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ABSTRACT

DEFINING AND USING REQUIREMENTS PATTERNS

FOR EMBEDDED SYSTEMS

By

SASCHA J. KONRAD

It is well-known that requirements modeling and analysis is one of the most dif-

ficult tasks in the software development process, but this problem is greatly exac-

erbated for embedded systems given the hardware constraints and the potentially

complex control logic. This research investigates how an approach similar to de—

sign patterns by the Gang of Four can be applied to requirements specifications,

termed requirements patterns. Specifically, our research explores how object-oriented

modeling notations, such as the Unified Modeling Language (UML), can be used to

represent structural and behavioral information as part of commonly occurring re-

quirements patterns. In order to maximize reuse, we focus on requirements patterns

for embedded systems. This work also investigates how the UML diagrams, based

on the requirements patterns, can be automatically analyzed, using the SPIN model

checker, for adherence to constraints specified in LTL (linear time temporal logic) us-

ing a previously developed formalization framework by McUmber et al.. In addition,

we extended the formalization framework to support rigorous analysis of UML mod-

els containing timing information. Subsequently, we can analyze embedded systems

requirements involving timing constraints specified in MTL (metric temporal logic).

We also describe the application of the requirements patterns and formal analysis

of timed and untimed properties to three embedded systems from the automotive

industry.
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Chapter 1

Introduction

It is well-known that requirements modeling and analysis is one of the most

difficult tasks in the software development process [75], but this problem is greatly

exacerbated for embedded systems given the hardware constraints and the potentially

complex control logic. To address this problem, we identified and specified require-

ments patterns for the elicitation and specification of requirements and high-level

design of embedded systems [49]. We constructed a requirements pattern template,

much in the spirit of the template used by Gamma et al. [28] for design patterns. This

thesis describes the requirements patterns and how they are used in combination with

a previously developed formalization framework [57] and the Unified Modeling Lan-

guage (UML) to address the special challenges found in embedded systems develop-

ment already on the level of requirements engineering. This process is demonstrated

in case studies of three systems from the automotive industry.

Given the safety-critical nature of many embedded systems, methods for model—

ing and developing embedded systems and rigorously verifying behavior before com-

mitting to code are increasingly important. Currently, much of the embedded systems

industry uses ad hoc deveIOpment approaches [21]. The embedded systems commu-

nity appears, however, to be interested in exploring how object-oriented modeling,
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specifically UML [7], can be used for embedded systems [21, 22]. Our requirements

patterns use UML to model structural and behavioral information, using class dia-

grams, and sequence and state diagrams, respectively. Additionally, we extended the

syntax and semantics of the UML models in the formalization framework to support

the modeling of information relevant to timing. The modeling tool, MINERVA [14],

and formal specification generation tool, Hydra [57], enable developers to model their

systems and check the models for adherence to critical properties. In addition, the

visualization utilities in MINERVA depict errors detected by the analysis tools in terms

of the original diagrams, thereby greatly accelerating the development and refinement

process. The alternative for evaluating the UML models is to use visual inspection.

Our requirements patterns focus on the late requirements and early design stages,

while other types of patterns have been identified to facilitate requirements—related

activities. For example, Fowler [27] identified high-level analysis patterns that might

be used to represent conceptual models of business processes, such as abstractions

from accounting, trading, and organizational relationships. Geyer-Schulz and Hah-

sler [29] add more structure to their descriptions of analysis patterns and focus on

the domain of cooperative work and collaborative applications. Gross and Yu [32]

discuss the relationship between non-functional requirements and design patterns.

And Robertson [67] discusses the use of event/use-case modeling to identify, define,

and access requirements process patterns. Sutcliffe et al. [76] describe how scenarios

of use-cases can be investigated to identify generic requirements for different appli-

cation classes. Others have attempted to identify software architecture patterns [72],

database access patterns [45], fault-tolerant telecommunication system patterns [1],

patterns for distributed systems [74], design patterns for avionics control systems [50],

real—time design patterns [22, 25], security patterns [17], etc. But none of these pat-

terns provides the collective capabilities that we achieve when combining the use of

requirements pattern with the analysis enabled by the UML formalization.
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Our timing extensions to UML have been designed to be amenable to analysis

using the same tool support as that used for untimed properties. In contrast, several

tools provide access to Spin—like analysis capabilities, including graphical front-ends

for Spin [51, 53], where UML diagrams contain Promela—specific constructs and there

is no support for timing, non-graphical tools for analyzing timing using modified

versions of Spin [9, 81], approaches that use different analysis tools for timed versus

untimed properties [70], and timing-analysis tools not tied to UML or Spin [11, 39, 62].

Finally, commercial UML—driven approaches to embedded systems software develop-

ment [42, 65] rely on simulation and testing rather than formal analysis.

We applied the requirements patterns to several embedded systems to validate

their utility [46, 48], including systems with timing properties [47]. The requirements

pattern template includes fields that describe motivation, consequences, high-level

goals, context information, constraints, and diagrams depicting templates for struc-

ture and behavior. The Constraints field of the template includes formal speCIfica-

tions of properties that should be satisfied in the context of using a given pattern [46].

The constraints are described in prose and specified in LTL (Linear Time Temporal

Logic) or MTL (Metric Temporal Logic) according to specification patterns devel-

oped by Dwyer et al. [23]. Feedback from industrial collaborators indicates that the

requirements patterns enable new embedded system developers, guided by the struc-

ture and behavior diagrams in the templates, to quickly construct models of their

systems. Also, the requirements patterns prompt developers to consider aspects of

a system that might otherwise be overlooked until much later in the development

process, such as fault tolerance and safety considerations. Furthermore, the tools to

support the graphical modeling of requirements (MINERVA [14]), the translation of

these models into formal specifications (Hydra [16, 56]) that can then be analyzed us-

ing the appropriate tools, such as the SPIN simulator and model checker [41], and the

visualization of errors captured in terms of the original graphical models (MINERVA)



p
'

A
,

 

..0 wt

S“:.r 111.5

I): Him“ I‘

Bil. \V.

< ‘ s

or it

“It Ibraa|1

~§y~v '\-v‘

3:. ['24. n

I '

llifiV [13].}  
i .., . A1,,” .4

(‘4? -hi.;;‘ I?

Tilt: It

‘
3

\

"7' .

“All to

V

‘
1
9

.

Flatten-,5

:tm- C“.
t ' ‘1':



help to rigorously verify the high-level description of an embedded system.

Requirements patterns can provide both guidance to new developers of embedded

systems for determining the key elements of many embedded systems, and examples

of how to model these elements with a commonly accepted diagramming notation,

UML. With the formalization capability, we are able to validate (using simulation)

the behavior of the requirements as captured by the state diagrams [14] within the

structural context imposed by the class diagrams. Furthermore, constraints from

the requirements patterns can guide new developers of embedded systems in the

construction of formal properties to check against their UML models. The result is

that developers can accelerate the initial development of requirements models through

the use of requirements patterns, and then using the formalization work and tools,

they have a means to rigorously check the requirements using simulation and model

checking techniques.

The remainder of this thesis is organized as follows: Chapter 2 describes the back-

ground to this work, including design patterns, UML, and model checking. Chapter 3

gives a classification scheme for our requirements patterns, overviews the requirements

patterns discovered thus far, and contains the complete requirements patterns repos-

itory. Chapter 4 describes our modeling and analysis approach and shows how the

requirements patterns can be used in an untimed model of an automotive embedded

system. Chapter 5 introduces the changes to the formalization approach to sup-

port timing semantics and demonstrates the application of requirements patterns in

a timed context. Chapter 6 overviews related work. Finally, conclusions and future

work are discussed in Chapter 7.
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Chapter 2

Background

This section describes the foundations of patterns and briefly overviews the UML

notation that we use to represent structural and behavioral information of a require-

ments pattern. Additional background on formal specifications and model checking

is given and terms commonly used throughout this thesis are defined. In order to

maximize reuse potential, we focus explicitly on patterns for embedded systems.

The number of computers world-wide has exploded in the last 30 years and is still

growing rapidly. The most visible artifact of this revolution is the personal computer

(PC), but there are numerous other computing devices embedded in a wide variety

of systems, such as automotive systems. Those systems all need software to carry

out their responsibilities and have to achieve a high-level of assurance. Therefore,

the development process poses a challenge to developers and it is important that

“good” solutions to problems are applied in the early development stages. We describe

patterns for software that were identified by analyzing several embedded systems

and their relations between hardware and software. To enhance the development

process, the patterns denote structural and behavioral information about models for

real embedded systems to convey structural and behavioral information to embedded

system developers.
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2. 1 Design Patterns

During the past decade, design patterns have developed into an important topic

in the object-oriented community and considerable effort has been expended on de-

veloping patterns [26]. One continuing challenge in the development of software is

learning how to effectively transfer knowledge about a project, as it evolves, in a form

that is easily understood and can be used for future systems.

2. 1.1 Pattern Basics

The difficulties of designing object-oriented and reusable software proved trou-

blesome until expert designers reused solutions helpful to them in the past to ade-

quately address problems. These solutions were then used several times, allowing for

recurring patterns of design to be discovered. The term pattern was established by

Alexander [3] in his book A Pattern Language:

“ Each pattern describes a problem which occurs over and over again

in our environment and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times

over, without ever doing it in the same way twice. ”

Christopher Alexander, 1977 [3]

Although he was describing patterns in buildings and towns, his assessment also

applied to object-oriented design patterns.

2.1.2 Capturing and Classifying Design Patterns

In general, a pattern consists of four major elements [28]:

0 Pattern Name: Words used for the description of the problem along with its

resolutions and effects.
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a Problem: Information used to determine when the application of patterns

should be considered, along with a clarification of their objectives and its con-

text.

0 Solution: Description of the elements of the pattern, how they relate, tasks

and collaborations.

0 Consequences: Results of the application of the pattern, the outcomes and

the trade-offs.

It is important to find a representative name for a pattern as the name enhances

the design vocabulary, thus making it possible for developers to communicate at a

higher level of abstraction.

The pattern consists of a description that enables the reader to understand the

context in which the pattern may be applied. Since design patterns are used for a

particular problem, they cannot be encoded and reused directly becauSe they are not

concrete designs, such as linked lists or complex domain—specific designs used for an

entire application or subsystem. The implementation of design patterns is generally

done in object-oriented programming languages (e.g. C++), instead of procedural

languages (e.g. PASCAL or C).

A clear and concise description is needed to add complementary information to

what is captured by the graphical representation of classes, objects, and messages.

For reuse purposes, decision alternatives and trade-offs are as important as concrete

examples. These are the reasons that a typical template-based description contains

a variety of views that illustrate the context of the pattern, along with the details

of the implementation. Example design patterns can be found in [28]. For example,

the Observer Design Pattern describes a technique to maintain consistency between

related objects. The key objects in the pattern are subject and observer; observers

depend on a subject to send a notification when the state of the subject changes.
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Observers register with subjects in order to receive such notifications.

Once the process of writing down design patterns is developed, it is necessary to

locate a means to register the patterns in a repository. Purpose and scope are the two

criteria commonly used to classify design patterns. Purpose provides a description

of what a pattern does and determines if the pattern is of creational, structural, or

behavioral nature. Creational patterns describe patterns for object creation, structural

patterns relate to the composition of classes and objects, and behavioral patterns

depict the method of interaction and distribute responsibility of classes or objects. In

contrast, scope specifies if the pattern applies mostly to classes or objects [28].

2.1.3 Design Pattern Application

Design patterns can be used to resolve a variety of problems encountered by a

software designer. System decomposition into objects is a big challenge in software

development. Design patterns facilitate the identification of abstractions and suggest

candidate objects to capture these abstractions. In addition, they provide a de—

scription of the appropriate object granularity along with specifying the appropriate

interfaces for objects.

Some design pattern catalogues have been published in books [28, 21, 22], while

other pattern catalogues can be found on the Internet [77, 25]. A candidate pattern

must be examined thoroughly if the pattern is to be applied in a productive manner.

If a design pattern is used without being fully understood, then it will not be of

productive use and may potentially increase the complexity of the system as well as

having negative impact on the performance. Therefore, design patterns should only

be used when the flexibility the pattern provides is really needed. The Consequences

field in a pattern further evaluates a pattern’s benefits and liabilities by describing in

detail what changes to expect when a pattern is applied.
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2.2 Unified Modeling Language (UML)

The Unified Modeling Language (UML) [7] is a graphical language to specify,

construct, visualize, and document the artifacts of software systems. The complete

specification of UML by the Object Management Group can be found elsewhere [59].

Only a brief overview of UML diagram types actually used for the description of

requirements patterns is given. We use diagrams to identify high—level goals (use-

cases), capture major entities of a system (class diagrams), and depict the behavior

of a system (sequence and state diagrams). Each of these types are briefly described.

1. Use-Case Diagrams:
 

Use-case diagrams are primarily used to describe high-level goals and services

of a system or subsystem without specifying the internal structure. External

elements that interact with the system are referred to as actors and represented

by stick figures. In an embedded system these actors are usually users, actua-

tors, and sensors. Actions or processes that take place in a system are called

use-cases and are represented by ovals. If an actor plays a role in the action

or process, then this involvement is indicated by a line between the actor and

the use-case. These lines can also be drawn between use-cases to indicate that

the use-case is a special instance of another use—case ((( extends ))) or that the

use-case includes the functionality of another use-case ((( includes ))).

Figure 2.1 shows an example of a use-case diagram that describes high-level

goals of a banking system. A bank customer can withdraw money from an

account using an ATM. A bank employee can also withdraw money and create

a new account. Additionally, the bank manager can check the credit of the

customer.
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UML_Use_Case_Example.dom
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Bank Employee

money_ from_

check

credit

 

    

Bank Customer

 

   Bank Manager

Figure 2.1: UML use—case diagram example

2. Class Diagrams:
 

Class diagrams are the foundation for other UML models, they comprise static

modeling elements that describe the properties and relationships of the entities

in the system. A class diagram shows the classes and few, if any, objects that

exist in a system, their internal structure (variables and methods), and their

relationships to each other. Classes with their attributes and operations are

represented by boxes, and associations between these classes are represented by

lines. These associations can have a direction and arity, and can be named.

Figure 2.2 shows a commonly used example of a class diagram: One professor

teaches zero or more courses and one or more students take between four and

six courses. Every professor can also be the head of at most one department.

Each course is taught by exactly one professor and every department is also

headed by exactly one professor.

In addition to simple associations there are three other forms of interactions

between objects: aggregation, composition, and inheritance. Aggregation is

represented by a line with a hollow diamond on the object that is composed of

10
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the other objects. Composition is represented in the same manner except using

a filled diamond, meaning in addition to aggregation that there is a dependence

between the existence of the whole on its parts. And inheritance is represented

by a triangle pointing to the superclass.

Figure 2.2 shows that a department consists of professors, courses, and stu-

dents. The existence of professors and courses depends on the existence of the

  

  

    

  

 

 
    

  

department.

I' 'I

UML_CIass_Diagram_Example.dom

I. J

Professor 1 heads Department

0..1

1

1..*

teaches

0 * V 0..“' 1 ,

4..6
Course studies Student

1.."       

Figure 2.2: UML class diagram example

3. State Diagrams:
 

This diagram type is particularly important for embedded systems. A state

diagram shows the sequence of states in which an object can be found during

its lifetime in response to events, together with its sequence of responses and

actions. These states are represented by rectangles with rounded corners. The

connecting arrows between states are labelled by an event and a boolean guard

(enclosed in brackets [D that must be met for a transition to take place. The

initial state is represented by a circle and a start transition pointing from the

circle to the state. Figure 2.3 shows a high-level state diagram of a system that

11
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checks a customer for sufficient credit to open a new bank account. In case of

insufficient credit, the customer is refused. Otherwise, a new account is opened.

In both cases, the customer is notified about the decision of the system.

State diagrams can become complex quickly. Using concurrent and nested states

may help minimize this complexity. Concurrent states are represented with

dashed rectangles, hierarchy can be modeled by expanding states into more

detailed lower—level diagrams [34].

 

 

r 1

UML_State_Diagram_Example.dom
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Refuse customer
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Figure 2.3: UML state diagram example

4. Sequence Diagrams:
 

Sequence diagrams show specific interaction scenarios of a system, arranged

by time sequence, with the objects from the class diagrams participating in the

interaction by their timelines, and the messages they exchange arranged in time

sequence. An example sequence diagram in Figure 2.4 shows how an ATM and

the main system of a bank interact to make a withdrawal.

l2
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In some sequence diagrams, the relevant hardware components associated with

a class are also shown. They are labelled explicitly, and the message between

them does not represent a message sent between classes, but a specific action

taken by the hardware device. For example, when a value is set at an actuator,

a “Set value” message sent to the hardware device is shown, meaning that the

actuator class sets the physical component to the appropriate value.

The number of possible sequence diagrams in a system is usually numerous.

Therefore, only a representative set of the possible diagrams is usually shown in

the system documentation. It should be possible to validate a sequence diagram

against the state diagrams.

  

    
  

 

 

 

  
 

AIM were

4 I

withdrawal_request :

afi

‘ amount_request

amount_transfer

permission

F .
l

__l I  
Figure 2.4: UML sequence diagram example
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2.3 Formal Specifications and Specification Pat-

terns

Many efforts in software engineering in recent years have focused on formal spec-

ifications, but their industrial use is still limited. Given the prevalence of software

in numerous aspects of every day life, it is anticipated that formal specifications will

become more important to assure high quality software [82]. The most successful

and visible uses of formal specifications have been languages, techniques, and tools

surrounding the use of model checking [58, 36, 69, 85, 18] (described in the next

section).

Dwyer et al. [23] describe several patterns applicable to software properties for

specifications written in several formalisms, such as CTL (Computation Tree Logic),

LTL (Linear Time Temporal Logic), and QRE (Quantified Regular Expressions). The

complete pattern repository can be found on the Internet [2]. We use these patterns

to generate syntactically and semantically correct LTL claims that we verify using

the SPIN model checker.

An example specification pattern is the Absence Specification Pattern. This pat-

tern can be used to describe that a portion of a system execution is free of certain

events. For example, the fact that an event p globally never happens can be specified

in LTL as CK! (p)).

Specification patterns can be categorized in two groups: Occurrence Patterns

and Order Patterns. Each of the two groups can be decomposed into four subgroups.

Subgroups for Occurrence Patterns are Absence, Universality, Existence, and Bounded

Existence. Order Patterns can be categorized in Precedence, Response, Chain Prece-

dence, and Chain Response. In this thesis, the Constraints field of the patterns makes

extensive use of the Universality/Absence and the Response Patterns.

In our research, we discovered that it was useful to be able to check the system for

14



   
   

  
  

mific-atio
n a. 1:;

Ilit'ét’ cormrain
t~

patterns tent} “‘1‘“

2.4 Form

Chec

This section I

and the model ch.

2.4.1 Linear

mer (HIM .‘v

operators that 81";

unfit Ill]. and ur

the sequence. win:

the searience.
o «l-

demtes that the n;

w- - ‘Edit until operatn'

5313,59,]. While tlw

4 2 MEtric

‘

~
—

‘
.

—

 



specification adherence to specific constraints, or properties. We use LTL to specify

these constraints; they can be found in the Constraints field of the requirements

patterns template.

2.4 Formal Specification Languages and Model

Checking

This section overviews the formal specification languages used, LTL and MTL,

and the model checker Spin.

2.4.1 Linear Time Temporal Logic (LTL)

Linear time temporal logic (LTL) [24] extends prOpositional logic with temporal

operators that apply to a sequence of states: always (El), eventually (0), next (0),

until (U), and weak until (W). C] means that the operand is true at every state in

the sequence, while 0 means that the operand is true eventually at some state in

the sequence. 0 denotes that the operand should be true in the next state and U

denotes that the operand is true until some other condition applies. W denotes the

weak until operator: In p L! q, q has to be come true eventually for the claim to be

satisfied, while the property p W q is already satisfied when p is always true.

2.4.2 Metric Temporal Logic (MTL)

Metric temporal logic (MTL) [64] is used to specify requirements-based properties

involving timing constraints. MTL is an extension to LTL that is interpreted over

timed state sequences and is well-suited for specifying properties in the digital-clock

model (described in Section 5.1.2). We use MTL without past temporal operators.

(Past temporal operators do not add expressive power to MTL or LTL, but they make

15
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the specification of some behavior more convenient [52].)

A formula gt of MTL is inductively defined as follows [38]:

¢3=Pl fiCbl 9’51 A¢2 [0512114152

where p E P is an atomic proposition and I is an interval of N with non-negative

integer constants as endpoints. Intervals may be open, half-open, or closed as well as

empty, bounded, or unbounded. The interval subscript [0, 00) is usually suppressed.

Pseudo-arithmetic expressions (such as S c for [0; c]) can also be used to denote

intervals.

Using MTL, it is possible to specify properties that depend on timing. Liveness

properties specified with a deadline are termed discrete-time liveness properties, sim-

ilar to the definition of real-time liveness in [31]. For example, the property “It is

always the case that after an event p, an event q should follow at most 2 time ticks

later” can be specified as: Cl(p -—> 05:2 (q)).

2.4.3 Spin and Promela

Spin [41] is a model checker that we use to simulate and verify behavior depicted

in UML diagrams. The high—level language used to model system descriptions for

Spin is called Process Meta Language (Promela). System components are modeled

as processes (i.e., proctypes) that communicate synchronously or asynchronously

over channels or shared memory (global variables). The execution of statements is

non-deterministic, asynchronous, and interleaved. Spin makes no assumptions about

the relative speed of process execution.

Spin offers three modes of analysis: simulation, exhaustive verification, and proof

approximation. Simulation is useful for giving a high—level validation of the model

behavior, while exhaustive verification and proof approximation can be used to check

a model for adherence to certain properties by traversing the state space. In doing

16
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so, exhaustive verification covers the complete state space, while proof approxima-

tion tries to use special techniques to cover as much of the state space as possible

if an exhaustive verification is not feasible. Spin can check safety properties, such

as invalid end states or assertions, as well as liveness properties, such as acceptance

or non-progress cycles. Furthermore, properties can be expressed as linear temporal

logic (LTL) claims in a so—called never claim process. This process is executed syn-

chronously with the remaining processes and in the case where a violation is detected,

a counterexample trace is provided so that the error can be located.

2.5 Definition of Terms

This section contains definitions for terms commonly used in this thesis.

0 Safety:

“Freedom from accident or losses.” [22]

0 Reliability:

“The probability that a system will function for a specific period of

time.” [22]

0 Fault:

“A fault is a condition that causes the software to fail to perform its

required function.” [44]

0 Error:

“Mistake made at either design or build time.” [22] Also known as

“design fault” or “systematic fault”.

17
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Failure:

“Occurs because something that once worked is now broken.” [22]

Also known as “random fault”.

Hazard:

“A state or set of conditions of a system (or an object) that, together

with other conditions in the environment of the system (or object),

will inevitably lead to an accident (loss event)” [21]

Safety Measure:

“A safety measure is a behavior added to a system to handle a haz-

ard.” [21]

Safety Policy:

A safety policy ” ...describes safety algorithms and services.“ [21]

Built-In Test (BIT):

A BIT is a test that enables a system to discover hazards; for example, a CRC

(cyclic redundancy check) of the system RAM reveals faulty memory [21].

Operation State:

Operation State determines the operational state of a device, determining if a

device is working correctly. Usually, this value is boolean, where true means

that the component is working properly and false means that the component

failed. The device determines this state by self-validation, such as by CRC or

validity checks of values, or it is set by another component.

18
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0 Structure of an Embedded System:

Figure 2.5 depicts our view of the structure of an embedded system. The soft-

ware part of an embedded system contains, among other things, the comput-

ing component and the software representations of the sensors and actuators.

Hardware actuators and sensors interact with the corresponding software rep-

resentations using some communication techniques, such as a Controller Area

Network (CAN) bus [66] and they might contain software themselves for various

purposes, such as entering a fail—safe state if communication with other system

parts fails. The software representations are responsible for processing incom-

ing and outgoing data of the hardware sensors and actuators. The computing

component computes the system actions based on the values provided by the

software representations. The user interface is responsible for communication

with the user via controls and indicators. A communication link, if present,

provides an interface to the outside world.
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Chapter 3

Describing Requirements Patterns

This section gives the template used to describe requirements patterns, enumer-

ates the list of patterns, and presents a set of criteria for organizing and classifying

the patterns. Additionally, it contains the complete description of all requirements

patterns identified thus far.

