
.
.

u
.
»
v
-
"
°

"
a
b
-
4
1
K
}
a
r
-
M

3
.
9
-
.

n
»
.
.
.

‘
n

{
4
-
f
r
"
;

5
'

.

‘
"
”
1
%
.

v
a
c
-
m
s
»

.
J
D
U
’
.

>
4
.

~
g
.

.
.
.
.
m
.

l
.
’
f
{
«
.
.
—
n
¢

n
o
t
u
a
»

M
i
r
a
-
n
o
w
:
-
a

h
t

.,
’2
'.

.
m
a
g
fi

W
3
7
1
”
.
-
J
4
“

1
.
4
.
,

r
.
-
"
“
3
3

"
’

"
E
t
t
a
’
1
'

.
I
l
l
l
l

.
-

:
k
h
‘
r
u
m
u
a
u
J
-
W

f
k
‘
fi

3
L
"

‘1
:

v
“

3
3
5
4
.
.

3
:
7
3
p
"
?

.
n
-
d

\
-
1
v
‘

:
9
»

.

g
4

.
,

3
/
9
?

.I
1/
e
a '
3

I

t
h
i
g
h
‘

”
1
’
1
1
”
“
"
’
2
:

a
,
-

.

.

1
.
.
.
.
»

-
"

--
»~
z.
:<
.

News

3

104i

540(8lp34

* leriARY

Michioan State

U. .. .e.sity

This is to certify that the

dissertation entitled

ASAP FOR DEVELOPING ADAPTIVE SOF'IWARE WITHIN

DYNAMIC HEI'EROGENEOUS ENVIRONMENTS

presented by

wakaxglk>

has been accepted towards fulfillment

ofthe requirements for

Ompmmmtkdaxs
 Ph-D- degree in

Major professor

0mm

MSU is an Affirmative Action/Equal Opportunity Institution 0—12771

PLACE IN RETURN Box to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 cJCIRC/DateDue.p65-p.15

ASAP FOR DEVELOPING ADAPTIVE SOFTWARE WITHIN

DYNAMIC HETEROGENEOUS ENVIRONMENTS

By

Ran-Song Ko

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2003

ABSTRACT

ASAP FOR DEVELOPING ADAPTIVE SOFTWARE WITHIN DYNAMIC

HETEROGENEOUS ENVIRONMENTS

By

Ben-Song K0

As the improvement of hardware technology and increased deployment of wireless

infrastructures, computer systems are increasingly heterogeneous and dynamic. Het-

erogeneity and dynamic raise several challenges for software developers and users.

Such challenges are software portability, software or computing environments config-

uration, unexpected environments, and platforms with limited resources. A feasible

approach for these challenges is to develop adaptive software that may be aware of

environments and adapt itself.

We propose and implement the adaptive software architecture project (ASAP), which

includes the software framework (FRAME), Component/Constraint Markup Language

(CSML), and on-line adaptation, for the challenges under dynamic heterogeneous envi-

ronments. Software may have a list of constraints for the environment. During execu-

tion, software may use the list to determine whether the environmental changes, and

then the software responds accordingly. ASAP may support applications in different

domains, including ad hoc systems that are temporarily organized.

FRAME provides the APIs for adding adaptation to software. The adaptation and

functionality of software are separately specified and implemented under FRAME, and

hence, lessen development complexity. To further alleviate the complexity of de-

veloping adaptive software under FRAME, a high-level adaptive software specification

language, CSML, may be used to specify the architecture of the software system and the

constraints. The code for adaptation will be automatically generated by CSML. Then,

developers only need to inherit the generated code to implement the functionality.

To avoid an unnecessary performance impact, ASAP uses two different on-line adap-

' tation schemes, Brew and component reassembly, to let software respond to different

scales of environmental changes. For small environmental changes, peOple may use

Bret}! to repair the affected software Without terminating the software. Otherwise,

the execution of the software will be temporarily suspended to invoke the component

reassembly, and then resumed with appropriate implementations of the components.

Also, two approaches, partial reassembly and caching, are proposed to further reduce

the performance impact of reassembly.

Three different applications are used to evaluate various features of ASAP. The G0

game demonstrate the basic features of ASAP, including distributed component assem-

bly. The Java MPEG Player has time constraints, which may not be satisfied under

certain conditions and may be repaired by Brew. The last application demonstrates

how ASAP may be used to realize behavior-based approach for the adaptive robotic

control systems. Different performance results are also presented and discussed.

© Copyright 2003 by Hen-Song KO

All Rights Reserved

TO my family

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Dr. Matt W. Mutka, my major

advisor for his dedication and guidance throughout all the stages of the dissertation

and for particularly standing by me throughout my doctoral program at Michigan

State University. He allowed and even encouraged me to pursue my own interests,

fostered my independent thinking, tolerated and helped me overcome my frustrations.

He was a source of inspiration and a role model in many regards, especially discipline

and high level of professionalism.

I am especially indebted to the faculty members of eLANS research lab, Dr. Lionel

M. Ni and Dr. Abdol-Hossein Esfahanian, for their assistance in many aspects of

my time at eLANS, helping me through the difficult times, and their invaluable time

spent, with Dr. Chichia Chiu, on my committee.

I would also acknowledge all professors - too many to go through the list- who taught

me the advanced and excited knowledge in engineering and mathematics. Special

thanks also go to all my fellow students. They made the pursuit of my Ph.D. an

enjoyable and invaluable professional experience.

I wish to thank Dr. Ronald S. Harichandran in the Department of Civil and Environ-

mental Engineering for giving me the opportunity to work on the MFPDS pavement

project. It not only provided the first three years of financial support for my study,

but also a pleasant experience on cross-disciplinary research.

vi

Words can not express my appreciation and gratitude for the love, sacrifice, support,

and encouragement so generously given by wife, Su-Yin Li. Special thanks to my

daughter, Meg, and son, Albert, for bringing joy to my life.

Finally, I would like to dedicate this dissertation to my parents. Without their love

and moral support, it would not have been possible for me to complete this study.

Vii

TABLE OF CONTENTS

LIST OF TABLES xi

LIST OF FIGURES xii

1 Introduction and Motivation 1

1.1 Trend 1

1.1.1 Heterogeneity 1

1.1.2 Dynamic 3

1.2 Identified Problems 5

1.2.1 Software Portability 5

1.2.2 Software or Computing Environments Configuration 9

1.2.3 Unexpected Environments 9

1.2.4 Platforms with Limited Resources 10

1.3 Our Contribution 10

1.4 Possible Applications 12

1.4.1 Ad Hoc Systems 13

1.5 Structure of the Content 16

2 ASAP Overview and Literature Review 19

2.1 ASAP Overview 19

2.2 Pervasive Computing 21

2.2.1 Hardware 22

2.2.2 Software 27

2.3 Reflective System 42

2.3.1 Concept of Reflection 42

2.3.2 Reflective Language 44

2.3.3 Reflective Operating Systems 50

2.3.4 Reflective Middleware 52

2.4 Other Related Work 54

2.4.1 Architectural Description Languages 54

2.4.2 Real-Time Java 57

2.4.3 Computation Steering 58

2.4.4 Robot Control Systems 61

2.5 Summary 63

3 Adaptive Software Framework: FRAME 65

3.1 Motivation 65

3.2 Overview of FRAME 67

3.3 Components 74

3.3.1 Services 78

3.3.2 Constraints 78

3.3.3 Root Component 84

3.3.4 Component Stub 86

3.4 Component Assembly 87

3.4.1 Application Launcher 92

3.5 Discussion 93

3.5.1 Alternative Adaptation Approach 93

3.5.2 Components 95

3.6 Summary 96

4 Component/Constraint Markup Language (CSML) 98

4.1 Motivation 98

4.2 Overview of CSML 100

4.3 Root component specification example 102

4.4 Non-Root Component specification example 105

4.5 Launcher specification example 108

4.6 Summary............. 110

5 Orr-line Adaptation: Brew and Component Reassembly ' 112

5.1 Motivation ‘ 112

52 Java Steering System: Brew, 114

5.2.1-OverView.................................."114

5.2.2 Run-Time Data Collection and Visualization 115- -

5.2.3 Application Steering 118

5.3 Component Reassembly 122

5.3.1 Overview 122

5.3.2 Performance Analysis of Component Assembly 123

5.3.3 Performance Improvement 125

5.4 Summary 128

6 Application Demonstration and Performance Evaluation 129

6.1 Overview 129

6.2 The G0 Game 130

6.2.1 Application Description 130

6.2.2 The First Experiment: the Different Implementation of AI 130

6.2.3 The Second Experiment: Hetergeneous Multiple Platforms 133

6.3 MPEG Video Player 134

6.3.1 Introduction 134

6.3.2 Application Description 137

6.3.3 Constraints 140

6.3.4 MPEG player on JIT engine 143

6.3.5 MPEG player on interpreter engine 146

6.4 Self-Adaptive Robot 149

ix

6.4.1 Introduction 149

6.4.2 Application Description 151

6.4.3 Constraints 152

6.4.4 Performance Evaluation 154

6.5 Summary 160

7 Conclusions and Ifiiture Work 162

7.1 Conclusions 162

7.2 Future Work 165

7.2.1 FRAME 165

7.2.2 CSML 169

7.2.3 On—line Adaptation 170

APPENDICES 172

A CSML of the Java MPEG Video Player 173

A.1 CSML for the root component player 173

A2 CSML for the component displayer 174

A3 CSML for the component decoder 176

AA CSML for the component RTOS 177

BIBLIOGRAPHY . 179

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

LIST OF TABLES

Label of each component 78

List of the services of the GO game component 79

Complete parameter list for component board 81

Complete parameter list for component AI 81

Complete parameter list for component audio 82

Complete constraint list for component board 85

Complete constraint list for component AI. Here the fact that competition

level of GnuGO is higher than the competition level of Random means

that GnuGO is more intelligent than Random. , 85

Complete constraint list for component audio 85

CSML for the component board 103

CSML for the component audio 106

CSML for the component AI 109

CSML for the GO game launcher 109

Label of each component' '139

Complete parameter list for component player 139

Complete constraint list for component player 139

Complete parameter list for component displayer 140

Complete constraint list for component displayer 141

Complete parameter list for component decoder 142

Complete constraint list for component decoder 143

Complete constraint list for component RTOS 144

xi

1.1

1.2

1.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

4.2

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

LIST OF FIGURES

Architecture of an ad hoc system 15

A video player running on a PDA 16

A video player running on an ad hoc system 17

The separation of the adaptation shell and the functionality kernel for a

FRAME component 69

Flowchart of developing an application 71

Flowchart of executing an application 72

The interaction between a target platform, component registry and repos-

itory during the execution of an application 73

Software hierarchy under FRAME ‘ 75

Component Architecture 77

SoftwarehierarchyoftheGOgame .. 77

Non-Distributed Component Invocation , 87

Distributed Component Invocation _ 88

Flow chart of using CSML to develop a component 101

Flow chart of using CSML to specify a launcher 102

Brew is an interactive Java environment that people may visualize the

instrumented data and steer the remote applications. 115

On-line change of execution quality via Brew. 116

Architecture of Brew 117

Architecture of Brew 119

Software architecture 126

Flow of reassembly cache 127

GO game with Random implementation 131

GO game with GnuGO implementation 132

Response time of the GnuGO AI engine 134

CPU load of the GnuGO AI engine 135

Software hierarchy of an MPEG video player 138

Frames processing time of the MPEG player on Linux PC 144

The MPEG player is steered to meet the time constraint 145

Frames processing time of the MPEG player on Java VM with JIT engine 147

Frames processing time of the MPEG player on Java VM with interpreter

engine 147

xii

6.10 Time interval to display a frame for the MPEG player with and Without

CPU reservation 148

6.11 Software hierarchy of the simple robot application 152

6.12 Performance comparison for different component selection scheme 156

6.13 Performance factor over hard-coded if-else scheme for other different com-

ponent selection scheme 157

6.14 Performance comparison of cached reassembly and non-cached reassembly 157

6.15 Performance comparison of cached reassembly and if-else scheme 158

6.16 Performance improvement of cached reassembly over non-cached reassembly158

6.17 Constraints solving performance of reassembly 159

6.18 Memory usage comparison for ASAP and component—preloaded 160

xiii

Chapter 1

Introduction and Motivation

1.1 Trend

1 . 1. 1 Heterogeneity

The evolution Of modern computing and computer technology may be traced back

to the invention of the electronic digital computers, the Atanasoff-Berry Computer

(ABC) and Electrical Numerical Integrator And Calculator (ENIAC) [1]. Since then,

various scale of computers, from mainframe to handheld devices, have been developed

with notable improvements in hardware technology.

Computer processing capability has basically followed Moore’s law, which can be

summarized as “The number of active devices we can place on a given area of silicon

doubles every 18 months” [2] (This is actually a revision of Gordon Moore’s 1965

estimate of doubling per year and the later 1995 estimate of doubling every two years.)

This trend’s obvious consequence is that we can continue to increase the capability of

devices fabricated in a given area of silicon. Instead Of designing systems built from

separate board-level components, we can integrate diverse functionality onto a single

chip, resulting in remarkably compact consumer electronics. Similarly, the reduced

capacitance resulting from smaller transistor dimensions means that we can operate

these devices at higher speeds, increasing their effective performance. Additionally,

reduced transistor sizes decrease power consumption, alleviating some of the perpetual

problems surrounding energy storage technologies.

The combination of more transistors on a given area of silicon and a reduced power

budget has brought us the capabilities of mid-1980’s desktop computers in today’s

battery-operated, handheld PDAs. Two examples are the Motorola Dragonball [3]

and Intel StrongARM[4] processors, the most common processors used by today’s

PDAs. Besides providing low power consumption and high performance, these pro-

cessors integrate their DRAM and LCD controllers and a host of other interface I/O

capability on the same die.

Also important trend over the last decade is the emergence of specialized and task—

specific hardware, such as spell checkers, calculators, electronic translators, electronic

books, and Web pads. These devices have a specialized interface and address the

desired goal of ease of use. In contrast, a PC is a generalized machine, which makes

it attractive to purchase, the one-time investment having the potential for many

different uses. However, in the other ways it adds a level of complexity and formalism

that hinders the casual user.

Thus, we can conclude that future computing environments are becoming heteroge-

neous, in which computing environments composed Of a wide range of devices, with

diverse hardware architectures, operating systems, and purposes, interconnected net-

works.

1.1.2 Dynamic

Progress in wireless connectivity has increased. This area has witnessed two dis-

tinct development trends. The first is in short-range connectivity standards, such

as Bluetooth (IEEE 802.15) [5] and the IrDA (Infrared Data Association) [6] stan-

dards, which are primarily for simple device-tO-device communication. The second

trend is in wireless LAN technology, such as the ll-Mbit-per-second IEEE 802.11b

standard and the more recent 54-Mbps IEEE 802.11a standard [7], which allow for

communication cells that span many hundreds of feet with sufficient bandwidth.

- Wireless technologies provide for two basic needs: the ability to detect location and

' the more basic ability to communicate, which nourishes a mobile computing envi-

ronment. The document from Intel Corporation [8] reveals the trend of the future

computing environments. The data it cited from Gartner, Inc. [9] shows that

Market Trends Intel and third-party market research firms expect mobile

PCS to comprise a strong segment of the overall PC market, with Sig-

nificantly higher demand for notebooks in the Mobility market segment.

Gartner’s forecast through 2006 shows approximately 50 percent growth

in general PC sales, but 100 percent growth in the mobile PC segment

alone. In other words, mobile PC sales will increase twice as fast as the

overall PC market in the coming years.

Furthermore, the market research firm International Data Corporation (IDC) pre-

dicts [10] that

Just as important is the rapidly growing deployment of wireless LANS

and Bluetooth wireless technology, which are projected to reach adoption

rates in new notebooks of 80 percent and 94 percent respectively through

2006. Higher speeds, greater interoperability and lower prices are driv-

ing the rapid, widespread adoption of wireless LANS. In turn, wireless

connectivity enables new Mobility usage models, creating a user-driven

demand for wireless LANS in new locations.

Also, in [11], IDC says that the number of mobile workers in the US. will increase by

. 12.7 million between 2001 and 2006, from 92 million to 105 million. In contrast, the

number of workers who are not mobile will decline by 2 million through 2006, down '

to 53.8 million. What does this mean? By the end of 2006, almost two-thirds (66.0

percent) of US. workers will be classified as mobile workers. IDC’s research findings

include:

1. Mobile professionals will grow from 18.2 million in 2001 to 24.1 million in 2006,

driving the highest technology investment of any mobile segment.

2. Mobile non-travelers, the workers who rarely leave town but who are Often in

meetings or away from their desks, will grow by 10 percent annually to more

than 13 million in 2006.

3. “Occasionally mobile” workers, who travel less than 20 percent of the time, are

actually declining in number. But rather than retiring their carry-on luggage,

a growing number of these workers are graduating to the next level and joining

the more frequently mobile professionals.

Thus, we can conclude that the future computing environments are dynamic; i.e.,

the usage Of computers is not confined within a fixed location, and people carrying

computers may join and leave the environment at their will. Computing environments

may change during the execution of applications.

1.2 Identified Problems

Although hardware technology has significant improvements over years, unfortu— ~

nately, progress in the area of software has not matched the great advances in hard-

ware. Software has become the major cost of many systems because programming

productivity has not increased very quickly. Although new programming techniques,

such as object-oriented programming, have been developed to help relieve this prob-

lem, dynamic heterogeneous environments bring more challenges to the development,

deployment, and usage of software.

Several software issues are discussed in the following subsections.

1.2.1 Software Portability

Software development usually consists of several stages, including design, implemen-

tation, test, and maintenance. Most of these stages are platform dependent. Thus,

5

with the number of platforms increasing over time, to make software cross platform

portable may reduce the cost of software development on multiple platforms.

Based on amount of effort required for people to deploy and execute the software on

different platforms, software portability may be classified into several levels [12].

Source Code Portability

Cross platform compilability provides source code level portability. With careful

coding and help of some development tools, such as Autoconf [13] and Automake [14]

on various Unix-like environments, the source code of software may be compiled into

native code for various platforms. Nevertheless, it is probably difficult to deploy and

use the software. For example, the source code has to be compiled for the target

platform, either by vendors or users, and the computing environment needs to be

correctly configured, such as required hardware and shared libraries. The software

are usually distributed and executed in native code for a specific platform, and have

performance advantage.

Neverthelass, software vendors may not have enough resources to support and accom-

plish the compilation on every platform. If done by users, the source code needs to be

released to the users, which may not be practical for some vendors for the intelligence

property issues, and users may not have the development tools, such as the compiler

and linker, or knowledge to complete the compilation.

Bytecode Portability

Instead Of native code, the software may be compiled into platform independent

intermediate bytecode that will be executed by a program, usually referred to as a

virtual machine, rather than by the “real” computer machine, the hardware processor.

The software may be distributed in bytecode and is expected to work on any platform

as long as there is a virtual machine. It mitigates the difficulty for software deployment

and use, because recompilation for a target platform is not necessary.

The LISP language, used in artificial intelligence applications, is an earlier language

that uses the bytecode and virtual machine approach. Other languages that use

bytecode or a similar approach include Icon [15] and Prolog. More popular object-

oriented language, the Java platform - i.e., language, class library, and virtual machine

- prOmises “Write Once Run Anywhere,” which, if even reasonably approximated, also

proVides platform independent bytecode level portability. The execution in bytecode

has performance disadvantage, since extra work is needed for the virtual machine to

interpret the bytecode. However, the benefits of platform independency often out—

weighs the performance as machines become more faster, because Java may substan-

tially reduce software design cycle time, learning curve, development and maintenance

costs.

Performance Portability

While the bytecode and virtual machine approach might greatly alleviate the difficulty

of software portability, it does not apply in the performance- or resource-sensitive do-

main, such as real-time and multimedia, since it is impossible to predict the compu-

tation and resource capabilities of so many target platforms during the development

stage.

For instance, the correctness of the real-time software depends not only on the logical

result of the computation but also on the time at which the results are produced.

Two platforms with different capability may produce the results at different times.

The same application may run perfectly on a high-end machine but fail on a low-end

machine because the results it produces could not meet the real-time constraints.

Specifying the minimum requirements Of the target platforms to ensure correctness

may not solve completely solve this problem, since it limits portability. Furthermore,

run-time environmental changes, such as a user invoke another application that may

compete the same resource, still may cause failure of the execution.

In this situation, it might be desirable to lower the quality of output on a low-

end platform to meet the time constraints. Moreover, if a platform provides some

special functionality, such as QOS, the performance may improve if the software has

knowledge of the functionality and may take advantage of it. Therefore, to achieve

“same performance everywhere,” software may probe dynamically computation or

resource capabilities of the platform and reconfigure, or adapt, themselves to different

computing and communication environments instead of assuming a priori knowledge

of the capabilities of the target platform.

1.2.2 Software or Computing Environments Configuration

Obviously, software is getting complicated over time since more functionality is added

as technology improves. Software and the computing environment sometimes have

to be configured, such as existence of required libraries, matching of communication

ports, exchange of security information, resolution of conflict between software, and

so on. Without enough knowledge, it may be tedious for a user to get software to

function correctly.

The heterogeneity and mobility will make configuration more difficult. For example,

while a user watching a video on-line is moving around a building, the network traffic

may change several times during the moving. It is impractical for user to change

the resolution of video to maintain smooth playback. Also, the dynamic environment

may make this problem unavoidable even if the user stays in a fixed place. Thus,

to imprOve software usability under heterogeneous and dynamic environments, ”the

software must be able to configure themselves automatically to the environments.

1.2.3 Unexpected Environments

Computing environments keep changing and it is impossible for software developers

to model and predict what the computing environments will change over time. Un-

expected situations may happen, and software have to be terminated or even systems

need to be shut down for updating the system software for handling the unexpected

environments. However, it may not be practical for some mission critical systems,

since execution termination for updating system software is expensive and may lead

to disastrous consequences. Thus, for designing robust and fault-tolerant systems,

there are needs for software dynamically to update the code without termination.

1.2.4 Platforms with Limited Resources

As mentioned earlier, today, computer devices are becoming smaller. Special purpose

devices begin to emerge. For those devices with small form factors, such as mobile

devices, the computation and memory are scarce resource, and the devices may not be

able to execute some resource intensive software. However, if there are needs for such

software, it will be nice for these small devices to seek extra resources automatically

fmm environments.

For example, some computation intensive tasks may be automatically sent to, the.

machine with plenty of computation capability, or several devices may form an ad

hoc systems to perform the task together without too much human intervention.

Furthermore, a device with limited memory may only load part of the software;

that is, code may be dynamically loaded and unloaded as necessary to save memory

resources.

1.3 Our Contribution

To overcome the above problems, software need to be aware of the computing en-

vironment. Rather than assuming what the environment should have, software will

inquire what the environment has and makes an adjustment when the environment

has something missing. Software may have a check list, or called constraints in later

10

chapters, to gather information about the environments. Criteria of the check list are

specified during the development stage. During the execution, software may check

the list to determine if there is something wrong or has changed in the environment,

and then the software responds accordingly.

