system (3.1) with the given sector conditions
(3.2) reduces to a Lure problem. For Lure systems, Lyapunov functions have been

found analytically only for systems of order two. When s — o = 0, the derivative of
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the Lyapunov function

¢ DPu P
V = (TP¢ + 2\ / ‘w(rydr, P=pPT=| " "
0
D12 P22
with the choice of A; = p,,, satisfies the inequality
. 2p12 —Pu + P12me
V<" ¢=-¢"Q¢

—p1u1 + pr2ma 2(pa2la — pr2)

and Q = QT can be made positive definite by choosing p;» > 0 and p,, large. For
higher order systems, Linear Matrix Inequalities can be applied to determine the

stability for the given sector conditions v;(e;) € (I;, m;) [4, Chapter 8|.

Lemma 1 Consider

(1 = AnC + Bnv(()

with v({) satisfying the sector conditions (3.2). There is a Lyapunov function
of the form

el G
V=(TPC+2Y X / vi(7)dT (3.3)
i=1 70

where P = PT > 0 and A; are positive constants, and its derivative satisfies

the inequality
V =2(¢"P + 9T ({)A)(Am¢ + Bmu(¢)) < —¢7¢ (3.4)
where

A= diag()q, v )/\p-—l)
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if the LMI problem

ATP+ PA,, +1-2TK, PB,+ ATA+TK,
<0 (3.5)

BTP+AA,+ KT  AB,+BTA-2T

1s feasible, where

Kp = diag(llml, s ,lp..lmp_]_)
K, = dlag(h +my,- - ,lp_1 + m,,_l)

T = diag('rl, cee an—l)

and 1, to 7,_, are nonnegative constants.

Lemma 1 results from the S-procedure [4, page 23] and detailed steps are shown in
Appendix C.

For relative-degree-p systems, we determine the desired range of the nonlinear
gains and solve the LMI problem. If the LMI problem is feasible, our analysis in
the next section shows that the controller achieves regional and semiglobal regula-
tion. Examples of sector conditions which ensure the stability for second, third and
fourth-order systems are computed by the MATLAB LMI toolbox and are shown
in Table 3.1. For example, in the second column of the table, we started solv-
ing the LMI problem for relative-degree-three systems with (I;,m;) = (3.9,4.1),
(I2, m;) = (5.9,6.1), and (I3, m3) = (3.9,4.1) and increased the range of the nonlin-

ear gains until the LMI problem was infeasible.
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Table 3.1: Examples of sector conditions for stable systems determined by the LMI
2nd | 3rd | 3rd | 4th | 4th
b, | 01 {25 16 | 13 | 180
m, | 1000 | 5.5 | 48 | 21 | 332
I, |01 (35|12 | 18 |134
m, | 1000 | 7.5 | 36 | 30 | 250

I3 25| 6 | 14 | 58
ms 55| 10 | 22 | 86
ly 4 9
my 75| 15

In summary, a Universal Integral Controller with nonlinear proportional, inte-

gral and derivative gains is taken as

u = —ksign(L,L5 'h) ¢(-§) (3.6)
where
S=o0+é,
o = 9(&) (3.7)

and the augmented error €, is given by

p—1
éa = vi(er) + D vi(&:) + &,
1=2

The nonlinear integral gain (o) satisfies the condition (2.25), and the nonlinear
proportional and derivative gains v; = v;(e;) are continuous, piecewise differentiable

and satisfy the sector conditions (3.2).
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3.3 Closed-loop Analysis

The closed-loop system can be represented in the singularly perturbed form

zZ=qo(z,e+v,d)
é = Am( + Bm'u(C) + B(S - U)
0d=19(s— Nn((, s,0,€)—0) (3.8)

§=A() - k|ao(-)|¢(s - Nm(ﬁ, = €)>

€p = Asp +€B, [bo(-) - k|a0(.)|¢(s — Na(¢, 5,0, f))]

n
where
p—1
A(z,e,0,v,d, 7)) = (s — Np(C,5,0,€) — ) + Y vi(ei)eis + bo(z, e + v, d, r(P)
1=1
p—1
Nm(C» s, p, 6) = Z (‘U,‘(C,‘) - vi(éi)) + é~p - ep
1=2

Only the dynamics of ¢, the estimation error N,,((, s, ¢,€) = s — § and the distur-
bance term A(-) are different from (2.31). We present in detail only the part of the
analysis that is different from Section 2.4.1.

Suppose that v(¢) is chosen such that the LMI problem (3.5) is feasible. Take
the Lyapunov function V' of the form (3.3) whose derivative satisfies the inequality

(3.4). Consider
Q. ¥ {(z,e,0): 5| <c, || < (1 +6)e, V(C) < Py, Volt, z,d) < ag(cps +73)}

We show that our assumptions hold in the set ., by choosing p, to satisfy (3.9)
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and then choosing c to satisfy (2.34). Since e, = s—0 — Y:=5 " v;((,), the inequality

llell < ICII + el < (1 + [IKmIDICH + I8 + lof < cp2 <71

should be satisfied, where K,, = [m,,---,m,_] and

P1

+2+4 (3.9)

In the first step, we show that every trajectory, starting at a bounded &(0) with
(e(0), 2(0),o(0)) € s, and b < c, enters the set Q. x I, in finite time.