3.1 Requirements Pattern Template

In contrast to other informal presentation styles for patterns, this paper uses

a template similar in style to that used by Gamma et al. [28] in order to facilitate

its understanding and application. UML diagrams are used to give structural and

behavioral information. As suggested by Ryan [68], we use natural language to sup-

plement diagrams in order to describe important aspects of the patterns as a mean

for facilitating the understanding of the requirements from different viewpoints.

We modified the original design pattern template in several aspects to address

the needs of requirements engineering. Table 3.1 overviews the requirements pat-

tern template. Specifically, the design pattern template has been extended with

“Constraints”, “Behavior”, and “Design Patterns” sections. (The sections “Imple-

mentation” and “Sample Code” have been removed because they were too specific
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to software design and implementation.) The “Behavior” section contains sequence

and state diagrams that illustrate sample behavior and the “Design Patterns” section

contains related design patterns that can be used to further refine the requirements

pattern. In contrast, the “Constraints” section contains specification-pattern-based

representations of properties of interest. Thus far, our constraints have included

representations of two of Dwyer et al.’s [23] most commonly used general specifi-

cation pattern categories, universality/absence (to capture invariant properties) and

response (to capture cause/effect relationships in system behavior). Those constraints

provide a template for instantiating properties specific to a UML—modeled system.
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Pattern Name

and Classification:

The pattern name consists of a description of the pat-

tern; the classification provides the purpose of the pat-

tern.
 

Intent: A brief description of the problem(s) that the pattern

addresses.
 

Motivation: A description of sample goals and objectives of a sys-

tem that motivate the use of the pattern. Use-cases

and use-case—diagrams describe goals of the pattern

application.
 

Applicability: Describe the conditions in which the pattern may be

apphed.
 

Structure: A representation of the classes and their relationships

depicted in terms of UML class diagrams.
 

Behavior: Provides an illustrative representation of scenarios for

class and object interaction. Also gives a description

of the behavior of the pattern by using sample or high-

level, abstract UML state and sequence diagrams.
 

Participants: Itemizes the classes/objects that are included in the

requirements pattern and their responsibilities.
 

Collaborations: Describes how objects and classes interact to carry out

the responsibilities given in the “Participants” section.
 

Consequences: Describes how objectives are supported by a given pat-

tern and gives the trade-offs and outcomes of the pat-

tern application.
 

Constraints: This section contains LTL templates and a prose

description of these constraints. Thus far, our

constraints have included representations of two of

Dwyer et al.’s [23] most commonly used general spec-

ification pattern categories, universality/absence (to

capture invariant properties) and response (to capture

cause/effect relationships in system behavior).
 

Design Patterns: Applicable design patterns that can be used to refine

the requirements patterns.
 

Also Known As: Lists alternative names for the requirements pattern.
 

Known Uses: Examples of the pattern found in real systems.
  Related Requirements

Patterns:

Lists related requirements patterns and advantages

/shortcomings that would result from pattern combi-

nation.

 

Table 3.1: Requirements pattern template
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3.2 Requirements Patterns Catalogue Overview

Table 3.2 gives an enumeration of the current requirements patterns in the repos-

itory and their respective intentions that have been identified from analyzing several

embedded systems. Some of the patterns are applicable to the majority of embedded

systems, while other patterns are more specific to individual systems. To determine

the applicability of a pattern, the “Intent” section is helpful. More detailed informa-

tion is provided in the respective complete pattern description.

 

Actuation-Monitor (98): Increase safety by monitoring actuator be—

havior for errors.
 

Actuator-Sensor (38): Specify various kinds of sensors and actua-

tors and their relationships to the comput-

ing component in an embedded system.
 

Communication (91): Arrange communication between compo-

nents.
 

Controller Decompose (29): Decompose an embedded system into dif—

ferent components according to their re—

sponsibilities.
 

Examiner (56): Monitor a device and store occurring er-

rors.
 

Fault Handler (63): Specify a fault handler for an embedded

system.
 

Mask (73): Reduce the burden on the computing com-

ponent if many sensors and actuators are

present and provide an interface for com-

ponents accessing the actuators and sen-

sors.
 

Moderator (78): Provide an interface to support decoupling

of complex subsystems.
 

User Interface (82): Specify a user interface that is extensible

and reusable.
 

Watchdog (48): Monitor a device or system conditions and

initiate corrective action(s) if a violation is

found.

 

Table 3.2: Current list of requirements patterns for embedded systems
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3.3 Classifying Requirements Patterns

It is important to classify the patterns in order to facilitate the discovery of

related families of patterns. Furthermore, classification enables navigation through

the patterns and provides a means for finding a pattern to describe a specific problem.

Figure 3.1 gives an overview of how the patterns relate to each other in an infor-

mal way similar to the style used by Gamma et al. [28]. The Controller Decompose

(29) Pattern is a very general pattern that refers to other patterns for refinement.

The Actuator-Sensor {38) and the Fault Handler (63) Patterns point to patterns that

can be used to add additional functionality.

We offer two orthogonal classification schemes. One possibility is to classify the

patterns according to their purposes: creational, structural, or behavioral [28].

o Creational: Patterns for the process object creation.

op Structural: Patterns that describe the composition of classes or objects.

a Behavioral: Pattern to depict the method of interaction and distribute re-

sponsibility of classes or objects.

Because most classes in an embedded system application involve physical entities,

there is little use for object creation capabilities and therefore, we have not yet iden-

tified any creational patterns. Thus, all patterns are either structural or behavioral.

Table 3.3 shows a classification of the patterns according to their purpose.

The patterns can also be classified according to the following non-functional

requirements that they address.

0 Response Time: “The time within which a system must detect an internal or

external event and respond with an action.” [63]

0 Reliability: “The ability of an item to perform a required function under

stated conditions for a stated period of time.” [73]
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Table 3.3: Pattern classification according to purpose

Fault Tolerance: “The built-in capability of a system to provide correct exe—

cution in the presence of a limited number of hardware and software faults.” [73]

Reusability: “The extent to which a module can be used in multiple applica-

tions.” [73]

Safety: Minimize the risk to persons or equipment. [21].

Portability: “Application system reuse where a whole application system is

reused by implementing it across a range of different computers and operating

systems.” [75]

Extensibility: Maximize flexibility in making changes to the requirements,

while minimizing costs for the changes.

Maintajnability: “The ease in which the maintenance of a functional unit can

be performed in accordance with prescribed requirements.” [73]

User Friendliness: Ease of use and efficiency of the interaction with the

user. [30, 73]

This list represents some of the more obvious non-functional requirements that
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the patterns address; there are potentially many more. See Table 3.4 for a concise

summary of this classification of patterns. Positive correlation is denoted with a ‘+’,

negative with a ‘-’, and a blank indicates little or no correlations. Due to the nature of

non—functional requirements, this classification is subjective. Thus, others may have

a different view as to whether a pattern’s impact on the non-functional requirements

is considerable enough to be labeled positive or negative. The application of most

patterns has a negative effect on the performance of a system due to the added

complexity. For example, the Actuator-Sensor {38) Pattern prohibits direct access

to member variables of classes; access is only possible through messages. But other

properties are usually not negatively affected. Therefore, it is necessary to understand

the consequences of applying a pattern so that negative effects of the application do

not outweigh the positive effects.

 

Table 3.4: Pattern classification according to non-functional requirements
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Figure 3.1: Requirements patterns relationships
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3.4 Requirements Pattern Repository

This section gives a detailed description of the requirements patterns discovered

thus far in embedded systems. The names of the requirements patterns are denoted

in italics, and the elements of a requirements pattern are given in a san serif font,

including class, state, and variable names. Method names and messages are denoted

in italics.

3.4.1 Controller Decompose (2.9): Structural Pattern

Intent:

Decompose an embedded system into different components according to their

responsibilities.

Motivation:

This pattern describes important components of an embedded system and should '

be used early in the system development process. All components presented in this

pattern should be addressed by the developer. Leaving out one component might

make the system difficult and expensive to extend in future, or even require a total

redesign.

Figure 3.2 shows a use—case diagram of the Controller Decompose (29) Pattern.

 

Use-Case: System running

Actors: None

Description: This use-case represents the system when it is functioning.

Includes: Receive input values, Interact with user, Set output values, Communicate with

external entities   
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Figure 3.2: UML use-case diagram of the Controller Decompose (29) Pattern
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Use-Case: Receive input values

Actors: Sensor

Description: The system receives values from sensors, either by polling the sensors or the sen—

sors actively send the values.

Includes: -

Use-Case: Set output values

Actors: Actuator

Description: The system sends values to the actuators.

Includes: -

Use-Case: Interact with user

Actors: User

Description: Read user controls and activate indicators.

Includes: -

Use-Case: Use in safe mode

Actors: User

Description: Special case of the use-case System running. System offers basic functionality

due to errors that have occurred. The exact level of functionality is system-

dependent.

Includes: -

Use-Case: Communicate with external entities

Actors: External entity

Description: Offer communication capabilities for external entities.

Includes: -

Applicability:

The Controller Decompose (29) Pattern is applicable

0 in any embedded system. Only a high-level decomposition of the system struc-

ture is given.
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Structure:

Figure 3.3 gives an overview of the structure of the Controller Decompose {29)

Pattern. Each component in this diagram is a structure of hardware and software

responsible for performing a specific task.

Experience has shown that the system should be modeled to never exceed an

utilization of fifty percent. If the utilization does exceed fifty percent, then it is

likely that the system will not be able to process information reliably under any

circumstances [25].
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Figure 3.3: UML package diagram of the Controller Decompose {29) Pattern

 

Behavior:

This abstract pattern gives no behavioral information, but instead refers to other

requirements and design patterns that refine behavior in the respective individual

sections.
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Participants:

0 ComputingComponent: Central component of an embedded system, computes

the required outputs from the inputs and the actual state of the system.

0 InputComponent: Contains sensors of the system.

0 OutputComponent: Contains actuators of the system.

0 FaultHandlerComponent: Provides fault handling capabilities for the system.

0 CommunicationComponent: Provides communication to the system environ-

ment, including other embedded systems and specialized diagnostic units.

0 UserlnterfaceComponent: Responsible for interaction with the user and for the

consistency of the user inputs.

0 TimingComponent: Timing component of the system.

Collaborations:

e The ComputingComponent is responsible for determining required actions based

on the values of the input and output components and the current system state.

0 The InputComponent represents sensors of the system; the ComputingComponent

queries the sensors when it needs an update of the values or receives values from

active sensors.

0 The OutputComponent represents actuators of the system, the ComputingCom-

ponent can set their states and values.

0 The CommunicationComponent provides an interface for the system to the ex—

ternal environment. Through this interface, system states and conditions can

be queried or specified and the error list of the fault handler can be obtained.
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Depending on the specific system, the communication component can be de-

signed to perform additional actions, from reading values to fully controlling

the system.

e The UserlnterfaceComponent is a special collection of sensors and actuators that

interact with the user. These sensors and actuators are in a separate component

because user interaction usually differs from the interaction with other sensors

and actuators. For example, timing aspects of user interactions are usually not

tightly constrained.

e In most embedded systems, the TimingComponent is implemented in hardware.

The main task is to offer a reliable timing information under any condition.

Consequences:

1. When this pattern is applied, it provides a basic system structure that must be

further refined.

2. Components considered to be unnecessary should still be considered in the

system development process to increase the extensibility and reusability of the

system. For example, if an embedded system does not have a user interface, but

the requirements of a possible future user interface are taken into considerations

during the development process, then it will be easier to extend the system in

future with a user interface.

Constraints:

Due to the abstract nature of this pattern, it does not give LTL constraints, but

the requirements patterns referred to in the Behavior field contain constraints for the

respective components.
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Design Patterns:

e Layered Design Pattern [22]:

How to organize domains into a hierarchy.

e Five-Layer Design Pattern [22]:

Specific version of the Layered Design Pattern [22].

o CommunicationComponent:

— Serial Port Design Pattern [25]:

This design pattern describes a class that completely encapsulates the

interface of a serial port device.

— High Speed Serial Port Design Pattern [25]:

The high speed variant of the Serial Port Design Pattern offers DMA

(Direct Memory Access) capabilities.

e Timing Component:

—— Timer Design Patterns [25]:

Applicable design patterns for timer management are introduced.

Also Known As:

To be determined.

Known Uses:

To be determined.

Related Requirements Patterns:

0 OutputComponent:
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— Communication (91) Requirements Pattern:

Arrange communication between components.

— Actuator-Sensor (38) Requirements Pattern:

Specify various kinds of sensors and actuators and their relationships to a

computing component in an embedded system.

— Actuation-Monitor (98) Requirements Pattern:

Increase safety by monitoring actuator behavior for errors.

— Mask (73) Requirements Pattern:

Reduce the burden on the computing component if many sensors and ac-

tuators are present and provide an interface for components accessing the

actuators and sensors.

— Moderator (78) Requirements Pattern:

Provide an interface to support decoupling of complex subsystems.

e InputComponent:

— Communication (.91) Requirements Pattern:

Arrange communication between components.

— Actuator-Sensor (38) Requirements Pattern:

Specify various kinds of sensors and actuators and their relationships to a

computing component in an embedded system.

— Mask (73) Requirements Pattern:

Reduce the burden on the computing component if many sensors and ac-

tuators are present and provide an interface for components accessing the

actuators and sensors.

— Moderator (78) Requirements Pattern:

Provide an interface to support decoupling of complex subsystems.
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e FaultHandlerComponent:

— Fault Handler (63) Requirements Pattern:

Specify a fault handler for an embedded system.

-— Watchdog (48) Requirements Pattern:

Monitor a device or system conditions and initiate corrective action(s) if

a violation is found.

- Examiner (56) Requirements Pattern:

Monitor a device and store occurring errors.

a UserlnterfaceComponent:

— User Interface (82) Requirements Pattern:

Specify a user interface that is extensible and reusable.
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3.4.2 Actuator-Sensor (38): Structural Pattern

Intent:

Specify various kinds of sensors and actuators and their relationships to the

computing component in an embedded system.

Motivation:

Embedded systems usually have various kinds of sensors and actuators. These

sensors and actuators are all either directly or indirectly connected to the computing

component. Although many of the sensors and actuators are physically different, their

behavior is sufficiently similar to be structured into a pattern. The Actuator-Sensor

(38) Pattern shows how to specify the sensors and actuators for a system.

Most sensors and actuators only set or receive a value that has the data type

boolean, integer, or real. But even for more complex sensors and actuators, like a

radar unit, this pattern is useful to be able to query the operational state (boolean

check that indicates whether the component is functioning correctly) and other con-

ditions with the same interface. This pattern also takes into account that attributes

should only be accessed through defined methods in order to ensure system integrity

and increased reusability through information hiding. The Actuator-Sensor (38) Pat-

tern uses a pull mechanism (explicit request for information) for passive sensors and

a push mechanism (broadcast of information) for active sensors. (Refer to the Design

Patterns field for more detail on these strategies.)

Figure 3.4 shows a use-case diagram of the Actuator-Sensor (38) Pattern. Two

goals of this pattern are either to receive a value or to set a value.

 

Use—Case: System running

Actors: None

Description: This use-case represents the system when it is functioning.

  Includes: Receive input values, Set output values
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Figure 3.4: UML use-case diagram of the Actuator-Sensor (38) Pattern

 

 

Use-Case: Receive input values

Actors: Sensor

Description: The system receives values from sensors, either by polling the sensors or the sen-

sors actively send the values.

 

Includes: -

Use-Case: Set output values

Actors: Actuator

Description: The system sends values to actuators.

Includes: -    
This pattern relates to the four-variable model by Parnas and Madey [60] shown

in Figure 3.5. The monitored variables (MON) are physical quantities measured

by the physical representations of the active and passive sensors. The IN-relation

transforms the MON to INPUT and represents the transformation of the values of

the physical sensors to their software representations. The behavior of the computing

component is defined by the SOFT relationship that maps INPUT to OUTPUT.

The OUTPUT is then transformed from the software actuators to their physical

representations with the controlled variables (CON). Overall, the relations IN, SOFT,
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and OUT have to perform the requirements of the system, denoted by the REQ-

relationship that maps from the monitored to the controlled variables.

 

 

 

REQ

MON + CON

IN OUT

INPUT % OUTPUT

SOFT

Figure 3.5: Four-variable model [60]

 

Applicability:

The Actuator-Sensor (38) Pattern is applicable

0 in all embedded systems, and particularly useful when many actuators and

sensors are present.

Structure:

A UML class diagram for the Actuator-Sensor (38) Pattern can be found in

Figure 3.6. Four different types of sensors and actuators can be found in this pattern.

The boolean, integer, and real classes represent the most common types of sensors

and actuators. The complex classes are sensors or actuators that use values that

cannot be easily represented in terms of primitive data types, such as a radar device.

Nonetheless, these devices should still inherit the interface from the abstract classes

since they should have basic functionalities, such as querying the operation states.

Behavior:

Figure 3.7 shows a UML sequence diagram for an example of the Actuator-

Sensor (38) Pattern in a climate control system. The ComputingComponent queries
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Figure 3.6: UML class diagram of the Actuator-Sensor (38) Pattern  
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a sensor (a passive temperature sensor) and an actuator (a radiator valve) to check

the operational state for diagnostic purposes before reading or setting a value. The

messages “Set Physical Value” and “Get Physical Value” are not messages between

objects. Instead, they describe the interaction between the physical devices of the

system and their software representations. In the lower part of the diagram (below

the bold horizontal line) the TemperatureSensor reports that the operational state is

ZCTO. The ComputingComponent then sends the error code for a temperature sensor

failure to the FaultHandler that will decide how this error affects the system and what

actions are required.

Participants:

ComputingComponent: The central component of the system; it reads data from

the sensors and computes the required response for the actuators.

AbstractPassiveSensor {abstract}: Defines an interface for passive sensors.

AbstractPassiveBooleanSensor {abstract}: Defines passive boolean sensors.

AbstractPassivelntegerSensor {abstract}: Defines passive integer sensors.

AbstractPassiveRealSensor {abstract}: Defines passive real sensors.

AbstractPassiveComplexSensor {abstract}: Complex passive sensors have the ba-

sic functionality of the AbstractPassiveSensor class, but additional, more elabo-

rate, methods and attributes need to be specified.

AbstractActiveSensor {abstract}: Defines an interface for active sensors.

AbstractActiveBooleanSensor {abstract}: Defines active boolean sensors.

AbstractActivelntegerSensor {abstract}: Defines active integer sensors.

AbstractActiveRealSensor {abstract}: Defines active real sensors.
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Figure 3.7: UML sequence diagram example of the Actuator-Sensor (38) Pattern
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e AbstractActiveComplexSensor {abstract}: Complex active sensors have the basic

functionality of the AbstractActiveSensor class, but additional, more elaborate,

methods and attributes, need to be specified.

e AbstractActuator {abstract}: Defines an interface for actuators.

e AbstractBooleanActuator {abstract}: Defines boolean actuators.

e AbstractlntegerActuator {abstract}: Defines integer actuators.

e AbstractRealActuator {abstract}: Defines real actuators.

e AbstractComplexActuator {abstract}: Complex actuators also have the base func—

tionality of the AbstractActuator class, but additional, more elaborate methods

and attributes need to be Specified.

e AbstractPassiveBooleanSensorl, AbstractPassivelntegerSensorl, AbstractPassive-

RealSensorl, AbstractPassiveComplexSensorl, AbstractActiveBooleanSensorl,

AbstractActivelntegerSensorl, AbstractActiveRealSensorl, AbstractActiveCom-

plexSensorl, AbstractBooleanActuatorl, AbstractlntegerActuatorl, AbstractRe-

alActuatorl, AbstractComplexActuatorl: Concrete example classes defining the

interfaces for sensors and actuators that can be instantiated.

Collaborations:

a When the ComputingComponent needs to update the value of a PassiveSensor, it

queries the sensors, requesting the value by sending the corresponding message.

e ActiveSensor’s are not queried. They initiate the transmission of sensor values

to the computing unit, using the appropriate method to set the value in the

ComputingComponent. They send a life tick at least once during a specified

time frame in order to ensure the active sensors have not failed.
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e When the ComputingComponent needs to set an output value, it sends the value

to the actuator, which subsequently performs the actuation.

e The ComputingComponent can query and set the operational state of the sensors

and actuators using the appropriate methods. If an operational state is found

to be zero, then the error is sent to the FaultHandler who is responsible for

handling error messages, such as starting a more elaborate recovery mechanism

or a backup device. If no recovery is possible, then the system can use the last

known value for the sensor or a default value.

e The ActiveSensor’s offer methods to add or remove the addresses or address

ranges of the components that need to receive update messages in case of a

value change.

Consequences:

1. Sensor and actuator classes have a common interface. Therefore, the readability,

understandability, and maintainability of the system is improved.

2. Class attributes can only be accessed through messages. The class decides in

turn whether to accept the message. For example, if a value of an actuator is set

above a maximum value, then the actuator class may not accept the message,

or it might use a default maximum value instead.

Constraints:

0 Response Pattern:

If a component fails, then the operational state of the component should be

eventually set to zero.

[3(Component. ‘ ‘Failure occurred’ ’ —>

0(Component.“0perationa1 state false”))
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e Response Pattern:

When the value of an active sensor changes, the computing component should

receive the updated value.

CKActiveSensor. ‘ ‘Value change’ ’ —~>

O(“Send updated value to the ComputingComponent”))

a Response Pattern:

When an active sensor times out, the error message should be sent to the fault

handler.

[3(ActiveSensor. ‘ ‘timeout ’ ’ —>

O(“Report timeout to fault handler”))

Design Patterns:

e Factory Method Design Pattern [28]:

This pattern and related ones can be used to handle the object creation of the

actuators and sensors.

0 Observer Design Pattern [28]:

Use this pattern for active sensors to notify dependents if the sensor values

change.

e Feature Coordination Design Patterns [25]:

These patterns describe different strategies to handle message sequences for the

communication with actuators and sensor.

0 Data Bus Design Pattern [22]:

Describes push and pull strategies for reading sensor values.
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Also Known As:

To be determined.

Known Uses:

To be determined.

Related Requirements Patterns:

0 Controller Decompose (29) Requirements Pattern:

A global view on the relation of the sensors and actuators to the computing

components and other components in a system is described.

0 Communication (91) Requirements Pattern:

Arrange communication between the computing component and actuators and

sensors of a system.

0 Actuation-Monitor (98) Requirements Pattern:

The Actuation-Monitor (98) Pattern shows how to use redundant sensors to

monitor the actuation of a device.
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3.4.3 Watchdog (48): Behavioral Pattern

Intent:

Monitor a device or system conditions and initiate corrective action(s) if a vio-

lation is found.

Motivation:

Embedded systems typically have tight timing constraints. Providing a mecha-

nism to assure a component is reacting or specific constraints on the system are not

violated is the objective of the Watchdog (48) Pattern. A watchdog is a mechanism

for responding to conditions that might violate safety, uncovering those conditions

through mechanisms, such as receiving messages from other subsystems on a periodic

or sequence-keyed basis [21]. If a service to the watchdog occurs too late or out of

sequence, then the watchdog initiates some corrective action, such as a reset, a shut-

down, sending an alarm to notify an operator or other personnel, or a more elaborate

error-recovery mechanism.

Figure 3.8 shows a use-case diagram of the Watchdog (48) Pattern.

 

Use-Case: System running

Actors: None

Description: This use-case represents the system when it is functioning.

 

Includes: Handle faults

Use-Case: Detect violations

Actors: None

Description: Devices not responding in a specific time or violations of system constraints are

detected.

Includes: Start recovery action   
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Figure 3.8: UML use-case diagram of the Watchdog (48) Pattern

 

 

 

 

 

Use-Case: Diagnose faults

Actors: Technician

Description: Special case of the use-case Handle faults. The system offers extended diagnostic

functions instead of handling faults to identify the source of the fault(s).

Includes: -

Use-Case: Detect faults

Actors: None

Description: The system offers fault detection functionality.

Includes: Detect violations

Use-Case: Handle faults

Actors: None

Description: Initiate corrective actions if needed.