Nevertheless, specification of criteria raise challenges in complex software systems de-

velOpment, since the specified criteria may not be orthogonal. Because the criterion

is checked individually and sequentially, mutual dependency of criteria may lead to

false conclusions. For example, a video player may inquiry two criteria “Is it possible

to play back at highest speed?” and “Is it possible to play back at highest resolu-

tion?” Both may be true if individually checked, but may not be true at the same

, time, since performance usually declines when achieving better quality. The mutual

dependency of criteria needs to be considered. Moreover, today complex software

systems are usually collaborative projects. The criteria that individual developers

envision may sharply differ. While developers of higher level software are concerned

about overall performance, developers of lower level software may be only focused on

the performance of sub-tasks.

We propose and implement the adaptive software architecture project, or ASAP, fOr the

problems and challenges under dynamic heterogeneous environments. The research

problems we address are

0 How does software gather resource information about a broad range of comput-

ing environments?

0 How does software seek the best code for execution under specific environments?

11

o How may software be updated or repaired in response to changes in the com-

puting environment?

0 How may adaptation be easily integrated with the functionality of software?

0 How do users specify performance and the quality of software for the purpose

of enhancing performance portability?

o How do developers specify constraints and their dependencies for a variety of

levels of software?

0 How to minimize the performance impact of adaptation on the execution of

software?

1.4 POSSible Applications

There are many various possible applications of adaptive software in different do-

mains, particular the applications that need

Environment-awareness. Some applications may need information about the en-

vironment to provide better services. For example, how to quickly and conve-

niently retrieve useful and desired information may be the top priority for users.

Rather than downloading full multimedia content, web browser may be able to

automatically extract text only information if it is aware of the slow network

traffic, limited computation power, or battery capacity.

12

Portability. Some resource-sensitive applications, such as real-time, are not cross

platform portable, particular at the performance portability level. It may be

impractical to port the applications to every platform due to development cost.

Adaptation may be a feasible solution. For example, a video player may reduce

the resolution or drop the frames to boost the playback speed on mobile devices.

Robustness. For some mission critical systems, down time may be expensive. Some

examples may be e—commerce servers and robots used to explore unknown ter-

ritory. Software may sense system breakdown or unexpected events. Software

may be able to update itself without down time.

On-the-fly task assignment. Some missions of systems may be determined on-

the—fly. Thus, the code to handle the missions may be uploaded on—the—fly. For

example, a robot may be assigned to different missions at different locations

and different times. It may also be given a different mission for collaborative

tasks if there are other robots nearby.

In addition to above applications, one particular interesting application is to realize

ad hoc systems.

1.4.1 Ad Hoc Systems

As technology improves, small devices and task-specific hardware begin to emerge.

These devices usually have limited resource or have a specialized interface to ad-

dress the desired goal of ease of use. Each single device may not be able to handle

resource-intensive software with reasonable performance, quality, or ease of use. A

13

straightforward approach is to combine several devices to performance the task to-

gether.

As illustrated in fig. 1.1, instead Of running software on a cell phone, one may connect

several computers or smart appliances together to form an ad hoc system. The ASAP

will automatically distribute appropriate part of the code of the software to each

participating machine based on the criteria list. Then these machines will execute

the assigned code to accomplish the task collaboratively. Such a system is called ad

hoc because it is an unplanned and temporarily organized system, only for short-term

usage and execution for a specific task.

For example, a video player may run on a PDA as shown in fig. 1.2. Because of the

limited reSOurce form factors, the video and audio quality may not be as good as a

home, theater system, and the uSer interface may not be as intuitive and friendly as

a remote control. 1

Fig. 1.3 illustrates that the video player runs on an ad hoc system consisting of smart

LCD displayer, smart speaker, smart remote control, etc. Each participating machine

is designed for handling special tasks, such as the remote control for user input.

Appropriate software will be automatically distributed without human intervention.

For example, ASAP may distribute the code for handling video rendering to the LCD‘

displayer, the code for handling audio to the speaker, the code for user interface to

the remote control, and the code for decoding video stream to the desktop computer.

Therefore, instead of watching the video on a PDA, one may watch the video on a

temporarily connected ad hoc system with better performance, quality, and ease of

use.

14

Figure 1.1: Architecture of an ad hoc system

15

Figure 1.2: A video player running on a PDA

1.5 Structure of the Content

The remainder of this document is structured as follows. In chapter 2, background

information and survey of literature is presented. In chapter 3, the architecture of

the adaptive software framework, FRAME, and development of adaptive software under

FRAME are described. A solution to the problems for mutual dependency of criteria

raised in complex and collaborative software systems development is also proposed.

Chapter 4 describes CSML, Component/Constraint Markup Language, a high-level

adaptive software specification language to alleviate the complexity development of

adaptive software under FRAME. Chapter 5 addresses the performance issues for the

adaptation during the execution, and proposes several approaches to improve the

performance. In chapter 6, three applications from different domains are used to

16

Figure 1.3: A Video player running on an ad hoc system

17

demonstrate and evaluate various features of ASAP. Finally, a summary and possible

future work are outlined in chapter 7.

18

Chapter 2

ASAP Overview and Literature

Review

2.1 ASAP Overview

The adaptive software architecture project, or ASAP, which includes FRAME, CSML, and

Brew [12, 16], are designed to helps people develop, deploy, configure, and execute

Java based software under heterogeneous and dynamic computing environments.

The Java platform - i.e., language, class library, and virtual machine - promises “Write

Once Run Anywhere,” which, if even reasonably approximated, provides bytecode

level portability. Therefore, Java is used in the development of ASAP, since to achieve

performance portability implies that the bytecode portability has to be achieved.

FRAME is the adaptive software framework that provides APIs for applications to

adapt themselves to heterogeneous environments. The bytecode of applications are

not linked during the development stage, but are “assembled” on-the-fly after con-

19

sulting the resources of the computing environments. If applications fail to work

appropriately because of dynamic environmental change, applications may also use

the FRAME APIS to replace part of the bytecodes to produce better performance or

quality of execution without down-time.

CSML is a high level specification language that allows adaptive application develOpers

to specify how the applications will be assembled, which part of the bytecodes may

be replaced to respond to the dynamic environmental change, and the definition of

resource requirements, desired performance or quality of execution. Once specified,

CSML will automatically generate the code for adaptation. Thus, deveIOpers may focus

on the design of software architecture and implementation of the functionality. The

infrastructure for applications working under FRAME is automatically generated from

the specifications.

Although FRAME provides APIS for applications to replace part of their bytecodes to

respond to the dynamic environmental changes without the down-time, it may have

significant performance impact since the execution of applications will be temporarily

suspended for the bytecode replacement. Brew is a light weight on-line adaptation.

The idea of Brew is computation steering, in which people may instrument compu-

tation data from the applications and then steer the execution behavior by changing

some parameters of the applications. Thus, for minor environmental changes, the in-

appropriate execution of applications may be repaired by changing the applications’

parameters with help of Brew.

20

The related work about the heterogeneous computing, adaptive systems, and high

level software system specification are described in the following sections. Details

about FRAME, CSML, and Brew are described in the next several chapters.

2.2 Pervasive Computing

For many tasks today, the use of computers is not entirely satisfactory. The interac-

tions take effort and are Often difficult. The traditional, and still prevalent, computing

experience is sitting in front of a monitor, our attention completely absorbed in the

dialog required to complete the details of a greater task. Although the real objective

is the task’s completion, not the interaction with the tools we use to perform it, it is

not uncommon that sometimes the efl'Ort required to make the tools, i.e., computers,

work is more complicated and difficult than completing the tasks themselves.

Mark Weiser wanted to explore whether we could design radically new kinds of com-

puter systems. These systems would allow the orchestration of devices with non-

traditional form factors that lend themselves to more natural and tacit interaction.

Rather than just traditional interaction, such as keyboard and mouse, the working

space, allowing position and manipulative [17] will be integrated into these systems.

In addition to specialization and the use of embedded computers, support for mobile

computing and wireless data networks is an important facet of this vision, in other

words, invisible connectivity. With the invisible hardware and network, it will be-

come possible to build computer systems that do not distract the user; ideally, the

user might even forget the system is present [18]. In essence, Weiser was proposing

21

that well designed computer systems would become invisible to the user and that our

conscious notion of computer systems would begin to disappear. Some years later,

the book The Invisible Computer [19] by Don Norman popularized this concept.

The survey Of the progress toward Weiser’s vision from various system vieWpoints will

be illustrated in the following subsections.

2.2.1 Hardware

Past and Current Projects

In the early 19903, there are several projects at Xerox Palo Alto Research Center

(PARC) embraced this research direction, including ParcTab [20], Mpad [21], and

Liveboard [22]. Olivetti Research’s Active Badge [23] and Berkeley’s InfoPad [24]

projects are also inspired by Weiser’s vision about ubiquitous computing.

However, due to the limitation of technologies, many of the early systems fell short

of designer expectations. For instance, in 1990, there were no Wireless Local Area

Network standards. The processors suitable for mobile devices operated at only a

few megahertz, while PCs were typically shipping with up to 50—MHz processors.

The early electronic organizers were equipped with 128 Kbytes of memory, while

PCs shipped with 30—Mbyte disks. The displays were not impressive: laptops used

monochrome VGA, and the few handheld devices available mainly used character-

based displays. There were no pen-based devices; most computers used keyboard and

mouse as interface.

22

The combination of more transistors on a given area of silicon, increased storage

density, improved display technology and a reduced power consumption brought the

capabilities of mid-1980’s desktop computers into today’s battery-operated, handheld

PDAs. Ubiquitous computing is ready to focus on getting computing “beyond the

desktop.”

Most current ubiquitous system research projects fall into two categories [25]. The

first one is personal systems that give users access to computing independent Of their

physical location at the cost of them having to carry some equipment including mobile

and wearable systems. For instance, personal servers [26] can enhance ubiquitous

access to data. They form the computation and storage center of a person’s digital

experience. Devices such as a cell phone or PDA-like appliance communicate directly -

with this central server, providing a common representation of a user’s data. These

devices, therefore, merely represent an interface into this central repository. With

this model, the personal server could be located out of easy reach, for example, in a

user’s shoe, handbag, or belt clip, without causing inconvenience.

The other category is infrastructure systems, which are associated with a particular

physical locale. Many research challenges shift from issues of size, weight, and per-

formance to those of deployment, management, and processing. Consider thousands

of miniature temperature sensors around a room. How were they deployed? How is

the data collected? How are faulty components identified and replaced [27]? Further-

more, with shrinking hardware devices, they may be Out of sight and eventually out

of mind. As a consequence, keeping track of these devices in human understandable

way will become difficult.

23

Several hardware projects, such as the Berkeley motes [28], have started to explore

this issue by creating a fairly small wireless sensor platform. This lets researchers

actively explore the networking protocols necessary to organize large sets of nodes.

Currently about the size of three stacked US quarter-dollar coins, these devices will

keep shrinking until they reach the size Of smart dust [29] and can no longer be seen

or directly manipulated. The Berkeley Pico Radio project is pursing a single-chip

system that incorporates both processing and radio frequency subsystems [30].

Future Directions

There have been three core challenges of ubiquitous computing hardware and will

likely continue far into the future: form factors, energy, and the user interfaCe. These

problems are difficult because they are not independent and are somewhat contradic—

tory; a. solution in one space greatly confounds that in another.

-’ Form factors. Form factors, particularly size and weight, are significant obstacles

to ubiquitous computing because they continually remind the user of the hardware’s

presence. This limitation has impact on both mobile systems when the user must

carry the device and configuration of infrastructure-based systems involving many

pieces of equipment. Unfortunately, the two main contributors to a device’s size

and weight come from the other two fundamental problems: batteries and the user

interface.

For instance, the Itsy pocket computer [31] is just 70 percent larger than its 2.2 watt-

hour battery and 320 x 200 pixel display. In addition, these two components represent

60 percent of the total weight Without the case but 43 percent with the case.

24

- Energy. Another challenge for any mobile system is to reduce user involvement

in managing its power consumption. Energy is a necessary resource for virtually

all computing systems, but any reference to it detracts from a positive user expe-

rience. The degree to which an energy source distracts the user depends on the

intended application, the hardware implementing the application, and the energy

source’s characteristics.

Solutions to this problem fall into two approaches. The first is to reduce power

consumption. Part of this approach consists of designing energy—aware software that

can identify the hardware states that provide a given service level and select those

that are most energy efficient. For instance, in systems with a microprocessor whose

energy consumption is greater at high speeds, the software can select the lowest

speed possible that still achieves the required task’s performance [32]. The control

software can also modify the quality of service it seeks to deliver [33]. For instance,

to save energy, the software could reduce the frame rate, or size, of an MPEG movie,

incrementally resulting in a corresponding loss of fidelity. Or, the software could

forward a voice utterance to a remote system for recognition rather than expending

local energy on the task [33].

Another approach is to find alternative and improved energy sources. Although bat-

tery energy densities are projected to increase approximately 10 percent annually for

the next three years [34], the energy consumption will likely increase at the same

rate. This will lead to research for other technologies for storing and even generating

energy. For example, MIT researchers have exploited the human body as an energy

source by constructing sneakers that use flexible piezoelectric structures to generate

25

energy [35, 36]. Similarly, solar radiation, thermal gradients, mechanical vibration,

and even gravitational fields all represent potential power sources for a mobile de-

vice [27].

Additionally, storage technologies under development promise much greater energy

densities than those of conventional batteries. In the near term, one of the more

promising technologies is fuel cells, particularly direct methanol fuel cells [37]. Pure

methanol fuel offers an energy density roughly 40 times that of a Lithium-ion polymer

battery, but 70 to 90 percent of this chemical energy is lost in conversion to electric-

ity. In the longer term, technologies such as MIT’s MEMS (micro-electromechanical

systems)-based microturbine and associated micro electric generator might provide

highly compact energy sources with significantly longer lifetimes.

An alternative approach is to transmit energy to amobile device that, hence, may

reduce its energy requirement. This technique is difficult to do safely over a long .

distance, but it is applicable to the field of passive electronic tagging. For example,

Radio Frequency Identification [38] tags are inductively powered by the tag reader,

typically up to a maximum of one meter, employing load modulation to transmit their

data back to the interrogator. Such passive tags have unlimited lifetimes, are smaller,

and cost less; however, unlike battery-powered (active) tags, they can communicate

only over a short range and cannot autonomously signal their presence. The ability

to transmit energy, when combined with robotics, gives us the capability for mobile

computation that can recharge itself.

- User interface. Making user interfaces invisible is fundamentally difficult due to

the tradeoff between form factors and usability. Reducing the size and weight will

26

make the device less visible but might decrease its usability. The degree to which

these two components matter depends on the specific properties of the interface and

of the application for which it is being used.

Today’s most popular user interfaces include buttons, keyboards, mice, pointers, LCD

panels, touch screens, microphones, and speakers. Each is designed and suitable for a

specific application class. For example, a keyboard and display seem ideal for writing

an article, but a microphone and speaker would probably be better for communicating

with another person. For other applications, such as alerting a user that he or she

has received mail, these user interfaces are unnecessarily complex.

Although these interfaces are distinctly separate from our bodies, the natural impli—

cation for disappearing interfaces is for the two to blend together. Several researchers

are exploring the possibility of interpreting information from our neurons to let us

control computers and other machines by just thinking about doing so [39]. Early

work involving a. monkey with neural implants has demonstrated the ability to gather

sufficient information to let a robot mimic the monkey’s arm movement.

2.2.2 Software

Ubicomp computing systems are prone to be local and unpredictable, two character-

istics identified as Boundary Principle and Volatility Principle by Kindberg et al. [40].

Boundary Principle. A ubicomp system involves some integration between com-

puting nodes and the physical world and ubicomp takes place in more or less

27

discrete environments based, for example, on homes, rooms, or airport lounges.

Therefore, from physical integration, the Boundary Principle may be drawn:

Ubicomp system designers Should divide the ubicomp world into en-

vironments with boundaries that demarcate their content. A clear

system boundary criterion often, but not necessarily, related to a

boundary in the physical world should exist. A boundary should

specify an environment’s scope but doesn’t necessarily constrain in-

teroperation.

Volatility Principle. In an environment, there are components, units of software,

that implement abstractions such as services, clients, resources, or applications.

An environment can contain fixed infrastructure components, and spontaneous

components based on devices that arrive and leave routinely. In an ubiqui-

tous system, components must spontaneously interoperate in changing environ-

ments. That is, if a component interacts with a set of communicating compo-

nents, it may change both identity and functionality over time as its circum—

stances change. From spontaneous interoperation, the Volatility Principle may

be drawn:

You should design ubicomp systems on the assumption that the set

of participating users, hardware, and software is highly dynamic and

unpredictable. Clear invariants that govern the entire system’s exe-

cution should exist.

28

Physical integration and spontaneous interoperation have major implications for soft-

ware infrastructure. These ubicomp challenges include a new level of component

interoperability and extensibility, such as discovery and integration, and new de—

pendability guarantees, including adaptation to changing environments, tolerance of

routine failures or failure-like conditions, and security.

Discovery and Interaction

Spontaneous interoperation makes shorter-term demands on our components’ inter-

operability. That is, devices may interact with partners of varying functionality over

time. Thus, as a component enters an environment, it will face some issues such

as bootstrapping, service discovery, and interaction. Additionally, if the arriving

component implements a service, the components in the service’s environment might

need to. discover and interact with it. Service discovery and interaction are generally

separable (although the Intentional Naming System [41] combines them).

- Bootstrapping. The component requires a priori knowledge of addresses (for

example, multicast or broadcast addresses) and any other parameters needed for

network integration and service discovery. This is largely a solved problem. Protocols

exist for joining underlying networks, such as IEEE 802.11 [7]. It is also possible to

dynamically assign IP addresses either statefully, using DHCP [42], or statelessly in

IPv6 [43].

- Service discovery. A service discovery system dynamically locates a service in-

stance that matches a component’s requirements, and thus solves the association

problem. Address allocation and name resolution are two examples of local services

29

that an arriving component might need to access. Client components generally require

an a priori specification of required services, and corresponding service components

must provide similar specifications to be discoverable. Several systems perform ser-

vice discovery [41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. Each provides syntax and

vocabulary for specifying services. Each service discovery protocol has adOpted differ-

ent service description models: Java service interface and assistant attribute objects

of Jini, string-based attribute-value pairs of SLP, and XML descriptions in case of

UPnP. Although there are pros and cons of their design decisions, e.g., their query

efficiency and expressiveness, they typically consists of attribute-value pairs such as

serviceTypezprinter and typezlaser.

' A challenge in ubicomp service description is avoiding over-specification, in which ser-

viCe requester and provider must obey the same vocabulary and syntax. AssociatiOn

can’t take place if a component requests service Typeiprinting when the provider has

servicezprint. Agreement on such details is a practical obstacle, and it’s debatable

whether service specification can keep up with service development.

Other designs, such as Cooltown [53], tried to use more abstract and much less detailed

service specifications to get around such problems. For example, a camera could send

its images to any device that consumes images of the same encoding (such as JPEG)

without needing to know the specific service. But abstraction may lead to ambiguity.

If a camera were to choose a device in the house, it would potentially face many data

consumers with no way of discriminating between them. Also, it’s not clear how a

camera should set the target device’s parameters, such as image resolution, without

a model of the device.

30

Another problem is that most Of the service advertisements and queries are only able

to capture only static aspects of context: for example, a server load attribute can

indicate the load on a server machine at the moment of service announcement but not

the one at the time of service query later, because it is dynamically changing. Service

matching based on those declarative, static service descriptions provides minimal

service discovery and filtering, leaving the rest of the work to users’ manual selection;

they have to try discovered service instances one—by-one, until they find an instance

with satisfactory quality of service. But it would be a painful process if their mobile

devices do not have enough computing and network resources needed for the manual

selection. The problem gets even worse, when service population is large.

One possible approach [54] is to exploit useful context information relevant to ser-

vice discovery. By adding extra dynamically determined attributes, called context

attribute, it enables the right services to be delivered to the right users at the right

time and place via refined service selection and recommendation, which is not attain-

able by declarative service description models. A good survey on how context can be

beneficial in the ubiquitous environment is given by Chen et al. at [55].

To define the boundary is also an issue for meaningful discovery. A client in San

Francisco may not interested in the services in Tokyo. One approach is based on

communication; that is, the collection of services that a group, or multicast, commu-

nication can reach. However, it ignores some human issues such as territory or use

conventions. It is unlikely, for example, that the devices connected to a particular

subnet are in a meaningful place such as a room. Using physically constrained media

such as infrared, ultrasound, or 60-GHz radio (which walls substantially attenuate)

31

helps solve territorial issues, but it does not solve other cultural issues. Another al-

ternative is to rely on human supervision to determine the scope of each instance of

the discovery service [56].

- Interaction.

After associating to a service, a component employs a programming interface to use

it. Components must conform to a common interoperation model to interact. The

problem is: how the common interoperation model may be obtained? For instance,

Jini lets service-access code and data, in the form of a Java object, migrate to a device.

However, how can the software on the device use the downloaded object without a

priori knowledge of its methods?

Event systems [44, 57] or tuple spaces [44, 58, 59, 60] offer two different approaches.

In each case, components don’t need direct knowledge of one another. A component

registers a service to a service server via self-describing data items, either events or

tuples. The service server matches the data to specifications that other components

requiring the service have registered, and then forwards it to all components with a

matching specification. The interactions are data—oriented, and only requires a few

fixed operations.

In each case, components interact by sharing a common service, a tuple space or an

event service. They don’t need direct knowledge of one another. However, these data-

oriented systems have shifted the burden of making interaction consistent onto data

items, events and tuples. If one component publishes events or adds tuples of which

no other component has a priori knowledge, interaction may fail. Thus, data-oriented

32

interaction is a promising model, but requires ubiquitous data standardization for it

to work across environment boundaries.

Adaptation

As mentioned earlier, an ubicomp system is prone to be unpredictable, and, hence,

dynamic. Thus, a new challenge for ubiquitous systems arises to deal with limited

and dynamically varying computational resources, and adaptation must often take

place without human intervention to achieve what Weiser calls calm computing [61].

Several possible extensions of existing mobile computing techniques, transformation

and adaptation for content and the human interface, will be examined in the following.

- Content. Mobile computing research has successfully addressed content adapta-

. tion for resource—poor devices at both the OS and, application levels. Pioneering work _

such as the Coda file system explored network disconnection and content adaptation

within the context of a specific application, i.e., the file system, handling all such

adaptation in the operating system to enable application transparency. Coda’s suc-

cessor, Odyssey [62], and other, later work on adapting Web content for slow networks

and small devices [63, 64] moved some responsibility to the application layer, since

the OS is rarely familiar with the semantics of the application’s data and it is not

always in the best position to make adaptation decisions; this reflected the thinking

of application-level framing [65].