From the continuity of v,(-), we can choose € small enough so that
|Nm(¢,s,p,€)| < éu. Then we show that ss < 0 on the boundary |s| = c and
o < 0 on the boundary |o| = (1 + d)c. Consider ¢ on the boundary V = c?py,

where p, is to be specified. From (3.2) and (3.4),

V < =IKIP + 20CHUIPBI + Ap-1mip-1)(Is] + o) (3.10)

< =[I¢11Z + 2[€I(IPBIF + Ap-1mp-1)e(2 + 6)
and we can show that V < 0 on the boundary V = ¢2p,, by choosing p; to satisfy
pr > 4(IPBI| + Xoim, (Pl + max {Am})(2+6)  (311)

Then we verify that Vo < 0 on the boundary Vy = a4(cp, + r3). Therefore, the set
Q. x I, is positively invariant.
In the next step, we show that s(t) reaches the boundary layer {|s| < u,} and

o(t) reaches the set {|o| < (1 + §)u)} in finite time. Then, from (3.10), we show
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that V < —3|¢|1? for V(¢) > u?p if
pr > 64(IPB] + Ap-rmp (1Pl + | max {Am.}) (3.12)

Since (3.12) implies (3.11), by fixing p; to satisfy (3.12), we show that ((t) reaches
the set {V(¢) < u?p,} in finite time and stays therein. Then, z(t) reaches the set
{Vo < ag(pp2 + p)} in finite time and stays therein. Therefore, every trajectory in
Q. x I, enters ¥, x I, in finite time and stays therein, where the set ¥, is defined

as

‘I’# déf {(Z, 6,0') : ISI S K1, |U| S (1 + 6)#1 V(C) S ﬂ'zpl) ‘/O(tvzn d) S 04(#172 + #)}
When v = 0 and r(?) = 0, the closed-loop system (3.8) has a unique equilibrium

point (z =0,e = 0,0 = &, ¢ = 0), where

& = —sign(LyL5 ' h)ug™! (E(Tc@)

Following steps similar to Appendix B, we conclude that all trajectories in ¥, x Z,
approaches the equilibrium point as time tends to infinity.

Our conclusions are summarized in the following theorem and corollary.

Theorem 3 Suppose Assumptions 1 to 4 are satisfied and consider the closed-
loop system formed of the system (2.5), the observer (2.22), the nonlinear inte-
gral gain (8.7) satisfying condition (2.25), nonlinear proportional and deriva-
tive gain satisfying (8.2), and the output feedback controller (3.6). Suppose
the LMI problem (38.5) is feasible, €(0) is bounded, and (z(0),e(0),0(0)) € s,

where b < c and c satisfies (2.34) and (2.36). Then, there exists u* > 0 and
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for each 0 < p < pu*, there exists € = €*(u) > 0 such that for each 0 < p < u*
and 0 < € < €*(u), all the state variables of the closed-loop system are bounded

and lim, ., e(t) = 0.

If all the assumptions hold globally and k¥ can be chosen arbitrarily large, the

controller can achieve semiglobal regulation.

Corollary 3 Suppose Assumptions 1 to 4 are satisfied globally, t.e., Uy = R",
a;, az, az and v are class Ko, functions, the LMI problem (8.5) is feasible,
and k can be chosen arbitrarily large. For any given compact sets N € R**!
and M € RP, choose ¢ > b > 0 and r3 > 0 such that N € Q;, and choose k large
enough to satisfy (2.36). Then, there exists u* > 0 and for each 0 < p < u*,
there ezxists € = €*(u) > 0 such that for each 0 < p < p* and 0 < € < €*(u), and
for all initial states (z(0),e(0),0(0)) € N and é(0) € M, the state variables of

the closed-loop system (3.8) are bounded and lim,_,, e(t) = 0.

3.4 Simulation Results

Example 1: A synchronous generator connected to an infinite bus can be described

[28, page 25-26] by

M§ = P — Dé — n,E,siné

TEq = —1']2Eq + 73 cosd + EFD

The system has relative degree three viewing the field voltage Epp as input and
the angle 4 as output, for 0 < § < . For simulations, we use P = 0.815, n;, = 2.0,

M = 2.7, 13 = 1.7, T = 6.6, M = 0.0147 and D/M = 4. The simulation results
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shown in Figure 3.1 are for the controllers with linear and nonlinear proportional
gains. Since s enters the boundary layer fast, we drive the integrator with the
augmented error 4e, without using nonlinearity. Controller parameters u = 0.5,
k = 2.5 and limit L = 10 for the integrators are chosen for the simulation. The
error dynamics inside the boundary layer is given by

(41 0
+ (s—o0)

—kl —kg (D) 1

{:A(+B(s—a):

When the linear gains are chosen as k; = 8 and k, = 4, the system { = A( is
underdamped and shows fast response with overshoot, while the linear gains k; = 6
and k; = 5 remove the overshoot but increase the settling time. The nonlinear
proportional gain increases to k;(e;) = 12.5 when the tracking error is large for
fast rise time, and decreases to ki(e;) = 6 as the error becomes small to prevent
overshoot. The nonlinear proportional is shown in Figure 3.2. The derivative gain
was fixed as k; = 5. The simulation results show that the nonlinear proportional
gain achieves comparable settling time with the linear gains k; = 8 and k; = 4,
without showing overshoot.