Includes: Detect faults, Start recovery action
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Use-Case: Start recovery action

Actors: None

Description: In case of a detected violation start recovery action.

Includes: - 
 

Applicability:

The Watchdog (48) Pattern is applicable

e in systems that have high safety requirements.

Structure:

The class diagram for the Watchdog (48) Pattern can be seen in Figure 3.9. The

Watchdog interacts with the FaultHandler to store errors and initiates recovery actions

at the monitored Device, such as a reset.

 

 

  

   

 

  

 

FaultHandler

*9 t
g 1

t

0

t
monitors and 3 o..*

initiates recovery

0.:

Watchdog > Device

1

     
 

Figure 3.9: UML class diagram of the Watchdog (48) Pattern

 

Behavior:

Figure 3.10 and Figure 3.11 show state diagrams for the Watchdog class. The

first one represents a state diagram for a watchdog that is waiting for a periodic
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service (denoted by an Update() message) by a Device, the latter one for a watchdog

that periodically checks if certain system conditions are violated.

Figure 3.12 shows a sequence diagram where a watchdog of the first type detects

a timeout of the Device, initiates a reset, and sends the error to the FaultHandler.

 

Update()[WDTimer<-Threehold]/

Timer:=
   

  

 

   

WDStart()[]/WDTimer:-0

Idle Counting
 

WDStop(lIl/

[WDTimer>Threshold]/

  

    

Violation

doIStart recovery action

dolSend error message

 

Figure 3.10: UML state diagram of the Watchdog (48) Pattern (1)

 

Participants:

e Watchdog: Watchdog monitoring the device. The Watchdog can be imple-

mented in hardware to protect it from software faults.

e Device: Device monitored by the Watchdog.

e FaultHandler: Central fault handler of the system.

Collaborations:

e The Watchdog is waiting for a message from a Device or monitors certain system

conditions on a periodic basis. If this message does not arrive on time or a

51





 

 

 

WDStart(l[]/WDT1mor:-O

Idle :l Counting }

WDStopllll/

[WDTimer-Threehold] [N0 violation

/ found]/WDT1mer:-0

Violation [Violation found] / Check 3

dolStart recovery action

dolSend error message @oICheck conditions

Figure 3.11: UML state diagram of the Watchdog (48) Pattern (2)

 

 

 

 

 

condition is violated, then the watchdog performs recovery actions, such as

resetting a device or shutting the system down and reports the error to the

FaultHandler.

e The FaultHandler handles the error message and may initiate additional actions.

Consequences:

1. If a watchdog monitors a device on a periodic basis, then the device has to send

life ticks periodically to the watchdog.

2. A fault handler should be present to handle error messages from the watchdog.

3. The system must contain a reset operation or a more elaborate error recovery

mechanism that the watchdog can perform in case of a violation.
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Figure 3.12: UML sequence diagram example of the Watchdog (48) Pattern  
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Constraints:

e Response Pattern:

If there is a violation, then the watchdog should eventually recognize the viola-

tion.

El(‘ ‘Physical Violation’ ’ ——> O(‘ ‘Watchdog Violation’ ’))

e Response Pattern:

If a violation of a system constraint is found, then the watchdog should start the

corresponding recovery action appropriate to the system being modeled (e.g.,

begin error recovery, reset the device, shut down).

Cl(‘ ‘Watchdog Violation’ ’ ——> 0(‘ ‘Start recovery action”))

e Response Pattern:

When a violation is found, a message containing the appropriate error code

should be sent to the fault handler (indicated by the keyword sent).

Cl(‘ ‘Watchdog Violation’ ’ —>

0(‘ ‘Report error to fault handler’ ’))

Design Patterns:

0 Watchdog Design Pattern [22]:

Describes more implementation specific details about the watchdog, such as

implementation strategies.

Also Known As:

To be determined.
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Known Uses:

To be determined.

Related Requirements Patterns:

e Examiner (56) Requirements Pattern:

Describes similar functionality, but does not perform recovery actions.

e Fault Handler (63) Requirements Pattern:

Stores and handles error messages from the watchdog.
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3.4.4 Examiner (56): Behavioral Pattern

Intent:

Monitor a device and store occurring errors.

Motivation:

The Eramincr (56) Pattern is similar to the Watchdog (48) Pattern. The main

difference is that the watchdog pattern performs corrective actions, whereas the ex-

aminer only reports errors to the fault handling component and the responsibility to

take further actions lies with the fault handler. Hence, the examiner is usually imple-

mented in software and not hardware because it is less important to system safety.

Nevertheless, the error log entries by the examiner are useful for system diagnostic

purposes. Failures can be found before they affect the system safety by analyzing the

 

error log.

Use-Case: System running

Actors: None

Description: This use-case represents the system when it is functioning.

Includes: Handle faults

 

Use-Case: Detect violations

Actors: None

Description: Devices not responding in a specific time or violations of system constraints are

 

detected.

Includes: -

Use-Case: Diagnose faults

Actors: Technician

Description: Special case of the use-case Handle faults. The system offers extended diagnostic

functions instead of handling faults to identify the source of the fault(s).

Includes: -    
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l T h . .
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System
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Figure 3.13: UML use—case diagram of the Examiner (56) Pattern

 

 

 

 

 

Use-Case: Detect faults

Actors: None

Description: The system offers fault detection functionality.

Includes: Detect violations

Use-Case: Handle faults

Actors: None

Description: Initiate corrective actions if needed.

Includes: Detect faults, Start recovery action

Use-Case: Start recovery action

Actors: None

Description: In case of a detected violation start recovery action.

Includes: -   
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Applicability:

The Examiner (56) Pattern is applicable

e when monitoring of non—critical devices is needed.

Do not use the Examiner (56) Pattern when

a the violations detected by the examiner are affecting system safety. The exam-

iner is not protected from software faults and the Watchdog (48) Pattern should

be used, instead, to ensure maximum system safety.

Structure:

The class diagram of the Examiner Pattern can be seen in Figure 3.14, where

the only difference to the Watchdog (48) Pattern is that the Examiner Pattern does

not perform a recovery action.

 

 

FaultHandler
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s
e
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monitors

 Examiner 0". b Device

1

      

Figure 3.14: UML class diagram of the Examiner (56) Pattern

 

Behavior:

Figure 3.15 shows the state diagram of an Examiner, expecting service (denoted by

an Update() message) from a Device on a periodic basis. In contrast to the Watchdog
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(48) Pattern, no recovery action is performed if a violation is detected. Figure 3.15

shows an Examiner checking periodically certain system conditions for violations.

Figure 3.17 denotes a sequence diagram where the Examiner detects a timeout

of a device and reports the error to the FaultHandler. With the FaultHandler lies the

responsibility to initiate safety actions.

/"\

Update () [Bx'rimer<='rhreehold] /

Bx'l‘imer:=0

ExStartU [I /BxTimer:-O

Idle Counting

ExStopi) [I /

[Ex'rimer>'rhreehold] /Bx'rimer : .0 ,

Paultnandler . Storenrror (TinoOut)

 

 

 

Figure 3.15: UML state diagram of the Examiner (56) Pattern ( 1)

usual) I] le'rimeruo

Idle :I Counting I

sxscop()ll/

[adjust-Threshold] [NO Violation

/ foundl/RxTimer:-O

 

 

 

 

 
[Violation found] /

Violation x Check

dolSend error messagej dolCheck conditions

[1/

 

 

 

 

Figure 3.16: UML state diagram of the Examiner (56) Pattern (2)
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Figure 3.17: UML sequence diagram example of the Examiner (56) Pattern
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Participants:

e Examiner: The component that monitors Device.

e Device: Device monitored by the Examiner.

e FaultHandler: Central fault handler of the system.

Collaborations:

e The Examiner is waiting for a message from a Device or monitors certain system

conditions on a periodic basis. If this message does not arrive on time or a

condition is violated, then the Examiner reports the error to the FaultHandler.

e The FaultHandler handles the error message and with it lies the responsibility

to initiate recovery actions.

Consequences:

1. If an examiner monitors a device on a periodic basis, then the device has to

send life ticks periodically to the examiner.

2. A fault handler should be present to handle the error messages from the exam-

iner.

Constraints:

e Response Pattern:

If there is a violation, then the examiner should eventually recognize the viola-

tion.

CK‘ ‘Physical Violation’ ’ —> O(‘ ‘Examiner Violation’ ’))
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e Response Pattern:

When a violation is found, a message containing the appropriate error code

should be sent to the FaultHandler (indicated by the keyword sent).

CK‘ ‘Examiner Violation’ ’ —+

0(‘ ‘Report error to fault handler’ ’))

Design Patterns:

To be determined.

Also Known As:

To be determined.

Known Uses:

To be determined.

Related Requirements Patterns:

0 Watchdog (48) Requirements Pattern:

This patterns has similar functionality, but performs recovery actions if a vio-

lation is detected.

0 Fault Handler (63) Requirements Pattern:

The fault handler handles error messages from the examiner.
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3.4.5 Fault Handler (63): Behavioral Pattern

Intent:

Specify a centralized fault handler for an embedded system.

Motivation:

Fault handling is essential for embedded systems. Embedded systems frequently

need to determine what responses are necessary to recover from errors. Consider

a flight control system in an airplane, where the system should never shut down

completely in response to an error. The system has to decide if it should perform a

partial shutdown and offer basic functionality, or if the error is no threat to system

safety and logging is sufficient. This fault handler must offer the possibility for other

devices to read the error log. But it should also have access to a user interface to

signal that errors have occurred. An important function of the fault handler is to

send the system into different safety states depending on the severity of the error.

These safety states have to be implemented in the computing component, such as

the operation for performing an emergency stop. If an error is reported to the fault

handler justifying this action, then the fault handler will activate this state.

Therefore, the fault handler acts as a centralized coordinator for safety monitor-

ing and, hence, control of system recovery.

The following inputs are usually captured [21]:

e Timeout messages by watchdogs, examiners, or monitors.

e Assertions of software errors.

e Built-in—tests (BITS) that run on a periodic or continuous basis.

The centralized safety control facilitates the verification and validation of the

safety measures and eases the reuse of the fault handler in different systems.
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Figure 3.18 gives the use-case diagram for the Fault Handler (63) Pattern, with

the major goals being to detect and to handle faults.

 

 

 

 

 

 

 

Use-Case: System running

Actors: None

Description: This use-case represents the system when it is functioning.

Includes: Handle faults, Interact with user

Use-Case: Use in safe mode

Actors: User

Description: Special case of the use-case System running. System offers basic functionality

due to errors that have occurred. The exact level of functionality is system-

dependent.

Includes: -

Use-Case: Interact with user

Actors: User

Description: Read user settings and activate indicators.

Includes: -

Use-Case: Handle faults

Actors: None

Description: Initiate corrective actions if needed.

Includes: Detect faults

Use-Case: Diagnose faults

Actors: Technician

Description: Special case of the use-case Handle faults. The system offers extended diagnostic

functions instead of handling faults to identify the source of the fault(s).

Includes: -

Use-Case: Detect faults

Actors: None

Description: The system offers fault detection functionality.

Includes: -
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 Figure 3.18: UML use-case diagram for the Fault Handler (63) Pattern
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Applicability:

The Fault Handler (63) Pattern is applicable

0 in embedded systems where fault handling is to be centralized.

Structure:

The UML class diagram of the Fault Handler (63) Pattern can be seen in Fig-

ure 3.19. The FaultHandler sends messages to the Userlnterface to activate warning

levels and sends the ComputingComponent into different safety states. For every safety

state defined in the requirements, an operation in the ComputingComponent is needed.

The safety states are listed in the Behavior field.

The FaultHandler also receives error messages from Watchdogs, Examiners, and

Monitors. The Device class represents possible devices in the system that also send

error messages to the FaultHandler.

Depending on the safety measures and policies defined, the FaultHandler decides

what action to take, for example, such as activating a FailSafeDevice.

Behavior:

Figure 3.20 shows the state diagram of the ComputingComponent of the Fault

Handler (63) Pattern. The state diagram shows which states are possible and what

messages activate them. Not all of the states are needed in every system. For exam-

ple, ABS systems generally do not have partial shutdown states because the system

constraints require that an inactive system should not affect the basic functionality of

the brakes. Therefore, an emergency stop where the ABS system cuts power immedi-

ately is sufficient. These states are defined for the class ComputingComponent; when

an error occurs, the FaultHandler decides which state is appropriate and sends the

respective message to the ComputingComponent to activate the corresponding state

if needed. The FaultHandler also activates the Userlnterface to notify the system user

of the current system state. The definitions for the possible system states are as
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Figure 3.19: Structural Diagram for the Fault Handler (63) Pattern

follows [21]:

0 Normal Behavior: This state captures the system when no errors have oc-

curred and it is functioning normally.

0 Manual/External: In this state, the system is controlled by an external entity,

such as a diagnostic device.

0 Production Stop: This state is useful, for example, when a human enters a

hazardous area. The system should be able to complete its current task and

secure the environment, but it should shutdown as soon as possible.

0 Protection Stop: Ceases operation immediately, but does not turn off power.

This state is appropriate, for example, when a machine needs to be stopped, but

a device should continue to operate to avoid hazardous situations. For example,

a cooling device should remain working even in case of a system malfunction.
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Partial Shutdown: The system only offers basic functionality; for example,

medical devices may remain in a monitoring state.

Hold: No functionality is provided in this state, but safety actions are taken;

for example, a rocket self-destructs in the case of abnormal functions. There is

no outgoing transition from this state; a system can only be reactivated by a

complete restart.

o Initialize: In this state, the system initializes itself.

0 Power Off: The system might be connected to a power supply in this state,

but is not yet activated. For example, a television set can operate in a standby

mode.

Furthermore, an emergency stop can be performed by the system. This stop

state is not modeled as a separate state because this action takes the system to the

PowerOff state immediately.

Participants:

0 FaultHandler: Fault handler of the system. Contains safety measures and poli-

cies.

o ComputingComponent: Central computing component of the system.

0 Userlnterface: Class offering functionality to notify the user about errors.

0 Device: Component representative for a number of possible devices in the sys-

tom.

0 Watchdog/Examiner: Watchdog or examiner in the system.

0 Monitor: Possible monitor monitoring the Device.
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 (63) Pattern

Figure 3.20: UML state diagram of the ComputingComponent in the Fault Handler
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e FailSafeDevice: Possible backup component for the Device.

Collaborations:

The FaultHandler receives error messages and stores those messages in an error

log. Furthermore, the FaultHandler decides, depending on the safety measures

and policies, if a fail-safe state in the ComputingComponent should be entered,

or whether the user interface or recovery device should be activated.

0 Watchdog, Examiner, and/or Monitor monitor the device and report violations

to the FaultHandler.

e FailSafeDevice is activated to recover from faults.

e The Userlnterface gets activated by the FaultHandler.

Consequences:

1. Required safety states have to be implemented in the ComputingComponent.

2. Only one fault handler should exist in the system and should handle all error

messages to avoid inconsistent handling of faults [21].

3. The fault handler is one of the critical elements for system safety. Therefore,

during the development process of this component, techniques should be used

that result in a high assurance of the software component, such as formal meth-

ods and thorough testing.

4. Hardware and software redundancies exist in the system, thus meaning higher

system costs.

5. Overall safety of the system can significantly be improved by the centralized

fault handling component.
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Constraints:

0 Absence Pattern:

If system initialization fails, then the system should remain in a powered-off

state. Therefore, the system should never be in a state where the initialization

failed and the system power is on.

CK! (‘ ‘Initialization failed’ ’ && ‘ ‘System power on’ ’))

e Response Pattern:

When an error message is sent to the fault handler, it should process the er-

ror and, depending on the error classification, perform the predefined recovery

action as a result of the error. This action can range from “Do nothing” to

“Perform emergency shutdown of the system”.

Cl(‘ ‘Error reported to fault handler’ ’ —>

0(‘ ‘Start defined recovery action’ ’))

e Response Pattern:

When an error message is sent, it should be stored in an error log for system

diagnosis purposes.

Cl(‘ ‘Error reported to fault handler’ ’ —>

0(“Store error in error log”))

e Response Pattern:

If an error message is sent to the fault handler, then it should activate the

appropriate user interface warning level if required.

Cl( ‘ ‘Error reported to fault handler’ ’ —->

O(“Activate a ro riate user interface warnin level”))PPP 8
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0 Response Pattern:

If some device, such as a diagnostic device, requests the current error list, then

the error list should be sent to the device.

CK ‘ ‘Error list requested from fault handler’ ’ —>

0(‘ ‘Return list of errors in error log”))

Design Patterns:

0 Singleton Design Pattern [28]:

Assure that only one fault handler exists in the system.

0 Strategy Design Pattern [28]:

Encapsulate algorithms for the safety states and make them interchangeable.

Also Known As:

To be determined.

Known Uses:

To be determined.

Related Requirements Patterns:

0 Controller Decompose (29) Requirements Pattern:

This requirements pattern describes how the fault handler relates to other com-

ponents in a system.

0 User Interface (82) Requirements Pattern:

This pattern can be used for the user interface to signal a user the current

system state.
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3.4.6 Mask (73): Structural Pattern

Intent:

Reduce the burden on the computing component if many sensors and actuators

are present and provide an interface for components accessing the actuators and

sensors .

Motivation:

If many sensors and actuators are present in an embedded system, all messages

sent can impose a heavy burden on the system resulting in timeouts and/or unpre-

dictable behavior of the entire system [25]. This situation can be ameliorated by

designing a class that is responsible for interacting with the sensors and actuators

that serve the same function. The Mask class can coordinate functions, such as the

distribution of a new value to all actuators. The advantage is that the computing

unit is able to confirm specific actions that are handled by the mask faster.

Applicability:

The Mask (73) Pattern is applicable

0 when actuators and sensors can be clustered into packages responsible for per-

forming a common task, such as sensors and actuators responsible for controlling

the temperature of the same room.

e when a simplified interface can be useful. If the system never uses the mask,

then the complexity this pattern adds and the resources needed are superfluous.

e only for sensors and actuators. Use the Moderator (78) Pattern to provide an

interface for devices or subsystems.

Structure:

The class diagram of the Mask (73) Pattern is given in Figure 3.21. In this

class diagram, the ComputingComponent can either access the sensors and actuators
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directly or through the Mask component.
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Figure 3.21: UML class diagram of the Mask (73) Pattern

 

Behavior:

Figure 3.22 shows a sequence diagram example for the Mask (73) Pattern. A

room temperature controller queries the Mask that is controlling temperature sensors

and radiator valves in one room. Because all the radiator valves must have the same

setting, it is sufficient to take the value of one of the valves, for example, the first one.

The room temperature controller sends a message to the Mask to set a new

temperature. The Mask then sets all the values for each radiator valve, in this example

only two exist. The temperature controller has only one message to send and is ready
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earlier to handle other messages.

With this access to the radiator valves the system becomes easier to adapt. If

radiator valves are added or removed, then only the responsible Mask must be notified

about the change.

Participants:

AbstractPassiveSensor {abstract}: Defines an interface for the ConcreteSensor,

this class was taken from the Actuator-Sensor (38) Pattern.

ConcreteSensor: A sensor of the system.

AbstractActuator {abstract}: Defines an interface for the ConcreteActuator, this

class was taken from the Actuator-Sensor {38) Pattern.

ConcreteActuator: An actuator of the system.

ComputingComponent: Computing component of the system.

Mask: Provides an interface to access sensors and actuators.

Collaborations:

' The Mask class offers an interface to access multiple actuators and sensors.

' It receives the messages from the ComputingComponent, processes them and

Sends messages to the actuators and sensors affected by the messages.

' Neither the actuators and sensors nor the ComputingComponent have to know

explicitly about the presence of the Mask.

Consequences:

1. It provides a common interface for accessing actuators and sensors.
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2. This pattern helps to meet timing constraints by reducing the burden on the

computing component. Complex operations can be put in the mask so that the

computing component is unloaded from these operations earlier.

Constraints:

e None

Design Patterns:

0 Facade Design Pattern [28]:

Describes a similar idea of how to define a high-level interface for a subsystem.

Describes more implementation specific details, such as sample code.

Known Uses

To be determined.

Related Requirements Patterns:

e Moderator (78) Requirements Pattern:

Describes similar technique, but is intended to be used to decouple a subsystem.

e Actuator-Sensor (38) Requirements Pattern:

This pattern can be used for the sensors and actuators in the system.
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Figure 3.22: UML sequence diagram of the Mask (73) Pattern
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3.4.7 Moderator (78): Structural Pattern

Intent:

Provide an interface to support decoupling of complex subsystems.

Motivation:

The idea of this pattern is to provide an interface for a subsystem that prohibits

direct access to a device. Thus, the pattern enhances decoupling; if the hardware has

to be replaced by a different device, then only the moderator has to be changed. As

long as the moderator offers the same interface, all other components remain unaware

of the change. Thus, changes to a system are easier, and fewer components have to

be modified when a device is replaced.

Applicability:

The Moderator (78) Pattern is applicable

0 to decouple a component from the remaining parts of a system for easy replace-

ability and reusability.

Structure:

The class diagram of the Moderator {78) Pattern is given in Figure 3.23. Access

to the Device is only possible through the Moderator class.

 

   

controls controls

1 * * I Computing
Moderator

1 I Component
Device

o..* I

   

Figure 3.23: UML class diagram of the Moderator {78) Pattern

 

Behavior:

Figure 3.24 shows a sequence diagram example for the Moderator (78) Pattern.

In an airplane system, a radio altimeter can be easily replaced by a barometric one and
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vice versa, as long as the Moderator offers the same interface to the system accessing

the altimeter no adaption has to be made.

The ComputingComponent sends a message to the AltimeterModerator to query

the current altitude. The ComputingComponent does not know if the system is using a

barometric or radio altimeter, only the Moderator has to know how to query the sensor.

In case the altimeter is replaced, the ComputingComponent can remain untouched,

only the Moderator has to be notified, if it was designed to support different types of

hardware, or replaced.
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Figure 3.24: UML sequence diagram of the Moderator {78) Pattern

 

Participants:

0 Device: Device controlled by the Moderator.

s ComputingComponent: Central computing component of the system.

0 Moderator: Provides an interface to access the Device.
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Collaborations:

e The Moderator receives messages from the ComputingComponent (or other de-

vices), processes those messages and sends messages to the subsystem (Device).

Consequences:

1. The only way to access a subsystem is through the moderator’s interface.

2. Complex operations addressing the subsystem can be put in the moderator to

decrease the burden on the computing component and make it possible to meet

tighter timing constraints. An example for such an operation would be querying

more than one sensor and averaging the sensor values.

Constraints:

e " Absence Pattern:

No system other than the moderator should ever access the device (or subsys-

tem) directly.

EM! (‘ ‘Access to device’ ’ && ‘ ‘Access not by moderator’ ’))

Design Patterns:

0 Mediator Design Pattern [28]:

Describes a similar idea of how to define an object that is responsible for con-

trolling and coordinating the interactions of a group of objects. Gives more

implementation specific details, such as sample code.

Also Known As:

To be determined.

80



Known Uses

To be determined.

Related Requirements Patterns:

e Mask (73) Requirements Pattern:

Describes a similar technique for a collection of actuators and sensors.
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3.4.8 User Interface (82): Strcutural Pattern

Intent:

Specify a user interface that is extensible and reusable.

Motivation:

A user interface is an important part of an embedded system because it is re-

sponsible for most interactions with the user of a system. The user interface receives

inputs and displays information about the status of a system. Typically, user input to

an embedded system do not have tight timing constraints and the sensors capturing

this input are termed controls, such as setting the temperature for an air conditioning

system. Similarly, actuators of the user interface that are used to convey the current

state of the system are named indicators.

One important task of the user interface is fault signaling. Various indicators can

be used to show the user the current state of the system. The errors should be classi-

fied in the fault handler so that minor and severe errors can be distinguished [83]. The

reactions defined in the user interface should be classified accordingly into warning

levels. The fault handler activates warning levels depending on the level of severity

for an error. These levels should be sorted in ascending order, depending on the

importance of the user notification.