Adaptation in ubicomp is quantitatively harder. Instead of 1-tO-n adapting, i.e., a

small fixed set of content types to a variety of device types, there must be poten-

tially handle n-to-n adapting. Several general approaches mobile computing research

33

has explored have immediate applicability. For example, the Stanford Interactive

Workspaces’ smart clipboard can copy and paste data between incompatible applica-

tions on different platforms [66]. It builds on well-known mobile computing content

adaptation, the main difference being that the smart clipboard must transparently

invoke the machinery whenever the user performs a copy-and-paste Operation. A

more sophisticated but less general approach, semantic snarfing, as implemented in

Carnegie Mellon’s Pebbles project, captures content from a large display onto a small

display and attempts to emulate the content’s underlying behaviors [67]. Rather than

relying on a generic transformation framework, it requires special-case code for each

content type (such as menus and Web page content) as well as special-case client-

server Code for each pair of desired devices (Windows to Palm, X/Motif to Windows

CE); Nonetheless, both approaches demonstrate the applicability of content transfor-

mation'to the ubicomp environment.

- The human interface. For a user entering an environment and immediately

accessing or controlling various aspects of the environment through her PDA, it may

require separating user interfaces (UIs) from their applications. In ubicomp, however,

the goal might be to move the human interface to a physically different device chosen

on the fly.

One approach, such as VNC [68], lets a client display the bits and collects user

input, without knowledge of U1 widget semantics. On the other hand, X Windows

and its low-bandwidth derivatives, such as LBX (Low-Bandwidth X), use declarative

description of the interface elements and a client has the intelligence to render them

itself.

34

A noteworthy variant involves delivering an HTML UI (based on forms and HTML

widgets) via HTTP to any device that can host a Web browser, thus removing the

need to reconfigure the device for different interfaces. However, HTML provides only

limited expressiveness for a UI. Also, HTML and HTTP address delivering, rendering,

and letting the user interact with the UI, but they do not address how to determine

what belongs in it or how UI elements associate with the applications or devices they

control.

Todd Hodes and his colleagues [69] proposed a Tcl/Tk framework in which con-

trollable entities export Tcl-code descriptions, from which a client can generate its

UI. The descriptions are declarative and high level, letting the geometry and the

' generated interface’s visual details Vary among platforms. The Stanford'lnterac-

tive Workspaces project has successfully generalized Hodes’s approach: The Interface

Crafter framework [70] supports a level of indirection of specialized per-device or per-

service interface generators and a generic interface transformation facility. In this

system, the high-level service descriptions permit adaptation for non-traditional UI

modalities such as voice control.

Finally, a fully generalized mobile code facility, such as Jini, lets the client download

and execute arbitrary code or pseudocode that implements the interface and commu-

nication with the service. Because the protocol between a Jini service and its UI is

Opaque, i.e., embedded in the code or pseudocode, it is usually impossible to enlist a

different user agent to interpret and render the UI. It is also impossible to realize the

UI on a device not running a Java Virtual Machine or on one with non-traditional

I/O characteristics.

35

Integration with the Physical World

To integrate computing environments with the physical world, there are needs for low-

level application programming interfaces that let software deal with physical sensors

and actuators, and a high—level software framework that lets applications sense and

interact with their environment, including physical sensors and actuators. Traditional

device drivers offer APIS that are too low—level, because application designers usually

think of functionality at the level of widgets in standard toolkits such as Tcl/Tk,

Visual Basic, and X/Motif. A potentially more useful low—level API is a Phidget [71],

a GUI widget element whose state and behaviors correspond to those of a physical

sensor or actuator. At a higher level, the COnteXt Toolkit frameWork [72] provides

applications with a context widget software abstraction, which lets an application

access different types of context information while hiding how the information was

sensed or collected. For example, one type of context widget provides information on

the presence of a person in a particular location, without exposing how it collected the

information. The Context Toolkit’s middleware contribution is its ability to expose

a uniform abstraction of information, such as location tracking, hiding the details of

the sensing system or systems used to collect the information.

Location sensing and tracking figure prominently in several projects. The early Active

Badge work [23] and the more recent Sentient Computing effort [73] use infrared,

radio, and ultrasound to track physical Objects that users carry or wear. Knowing

the users’ locations and identities enables location tracking and novel behaviors for

existing devices, such as a camera that knows who it’s photographing. On the other

36

hand, EasyLiving [74] and the MIT Intelligent Room [75] use location tracking as one

of several elements that help infer or disambiguate a user action in a context-sensitive

manner.

Several groups have investigated ways of linking physical entities directly to services

using identification technologies. For example, Roy Want and his colleagues at Xerox

Parc [76] augmented books and documents by attaching radio frequency identification

tags to them and presenting the electronic version to users who scanned them with

handheld devices. Jun Rekimoto and Yuji Ayatsuka [77] attached symbols specially

designed for digital camera capture to physical objects, to link them to electronic

services. . Hewlett-Packard Labs’ Cooltown project focuses on associating Web re-

sources with physical entities. Although the Cooltown infrastructure has primarily

targeted direct human interaction, workvis in progress on interoperation between Web

presences using XML over HTTP to export query and update operations [78].

Robustness and Routine Failures

Ubiquitous systems may see a radical increase Of “failure” frequency compared to

a wired distributed system. Some of these failures are not literal failures but un-

predictable events from which it is similarly complicated to recover. For example,

batteries have a relatively short mean time to failure due to battery exhaustion, and

wireless networks have limited range and are prone to interference from nearby struc-

tures. Furthermore, service associations are sometimes gained and lost unpredictably,

since a device may suddenly leave an environment.

37

Although the distributed systems literature contains techniques for fault-tolerant

computing, they are often based on resource redundancy rather than scarcity. Fur-

thermore, the common assumption in distributed systems that failures are relatively

rare could lead to expensive or ungraceful recovery, contrary to the expectation of

calm behavior for ubiquitous systems.

In ubicomp systems, various transient failures can actually characterize steady-state

operation. The Internet protocol community and the distributed systems community

have considered such scenarios. There exists several techniques from both specifically

designed to function under the assumption that “failure is a common case.”

Consider the PointRight system [79], in which a single mouse and keyboard can con-

trol a collection of otherwise-independent displays in a ubicomp environment. When

a user enters or leaves a ubicomp environment that has PointRight, the user’s device

could register with a centralized directory that tracks the room’s screen geometry.

But this directory is a single point of failure. If it fails and has not saved its data to

stable storage, it must notify all devices to reregister when the directory comes back

up. Furthermore, if a device dies or fails to deregister before leaving the environment,

it creates inconsistency between the directory contents and the environment’s true

state.

One solution requires each available device or service to send a periodic advertise-

ment announcing its presence or availability to the directory service, which collects

these advertisements and expires them when a new advertisement arrives or after a

designated timeout period. Should the directory service fail, new advertisements will

repopulate it when it restarts; hence, the directory itself constitutes soft state. Should

38

a device fail, it will stop sending advertisements, and once the device’s previous adver-

tisement has expired, the directory will no longer list the device. A detailed analysis

of how to choose a timeout to balance the resulting “window of potential inconsis-

tency” with the network and computation capacity consumed by advertisements is

available elsewhere [80].

In addition to maintain consistency between the directory contents and the environ-

ment’s state, For robustness, a process must always be prepared to rediscover and

reacquire lost resources. In a dynamically changing environment, some operations

can fail while others must necessarily succeed. The one.world middleware separates

. application code into operations that may fail, and logic that does not fail except un-

der catastrophic circumstances [57]. Generally, an operation is anything that might

require allocating Or accessing a potentially nonlocal resource whose availability is

dynamic, such as file or network I/O. When Opening a file on a remote-server, the

application creates a binding between the local file handle and the remote file. If the

application thread is migrated to another host, the file might still be available on the

server, but it will be necessary to establish a new binding on the new host. The appli-

cation must provide code that deals with such conditions when doing operations that

can fail. One.world automatically provides for some common cases, such as retrying

idempotent operations a finite number of times.

Security

Security has always been an important issue in network computing, and it may also

apply to ubiquitous computing. Certain services in a smart room, for example, need

39

protection from devices belonging to visitors. Similarly, data and devices brought into

an environment, such as users’ PDAs, require protection from hostile devices nearby.

Viewed from a higher level, users require security for their resources and, in many

cases, privacy for themselves [81]. Mobile computing has led to an understanding of

vulnerabilities such as the openness of wireless networks [82]. But physical integration

and spontaneous interoperation raise new challenges, requiring new models of trust

and authentication as well as new technologies.

In ubiquitous systems, trust is an issue because of spontaneous interoperation. What

basis of trust can exist between components that can associate spontaneously? Com-

ponents might belong to disparate individuals or organizations and have no relevant

‘a priori knowledge of one another or a trusted third party. Fortunately, with help of '

physical integration, humans can make judgments about their environments’ trust-

worthiness [83], and the physical world offers mechanisms for bootstrapping security .

based on that trust. For example, users might exchange cryptographic keys with their

environment or each other over a physically constrained channel such as short-range

infrared, once they have established trust.

Many extremely resource-poor devices do not have sufficient computing resources for

asymmetric (public key) encryption, even when using elliptic curve cryptography [84],

and protocols must minimize communication overheads to preserve battery life. For

example, Spins (security protocols for sensor networks) provides security guaran-

tees for the data that smart dust particles exchange in a potentially hostile environ-

ment [85]. They use only symmetric-key cryptography, which, unlike asymmetric-key

cryptography, works on very low—power devices. But this does not address what has

40

been called the ”sleep deprivation torture attack” on battery-powered nodes [86]: an

attacker can always deny service by jamming the wireless network with a signal that

rapidly causes the devices to run down their batteries.

Another problem in ubicomp systems is basing access control on authenticating users’

identities, particularly knowing an identified user’s whereabouts raises privacy issues.

Besides, spontaneous interoperation makes it problematic for environments, which

have to integrate a stream of users and devices that can spontaneously appear and

disappear.

It can be advantageous to issue time-limited keys to devices that have Spontaneously

appeared in an environment, rather than setting up access control lists. Keys could

be issued on the basis of dynamically established trust and used without explicitly

disclosing an identity. Also, they reduce the need for system-wide configuration and

avoid communication with a central server [51].

Physical integration has several implications for security through location. In location

authentication, the system establishes a component’s physical location, for example,

as a criterion for providing services. That is, the system provides services to users,

but do not matter care who the users are; the system cares only about where they

are. Physically constrained channels, such as ultrasound, infrared, and short-range

radio transmission, particularly at highly attenuated frequencies, have enabled work

on protocols that prove whether clients are where they claim to be [87, 88].

People commonly use intranet architectures to protect resources Sharing. Mobile

ambients [89] is a mathematical model that aims to describe the movement of both

mobile software agents and mobile computing devices and emphasizes the handling of

41

administrative domains and the authorization to enter or exit certain domains. Secu-

rity is an inherent property, since any movement must obtain permission in advance.

This property reflects nowadays Internet reality very well, particular the Internet par-

titioned by firewalls into administrative domains. However, it does not limit resource

sharing within domains. Some security problems may occur when “home” devices do

not want to share resources with visitors. Work on securing discovery services [51] and

access to individual services [90] tends to assume the opposite of the firewall model:

that locals and visitors go through the same security interface to access resources.

Weiser envisioned devices you can use temporarily as personal devices and then return

for others to use and a more convenient and fine—grained model of protected sharing is

required. The “Resurrecting Duckling” paper [86] an approach that the user imprints ‘

the deviceby transmitting a symmetric key to it over a physically secure channel,

such as by direct contact. Once imprinted, the device only obeys commands from

other components that prove possession of the same key until it receives instructions

to return to the imprintable state.

2.3 Reflective System

2.3.1 Concept of Reflection

Abstractly, reflection refers to the capability of a system to reason about and act upon

itself. More specifically, a reflective system is one that provides a representation of

its own behavior which is amenable to inspection and adaptation, and is causally

42

connected to the underlying behavior it describes. Causally-connected means that

changes made to the self-representation are immediately mirrored in the underlying

system’s actual state and behavior, and vice-versa. It can therefore be said that a

reflective system is one that supports an associated causally connected self represen-

tation (CCSR). Note that this definition was first used by Pattie Maes in her 1987

thesis from Vrije Universiteit Brussel, entitled: “Computational Reflection” [91].

For example, consider a run—time interpreter for a Java-like language that is reflec-

tive. Imagine further that the interpreter’s CCSR is concerned with representing the

following aspects of interpretation: method dispatch, garbage collection and class

loading. Given such a system, it should be possible to alter the semantics of program

execution by manipulating appropriate aspects of the CCSR. For example, one could

dynamically add debugging facilities to the interpreter by inserting calls to debugger

routines before and after each method call, one could alter the garbage collection

policy (or disable it to help support real-time capabilities, for example), or one could

insert additional security checks into the class loader.

It can be seen from the above example how reflection enables both inspection and

adaptation of systems at run time. Inspection allows the current state of the system

to be observed, while adaptation allows the system’s behavior to be altered at run

time to better match the system’s current operating environment. Although both

inspection and adaptation are essential aspects of a reflective system, not all systems

badged as reflective necessarily support both of these properties. For instance, Java’s

reflective facilities [92] allow the programmer to extract, at run time, the names of

methods in some target class together with the types of their arguments and return

43

values. This makes it possible to write code that may call methods in objects whose

class was not known to the programmer when the program was written. However,

while Java certainly provides an accessible self-representation of certain of its features,

this self-representation cannot be said to be causally connected, for the simple reason

that it is not possible to change it. In short, inspection is provided but not adaptation.

Reflective computation does not directly contribute to solving problems in the ex-

ternal domain of the system. Instead, it contributes to the internal organization of

the system or to its interface to the external world. Its purpose is to guarantee the

effective and smooth functioning of the Object-computation. Particularly, reflective

systems provide a fundamentally new paradigm for thinking about computational

systems. In a reflective system, a computational system is viewed as incorporating an

object part and a reflective part. The task of the Object computation is to solve prob-

lems and return information about an external domain, while the task of the reflective

level is to solve problems and return information about the object computation.

At first sight the concept of reflection may seem a little far-fetched. However, there

is a substantial practical value to reflection. There are many research about adding

reflection into various systems, such languages, operation systems, and middleware.

2.3.2 Reflective Language

Traditional programming languages today do not fully recognize the importance of

reflective computation. They do not provide adequate support for its modular imple-

mentation. For example, if the programmer wants to follow temporarily the computa-

44

tion, e.g., during debugging, he Often changes his program by adding extra statements.

When finished debugging, these statements have to be removed again from the source

code, often resulting in new errors.

A programming language is said to have a reflective architecture [93] if it recognizes

reflection as a fundamental programming concept and thus provides tools for handling

reflective computation explicitly. Concretely, this means that:

1. The interpreter of such a language has to give any system that is running access

to data representing the system itself. Systems implemented in such a language

then have the possibility to perform reflective computation by including code

that prescribes how these data may be manipulated.

2. The interpreter also has to guarantee that the causal connection between these

data and the aspects of the system they represent is fulfilled. Consequently.

the modifications these systems make to their self-representation are reflected

in their own status and computation.

Thus, in a reflective architecture one can temporarily associate reflective computation

with a program such that during the interpretation of this program some tracing is

performed. The programmer may conclude the run-time information, such execution

errors, from the tracing data, and then dynamically debugging.

Procedure-based, logic-based and rule-based languages incorporating a reflective ar-

chitecture can be identified. 3-LISP [94] and BROWN [95] are two such procedural

examples (variants of LISP). They introduce the concept of a reflective function,

which is just like any other function, except that it specifies computation about the

45

currently ongoing computation. Reflective functions should be viewed as local (tem-

porary) functions running at the level of the interpreter: they manipulate data rep-

resenting the code, the environment and the continuation of the current object-level

computation.

FOL [96] and META PROLOG [97] are two examples of logic-based languages with a

reflective architecture. These languages adopt the concept of a meta-theory. A meta-

theory again differs from other theories (or logic programs) in that it is about the

deduction of another theory, instead of about the external problem domain. Examples

of predicates used in a meta-theory are “provable(Theory, Goal)” , “clause(Left-hand,

Right—hand)”, etc.

TEIRESIAS [98] and SOAR [99] are examples of rule-based languages with .a re-

flective architecture. They incorporate the notion of meta-rules, which are just like

normal rules, except that they specify computation about the ongoing computationt

The data—memory these rules operate upon contains elements such as “there-is—an-

impasse-in-the-inference-process”, “there-exists-a—rule—about-the-current-goal”, “all-

rules-mentioning—the—current—goal-have-been-fired” , etc.

Almost all of these languages, except FOL, are implemented by means of a procedu-

ral reflection, in which the data structure for self-representation is actually used to

implement the system. Hence, the consistency between the self-representation and

the system itself is automatically guaranteed. However, one problem with procedural

reflection is that a self-representation has to serve two purposes, providing a good

basis to reason about the system and used to implement the system, which means

that it has to be effective and efficient. These are often contradicting requirements.

46

Consequently, people have been trying to develop a different type of reflective architec-

ture in which the self-representation Of the system would not be the implementation of

the system. This type of architecture is said to support declarative reflection because

it makes it possible to develop self-representations merely consisting of statements

about the system. However, the causal connection requirement is more difficult to

realize here because it has to be guaranteed that the explicit representation of the

system and its implicitly obtained behavior are consistent with each other.

Such an architecture can be viewed as incorporating representations in two different

formalisms of one and the same system. During computation the most appropri-

ate representation is chosen. The implicit (procedural) representation serves the

implementation of the system, while the explicit (declarative) representation serves

the [computation about the system. In architectures for declarative reflection more

interesting self-representations can be developed, and GOLUX [100]. and Partial Pro-

grams [101] are two attempts to realize such architectures.

Actually the distinction between declarative reflection and procedural reflection should

more be viewed as a continuum. A language like FOL [96] is situated somewhere in the

middle: FOL guarantees the accuracy of the self—representation by a technique called

semantic attachment. The force of the self-representation is guaranteed by reflection

principles. It is far less trivial to prove that the combination of these two techniques

actually also succeeds in maintaining the consistency between the self-representation

and the system.

Although the first OOLs, such us SIMULA [102] or SMALLTALK-72 [103], did not

yet incorporate facilities for reflective computation, it must be said that the concept

47

of reflection tits most naturally in the spirit Of Object-oriented programming. An

important issue in OOL is abstraction: an object is free to realize its role in the

overall system in whatever way it wants to. Thus, it is natural to think that an

object not only performs computation about its domain, but also about how it can

realize this (object-) computation.

Several OOLs are implemented with reflective facilities being mixed in the object-

level structures. In languages such as SMALLTALK-72 [103] and FLAVORS [104],

an object not only contains information about the entity that is represented by the

object, but also about the representation itself, i.e., about the object and its behavior.

There are two problems with this way of providing reflective facilities. One is that

these languages always support only a fixed set of reflective facilities. Adding a new

facility means changing the interpreter itself. A second problem is that they mix

. object-level and reflective level, which may possibly lead to obscurities. For example,

if we represent the concept of a book by means of an object, it may no longer be clear

whether the slot with name “Author” represents the author of the book, i.e., domain

data, or the author of the object, i.e., reflective data.

One step towards a cleaner handling of reflective facilities was set by the introduction

of meta-classes by SMALLTALK-80 [105]. In SMALLTALK—72, classes are not yet

objects. The internal structure and message-passing behavior of an object can be

specified in its class, but the structure and behavior of a class cannot be specified.

The idea behind this development in SMALLTALK—SO, which was later also adopted

in LOOPS [106], is that it should also be possible to specify the internal structure

and computation of a class. Meta—classes serve this purpose.

48

Another step towards the origin of reflective architectures was taken by the de-

velopment of OOLs such as PLASMA [107], ACTORS [108], RLL [109], and OB-

JVLISP [110]. These languages try to bring more uniformity in object-oriented pro—

gramming by representing everything in terms of objects. They all contribute to the

uniformity of the different notions existing in OOLs by representing everything in

terms of objects: class, instance, meta-class, instance-variable, method, message, en-

vironment and continuation of a message. This increased uniformity makes it possible

to treat more aspects of object-oriented systems as data for reflective computation.

Pattie Maes described an object-oriented reflective language called 3-KRS [93] based

on KRS [111]. 3-KRS partitions every object into a domain specific referent and

a reflective metaobject. The referent contains information describing the real-world

entity that the object represents. The metaobject contains information describing its

referent as a computational entity in itself. Enforcing this separation encourages the

emergence of standard protocols for communicating between objects and metaobjects.

The distribution of the system’s self-representation among the system’s metaobjects

makes this self-representation easier to think about and manipulate.

The Common Lisp Object System (CLOS) [112, 113, 114] provides a very powerful

generic function-based method combination mechanism. The CLOS Metaobject Pro-

tocol (MOP) provides a metacircular definition of the entire CLOS system, and is

intended to permit open-ended experimentation with new object-oriented program-

ming paradigms. The MOP has been used to successfully implement a number of

distinctly un-CLOS-like object-oriented programming systems, and is designed to

49

permit the modification of basic language mechanisms such as method lookup from

with CLOS itself.

In general, it can be said that the evolution of OOLS tends towards a broader use of

reflective facilities. In the beginning reflective facilities were only used in minor ways.

A class would for example only represent the reflective information telling what its

instances were. However, as OOLS evolved, the self-representations became richer

and applied in a broader way (from instances only, to classes, to meta-classes, to

messages, etc).

Applying a reflective computing technology is not limited to programming languages.

Silica [115] is an example applied to a CLOS-based window system. Apertos [116] is

the first example which applies the notion of reflective computing to a distributed _

object-oriented operating system. Many other reflection systems could be found

in [117].

2.3.3 Reflective Operating Systems

An operating system is inherently reflective if it has facilities to inspect system data

structure maintained by a kernel and to inspect the internals of a process, such as

/dev/kmem in UNIX [116]. However, these have a limitation in their use; that is, since

they are mechanisms provided by an operating system kernel, it is difficult to alter

their behavior.

Also, in virtual memory management, we can Specify its management policy. UNIX

provides madviseO for it. Mach [118] and Chorus [119] introduce user-level virtual

50

memory management as an external pager. Using an external pager approach allows

people to write a code for an application specific policy for memory management.

Phrther, in real-time Operating system, people may describe a real-time scheduling

policy which determines the process and thread next to be executed. ARTS [120] is an

example of such a system providing policy and mechanism separation, where people

may write a policy module which uses mechanisms given by its kernel to choose the

thread to be run.

In contrast to these approaches, the framework proposed in Apertos [116], a reflec-

tive object-oriented operating system for an open and mobile computing environment,

has significant advantages, in which the system is constructed based on object and

metaobject separation, metahierarchy, and object migration. Object and metaobject

separation and object migration help users and programmers to accommodate object

heterogeneity, and, hence, easily provide the mechanisms such as changing a commu-

nication paradigm, inspecting the internals of an object for a debugger, and changing

resource management policy. Metahierarchy provides discipline for programming in

object and metaobject separation. Object migration is a basic mechanism of the

operating system in order to accommodate object heterogeneity. These hide the un-

derlying implementation from an object and increases mobility of object, so that these

contribute to the realization of an open and mobile computing environment.

Another object-oriented reflective operating system is Merlin [121] based on the Self

programming language [122]. It uses a reflective structure that allows the programmer

to move cleanly between different abstraction levels to get around the problem existing

in many pure object oriented programming languages (like Self) that present a very

51

abstract View of the hardware to the programmer, and so are unlikely candidates

for system software deveIOpment. However, this introduces other difficulties in the

form of circular definitions. It also provides Adaptive Compilation [123], a system of

optimizing code based on information gathered while running the code itself, to match

the parallelism of the application to the characteristics of the underlying hardware.