Example 2: The nonlinear model of a single-link manipulator with flexible joints

(28, page 25], damping ignored, is described by

Ig, + MgLsing, + k(g1 — ¢2) =0

sz—K(Q1—92)=U

Viewing the angular position q; as output and the torque u as input, the system

has relative degree four. For simulations, the numerical values I = 0.5 kg/m?
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Figure 3.1: Simulation results for the synchronous generator connected to an infinity
bus
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Figure 3.2: Nonlinear proportional gain v;(e;) = k;(e;)e; for the simulation of the
synchronous generator connected to an infinite bus
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J=05kg/m? M =1kg, g =98m/sec’, L =1m and k = 20 N/m are used.
In Figure 3.3, we compare the performance of the controllers with the linear and
nonlinear proportional and derivative gains. The maximum control level is set as
k = 12, and the linear gains are chosen as k; = 31.25, k, = 25 and k3 = 7.5.
The nonlinear gains are designed to satisfy the conditions 31.25 < k;(e;) < 45,
25 < ka(e2) < 28 and 6 < k3(e3) < 7.5. For the range of the nonlinear gains chosen,
the LMI problem is feasible, as shown in Table 1. The nonlinear gains are plotted
in Figure 3.4. The integrator is driven with 2e, with the limit L = 90. For the
reference r = 2 with the initial condition y(0) = 0, the nonlinear gains achieve
better settling time but show small damping. When the reference r = 1 is applied
at t = 4, the nonlinear gains reduce the settling time without overshoot. Since the
nonlinear gains k;(e;) are functions of different variables, it is difficult to design the

gains to change the poles of ( = A( as the tracking error becomes small.

3.5 Conclusion

In this chapter, we designed Universal Integral Controller with nonlinear in-
tegral, proportional and derivative gains. We showed that, if the LMI problem in
Lemma 1 is feasible for the nonlinear gains, the controller stabilizes the system
regionally and semiglobally. The nonlinear gains provide us freedom to alter the
error dynamics inside the boundary layer as the state of the system changes. The
simulation results showed that the nonlinear gains can be chosen to improve the
transient performance for relative-degree-three systems. It is more challenging to

design the gains for higher relative degree.
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Figure 3.3: Simulation results for the single link manipulator
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Figure 3.4: Nonlinear proportional and derivative gains k,(e;), kz2(e2), ks(es) for
the simulation of the single link manipulator
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Appendix C S-procedure for Lemma 1 [4]

A linear matrix inequality (LMI) has the form

F(IE): Fo+2$"F,‘ >0

1=1

where £ € R™ is the variable and F; = FT € R"*" are given. The LMI is equivalent
to a set of n polynomial inequalities in z. The convex constraint on z, i.e. {z:
F(z) > 0} can represent a wide variety of convex constraint on z. The LMI problem
is to find = such that F(z) > 0 or determine that the LMI is infeasible. Efficient
algorithms have been developed for LMI problems, which often represent constraints
in control design.

For the constraint that some quadratic functions be nonnegative whenever some
other quadratic functions are nonnegative, the S-procedure can be applied to form
an LMI that is a conservative approximation of the constraints. Let Gy,---,G, be

quadratic functions of the variable { € R™:
Gi(§) =¢"Tit +2w[€+m, fori=0,---,p
where T; = TT. Consider the following condition on Gy, - - - , Gy:
Gy > 0 for all £ such that G,(¢§) >0, fori=1,---,p
The above constraint holds if

P
there exist 7; > 0,---,7, > 0 such that for all {, Go(¢) — > _ 7:Gi(€) >0

1=1
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The sufficient condition can also be represented as

TO Wo i T't W,
- T; >0

1=1 T

T mo = w;

Wo

Note that in Lemma 1, we require inequality (3.4) be true if every nonlinear
gain v;(-) satisfies the section condition (3.2); both inequalities can be arranged in
quadratic forms. We apply the S-procedure to find the sufficient condition. From

(3.4), we have

2(¢"P + vT(¢)A)(AmC + Bmu(¢)) +¢T¢

= (T(2PAm + I)¢ + 2¢T(PBn + AT A)v(¢) + 20T (¢)ABnv(¢)
T
¢ ATP+ PAn,+1 PB,+ATA|| ¢

(¢) BTP+ AA, ABn+ BTA| |v(¢)

T Tolm < 0
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The sector conditions (3.2) can be arranged as

2(vi(G) — L) (i) — madi)
_ AT . - -
0 0
¢ 2l;m; -l +m)) ¢
0 0
0 0
v(¢) =l + my) 2 v(¢)
0 0
L (TTm <O
for: =1,---, p—1, where the elements of T; are zero except the :th diagonal element

of each submatrix. Thus, the inequality (3.4) is true, for v;({;) that satisfies the

sector condition (3.2), if

p—

TO—ZTiTi=To—

1

=1

which is the LMI problem of (3.5).