Using this pattern for the user interface has the advantage that a user interface

of an embedded system can be easily reused and extended. The same user interface

can be used for another system as long as the errors may be classified in a similar

manner. The fault handler then activates, depending on the error class, the appro-

priate warning level. The indicators and controls inherit their interface from the

Actuator-Sensor (38) Pattern. The fault handler is not necessary for the function of

the user interface, but most embedded systems do have a fault handler. Therefore,

the interaction between fault handler and user interface is described in detail in this
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pattern.

The second important task is receiving user inputs. Usually user inputs through

the user interface are rare or not possible. For example, a driver cannot set the

operational state of an anti-lock brake system. Therefore, having the computing

component continuously query the controls would be inefficient. In order to reduce

the burden on the computing component, a mechanism similar to the Observer Design

Pattern [28] is used. The user interface is responsible for querying the controls; only

if a change is detected, then does the user interface send an update message to

the computing component, thus prompting the computing component to update its

controls values.

Figure 3.25 shows the use-case diagram for the User Interface (82) Pattern. The

diagram describes the user interactions with a user interface of a system.
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Figure 3.25: UML use-case diagram of the User Interface (82) Pattern

Use-Case: System running

Actors: None

Description: This use-case represents the system when it is running.

Includes: Interact with user    
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Use-Case: Interact with user

Actors: None

Description: Read user settings and activate indicators.

Includes: Read input from controls, Activate indicators

Use-Case: Read input from controls

Actors: User

Description: The system reads settings made by the user.

Includes: -

Use-Case: Activate indicators

Actors: User

Description: The system shows the current operational state to the user.

Includes: -

Applicability:

The User Interface (82) Pattern is applicable

0 in any embedded system that needs to interact with a user.

 

Do not use the User Interface (82) Pattern when

0 controls and indicators have tight timing constraints; in this case, use the

Actuator-Sensor (38) Pattern to connect controls and indicators, as actuators

and sensors respectively, directly to the computing component.

Structure:

The class diagram of the User Interface {82) Pattern can be seen in Figure

3.26. The controls and indicators inherit from the AbstractActuator and AbstractPas-

SiveSensor classes from the Actuator-Sensor (38) Pattern. Therefore, they have the

same interface as a sensor or an actuator, respectively.
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 Figure 3.26: UML class diagram of the User Interface (82) Pattern
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Behavior:

Figure 3.27 shows an example sequence diagram for the behavior of the User-

lnterface in case of a minor and a severe error. Above the bold horizontal line, the

Fa ultHandler activates the warning level for a minor error. The Userlnterface activates

lndicatorl for a short time. Below the bold line, the FaultHandler activates the warn-

ing level for a severe error. In this case, the Userlnterface activates both indicators

continuously.
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Figure 3.27: UML sequence diagram example of the User Interface (82) Pattern

 

Participants:

0 ComputingComponent: Represents the central computing component of the sys-

tem.

0 Userlnterface: Class representing the user interface of a system.

0 FaultHandler: Responsible for the fault handling in the system.

0 Abstractlndicator {abstract}: Inherits from abstract class AbstractActuator and

provides an interface for all indicators.
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AbstractControl {abstract}: Inherits from abstract class AbstractPassiveSensor

and provides an interface for all controls.

AbstractActuator {abstract}: Defines an interface for the Abstractlndicator class,

taken from the Actuator-Sensor (.38) Pattern.

AbstractPassiveSensor {abstract}: Defines an interface for the AbstractControl

class, taken from the Actuator-Sensor (38) Pattern.

AbstractBooleanControl {abstract}: Defines boolean controls.

AbstractlntegerControl {abstract}: Defines integer controls.

AbstractReaIControl {abstract}: Defines real controls.

AbstractComplexControl {abstract}: Complex controls have the same basic func-

tionality as the Control class, but additional, more elaborate methods and at-

tributes, need to be specified.

AbstractBooleanlndicator {abstract}: Defines boolean indicators.

Abstractlntegerlndicator {abstract}: Defines integer indicators.

AbstractReallndicator {abstract}: Defines real indicators.

AbstractComplexlndicator {abstract}: Complex indicators have the same basic

functionality as the Indicator class, but additional, more elaborate methods and

attributes, need to be specified.

ConcreteBooleanControll, ConcretelntegerControll, ConcreteRealControll, Con-

creteComplexControll, ConcreteBooleanlndicatorl, Concretelntegerlndicatorl,

ConcreteReallndicatorl, ConcreteReallndicatorl: Examples of concrete controls

and indicators that can be instantiated.
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Collaborations:

e The FaultHandler sends a message to the Userlnterface to activate a specific

warning level, the Userlnterface then activates all indicators appropriate for the

desired warning level.

0 The Userlnterface queries the controls. If a change is detected, then the Com—

putingComponent is notified to update its values of the Userlnterface.

e Indicators can either be activated by setting specific warning levels or by sending

an activation message to the Userlnterface for a specific indicator.

Consequences:

1. A fault handler should be present to drive the user interface.

2. A method to notify the user interface of value changes must be present in the

computing component.

3. All possible errors should be classified according to different levels of severity,

where these levels may or may not be directly mirrored in the user interface.

Constraints:

0 Response Pattern:

When a message is sent to activate a specific warning level, then eventually all

the indicators corresponding to this level will be activated.

CK ‘ ‘Warning level sent to user interface’ ’ —>

O(“Appropriate indicators for warning level activated”))
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e Response Pattern:

When a control value is changed, the variable that the computing component

monitors to detect changes has to be updated.

Cl( ‘ ‘Control value change’ ’ —>

0(ComputingComponent.“Control value change notification”))

0 Response Pattern:

When the computing component needs to update the control values, it will

eventually do so or power off.

[3(ComputingComponent. ‘ ‘Control value change notification’ ’ ——>

0(ComputingComponent. ‘ ‘Control values updated’ ’ I I

“System power off”))

0 Response Pattern:

If the computing component is notified of a change in the user interface control

values, then this notification is only reset when an update through the comput-

ing component takes place, or the system stops before the value can be updated,

such as a system shutdown. In other words, the computing component does not

miss an update because the value was reset before it could perform the update.

[3(ComputingComponent. ‘ ‘Control value change notification’ ’ —+

(ComputingComponent.“Control value change notification” VV

“Update through ComputingComponent”))
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Design Patterns:

0 Observer Design Pattern [28]:

This pattern describes a technique where observers can register with a subject

to get notified about changes in the state of the subject. This mechanism can be

used to update the computing component when the state of the user interface

changes.

Also Known As:

To be determined.

Known Uses

To be determined.

Related Requirements Patterns:

0 Fault Handler (63) Requirements Pattern:

A fault handler is an essential part in the User Interface (82) Pattern.

e Actuator-Sensor (38) Requirements Pattern:

Indicators and controls in this pattern inherit the interface from the Actuator-

Sensor (5’8) Pattern.
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3.4.9 Communication (91): Behavioral Pattern

Intent:

Arrange communication between components.

Motivation:

This pattern describes how a communication channel between entities should

behave. A component can be a class, a sensor, an actuator, a device, or a differ-

ent system. In embedded systems, it is important that communication is protected

against errors (“Mistake made at either design or build time.” [22]) and failures (“Oc-

curs because something that once worked is now broken.” [22]). This pattern describes

different techniques to increase reliability and safety of a system in case of errors or

failures of communication channels.

As a basic mechanism to ensure that a packet (data fragment) arrives correctly

at the receiver, handshake mechanisms are commonly used in computer systems I33].

The receiver sends an ACK-message (acknowledged) to the sender when a data packet

was. received correctly, or the receiver sends a NACK-message (not acknowledged)

when either the packet is falsified or the receiver is busy and cannot handle data.

Thus, the sender knows that if it receives an NACK-message or no message at all,

then the data could not be processed, and it eventually re-transmits the packet,

waiting for the next reply of the receiver. To reduce traffic, the sender can also send

a Small ping message to the receiver, asking the current status, and will only send

data if the receiver acknowledges the ping. The handshake mechanism can enable the

SYStem to continue functioning when transient failures occur, but not in case of errors.

Some techniques that go beyond this basic handshake mechanism are described in this

Pattern.
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Applicability:

The Communication (91) Pattern is applicable

e to increase system reliability and safety in presence of communication failures

and errors.

Structure:

The structure of the Communication (91) Pattern can be seen in Figure 3.28.

A Sender sends a message addressing the Receiver using the CommunicationChanneI.

Sender and Receiver can be a sensor/actuator, device, system, etc. The communication

channel can use several strategies to increase reliability. Those strategies are further

explained in the Behavior field.

Behavior:

For embedded systems it is important to detect and react to a complete loss

of the ability to communicate with other entities. Components have to detect these

situations and enter fail-safe states autonomously [21]. An example sequence diagram

of this behavior can be found in Figure 3.29. In the first part of the diagram (above

the first horizontal line), the ComputerBus works correctly, in the second part the

ComputerBus fails and messages can no longer be sent or received by the components.

The Computer does not receive messages from the Engine nor the Brake, and the

Computer cannot send messages to activate fail-safe states. Therefore, it is important

that components enter fail-safe states autonomously when communication with the

central computing component of the system fails. In this example, the response

consists of turning off the engine and performing an emergency brake (lower part of

the diagram).

To be able to continue to function in case of communication failures, different

techniques can be used. More than one communication channel can be used to in-

crease reliability, either in parallel or as backup channels. When more than one
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Channel is present and used in parallel, the result of the channels can be compared to

detect discrepancies. Usually, an odd number of communication channels is used and

a “majority-wins” policy is applied; an example with three channels is shown in Fig-

ure 3.30. This redundancy can be homogenous or diverse. When using homogenous

redundancy, all communication channels have the same hardware and software, while

with diverse redundancy the communication channels are implemented using different

hardware and software for each channel. Therefore, diverse redundancy cannot only

handle failures, but also errors that would take out all the identically implemented

communication channels.

Participants:

e Sender: Sends data using the communication channel.

0 CommunicationChanneI: Responsible for transporting data from Sender to the

Receiver.

e Receiver: Receives data from the Sender.

Collaborations:

s The sender sends a message to the receiver using the communication channel.

If communication fails, then safety actions should be initiated.

e The communication channel is responsible for the transport of the message,

several techniques can be used to assure that the message can be delivered to

the sender and is not falsified.

e The receiver is the component addressed by the message. If communication

fails, then the receiver should initiate corrective actions.
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Consequences:

l. The system’s communication channels become protected against failures and

even errors when using diverse redundancy.

2. The level or protection increases with the number of communication channels

used and their diversity. But in general, system cost also increases with the

number of communication channels and their diversity.

Constraints:

e None.

Design Patterns:

0 Single Channel Protected Design Pattern [21, 22]:

The Single-Channel-Protected—Design Pattern can be implemented using a bus

system like the CAN Bus [66]. The key idea of this pattern is to use life—ticks to

uncover a failure of the only communication channel present. All components

then enter their fail-safe states autonomously.

e Homogenous Redundancy Design Pattern [21], Triple Modular Re-

dundancy Design Pattern [22]:

The Homogenous Redundancy Pattern uses more than one identically imple-

mented channel. Because of the identical implementation of all channels, an

error affects each channel in the same way. Therefore, the pattern can only

detect failures and not errors. Care should be taken if the identical channels

are also redundant, so that single-point failures cannot cause all channels to

fail simultaneously. The Triple Modular Redundancy Pattern [22] is a variation

of the Homogenous Redundancy Pattern where three identical communication

channels are used in parallel.
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e Diverse Redundancy Design Pattern [21], Heterogeneous Redun-

dancy Design Pattern [22]:

The Diverse Redundancy (or Heterogenous Redundancy) Pattern uses several,

differently-implemented channels. Thus, diverse redundance can detect errors

additionally to failures. Hence, using diverse redundancy leads to higher system

safety, but also higher development and hardware cost.

Also Known As:

To be determined.

Known Uses

To be determined.

Related Requirements Patterns:

0 Actuation-Monitor (98) Requirements Pattern:

Can be used to monitor actuation. Even when no error occurs in the information

transmission, a device failure can lead to unexpected system behavior.
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Figure 3.28: Structure of the Communication (91) Pattern

96

 

  
 

 
 

 
 

 

 

 
 
 

  
 

 
 
 

 

 

  
 

 
 
 

 

D
e
v
i
c
e

S
y
s
t
e
m

e
e
.

 
 

 
 

 
 

 



   

           

 

 

 

 

 

 

 

 

 

 

 
 

 

 

9.9mm Comm Brake Engine

I I ' '
, u BrakeOkO I I

I I‘ I I
1: Brake0k() 1 1 1

: 0m I I I
l :1 I I

l I OH) I I
I L $5 I

I L EngineOk() I

L EngineOk() I I I

I 0k() J I I

I 'I Ok() 1
I I 1 J

l I l '1

I L BrakeOko I I

Bus fails I IV ” I

. .. Ewen) .
. 1 1‘ 1 I

1 1 ' i

The computer does not receive I 1 1 ‘

l'nessages and can no longer respond. I I > ShutdownESO

The brake and engine detect the I I I I;> ShutdownESO

communication failure and enter . . ,

their respective fail-safe states. I I I I

 

Figure 3.29: UML sequence diagram describing behavior in case of a bus failure [21]
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Figure 3.30: UML sequence diagram for multi-channel voting
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3.4.10 Actuation-Monitor (98): Structural Pattern

Intent:

Increase safety by monitoring actuator behavior for errors.

Motivation:

The basic concept is that two different components are used, one for monitoring

and one for actuation. The actuation component (or actuator) is responsible for

performing an actuation, while the monitoring component (or monitor) keeps track

of the actuation and identifies failures so that appropriate fault-handling mechanisms

can be executed.

The monitor can be also easily added to an existing system. The actuator is

replaced by a monitor that will forward all commands to the actuator. If discrepancies

are detected, then an error is sent to the fault handler. No major changes to the

System structure have to be made.

Figure 3.31 contains the use-case diagram for the Actuation-Monitor ('98) Pat-
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Figure 3.31: UML use-case diagram of the Actuation-Monitor (.98) Pattern
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Use-Case: System running

Actors: None

Description: This use-case represents the system when it is functioning.

 

Includes: Set output values

Use-Case: Set output values

Actors: Actuator

Description: The system performs an actuation.

 

 
Includes: Monitor actuation

Use-Case: Monitor actuation

Actors: Sensor

Description: The actuation is observed by the monitor.

 

Includes: -

Use-Case: Diagnose faults

Actors: Technician

Description: Special case of the use-case Handle faults. The system offers extended diagnostic

functions instead of handling faults to identify the source of the fault(s).

Includes: -

‘

 

Use-Case: Detect faults

Actors: None

Description: The system offers fault detection functionality.

Includes: Monitor actuation

‘

 

Use-Case: Handle faults

Actors: None

Description: Initiate corrective actions if needed.

Includes: Detect faults   
Structure:

The structure of the Actuation-Monitor (98) Pattern can be seen in Figure 3.32,

the ComputingComponent sends the desired result to the Monitor that forwards it to

the MonitoredActuator and reports occurring discrepancies to the FaultHandler.
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Figure 3.32: UML class diagram of the Actuation-Monitor (98) Pattern

Behavior:

An example sequence diagram of the Actuation-Monitor (98) Pattern can be

Seen in Figure 3.33. The ComputingComponent sends the desired result to the Monitor

that forwards it to the Actuator. The Monitor component compares the result of the

actuation with the desired result. If discrepancies are detected, then the Monitor

performs predefined actions, such as sending an error message to the FaultHandler.

Participants:

0 Monitor: Represents the monitor monitoring the MonitoredActuator.

o MonitoredActuator: Represents the monitored actuator.

o ComputingComponent: Central computing component of the system.
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 Figure 3.33: UML sequence diagram of the Actuation-Monitor (.98) Pattern
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e FaultHandler: Central fault handler of the system.

Collaborations:

o MonitoredActuator is performing an actuation.

e The Monitor is observing the actuation.

e In case of uncovered discrepancies an error message will be sent to the Fault-

Handler.

Consequences:

1. Monitor and actuator cannot rely on the same sensors because a defect actua-

tion due to a misaligned control sensor of the actuator would not be detected.

Therefore, at least two distinct sensors have to be present to monitor the same

condition.

2. The system cost increases because of redundant hardware needed for the mon-

itor.

Constraints:

0 Response Pattern:

When a discrepancy is uncovered, then the fault handler should eventually be

notified.

CK (Monitor. ‘ ‘Desiredi value’ ’ != Actuator. ‘ ‘Value’ ’) ->

0(‘ ‘Report error to fault handler’ ’)
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Applicability:

The Actuation-Monitor (98) Pattern is applicable

0 for monitoring the actuation of a device and uncover misbehavior.

Design Patterns:

0 Monitor-Actuator Design Pattern [22]:

Described more implementation specific details, such as implementation strate-

gies.

o Sanity Check Design Pattern [22]:

Light-weight version of the Monitor-Actuator Pattern [22].

Known Uses

To be determined.

Related Requirements Patterns:

0 Actuator-Sensor- (38) Requirements Pattern:

Use this pattern to specify sensors and actuators.

0 Fault Handler (63) Requirements Pattern:

Stores and handles error messages by the monitor.
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Chapter 4

Requirements Patterns-Based

Modeling and Analysis

This chapter overviews the application of requirements patterns to the require-

ments analysis of two embedded systems. Initially, the application of requirements

patterns and the verification of corresponding properties for an Anti-lock Brake (ABS)

system are shown.

4. 1 Formalized UML

Previously, a general framework for formalizing a subset of UML diagrams in

terms of different formal languages based on a mapping between metamodels describ-

ing UML and a formal language [56] was developed. A metamodel is a class diagram

that describes the constructs of a modeling language and the relationships between

the constructs. This framework enables the construction of a consistent set of rules

for transforming UML models into specifications in the formal language. The re-

sulting specifications derived from UML diagrams enable either execution through

simulation or analysis through model checking, using existing tools. For the purposes

of this thesis, the target language is Promela for use with the Spin model checker [41].

104



Furthermore, a suite of tools [14] was previously developed to support a number

of tasks necessary to analyze UML diagrams, including the following: MINERVA [14]

supports graphical construction of syntactically correct UML diagrams; automated

consistency checking of the diagrams; Hydra [56] supports automatic generation of

formal specifications for the diagrams; and MINERVA also supports visualization of

consistency checking results, simulation traces, and paths of execution that lead to

errors within the UML diagrams, all of which are integrated with the SPIN model

checker [40].

4.2 General Modeling and Analysis Process

We have developed a systematic process, supported by a previously developed

suite of tools [14], for modeling and analyzing embedded systems with UML based on

our requirements patterns [49]. Previously, MINERVA [14] was developed to support

the graphical construction of UML diagrams by Campbell et al.. Extensions were

made to support UML models containing timing information [47]. Hydra was de-

veloped by McUmber et al. [14, 56] to support the automatic generation of Promela

specifications (based on the UML formalization rules [56]) that enable the UML dia—

grams to be automatically analyzed for consistency and adherence to specific proper-

ties. Figure 4.1 overviews the approach, illustrating how requirements patterns can

drive the iterative modeling and analysis process [48] supported by MINERVA and

Hydra (here instantiated with the model checker Spin [41]). We use the formalization

framework to model systems at a high-level of abstraction as a means of prototyping

and analyzing the system in different ways. The user begins by selecting appropriate

requirements patterns [49] based on a prose description of the requirements of the

system. Using the structural and behavioral diagrams in the requirements patterns

as a guide, the user constructs UML class and state diagrams in MINERVA’S graphical
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editors (Figure 4.1, part A).

Hydra performs consistency checks (Figure 4.1, part B), and MINERVA visualizes

structural consistency-checking results (dash-dotted arc in Figure 4.1, part F). Hydra

then generates formal specifications from textual representations of UML diagrams

(Figure 4.1, part C); these formal specifications can be used to validate the behav-

ior modeled by the UML diagrams via simulation using Spin (Figure 4.1, part D).

(For discussion of requirements patterns, graphical modeling, consistency checking,

specification generation, and visualization of analysis results see [14, 48] for details.)
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Figure 4.1: Overview of our approach

In addition, the user may instantiate (as LTL claims) requirements-based prop-

erties from the Constraints section [46] of those requirements patterns used to guide

the modeling of the system (Figure 4.1, part E). These claims, defined in terms of

attributes and states of the UML model and based on the specification patterns by

DWyer et al. [23], can then be checked against the UML diagrams (Figure 4.1, part D)

Via model checking the corresponding automatically-generated Promela specifications

using Spin. For ease in modeling and understanding, the developer may abstract por-
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tions of the system not relevant to the property being checked [46, 48], including cre—

ating equivalence classes for monitored values and system/environmental conditions,

and modeling different timing granularities. The developer can also run multiple ver-

ifications of a validation question, each for a subset of the possible scenarios (possible

values for a verification run derived from the Environment class) to conserve state

space. Finally, MINERVA visualizes behavior simulation and counterexample traces

(solid arc, Figure 4.1, part F) via state diagram animation, generation/animation

of collaboration diagrams (which depict the paths of communication, or links, be-

tween objects that exchange messages), and generation of sequence diagrams, thus

facilitating the debugging and refinement of the original UML diagrams.

4.3 Model Checking an Untimed Anti-lock Brake

System

This section describes how we used the requirements patterns for the previously

developed model checking approach and the ABS system, using the tools Hydra and

MINERVA.

4.3.1 Simulation and Model Checking

We use an Anti-lock Brake System (ABS) [10] as a working example to demon-

strate how the requirements patterns can be used to construct UML models for a high

assurance system, where the models can be simulated and checked for adherence to

requirements constraints. ABS systems were initially developed for use in aircrafts,

but they can be found in almost every new car today. The ABS system prevents wheel

lock-ups in hard braking situations that would lead to a loss of steering control. The

system works by momentarily releasing brake fluid pressure from a brake caliper when

the deceleration rate of a wheel indicates a lock-up. Computing the deceleration rate
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of the wheels and opening a valve in the brake caliper to release pressure if required

is the task of the ABS system. This analysis specifically focusses on how to model

ABS systems that can then be analyzed for safety and fault tolerance properties.

0 Fault Tolerance: “The built-in capability of a system to provide correct exe-

cution in the presence of a limited number of hardware and software faults.” [73]

0 Safety: Minimize the risk to persons or equipment [21].

4.3.2 Process for Using Requirements Patterns

The following is the process for using the requirements patterns that enables

simulation and model checking of the resulting system models in an untimed context

that is used for the ABS system.

1. Use the requirements patterns to construct a basic foundation for the system

and refine the UML high-level structural and behavioral models of the system.

2. Use Hydra [14, 56] to generate a Promela model of the system from the UML

diagrams.

3. Using MINERVA’S [14] visualization utilities to display simulator output within

the context of the UML diagrams, simulate the model from the first step for

validation purposes, and then refine the system model if errors are discovered.

4. Specify non-functional properties for the system by refining the specification

patterns in the Constraints field of requirements patterns.

5. Determine which parts of the system are relevant to a given property to be

checked, and introduce abstract representations for the remaining parts of the

system where possible. For example, a composite state whose behavior is not
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directly being checked may be abstracted into a simple state that preserves the

incoming and outgoing transitions.

6. Generate scenarios of the system that cover system stimuli relevant to the fo-

cused property and model them in the Environment class.

7. Use a model checker (e.g., SPIN [41]) to determine if the properties are satisfied.

If errors are detected, then use MINERVA’S [14] visualization utilities to display

the counterexample in terms of the UML diagrams, and then refine the system

model.

The result is an abstract system model that has been verified against the prop-

erties. This model can be used as a basis for the implementation of the system. Due

to the state explosion problem inherent to model checking [15] (the voluminous state

space usually needed to check for a property satisfaction may exhaust the still lim-

ited memory and computing power of today’s computers), the abstraction and model

checking steps (Steps 5 and 7) may need to be repeated several times in order to cover

the entire model. Especially when many scenarios (Step 6) are used, it is usually not

possible to check the system against all scenarios at once. Therefore, the verification

has to be repeated with a smaller number of scenarios until all are checked. The

remainder of this chapter discusses Steps 1 and 4—7 of the process as applied to the

ABS example.