TUNES [124] is an ambitious project to a machine with some intelligence by using

reflective architecture. Thus, many features of TUNES, such as, higher-order func-

tions, self-extensible syntax, fault-tolerant computation, dynamic code regeneration,

etc., can be dynamically migrated into the system. The goal is to allow users or

programmers to specify what they care about and what they don’t care about, and

peOple simply trust the computer to handle it all by itself.

2.3.4 Reflective Middleware

Middleware refers to a distributed platform of interfaces and services that reside be-

tween the application and the operating system and aim to facilitate the development,

deployment and management of distributed applications. OMG’s CORBA [125], Mi-

crosoft’s DCOM [126], or Java RMI [127] are the examples of object-based plat-

forms. The main function of these platforms is to mask the inherent heterogeneity

of distributed systems and provide a standard set of interfaces and services which

distributed applications can assume present in any participating language, operating

system or machine environment.

52

Why should middleware be reflective? What potential benefits are there in providing

platforms such as CORBA with a CCSR? The most general answer to this question

is that reflection does for middleware what it does for any system: it makes it more

adaptable to its environment and better able to cope with change. In a middleware

context, the need to cope with change particularly arises when middleware based

applications are deployed in hostile or dynamic environments such as multimedia,

group communication, real-time and embedded environments, handheld devices and

mobile computing environments.

Existing middleware specifications such as CORBA and DCOM simplifies the con-

struction of component-based distributed applications. Nonetheless, they do not de-

fine strategies for customizing themselves flexibly to dynamic environment. Recent

research in reflective middleware tries to oVercome this limitation. For example, a

reflective architecture from the Distributed Multimedia Research Group at the Lan-

caster University [128] uses the Python interpreted language to inspect and change

the implementation at run-time. COMERA [129] provides a framework based on Mi-

crosoft COM that allows users to modify several aspects of communication middle-

ware at run-time. DynamicTAO [130] supports on—the-fly reconfiguration on CORBA

ORB based on The ACE ORB(TAO) [131] that is the open source CORBA-compliant

ORB.

Besides, it has been widely recognized that many QoS-constrained distributed ap-

plications need to be adaptive in heterogeneous environments. For example, Li et

al. [132] propose a hierarchical adaptive QOS architecture for multimedia applications.

A multimedia service is delivered by multiple service configurations, each of which

53

involves a different set of service components. Each service component is executed as

a process. Components cooperate through protocols over network communication.

2.4 Other Related Work

2.4.1 Architectural Description Languages

Software architecture research is directed at reducing costs of developing applica-

tions and increasing the potential for commonality between different members of

a closely related product family [133, 134]. Software development based on com—

mon architectural idioms has its focus shifted from lines-of-code to coarser-grained

architectural elements (software components and connectors) and their overall inter-

connection structure. TO support architecture-based development, formal modeling

notations and analysis and development tools that operate on architectural specifica—

tions are needed. Architecture description languages (ADLs) and their accompanying

toolsets have been proposed as the answer. Loosely defined, “an ADL for software ap-

plications focuses on the high-level structure of the overall application rather than the

implementation details of any specific source module” [135]. ADLs have become an

area of intense research in the software architecture community [136, 137, 138, 139].

A number of ADLs have been proposed for modeling architectures, both within a

particular domain and as general-purpose architecture modeling languages. The lan-

guages most commonly referred to as ADLs:

54

Aesop [140] provides a generic toolkit and communication infrastructure that users

can customize with architectural style descriptions and a set of tools that they

would like to use for architectural analysis.

C2 [141, 142] is a general component and message based architectural style that is

well-suited for large-scale, heterogeneous, and distributed applications.

Darwin [143, 144] is to specify system architectures in terms of components and

their interconnections.

MetaH [145] specifies how software modules developed in a variety of styles are

composed together with hardware objects to form a complete system architec-

- ture.

Rapide [146, 147] focuses on developing a new technology for building large-scale,

distributed multi-language systems.

SADL [148, 149] formalizes architectures in terms of theories, shows how generic

refinement operations can be proved correct, and describes a number of flexible

refinement patterns.

UniCon [150, 151] is an ADL whose focus is on supporting the variety of architec-

tural parts and styles found in the real world and on constructing systems from

their architecture descriptions.

Weaves [152] are networks of concurrently executing tool fragments that commu-

nicate by passing objects.

55

Wright [153] allows architects to specify temporal communication protocols and

check properties such as deadlock freedom.

ACME [154] is a simple, generic software ADL that can be used as a common

interchange format for architecture design tools and/or as a foundation for

developing new architectural design and analysis tools.

xADL [155, 156] is an XML-based ADL designed to support the description of

architectures as explicit collections of components and connectors. xADL 2.0

supports aspects of structure, grouping, and configuration management through

an set of XML Schemas which can be applied in whole or in part to architectures

described by it.

Medvidovic and Taylor [157] propose a classification and comparison framework for

software architecture description languages, and they also gave an excellent overview

and comparison Of ADLS prior to 2000.

There are also some meta languages that are used to specify the high level character-

istics of system. One example is an XML-based Hierarchical QoS Markup Language,

called HQML [158]. HQML is introduced to enhance distributed multimedia appli-

cations on World Wide Web with QOS capability. Another example is the megapro-

gramming language [159] that provide the glue for joining together computations

spanning several modules.

56

2.4.2 Real-Time Java

Adding real-time capability to Java brings many challenge, including the analysis of

real-time components, deadline-based scheduling, asynchronous event handling, stack

allocation and garbage collection [160, 161, 162]. There have been several group

involved in real—time extension of Java. The National Institute of Standards and

Technology (NIST) sponsored a series of workshops beginning in June 1998. The goal

was to develop requirements for supporting real-time programming on Java platform.

The final workshop report [163] defines nine core requirements for a Real-Time Java

specification, as well as a number of derived requirements.

The Real-Time for Java Experts Group (RTEG) under Sun’s community process is

working on the real-time specification for Java. The draft has been made available

for public view [164]. Another group, the Real-Time Java Working Group (RTJWG)

also has announced the public review period for its Real-Time Core Extensions Draft

Specification document (“RT Core”) [165]. Both specifications use the NIST require-

ments as guiding principles, but are different in some aspects. Sun’s specification

tends to preserve compatibility with existing Java run-time semantics. They in-

tended to not support portability of real-time Java applications because they want

difference between underlying real-time operating systems could be reflected at Java

level [166]. Since it is tightly coupled with underlying operating system, the VM has

to be re—implemented. On the other hand, RTJWG specification can be separated

into a baseline Java VM which could be a generic off-the—shelf JVM, and a real-time

57

core execution engine which is portable and dynamically loadable. More details about

comparison on these two specifications can be found at [166].

Java distributed system mechanisms and platforms - RMI, JavaSpaces, Jini - suffer

from additional disabilities for most of the real-time domain. An expert group for dis-

tributed real-time Specification was formed to address the need for many real-time ap-

plications (for example, in the industrial automation, defense, and telecommunication

domains) which involve a multiplicity of computing nodes, must satisfy trans-node

end-to—end timeliness requirements. More information can be found at [167].

2.4.3 Computation Steering

Interactive computational steering permits users to dynamically adjust parameters of

an executing computation or system. Such steering permits users to achieve higher p .

productivity in the execution of long-running simulation programs by providing more

immediate feedback, or to direct performance optimizations in systems with tem-

porally varying demands on and availability of resources. Steering techniques allow

users to interact with and adjust the input parameters of algorithms for which the ex-

ecution behavior varies randomly, varies dynamically with characteristics of the input

data, or for which the relationship between the input data and execution behavior

are not yet well understood.

Generally, visualizations are used to provide the user with insight into the state and

behavior of the underlying system, and as a feedback mechanism, enabling users to

gauge the effectiveness of these parameter adjustments. Tools and techniques for in-

58

teractive steering are being applied to simulation applications and environments, for

network configuration and management, load balancing and scheduling, modeling and

design, the interactive refinement of scientific visualizations, and performance Opti—

mization ofWW servers and parallel I/O systems. The goal of interactive steering

is to enable researchers to monitor and guide their applications during runtime, to

help users more effectively address the target problems of their computations, and

to improve the performance of these applications. The ability to observe and adjust

large scale simulation and modeling codes in an online fashion allows researcher to

more easily detect the cause—and-effect relationships at work, and promotes the devel-

opment of greater intuition regarding the effects of program parameters, the presence

of bugs, the behavior of algorithms, and characteristics of the target problem.

- In addition to designing application-specific steering solutions, researchers are de-

signing general tools to facilitate the steering process. Pablo [168, 169] is an event

based performance analysis environment that offers performance data capture, anal-

ysis, and presentation. Two newer interoperable toolkits, Autopilot and Virtue, are

developed on top of the Pablo [170]. Autopilot emphasizes on performance steering,

close-loop adaptive control and decoupling the steering infrastructure from the policy

domain. Virtue focuses on performance data immersion, real-time display, and direct

manipulation for grid control.

The Falcon system [171] demonstrates the potential performance improvements pos-

sible through online monitoring and steering of parallel programs. Later work by the

same group has produced Progress(PROGram and REsource Steering System) [172,

173], which supports the addition of steering functionality to multi~threaded C pro—

59

grams executing on multiprocessors, through the use of a steering toolkit that provides

sensors, probes, and actuators. The CUMULVS system [174] developed at Oak Ridge

National Labs, supports users in integrating steering into existing PVM programs,

and handles the details of collecting and sending distributed data fields to and receiv-

ing steering parameters from dynamically attached viewers.

Computational steering work at Utah, SciRun [175, 176], is a scientific problem-

solving environment (PSE) which provides the ability to interactively guide or steer

a running computation. It addresses the construction of steerable simulation pro-

grams via a data-flow programming model, and the addition of steering capabilities

to large-scale simulations through the use of scripting languages. The entire process of

computation modeling, simulation and visualizationis built and executed within the

PSE. SciRun was designed initially for multi-threaded shared-memory multiprocessors

using C++ classes. A distributed-memory version is being produced and threading

is now used to hide latency and perform other tasks. SciRun aims to address the

problems of interaction and integration of scientific simulation and visualization in a

distributed computing environment.

Other researchers are working to apply interactive steering in their particular appli-

cation domains. Parallel performance instrumentation and evaluation concerns are

being addressed by Waheed et al. [177] and Reed et al. [178]. An interactive simula-

tion of material growth has been developed in the UK [179], a tool for the real-time

visualization of computational fluid dynamics developed at NEC Research [180], in-

teractive flow simulation tools developed in Germany [181] and at the Army High

60

Performance Computing Research Center [182], and interactive simulation tools for

finite element analysis developed at Boeing [183].

Specialized interactive simulation environments have been developed for automo—

biles [184], for distributed modeling applications [185], for electronic manufacturing

systems [186], and for large multimedia networks [187]. Finally, the publications re-

garding the presentation of information for interactive exploration include [188] and

[189].

2.4.4 Robot Control Systems

Early robotic researchers attempted to create robot control systems that reasoned

about and planned every action. The general approach was to sense the world, build

a world model, plan actions with respect to goals, and then execute the plans via

motor control systems. The first major development was Shakey from SR1 [190].

These systems were often brittle control systems incapable of operating outside of

controlled environments. Because they required an accurate world model to reason

properly about what to do, environmental or sensory noise often made them unreli-

able. When they worked properly, they usually only operated under controlled and

limited situations.

Brooks later created several robots that were designed to operating in cluttered, un-

friendly environments using the “subsumption architecture” [191]. This architecture

allows lower, more critical levels of operation to subsume control from higher levels.

Though these special-purpose robots interacted with this relatively hostile environ-

61

ment brilliantly, their ability to reason about the world was intentionally neglected

thus limiting the robots to reactive control schemes. Furthermore, since the con-

trollers for many of these robots were designed in hardware, self-adaptation was not

feasible.

Pham et al. have created two systems [192] that facilitate the creation of self-adaptive

control software: PB3A and RAVE. PBBA, the Port-Based Adaptable Agent Archi-

tecture, is a Java—based programming framework that aims to facilitate the develop-

ment and deployment of self-adaptive, distributed, multi-agent applications. RAVE,

the Real And Virtual Environment, is a mixed-reality simulation environment for mo-

bile robots. Together, these two systems allow for the creation, testing, and analysis

of self-adaptive control software by on— and Off-line simulation. PB3A decomposes a

complex systems into a hierarchy of fundamental unit of execution called Port-Based

Module, PBM. Two PBMS are linked by mapping their input and output ports. PBM

may be dynamically loaded on demand across a network, and the control software can

completely change its structure of the executing robot program by remapping ports

or instantiating new PBMs. However, the down-time and disruption is unavoidable

for PB3A to integrate newly developed modules into running applications.

For multi-robot systems, adaptive control systems become more important because

the possibility of system failure is higher than single robot system. Furthermore, the

coordination communication between robots may be expensive and unstable. Ya-

mada et al. propose an adaptive action selection without explicit communication for

multi-robot box-pushing, which changes an available behavior set depending on a sit-

uation [193], i.e., the existence of other robots and the task difficulty. Also using the

62

behavior-based approach, a set of behaviors or actions is designed for each situation.

Each robot may determine its own situation by itself without explicit communication

with other robots.

Software engineers have pursued many techniques, such as specification languages

and object-oriented analysis and design, for achieving the software’s original promise

— applications that retain full plasticity throughout their life-cycle and that are as easy

to modify in the field as they are on the drawing board. The article [194] examines

the fundamental role of software architecture in self-adaptive systems and outlines

several design issues, such as open or closed-adapted, type of autonomy, frequency,

and cost effectiveness.

2.5 Summary '

The adaptive software architecture project (ASAP), which includes FRAME, CSML, and

Brew, is briefly described in this chapter. FRAME is the adaptive software framework

that provides APIS for applications to be “assembled” on-the-fly after consulting the

resources of the computing environments. If applications fail to work appropriately

because of dynamic environmental change, applications may also use the FRAME APIS

to replace part of the codes to produce better performance or quality of execution

without down-time.

CSML is a high level specification language that allows developers to specify the defini-

tion of adaptation for applications. The infrastructure for applications working under

FRAME is automatically generated from the specifications.

63

Brew is a light weight on-line adaptation, which allows the inappropriate execution of

applications, due to minor environmental changes, to be repaired without significant

performance impact from FRAME.

Some related work from the research areas, such as pervasive computing, reflective

systems, architectural description languages, and others, are also presented. They are

related to ASAP from the heterogeneous computing, adaptive systems, or high level

software system specification perspectives. The common goal is to relieve the burden

of development, configuration, execution, and management of systems, a particular

research challenge in terms of quantitative differences for heterogeneous and varying

physical circumstances.

64

Chapter 3

Adaptive Software Framework:

FRAME

3.1 Motivation

In many mass production industries, such as automobiles and electronics, the final

products are assembled from parts. It is technically impossible for vendors to de-

velop parts or products that may work perfectly under every environment. As a

consequence, vendors usually specify how well the parts may perform under certain

environments. The parts may be built by various vendors and have different specifi-

cations, but they are plug-in compatible if they have the required functionality and

satisfy requirements. Therefore, for certain environments, users may be able to select

appropriate parts based on the specifications. If under some situations, a part fails

or does not perform as well as required, it is possible to replace the part with an

appropriate one. Take the automobile tire as a real-world example. The regular tires

65

are usually designed for normal weather condition. These tires may be prone to skid

under snowing days and may not meet the safety requirements. Consequently, special

snow tires may be used to achieve better safety or performance.

The similar idea may be applied to the development of the adaptive software, in

which the applications are assembled from parts, or called components in this con-

text. Since it is impossible for software developers to develop a component that will

work perfectly for every computing environment, they may implement the component

that will only work flawlessly under certain environment and specify the performance

information in the implementation specification or called component constraint in this

context. To guarantee that the application will work correctly as required, a set of

appropriate components for the application has to been identified and replaced, if

necessary, for every computing environment. The whole adaptation process includes

detecting the change of environment and diagnosing the performance. If the per-

formance requirement is not satisfied, the appropriate set of components has to be

identified and then perform the component replacement.

However, given the trend that current and future computing environment may change

frequently due to the development of the mobile devices, the adaptation process

to identify and replace an appropriate set may be tedious or even impossible for

users. Therefore, it will benefit the users if software may automatically engage the

adaptation process.

To realize the automatic adaptation process, the information about component con-

straints has to be embedded into implementation of components, so the software may

be able to diagnose the feasibility of each component implementation without hu-

66

man intervention. That is, once the desired performance requirements are specified

by users, the software itself will detect environmental change, search for the feasible

implementation of each component by checking whether their Specification meets the

requirements or not, assemble those feasible components into software, and then the

software is ready to execute. Such an automatic assembly process is called component

assembly in this context.

Because of component assembly, applications do not need to be assembled, or linked,

during the development stage. Particularly, until being executed, an application does

not need to exist as a concrete entity but virtually as a set of components. With

the assembly of the applications being delayed until execution time, applications .

may have an Opportunity to know their computing environments and be able to

select the apprOpriate implementations of the components to adapt the applications

to the specific computing environments. Furthermore, the performance portability

illustrated in the first chapter may be realized since the constraints of each component

will satisfy the users’ desired performance requirements.

3.2 Overview of FRAME

FRAME is a adaptive Java software framework that is implemented in Java. The main

reason for choosing Java is that Java has provided bytecode level portability and to

achieve performance level portability implies that bytecode level portability has been

accomplished. The goal of FRAME is to help peOple develop, deploy, and use adaptive

software in a heterogeneous environment by providing the following features:

67

o Developers may specify constraints for applications.

0 Users may specify the intended quality of service before executing the applica-

tion.

0 Applications may be automatically distributed to single or multiple target plat-

forms.

0 Before execution, applications may probe the available resources from the com-

puting environment and then adapt themselves to the computing environment.

0 During execution, applications may detect the run-time environmental changes

and invoke the assembly process if necessary without down-time.

Basically, FRAME accomplishes the above features by providing a generic component

assembly framework. An application should be composed of components under FRAME.

As shown in fig. 3.1, the kernel represents component functionality and is encapsulated

by the adaptation shell that consists of FRAME APIS and constraints and provide the

adaptation capability for the application. Furthermore, an application only needs

FRAME APIS and constraints, but not its functionality, to be adaptive. TheOretically,

it is possible to create a dummy adaptive software, in which the software is adaptive,

but functionality of its components is not implemented. Thus, the functionality

kernel may be implemented independently with the adaptation shell. Obviously,

separation of the adaptation shell and the component functionality kernel will reduce

the complexity of deveIOping adaptive software.

68

Adaptation Shell:

FRAME APls + Constraints

Kernel

Functionality

FRAME Component Structure

Figure 3.1: The separation of the adaptation shell and the functionality kernel for a

FRAME component '

As just mentioned, an application under FRAME should be in a hierarchical architecture

that is. built from components. Each component has information about quality of

service or resource requirements specified as constraints, and COOperates with other

components through an unambiguous interface. The application may be executed

as a process on single machine, or distributedly on multiple machines, which require

a special entity called the component stub to handle the communication between

multiple machines.

Fig. 3.2 is a flowchart for developing an application under FRAME. First, developers

need to decompose the application into a hierarchical architecture that contains com-

ponents. The software hierarchy information, including the information about how

components are dependent from each other and where these components may be lo-

cated, should be stored in a database server called the component registry. For each

69

component, developers need to design its interface consisting of the functionality or

services it will provide and the constraints it has. Once the interface is specified, var-

ious implementations with different resource requirements and quality of service may

be developed and used for specific computing environments. For each component,

each of its implementation will have a unique version number to be easily distin-

guished from other implementations. Besides, each implementation of a component

needs to be stored in an server called the component repository. Finally, information

about each implementation of a component, including version number and location

of the component repository, should also be registered to the component registry.

Fig. 3.3 is a flowchart for executing an application under FRAME, and fig. 3.4 shows

how an application execution under FRAME interacts with the component registry and

the repository. The software is not directly executed by users but via an entity called

the launcher, which will trigger the component assembly and the execution of the

software. Users specify intended performance or quality of service as constraints in

the application launcher and execute it on the target platform. The launcher will

query the component registry about the software components. Based on the results

from the registry, the launcher will load each implementation of components from

the component repository. During the component assembly, the launcher will diag-

nose each implementations based on whether the constraints are satisfied under the

computing environment. After the appr0priate implementation of each component

being identified, they will be assembled with appropriate parameters and then the

application will begin to execute.

70

Decompose the application into

components.

 l —P

l 1

Register application hierarchy information

including component dependency and

component respository location.

F vi

l v

For each component, design a plug-in

compatible interface, including the services

and the constraints.

l vl

T v

Implement functionality of component, and

store it in component repository

l

f v My

\—

Register the information about component

implementation including version number.

Figure 3.2: Flowchart of developing an application

71

Users specify performance constraints in

application launcher.

L
_

_I_v

l f
I

Launcher consults registry for application

hierarchy information including and

components and location.

1

Based on the result from registry, load

each component implementation from

component repository.

_J_l

V

E

l V
l

h
e

Start component assembly: to find feasible

version of components so that all

constraints are satisfied.

L
—

Start executing the application by using

these feasible version of components.

 L

Figure 3.3: Flowchart of executing an application

72

F--W

.-

LComponent Repository J

A .__

:3 a
a E I:_ :2:-

Component Loading _'-'

\l l llllllL
Component Assembly N

 Registry

Appplication Launcher

 k Target Platforms J

Figure 3.4: The interaction between a target platform, component registry and repos-

itory during the execution of an application

73

FRAME provides the APIS to accomplish the above flowcharts, including the commu-

nication between target platforms and registry, component loading from repository,

component assembly, and inducing the application execution. It is deserved to be

noticed that the usage of FRAME APIS depends on the results from the component

registry and the results of constraint diagnosis. Since the component registry con-

tains the information about the software hierarchy, it is obvious that the usage of

FRAME APIS, and hence the adaptive capability, depends on the software hierarchy

and constraints, but not the functionality of components.

Details about FRAME will be explained with an example, the GO game, in the following

sections.

3.3 Components

As shown in fig. 3.5, the structure of a general software hierarchy may be viewed as a

graph with components being represented by nodes. The dependencies of components

are represented by arcs and defined via services; that is, a parent component requires

services from its child components, and vice versa. Each component, except for

the root component, might have more than one implementation or version. Some

components may need services from their child components. Only one version of each

component is needed to execute a program. The component dependency information

needs to be registered to the component registry and, of course, the whole software

hierarchy has to be resolved during run-time by querying the component registry.

74

E
l
i

E
s
p
l
a
n
a
d
e

. £3... 0
Launcher Component

Component Version

Figure 3.5: Software hierarchy under FRAME

75

Components are key entities under FRAME. Fig. 3.6 shows a general component ar-

chitecture. A component may provide functionality or services that may be used by

other components, i.e., the parent components, and it in turn may need some ser-

vices from its child components. As an example, fig. 3.7 is software hierarchy of a

G0 game that consists of three components. Component board is the user interface

and the root component. It needs service from its two child components: AI and

audio. The component AI is the opponent that a user plays against and has two

different implementations, GnuGD and Random. The former implementation is more

competitive. Its AI engine is inherited from GnuGO source code developed in C [195].