—-2TKp
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Chapter 4

Nonlinear PID Controllers

4.1 Introduction

For relative-degree one or two nonlinear systems, the controllers designed in
the previous two chapters specialize to nonlinear versions of the classical PI and
PID controllers. In this chapter we study the special case of relative degree one or
two systems for various reasons. First, there has been a lot of interest in the control
literature to develop nonlinear PID controllers, or more precisely PID controllers
with nonlinear gains, in order to improve the performance of the system. In Chap-
ter 1, we described the various ideas that have been proposed in the literature and
the analytical results that are available for some of those ideas. It is important to
emphasize that all the results available in the literature are for the case when the
plant is linear or for nonlinear robotic systems. Second, by specializing to the case
of relative degree one or two systems, we can obtain results sharper than those we
obtained in Chapter 3 for the general relative degree case. In Chapter 3, we could
not obtain an analytically verifiable stability condition. What we obtained was a

condition in the form of feasibility of an LMI problem, which could be checked only
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numerically. In this chapter we derive analytical stability conditions. Third, in the
case of relative degree one or two systems we can consider new structures for the
nonlinear integrator that we cannot consider in the general relative degree case. We
saw in Appendix A of Chapter 1 that for relative degree higher than two, we need
to drive the integrator by an augmented error. For relative-degree-two systems, we
can also consider nonlinear integrators that are driven by the tracking error. For

relative-degree-one systems, we have the controller

= —ksign(L,h)g | T2
‘ e ( o ) (4.1)

o =19(e1)

which is a special case of the controller (2.26) when p = 1. For relative-degree-two

systems, we consider two different controllers:

u = —ksign(L,Lyh)p (" T kleder + "2)

K (4.2)

o= ‘lp(kl(el)el + ég)

and

u = —ksign(L,Lsh)¢ (" + k(er)er + ez)

K (4.3)

o =9y(e1)

The controller (4.2) is a special case of the controller (3.6) when p = 2. The
controller (4.3) is a new structure in which the integrator is driven by a nonlinear

function of the tracking error e, instead of the augmented error
éa = kl(el) + é2
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In both (4.2) and (4.3) the estimate é, is obtained by the high-gain observer

(4.4)

where (;, B, and € are positive constants with ¢ chosen sufficiently small. To
overcome the peaking phenomenon that can be induced by high-gain observers,
we require the nonlinearity 1(é,) for the controller (4.2) be a globally bounded
function of é,:

ap® <py(p) < cp?, for |p| <L
(4.5)

al <iy¥(p)| <cL, for|p|>1L
while the nonlinearity (e;) for the controllers (4.1) and (4.3) satisfies the sector

condition

ap® < py(p) < cp’ (4.6)

Schematic diagrams of the controllers (4.1), (4.2) and (4.3) are shown in Figure 4.1.
All the schemes are versions of classical PI or PID controllers with nonlinear gains
and with saturation nonlinearity ¢(-). It is worthwhile to note that the PI and PID
controllers considered in [27] as special cases of the Universal Integral Controller
when p = 1, and p = 2, respectively, are special cases of (4.1) and (4.3), with

(e;) = koe1, k1 = constant, and ¢(-) = sat(-).
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Figure 4.1: Nonlinear PI controller for relative-degree-one systems and nonlinear
PID controller for relative-degree-two systems
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4.2 Closed-loop Analysis

We present the proof of regional and semiglobal regulation of the nonlinear PID
controllers (4.2) and (4.3) for relative-degree-two systems. The closed-loop system

for the controller (4.2) can be represented in the singularly perturbed form

zZ =qo(z,e +v,d)
6d=Y(s-Np-o0)
ér=—0 —ki(er)e; + s (4.7)
. s— Ny
= A() - Hoa( 18 (*=2%)

where

s=0+ki(ei)er + ez
A(Z,C,U, v, d: 7’) = ¢(5 - N‘p - U) + kl(el)e2 + kll(el)eleZ + bO(za e+v, dl 7')

1er— &) -6 1 0
w= , Af - ) Ba = ) N = [0 1]
ez — é; -PB2 0 1
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For the controller (4.3), the closed-loop system is given by

z = qo(z,e +v,d)

o =y(e1)

ér=—0—ki(er)er + s (4.8)
= A0) - Haal 8“7

€p = Asp +€B, [bo(‘) - "i‘“(')l‘b(s —“N‘P)]

where
A(z,e,0,v,d,7) = P(e1) + ki(e1)ez + ki(e1)erez + bo(z, € + v, d, )

The dynamics of ¢ and the disturbance A(-) are different between (4.7) and (4.8).
We present the analysis for (4.7), and remark on the part that is different for (4.8).