4.3.3 Construction of UML Models

For the ABS example, we applied the Fault Handler Requirements Pattern to

construct a basic foundation for the system model. In particular, the state diagram

Shown in Figure 3.20 influences the construction of the state diagram for the Com-

DutingComponent of the ABS (see Figure 4.4). In particular, the state diagram for

109



the ComputingComponent of the ABS contains states analogous to Normal Behavior,

Power Ofif, Reset, and Emergency Stop.
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Figure 4.2: Abstracted UML class diagram of the model

4.3.4 FaultHandler Requirements Pattern Specifications

Below are the generic specifications, given in LTL, that were extracted from the

Constraints field of the Fault Handler (63) Requirements Pattern.

All claims in the Fault Handler Requirements Pattern correspond to the Response

Pattern by Dwyer et al. [23].

1. Absence Pattern:

If system initialization fails, then the system should remain in a powered-off

state. Therefore, the system should never be in a state where the initialization

failed and the system power is on.
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CK! (‘ ‘Initialization failed’ ’ && ‘ ‘System power on’ ’))

. Response Pattern:

When an error message is sent to the fault handler, it should process the er-

ror and, depending on the error classification, perform the predefined recovery

action as a result of the error. This action can range from “Do nothing” to

“Perform emergency shutdown of the system”.

Cl(‘ ‘Error reported to fault handler’ ’ —>

O(“Start defined recovery action”))

. Response Pattern:

When an error message is sent, it should be stored in an error log for system

diagnosis purposes.

Cl(‘ ‘Error reported to fault handler’ ’ ——>

O(“Store error in error log”))

. Response Pattern:

If an error message is sent to the fault handler, then it should activate the

appropriate user interface warning level if required.

CK ‘ ‘Error reported to fault handler’ ’ —->

0(“Activate appropriate user interface warning 1evel”))

. Response Pattern:

If some device, such as a diagnostic device, requests the current error list, then

the error list should be sent to the device.

E](‘ ‘Error list requested from fault handler’ ’ —>

O(“Return list of errors in error 10g”))
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These five general claims in LTL describe constraints on the behavior of the fault

handler. Parts of the LTL claims are given in natural language because they depend

on the actual system in which the fault handler is implemented. Before the claims

can be verified, such portions must be replaced by logical statements suitable for the

system. These replacements are made during Step 4 (the refinement step) of the

process for using requirements patterns. Two examples are given in the subsequent

“Verification Results” subsection.

4.3.5 System Abstraction

Abstraction removes parts of the system model irrelevant to properties of interest

in order to decrease the state space required to perform model checking. As part

of Step 5 of the process for using requirements patterns, the system is analyzed to

determine the necessary parts to perform model checking of the specific fault tolerance

or safety properties refined in Step 4.

For the ABS example, the wheel speed sensors and the output valve actuators

for each wheel are removed because they increase the model’s complexity without

being essential to check the specific fault tolerance and safety properties. Likewise

the Watchdog and Userlnterface elements are excluded. The resulting class diagram

Of the system can be seen in Figure 4.2 (the notch in each class indicates that there

is a corresponding state diagram). The .SYSTEMCLASS- is the class that is always

by default executed first. It instantiates all other classes and then activates the

E nvironment component.

The ComputingComponent processes the inputs and produces the desired outputs.

The FaultHandler class is the central fault handler of the system. BrakeSensorl and

B rakeSensor2 are sensors that read input from the brake pedal. There are two sensors

for this task because one is a backup if the first one fails; both are the only sensors

needed for the verification of our properties of interest. Except for the Computing-
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Component, all other components are modeled very simply: they each consist of only

one state. For each possible event that can be sent to these classes, a transition that

performs the corresponding action handles the event. For example, the brake sensors

send the brake value to the ComputingComponent in response to a “GetBrake Value() ”

event. Figure 4.3 and Figure 4.4, respectively, show the state diagrams (after abstrac-

tion) for the FaultHandler and the ComputingComponent of the ABS system, the main

objects of interest for the analysis discussed in this paper.

We simplified the ComputingComponent state diagram by first removing the ini-

tialization functionality details and by also removing the element that actually detects

skidding and opens the outlet valves for each wheel if necessary (recall that the wheel

speed sensors and output valve actuators have been removed from the class diagram).

For abstraction purposes, the original initialization composite state was replaced by

the state Initialize with a “dummy” test that always sends an 0K0 message. The

ComputeUsingBrakeSensorl and ComputeUsingBrakeSensor2 states behave similarly;

they reduce the speed value in every computation cycle by 300 which corresponds to

three miles per hour, simulating a full brake of the car. (For brevity, the state entry

actions corresponding to the dummy test and speed reduction are not shown in the

diagram.)

[1 / ‘_srsrm4cuss_. ready

 

Idle 

Storenrror(8rror)[Errors-x1 /

StartRocovoryActionX()

 

Figure 4.3: Abstracted UML state diagram for the FaultHandler

Subsequently, model checking is performed using the SPIN model checker [41].
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Figure 4.4: Abstracted UML state diagram for the ComputingComponent
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The abstracted state diagrams still enable us to test the system’s functionality as

long as everything with which the claims are concerned can be found in the system.

4.3.6 Scenario Definition

Crucial for the analysis process is to cover all the states of the model that are

relevant to the specific property. Therefore, different scenarios are used in our model

checking approach; each scenario exercises a different portion of the state diagrams.

To determine the scenarios needed, all possible input conditions have to be analyzed

and a combination of each of these possible values has to be checked. In our approach,

we use the Environment class to define different scenarios. Scenarios are derived form

the equivalence classes presented in Figure 4.5.

 

o - k-
( BrakeSensorl | BrakeSensor2 ) Operational Status = (non wor mg)

i
1 (working)

(4.1)

Each of the two brake sensors in the system can report its operational status as working

or non-working. We are exclusively interested in the status of the sensors (BrakeSensorl

and BrakeSensor2).

Current Car Speed 2' {[0; 160] (4.2)

Legal values for the SpeedSensor are 0 to 160 MPH. As an abstraction, we selected

two representative values, 20 and 35 miles per hour, to have a speed values above and

beyond the activation threshold of the Anti-lock Brake system.   
Figure 4.5: Equivalence classes for system conditions

Subsequently, in the ABS example there are two steps in an execution path where

alternate values may be selected at each step to generate a scenario; the first step sets

the operational status of the brake sensors, while the second step sets the car speed.

In the first step, four choices are possible:

A1: Both brake sensors are working.

A2: Brake sensor 1 is not working.
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A3: Brake sensor 2 is not working.

A4: Brake sensor 1 and 2 are not working.

In the second step, two choices are possible:

B1: Set car speed to 35 miles per hour.

B2: Set car speed to 20 miles per hour. (Therefore the ABS system is not engaged

because of the activation threshold of 24 miles per hour [10].)

Thus, the Environment class determines eight different scenarios in total for the sys-

tem. When the properties can be successfully verified against each of these scenarios,

we consider the system to be verified against the properties. Please refer to Figure 4.6

for an example state diagram of the Environment class. This state diagram shows the

different scenarios modeled for the ABS system.

SPIN supports non—determinism [41]. We are using this feature to thoroughly

simulate and verify our models by covering all possible scenarios depicted in the Envi-

ronment state diagram shown in Figure 4.6. During simulation, choices are made non-

deterministically, and during the state space exploration (model checking), all possible

choices are explored. The Promela code showing this non-deterministic selection coor-

dinated by the -SYSTEMCLASS- can be seen in Figure 4.7. If for an if-condition more

than one possible choice exists, then SPIN picks one non-deterministically. Clearly,

the if-conditions in Figure 4.7 all have the exact same condition (left of the arrow),

so that non-deterministically one action (right of the arrow) is chosen for Step A and

one for Step B.

4.3.7 Verification Results

The following fault tolerance and safety claims were both made by instantiating

Specification (1) from the Fault Handler Requirements Pattern for the ABS example.
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Figure 4.6: UML state diagram of the environment class

 
 
 
 
 

[
I

/

‘
_
8
Y
S
T
E
N
C
L
A
8
8
_
.
r
o
a
d
y

S
o
t
h
l

[
I

/

‘
B
r
o
k
e
S
o
n
a
o
r
l
.
S
o
t
a
r
a
k
o
I
O
p
o
r
a
t
i
o
n
S
t
a
t
e
(
1
)
I

‘
B
r
a
k
o
S
o
n
a
o
r
z
.
S
e
t
n
r
a
k
o
z
o
p
o
r
a
t
i
o
n
S
t
a
t
o
(
1
)
 

s
u
m

[
1

/

‘
B
r
a
k
e
S
o
n
o
o
r
l
.
S
o
t
B
r
a
k
e
I
O
p
o
r
a
t
i
o
n
S
t
a
t
o
(
1
)
I

‘
B
r
a
k
o
S
o
n
a
o
r
z
.
s
o
t
n
r
a
k
o
2
0
p
o
r
a
t
i
o
n
8
t
a
t
o
(
0
)
 

S
a
m

[
1

/

“
B
r
a
k
e
S
Q
n
o
o
r
l
.
S
o
t
B
r
a
k
Q
I
O
p
e
r
a
t
i
o
n
S
t
a
t
e
(
0
)
I

‘
B
r
a
k
o
S
o
n
a
o
r
Z
.
S
o
t
a
r
a
k
O
Z
O
p
o
r
a
t
i
o
n
S
t
a
t
o
(
1
)
 

  
 

8
0
t
A
4

[
I

/

‘
B
r
a
k
o
S
o
n
o
o
r
l
.
S
o
t
a
r
a
k
Q
I
O
p
e
r
a
t
i
o
n
S
t
a
t
o
(
0
)
I

A
B
r
a
k
e
S
o
n
a
o
r
2
.
8
0
t
B
r
a
k
0
2

o
r
a
t
i
o
n
S
t
a
t
e

0
J
o
h
u
k

 

S
e
t
S
t
o
p
A

  

[
l

/

S
o
t
a
l

[
J

/
‘
_
s
r
s
m
c
m
s
s
_

.
r
e
a
d
y

“
C
o
m
p
u
t
i
n
g
C
o
m
p
o
n
e
n
t
.
S
Q
t
C
u
r
r
e
n
t
S
p
o
e
d
i
3
5
0
0
)

S
e
t
S
t
e
p
B

 

 
 
 

I
]
,
/

C
o
m
p
u
t
i
n
g
C
o
m
p
o
n
e
n
t
.

P
o
w
e
r
O
n

 
e
a
t
e
z

I
]

/

‘
C
a
m
p
u
t
i
n
g
C
a
n
p
o
n
o
n
t
.
S
o
t
C
u
r
r
o
n
t
S
p
o
e
d
(
2
0
0
0
)



 

/. State SetStepA ‘/

atomic{skip;

SetStepA: printf("in state -SYSTEMCLASS-.SetStepA\n");}

SetStepA-G:

if

:: atomic{_SYSTEMCLASS_-q?ready -> Environment_q!SetA1; goto SetStepB; skip;}

:: atomic{_SYSTEMCLASS__q?ready -> Environment_qISetA2; goto SetStepB; skip;}

:: atomic{-SYSTEMCLASS-_q?ready -> Environment_q!SetA3; goto SetStepB; skip;}

:: atomic{-SYSTEMCLASS__q?ready -> Environment_q!$etA4; goto SetStepB; skip;}

f1;

:
o
o
c
q
c
a
m
a
m
u
.
.
.

v
a
r
-
a
i
—

M
H
C

/. State SetStepB #/

atomic{skip;

SetStepB: printf("in state _SYSTEMCLASS-.SetStepB\n");}

SetStepB_G:

if

': atomic{_SYSTEHCLASS_-q?ready -> Environment_q!SetBl; goto End; skip;}

': atomic{_SYSTEMCLASS__q?ready -> Environment,q!SetB2; goto End; skip;}H
H
H
M
H
I
—
l

m
u
m
m
a
u

  
19 f1;

20 /* State End ./

21 atomic{skip;

22 End: printf("in state _SYSTEMCLASS_.End\n");}

 

Figure 4.7: Promela code of the non-deterministic scenario selection

These claims were verified with SPIN against the Promela specifications generated

from the abstracted UML diagrams for the ABS example. We used the exhaustive

search method to verify our claims, which generates the entire state space and checks

it for violations.

0 Response Pattern:

In case of failure of the first brake sensor, the second one should be activated.

This property describes a fault tolerance behavior of the system.

Cl(sent (FaultHandler.StoreError(110)) —-> (4.3)

0(ComputingComponent.UseBrakeSensor2 == 1))

When the first brake sensor fails, the fault handler will be notified by the error

code 110. It will then advise the computing component to use the second brake

sensor to deliver the value of the brake pedal pressure applied by the driver of

the car. For this situation, the fault handler sets the UseBrakeSensor2 value to

true. The computing component will then use the second brake sensor.
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To verify this property without exceeding available memory, the eight scenarios

described in the previous subsection had to be divided into different verification

runs. The Table 4.1 shows which scenarios were examined for each verification

run (according to our two step-scenario generation as explained in the previous

subsection), including the number of transitions and the amount of memory

used. For example, in the first row, A1 & A2 for Step A and B1 & B2 for Step

B means that four different scenarios can be generated by choosing one of A1

or A2 for Step A and one of B1 or B2 for Step B, and that SPIN covered all

four scenarios in this verification run.

 

[ Step A | Step B [ Transitions [ Memory ]

A1 & A2 B1 & B2 42,739,100 385 Mb

A3 B1 & B2 45,312,100 382 Mb

A4 B1 85,941,100 741 Mb

A4 B2 62,519,400 518 Mb

 

 

     
 

Table 4.1: Results of the verification for the first property of the ABS

Response Pattern:

If an unrecoverable error occurs, then the system should be turned off. This is

a property that is important for system safety.

[I (sent (FaultHandler . StoreError (100) ) —> (4.4)

O (in (ComputingComponent . Poweerf) ) )

This property specifies that the system should be turned off in the case of a

major, unrecoverable error, which has, in our system, the error code 100. After

this error message is sent, the system should transition to the state PowerOff.

When the system is turned off, the car has the standard mechanical brake

functionality, but without skid prevention. Therefore, it is safe to turn the ABS

off when a major error in the system occurs.
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Table 4.2 shows which scenarios we examined for each verification run, including

the number of transitions and the amount of memory used to verify the claim.

 

 
 

[ Step A [ Step B [ TransitionsJ Memory ]

A1 & A2 & A3 B1 & B2 45,312,100 382 Mb

A4 Bl 85,941,100 741 Mb

A4 B2 62,519,400 518 Mb      

Table 4.2: Results of the verification for the second property of the ABS
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Chapter 5

Model Checking with Timing

Often, the correct behavior of embedded systems crucially depends on timing.

Embedded systems frequently have to meet strict time deadlines and a different du-

ration between two events can provoke different responses. Accordingly, this chapter

introduces our extensions to support timing in the UML formalization framework and

the application of requirements patterns and timed verification of validation questions

is presented for an Electronically Controlled Steering (ECS) system.

5.1 Background on Timing

This section overviews background information on the methods used to model

time, to specify requirements-based properties involving time, and to analyze such

properties. Additionally, the altered verification approach for timing and an example

analysis for an ECS system is presented.
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5.1.1 Biichi Automata and Timed Automata with Discrete

Time Semantics

Timed (Biichi) automata (TA) [4] are extended regular Biichi automata [13].

We apply timing extensions similar to those used in TA to UML state diagrams to

capture timing information in UML specifications.

Biichi automata are nondeterministic finite automata equipped with an accep-

tance condition that is appropriate for infinite words a) =2 a0,a1, An w-word is

accepted if the automaton can read it from left to right while visiting a sequence of

states in which some accepting state occurs infinitely often. A simple Biichi automata

over the alphabet E is of the form A = (2, Q, qo, p, F) with a finite set of states Q,

initial state qo, transition relation p Q Q x E x Q, and a set F C Q of accepting states.

A run of A on a w-word a = ao,a1, is a sequence .3 = 50,51, where so = go and

3i+1 e p(s,~, a,), for all i S 0. A accepts a if some state of F occurs infinitely often in

a run of A on a [84].

TA [4] can represent systems in which actions take some unknown, but bounded

amount of time to complete, in a rigorous and verifiable manner. TAs using real-time

semantics are essentially automata operating on the continuous time scale, employing

auxiliary continuous variables called clocks. The clocks keep increasing with time,

when crossing a certain threshold clocks can enable some transitions and also force

the automaton to leave a state. Temporal uncertainty is modeled as the possibility

to choose between staying in a state and taking a transition during an interval [l , u].

Timed automata provide a way to add time constraints to state-transition graphs.

Such an automaton can have a finite set of clocks, and timing delays are expressed

by constraints on the transitions that compare clock values to constant values. At

every moment, a timed automaton can choose between incrementing time or making

a discrete transition. A time invariant on a state restricts the time an automaton can

remain in that state. An automaton may remain in a state without a time invariant
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indefinitely; therefore, progress must be modeled explicitly with time invariants.

When restricting time to discrete (integer) time, a time invariant can be replaced

with a self-transition as illustrated in Figure 5.1 [12]. The discrete-timed automaton

in Figure 5.1 can leave State_x if the transition to State_y is enabled, or it can choose to

remain in State_x (i.e., take the self-transition, thus incrementing the timer) whether

or not the transition to State.y is enabled, as long as the time invariant timer S t is

not violated. If the time invariant timer 3 t would be violated by the next time step,

then the automaton must leave State_x on an enabled transition within the current

time slice. If no transition is enabled and the time invariant becomes violated, then

the automaton will deadlock in the current state.

event [guard] /

State x \ actions.messages

timer<=t J
State_y

 

 

 

[timer<t] /t:l.mer++

event [guard] /

actionsnneesages

State_x J >[ State_y [

Figure 5.1: Time invariant: Discrete time interpretation

 

5.1.2 Digital-Clock Model

Our approach uses the digital-clock (or fictitious-clock) model [5, 6]. In the

digital-clock model, an external, discrete clock proceeds at a fixed rate, and, although

this clock runs asynchronously with other components in a system, those components

update their discrete timer variables synchronously with every tick of the external

clock. The ordering of events between two time ticks is known, but not the exact

time of occurrence. For example, a possible observation trace, which denotes a pos-
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sible sequence of events when a process runs [6], can be represented by a sequence of

pairs where each pair denotes the event and the time slice in which that event occurs.

(it, 1) —* (ya?) —> (.::,4) —> (3,4) —*

This trace is equal to the events

tick, x, tick, y, tick, tick, x, 2,

as illustrated in Figure 5.2.

Events I X I y I I X, Z l

tick tick tick tick tick

cm“ 0 1 2 3 4
Value

Figure 5.2: Example event sequence with respective time slices

The timing delay between events is measured in terms of the number of clock

ticks that occur between those events. Due to the nature of the digital-clock model,

it can only be inferred that a delay of k ticks between two events is smaller than

k + 1 time units and larger than k -— 1 units of real time. Despite this restriction,

the digital-clock model can be used to address a wide variety of problems that are

encountered in practice. [38].

5.1.3 How to Instantiate Timed Claims

The claims that can be found in the constraints section of the patterns are all

specified in terms of (untimed) LTL. But instantiating timed claims in MTL (see

Section 2.4.2) from LTL claims is a straightforward process which is demonstrated

using two examples claims taken from the requirements patterns.

The first example is an absence requirements excerpted from the Fault Handler

(63) Pattern:
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Absence Pattern:

If system initialization fails, then the system should remain in a powered-off state.

Therefore, the system should never be in a state where the initialization failed and

the system power is on.

  CK! (‘ ‘Initialization failed’ ’ && ‘ ‘System power on’ ’))
 

Assuming the property would only have to be true during point a and point b

on the time scale, the property would be modified as follows:

 

Absence Pattern:

It is always the case between point a and point b on the time scale (Diabl), if

system initialization fails, then the system should remain in a powered-off state.

Therefore, the system should never be in a state where the initialization failed

and the system power is on.

  [3],,“ (I (‘ ‘ Initialization failed’ ’ && ‘ ‘System power on’ ’ ))

 

The next example was excerpted from the Watchdog (.48) Pattern and is an

untimed response claim:

 

Response Pattern:

If a violation of a system constraint is found, then the watchdog should start

the corresponding recovery action appropriate to the system being modeled (e. g.,

begin error recovery, reset the device, shut down).

D(‘ ‘Watchdog Violation’ ’ -—> 0(‘ ‘Start recovery action’ ’))   
 

Using MTL, it is possible to specify timed liveness properties, such as something

has to happen eventually within a specific time interval (Olmbli where ()5, represents

Ow] )3
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Response Pattern:

If a violation of a system constraint is found, then the watchdog should start

the corresponding recovery action appropriate to the system being modeled (e.g.,

begin error recovery, reset the device, shut down) in at most 0 time tick.

  CI(‘ ‘Watchdog Violation’ ’ —> 056(‘ ‘Start recovery action’ ’))
 

Other claims can be instantiated according to the scheme presented here. In

general, the subscript added to the temporal operators denotes additional timing

constraints.

5.2 Adding Timing Information to UML

This section overviews our approach to adding timing information to both UML

diagrams and the previously developed Promela formalization of those diagrams [56].

First, we present the syntax we use to model timing information in UML class and

state diagrams. Next, we describe the timing semantics we use for embedded sys-

tems. Finally, we give an overview of how we extended the existing UML-to—Promela

formalization [56] to incorporate these semantics.

5.2.1 Timing Syntax in UML Class and State Diagrams

We added a timer type to the UML class diagram (see Figure 5.3(a)). Timer

attributes can be used to define clocks for components. For the state diagrams, we

added annotations similar to those annotations used for timed automata [6]. On

transitions, clock variables can be used as normal variables, that is, their values can

be set, and they can be evaluated in boolean expressions (see Figure 5.3(b)). The

main difference to the original UML state machine is the notion of time invariants.

Time invariants are put into states (e. g., timerl _<__ 5 in state Wait in Figure 5.3(b)).

(The generated Promela code for the UML model in Figure 5.3 can be found in
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Chapter B of the Appendix.) Thus far, our notation for timing invariants is name R

at]/

value, where R can be < or <

i

 

 

 

 

 

   
 

Class1 than: .0 ti:°[11’]=/' ‘ 1

timer1: timer Composite1

a(): void “'3" [timer1>-2] /

b(): void ,,mm<=5] Wm

(a) Class Diagram [1 /t1mer: -0
   

   
(b) State Diagram

Figure 5.3: Example UML model with timing information

5.2.2 Timing Semantics for Embedded Systems

The original UML specification [59] does notdescribe semantics involving time

and allows different interpretations of timing information, such as the time needed for

a transition or event transmission to complete. Therefore, for clarity we use a specific

computational model that is compatible with our present formalization framework [56]

and the model checker Spin [41]. We make the following assumptions:

1. Transitions are urgent. Unless a time invariant is present at a state, and this

time invariant is satisfied, transitions are taken as soon as they are enabled. If a

time invariant expires and no transition can be taken, then the automaton dead-

locks. In contrast, urgency must be modeled explicitly in timed automata [6].

The majority of embedded systems tend to have behavior where transitions are

regarded as urgent.

2. Tiansitions are instantaneous. Time can only pass in a state.
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3. Messages sent are put into the event queue1 of the target object within the same

time slice that they are sent; delays have to be modeled explicitly.

4. Local computation is infinitely fast. Therefore, delays have to be modeled ea:-

plicitly.

The example state automaton in Figure 5.3(b) begins in state Start. It remains

in state Start until it receives the signal a. Upon receiving the signal a, it takes the

transition to the composite state Compositel and sets its timer timerl to zero, thereby

activating the timer. The automaton then enters the composite state Compositel and

transitions to the state Wait. The state Wait cannot be left before timerl has the

value of at least two (due to the guard on the outgoing transition), but the automaton

can remain in state Wait only as long as the value of timerl is less than or equal

to five (or else it will violate the state’s timing invariant). Therefore, the automaton

will continuously enter and leave the state Process (while allowing anywhere from

two to five time ticks to pass between consecutive entrances) and transition back to

Wait, thereby resetting the timer, until it receives the signal b. Upon reception of

signal b, the automaton exits composite state Compositel and transitions to the state

End. Upon this transition, timerl is set to —1, which turns the timer off in our

formalization semantics.

5.2.3 Approach Overview

To enable the use of a digital-clock model for timing, we extended our original

formalization framework [56] to include several additional Promela constructs. All

extensions to our formalization framework were limited to our UML formalization

rules and the resulting Promela specifications generated from UML diagrams; no

changes were made to the Spin tool. Therefore, our approach can be used with

 

1Our formalization framework uses queueing semantics for communication between objects [56].
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current and future versions of the Spin model checker. The original rules can be

found in [57].