This implementation has many recursive function invocations that require much stack

memory and CPU computation. Therefore, this version is not suitable for slow, bat-

tery powered machines with limited memory. The second implementation. has very

. limited-intelligence. It is less competitive to play, but requires less computation and

memory resources. The audio component may play background music and also has

two different implementations: MIDI and dummy. MIDI implementation is able to play

a MIDI audio file and requires that the target platform has a sound device. If the

target platform cannot use MIDI, such as having no sound device, the dummy imple-

mentation will be used, which does not have any performance effect on components

board and AI. To simplify the example, each implementation of each component is

labelled according to table 3.1.

76

Figure 3.6: Component Architecture

 version: MIDI version: Dummy

Audlo

 version: GnuGO version: Random

Figure 3.7: Software hierarchy of the GO game

77

3.3.1 Services

The functionality of a component is defined by the services it may provide, and dif-

ferent components are connected via services. To ensure the plug-in compatibility

between different implementations of a component, each implementation of a com-

ponent would provides the same services, although the performance and quality of

services may vary among implementations.

In the GO game example, the AI component provides the service, play, to its par-

ent component, board. Both GnuGD and Random implementations will implement

the service, play, but with different resource requirements and, of course, different

intelligence.

The services provided by each component of the GO game example is listed in ta-

ble 3.2.

3.3.2 Constraints

In addition to services, a component may also have constraints as shown in fig. 3.6.

Since implementations of a component may have different resource requirements and

quality of services that are specified as a set of constraints, unlike services, implemen-

component 1 component 2 component 3

 mentation

version 1 board A1 with GnuGD imple— audio with MIDI imple-

mentation mentation

version 2 N/A AI with Random imple— audio with dummy im-

plementation

Table 3.1: Label of each component

78

tations of the same component may have different set of constraints. More precisely,

component assembly identify the feasible implementation of a component solely based

on constraints, so each implementation should have a unique set of constraints be-

cause, otherwise, component assembly will not be able to distinguish the implemen-

tations.

The constraints may be classified into four different sets, resource requirements (RU),

parameter constraints (P,,-), internal connectors (D,,-), and external connectors (Mij).

Each constraint is a predicate and defined as a boolean function in Java, in which the

truth value represents whether a constraint is satisfied or not. If all constraints of a

set, e.g. Rij, P”, D,,-, and M,,-, are true, the set is defined as true; otherwise, the set

is false. By checking the truth value of constraints, component assembly will be able

to identify the feasibility of a component implementation.

Resource Requirements: R4,-

To guarantee the promised quality of services, some minimum resources may be re-

quired by the component implementation. For example, in the GO game, the compo-

nent implementation, MIDI, requires at least a sound device to play a MIDI audio file.

Such minimum required resources are specified as resource requirement constraints.

component board AI audio

implementation GnuGD [Random MIDI l dummy

service main play playAudio

Table 3.2: List of the services of the GO game component

79

The collection of the resources required for a component 2' with version number j are

denoted as Rij. For example, the required resource for the MIDI implementation of

the component audio is a sound device. Also, it is not appropriate to use the GnuGU

version for a battery powered platform because of power consumption. Therefore,

by following the labels used in table 3.1, the overall resource requirement for the

MIDI implementation would be R31 = {“A sound device exists”, “Platform is AC

powered.”}. Since the dummy should be used whenever R31 is false, R32 is actually

the complement of R31, denoted as R3,. Instead of Specifying R32, the dummy imple-

mentation is specified as the “default” version of the audio; that is, if the required

resources of other versions are not satisfied, the default version will be used.

Parameter Constraints: P,-

Each component may have parameters that represent some quantifiable or enumer-

able metrics, such as performance or output quality of implementation. Parameter

constraints are used to specify the finite domains of these parameters, in which the

performance is reasonable or the output quality is desired. For example, consider

the parameter specified for performance. If there exists such a value within the spec-

ified finite domain that equals to the performance, the performance is said to be

reasonable.

If a parameter is the kth parameter of component 2', it is denoted as pf. Table 3.3,

3.4, and 3.5 are the complete list for the parameters of each component of the

GO game. These parameters should be in some default finite domain that may

be specified by parent components or the application launcher. The collection of

80

default parameter within a domain for a component 2' with version 3' is called the

parameter constraints and denoted as P,,-. For example, board component developers

may be interested in the response time of the first move, i.e., the elapsed time from

player move to computer move, power consumption of first move, and the competition

level. Thus, these three metrics could be represented by three parameters p}, pf, p?

respectively. The maximum response time might be set at 10 seconds. The power

consumption is measured in percentage of a fully charged battery, and the maximum

power consumption of the first move might be 0.5% since a typical GO game may

involves more than 100 moves. The competition level is divided into two different

level. These metrics determine the default reasonable domain of p}, pf, and p‘l’.

Therefore, the collection of parameter default domains for the component board is

P11={“0 5 pl 3 10”, “0 .<_ pt 5 0.5”, “1 3 pt s 2”}.

parameter comment

pl the response time of the first move

pf power consumption of first move

Pf intelligence

Table 3.3: Complete parameter list for component board

Parameter comment

p; the response time of the first move

19% power consumption of first move

19% intelligence

Table 3.4: Complete parameter list for component AI

81

Internal Connectors: D,,-

As the software is decomposed into a hierarchy, the above constraints are also un-

der the hierarchy and raise the problem that the specified constraints may not be

orthogonal. For instance, performance usually declines when achieving better output

quality. Their relationship must also be specified as a special constraint, say C(p, q)

with p and q being denoted as performance and quality. Without these constraint,

we may specify the highest reasonable performance and intended quality within their

domains. The parameter constraints are satisfied individually, but, in reality, it is

impossible for the implementation to produce the highest performance and output

quality at the same time and the assembly process may select a false implementation.

The truth of these special constraints are examined with parameters specified in their

domains. For example, if there exist such values p and q within their respective spec-

ified domains that C(p, q) is true, C(p, q) is satisfied in conjunction with parameter

constraints. Thus, similar to that the components are connected via services, the de-

pendency of constraints are connected by special constraints called internal constraint

connectors and external constraint connectors.

For the non-orthogonal parameters within a component, the relations between these

parameters, by analyzing or modeling, are specified as internal constraint connectors,

denoted as Dij- Take the component board as an example, it is obvious that a longer

parameter comment

1931, power consumption of first move

Table 3.5: Complete parameter list for component audio

82

response time, p}, will consume more power, pf. Their proportional relation may

be modeled as a linear relation, p} Z 20])? Therefore, the collection of the internal

constraint connectors for the component board is D11 = {“p{ 2 20p¥”}.

External Connectors: M,,-

Moreover, today’s complex software systems are usually collaborative projects. Each

component may be designed by different deveIOpers, and the constraints that indi-

vidual developers envision may sharply differ. For example, the developers of the

different components may be interested in different performance metrics. While de-

velopers at higher level software areconcerned about overall performance, deveIOpers

at lower level software may be only focused on the performance of sub-tasks, and these

parameters may be dependent or independent. Also, a parent component may need to

redefine the parameter domain of its child components, and the application launcher

may redefine the parameter domain of the root component. These relations among

the parameters cross the components are specified by external constraint connectors.

For example, although the board component and AI component developers may be

interested in the response time, power consumption of the first move, and competi-

tion level, all these parameters may have different meaning from different perspective.

Since component audio may also consume resources, i.e., CPU and power, the re-

sponse time of component board, p}, should take component audio into consideration

and may be longer than the response time of component AI, pg. Therefore, there must

be some connections between the parameters of the component i with version j and

its child components, and the collection of all these connections are specified as ex-

83

ternal constraint connectors, Mij- For component board and its child component,

the relation between the response time parameters may be modeled as a linear rela-

tion, p} 3 1.110%. Similarly, the total power consumption pf should include the power

consumption from AI, pg, and audio, pg, The relation between these power con-

sumption parameters may be modeled as a linear relation, p? g 1.1(p§+P:1:)- Finally,

the same metrics may be used for competition level of the component board and

AI, and the relation would simply be p? = p3. Thus, external constraint connectors

between the parameters of the component board and its child component, the AI, is

M11 = {“19} S 1-1pi”,“pf S 1-1(p§ + pi)”, “pi = 103”}-

Each element in R,,-, P,,-, D,,, and M9- is called a constraint. The component con-

straint (1,,- for component i with version j is defined as the set of all constraints,

01'

Cu = R,,-UP,-,-UD,~,-UM,-,-

and the feasible component i is defined as the component i with version 3' such

that all constraints of (3,,- are satisfied. Finally, it is deserved to notice that each

implementation of a component should have a unique set of constraints, i.e., unique

component constraint Cij- Complete constraints for each component implementation

of the GO game are listed in table 3.6, 3.7, and 3.8.

3.3.3 Root Component

The root component of the software hierarchy is a special component and the starting

point of component assembly. While it shares the some common properties as a

84

constraint

board

(i = 1,j =1)

((0 S S 10”, “0 S

S 1-1 ”, S

S 0.5”, “1 S

,3

.1 +

S 2”

Table 3.6: Complete constraint list for component board

constraint AI

Random

(i = 2, j = 2)

S

as, =r’

“0 S p2 -<— 10”,“0 S S

Table 3.7: Complete constraint list for component AI. Here the fact that competition

level of GnuGD is higher than the competition level of Random means that GnuGD is

more intelligent than Random.

constraint audio

MIDI dummy

a=aj=n u=aj=m

Rij {“A sound device exists”, “Platform is AC default, i.e., R§1

powered.”}

1% POSQSOEW Vogfigosq

Do 0 ll)

Mij 0 0

85

Table 3.8: Complete constraint list for component audio

regular component, such as the specification of 12,5, Pij: D,,-, and Mg, it has only one

implementation and one provided service, main as shown in table 3.2, which is the

starting point of the application execution and will be called by the launcher after

the component assembly.

The root component also has parameters in a default finite domain as normal com-

ponents. Nonetheless, the range of its parameters may be redefined by users via an

application launcher, unlike the normal components being redefined by their parent

components. For example, users may specify the response time and power consump-

tion of the root component board in an application launcher.

3.3.4 Component Stub

Instead of running on single machine, FRAME is designed to be able to automatically -

distribute components of applications to multiple platforms in order to support ad

hoc systems. This is done via the component stub that is a special implementation

of the component.

Component stubs provide the communication mechanism between components on

different platforms, and need to cooperate with the real implementations of the com-

ponents to provide functionality. Conceptually, what a component stub does is to

transfer the services of an implementation of a component from one platform to an-

other.

Fig. 3.8 is the communication mechanism between two non-distributed component

objects, A and B, executing on a single platform. Component object A and B actu-

86

Component

Object A

it

Component

Object B

Process Platform 1

Figure 3.8: Non-Distributed Component Invocation

ally execute within a process and communication with each other through a regular

method invocation mechanism within the process. Fig. 3.9 shows the underlying

communication mechanism between two distributed component objects executing on

two different platforms. Instead of using the real implementation of component B,

component A actually interacts with the stub of component B, which implements the

communication infrastructure with a remote daemon process called the FRAME agent.

During the remote method invocation, the component stub will transfer necessary in-

formation about the method and its the associated object, which is B, to the FRAME

agent; it will also pass the method arguments. Once the information is received, the

FRAME agent will locate the object of the specified method, invoke the object method

with the arguments from the stub, and then pass back the returned value to the stub.

3.4 Component Assembly

Since a component may have multiple implementations that work appropriately un-

der a specific environment, an application may be assembled from several possible

87

Component Object Component Object

A B

Stub of

FRAME agent

Process l 2‘ I Process

Platform 1 , Platform 2

Figure 3.9: Distributed Component Invocation

combinations of components. The main purpose of component assembly is to identify

the feasible combination consisting of all feasible component implementations.

Suppose that a program requires components C1, C2, . . . ,C,. The collection of Cw, for

component (31,62, . . . ,C, with version 121,02, . . .,v,~, respectively, is called a software

constraint and denoted as Svrvz---v." For instance, all four possible software constraints

of the GO game, corresponding to all four possible combination of components for the

GO 83-1116, Will be 5111: C11 U021 U031, S112 = C11 U021 UC32, 3121 = C11U022 UC31:

and Sm = C11 U (122 U C32. If all constraints within Swan”, are satisfied, Swan”, is

called a feasible software constraint.

As mentioned earlier, each implementation of a component should have a unique

component constraint ij. Thus, the software constraint would be different from

each other, and the mapping between combinations and software constraints are one-

to—one. Such a one-to-one property may be used to identify the feasible combination.

That is, if Swan,” is a feasible software constraint, the combination of components

Cl, Cg, . . .,C,- with version 221,122, . . . , 1),- respectively will be a feasible combination.

88

Before an application is executed, it needs to search for the appr0priate version of

each involved component through component assembly. Whether an application is

able to execute will depend on whether the user specified parameters and the com-

puting environment can produce a feasible combination. First, component assembly

needs to construct all software constraints from all possible combinations, which is

done through the following steps, starting from the root component as the current

component:

1. Query the implementation information about the current component.

2. Query the location information, i.e., the location of component repository, for

each implementation of the current component. '

3. Load each implementation of the current component from the component repos-

itory.

4. Build component constraint Q, from loaded component i with version number

5. Query all child component information of the current component.

6. Repeat the first step for each child component.

7. Build all possible combinations from all implementation of each components.

8. For combinations, the corresponding software constraints S,,,,,,_,_,,i may be built

from CS.

89

After constructing all possible software constraints, then the remaining assembly pro-

cess is basically a constraint satisfaction problem (CSP); that is, determining the

truth value of all possible software constraints to find a feasible software constraint,

which will in turn give the corresponding feasible combination. Once the feasible

combination is found, the feasible implementation of each involved component will

be initialized with appropriate values of parameters that will satisfy the software con-

straint. For the GO game, one difference for a given AI component between these

two software constraints (8111 and 8112, or Sm and 8122) is the existence of a sound

device. If no sound device exists, the feasible program will be the one using the dummy

version but not the MIDI version because the constraint, “A sound device exists”, is

not satisfied.

A constraint satisfaction problem may be solved using the generate-and-test paradigm

(GT). In this paradigm, each possible combination of the variables is systematically

generated and then tested to see if it satisfies all the constraints. The first combi-

nation that satisfies all the constraints is the solution. The number of combinations

considered by this method is the size of the Cartesian product of all the variable

domains.

A more efficient method uses the backtracking (BT) paradigm. In this method,

variables are instantiated sequentially. As soon as all the variables relevant to a

constraint are instantiated, the validity of the constraint is checked. If a partial

instantiation violates any of the constraints, backtracking is performed to the most

recently instantiated variable that still has alternatives available. Clearly, whenever a

partial instantiation violates a constraint, backtracking is able to eliminate a subspace

90

from the Cartesian product of all variable domains. The backtrack method essentially

performs a depth-first search [196] of the space of potential solutions of the CSP.

This backtracking algorithm is currently implemented in FRAME, i.e., using multiple

nested loops for parameters, which take each values in the specified parameter do-

mains and examine if the each constraint of the software constraint is satisfied. If,

for a parameter, such a value exists that make a software constraint to be true, the

value is called the feasible value of the parameter. Then the application will be as-

sembled from the corresponding combination with each parameter being initialized

to its feasible value. This may not be an efficient approach. For a static component

environment, the component assembly process only needs to be invoked once, right

before the execution of the application, since the computing environment does not

change and the feasible software constraints will remain invalid during the course .

of execution. In this case, the component assembly will not have any performance

impact on the application execution. However, this case may not be true for a dy-

namic computing environment, since the computing environment may change much

such that the feasible software constraint becomes false and causes the invocation of

component assembly. More details about the performance impact of the component

assembly will be discussed in chapter 5.

For distributed applications, the component assembly process will distribute compo-

nents to specified platforms before constructing software constraints. All components

except the root component may be distributed to any possible specified platform as

long as their component constraints ij’s are true on the platform. The root compo-

91

nent is not distributable, since it has to interact with the application launcher and is

restricted to execute on the same platform as the application launcher.

As a consequence, there might be more than one possibility to distribute components

depending on the number of components and specified platforms, i.e., nl,"°_l) possibil-

ities with nc being the number of components, 72,, being the total number of specified

platforms, and the root component always being executed on the first specified plat-

form. We call each possibility a distribution, and a distribution as an n-distribution,

1 S n _<_ np, if all components are distributed to n of up specified platforms. For

each distribution, we may construct all possible software constraints and determine

if a feasible software constraint exists by solving the constraints. A distribution is

called feasible if a feasible software constraint can be found within the distribution.

Therefore, the component assembly process for distributed applications is to find a

feasible distribution from all possible distributions.

The current component distributing strategy is a top-down strategy with load distri-

bution. Indeed, the component assembly process first tries to find a feasible distri-

bution from all the np—distributions. If fails, it repeats the search from the (rip — 1)-

distributions, and then (np — 2)-distributions, until it find a feasible distribution or

fails at 1-distribution.

3.4.1 Application Launcher

As mentioned earlier, an application is not directly invoked by a user but via an

application launcher. The main task of the launcher is to interact with the root

92

component. That is, the launcher may take user specified constraints of applications,

i.e., parameters domain range of the root component. It then will retrieve the root

component by consulting the location information of the root component from the

component registry, redefine parameter constraints of the root component, and then

start the component assembly process.

Users may specify the target platform that the application will execute on. To execute

a distributed application, users only needs to specify a set of, instead of one, target

platforms. The first platform of the set is the platform that the launcher will execute.

Because we want users to interact with the application on a certain platform via

launcher thatwill be the first platform of the set, the root component will execute

on the first specified platform, and the rest of the components may be distributed to

all specified platforms.

3.5 Discussion

3.5.1 Alternative Adaptation Approach

A more simple and straightforward approach for implementing the adaptation is to use

the condition statements such as if-else statements. The general structure of the code

would be using nested if-else statements and each is used to decide the appropriate

implementation of a component. Once an implementation is selected, execution flow

may go into the inner if—else statements to select the appropriate implementation

of other components. Compared to the steps that component assembly needs to go

93

through, it is not difficult to argue that such an approach has a performance advantage

over component assembly. The comparison results will be revealed in chapter 6.

However, the condition statements approach is primitive from the software engineer-

ing perspective. The condition statements contain constraint information to select

the implementation and also the software hierarchy information that is required to

direct the execution flow to the condition statements for selecting the implementation

of the different components. While the number of components and their implementa-

tions increase, the code tends toward so called “spaghetti code” that has a complex

and tangled control structure and the software will become more difficult to maintain

or modify.

The most important limitation of the condition statements approach, is that con-

dition statements are hard-coded, so the availability of all implementations need to

be known during the development stage, which implies the assumption that all the

computing environments may be anticipated and correctly modeled and the corre-

sponding component implementations are implemented. It is not flexible enough to

integrate newly developed implementations for the environments unknown during

the development stage without rewriting and recompiling the code, and, of course,

the down-time. For some systems, in which the robustness is important and the

down-time is very expense, the condition statements approach is not apprOpriate

particularly under dynamic environment,

On the contrary, FRAME might greatly alleviate the spaghetti code problem since

the software hierarchy and the component constraints are separately specified at the

software system level. The information may be stored in component registry and then

94

resolved by component assembly. Besides, FRAME may remove the barrier of inflexible

integration of newly deveIOped component implementations by simply adding the new

implementation into component repository and update the component registry.

3.5.2 Components

Component-based software engineering has existed in one form or another for a num-

ber of years. So far, we did not clearly clarify the meaning of component. Actually,

there is no universal definition of software component, and the term component has

come to mean many different things to different people. A component may have a

very shallow meaning such as a collection of subroutines and libraries[197]. It may

also have a very deep semantic meaning and is abstract across various domains [198].

Cheesman [199] identifies the component concept from a number of different perspec-

tives, examines the characteristics and benefits of each, and shows how they relate

to each other. The components under the FRAME fall into the Service Perspective,

which considers a component to be a software entity that offers services (operations

or functions) to its consumers. It also introduces the notion of a contract between

the provider and the consumer of those services. By focusing on the notion of a

contract, the service perspective introduces the important distinction between the

specification of a component (what it does) and its implementation and executable

forms (how it does it) . This distinction is fundamental to the management of depen-

dencies between components and begins to address the important requirement to be

able to replace a component with minimal impact on the consumer, often referred to

95

as “plug-and-play”. Furthermore, consumers of a component should only be depen-

dent on the specification of that component. Any dependency on its implementation

(whether through direct knowledge or due to unspecified assumptions which happen

to be supported) will mean that the application is likely to fail when the component

is upgraded or replaced.

3.6 Summary

In this chapter, the adaptive Java software framework (FRAME) is presented. An

application should be composed of components under FRAME. Each component has

information about quality of service or resource requirements specified as constraints,

and cooperates with other components through services. Furthermore, an application

only needs FRAME APIS and conStraints, but not “its functionality, to be adaptive.

Thus, the adaptation and functionality of an application may be separately specified

and implemented, and, hence, alleviate the complexity of deveIOpment.

The services define the dependency of the components, i.e., software hierarchy. Each

component, except for the root component, might have more than one implemen-

tation of the provided services. Each implementation of a component will produce

reasonable performance or appropriate response for some specific situations. The

software hierarchy information needs to be registered to the component registry, and

needs to be resolved during run-time by the component assembly via the component

registry in order to know which components are required for an application.

96

Each implementation may contain a set of constraints that specify how well the im-

plementation will perform or response under certain environment. There are several

different types of constraints, such as parameters and connectors. Parameters spec-

ify the quantifiable or enumerable metrics and the feasible domains of the metrics.

Besides, connectors specify the mutual dependency of parameters.

An application may be assembled from several possible combinations of components.

Each combination has a set of constraints, or a software constraint, which consists of

all the constraints from involved component implementations. Since no two imple-

mentations should have same set of constraints, the mapping between combinations

and software constraints are one-to—one. By solving which software constraint is fea-

sible, i.e., all constraints in the software constraint are satisfied, the corresponding

feasible (combination will be found.

97

Chapter 4

Component/Constraint Markup

Language (CSML)

4.1 Motivation

For complicated software projects, the implementations may become difficult to main-

tain. Software architecture research is directed at reducing the cost of application

development by focusing attention on high level design issues and increasing reuse.

Over the past decade, software architecture research has emerged as the principled

study of the overall structure of software systems, especially the relations among sub-

systems and components. From its roots in qualitative descriptions of useful system

organizations, software architecture has matured to encompass broad explorations of

notations, tools, and analysis techniques [200]. Whereas initially the research area

interpreted software practice, it now offer concrete guidance for complex software

design and development.

98

Similar reasoning may be applied to the development of adaptive software under

FRAME, where the concept of a software architecture has been used in FRAME. More-

over, although FRAME provides the framework to allow component-based software to

be assembled during the run-time, the usage of the FRAME APIs may not be straight-

forward and the plug-in compatibility of components will become more difficult to

maintain for collaborative projects. For instance, in addition to the code implement-

ing the component services, additional code needs to be added in order to work under

FRAME, such as the Java implementation of constraints for each component assembly,

communication for registering and querying the necessary information in the registry,

and interpretation for the result from the registry. Particularly, the constraints may

be different among implementations. Accordingly, a high level software architecture

specification language will be helpful for developers to maintain the consistency of

component interfaces and implementations.