For (4.7), consider
Q. ¥ {(z,e,0): |s| < ¢, |o] < (1+8)c, |es| < cpy, Volt, z,d) < au(cos +73)}

where the positive constants A, ¢, p;, p» and the class K function a4 are to be
specified. Our assumptions should hold in the set Q., i.e., |le|]| < r, and ||z|] < 7,
for all (e, 2,0) € Q.. From Assumption 4 of Chapter 2, upper bounds on e and z

are given by

llell < lea| + lez| = |e1| + | — o — ki(e1)er + s
<lol+ (1 +ky)les| + |s| < cpa (4.9)

l|z]| < a7 (as(cpz + 73))
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where k; is the maximum of k;(e;) over ., and

p2 > (1 +ki)pr + (24 6)

def _1
Qg = Qy, 07
Thus, c should be chosen to satisfy

cp2 < min{ry, az(a1(r2)) — 73} (4.10)

where az'(a;(r2)) > r3 from (2.9).

For (4.8), we take Q. as
2, déf {(Z,C,U) : |S| <g, V(C) < Czph %(t)ztd) < a4(cp2 + T3)}

where

VZECTPC-FA/(;ﬂgb(T)dT, ¢= o  p- D1 D12

2
€1 D12 P22
The matrix P = PT > 0 and the positive constant A are to be specified. The
inequality ||e|| < cp, holds with

2p,

p2 > (2 + k) e (P)

+1 (4.11)

and our assumptions are valid in . if c satisfies (4.10) with p, as in (4.11).

Let P; = PfT > 0 be the solution of the Lyapunov equation

PiA; + ATP; = —1
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and take V;(p) = 9T P;p. In the first step, we show that ¢ enters the set
T = {p € R?: Vy(p) < €ps}

in a finite time Tj(€), with lim,_,, To(€) = 0, and X, can be made arbitrarily small

by choosing € small. The derivative of V; satisfies
: 1,
Vi < = lleli” + 2lll|[| P Balim(c)

where v;(c) = max{|bo(z, e + v,d)| + k|ao(z,e + v,d)|} and the maximum is taken

over all (z,e,0) € Q.,,d € D,v € A and ¥ € I. We have
; 1 2 2
Vi < —illtpll , for V; > €‘ps

where p3 = 16||P;B||?||Ps||vi(c). Thus, ¢(t) decays to I, in a finite time Ty(e)
and stay therein. We choose € small enough that |[Ny| < §u, where § is a positive
constant to be specified. With (-) satisfying (4.5), the right-side of the slow
equation of (4.7) is bounded uniformly in €. Hence, every trajectory in £, with
b < ¢, is inside Q. during [0, T}], where T; is independent of e. We choose € small
enough that Ty(e) < Ty. Thus, every trajectory starting at (e(0), z(0),c(0)) € Qs
with bounded €(0) enters Q. x I, in finite time.

Next, we show that the set Q2. x X, is positively invariant. Choose p small

enough that x(1 + 4) < c. For p(1 + ) < |s| < ¢, we have

o o512)) (52
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and from (2.29), |¢(p)| > ¢(1) > c; for |p| > 1. Hence

s8 < |A()Ils| — csklaolls] (4.12)

With the controller gain k taken large enough to satisfy

k >cq + '72(C) (413)

where c, is a positive constant, 7,(c) = max{|A(z,e,0,v,d,7)| /|c3ao(2,e + v,d)|},

and the maximum is taken over all (z,e,0) € Q.,d € D, v € A and 7 € T, we have

$§<0 on|s|=c

On |o| = (1 + 6)c, using

|s — No(e)p| <c+dp <|o|

sign(¢(s — No(e)p — o)) = —sign(o)

we can show that

06 =o(s— Ny(e)p —0) <0, on|o|=(1+3d)c

From the inequality

e1é, < —ki(e1)e? + les|(|s] + |o]) (4.19)

< —kiel +e(2+0)c
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where k, is the minimum of k,(e,) over 2., we have

€1é1 < 0, on |61| =Ccp

if p; is chosen to satisfy

2+6
k,

p > (4.15)

For (4.8), we show that V/(¢) < 0 on the boundary V(¢) = ¢®p;. The derivative

of V is given by

V = —p120” — puki(er)el — (Ak(er) — pr2)¥(er)er + (P — A)o(er)

— (P22 + Pr2ki(e1))oe; + CTPB,s + Mp(ey)s

By taking A = p;; and choosing p;; large and p,, > 0, the derivative of V can be

arranged in the form

V < = Amin( @)K + (IPI] + Ac2) I¢ | (4.16)
where Q = QT > 0 is given by

P12 %(P12E1 + p22)

%(Pm’-‘?l + p22) AKiC1 + P2oky — Pr2co

and k, is the maximum of k, (e,) over Q.. The derivative of V satisfies the inequality

V<0, onV=cp
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when p, is chosen to satisfy

> 20un(@))? (4.17)

From (2.7) in Assumption 4, we have ||z|| > 7(cp; + 73) on the boundary V; =

as(cps + r3). By (2.8) and the bound of |le|| in (4.9), we can show that
Vo < 0, on V, = as(cp: +13)