The general idea is to use global timer variables to represent integer clocks.

Automatons can perform actions until a transition forces them to stop. Eventually,

the system will stop because of timer variables in guards that are not satisfied. In

this case, a timer process will synchronously increase the global timer variables and

allow the system to progress again.

These timer variables are defined in the UML class diagram to be of type timer. If

no statements are executable in any active processes, then Spin sets a global read-only

variable called timeout to true. A special timer process called Timer is derived from

the UML class diagram that atomically increments all non-negative timer variables

when the value of timeout is true; this, in effect performing a time tick.

Each class also has an implicit boolean variable timerwait, used to implement

time invariants, that is reset to zero at every time tick. If a time invariant will not be

violated in the next time tick, then the automaton may let a tick of time pass while

residing in its original state. This effect is achieved by the automaton setting the

variable timerwait to one and waiting for the timer process to reset it to zero. The

timer process only resets the timerwait variables to zero when it performs a time

tick.

5.3 Discrete Time Rules Extensions in Hydra

This section describes changes that have been made to the original UML for-

malization rules [56, 57]. Table 5.1 gives an overview of original UML to Promela

mapping developed by McUmber [56]. Subsequently, changes to formalization rules

are listed. Code that was added to the rules is underlined.
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UML Metamodel Class Promela Metamodel Class
 

Model Model

Class ObjectProctype

Relationships Relationships

InstanceVariable InstanceVariable

Aggregation Inclusion

Generalization Duplication

Association Channel

Behavior Behavior

Guard- IFGuard

StateVertex StateVertex

Transition Transition

Pseudostate Pseudostate

State State

ActionSequence ActionSequence

CompositeState Proctype

ConcurrentComposite ConcurrentProctype

SimpleState StateBlock

Start Init-goto

Join Wait-join

History History-goto

Final goto-exit

Event Event

SignalEvent Event-Dispatch

TimeEvent Event-Dispatch

ChangeEvent WHEN-Event

Table 5.1: The definition of the homomorphic mapping of classes from the UML

metamodel to the Promela metamodel.

5.3.1 Original Promela Rule Modifications/Extensions

This section contains modifications that were made to the formalization frame-

work [57] in order to support the timing extensions applied to the UML class and

state diagrams.

In Original Rule Promela 5, a boolean variable called timer_wait was added to

the instance variables of each class. This variable is necessary to support Rule Discrete

Promela 2 in Section 5.3.2

 

Modified Original Rule Promela 5

Instance variables are formalized as members of a typedef structure statement named
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uniquely for the class according to the following template:

typedef CLASS_T

 

{

bool timerrwait_1;

<type> var-1;

<type> varJn

}

CLASSJT CLASS-V;

where CLASS is the name of the class. The mapped instance variable declarations are placed

at the beginning of the Promela specifications before any proctypes.

End of Modified Original Rule Promela 5

 

Changes to rules Original Rule Promela 16 are done to support the time invariant

on the states, represented by TI. TI-1 means that the. timing invariant value has to

be decremented by one. For example, if the timing invariant on the state was a: S 3,

then the proposition in Promela would have to be a: S 2 (or a: < 3 due to discrete

time). The variable timer-wait is used to block the state machine for one time tick

if it chose to remain in the current state. If the time invariant ever becomes violated

while the automaton is still in the same state, then the timer is set to -—2 and an

assertion fault is produced.

 

Modified Original Rule Promela 16

Formalize a guard on a transition as an if-fi block located immediately after the

statements representing the event reception. Gather all like events into one wait statement.

For one or more transitions on event E guarded by 01 through 011, and wait expression Q

(Q is some form of a wait on a channel per Rule Promela 10, Rule Promela 11, or Rule

Promela 12) the following template applies:

if

Q?E && TI -> if

Gl -> <transition 1)

G2 -> <transition 2>

Gn -> <transition n>

else goto in.STATE

fi

(TI-1) -> CLASS_V.timer;wait=1;
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CLASS_V.timer;wait== -> goto in_STATE;

!(TI) -> CLASS_V.timer;wait=-2;

assert(0); false;

 

 

 

For eventless transitions guarded as above, replace the final else with else 0.

End of Modified Original Rule Promela 16

 

5.3.2 Additional Promela Rules

This section contains rules that were defined to be used in addition to the original

formalization rules.

Rule Discrete Promela 1 describes how timer variables are included into the for-

malization framework.

 

Rule Discrete Promela 1

The timers are encapsulated in the construct called Timer. T. This encapsulation is

important because the timers cannot be defined 10cally as they have to be increased by the

timer process.

typedef TimerJT

{

/* Timer definitions go here */

short timer_1 = -1;

short timer;n = -1;

TimerJT Timeer;

The timer variables are defined in the UML class diagram with a special type timer. Timers

are declared as being of type short; the maximum timer value is 32, 767 and all negative

values are interpreted as a deactivated timer. A11 timers are initially deactivated and have

to be activated by setting it to some positive value.

End of Rule Discrete Promela 1

 

Rule Discrete Promela 2 describes the Timer process that increments the timer

variables to model the passing of time.
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Rule Discrete Promela 2

The proctype timer is a process that simply waits for the timeout event to occur. The

timeout event is built into Spin and occurs when no other statement is executable. In that

case, the proctype timer increments the values of the integer clocks by one. If a statement

becomes executable, then the proctype timer will stop until all processes cease execution

again. Otherwise, it keeps increasing the value of the timers until a statement becomes

executable or the verification stops.

active proctype timer()

{

do

timeout ->

atomic {

if

°° Timer-V.timer-1 >= 0 -> Timer;V.timer_1++;

.. else -> skip;

fi

if

" Timer;V.timer;n >= 0 -> Timer_V.timer;n++;

:: else -> skip;

fi

CLASS_1;V.CLASS_1;timerwait=0;

CLASS_c;V.CLASS_c;timerwait=O;

}

od

}

The timer variables are defined in the UML class with a special type timer. Addition-

ally, the boolean variable timerwait that is used for the timing invariants is reset for every

process. If an automaton decides to let time pass, then it sets the timerwait variable to one

and is blocked until the variable is set to zero again by the timer class. The timer class

resets those variables every time a time tick is performed.

End of Rule Discrete Promela 2

 

5.3.3 Validation of Formalization Rules

In this section, the realization of the new formalization rules in terms of Promela

code generation is discussed. To enable the use of a digital-clock model for timing,

we extended the original formalization framework [57] to include several additional
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Promela constructs. The general idea is to use global timer variables to represent

the integer clocks. Those timer variables are defined in the UML class diagram as

being of type timer. In the Promela specification, those timer variables are stored in

a global struct (see Figure 5.4).

 

typedef Timer_T

/* Timer definitions go here #/

short timer-1 - -1;

short timer;n - -1;

}

Timer-T Timer-V;   CO
G
Q
C
I
U
‘
I
B
C
A
M
I
—

p
.
-

 

Figure 5.4: Timer definitions in the Timer struct

Timers are implemented as short variables and can therefore have a maximum

value of 32,767, negative values are interpreted as deactivated timers. All timers are

assigned initially the value —1, meaning they are not enabled.

A timer process is responsible for capturing the Spin timeout events that occur

when no other transition is enabled and can be found in Figure 5.5. The timer process

increases the values for timers that are found to be enabled (2 0). Furthermore, the

timer resets the boolean variable timerwait that is defined in the global struct of

every class, which stores the variables of each class, back to zero. This variable is

used to implement the time invariants that allow the state machine to remain in a

state and let time pass.

Figure 5.6 shows the template for the Promela code for a transition having a

time invariant. If there is an enabled time invariant (TI) present that is also true

after the next time tick (TI-1), the automaton can non-deterministically select to

take the transition in line 11 of Figure 5.6. Therefore, it is stopped until the variable

timer_wait is reset by the timer process. This reset only happens when the clock is

ticking once. Thus, by taking this transition, the automaton remains in the current
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active proctype timer()

{

do

': timeout ->

atomic {

if

': Timer_V.timer_1 >= 0 -> Timer_V.timer_1++;

': else -> skip;

fi

m
q
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k
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n
w

H
w
y
-

M
F
C
‘
D

if

': Timer_V.timer_n >8 0 -> Timer_V.timer_n++;

': else -> skip;

fi
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Figure 5.5: Promela code of the Timer process

state for one time tick. This transition can be taken until the time invariant would be

violated after the next time tick. This implementation is consistent with the semantic

interpretation presented in Section 5.1. If the time invariant is ever violated, then the

timer will be set to —2 to indicate this violation and an assertion error is produced.

After extending Promela with our real-time constructs, it is still possible to verify

standard safety and liveness properties; uncovering deadlocks, however, can be more

cumbersome due to incrementing timers when the Spin timeout event occurs, but can

still be uncovered by looking for invalid endstates. Furthermore, it is now possible to

check for so-called dense-time liveness properties, where the ‘desired’ property must

be satisfied within a specified time bound.

In order to check these liveness properties, we extend the Biichi automata gen-

erated for the LTL formulas by Spin with timer statements. For instance, Figure 5.7

shows the Biichi automata for the response property:

“Always if p happens, then q happens at most 20 time ticks later.”
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if

-: Q?E && TI-> if

': 01 -> <transition 1>

-: G2 -> <transition 2>

:: Gn -> <transition n)

': else goto in_STATE

fi

': (TI-1) —> CLASS-V.timer_wait=1;

CLASS_V.timer_wait==0 -> goto in_STATE;

!(TI) -> CLASS_V.timer_wait=-2; assert(0); false;
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Figure 5.6: Promela code of a transition with time invariant

[KP —’ 0320(1)) (5.1)

The boxed items in Figure 5.7 show code that is added to support timing compared

to a standard, untimed response property.

 

 

 

 

 

1 /*

2 * Formula As Typed: ((p) -> (<> (q)))

3 t The Never Claim Below Corresponds

4 * To The Negated Formula !( ((p) -> (<> (q))))

5 * (formalizing violations of the original)

6 */

7

8

9 never { /* !( ((p) -> (<> (q)))) t/

10 TO_init:

11 if

12 ': (I ((q)) u (p)) -> [atomic{Timer_V.Timer-=O; goto accept_S4..

13 ': (1) -> goto T0_init

14 f1;

15 accept,S4:

16 if

17 ': (I ((q at Timer_V.Timer<-20 ))) -> goto accept_S4

18 fi;

19 }    
Figure 5.7: Altered process for an LTL response property

To validate our approach, the modified formalization framework was used for

several sample UML class and state diagrams and the behavior for the generated

Promela model was analyzed using the model checker Spin. The automatically gen-
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erated Promela code for the composite state Compositel from Figure 5.3(b) can be

found in Figure 5.8. When in state Wait (lines 1881), the automaton can non-

 

proctype Compositel<mtype state)

{atomic{ Composite1_C?1;

mtype m;

int Composite1_pid;

ltlnit statet/

goto Wait; skip;};

/* State Process */

Process: atomic{skip; printf("in state Class1.Process\n");}

Process-G:

if

': atomic{1 ->

Timer_V.timer1-O;

goto wait; skip;}

': atomic{C1ass1_q?b ->

Timer-V.timer1--1;

wait!_pid,st_End; Composite1_C!1; goto exit; skip;}

fi;

/* State Wait */

Wait: atomic{skip; printf("in state Classi.wait\n");}

Hait_G:

if

': atomic{(Timer_V.timer1>-2 ah Timer_V.timer1<=5) ->

goto Process; skip;}

:: atomic{C1assi-q?b —>

Timer_V.timer1--1;

wait!_pid,st_End; Composite1_C!1; goto exit; skip;}

': atomic{Timer_V.timer1<-4 -> C1assl_V.timerwait 8 1;

C1assi_V.timerwait -- 0 -> goto Uait-G;}

-: atomic{Timer-V.timer1>5 -> timerls-2; assert(0);

false;}

fi;

exit: skip
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Figure 5.8: Composite state Compositel from Figure 5.3(b) in Promela code

deterministically choose between performing the transition to the state Process (lines

22—23) or letting time pass (lines 27—28). If the time invariant is violated, then the

timer timerl is set to —2 to indicate a violation (lines 29—30), which can occur if

no transition can be taken when a time invariant becomes violated. Upon receiving

the signal b in the event queue for Classl (lines 24-26), the automaton will exit the

composite state and enter the state End (elided).

Our approach was applied to several small-scale example UML class and state

diagrams and the behavior analyzed for correctness with the intended semantics.

Additionally, our approach was validated using an industrial case study. Specifically,
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Section 5.4 describes in detail the experiences with the digital clock extensions to

Hydra and the ECS system.

5.3.4 Related Work in Timed Model Checking with Spin

DT-Spin [9] and RT-Spin [81] are two tools that use Spin as the underlying model

checker to analyze timing properties. DT-Spin uses a modified version of Spin that

was extended to support Discrete-Time Promela (Promela extended with commands

specific to discrete timers). Discrete-Time Promela has the same expressiveness as

timed automata interpreted on a digital-clock model.

RT-Spin is also based on Spin, but the timed automata are interpreted over

dense time (an unbounded number of events can happen between any two consecutive

time moments) instead of discrete time. The semantics of Promela are extended to

support clocks and time information, where the modified Promela is termed Real—

Time—Promela. While DT-Spin still relies on the standard search algorithm in Spin

for verification, the search algorithm was modified in RT-Spin to support dense-time

semantics.

Although RT-Spin supports dense-time [6], it has not been updated since version

2.9 and does not support some advanced features of Spin, such as Partial Order Re-

duction. Furthermore, urgency has to be modeled explicitly. DT-Spin is also based

on an outdated version of Spin. In comparison to both tools, our approach has the

advantage that it uses the standard Spin model checker and all of our extensions are

defined in terms of existing Promela constructs. Therefore, our approach is compat—

ible with all current and future versions of Spin. Furthermore, neither DT-Spin nor

RT-Spin have the collective capabilities captured by our approach in combination

with the formalization framework [57, 14], nor do they attempt to reuse organized

information such as that captured by our requirements patterns.
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5.4 Model Checking a Timed Electronically Con-

trolled Steering System

This section overviews our approach to model and verify timed UML diagrams

that is applied to an Electronically Controlled Steering project [78] obtained from one

of our industrial partners. We discuss the results from applying our requirements-

pattern—driven approach to the modeling and analysis of the system [48]. We focus on

the modeling and analysis of requirements-based properties with timing constraints

enabled by the extension (described in Section 5.2 and 5.3) of the UML-to-Promela

formalization [56].

5.4.1 Process

Model checking requirements-based properties (timed or untimed) within a model

with timing information requires three steps (see Figure 5.9). First, preliminary

checks are performed to check the “sanity” of the timed model and the system cor-

rected if needed. Each of these preliminary checks is explained in turn. Next, untimed

properties are verified. If the untimed properties can be verified successfully, then the

model can finally be checked for adherence to timed claims.

Freedom from zeno cycles. We note that in our approach, zeno cycles (an un-

bounded number of steps within a bounded time interval) are possible. A zeno cycle

is degenerate behavior of a model that cannot occur in a real system (i.e., time always

progresses in the physical world; each action takes some time). Before we check a sys-

tem for adherence to any other properties, we first perform a simple check for freedom

from zeno cycles. We do so by checking the following LTL-claim [8]: Cl (<> (t imeout))

(Always there is eventually a timeout event).
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1. Perform preliminary checks for

(a) freedom from zeno cycles,

(b) timer-obscured deadlock, and

(c) violation of time invariants.

(Each of these preliminary checks is explained further below.)

2. Check requirements-based safety and liveness properties in LTL. Such properties

include those without timing constraints, and those involving time with the (im-

plicit) interval [0, oo).

3. Check requirements-based discrete-time liveness properties with timing constraints

that have passed with the interval [0, 00) with their proper timing interval in MTL.   
 

Figure 5.9: Model checking process

Timer-obscured deadlock. Detecting deadlocks can be more cumbersome than

in standard Promela, because when a system deadlocks, meaning no transition can

be taken, its timers continue to increase (meaning that Spin does not automatically

report a deadlock). Nevertheless, before verifying any properties, it is possible to

check if timers exceed predefined boundaries by setting an assertion on the upper timer

value. Should a timer increase above an expected value, a deadlock is likely. These

checks should be performed initially because timers that are increasing unboundedly

have an exponential impact on the state space. If an uncontrolled growth of time is

not present in the system, then standard deadlock detection can be used that looks

for invalid end-states.

Violation of time invariants. If a system remains in a state with a time invariant

for a longer duration than the timer allows, then the time invariant has been violated.

Such a situation can occur if the timer expires and there is no enabled transition

leaving the state. For example, suppose a state has a time invariant of timer _<_ 4

and the only outgoing transition has the guard timer 2 6. In our formalization, if

the timer expires and there is no enabled transition leaving the state, then the timer

140



value is set to the error code —2, which we can detect during analysis with Spin.

5.4.2 Application Overview

The ECS system is intended to supplement the benefits provided by traditional

hydraulic power steering. This all-electric and engine-independent system eliminates

the traditional hydraulic system’s power steering pump, hoses, and hydraulic fluid,

as well as the drive belt and pulley on the engine. Instead, the ECS system uses

an electric-motor power assist mechanism to provide responsive power steering. The

system not only provides assistance with turning the wheels, but it also varies this

assistance based on the current speed of the car and the amount of torque (turning

force) applied to the steering wheel by the driver. This adjustment provides for a

much safer ride, as small steering wheel movements at high speeds will not cause the

car to swerve.

Providing the driver with power assist to turn the steering wheel, and hence the

wheels of the car, is the primary function of the ECS system. It continuously samples

the car’s speed and the amount of torque applied to the steering wheel in order to

calculate the proper amount of assistance that the power steering will provide. In

general, higher speeds mean lower assisting torques because turning the car at higher

speeds is easier than turning it when the car is moving slowly or not at all.

Finally, the ECS system continually checks for problems with the input from

the speed and torque sensors in the system. If a fault is detected, then the provided

torque assistance gradually (over two seconds) ramps down to zero. Thus, the steer-

ing wheel is not snapped from the driver’s hands, but rather the power steering turns

off gradually so the driver can notice and adjust. A list of the time-sensitive require-

ments for the Electronically Controlled Steering system can be seen in Figure 5.10.

The system requirements are classified into two different categories, fine-grained and

coarse-grained. Fine-grained requirements describe the behavior of the embedded
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system with short timing deadlines, such as a few milliseconds. In contrast, coarse—

grained behavior captures system behavior that has longer timing deadlines, such as

several seconds. This classification is used to model two different versions of the ECS

system that differ in their time granularities.

 

1. Fine—Grained Requirements

(a) The input torque value must be converted to an assisting torque value at least

every 500 microseconds (or 0.5 milliseconds).

(b) The conformity of the torque sensors to within five percent of each other must

be verified every ten milliseconds.

(c) Operational checks must be done every 10 milliseconds. These checks include

an external watchdog verification, a RAM verification, and a flash memory

verification.

2. Coarse-Grained Requirements

(a) Once every second, a fault status report must be sent over a CAN communi-

cation link [66].

(b) Upon power up, the malfunction indicator light must be illuminated for three

seconds.

(c) In case of a system shutdown, the assisting torque should be gradually ramped

down over two seconds.   
 

Figure 5.10: Time-sensitive requirements of the ECS system

5.4.3 Abstraction, Equivalence Classes, Timing Granularity,

and Scenarios

As before we model only those portions of the system that are relevant to our

focused analysis. In this study, we are particularly interested in modeling and an-

alyzing the time-sensitive requirements listed in Figure 5.10. We model only those

components relevant to analyzing these requirements.

Next, we determine equivalence classes for possible values of system conditions

according to their impact on the behavior of the system. Figure 5.11 illustrates
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the equivalence classes for the ECS system. Generally, the operational status of

a component is represented as non-working (false) or working (true), as shown in

Expression (5.2). We model the operational status of the SpeedSensor, DCMotor,

TorqueSensorl, and TorqueSensor2. Ranges for monitored values (e. 9., current car

speed and torque value of each torque sensor) can be determined from the require—

ments, as shown in Expressions (5.3) and (5.4), respectively (00 represents the target

language-dependent upper bound).

 

(non-working)0

( Component) Operational Status = {1 (5.2)

(working)

Each component in the system can report its operational status as working or non-

working. We are particularly interested in the status of the sensors (SpeedSensor, Torque-

Sensorl, TorqueSensor2) and actuators (DCMotor, MalfunctionlndicatorLight).

Current Car Speed = {[0; 160] (5.3)

Legal values for the SpeedSensor are 0 to 160 MPH. As an abstraction, we selected three

representative values (0, 75, 150) to simulate the behavior of the system at different

speeds.

(—oo; 0) (Left turn)

Torque Value = 0 (Neutral) (5.4)

(0; 00) (Right turn)

The torque value denotes possible values that each torque sensor can report to the

ComputingComponent. As an abstraction, we selected three representative values to model

a left turn, no turn (neutral), and a right turn.   
Figure 5.11: Equivalence classes for system conditions

Third, because we use the digital-clock model in our approach, we examine sys-

tem requirements with timing constraints to determine different timing granularities

to model. For example, according to Requirement 1a in Figure 5.10, the input torque

value must be converted to an assisting torque value at least every 500 microseconds,

while according to Requirement 2b (also in Figure 5.10), upon power up the malfunc-

tion indicator light must be illuminated for three seconds. Hence, if one time tick

were to represent 500 microseconds, then the timer value used for the malfunction
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indicator light would have to be 6000 in order to represent three seconds. Modeling

all timed behaviors at one level of timing granularity would require large clock values

and, therefore, generate a large state space. In the ECS study, we construct two

distinct system models with different timing granularities (fine-grained and coarse-

grained), thus offering different views of the system. The fine-grained view models

Requirements la—lc (see Figure 5.10) with a time tick of 0.5 milliseconds, while the

coarse-grained View models Requirements 2a—2c (also in Figure 5.10) with a time tick

of 100 milliseconds. Table 5.2 describes the coarse— and fine-grained views of the ECS

system, noting for each view which components have been abstracted (the sensors,

actuators, and FaultHandler are modeled the same in each view).

 

 

 

 

Time Tick Components Analyzed Components Whose Be-

for Detailed Behavior havior was Abstracted

Coarse-grained 100 Userlnterface, ComputingComponent,

View milliseconds CANLink, Watchdog

Ramp

Fine-grained 0.5 ComputingComponent, Userlnterface,

View milliseconds Watchdog ' ~ CANLink,

Ramp       
 

Table 5.2: Coarse- and fine-granularity views of the ECS system

Finally, scenarios enable us to model a system under different conditions. As

described in Figure 5.11, we model the system with a non-deterministically chosen

torque value for each torque sensor and simulate the behavior of the system at three

different speeds. While the operational status of each component and the value of

the SpeedSensor are set initially before system execution and do not change during a

particular run, the torque sensor values are updated dynamically after every compu-

tational cycle of the ComputingComponent .
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5.4.4 Modeling the Electronically Controlled Steering Sys-

tem

Based on apprOpriate requirements patterns and our abstractions, we created

UML object and state diagrams to model the high-level behavior of the ECS sys-

tem. We identified the Actuator—Sensor (38), Fault Handler (63), Watchdog (48),

and User Interface (82) requirements patterns as appropriate for the ECS system.

Figure 5.12 overviews the UML object diagram for the ECS system (attributes and

methods have been elided). The SpeedSensor senses the car’s current speed. Torque—

Sensorl and TorqueSensor2 redundantly sense the amount of torque currently applied

to the steering wheel. The ComputingComponent, the core of the system, continu-

ously reads values from the sensors SpeedSensor, TorqueSensorl, and TorqueSensor2,

and calculates the appropriate amount of assisting torque. The Ramp controls the ac-

tuator DCMotor to regulate the amount of torque assistance provided to the steering

wheel. The FaultHandler processes error messages received and takes appropriate ac-

tions based on error severity. The Watchdog continuously monitors the sensed torque

values, notifying the FaultHandler if they are not within five percent of each other.

The CANLink periodically sends the current system status report on the CAN bus.

Finally, the Userlnterface controls the MalfunctionlndicatorLight, the only mechanism

used to provide information about current modes of system operation to the driver.