From the previous chapter, the architecture of FRAME is described with the relations

between components, not the detailed functionality of components. Actually, the

implementation of adaptation and the component functionality is mutually indepen-

dent. Hence, the usage of the FRAME APIS only depends on the relations between

components. It will be possible to develop an application to use FRAME APIS with the

only information about the software architecture.

99

4.2 Overview of CSML

Component/Constraint Specification Markup Language (CSML) is a specification lan-

guage to abstract the information about the relations between components. It uses

Extensible Markup Language (XML) [201], a very flexible text format derived from

SGML (ISO 8879) [202], to help software developers specify the high level struc-

ture of adaptive software systems under FRAME. The software hierarchy information

is captured by specifying child component dependency. The consistency of compo-

nent interfaces will be maintained by specifying the provided services and the re-

quired services from child components. Individual implementation information such

as constraints and other information about locations of the component registry and

repository may also be specified. Once specified, CSML will compile the specifications

and generate the code for adaptation, i.e., the adaptation shell including FRAME APIS

and constraints as shown in fig. 3.1. Next, the developers need to implement the

functionality of the components.

Fig. 4.1 illustrate the flow of using CSML to deve10p a component. First, CSML compiles

the component specification, and generates a component interface and a base class

of a component implementation in Java. The generated code includes adaptation

shell code such as methods for each constraint and FRAME APIS for communicating

with the component registry, accessing the parameters, constructing the all software

constraints, and constraint solving. The component stub is the communication mech-

anism for distributed computation that has been described in the previous chapter.

The component register is used to register component information into the registry.

100

Component specification

CSML compiler

l l ,, l ,, 7

Base implementation of

Java Interface

Java Interface Component Stub Component Register

w

Inheritance l

I

Component implementation

Figure 4.1: Flow chart of using CSML to deve10p a component

Both may also be generated from the specification. Then, component developers

only need to inherit the base class to implement the functionality of the component;

basically, the infrastructure needed to work under FRAME is generated from the spec-

ification by CSML.

Similarly, application users may use CSML to specify the intended performance or qual-

ity of the application execution. An application launcher that carries the information

about the desired performance and pass it to the root component of the application

will be automatically generated from the user specification as shown in fig. 4.2.

The details of the format of CSML specification will be illustrated with the GO game

example in the following sections.

101

Launcher specification

CSML compiler

1
Application launcher

Figure 4.2: Flow chart of using CSML to specify a launcher

4.3 Root component specification example

Table. 4.1 is the specification of the root component board in CSML. The element. root-

component specifies identity of a root- component, including the name of root compo-

nent (in attribute name), host-name of component registry (in attribute registry-host),

and location of the root component itself (in attribute an), as shown in lines 1-2.

Parameters are specified in the element parameter with name and their range (in

attribute upper and lower), lines 4—6. For example, from the parameter list of the

component board, as shown in table 3.3, the parameter p] may be specified with

name being response-time and id being p11. Also, from the constraint list of the

component board, as shown in table 3.6, the parameter constraint “0 S p] S 10” will

specify the upper and lower bound of p] to be 10 and 0 respectively.

Child components are specified in the element child-component, which will be used to

resolved the software hierarchy by component assembly. Similar to the element root-

102

1 (root-component name="board“ applications"60"

2 uri-"http://wvv.cae.msu.edu/‘korenson/clasa[JavaGO.jar" registry-host-“192.168.1.111")

3 (description) 60 board. (Idescription)

4 (parameter name-"responae_time" id-"p11" value-type8"int" uppers"10" lover-”O" /)

5 (parameter name-"power_conaumption" id="p12" value-type-”float" upper="0.5" lowers"0" I)

6 (parameter name-"intelligence” id8"p13" value-type="int" upper="2” lover-"1" /)

7 (internal-connector id="d1")

8 (from-current parameter-id="p11” alias-"varl" I)

9 (from-current parameter-id-”p12" aliaas"var2" I)

10 (definition)

11 return ‘varit)8 20 * ‘var23;

12 (Idefinition)

13 (Iinternal-connector)

14 (child-component name-“AI" id="c1” registry-host-”192.168.1.111"

15 urit'http://uww.cae.aau.edu/'koreneon/claee/GOPlayer.jar" I)

16 (child-component name-“audio" id-"c2" registry-hoet8"192.188.1.111”

17 uri-"http:I/vvu.cee.mau.edul’korenaon/clane/audio.jar" I)

18 (external-connector id8“m1")

19 (from-current parameter-id="p11” a1iaa=”var1” I)

20 (from-child child-id-"c1' paraneter='reeponae_time" alias-“var2" I)

21 (definition)

22 return ‘var18 (8 1.1 t ‘var28;

23 (Idefinition)

24 (lexternal-connector)

25 (external-connector id-"m2”)

28 (from-current parameter-id-“p12" alias-”vari” I) .

27 (from-child child-id-"c1" parameter‘"pouer_coneumption" alias-“var2“ /)

28 (from-child child-id8"c2" parameters"pouer_conaunption” a1iae="var3” I)

29 . (definition)

30 return ‘varlt (8 1.1 t (‘var28 + ‘var38);

31 (Idefinition)

32 (Iexternal-connector)

33 (external-connector id=“m3")

34 (from-current parameter-id="p11" alias-“var1" I)

35 (from-child child-id-”c1" parameter="inte11igence" alias-“var2" /)

36 (definition)

37 return “var18 8' “var28;

38 (Idefinition)

39 (Iexternal-connector)

40 (main)

41 (instance name-”A1” child-id-”c1" I)

42 (instance name-”Audio” child-id8”c2" I)

43 (required-service service-”play" child-id-”c1" I)

‘4 (required-service service-“playAudio" child-id-"c2" I)

45 (definition)

46 try{

47 Audio.p1ayAndio()

48 Ai.p1ay():

49 } catch(Throuab1e e) {

50 e.printStackTrace();

61 }

52 (Idefinition)

53 (Inain)

54 (Iroot-component)

Table 4.1: CSML for the component board

103

component, the identity related information of child components, including name and

locations, need to be specified here. As shown in fig. 3.7, two child component, AI and

audio, are needed by board, and are specified in lines 14-15 and 16—17 respectively.

The internal connector is specified in the element internal-connector with an id in

attribute id. The parameters that are related in the internal connector needs to be

specified in the element from-current with the parameter id being specified in the

attribute parameter-id. An alias (in attribute alias) also needs to be specified for

the purpose of being used in the definition. Finally, the definition of the internal

connector will be specified in the element definition. The format of definition is very

close to. Java boolean function definition except the aliases of parameters, instead of

parameters themselves, are used. For example, the internal connector, “p] 2 20pf”,

in table 3.6 is specified in lines 7-13. The elements from-current specify that the

9,

internal connector specify the relation between p] and pf . The definition is specified

in the form similar to Java code “return “var1# >= 20 * “var2#;” with varl and

var2 being aliases of parameter p] and pf respectively.

Similar to the internal connector, the external connector is specified in the element

external-connector. Both elements are very close, except external-connector contains

an addition element from-child that specify the involved parameter from child com-

ponent. The involved parameter from child component is identified by the attributes

child-id that must match the attribute id from one of child-component and the pa-

rameter name that is specified in the CSML specification of the child component.

For example, the external connector, “p] g 1.1pé”, in table 3.6 is specified in lines

18-24. The elements from-current and from-child specify that the external connector

104

specify the relation between p] and pf”, where p?” is identified through the attributes

parameter and child-id that links to the attribute id of child component AI. The def-

inition is also specified in the form similar to Java code “return ‘varlit <= 1.1 *

“var2#;” with var1 and var2 being aliases of parameter p] and p; respectively.

As mentioned in the previous chapter, the root component has only one provided

service, main. The definition of main may be specified in the element main. For

example, in lines 40-53, main specifies that the main function will instantiate the

two child components in the element instance. The instance of the child component

is identified through the attributes child-id that must match the attribute id from

one of child-component and will be give a name in the attribute name. The required

service from the child components is specified in the element required-service with

the attributes child-id to identify the child component and service to the name of

service. In this example, main will call the service playAudioO provided by Audio,

an instance of the component audio, and playO provided by Ai, an instance of the

component A1.

4.4 Non-Root Component specification example

The CSML format of the non-root component is similar to the root component.

However, unlike the root component, the non-root component may have multiple

implementations. Hence, the CSML format of the non-root component is divided

into two parts and is distinguished by the elements general and customized as shown

in table. 4.2 for the CSML specification of the component audio.

105

1 (component name-”audio“ registry-host=“192.168.1.111"

2 uri-"httpzlluwu.cse.msu.edu/'korenson/class/audio.jar“)

3 (general)

4 (provided-service id8”s1“)

5 (declaration method-namen'playAudio“ return-type-”void' I)

6 (Iprovided-service)

7 (parameter nam.e-"pouer.consumption'l id-"p31“ value-type="float“ upper-“0.5” lover="0” I)

8 (lgeneral)

9 (customized version-"MIDI" uri-"http:IIvvv.cse.msu.eduI'korenson/class/midi.jar')

10 (description) MIDI version (Idescription)

11 (constraint-definition constraint-id=“s1")

12' (resource-requirement)

13 (resource name-“sound-device” id-"r1")

14 (built-in)(sound I)(Ibui1t-in)

15 (Iresource)

16 (resource name8”AC-pouered" id-“r2")

17 (built-in)(AC I)(/built-in)

18 (Iresource)

19 (Iresource-requirement)

20 (Iconstraint-definition)

21 (Icustomized)

22 (customized version-"dummy” uri-”http:IIvuu.cse.msu.edu/‘korenson/classIdummy.jar”

23 defau1t="yes”)

24 (description) Dummy version (Idescription)

25 (lcustomized)

26 (Icomponent)

Table 4.2: CSML for the component audio

106

The element general, lines 3-8, specifies the information that is implementation inde-

pendent. In the example, it specifies that the audio component have one provided

service in the element provided-service and one parameter in the element parame-

ter. The element provided-service specifies the name and type of the return object

of the service in the attributes method-name and return-type of the element declara-

tion. Lines 4—6 specify that the audio component provides a service called playAudio

without returning any object or value.

The element customized specifies the information that varies among implementa-

tions. Lines 9-21 specify the MIDI implementation and lines 22-25 specify the dummy.

implementation. The identity information of the implementation is specified in the

attributes version and uri of the element customized. The constraints of each im- -

plementation are specified in the element constraint-definition. The constraints may

be either resourcerequirements, parameter constraints, internal connectors, or exter-

nal connectors. In the example, lines 12-19 specify the resource requirements of the

MIDI implementation, including sound device, lines 13-15, and AC power, lines 16—18,

in the elements resource. The element built-in means that there is a built-in Java

method that would be automatically generated by CSML to check the availability of

the specified resource, such as sound devices or AC power. In line 23, there is an

attribute default in the element customized. With the value being set to yes, the

dummy implementation is specified as the “default” version of the audio; that is, if

the required resources of other versions are not satisfied, the default version will be

used.

107

Table. 4.3 is the specification of the non-root component AI in CSML. It specifies the

GnuGD implementation in lines 11-16 and the Random implementation in lines 17—22.

Each implementation specifies different parameter constraints for the parameter p3 in

the elements parameter-constraint. The parameter is identified through the attributes

constraint-id that must match the attribute id from one of parameter. For example,

line 14 specifies the parameter constraint “2 3 p53 3 2”, i.e., “p3 = 2” as shown in

table 3.7.

4.5 Launcher specification example

CSML also allows users to specify target platforms and the intended performance of

the application, and generates the application launcher. Table. 4.4 is the specifica-

tion of the launcher. The element launcher specifies the name of the launcher (in

the attribute name), and the name and registry location of the'application (in the

attributes application and registry-host).

The element target specifies the information about the target platform, such as the

location (in the attribute host) and the architecture (in the attribute arch). Lines 3

and 4 specifies that the application may execute on two target platforms with different

architectures. Notice that the component board is the root component and will be

executed on the first platform and the other two components may be distributed to

the second platform.

The element constraint specifies the intended performance and output quality of the

application by specifying the range of parameters of the root component. The pa-

108

1 (component name="AI" registry-host-"192.168.1.111"

2 uri-“http:Ilvvv.cse.msu.edu/‘korenson/class/AI.jar”)

3 (general)

4 (provided-service id-“s1")

5 (declaration method-name-”play“ return-type-"void” I)

6 (Iprovided-service)

7 (parameter name-"response_time” id-"p21" value-type-”int" upper=“10" loser-"0” I)

8 (parameter name-"power_consumption" id-"p22" value-type-“float“ upper-"0.5” lower="0" I)

(parameter name-"intelligence” id-"p23" value-type-"int” upper-“2“ loser-”1" I)

10 (Igeneral)

11 (customized version-“GnuGO" uri-"httpzllsuu.cse.msu.edu/‘korenson/class/GnuGo.jar")

12 (description) GnuGo version (Idescription)

13 (constraint-definition constraint-id8”p23')

14 (parameter-constraint upper-”2” lover-"2" I)

15 (Iconstraint-definition)

16 (Icustomized)

17 (customized version-"Random” uri-"http:IIuvu.cse.msu.edu/'korenson/class/Random.jar")

18 (description) Random version (Idescription)

19 (constraint-definition constraint-id-“p23")

20 (parameter-constraint uppers"1“ lover-”1" I)

21 (Iconstraint-definition)

22 (Icustomized)

23'(Icomponent)

Table 4.3: CSML for the component AI

1 (launcher name-"GO launcher” application-”G0"

2 registry-host-“192.168.1.111")

3 (target host-"192.168.1.34” arch-”arm" I)

4 (target host=”192.168.1.111” arch-”i686" I)

5 (constraint name=”response-time” value-type="int"

6 lower-"O“ upper-“15" I)

7 (constraint name-"pover_consnmption'

8 value-type8"float“ loser8"0" upper-"1" I)

9 (constraint name8"inte11igence”

0 value-type-”int" loser-"1" upper-“2” I)

1 (Ilauncher)
Table 4.4: CSML for the GO game launcher

109

rameter is identified with the attribute name that must match the attribute name

from one of parameter in the root component specification. For example, lines 5 and

6 specify response-time, i.e., the parameter p] of the root component board, should

be between the range 0 and 15.

Once the constraints are specified, the range of the root component parameters, p],

pf, and pi], will be replaced by the user specified range and the new range will be used

during the component assembly.

4.6 Summary

Since the architecture of FRAME only depends on the relations between components

but not the detailed functionality of components, it will be possible to develop the

adaptation of an application with the only information about the software architec-

ture.

Component/Constraint Specification Markup Language (CSML) is a specification lan-

guage to abstract the information about the relations between components. The soft-

ware hierarchy information is captured by specifying child component dependency.

The consistency of component interfaces will be maintained by specifying the provided

services and the required services from child components. Individual implementation

information such as constraints and other information about locations of the compo-

nent registry and repository may also be specified. Once specified, CSML will compile

the specifications and generate the code for adaptation. Then, component developers

only need to inherit the generated code to implement the functionality of the compo-

110

nent; basically, the infrastructure needed to work under FRAME is generated from the

specification by CSML.

Similarly, application users may use CSML to specify the intended performance or qual-

ity of the application execution. An application launcher that carries the information

about the desired performance and pass it to the root component of the application

will be automatically generated from the user specification.

111

Chapter 5

On—line Adaptation: Brew and

Component Reassembly

5.1 Motivation

As mentioned in chapter 1, computing environments are becoming more dynamic

due to the population of mobile devices. For the environment-sensitive applications,

such as real-time applications, they have to be adaptive to the environmental change

to ensure the correctness of the execution. The general approach for this on-line

adaptation may be achieved in the following steps:

1. Periodically sample or log the run-time information of the applications, partic-

ularly the data that are sensitive to the environment.

2. Measure the environmental change by interpreting the sample data.

3. Respond according to the level of the environmental changes.

112

The extra work above for the on-line adaptation definitely consumes computing re-

sources and it will have a performance impact on the execution of applications. Ac-

tually, the purpose of the on-line adaptation is to sacrifice the performance in order

to improve the quality of the execution, such as stability or predictability of real-time

applications. Thus, a design challenge for the on-line adaptation is to make such a

trade-off more promising; that is, increase the quality of the execution without losing

too much performance or even interrupting the application execution.

There are two design factors may have a performance impact. The first one is the

frequency of run-time data sampling. Obviously, with a higher data sampling rate,

applications will have more up-to-date knowledge about the computing environment,

but will consume more computing resources and more likely will interrupt the exe-

cution. On the contrary, a lower data sampling rate may be appropriate for resource

limited computing environment, but applications may not be able to respond to the

environmental change in time and the execution will likely fail.

How does software respond to the different scales of the environmental changes,

i.e., how radically does the environmental change, may also have significant per-

formance impact from resource management perspective. Particularly, inappropriate

over-reacting, such as major responses to minor environmental changes, may sim-

ply waste the computing resources.‘ As a real-world analogous example, a worn tire

should be replaced with a new tire. However, when it is possible to simply inflate a

low-pressured tire, it will be over-reacting and waste the money to replace the tire

with a new tire.

113

ASAP uses two different on-line adaptation schemes, Brew and component reassembly,

to let applications be able to respond to different scales of environmental changes.

For a small scale of environmental changes, people may use Brew to steer and re-

pair the affected applications that do not work properly under the new environment

without terminating the applications. For a large scale of environmental change, the

execution of the applications will be temporarily suspended, component reassembly

will be invoked, and then resume the execution with appropriate implementations

of the components. Furthermore, the run-time data sampling rate may be adjusted

dynamically with help of Brew.

5.2 Java Steering System: Brew

5.2.1 Overview

Brew is an interactive computation steering environment for sampling and interpreting

run-time information of the Java remote applications, such as performance data, in

real-time. People then may visualize the instrumented data and steer the remote

applications, as shown in fig. 5.1.

Fig. 5.2 shows how the execution quality of the application may be changed on the

fly. The local machine collects the run-time environment-sensitive data from the

remote application, a Java MPEG player, which will be described in more details

in the next chapter. The run—time environment-sensitive may reveal the change of

computing environment, and people may conclude the execution quality of the remote

114

Brew

Java application

Figure 5.1: Brew is an interactive Java environment that people may visualize the

instrumented data and steer the remote applications.

application from the data and send a command to respond the environment, such as

to reduce the image quality in order to improve the frame displaying rate.

As shown in fig. 5.3, the overall architecture of Brew includes the instrumentation

system, control system, and a Java application with the Brew subsystem embedded.

More details about how people may interact with the application via these subsystems

are described in the following two subsections.

5.2.2 Run-Time Data Collection and Visualization

For collecting and visualizing run-time data, Brew uses PGRT [203], an environment

for integration of tools and systems for instrumentation, performance visualization,

and analysis of complex real-time systems. Two parts of PGRT used are BRISK and the

115

 JAVA , MPEG: - Player:

Remote Machine

send command

, , - f" * " :‘zr;.—__ :7“ ,.-»= LEW)7 '

1.4—7m "

J fem

i yziitti'aym ‘ r“ d

l— ,

] .-: —")

U l] I”!, l

:fifii‘"

 3:99:91;

. a

I '\I

J I

1_,/ . IN

Visual Object

GUI RemoteControl

Local Machine

Figure 5.2: On—line change of execution quality via Brew.

116

I .

l r—\

] Gstrument)

l ' i 7‘\

\,#7 ,,,,,7 at L k i if 777L,_]’,

[7’ ”7' 7’ fl Java Virtual Machine [
BRISK(exs) — .

_, , I a LL 7, m I L ILA

Network

I BRISK (ism) Java VM

FM I 7 L I aFiemoteCorEl-
L Visual Object ‘

Instrumentation System
-\

\\ ,

M,‘ .—

command line/GUI

» ControLSystem* 7' '

Figure 5.3: Architecture of Brew

117

Visual Object Framework (VO). BRISK is used for communication between applica-

tions and VOs. V0 is used to develop application specific performance visualizations,

which includes processing and rendering of instrumentation data.

To incorporate with Brew, the Brew subsystem, including Instrument and

RemoteControlManager, need to be embedded in the applications. Furthermore,

a daemon of BRISK, called exs, will run concurrently with the application.

Java applications may put the run-time instrumentation data in a shared memory by

using wrapper methods in the Instrument class, which in turn call native functions

to access exs. The instrumentation data is collected by exs, and then delivered to

the peer BRISK daemon, ism, through the network. VO then retrieves, processes and

renders these data for visualization.

. A screen shot of V0 is shown in fig. 5.2. Also, the arrow on the left side of fig. 5.3

shows the data path for the run-time data collection and visualization.

5.2.3 Application Steering

The basic approach of Brew to steer the application is to invoke the methods of

the application. That is, application may contain some methods from some classes or

objects, which may change the performance or quality of the execution. These classes

or objects need to be exported as shown in fig. 5.4, so the methods will be able to be

accessed from different processes through an agent called RemoteControlManager.

Thus, after concluding the environmental change from VO, peOple may able to steer

the application by sending commands through a remote control in order to respond

118

Exported Class and Object Space of the

Remote Application: MPEG Player

Object 1

Object 2

Static Class:

IDCT

Oblfict 3 setResolutionO

setFrameDrothateO . ' '

RemoteControlManager

Ji

Network

>>> _exportedObj[3].setFrameDrothate(0.9)

>>> IDCT.setResqution(5)

Local Command Line Remote Control

Figure 5.4: Architecture of Brew

119

to the environmental change. The commands may be sent via command line interface

or graphical user interface (GUI). GUI is actual the wrapper of the command line

interface, which simply send the text format of command to RemoteControl.

The semantic of the commands is to invoke a method of a class or object of the

remote applications. The syntax is similar to Java as shown in fig. 5.4. For example,

the command “IDCT.setResolution(5)” will invoke the method, setResolution,

of the exported static class, IDCT, of the remote application with argument 5. After

the invocation, the execution quality of the application has been changed, e.g., the

image quality of MPEG the player is changed and the frame rate may be improved.

Similar to exs and ism of BRISK, RemoteControl and RemoteControlManager are the

peer communication infrastructure as shown’in fig. 5.3 and completely implemented

in Java. They encapsulate the basic communication details based on the steering

protocol that the steered functions of the remote application will be easily identified

and invoked.

RemoteControl is the infrastructure of remote controls. Its main responsibility is

to parse the text format of command from the user interface based on the steering

protocol with and send the parsed information to RemoteControlManager.

RemoteControlManager of the Brew subsystem uses Java reflection APIs [92] to iden—

tity, locate, and invoke the exported classes, objects, and the methods. As an example

shown in fig. 5.4, one static class IDCT and three objects with id being 1, 2, 3 have

been exported. The method of the exported static class may be invoked by directly

using the class name with the method name, such as “IDCT.setResolution(5).”

The method of the exported object has to be invoked through an id number,

120

since there may be more than one object instances of the same class. A spe—

cial array, __exported0bj, is used to locate the exported object. For example,

the method, setFrameDropRate, of the object 3 may be invoked by the com-

mand “__exp0rted0bj [3] .setFrameDropRate(0 .9) .” The arrow on the right side of

fig. 5.3 shows the data path for sending the commands to invoke the remote methods.