Therefore, the set Q. x X, is positively invariant.
In the third step, we show that every trajectory in Q. x I, enters the set ¥, xZ,

in finite time and stays therein, where ¥, is defined for (4.7) as

¥, 2 {(z,6,0) 1 Is] <, [o] < (1+ ), les] < o, Vot 2,d) < ca(pz + )}

and for (4.8) as

\Il# d_i'f {(Z,C,U) : |3l S M1, V(C) S uzpl’ %(t’z’d) S a4(“p2 + IJ‘)}

Consider s in {u; < |s| < c}. With § chosen to satisfy

Cy 1
6<4k<4

we have sgn(@(5/u)) = sgn(5/n) = sgn(s), since |Ny| < 6u < |s|. If |5| > u,
inequality (4.12) holds. Using (4.13),

ss < —cpc3csls|
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where ¢, is defined in (2.2) of Assumption 1. If |§| < u, we have |§| > p/2 and

o (s(7)):

CoC3Cs

55 < 1AC)Is] - Klao()] [¢ (i)

< 1A0)lIs] — ZElaol)lls| < ~22%

Thus, s(t) reaches {|s| < u;} in finite time and stays therein. Consider ¢ in
{1+ &) < |o] < (1 + d)c}. Since |5| < p < |o|, we have sign(¢(5 — 0)) =

sign(5 — o) = —sign(o) and |5 — o| > du. Moreover, |5 —o| < p+ (1+ 6)c and
[¥(p)| > &lpl, for |p| < p+(1+d)c
with & = min{c;,c;L/(u + (1 + 6)c)}. Using these facts, we can show that
oo = osign(§ — 0))|Y(5 — g)| < —C,10u|o|

Thus, o(t) reaches the set {|o| < (1 + é)u} in finite time and stays therein. From

inequality (4.14), we have
. k
ey < ——rey, for les| > upy

by choosing p; to satisfy

4

Inequality (4.18) implies (4.15). With p; chosen as above, e;(t) reaches the set

{le1] < pp1} in finite time and stays therein.

For (4.8), we consider that ¢( = [0,e,]T in {V(¢) > u®p;}. From inequality
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(4.16), we show that

v < 2m@ne for ve) >

by choosing p; to satisfy
2P|l + Ace)’?
pr> ()‘min(Q))2

(4.19)

Inequality (4.19) implies (4.17) and from now on, we fix p, as chosen above. Thus
¢(t) enters the set {V(¢) < u?p;} in finite time and stays therein.

Consider z(t) in {Vo > as(ups + 1)}. Using the facts that ||z|| > y((up: + k)
from (2.7), the bound ||e|| < pp, (derived similar to (4.9)), lim,_, ¥(t) = 0, and
(2.8), we can show that

Vo < —as(]|2]))

Therefore, every trajectory in Q. x I, enters ¥, x I, in finite time and stays therein.
Finally, we show that every trajectory in ¥, x ¥, approaches an equilibrium
point

o =~ sga(aa( Yo (52

asymptotically. Let V;(z,d) be a converse Lyapunov function for assumption (2.10)

of exponential stability. Consider

1 1
1/2 = 1/1(2) d) + 5)\563 + 5)\6&2 + §2 + (pTwa

1
2

=0-0,5§=s—35 5 =0, and As and A are positive constants to be

Q

where
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chosen. The derivative of V. can be arranged in the form

Va < =x"Pax + (Mellell + sl3] + AollzIDIIv (2]
(4.20)

+ (Aollell + A |3)I7(2)]
where x = [||z]| |e1] |o] 13] ||¢]|]T and A7 to A;; are positive constants, and P, = PJ
has a structure similar to P, of (2.43). The matrix P; can be made positive definite
by choosing As large enough, then A large enough, then x small enough then €
small enough.

For (4.8), we consider the Lyapunov function
o w1
Va = Vi(z,d) + A\sCTPC + 552 + T Py

where { = ¢ — { and { = [7,0]T. The derivative of V; has the form similar to (4.20)
with x = [||z|| ||| 13| ||¢l|]]T, and P, can be made positive definite by choosing )s
large enough then u small enough then € small enough.

Regional and semiglobal results for the controller (4.2) is stated in Theorem 4
and Corollary 4, respectively, while Theorem 5 and Corollary 5 summarize the

results for the controller (4.3).

Theorem 4 Suppose that Assumptions 1 to 4 of Chapter 2 are satisfied and
consider the closed-loop system formed of the system (2.5) with relative degree
two, the observer (4.4), the output feedback controller (4.2) with the nonlin-
ear integral gain ¥(-) satisfying (4.5), and continuous, bounded and piecewise
differentiable nonlinear proportional gain k,(-). Suppose é(0) is bounded and
(2(0),e(0),0(0)) € 2, where b < c and c satisfies (4.10) and (4.13). Then,

there exists u* > 0 and for each 0 < u < u*, there exists €* = €*(u) > 0 such
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that for each 0 < pu < pu* and 0 < € < €*(u), all the state variables of the

closed-loop system are bounded and lim,_,., e(t) = 0.