As before, an Environment class defines the equivalence classes for system conditions

as depicted in Figure 5.11, and a -SYSTEMCLASS- class represents the aggregation

of the main components of the system and non-deterministically selects values for

system conditions according to the equivalence classes.
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Figure 5.12: ECS UML object diagram

5.4.5 Analysis of Coarse-Grained View

As described in Figure 5.9, Step 1, we first check the coarse-grained view of the

ECS system for freedom from zeno cycles, timer-obscured deadlock, and violation

of time invariants. These checks discovered no violations, enabling us to proceed to

Step 2. Figure 5.10, Requirement 2c, is an example of a coarse-grained requirement,

and states that in case of a system shutdown, the assisting torque should be gradually

ramped down over two seconds. To check this requirement, we use a specification

pattern from the Watchdog {48) Pattern Constraints field [46]

EM ‘ ‘Ilatchdog Violation’ ’ ——) OSJ ‘ ‘Start recovery action’ ’)) (5.5)
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and instantiate it specifically for the ECS system. In our model, the Watchdog at-

tribute WDViolation being set to true indicates that a system shutdown is imminent.

Also in our model, the final result of the assisting torque being ramped down (i.e.,

the appropriate recovery action) is that the attribute RampedCurrent of the Ramp is

equal to zero. Thus, in Step 2 we check the untimed liveness property

Cl(Watchdog.WDViolation == 1 -—> O(Ramp.RampedCurrent == 0)) (5.6)

(instantiating the claim pattern from Expression 5.5 with c equal to the implicit

interval [0, 00)). Again, we detect no violations.

Finally, in Step 3 we check the discrete-time version of the liveness property from

Expression 5.6. The claim

D(Watchdog.WDViolation == 1 —-> 0320 (Ramp.RampedCurrent == 0)) (5.7)

was verified successfully, meaning when the Watchdog detects a violation, then 20

time slices later the system will have ramped down. However, the claim

U(Watchdog.WDViolation == 1 —> 0318 (Ramp.RampedCurrent 0)) (5.8)

was also verified successfully, while verification of the claim

Cl(Watchdog.WDViolation == 1 -—> 0317(Ramp.RampedCurrent == 0)) (5.9)

failed. These results indicate that the system ramps down the current in 18 time

slices (1.8 seconds) instead of the 2 seconds specified by Requirement 20.

The reason for the requirements violation is illustrated in the Ramp state dia-

gram in Figure 5.13. In the state Downrampinglnitial, the StepValue was computed

by dividing the current by 10 and is then deducted from the current ramped value

immediately. Subsequently, the value is deducted every 2 time ticks (due to the guard
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on the transition between state RampWait and state Downramping) until it is zero.

The fault in the downramping algorithm is that in order to obtain a period of 20

time ticks, 11 iterations have to be performed. After changing the value to 11, the

property for 20 time ticks was verified successfully while smaller values were violated,

meaning that the process of ramping down takes exactly 20 time ticks or 2 seconds.

I) /

‘_svsrmcmss__

o ‘4 ---
11:111me [1 /

Ramp'riner : -0 /\

  

 

Downrampinglnitai

entry/StepValue:=RampedCurrent/10

entry/StepValue=StepValue+1

entry/RampedCurrent:=RampedCurrentoStepValue

entry/send(DCMotor.SetDCMotorRampedCurrent(RampedCurrent))

 

Renpox [RupedCurrent>StepVa1ue] /

Ranp'riner : -0   
    [Munoz-.2] / Downramping

«Timon-0
  

  

entry/RampedCunent:=RampedCurrent-StepValue

entry/send(DCMotor.SetDCMotorRampedCurrent(RampedCurrent))

 

 
MCKIMQdmrrent>8tepVa1u01 /

 

Figure 5.13: Faulty Ramp UML state diagram (Elided)

The analysis results for the coarse-grained system after all errors were corrected

can be seen in Table 5.3.

5.4.6 Analysis of Fine—Grained View

As described in Figure 5.9, Step 1, we first check the fine-grained view of the

ECS system for freedom from zeno cycles and timer-obscured deadlock. (No time

invariant is used in the fine-grained system; all time-dependent behavior is deter-

ministic. Therefore, we do not search for time invariant violations.) These checks

discovered no violations, enabling us to proceed to Step 2. Figure 5.10, Require-

ment 1b, is a fine—grained requirement and states that the conformity of the torque

sensors to within five percent of each other must be verified every ten milliseconds.
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Table 5.3: Analysis results for the coarse-grained ECS system
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To check this requirement, we use a specification pattern from the Watchdog (48)

Pattern Constraints field [46]

Cl(‘ ‘Physical Violation’ ’ —> OSCC ‘Watchdog Violation’ ’)) (5.10)

and instantiate it specifically for the ECS system. We model non-conformity of

the torque sensors (i.e., a physical violation) by setting the Environment attribute

TorqueFault to true. In our model, the Watchdog performs the torque-sensor con-

formity check, so non-conformity of the torque sensors leads to a Watchdog violation

(represented by the Watchdog attribute WDViolation being set to true). Thus in

Step 2 we check the untimed liveness property

D(Environment.TorqueFault == 1 —> O(Watchdog.WDViolation == 1)) (5.11)

(instantiating the claim pattern from Expression 5.10 with c equal to the implicit

interval [0, 00)). Again, we detect no violations.

Finally, in Step 3 we check the discrete-time version of the liveness property from

Expression 5.11. The claim

D(Environment.TorqueFault == 1 -> (5.12)

090 (Watchdog.WDViolation == 1))

was verified successfully, meaning that when a torque fault is present, then 20 time

ticks later (10 milliseconds) the Watchdog will have detected a violation. However,

the claim

D(Environment.TorqueFau1t==1 —> (>310 (Watchdog.WDViolation==1)) (5.13)

was also verified successfully, indicating that a torque fault leads to a Watchdog

violation in only 10 time ticks (5 milliseconds), violating Requirement 1b.

The reason for the requirements violation can be seen in the Watchdog state
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diagram in Figure 5.14 (elided for readability) where a value of 10 was used for the

timer WDTimer in the guard at the transition from state Wait to state ReceiveTorquel,

instead of the correct value of 20. After correcting the value to 20, the claim could

only be verified with values greater than or equal to 20, while lower values led to a

violation. Note that usually the only alternative to finding such errors is by visual

inspection.

[1/

‘_srsrsucr.ass_

e

WDStart [1 / WDStop [1 /

WDTimer:a0 mmgrg.-1

  

 

Checking

[WDTimer-10] IWDViolation : -0 : WDTimer: a 0;

Wait TorqueSensorl . WDGet'rorqueValuel ; >GecelveTorqueD

A'.l‘ciiri:n.1e8enllor2 .WDGet'rorqueValueZ 3

 

 

 

III <
  

   
Figure 5.14: Faulty Watchdog UML state diagram (Elided)

The analysis results for the fine-grained system after all errors were corrected

can be seen in Table 5.4. Due to the complexity of the large model, each check was

performed separately for the three possible speed values (0, 75, and 150 MPH).
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Table 5.4

152

Analysis results for the fine-grained ECS system
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Chapter 6

Related Work

This chapter overviews related work in the field of patterns and reuse in require-

ments engineering or closely related development stages. Some of the related work

covers both software patterns and embedded systems, while other work focuses only

on one aspect. Note that many of the approaches presented are domain-independent,

while our requirements patterns thus far focus explicitly on embedded systems.

6. 1 Analysis Patterns

The term analysis pattern has been coined by Fowler [27] for patterns that cap-

ture conceptual models in an application domain, thus allowing reuse across applica-

tions. Analysis patterns, in contrast to design patterns, focus on important aspects

for the requirements analysis and the quality of the final system, such as organiza-

tional, social, and economical aspects. Example application domains include trading,

measurement, accounting, organizational relationships, and communication. All pat-

terns presented by Fowler were uncovered during real-life projects. Analysis patterns

are generally divided into two categories:

0 Groups of concepts to represent a common construction in business modeling.
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The patterns can be domain-specific as well as applicable to several domains.

0 Patterns that describe how to apply analysis patterns. Those patterns are called

supporting patterns.

Analysis patterns use class and state diagrams to capture structural and behav-

ioral information of abstractions that have proven to be useful in several projects.

For example, the measurement analysis pattern describes an abstraction technique

to capture a large number of measurements of an object. Instead of storing all mea-

surements in the object, objects of type measurement are associated with the object.

Each measurement object maps between a phenomenon type object, specifying the

type of measurement, and a quantity object, capturing the quantity of the corre-

sponding measurement. Instead of having a large object interface, the complexity

is shifted to querying numerous measurement objects and their associated objects.

For example, if person is 5 feet tall, then this measurement can be captured by the

phenomenon type ‘height’ and the quantity ‘5 feet’.

In general, analysis patterns are more abstract than requirements or design pat-

terns. They focus on issues that are not explicitly related to software development.

Furthermore, in contrast to the requirements patterns and several other pattern types,

such as design patterns and architectural patterns, Fowler relies more on an informal

style than a structured description.

Geyer-Schulz and Hahsler [29] investigated the benefits of using a uniform and

consistent format, a template in the style of the “Gang of Four” (GOP), to describe

analysis patterns to facilitate understanding and application of the patterns. They

show that the application of analysis patterns using the GOP template style facilitates

cooperative work and knowledge management, while significantly improving reuse.

The benefits are analyzed in terms of code reuse that was possible in the development

process of two example systems.

154



6.2 Problem Frames

In general, it is useful to examine the problem and what a system will do, instead

of focusing on the solution and how a system will do it [43]. Problem analysis starts

with problem identification and proceeds through the construction of an appropri-

ate description. Configuring the problems in terms of subproblems is advantageous

because they can be analyzed separately and will consequently reduce the problem

complexity [43].

Jackson [43] introduces the use of problem frames to model context diagrams.

A context diagram consists of physical domains and interfaces between them. Do-

mains communicate or interact only at the direct interfaces. Each interface is a set

of shared occurrences, conditions and measurements, or phenomena, which are in-

dividuals (events, entities, or values) or relations (states, truths, or roles). Problem

frames are similar to other patterns in the sense that they describe a solution. Design

patterns focus on computers and software, whereas problem frames have a more gen-

eral, abstract view of the problem. Nevertheless, both identify and describe recurring

situations that a software developer may face.

Compared to our approach, problem frames focus solely on the problem, not

how the problem can be solved. Our requirements patterns capture information that

bridges between the requirements phase and the high-level design phase by provid-

ing structural and behavioral information that is applicable in the late requirements

and early design phase. Problem frames are applicable in the motivation section of

our requirements patterns template to further capture the problem that the pattern

addresses and future research could explore this application.
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6.3 Requirements Patterns Via Events/Use-Cases

Robertson [67] describes an approach to capture recurring patterns in the

event/use-case model of different systems, which she terms requirements process pat-

terns. Each requirements process pattern is bounded by the input, output, and stored

data and represents a mini system. The requirements process patterns focus on cap—

turing behavioral information in the form of use-cases; some also capture structural

information in requirements data models that support one event/use—case to aid the

understanding of complex system.

To capture a requirements process pattern, similar events are generalized to a

pattern that is stored in a template similar to the GoF template [28]. Use-case

models are the central component of a requirements process patterns. Additional

information is given in the template as prose text and requirements data patterns.

The requirements data patterns are captured as entity relationship diagrams that

describe the business entities and relationships that have to exist in order for the

system to respond to an event.

In contrast to our requirements patterns, the requirements process patterns focus

on events/use-cases and capture only structural information specific to one event/use-

case, while an essential part of our requirements patterns is the structural and behav-

ioral information that can be used for the late requirements engineering and high-level

design process and the validation of a system. Furthermore, no formal description lan-

guage is used to describe properties of a pattern in the requirements process patterns

for verification purposes.

6.4 Goal-Driven Requirements Engineering

This section introduces two approaches that focus on the goals a software system

has to achieve and how those goals are captured in the requirements and design phase
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of the software development process.

6.4.1 KAOS

Lamsweerde et al. developed KAOS (Knowledge Acquisition in autOmated Spec-

ification) [19], an approach to support a goal-driven requirements engineering ap—

proach. Driving forces behind KAOS are the reuse of knowledge and the application

of machine learning. KAOS offers a metamodel for capturing initial requirements

and a strategy for the requirements acquisition process. Requirements are modeled

in terms of agents, goals, objects, etc. A rich formal language makes it possible to

capture functional as well as non-functional requirements in a precise as well as an in-

formal way. For example, an entity is an object that may have an assigned invariant;

an invariant for a book in a library system could formally specify that the book must

be either available, checked out, or lost. Other important aspects in KAOS are proof

and derivation techniques that cover different abstraction levels. The goal structure

of a system can be refined down to objects and actions and traceability between the

different levels maintained.

Experience with KAOS showed that correct goal refinement is a difficult task.

Therefore, Darimont et al. [20] developed patterns for the refinement of goals and

reasoning at the goal level. They showed how to provide formal support for building

goal-refinement graphs that are complete and correct, while integrating alternatives.

The use of these patterns makes transparent the mathematics needed to prove cor-

rectness, shows refinements that have to be checked for completeness and consistency,

as well as partial requirements that have to be completed, design choices that have

to be made explicitly, and alternative patterns for the same goal.

The KAOS approach is complementary to our approach. It focuses on high-level

goals of a system and the refinement of these goals. Subsequently, goals drive the

elaboration of requirements that will implement these goals. Therefore, KAOS can
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be used to elaborate the operations, objects, and constraints to be provided by the

software and obtain a formal verification that the specified requirements achieve the

high-level goals of a system. Once goals are refined and requirements are established,

our requirements patterns can be used in parallel to provide more domain-specific

requirements and high-level design knowledge. Furthermore, requirements patterns

provide a state-based description of the system behavior that gives guidance as to

how to refine the behavior in subsequent development stages and to prototype the

system using the UML formalization framework by McUmber [57, 14].

6.4.2 From Non—Functional Requirements to Design through

Patterns

Gross and Yu [32] connect design patterns with non-functional requirements

(NFRs), such as extensibility and reusability. Their approach offers a systematic

way to relate NFRs to system design through the use of design patterns. They

investigate how these non-functional requirements can provide guidance and reason-

ing support when applying design patterns during the software development process.

Their approach represents requirements as design goals and non-functional require-

ments are termed softgoals because they usually do not have a clear-cut measure

for achievement. Subsequently, they examine how design patterns can contribute to

these goals.

NFR goal graphs are used to relate the operational softgoals as consequences of

a pattern application to the NFR softgoals of the system. Relationships are drawn

between the goals to illustrate the contributions between goals. A positive contribu-

tion is denoted by “Make” and “Some+”, While a negative contribution is expressed

with “Break”, “Hurt”, and “Some-”. Functional elaborations, containing functions

and functional goals of the system, are used to express the contributions of design

decisions to the softgoals.
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In contrast to requirements patterns, NFR goal graphs focus on non-functional

requirements and the explicit connection to design decisions, while requirements pat-

terns capture functional as well as non-functional requirements knowledge. NFR

goal graphs also do not capture structural, behavioral, or formally specified infor-

mation about requirements or high-level design. We have also constructed a matrix

that shows the effects of requirements pattern application on several non-functional

requirements.

6.5 Scenario-based Requirements Engineering

Sutcliffe et al. [76] described a scenario—based approach to requirements engi-

neering and requirements reuse. A scenario is defined as “one sequence of events that

is one possible pathway through a use-case.” Initially, use—cases are used to model

the system functionality and behavior. Those use-cases are associated with related

systems in a library of application classes that share the same abstraction. Sub—

sequently, a browsing tool uncovers generic requirements inherent to the identified

application class and scenarios are generated by walking through each possible event

sequence of the use-cases. Finally, the requirements can be evaluated, by inspection

or semi-automatic, using information provided by the generated scenarios.

Differing from our requirements patterns, scenario-based requirements engineer-

ing focuses on requirements validation and reuse through scenarios. The scenario—

based approach does not try to convey high-level structural and behavioral informa-

tion. Scenarios are used to validate the requirements semi—automatically, while our

requirements patterns convey reusable requirements specification knowledge and facil-

itate a verification of the system specification. Therefore, like KAOS, scenario-based

requirements engineering can be used in a complementary fashion to our requirements

patterns.
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6.6 Architectural Patterns

Creating a “good” architecture of a software system is difficult and requires a

great deal of design knowledge. Architectural Patterns, like other software patterns,

attempt to capture this knowledge. They describe an architectural style, the overall

organization of components and their interactions [72]. Shaw [72] presents some com—

mon architectural patterns, such as the pipeline architectural pattern that describes

useful techniques when a series of independent computations can be performed in a

sequential fashion.

Shaw uses a template similar to the original template by Alexander [3] to convey

the problem and the solution the pattern offers. “Box-and-line” diagrams describe

the components and connectors in a pattern; different shapes are used to indicate

structural differences among the components. Components correspond to the compi-

lation units or user-level objects of the systems, whereas connectors of the components

are not necessarily compilation units. Connectors mediate the interaction between

components, such as a server supporting multiple simultaneous connections [72].

In contrast to requirements patterns, architectural patterns focus mostly on de-

sign or implementation issues of components in a system. Architectural patterns

impose an overall structure on a software system or subsystem in a high—level design

description.

Several architecture description languages (ADLs) have been developed for de-

scribing software architectures. Some ADLs are rigourously formalized, helping soft-

ware engineers to describe and understand large software systems without ambigui-

ties. On the other hand, UML is widely used by practitioners and researchers, and

numerous support tools exist [61]. Efforts have been made to support mappings from

ADLs to UML and vice versa, to enable software developers to use the formalism

of ADLs and, at the same time, have the advantage of numerous tool support for

UML [61]. Our requirements patterns focus on requirements-level information and
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high-level UML design specifications, where the hardware and software components

have been identified. But the details of the software architecture are not depicted. A

mapping to a formal specification language is provided by the formalization frame-

work developed by McUmber et al. [14, 57].

6.7 Embedded System Design Patterns

Embedded systems are real—time systems that interact with real world entities.

These interactions can become fairly complex. Therefore, the following issues are

important for embedded systems and have been addressed by a number of design

patterns specific to embedded real-time systems [25]:

e Real-time response

0 Failure recovery

0 Distributed architectures

e Asynchronous communication

0 Race conditions and timing

EventHelix.com [25] presents patterns addressing these issues. Those patterns

capture key issues in the design of real-time systems and use a template similar to

that used by Gamma et al. [28]. Most of the patterns contain only prose descriptions

and sample code, while some use class and sequence diagrams to capture structural

and behavioral information.

In contrast to our approach, those patterns focus on the design and implemen-

tation stages of real-time systems. Many patterns focus on technical details of com-

mon embedded system architectures, such as signaling schemes. Our requirements

patterns, when applicable, refer to these patterns in the Design Patterns field for

refinement purposes.
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6.8 Real-Time Design Patterns

Douglass [21, 22] describes real-time design patterns that are applicable for em-

bedded systems. The real-time design patterns appear to have a broad spectrum of

design detail. Some of the real-time design patterns are high-level and address hier-

archical composition of system elements, while other real-time design patterns focus

on low-level design information, such as deadlock avoidance strategies.

Douglass uses a pattern template similar to that used by Gamma et al. [28].

Various UML diagram types, such as class, state, and sequence diagrams, are used

to depict structural and behavioral information. Additionally, prose text is used to

convey additional information, such as implementation strategies.

Like our requirements patterns, real-time design patterns focus on embedded

systems. They differ in that the real-time design patterns emphasize architecture and

design. In contrast to our requirements patterns, implementation—specific details are

given, such as concrete class interfaces and implementation strategies. while diagrams

that capture external behavior, such as use-case diagrams, are rarely used. Further-

more, requirements that should be satisfied in the context of a requirements pattern

are not formally specified. Our requirements patterns refer to the real-time design

patterns for refinement purposes in the Design Patterns field.

6.9 Formal Methods for Requirements Engineer-

ing

Formal methods have become increasingly more popular for the requirements

engineering process. This section overviews a transition-based approach, Software

Cost Reduction (SCR) [37], a state machine-based approach, Requirements State

Machine Language (RSML) [35], and a reuse-based approach using the Prototype
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Verification System (PVS) [71].

6.9.1 SCR

SCR [37] is a formal method to specify requirements of safety-critical systems.

SCR* is an integrated tool suite supporting the SCR method. A main goal of SCR*

is to provide formal method usage at low cost by making it accessible to even non-

domain experts. An SCR specification captures the required behavior of a system as

the composition of a non-deterministic environment and a deterministic system. The

environment contains monitored and controlled quantities and non—deterministically

produces a sequence of input events. The system behavior is assumed to be syn-

chronous. Using SCR*, the specification can be analyzed using a consistency checker,

a simulator, and a model checker.

To capture requirements in SCR*, a combination of tables and dictionaries is

used. Responses to input events are specified in the tables, while dictionaries define

static information, such as user-defined types. A dependency graph browser can be

used to capture dependencies among variables in an SCR specification as a directed

graph, thereby facilitating the understanding of large specifications.

Similar to our approach, SCR* can use Spin for model checking. In contrast, SCR

captures no structural information that provides a bridge to the high-level design

of a system. Furthermore, in our requirements patterns, behavior is captured as

UML state machines, while SCR uses a tabular notation. Building on this structural

and behavioral information and in combination with our constraints templates, our

requirements patterns also offer effective means to make model checking accessible

for non-domain experts.
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6.9.2 RSML

RSML is a specification language for capturing the specification of reactive sys-

tems [35]. The behavior of an RSML specification must be described as a mathemat-

ical function. Thus, the specification can be checked for various properties, such as

consistency and determinism. Furthermore, the completeness of the specification can

be guaranteed [35].

RSML specifications are specified as state machines, including several features

developed by Harel [34], such as superstates, AND decomposition, and transitions.

The guarding conditions on transitions are specified in so—called AND/OR tables that

describe the conditions in disjunctive normal form (DNF)

In contrast to our approach, no structural information is captured. Guarding

conditions of transitions are specified as tables in RSML, while our approach uses

the UML notation for transitions. Furthermore, our approach makes it possible to

easily check for adherence to certain properties by specifying the property in LTL

and invoking a model checker, while checking for non-reachability of hazardous states

is currently not possible in RSML. Additionally, RSML does not have the graphical

tools for visualization and validation that our approach has.

6.9.3 Reuse of a Formal Model for Requirements Validation

Lutz [55] investigates how the design decisions in an already completed project

could influence and drive the requirements engineering process in a second, similar

project. The goal is to take lessons learned from the first project and apply them to

the second project in a structured, but informal way.

In the projects, object-oriented modeling approaches, using object diagrams, data

flow diagrams, and state diagrams, are used, as well as the PVS theorem prover [71].

The formal specification contains a formally specified generic model of the system

behavior. This generic model is reused for the requirements validation of the second
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project. At a fairly high-level of abstraction in the model, more commonalities can be

found between the two projects. Therefore, the reuse is more effective at this level.

Requirements patterns abstract and generalize requirements knowledge found

in several embedded systems in order to make the general information more likely

to be applicable to and reusable by other systems. The approach described Lutz

describes how to use a specific system model and apply it to a different model with

similar behavior. From the perspective of our research, it is worthwhile to note that

she determined that reuse is possible at a high level of abstraction because more

commonalities between systems exist on this level. The focus on reuse of a formal

specification of the system behavior is related to our use of LTL pattern templates to

formally describe constraints that have to be satisfied in the context of a requirements

pattern.
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Chapter 7

Conclusions

Our work with requirements patterns has yielded three main contributions: a

requirements patterns template that assists developers in the modeling of embed-

ded systems; specification-pattern-based constraints that enable an embedded system

model to be checked for adherence to critical properties; and extensions to the UML

formalization approach by McUmber et al. [57, 14] that enable checking of timed

system models. We describe these contributions in more detail below.

First, we have found the requirements patterns to be useful in the requirements

engineering process for embedded systems. Due to the small number of classes typi-

cally found in embedded systems, even a small number of requirements patterns can

greatly assist new developers in the specification of embedded systems. The informa-

tion provided in the template enables developers to understand the consequences of

a pattern application, as well as helps avoid common errors even if a pattern is not

fully applied. Furthermore, the application of patterns among several systems leads

to uniformity among these systems, thereby greatly enhancing the understandability

and maintenance of the systems, as well as potentially facilitating reuse at the design

and code levels.