Furthermore, since the remote method invocation commands are text formatted, the

application may be steered through a script. The scripting steering enables a com-

plicated method to be constructed from several primitive method invocations, and

time—driven remote method invocations, i.e., a remote method may be invoked at

a specified time. These two features may be very useful for testing and debugging

remote real—time software. For example, it is possible to write a test suite as a script.

People may check how the real-time software responds after some events by simulat-

ing the events as method invocations at a specified time. For example, the following

script segment will invoke the method, ping, of the exported object 1 for 100 times.

Here the keyword, least, specifies that each 100p will wait for at least 500 ms.

I = 0;

while (!(I == 100)) {

1east(500) {

__exported0bj[1].ping();

}

++I '

}

121

5.3 Component Reassembly

5.3.1 Overview

Computation steering may only change the execution performance and quality by

sending commands with appropriate parameters. There are some limitations such as

some components may not be parameterized or the environmental change so much

that simply changing the parameters is not enough. In these cases, a more rad-

ical adaptation must be invoked. That is, the execution of the applications will

be temporarily suspended. The component assembly will be invoked to search for

more appropriate implementation of components, reassemble the application from

the new components, and then resume execution. The whole process is called compo-

nent reassembly. The main difference between component assembly and component

reassembly is the synchronization between old and new implementations of compo-

nents. Particularly, component reassembly needs to ensure that the applications will

produce the same results with the newly assembled implementations of the compo-

nents after component reassembly.

A straightforward approach for implementing component reassembly is to extend as-

sembly to reassembly by using a separate constraint monitoring thread to determine

the run-time computing environmental changes by examining if any one of the con-

straints fails, and re—invoke the assembly process whenever necessary. Unlike the

component assembly that only execute once before the execution and has no perfor-

mance impact on the run-time performance of the applications, one of the challenges

for reassembly is performance, since to re-invoke assembly process involves I/O activ-

122

ities, such as communication between component registry, and intense computation,

such as constraints solving to find the feasible combination. Reassembly may even

fail on a small temporal scale of environmental change, since the environment may

have changed before reassembly finishes.

In our experiments illustrated in the next chapter, the assembly process of the robot

application is about 650 times slower than the similar application hard—coded by

if—else condition statements, an simple alternative adaptation approach discussed in

chapter 3. Therefore, it will be not feasible to simply re—invoke the assembly process

for the reassembly.

In the next two subsections, we will discuss the performance of assembly and pro-

pose several approaches to improve the performance. The experiment results on the

performance improvements will be illustrated in. the next chapter.

5.3.2 Performance Analysis of Component Assembly

As discussed in chapter 3, component assembly may be divided into two stages:

1. Software constraint sets building: In this step, the assembly process needs

to resolve the software hierarchy, i.e., to know the components that the appli-

cation has and the implementations of each component. As a consequence, all

possible combinations of the component implementations will be known, and

then all software constraints will be built by adding the embedded constraints,

parameters and connectors, from each involved component implementations.

123

2. Constraints solving: In this step, the assembly process will find which soft-

ware constraints are feasible by checking the truth of each included constraints

within the specified parameter domains. As mentioned in chapter 3, FRAME uses

a backtracking algorithm for solving constraint satisfaction problems, which use

multiple nested loops for parameters, which take each values in the specified pa-

rameter domains and examine if the software constraint is satisfied.

The performance for software constraint sets building, denoted as Pb, depends on

the number of software constraint sets and the number of constraints needed to be

added to each set, i.e., the summation of constraints embedded in each involved

component implementation. With the backtracking constraints solving algorithm,

the performance for constraints solving, denoted as P,” depends on, similar to Pb, the

number of constraints sets and the number of constraints in each set, [and it also is

proportional to the range of each parameter domain. That is,

all possible sets

P, 0: Z |s.-| . (5.1)

i

and

all possible sets all possible parameters

P.o<(Z IS.I)><(H W) (5.2)

where S, is constraints set i, D,- is the domain of parameter i. Mackworth, et 31. has

a paper in the area of the complexity of constraint satisfaction problems [204].

124

5.3.3 Performance Improvement

The basic idea to improve the performance of reassembly is to avoid unnecessary

communication and computation. There are two approaches, partial reassembly and

caching.

First, we observe that not all component implementations will become inappropriate

after the computing environmental change and it is unnecessary to examine the con—

straints of these components. Take an automobile as a real-world analogous example,

although the tires of the automobile may have different safety performance during

weather changes, many other parts of the automobile, such as body or seats, are not

under any influence of the weather. Thus, it is not necessary to pay attention to these

parts.

As shown in fig. 5.5, one or more subtrees 0f the software architecture may be specified

for partial reassembly. A monitor thread is associated with each reassembly subtree

to check if all the constraints of the subtree are satisfied. Developers may also specify

only the subset of all the constraintscontained in the subtree to be examined to

reduce the run-time performance impact by the monitors. The reassembly process

will start when some of monitored constraints fail.

The other performance improvement is to use cache, which may be done in two dif-

ferent levels. The first level is to cache the software constraints set building, i.e., the

first stage of component assembly. Since the purpose of the software constraints set

building is to build all possible software constraints from all component implemen-

tations. If no component implementation is added or removed, the possible software

125

_
.
.
.
.
u
m

Root

Component

Component Version

Figure 5.5: Software architecture

126

cache

010

 0.93

Figure 5.6: Flow of reassembly cache

constraints set will remain the same. By caching the software constraints set, it will

be unnecessary to re-build the set if no status of component implementations change,

and the first stage of the component assembly may be avoided.

The second level is to cache the computing environment], and a more aggressive scheme

based on the assumption that the computing environments will repeat again. Cur-

rently, this caching scheme is key-value and implemented in a hash table as shown in

fig. 5.6. The key will be unique for the computing environment; that is, developers

have to provide a mapping that will convert a computing environment into a unique

key. The value associated with the key will be the feasible components under the com—

puting environment. To improve the probability of cache hit, the cache table may be

stored in persistence storage, and then used or shared for subsequence execution of

the same application.

127

5.4 Summary

A design challenge for the on-line adaptation is to make the trade-off between qual-

ity of execution and performance more promising. ASAP uses two different on—line

adaptation schemes, Brew and component reassembly, to avoid possible over—reacting

problems, such as major responses to minor environmental changes, which may simply

waste the computing resources.

For a small scale of environmental changes, people may use Brew to steer and re-

pair the affected applications that do not work properly under the new environment

without terminating the applications. For a large scale of environmental change, the

execution of the applications will be temporarily suspended, component reassembly

will be invoked, and then resume the execution with appropriate implementations of

the components.

Moreover, under some conditions, it is possible to improve the performance of re-

assembly by avoiding unnecessary communication and computation. Two different

approaches, partial reassembly and caching, are also presented in this chapter.

128

Chapter 6

Application Demonstration and

Performance Evaluation

6.1 Overview

There are three application demonstrations from different domains in this chapter,

and each will demonstrate different features of ASAP. The GO game that has been

used in the previous chapters as an example to describe FRAME and CSML will demon-

strate the basic features of ASAP, including distributed component assembly. The

second application is a soft real-time application, the Java MPEG Player. The Java

MPEG Player has certain time constraints, which may not be satisfied under different

environments. We will demonstrate that the unsatisfied constraints may be repaired

by Brew. The last application is a self-adaptive robotic control system that control

modules may be replaced by component reassembly. Different performance results

will also be presented and discussed.

129

A
‘
3
1

.

'5

6.2 The CO Game

6.2.1 Application Description

In this section, we describe a demonstration of FRAME using the GO game described.

The component board is inherited from JavaGO, a Java Applet that is originally

developed by Alain Papazoglou [205]. Board provides the graphical user interface and

game rules checking. Users may play against computer implemented as component

AI with two different level of competition.

The first implementation of the component AI, GnuGD, is inherited from GnuGO

source code developed in C [195] and is compiled as a native shared library. A Java

wrapper class is developed to access the native library. The second implementation,

Random, is written in Java with very limited intelligence.

6.2.2 The First Experiment: the Different Implementation

of A1

The first experiment demonstrates that different memory resources lead to different

imlementations of AI by component assembly. The experimental platform is a Linux

PCs with 500 MHz Celeron Processor and 128 MB RAM. In order for the application

to use each version of the AI component, we would execute VM with two different

pre—allocated amounts of stack.

The GnuGD implementation is competitive and actually played well in several com-

puter GO tournaments [195]. It has many recursive function invocations. Hence, the

130

lb LIT

I .2 film,’h I“

: 5.5 l Handicap : 0 I

Figure 6.1: GO game with Random implementation

GnuGD implementation requires much stack allocation. Memory becomes a constraint

for GnuGD. In fact, the default pre-allocated amount of stack of VM was not large

enough to meet the memory size constraint. The Random implementation of compo-

nent AI was used. Fig. 6.1 is the screen shot of the GO game played with the Random

implementation; here, human played black and computer played white. A typical

strategy to develop a G0 game begins playing around the comers, then the edges,

and finally the center. Although less memory resource is required, fig. 6.1 shows that

Random implementation is not competitive since computer made several bad moves

by playing at the edge, even the center during the opening of game.

131

(g>.>]

d
N
N
b
U
’
I
O
V
G
O

d
N
W
é
M
O
N
Q
G

ABLDEFGHJKLMNOPORST l.-

.______..._.L AP _..-__.n.”___ u...—

iBad URL directory : file: Ihome/korenson/Research/JavaGO/GOGames/

Size : 19 l Komi : S. S l Handicap : 0 I

 Applet started

a

Figure 6.2: GO game with GnuGD implementation

We tested the same application on a VM with increased pre-allocated amount of

stack. With the enough pre-allocated amount of stack, the memory size constraint

was met and the GnuGD implementation was used.

Fig. 6.2 shows the first several moves of the GO game with GnuGD implementation.

The screen shot shows that computer developed the game around the corners and

demonstrates that GnuGD implementation has enough intelligence to realize the typical

GO game strategy.

I32

6.2.3 The Second Experiment: Hetergeneous Multiple Plat-

forms

The second experiment evaluates the GO game under FRAME on a hetergeneous com-

puting environment with different computational power. The experimental platforms

include a Compaq iPAQ H3670, which is a small powerful handheld computer based

on the Intel StrongARM 32-bit RISC processor running at 206 MHz with 16 MB

ROM and 64 MB RAM, and a desktop with a 900 MHz Pentium III processor and

256 MB RAM.

Fig. 6.3 compares the response time of the first several moves on the iPAQ and the

deskt0p. The response time is no more than 30 seconds on the desktop, but may

exceed 400 seconds on the iPAQ. Fig. 6.4 compares the CPU load of the first several

moves with both the board component and the GnuGD AI component on the iPAQ,

andthe board component on the iPAQ and the GnuGD AI component on the desktop.

Most of time the CPU is busy for the first case, the GnuGD AI component on the iPAQ,

but idle for the second case. Power is a scarce resource on a handheld computer and

high CPU utilization consumes much battery power [206]. Together with a longer

response time, it is probably not possible to finish a game on the iPAQ with the

GnuGD AI component on the same iPAQ. Based on our experiments, the remaining

power after ten moves is only 76% for the first case and 98% for the second case.

Because of limited computation power of the iPAQ, it may be frustrating and im-

practical to execute the entire GO game with the GnuGD AI component on the iPAQ.

Under FRAME, if users specify one target platform, the less competitive AI will be

133

Response Time of GnuGO

450

350

300

250 -e— Pentium III

—I— iPAQ

S
e
c
o
n
d

200

150

100

Figure 6.3: Response time of the GnuGO AI engine

used since the response time constraint of GnuGD version is not satisfied on the iPAQ.

Alternatively, users may specify multiple target platforms to distribute the GnuGD

version of AI component to a remote machine.

6.3 MPEG Video Player

6.3.1 Introduction

With the advances in hardware technology, the demands increase for soft real-time

capable software on various platforms. Such demands include communication soft-

ware for cellular phone and video playback on PDAs. Traditionally, real-time software

developers make design decisions based on the best technical solution with full knowl-

134

CPU Load of GnuGO

__ El Al on iPAQ

I A] on Pentium III

C
P
U
L
o
a
d

rrrrrrrrrrrrrr

Second

Figure 6.4: CPU load of the GnuGO AI engine

edge of resource capability of target platforms. Through human effort and experimen—

tation, developers try to minimize cost while maximize performance and compliance

with real-time constraints. With the tendency of computing environments moving to-

ward diversity, such a development methodology for porting software to each platform

is time and cost consuming.

While Java’s promise of “Write Once Run Anywhere” might greatly alleviate the

difficulty of software portability, it does not apply in the real-time domain because it

is impossible to predict the resource capability of so many target platforms during the

development stage. Since the correctness of the real-time software depends not only

on the logical result of the computation but also on the time at which the results are

produced, two platforms with different capability may produce the results at different

135

times. For instance, the same application may run perfectly on a high-end machine

but fail on a low-end machine because the results it produces could not meet the

real-time constraints. In this situation, it might be desirable to lower the quality of

output on a low-end platform to meet the time constraints. Moreover, if a platform

provides some special functionality, the performance may improve if the software

has knowledge of the functionality and may take advantage of it. Therefore, many

applications must probe dynamically real-time capabilities and reconfigure to different

computing and communication environments instead of assuming a priori knowledge

of the capabilities of the target platform. Criteria for probing real-time capabilities

are specified as constraints during the development stage and the applications are

built “on the fly.”

Changes in computing environments make application behavior even more unpre-

dictable. For instance, if two or more simultaneous executing applications compete

for resources, it is impossible to guarantee that the time constraints of real-time appli-

cations will be satisfied without support from the OS. For a soft real-time application,

unsatisfied time constraints might not be critical, so it is preferred to repair instead

of terminating the application.

In the following subsections, we use a soft real-time application, the Java MPEG

video player, as an example to demonstrate how FRAME and Brew may be used to

realize the performance portability.

136

F
T

.

I

6.3.2 Application Description

The Java MPEG player, originally developed by Joerg Anders [207], is a MPEG1 [208]

video player. These kinds of multimedia applications usually have time constraints

that applications need to accomplish some tasks before the deadline for reasonable

performance. For example, a video player may need to decode and display a image

frame every four seconds to be able to play the video smoothly at the rate 15 frames

per second.

To apply ASAP to the Java MPEG player, we decomposed the MPEG player into

the component hierarchy as fig. 6.5 that consists of four components. The component

player is the root component that needs service from its child component, displayer,

which in turn has two child components, decoder and RTDS. The displayer has two

different implementations, on-the-fly and buffer. The former implementation. will

display a frame when there is a frame decoded by the decoder. The latter implemen-

tation will buffer the decoded frames first, and then display them later. This imple-

mentation is suitable for a slower machine with a large amount of memory. The com-

ponent RTDS has two different implementations, timesys and dummy. The timesys

implementation can only be used on the TimeSys real-time Linux platform[209]1. It

provides a CPU reservation service to guarantee quality of service provided by the

displayer and the decoder. If the underlying OS is not a TimeSys real-time Linux,

the dummy implementation will be used, which does not have any performance effect

1Several real-time Linux operating systems are available. We chose the TimeSys real-time Linux

operating system for this example.

137

version: on-the—fly

displayer

version: buffer

version: TimeSys version: dummy

RTOS
Figure 6.5: Software hierarchy of an MPEG video player

on the displayer and the decoder. To simplify the example, each implementation

of each component is labelled according to table 6.1.

We also made some modifications such that it may display the frame periodically.

That is, if a frame is decoded within a period, it will be displayed at the end of the

period; if not, the displaying will be delayed to the end of the next period. We also

embedded some code in the application so that it could be instrumented and steered

remotely by Brew.

138

component 1 component 2 component 3 component 4

version 1 player displayer with decoder RTDS with

on-the-fly im- timesys im-

plementation plementation

version 2 N/A displayer with N/A RTDS with dummy

buffer implemen- implementation

tation

Table 6.1: Label of each component

parameter comment

p] number of frames played per second

pf image quality

Table 6.2: Complete parameter list for component player

constraint player

U=Li=D

Rij ll)

Pr {“5Spis30”,“1SpfS8”}

Dij {“7pf + 25p? S 235”}

My {“pl = €99” “pi = 103”}

Table 6.3: Complete constraint list for component player

139

6.3.3 Constraints

Table 6.2 and 6.3 list the complete parameters and constraints of the component

player. For users or developers of a MPEG video player, how well a video player is

executing may justified by the number of frames played per second and image quality.

Hence, these two numbers may be used as the parameters of the root component

player for users to specify, and are denoted as p] and pf within the domains [5, 30]

and [1, 8] as 13,-,- respectively. Here the image quality is divided into eight different

levels. The internal connector DU- specifies the linear relation between p] and p12.

parameter comment

p; time interval, in milliseconds, between frames displayed

Pg , image quality

Table 6.4: Complete parameter list for component displayer

Table 6.4 list the complete parameters of the component displayer. The parameters

in which developers may be interested are the time interval, in milliseconds, between

frames displayed, pl, and the image quality, p3. The number of frames played per

second and the time interval between frames played are actually inverse proportional

to each other. The external connector, Dij, in table 6.3 simply specifies that the

inverse relation between p] and p; and also both player and displayer use same

metric for image quality.

Table 6.5 list the constraints of the component diSplayer. The parameter con-

straints, 1353', specifies that the time interval between frames displayed might be within

40 milliseconds and 200 milliseconds, and the image quality would be between 1 and

140

8. For internal connector, D,,, it is obvious that a better image quality, pg, will re-

quire a longer time interval, pl, to display a frame. Their proportional relation may

be modeled as a linear relation, 7p§ — 160p§ 2 120 and specfied in D,,-.

Table 6.6 list the complete parameters of the component decoder. The parameters

in which developers may be interested are the time interval, in milliseconds, between

frames decoded, p31,, and the image quality, pfi. Similarly, both the displayer and

the decoder may use the same metric for the image quality, i.e., p3 = pg specified in

the external connector, M,,- in table 6.5.

However, the time to decode a frame is different than the time to display a frame.

For the on-the-fly implementation of the displayer, a frame is displayed when

a frame is decoded by the decoder. [Hence the time to decode a frame is actually

only a fraction of the time to display a frame, and the relation between these two

time intervals may be modeled as p; S 19% + 70; that is, once a frame is decoded, the

displayer may need extra time, no more than 70 milliseconds, to display the frame.

Thus, external constraint connectors between the parameters of the displayer with

constraint displayer

on-the-fly bufer

a=zr=n e=zj=v

a, (a 0

P.)- {“40 S 19% S 200”,“l S 193 S {“40 S pf S 200”, “1 S I)? S

8”} 8”}

Dii {vial—1602032 120”} {“7p; — 1601;321on

Mia" {“p% S 1934+ 70”. “193 = 123”} {“190 S Par S 1000”, “193 = 193”}

Table 6.5: Complete constraint list for component displayer

141

the on-the-fly implementation and the decoder is (“pg S 19% + 70”, “19% = p§”} in

table 6.5.

On the other hand, for the buffer implementation of the displayer, the decoded

frames are buffered first and then displayed later together. These two time intervals,

p; and pl, are irrelevant. However, displayer developers may specify a constraint

whether the decoder may decode frames in some specific time interval, such as 190 _<_

p51, 3 1000. The constraint reflects the fact the decoding time is not related to the

displaying time, and we would like the decoder that can decode a frame within 1000

milliseconds. If decoding speed is too fast, i.e., P31 < 190, then we would not prefer to

use this version. Thus, external constraint connectors for the buffer implementation

of the displayer is {“190 5 pg 5 1000”, “ g = 133”} in table 6.5.

Table 6.7 and 6.8 list the complete constraints of the component decoder and RTDS.

The constraints of decoder is simliar to the ones of displayers, except, decoder has

no external connectors since it does not have any child components.

RTDS only specifies the required resource for different implementations. For example,

the required resource for the timesys implementation is TimeSys real-time Linux OS.

Therefore, its resource requirement would be {“08 is a TimeSys real-time Linux.” .

Instead of specifying the resource requirement, the dummy implementation is specified

parameter comment

1)}, time interval, in milliseconds, between frames decoded

19:2; image quality

Table 6.6: Complete parameter list for component decoder

142

as the “default” implementation; that is, if the required resources of other implemen-

tations are not satisfied, the default implementation will be used.

All the software hierarchy, parameters, and constraints are specified in CSML listed in

appendix A.

The implementation of the displayer component that will be used depends on which

time constraint, p; 3 pi, + 70 or 190 S p}, g 1000, is satisfied. If decoding speed is

fast enough, the feasible program will use the on-the-fly version because the first

constraint would be satisfied. The first two experiments will demonstrate that the

different implementations of displayer are chosen based on the time constraint and,

if unsatisfied during the run-time, may be repaired by Brew. The last experiment

demonstrates that FRAME will use the special functionality of the TimeSys real-time

Linux.

6.3.4 MPEG player on JIT engine

The first experiment was conducted on a Linux PC with 900 MHz Pentium III Pro-

cessor, 256 MB RAM, and the Java Virtual Machine (JVM) with just-in-time (JIT)

constraint decoder

(i = 3,2' = 1)

Rij 0

P..- { “40 s p; s 200”, “1 5 pg 5 8”}

Dti {spit-160103 2 120”}
My 0)

Table 6.7: Complete constraint list for component decoder

143

-— 41 [Frame processing time « [I X]

' " 1.0093

'— 7.5082

_ 5.00E+2

Figure 6.6: Frames processing time of the MPEG player on Linux PC

engine [210, 211]. The instrumented metric is the time to display a frame. The steered

parameters are the number of frames played per second and the quality of the image.

The JIT will take the bytecodes and compile them into native code for the machine

that Java applications are running on. It can actually be faster to grab the byte-

codes, compile them, and run the resulting executable than it is to just interpret

them. As a consequence, with JIT Optimization, Java VM has the ability to decode

constraint RTDS

TimeSys dummy

(i=4,j=1) (i=4,j=2)

R.) {“OS is a TimeSys real-time Linux.”} default, i.e., R31

Pr,- 0 fl

Dij (ll 9)

Mij ll) 0

Table 6.8: Complete constraint list for component RTDS

144

— 4:4 [Frame processing time - [j X

— 1.0093

1

— 7.5092

“ 5.0092

1

" 2.5092

'lfu

f

00092
--qw-‘u-—.————....‘—-——- -Hr— —-——-_-.-—~—4——a _-mwtg_h-mmw-_m-- _ - -—_r— .—-——-r

Figure 6.7: The MPEG player is steered to meet the time constraint

the frame fast enough so the time constraint p], S p}, + 70 can be satisfied and the

on-the-f1y implementation of displayer component will be used. After the compo— _

nents are assembled, the MPEG player begins to execute with parameters that satisfy

the software constraints. The value of parameter p], the number of frames played per

second, is 5, which in turn gives the displaying period 200 ms. The value of parameter

pf, image quality, is 8. Fig. 6.6 is the screen shot of the V0 for the Java MPEG player

executing on a JVM with JIT engine.

The thinner line represents the time (in milliseconds) needed to display a frame.

Initially, the displaying period is 200 ms. We used Brew to reduce image quality,

which reduces the time to decode a frame, and therefore we can decrease the period

to 150 ms. The variation of the thinner line reflects such a scenario.