Corollary 4 Suppose that Assumptions 1 to 4 are satisfied globally, i.e., Uy =
R", a;, a,, az and v are class K, functions, and k can be chosen arbitrarily
large. For any given compact sets N € R**! and M € RP, choosec > b >0
and r3 > 0 such that N € Q,, and choose k large enough to satisfy (4.13).
Then, there ezxists u* > 0 and for each 0 < u < u*, there exists € = €*(p) > 0
such that for each 0 < u < p* and 0 < € < €*(u), and for all initial states
(2(0),e(0),0(0)) € N and é(0) € M, the state variables of the closed-loop sys-
tem (4.7), with nonlinear integral gain y(-) satisfying (4.5), and continuous,
bounded and piecewise differentiable nonlinear proportional gain, are bounded

and lim,_, e(t) = 0.

Theorem 5 Suppose that Assumptions 1 to 4 of Chapter 2 are satisfied and
consider the closed-loop system formed of the system (2.5) with relative degree
two, the observer (4.4), the output feedback controller (4.8) with the nonlin-
ear integral gain Y(-) satisfying (4.6), and continuous, bounded and piecewise
differentiable nonlinear proportional gain k,(-). Suppose é(0) is bounded and
(2(0),e(0),0(0)) € Qp, where b < c and c satisfies (4.10) with (4.11), and (4.13).
Then, there ezists u* > 0 and for each 0 < u < pu*, there exists €* = €*(u) > 0
such that for each 0 < u < p* and 0 < € < €*(u), all the state variables of the

closed-loop system are bounded and lim,_, e(t) = 0.

Corollary 5 Suppose that Assumptions 1 to 4 are satisfied globally, i.e., Uy =
R*, a;, a3, a; and v are class K., functions, and k can be chosen arbitrarily

large. For any given compact sets N € R**! and M € RP, choose c > b >0
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and r; > 0 such that N € Q,, and choose k large enough to satisfy (4.13).
Then, there exists u* > 0 and for each 0 < p < u*, there ezists €* = €*(u) > 0
such that for each 0 < p < p* and 0 < € < €*(u), and for all initial states
(2(0), e(0),0(0)) € N and é(0) € M, the state variables of the closed-loop system
(4.8) with nonlinear integral gain ¥(-) satisfying (4.6) and continuous, bounded
and piecewise differential nonlinear proportional gain k,(e;), are bounded and

limt_,oo e(t) =0.

4.3 Simulation Results

Example 1: Reconsider Example 1 of Section 2.5. The simulation results of Fig-
ure 2.4 demonstrated that the Universal Integral Controller with nonlinear integra-
tor driven by the augmented error improves the transient performance. In Figure
4.2, we compare two cases where the nonlinear integrator is driven by the augmented
error or the tracking error. Figure 4.2 shows the angular velocity, the integrator
output and control input for three controllers with the following linear or nonlinear
integral gains:

g=e, 0=1v1(é), J7=1ve)

We use the same system parameters and controller gains of Figure 2.1. The nonlin-
earities 4, (-) and 92(-) are shown in Figure 4.3. Both nonlinear integrators achieve
better transient performance than the linear integrator, showing no overshoot and
improved settling time.

Example 2: Reconsider Example 2 of Section 2.5. We compare the performance of
the nonlinear integrators, driven by the augmented error and the tracking error, for

the motion on the level surface. We use the same controller gains as in Figure 4.4.
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Figure 4.2: Simulation results of the nonlinear PID controllers for the field-
controlled DC motor
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v,(e,). w,(e,)

Figure 4.3:
DC motor

Nonlinearities 1, (e,) and 9. (e;) for the simulation of the field-controlled
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Figure 4.4: Simulation results of the nonlinear PID controllers for motion on a
horizontal surface

93



The nonlinearities ¥, (-) and ¥,(-), which are driven by the augmented error and the
tracking error respectively, are shown in Figure 4.3. Simulation results are shown
in Figure 4.4. Both nonlinear integrators improve the transient performance and
show similar performance.

Example 3: An intuitive idea proposed for improving the performance using non-
linear gains is to use large proportional gain while the tracking error is large, and
decrease the gain as the error becomes small to reduce damping [11] [7]. This idea
is not suitable for our case because, inside the boundary layer, the dynamics of the

tracking error has the form of a first-order system driven by (s — o):

é1=—k1e1+s—0'

If the nonlinear integrator keeps o small, the response of the system will be faster
with large k;. But k&, is limited by the control level &, since large k, increases the un-
certainty A(-), which the controller should overcome (4.13). Nonlinear proportional
gain k,(e;) can be designed such that the gain is small when the tracking error is
large to keep the disturbance A(-) small, and increases as the error becomes small
to improve the settling time. For an unstable second-order system with constant
disturbance

-1 -01y =u+1

we designed the nonlinear proportional gain shown in Figure 4.5. A controller with
nonlinear integral gain ¢ = %;(é,) with 9,(-) shown in Figure 4.3, is used with
control parameters 4 = 0.5 and k = 12 for simulation. The simulation results
are shown in Figure 4.6. The controller cannot stabilize the system with linear

proportional gain greater than k; = 0.5, due to the limited control level. The non-
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linear proportional gain, shown in Figure 4.5, is designed such that it is small when
the tracking error is large and increases as the tracking error becomes small. The
nonlinear proportional gain improves the settling time by more than 50%. The
simulation results in Figure 4.7 compares the performance of the controllers with
the nonlinear integrators ¥, (e,), ¥2(e1) with the nonlinearities shown in Figure 4.3
and the linear integrator when the nonlinear proportional gain k;(e;) is used. The
controllers with the nonlinear integrators show similar transient performance im-
provement. The controller with the linear integrator, driven by the tracking error,
cannot stabilize the system with the same control parameters, since the buildup in

the integrator increases the uncertainty term.