Second, the specification-pattern based constraints templates provided by our
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patterns enable even formal methods novices, in combination with the UML formal-

ization tool suite, to check a high-level system description captured in the require-

ments engineering process of an embedded systems for adherence to critical properties.

Furthermore, it is possible to use the simulation capabilities of the UML formalization

framework as a means to prototype a system model. This verification of validation

questions and prototyping is of special interest for embedded systems development,

where a system failure could have dangerous consequences.

Finally, during the application of our verification approach to several embedded

systems, we found that verifying untimed properties is sometimes not sufficient. A

liveness property might be satisfied in an untimed context, while the dense-time live-

ness property leads to a violation. Therefore, our timing extensions [47] to the UML

formalization framework by McUmber et al. [56] provide a means to add timing infor—

mation to the high-level model of an embedded system. The extensions were applied

in a straight—forward manner to ensure compatibility with the existing formalization

framework as well as ease in use. Those extensions greatly enhance the capabilities

of the formalization framework to uncover errors in the requirements of an embedded

system. Finding such errors during the requirements engineering process makes it

possible to fix errors before they are propagated in subsequent software development

phases and become more expensive to correct [54].

There are several possible directions for future work. The requirements pattern

repository can be extended with other requirements patterns for embedded systems as

well as expanded to other domains, such as the distributed systems domain. Abstrac-

tion techniques could be explored to keep the model checking portion of the analysis

tractable. Other related patterns could also be analyzed as to how they could be inte-

grated into the requirements patterns, such as diagnostic patterns [80]. Fhrthermore,

the formalization framework could be extended to better support the approach used

by our requirements patterns. This extension would include automatic instantiation
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and generation of claims as well as having native support for the equivalence classes

defined during our requirements engineering process.

168



APPENDICES

169



Appendix A

Additional Case Study

This chapter describes how we applied our modeling and analysis process to an

untimed high-level description of an automotive application obtained from one of

our industrial partners, Detroit Diesel. Specifically, we depict an embedded system

controlling a self-cleaning particulate filter that reduces the amount of pollutants

emitted from the exhaust of diesel trucks. We illustrate how several requirements

patterns interplay to guide the creation of a system model and formal constraints,

and how MINERVA [14] and Hydra [14, 56] enable simulation and model checking with

SPIN [41].

A.l Modeling the Diesel Filter System

A. 1 . 1 Application Overview

An effective way to reduce particulate combustion aerosols, or soot, from diesel

truck exhaust is to use particulate filters placed in a canister and inserted into the

exhaust gas path. A filter comprises several tubes, with each tube consisting of

ceramic fibers wound around a metallic cylindrical grid. Exhaust gas flows through

the filters, out of the canister, and into the exhaust pipe. To enable the exhaust gas to
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flow freely through the filters, they must be cleaned periodically. Therefore, the grid

wires can be electrified, causing them to heat up and burn off trapped particulates.

The Diesel Filter System (DFS) is an embedded system that initiates a cleaning cycle

when the differential pressure across the filter canister, as measured in Pascals (Pa),

is within an acceptable range. The grid heating sequence will not begin if too few

engine revolutions have occurred since the last time the cleaning cycle was completed,

or the current engine revolutions per minute (RPMs) are too low.

A.1.2 Requirements Patterns for the Diesel Filter System

We present four requirements patterns that we identified to be appropriate for

this system based on the DFS requirements [79]: Actuator-Sensor (38), Fault Handler

(63), Watchdog (48), and User Interface (82) Patterns. Figure A] illustrates how

the information in the Structure section of these patterns can be used to guide the

creation of a preliminary UML class diagram for the DFS. The ComputingComponent,

shown in bold in Figure A.1, plays a role in all four patterns.

Actuator-Sensor (38) Pattern: The Actuator-Sensor (38) Pattern, denoted by

dashed boxes and lines, shows how abstract sensor and actuator classes are used

to give a common interface to the concrete sensors (CurrentMirrors, PressureSen-

sor) and actuators (DriverDisplay, HeaterRegulators) in the DFS.

Fault Handler (63) Pattern: The FaultHandler, illustrated with a dash-dotted

box and lines, controls the ComputingComponent to initiate safety actions when

errors occur. It also controls the Userlnterface, warning the user that errors have

occurred.

Watchdog (4 8) Pattern: The Watchdog, denoted by a striped box and long-short-

short dashed lines, monitors the PressureSensor. If it detects a violation of
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System

Figure A.1: Requirements-pattern-guided UML class diagram of the Diesel Filter
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the maximum pressure value, then it notifies the FaultHandler of the error and

initiates an emergency shutdown in the ComputingComponent.

User Interface (82) Pattern: The User Interface (82) Pattern is represented by

the shaded boxes and lines. The Userlnterface controls only one boolean indi-

cator, the DriverDispIay, which represents a simple warning device such as an

indicator light.

A.1.3 Abstraction and Equivalence Classes

Abstraction can significantly reduce the state space needed to perform model

checking; we use two techniques. First, we model only those portions of the system

that are relevant to our focused analysis. In this study, we are interested in specifying

and analyzing the DFS cleaning cycle. We model only those components relevant to

this analysis. Additionally, we also abstract the number of heater regulators and

their corresponding current mirrors from eight in the actual system down to two in

our model.

Second, we determine equivalence classes for the possible values of system con-

ditions. These equivalence classes are determined according to their impact on the

behavior of the system. Generally, the operational status of a component is rep-

resented as non-working (false) or working (true), as shown in Expression (A1) in

Figure A.2. We model the operational status of the PressureSensor, HeaterRegula-

tor1, and HeaterRegulator2. Ranges for other monitored values (e. 9., current system

pressure, number of revolutions of the engine since the last cleaning cycle, current

engine speed) can be determined from the requirements document, as shown in Ex-

pressions (A2), (A3), and (A.4), respectively in Figure A2 (00 represents the target

language-dependent upper bound). We also introduce physical abstraction values for

modeling purposes (Figure A.2, Expressions (A5) and (A.6)). These values represent

the interaction between components due to existing physical relationships (e. g., how
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much the current pressure decreases after every successful cleaning cycle in the DFS).

 

0 (non—working)

(Component)0perationState = { (A.l)

1 (working)

Each component in the system can report its operational status as working or non-working. We are particularly

interested in the status of the sensor PressureSensor and the actuators HeaterRegulatorl and HeaterRegulator2.

[0; 8,000]

CurrentSystemPressu-rez (8,000; 10,000] (A.2)

(10,000; 00)

Below 8,000 Pa the system remains in an idle phase; between 8,000 and 10,000 Pa the cleaning cycle starts; above

10,000 Pa the system shuts down for safety reasons.

[0; 10, 000)

[10, 000; do) (A3)
TotalRPAlValue = {

The total number of engine revolutions since the completion of the last cleaning sequence must be at least 10,000;

otherwise, the cleaning sequence will not start.

[0; 700)

[700; cc) (AA)

CurrentRPlIII/alue = {

The current engine speed, measured in RPMs, must be at least 700; otherwise, the cleaning sequence will not

start.

—250

PressureSensorCleanupValue = 300 (A5)

3, 000

This value determines how much the pressure decreases each time a heating element is activated. A negative

value resembles a defective heating element, letting the pressure rise in every cleaning sequence.

2

HeaterCurrentConversionRatio = 3 (A.6)

4

This value determines the amount of increase of the current mirror value per increase of the respective heating

element value. The lower the heater current conversion ratio, the faster the current value will increase on a heater

value increase.   
 

Figure A.2: Equivalence classes for system conditions

A.1.4 UML Modeling for the Diesel Filter System

Based on Figure A1 and our abstractions, we created UML object and state dia-

grams to model the DFS. Figure A.3 overviews the UML object diagram for the DFS

(attributes and methods have been elided; components attributed to the different

patterns retain their shading/line characteristics from Figure A1). The Comput-

ingComponent, the core of the system, reads values from the sensors PressureSensor,

CurrentMirrorl, CurrentMirror2, and the EngineControIUnit. It also sets the values
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of the actuators HeaterRegulatorl and HeaterRegulator2. The PressureSensor senses

the current pressure. The EngineControIUnit models an interface to the engine con-

troller to check the current engine speed (RPMs) and the total number of revolutions

since the last cleaning cycle. Each CurrentMirror senses the amount of electrical cur-

rent flowing through its respective HeaterRegulator. The FaultHandler processes error

messages received and takes appropriate actions (defined in the FaultHandler state

diagram which is not shown due to space constraints). The Watchdog monitors the

PressureSensor, notifying the FaultHandler and shutting down the ComputingCompo-

nent if the pressure exceeds 10,000 Pa. The Userlnterface controls the DriverDispIay,

which represents a simple warning light. Additionally, our approach incorporates two

special classes, an Environment class that defines the equivalence classes for system

conditions of the environment as depicted in Figure A2, and a SYSTEMCLASS-

class that represents the aggregation of the main components of the system and non-

deterministically selects values for the system and environment conditions according

to the specified equivalence classes.

In our approach, each component has its own state diagram; however, due to

space constraints, we show only the (elided) state diagram of the ComputingCompo-

nent, the central component of the DFS, in Figure A.4. The structure of this state

diagram follows that of the state diagram given in the Behavior section of the Fault

Handler (63) Pattern [49] in Section 3.4.5. Specifically, it has the state PowerOff and

the composite states Initialize and NormalBehavior (elided in Figure A.4). Further-

more, the three states GetPressurel, GetPressure2, and Idle represent the Idle phase

of the DFS where the system continuously queries the PressureSensor and initiates a

cleaning cycle if the pressure is found to exceed 8,000 Pa. (The dashed and bolded

transitions and the italicized elements are added as later refinements based on anal-

ysis feedback; they are included in this figure due to space constraints and will be

described in the next section as part of the analysis process.)
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Figure A.3: UML object diagram of the abstracted Diesel Filter System

The DFS performs three main steps. First, on system activation, the DFS enters

an Initialization phase. If the initialization is performed successfully, then the system

enters an Idle phase. While in the Idle phase, the system continuously checks the

current system pressure. If a failure occurs during the initialization, then the system

shuts down.

Second, if the differential pressure in the filter container exceeds 8,000 Pa, then

the cleaning cycle is started. At the beginning of the cleaning cycle, the system waits

for the total number of revolutions since the last cleaning cycle and the current RPMs

to pass their thresholds of 10,000 and 700, respectively. In a cleaning sequence, each

operational heater element is ramped up to burn off trapped particulates and ramped

down afterwards. During the ramp-up process of each heater element, the system

monitors the current on the corresponding current mirror to detect excess conditions

and accordingly ramps down the heating element.
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Figure A.4: UML state diagram of the ComputingComponent (elided)
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Third, after the completion of the cleaning cycle the DFS returns to the Idle

phase, waiting for either the pressure to exceed 8,000 Pa again or a system shutdown

message to arrive.

A.2 Analysis Using Requirements and Specifica-

tion Patterns

After we used MINERVA to construct UML diagrams of the system, we used Hy—

dra to generate an executable specification of the system in terms of Promela. Briefly,

objects are captured as proctypes that communicate via channels using queueing

semantics [16, 56]. In this section, we examine two requirements for the DPS. In each

case, we give the prose requirement, the relevant requirements pattern(s) in bold

italics, the relevant specification-pattern-based constraint(s) from the Constraints

section of each requirements pattern, the instantiated constraints checked against the

generated Promela specification, the analysis results (including visualizations), and

the corrective actions taken.

A.2. 1 Requirement 1

 

It should never be the case that the PressureSensor is non-operational and yet the

system power is on.
  
 

Fault Handler (63) Pattern Constraint: If system initialization fails, then the

system should remain in a powered-off state.

CK! (‘ ‘Initialization failed’ ’ && ‘ ‘System power is on’ ’)) (A.7)

Instantiated Constraint: In our DFS model, system initialization has been ab-

stracted to check the operational status of the PressureSensor, represented by the

attribute PressureOperationState. Its possible values are zero (not working) and
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one (working). The power to the ComputingComponent, the core of the system, is

represented by the attribute PowerStatus. Its possible values are zero (off) and one

(on).

C](! ((PressureSensor.PressureOperationState == 0) (A8)

&& (ComputingComponent.PowerStatus == 1)))

Analysis Results: SPIN detected a counterexample. MINERVA generated a se-

quence diagram1 from the counterexample in terms of the UML objects in our model.

However, the generated sequence diagram indicated only that the ComputingCompo—

nent began its initialization phase by querying the PressureSensor operational status,

and received a CCFail message indicating that the PressureSensor was not work-

ing. Without more information, it was difficult to determine the cause of the error.

MINERVA can also animate the UML state diagrams based on trace data from the

SPIN counterexample. State diagram animation of the entire model revealed that

the ComputingComponent unexpectedly reached (and became deadlocked in) state

GetPressure2. Figure A.5 shows the human—readable report generated by MINERVA,

only those animation steps pertaining to the ComputingComponent state diagram

(Figure A.4).

Corrective Actions: We determined that the problem was unintentional non-

determinism in the ComputingComponent state diagram. The italicized event “CC-

Fail” on the transition with the dashed box in Figure A.4 unintentionally creates a

non-deterministic situation when the ComputingComponent leaves state CheckPres—

sureSensor2 on a CCFail event. We changed the italicized event to the correct event,

“CCOK”, in the state diagram and regenerated the specification. SPIN verified the

 

1MINERVA’S sequence diagram illustrates the order in which messages were sent between UML

objects during a particular trace. In contrast, SPIN generates Message Sequence Charts (similar to

sequence diagrams) that depict message communication at the level of Promela processes, rather

than UML objects.
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1. Object “ComputingComponent” transitions from state “Initial”

to state “PowerOff” on event “modelstart”

2. Object “ComputingComponent” transitions from state

“PowerOfI” to state “Initialize” on event “PowerOn”

3. Object “ComputingComponent” transitions from state “Initial”

to state “CheckPressureSensorl” on event “modelstart”

4. Object “ComputingComponent” transitions from state “Check-

PressureSensorl” to state “CheckPressureSensor2”

5. Object “ComputingComponent” transitions from state “Check-

PressureSensorZ” to state “GetPressurel” on event “CCFail”

6. Object “ComputingComponent” transitions from state “Get-

Pressurel” to state “GetPressure2”    
Figure A.5: Animation trace of the ComputingComponent state diagram (Requirement

1)

claim after 2,616,630 transitions.

A.2.2 Requirement 2

 

 

If the Watchdog detects a violation, then the system should turn off.
  

Watchdog (48) Pattern Constraint: If a violation of the system requirements is

found, then the Watchdog should start the corresponding recovery action appropriate

to the system being modeled (e.g., begin error recovery, reset the device, shut down).

CK ‘ ‘Violation’ ’ —> 0(‘ ‘Start recovery action’ ’)) (A.9)

Instantiated Constraint: The attribute Violation represents whether or not

the Watchdog has detected a violation. Its possible values are zero (no violation has

been detected) and one (a violation has been detected). The attribute PowerStatus

represents whether or not the ComputingComponent is on. Its possible values are

zero (power is off) and one (power is on). Therefore, the instantiated claim is: It

is always (Cl) the case that when a violation occurs, then eventually (<>) the DFS
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powers off.

D((Watchdog.Violation == 1) —> (A.10)

0(ComputingComponent.PowerStatus == 0))

Analysis Results: SPIN detected a counterexample, from which MINERVA gener-

ated the (elidedz) sequence diagram shown in Figure A.6. In this diagram, the Com—

putingComponent queries the operational status of the PressureSensor and receives a

CCOK message, indicating that the PressureSensor is working. It then requests the

current system pressure. However, the PressureSensor notifies the Watchdog that the

current system pressure exceeds 10,000 Pa. The Watchdog then sends a ShutdownES

message to the ComputingComponent and an error code to the FaultHandler, indicat-

ing that a violation has been detected. The FaultHandler notifies the Userlnterface,

which then activates the DriverDispIay. However, the sequence diagram does not pro-

vide enough information to determine the cause of the error. (The expected behavior

of the ComputingComponent upon receiving a ShutdoumES message is to power off.)

State diagram animation of the entire model, however, reveals that the Computing-

Component becomes deadlocked in state GetPressure2 rather than returning to state

PowerOff.

Corrective Actions: We determined that the problem was a missing transition in

the ComputingComponent state diagram that unintentionally created a deadlock in the

state GetPressure2. We added a transition from state GetPressure2 to state PowerOff

to handle event ShutdownES (depicted by the dashed transition in Figure A.4) and

regenerated the specification. SPIN verified the claim after 3,028,470 transitions.

 

2All interactions between the -SYSTEMCLASS- or Environment classes and the other components

of the system have been elided, including the initial PowerOn message sent to the ComputingCompo—

nent. The lifelines of all objects not participating in the message exchange depicted by the sequence

diagram have been elided.
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Figure A.6: Elided UML sequence diagram (Requirement 2)
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A.2.3 Requirement 3

 

If the Watchdog detects a violation, then a warning light turns on. Constraints

from several requirements patterns combine to specify this requirement. Upon

detecting a violation, the Watchdog interacts with the FaultHandler. Upon receiving

an error message, the FaultHandler interacts with the Userlnterface. Finally, upon

notification from the FaultHandler, the Userlnterface takes appropriate action, in

this case turning on a warning light. The three constraints are described below:   
 

Watchdog (48) Constraint: When a violation is found, a message containing

the appropriate error code should be sent to the FaultHandler (indicated by the

keyword sent).

El(‘ ‘Watchdog Violation’ ’ —-> (A.11)

O(“Report error to fault handler”))

Instantiated Constraint: We model only one type of violation, sending the error

code “200” to the FaultHandler.

D((Watchdog.Violation == 1) —> (A.12)

O(sent(FaultHandler.StoreError(200))))

Analysis Results: SPIN verified this claim after 2,362,780 transitions.

Fault Handler (63) Constraint: When an error message is sent to the Fault-

Handler, it should activate the appropriate user interface warning level.

C](‘ ‘Error reported to fault handler’ ’ —+ (A.13)

0(“Activate appropriate user interface warning level”))

Instantiated Constraint: We model only one type of error in our system, using

the code “200”. The possible values of the Userlnterface attribute WarningLevel are
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zero (no warning) and one (warning).

Cl (sent (FaultHandler . StoreError (200)) —> (A. 14)

O(sent(UserInterface.ActivateWarningLevel(1)))

Analysis Results: SPIN verified this claim after 4,283,420 transitions.

User Interface (82) Constraint: Upon receiving a warning, activate the

appropriate indicator devices, such as turning on an alarm or a warning light.

CK‘ ‘Warning level sent to user interface’ ’ —+ (A.15)

0(“Activate appropriate indicators”))

Instantiated Constraint: In the modeled system, a light in the actuator

DriverDisplay is represented by the attribute DriverDispIayValue. The possible

values for this attribute are zero (the light is off) and one (the light is on).

El ( ( sent (UserInterface . ActivateWarningLevel (1) ) ) -+ (A. 16)

0(DriverDisplay.DriverDisplayValue == 1))

Analysis Results: SPIN detected a counterexample, and MINERVA generated a

sequence diagram (not shown). The messages of interest can also be seen as the

last two messages in Figure A.6. Although the Userlnterface receives the message

Activate WarningLevel{1), indicating a warning, it sends the message SetDriverDis-

playValue(0) to the DriverDispIay, turning off the light. State diagram animation

revealed that the problem was an erroneous guard on a transition in the Userlnterface

state diagram. The italicized guard on the bold transition in Figure A.7(a) uninten-

tionally creates non-determinism in transitioning from the Check to the Idle state, and

erroneously allows the warning light to be turned off when it should instead indicate

a warning to the user. Figure A.7(b) shows, in human—readable form generated by

MINERVA, only those animation steps pertaining to the Userlnterface state diagram.
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The animation itself highlights in color the transition shown in bold in Figure A.7(a),

distinguishing which one of the transitions was taken.

Corrective Actions: We corrected the guard to compare the warning level to zero

and regenerated the specification. SPIN verified the claim after 4,283,420 transitions.

1. Object “Userlnter-

face” transitions

from state “Initial”

to state “Idle” on

event “modelstart”

2. Object “Userlnter—

face” transitions

from state “Idle”

[1 / A__8Y8Tfl(CL_A88_.roady to state “Check”

on event “Acti—

vateWarningLevel

(WarningLevel)”

 

   

 

Activatoflamingnovol

3. Object “Userlnten

face” transitions

from state “Check”

to state “Idle” on

. . “

[Namingnovolu1] / ADr:1V.rD1.p1.Y
.COIldltlOIl ” Warn

. SetbrivorDilplayValuo (1) 1ngLevel=1

  

[Namingbovol.1] /‘Drivorniaplay

. SetbrivorDilplanluo (0)
  

  
 

(a) State Diagram (b) Transition Trace

Figure A.7: Animation trace of Userlnterface state diagram (Requirement 3)
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Appendix B

Example Promela Specification

This chapter contains the Promela code of the UML model in Figure 5.3 gener-

ated by Hydra.

 

#define min(x,y) (x<y->x:y)

#define max(x,y) (x>y->x:y)

chan evq=10 of {mtype,int};

chan evt=10 of {mtype,int};

chan wait=10 of {int,mtype};

mtype={

a. b.

st-End(
O
G
N
G
S
U
‘
A
O
J
D
H

10 };

11 typedef Timer_T {

12 bool timerwait;

13 short timer1=-1;

14 }

15 Timer-T Timer_V;

17 typedef Classl_T {

13 bool timerwait;

19 }

2o Classl_T Class1_V;

22 chan Classl_q=5 of {mtype};

23 chan C1assl_C=0 of {bit};

24 chan Composite1_C=O of {bit};

27 proctype C1assl()

2s {atomic{

29 mtype m;

30 int Composite1_pid;   
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31

32

33

34

35

36

37

38

39

40

41

4'2

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

8

82

H

83

84  

/*Init state*/

goto Start; skip;};

/* State Start */

atomic{skip;

Start: printf("in state Classl Start\n");

}

Start-G:

if

': atomic{Class1_q?a ->

Timer-V.timer1=O;

goto to_Composite1; skip;}

fi;

/* State End */

atomic{skip;

End: printf("in state C1assl.End\n");

}

if

': skip -> false

fi;

/* Link to composite state Compositel */

atomic{skip;

to_Composite1: Composite1_pid = run Composite1(m);

Composite1_C!1;}

atomic{Compositel_C?1; wait??eval(Compositel_pid),m;

if

:: atomic{m == st_End -> goto End; skip;};

fi;}

exit: skip

}

proctype Compositel(mtype state)

{atomic{ Compositel_C?1;

mtype m;

int Compositel-pid;

/*Init state*/

goto Wait; skip;};

/* State Process */

Process: atomic{skip; printf("in state Classl.

Process\n");

}

Process_G:

if

': atomic{l ->

Timer_V.timer1=O;

goto Wait; skip;}

°: atomic{Classl-q?b ->

Timer_V.timer1=-1;

wait!_pid,st_End; Composite1_Cll; goto exit;

skip;}

fi;

/* State Wait */

Wait: atomic{skip; printf("in state C1ass1.Wait\n");

}

Wait_G:
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85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

135

136

137  

if

atomic{Timer_V.timer1>=2 ->

goto Process; skip;}

atomic{ClassI_q?b ->

Timer_V.timer1=-1;

wait!_pid,st_End; Composite1_C!1; goto exit;

skip;}

atomic{Timer_V.timer1<=4 ->

Class1_V.timervait = 1;

Class1_V.timerwait == -> goto Wait_G;}

fi;

exit: skip

/* This is the universal event dispatcher routine */

proctype event(mtype msg)

{

mtype type;

int process_id;

atomic {

do

" evq??eva1(msg),process_id ->

evq??eva1(msg),process_id;

evt!msg,process_id;

do

if

evq??type,eval(process_id) ->

evq??type,eval(process_id)

else break;

fi

od

else -> break

od}

exit: skip

}

/* This is the timer process */

/* It increments timers and unlocks waiting processes */

active proctype Timer()

{

do

atomic{timeout ->

if

': Timer_V.timer1>=0

-> Timer_V.timer1++;

else -> skip;

fi;

Classl_V.timerwait=O;

}

od

}  
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