4.4 Conclusions

In this chapter, we designed a nonlinear PID controller with nonlinear integral
and proportional gains for relative-degree-two systems. The nonlinear integrator
is driven by the augmented error or the tracking error. We proved regional and
semiglobal regulation for both schemes. The simulation results show that nonlinear
integrators driven by the tracking error achieve performance improvement similar
to integrators driven by the augmented error. The nonlinear proportional gain can
be designed to reduce the uncertainty term when the tracking error is large and
obtain faster error dynamics inside the boundary layer. Simulation results show

that the nonlinear proportional gain can be designed to reduce the settling time.
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k,(e,)

Figure 4.5: Nonlinear proportional gain k;(e;) for the simulation of the unstable
second-order system
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Figure 4.6: Simulation results for the second-order unstable system with nonlinear
and linear proportional gains
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Figure 4.7: Simulation results for the second-order unstable system with linear and
nonlinear integrators
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Chapter 5

Conclusions

This dissertation provides more freedom in designing controllers which regu-
late single-input single-output, input-output linearizable, minimum phase nonlinear
systems. The structure of the Universal Integral Controller [27] is extended by re-
placing the controller gains with nonlinear functions of the tracking error and its
derivatives, while preserving the regional and semiglobal asymptotic stability. A
key idea in our design of the nonlinear gains and analysis of the closed-loop system
is that the uncertainty due to nonlinear gains can be overcome by the sliding mode
control as long as the system is input-to-state stable inside the boundary layer. The
effects of the nonlinear gains on the performance of the controller are investigated
by simulation.

In Chapter 2, two possible schemes for nonlinear integration are considered:
a nonlinearity placed before or after the integrator. The study of the nonlinear
integrator reveals that, when the integrator is driven by the augmented error, the
dynamics of the closed-loop system inside the boundary layer are input-to-state
stable, which is an essential property for the analysis of asymptotic stability. The

closed-loop analysis shows that the Universal Integral Controller with the nonlinear
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integrator stabilizes the system regionally and semiglobally. The nonlinear integra-
tor is designed to prevent the buildup during the transient period. In simulations,
the Nonlinearity Before Integration scheme achieves superior transient performance
over the Nonlinearity After Integration and the linear integrator schemes.

Further extension of the structure of the controller is investigated in Chapter 3.
The proportional and derivative gains are replaced by nonlinear functions of the
tracking error and its derivatives. By choosing the proportional and derivative gains
as nonlinear functions of the form k; = k;(e;), the dynamics inside the boundary
layer have the form of a Lure system, and Linear Matrix Inequalities are used
to obtain bounds on the nonlinear gains k;(e;). Our analysis proves that, if the
LMI problem is feasible, the controller with nonlinear proportional, integral and
derivative gains achieves regional and semiglobal regulation. Simulation results
demonstrate examples where nonlinear gains are utilized to improve the transient
performance.

The Universal Integral Controller with nonlinear gains specializes to a non-
linear PID controller for relative-degree-two systems. In Chapter 4, more specific
results are provided for the nonlinear PID controllers, which are not possible for
systems with higher relative degree. We consider the nonlinear integrator driven
by the tracking error, which is the classical form of nonlinear integrator found in
the literature. The proof of stability is completed analytically, and shows that PID
controllers with the nonlinear proportional and integral gains achieves regional and
semiglobal regulation for minimum phase nonlinear systems with relative degree
two. Simulation results show that the nonlinear integrators, driven by the tracking
error or the augmented error, show better transient performance than the linear

integrator. The nonlinear proportional gain is designed to improve the settling
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time by decreasing the uncertainty that the control input should overcome when
the system is far from the equilibrium point.

In this work, we considered the nonlinear proportional and derivative gains of
the form v;(-) = ki(e;)e; among the possible choice of v; = v;(ey,- - - ,€,-1). Finding
a more general class of nonlinear functions that preserve the property of input-
to-state stability is a challenging but rewarding problem, as it will provide more
freedom in the design of the controller.

Application of the Universal Integral Controller with nonlinear gains will be
an interesting problem. The structure of the controller could be extended further
for a specific problem. For example, the proportional gain of the nonlinear PID

controller cannot be taken as k; = k,(e;, e;), since it requires that

Ok
[Eei(el,eg)el + 1] u ;é 0

which is not true in general. But the desired proportional gain k; and the operating

range of a certain application might satisfy the condition.
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