145

In fig. 6.7, in which the MPEG player is interfered by other applications, the spikes

of the thinner line shows that some frames may not be decoded within one period

and displaying them needs to be delayed to the next period. Because of delay, it may

take up to one period, 150 ms, to display these frames after they are decoded and the

time constraint, “p; S p; + 70”, is not satisfied, which requires that the extra time

should be less than 70 ms. Thus, we increase the period to 200 ms to repair the time

constraint.

6.3.5 MPEG player on interpreter engine

The second experiment was conducted on a Linux PC with 900 MHz Pentium III

Processor, 256 MB RAM, and the Java Virtual Machine (JVM) with the interpreter

engine-that JVM simply interpret the bytecodes without compiling them into native

: code. The performance of the interpreter is usually slower than JVM with JIT engine,

and actually is not able to decode the frame fast enough so the time constraint

1); S p}, + 70 can be satisfied. As shown in fig. 6.8, we execute the on-the-fly

version. It requires about 800 ms (the thicker line) to decode and more than 1 second

to display a frame. It does not satisfy the constraint p; S p§+70 but 190 S p§ S 1000;

thus it will load and execute the buffer implementation of the displayer component.

Fig. 6.9 shows the time between each frame is reduced to 50 ms, i.e., 20 frames per

second. Thus, the constraints, 5 S p] S 30, can be satisfied.

146

7.50Er2

_ 5.0092

" 2.5092

 0.0092
Figure 6.8: Frames processing time of the MPEG player on Java VM with JIT engine

'_ 7.50592

_ 5.0092

- 2.5092

Figure 6.9: Frames processing time of the MPEG player on Java VM with interpreter

engine

147

Figure 6.10: Time interval to display a frame for the MPEG player with and without

CPU reservation

MPEG player on TimeSys real—time Linux

Finally, we demonstrate that FRAME will take advantage of the special functionality

of computing environments and, thus, applications may provide better or guaranteed

quality of service. For comparison, we had two MPEG players, P0 and P1, running

on a 500MHz Celeron processor and 128 MB RAM PC with the real-time Linux from

TimeSys simultaneously. P0 is normally executed under FRAME and the timesys

version is used because the constraint, “OS is a TimeSys real-time Linux.” , is satisfied.

P1 is forced to use dummy version, so all the real-time features are disabled.

Fig. 6.10 shows the performance difference for the MPEG players with and without

CPU reservation. The height of bars is the time between two consecutive frames. P0

has 40% CPU reserved (40 ms for every 100 ms). P1 does not have CPU reserved and

148

has to compete for the remaining 60% CPU with other applications. After launching

several other applications, the performance impact by those applications could be

significant. The time between two frames is still kept as the same (100 ms) for P0,

but varies significantly and could be up to more than 200 ms for P1.

6.4 Self-Adaptive Robot

6.4.1 Introduction

Nowadays, robots may be used to handle hazard materials or explore distant un-

friendly locations. Since the failure of these missions may cause disastrous conse-

quences, the design of robust, fault-tolerant robots will become important. One

approach for robustness is to design self-adaptive robots that control systems may

diagnose, overcome, and adapt to adverse and rapidly changing conditions. For ex-

ample, the Air Force Research Laboratory Information Directorate and IS Robotics

of Somerville, Mass, used the firm’s “Ariel 2” autonomous legged underwater vehi-

cle to demonstrate the feasibility of software that automatically adjusts to failures

and changes in a system [212], where the adaptive features of the robot include tol~

erance for sensor inadequacy, environment adaptation, tolerance to actuator failure,

and goal-driven choice of behaviors.

Self-adaptive robotic systems are usually developed by using the behavior-based ap-

proach that does not require an accurate model of robots and environments [191].

Rather than attempting to model the world, the systems have multiple lower and

149

more critical level control modules that react directly to sensory information and

then complicated behaviors may be achieved from these low level control modules.

However, these control modules must be pre-defined during the deveIOpment stage

and probably pre—loaded before execution. Therefore, the control software develop-

ers need to predict all the challenges and conditions that the robotic systems may

meet. However, sometimes it is impossible to make such a prediction and the robotic

systems will not be able to handle the unexpected situations without terminating

the robotic systems for adding the control modules for the unexpected situations.

Although the control modules may be loaded during the run-time, the availability of

the control modules still need to be known for module selection algorithms to select.

Since module selection algorithms are usually hard-coded during the development

stage, it is impossible to avoid the down-time for adding newly deve10ped modules

and updating the module selection algorithms. Furthermore, some situations are rare

and the memory, which may be a scarce resource on robotic systems, for the control

modules to handle those rare situations may not be well utilized. Thus, there needs

to be a flexible approach for the adaptive robotic systems that will dynamically in-

tegrate new and select the appr0priate control module to handle the situation they

have ahead.

One of novel features of ASAP is that ASAP allows newly developed modules to be added

and selected without the necessity of updating the module selection algorithms and

therefore the down-time. Therefore, we illustrate how to use ASAP to implement

the behavior-based approach to the adaptive robotic systems in this section, which

will be realized by the reassembly process if each control module is envisioned as an

150

implementation of an abstract component and the situations it needs to handle are

implemented as constraints.

Besides, the reassembly process may have a significant performance impact on the

execution of the applications, since it needs to locate and load new implementations

of components, and examine whether the constraints of the implementation are sat-

isfied. Without any improvement, the assembly process does not apply well to the

reassembly on small temporal scale of environmental change, i.e., relatively highly fre-

quent computing environmental changes. Various performance evaluation, analysis,

and comparison will be also illustrated in this section.

6.4.2 Application Description

Fig. 6.11 is the software hierarchy of a simple adaptive robotic control system that will

retrieve obstacle information from sensors and then respond according to the type of

obstacle ahead. Each low level control module is envisioned as an implementation of a

component. The system consists of five components, and the component robot is the

root component that needs service from its child components, sensor and response.

The sensor component will collect the information about the obstacle ahead, deter-

mine the type of the obstacles, and send the information to robot. The response

component will retrieve the obstacle information from robot. The response of robot

are actually performed by the child components of response, movement and other.

The other component handles the robot actions, except how the robot will move,

which is handled by the movement component.

151

AA

. version 1

partial reassembly subtree

O

O

0

version n

version 1

Movement

RObOt monitor version 1

Other

version 1

Sensor
Figure 6.11: Software hierarchy of the simple robot application

In this section, we focus on the performance of the assembly, and measure how perfor-

mance depends on the number of the implementations. Thus, we simplify the software

hierarchy by limiting each component to one implementation except response, which

may have up to twenty versions of implementations. Each implementation of the

movement component performs some certain pre-defined movement for the obstacle,

such as left circle move or right square move to pass the obstacle ahead.

6.4.3 Constraints

As illustrated in chapter 3, each implementation may contain a set of constraints that

specify how well the implementation will perform or response under certain environ-

152

ment. For this simple robotic control system, one implementation of the movement

component may move the robot in a left semi-circle pattern, so one of its constraints

may be {“the obstacle ahead has free space at left side.”}, which specifies such a

movement implementation will perform an appropriate response for the obstacles

that have free space at the left side. Therefore, when the robot encounters a circle

obstacle, the assembly process may select such a movement to pass the obstacle.

The parameters specified in the first two examples are numerical metrics, such as the

performance or output quality, so they may be confined in finite domains as parame-

ter constraints and be used for solving constraint satisfaction problems by component

assembly. However, the parameters are not necessarily limited to numerical metrics,

but may be any metrics that can be enumerated or quantized. To apply the con-

straints to the applications that component implementations are not distinguished

by numerical metrics but other concepts such as the situations need to handle, the

concepts of parameters need to be extended by enumerating or quantizing the con-

cepts. For the robot application, there may be twenty different kinds of obstacles

ahead. Therefore, the constraint, {“the obstacle ahead has free space at the left

side.”}, of the left semi-circle implementation of the movement component may be

specified as a parameter within a finite domain as {“14 S p S 14”}, where p is the

parameter representing the obstacle ahead and 14 represents the obstacle ahead has

free space at the left side.

153

6.4.4 Performance Evaluation

We implemented the simple adaptive robotic control system on a robot, XR4000 [213],

to evaluate the performance of component reassembly. As shown in fig. 6.11, we only

specify partial reassembly for the subtree rooted at the response component. Fur-

thermore, there is a separate constraint monitoring thread automatically generated

by CSML, which will determine the run-time environmental changes by examining if

any one of the constraints fails and invoke reassembly process if necessary. Since the

constraints are embedded into the implementation of components, the assembly pro-

cess is able to bring in the newly developed implementation and examine its feasibility

without down-time.

The only constraint to be monitored by the monitoring thread is the type of the

obstacle ahead. Thus, whenever the robot encounter a obstacle, a reassembly process

may be invoked depending on the type of obstacle ahead. Since only themovement

component has multiple versions of implementations, what the reassembly does is

actually select an appropriate implementation of the movement component to pass the

obstacle. We compare the performance of component reassembly with and without

caching, and also evaluate the performance of the similar application using hard-

coded if-else condition statements, an alternative adaptation approach described in

subsection 3.5.1. It needs to be noticed that, from formulae 5.1 and 5.2, performance

is application dependent, and, therefore, the performance comparison or improvement

may not be same for different applications.

154

Fig. 6.12 compares the time required to search for selecting an implementation of the

movement component by the different scheme, i.e., non-cached reassembly, cached

reassembly, and hard-coded if-else statement. The if-else scheme requires about

0.003 ~ 0.018 1103 that depends on the number of implementations. The non-cached

reassembly requires about 2.1 ~ 12.1 ms that also depends on the number of imple-

mentations, it is about 650 times slower than the if-else scheme as shown in fig. 6.13.

Fig. 6.13 also reveals that the performance factor of the non-cached reassembly over

the if—else scheme fluctuate between 600 ~ 700 and center around 650. It shows that

the non-cached reassembly algorithm is not harder than if-else algorithm in terms of

computational complexity, which is 0(n) with n being the number of implementa-

tions, as shown in fig. 6.14 and 6.15.

The non-cached reassembly time is of the order of ms and actually is good compared

to the robot movement time that is usually in the order of seconds. However, for

highly frequent environmental changes, i.e., in the order of ms, it may have significant

performance impact and even may get stuck in the reassembly process since another

environmental change occurs before the reassembly finishes.

The result in fig. 6.15 shows that cached reassembly requires about 0.29 ms inde-

pendent on the number of implementations and improves the reassembly speed by a

factor of 7 ~ 40, as shown in fig. 6.16, and may be only about 15 times slower than

if—else scheme. Unlike if—else and non-cached scheme, the cache access time is constant

and independent on the number of implementations. Thus, the performance improve-

ment becomes more significant while the number of implementations increases. Also,

155

Performance Comparison

100.000

10.000
.———.._—_-1—-——v—-——_——=--—-'

In”-— —-—

’0? 1.000

E

3 \ Cached

1: 0.100 \lf-else

°.Non-cached

0.010 __..- “

as“.

/

0.001 TllllllllllllflfllelllllTlllfllle

2 3 4 5 6 7 s 91011121314151817181920

Numberofimplementations

Figure 6.12: Performance comparison for different component selection scheme

the constant assembly time of the cache makes the execution time of the application

more predictable, which is an important issue for real-time applications.

Subsection 5.3.2 illustrates that two steps are involved in assembly, or non-cached

reassembly. Fig. 6.17 shows that the time required for the constraint solving, which

is about 50% ~ 60%. If the application structure does not change and no new

implementation is added, the subsequence software constraints sets building may be

avoided, and the non-cached reassembly performance may be approximately reduced

to constraint solving step, which is a 40% ~ 50% time saving in this case.

From formulae 5.2, the constraints solving performance, P3, depends on the number

of constraints sets and the number of constraints in each set, 2 [Si], and it also

is pr0portional to the range of each parameter domain, H [D,-|. To improve the

backtracking constraints solving algorithm, if more information may be extracted

156

Performance Comparison

700

650

600

550

500

450

400

350

300

250

200

1 50

1 00

F
a
c
t
o
r

\Ceohed

.e NUT-“0"”

2 3 4 5 e 7 s 91011121314151617181920

Number of implementations

Figure 6.13: Performance factor over hard-coded if-else scheme for other different

component selection scheme

Cached vs Non-Cached Reassembly

A
d
d
-
A

(
D
O
-
I
N
“

\Caohed

'. Non-cachedT
i
m
e
(
m
s
)

O
‘
N
U
#
0
I
O
V
D

2 3 4 5 6 7 s 91011121314151617181920

Number of implementations

Figure 6.14: Performance comparison of cached reassembly and non-cached reassem-

bly

157

Cache Hit Performance

0.325

0.300

0.275

0.250

0.225

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

\Caohed

.e "-0130T
i
m
e
(
m
s
)

2 3 4 5 6 7 s 91011121314151617181920

Number of implementations

Figure 6.15: Performance comparison of cached reassembly and if-else sCheme

Cache Performance Improvement

/

30 /

25 /

/

15 /

/

 S

I
m
p
r
o
v
e
m
e
n
t
F
a
c
t
o
r

B

10/

5

O lllllllllllllj—lTTTlfllllllllllllTll

234567891011121314151617181920

Number of implementations

Figure 6.16: Performance improvement of cached reassembly over non-cached re-

assembly

158

Reassembly Performance

-
a
.
a

.
A

_
a

I
D
C
-
3
'
0
0
)

‘.Total

\ConstrsoivingT
i
m
e
(
m
s
)

O
-
A
a
n
b
U
t
Q
V
m

2 3 4 5 6 7 s 91011121314151617181920

Number of implementations

Figure 6.17: Constraints solving performance of reassembly

from the relationship between parameters, i.e., connectors, some redundancy may

be found in the constraints sets. Thus, truth checking for some values in domains

or some constraints may be avoided, which will reduce the terms H [D,[and Z [5.]

respectively.

Memory usage, a scarce resource in embedded systems, may be a challenge issue for

developing software on embedded systems. Reassembly will load and unload the im-

plementations of components whenever necessary, which will free memory. Depending

on how the application is developed, the reassembly may use less memory than the

hard-coded if—else scheme. For example, the robot application using hard-coded if-else

statement has all implementations of the movement component preloaded to improve

performance. However, this is a trade-off with memory usage. Fig. 6.18 shows that

preloaded components require about 50% more memory than ASAP.

159

«
.
1
-

.
_

“
2
3
'
.
J

Memory Usuage

u
-
I
-
A
—
L
—
I
—
l
—
l

d
N
W
v
a
‘
I
O
)

M
e
m
o
r
y

s
i
z
e

i
n
M
B

_
s

O
-
‘
N
O
’
&
O
‘
I
O
¢
N
@
¢
D
O

2 3 4 5 6 7 s 91011121314151617181920

Number of implementations

Figure 6.18: Memory usage c0mparison for ASAP and component-preloaded

6.5 Summary

Three different applications from different domains are used to demonstrate and eval-

uate various features of ASAP. The G0 game demonstrates the basic features of ASAP,

including distributed component assembly. The Java MPEG Player has certain time

constraints, which may not be satisfied under different environments and may be re-

paired by Brew. The last application is a self-adaptive robotic control system that

demonstrates how ASAP may be used to realize behavior-based approach for the adap-

tive robotic control systems, in which control modules may be replaced by component

reassembly.

Different performance comparisons between non-cached reassembly, cached reassem-

bly, and hard-coded if-else statement are also presented. The if-else scheme requires

160

about 0.003 N 0.018 ms that depends on the number of implementations. The non-

cached reassembly requires about 2.1 ~ 12.1 ms that also depends on the number

of implementations, it is about 650 times slower than the if—else scheme. On the

other hand, cached reassembly requires about 0.29 ms independent on the number

of implementations and improves the reassembly speed by a factor of 7 ~ 40, and

may be only about 15 times slower than if—else scheme. Unlike if—else and non-cached

scheme, the cache access time is constant and independent on the number of imple-

mentations. Thus, the performance improvement is getting more significant while the

number of implementations increases. Also, the constant assembly time of the cache

makes execution time of the application more predictable, which is an important

design requirement for some software such as real-time applications.

161

Chapter 7

Conclusions and Future Work

7.1 Conclusions

As hardware technology improves and the deployment of wireless infrastructure in-

creases, the computer systems are being more heterogeneous and dynamic. Hetero-

geneity and dynamic may raise several challenges for software developers and users.

Such challenges are software portability, software or computing environments config-

uration, unexpected environments, and platforms with limited resources. A feasible

approach for these challenges is to develop adaptive software that may be aware of

environments and adapt themselves.

The adaptive software architecture project, or ASAP, is proposed and implemented for

the problems and challenges under dynamic heterogeneous environments. Software

may have a list of constraints to gather the information about the environments.

Constraints are specified during the development stage. During the execution, soft-

ware may check the list to find out if there are something wrong or change in the

162

environments, and then software will respond accordingly. However, specification of

constraints raise challenges in complex and collaborative software systems develop—

ment, since mutual dependency of constraints may leads to false conclusion. Several

possible applications of adaptive software are presented, including applications that

need environment-awareness, portability, robustness, and on-the-fly task assignment.

One particular interesting application is also presented, i.e., ad hoc systems that are

temporarily organized for accomplishing tasks.

The adaptive software framework, FRAME, of ASAP provides the APIs for software to

check the constraint list and then adapt itself to the computing environments. The

adaptation and functionality of software are separately specified and implemented

under FRAME, and, hence, alleviate the complexity of development. Furthermore, the

problems for mutual dependency of constraints are solved by using connectors.

To further alleviate the complexityof developing adaptive software under FRAME, a

high-level adaptive software specification language, Component/Constraint Markup

Language or CSML, may be used to specify the architecture of a software system

and the constraints. The code for adaptation will be automatically generated by

CSML. Then, developers only need to inherit the generated code to implement the

functionality of software; basically, the infrastructure needed to work under FRAME is

generated from the specification by CSML.

Adaptive software will definitely consume computing resources to detect and respond

to the environmental changes during the run-time, and it will have a performance

impact on the execution of software. To avoid unnecessary waste on computing re-

sources, ASAP uses two different on-line adaptation schemes, Brew and component

163

reassembly, to let software respond to different scales of environmental changes. For

a small scale of environmental change, people may use Brew to steer and repair the

affected software that do not work properly under the new environment without ter-

minating the software. For a large scale of environmental change, the execution of

the software will be temporarily suspended, component reassembly will be invoked,

and then the execution will resume with appropriate implementations of the com-

ponents. To further reduce the performance impact of reassembly, two approaches,

partial reassembly and caching, are proposed.

Three different applications from different domains are used to demonstrate and eval-

uate various features of ASAP. The G0 game demonstrates the basic features of ASAP,

including distributed component assembly. The Java MPEG Player has certain time

constraints, which may not be satisfied under different environments and may be re-

paired by Brew. The last application is a self-adaptive robotic control system that

demonstrates how ASAP may be used to realize behavior-based approach for the adap-

tive robotic control systems, in which control modules may be replaced by component

reassembly. Different performance results are also presented and discussed. The re-

sults show that the cache may improve the reassembly speed by a factor of 7 ~ 40

and the time for reassembly is constant and hence predictable, an important design

requirement for real-time applications.

164

7.2 Future Work

7.2.1 FRAME

One possible extension of ASAP is to use multiple registries, instead of one global cen-

tralized registry, which may have location-dependent implementations that are specif-

ically used within physical boundaries, such as the neighborhood of the registry. It

requires that an application is able to dynamically locate and contact an appropriate

registry, a research problem similar to service discovery, where clients generally have

a priori specification of required services. Not only in the spatial domain, it is also

possible to extend the registry in the time domain, where the implementation infor-

mation stored in a registry may be changed over time. Thus, people may design a

task flow plan that will assign certain tasks to robots at given time, and therefore may

be used to coordinate the missions of complex systems, such as multi-robot systems,

in which multiple robots collaborate for complex tasks.

One important aspect of ubiquitous computing is the existence of disappearing hard-

ware [214] that are mobile, have small form factors and usually limited computation

resource. Since the constraints solving may require a lot of computation, these disap-

pearing hardware may not have enough resources. One solution is to use a dedicated

server for the off-site assembly process. Therefore, the participating platforms may

send the environment information to the server for assembly, and retrieve assembly

result and the appropriate implementations of the components.

To further realize ubiquitous computing, it may be necessary to implement ASAP on

small devices, ranging from pagers and mobile phones to set-top boxes and car naviga-

165

tion system. Sun Microsystems introduced the Java 2 Platform, Micro Edition [215],

a set of specifications that pertain to Java on small devices. Some of features elimi-

nated from Java Standard Edition include reflection, the Java Native Interface, and

user-defined class loader [216]. These features are heavily used in current ASAP im-

plementation. To port ASAP with J2ME, the entire architecture may need to be

reorganized.

There are some other improvements for performance. For instance, constraints solving

is a performance bottleneck during component assembly. The current implementation

uses a backtracking algorithm to solve the constraints, which basically will iterate

through each possible valid value of parameters to check if all the constraints are

satisfied. Although; backtracking is strictly» better than generate-and-test, its runtime

complexity for most nontrivial problems is still exponential. One of the reasons for this

poor performance is that the backtracking paradigm suffers from thrashing [217], i.e.,

search in different parts of the space keeps failing for the same reasons. The situation

is worse for distributed applications because, in addition to the slower performance of

remote method invocation than direct invocation, constraints solving probably needs

to examine all possible distributions in which the complexity is ninc-I) times that of

non—distributed application. A number of different approaches have been developed

for solving these problems [218], such as using constraint propagation to simplify

the original problem. It will be nice to define a clear interface for constraint solving

algorithms, so that different constraint solving algorithm could be implemented and

be selected by the application launcher. Furthermore, the component assembly results

may be cached. For subsequence execution of the same software, it would be possible

166

to accelerate the assembly process by “perturbating” the results, if the computing

environment does not fluctuate significantly.

The current assembly process will use the first found feasible combination, although

there may be more than one feasible combination. However, the first found feasible

combination may not be what the user really wants. For example, both combinations,

GnuGD with no sound and Random with MIDI, may be feasible. The user may prefer

to play GnuGD with no sound, although the first found feasible combination is Random

with MIDI. This could be solved by allowing users specify the priority of versions of

components. The prioritization of the implementations of components will reorder

the examination of implementations, so the first found feasible program will use the

high priority version. However, this may raise some research challenges in terms

of where the priority should be specified. It is not practical to specify the priority

within component specification, because when developers specify components, they

actually specify their interface without knowing details about implementations. To

prioritize implementations requires knowledge about available implementations and

entangles the interfaces and implementations, which, as discussed in subsection 3.5.2,

may cause the interfaces to become implementation dependent and implementations

may not be interchangeable. Alternatively and maybe more properly, the priority

may be specified by users before execution. However, this approach may place the

burden on users for priority specification, since they need to retrieve information

about all implementations of each components and make judgments. More concepts

and research should be clarified and investigated.

167

The current communication implementation of each remote method invocation re-

quires Opening a socket, data transfer, and closing the socket. Obviously, when there

are many remote invocations involved, such a implementation is not efficient for soft-

ware execution and burdens the FRAME agents. We are investigating the possibility of

aggregating several remote invocations within one socket session, in which the biggest

challenge is the possible data corruption for simultaneous remote method invocations

within one session.

Other minor improvements includes implementation dependent software hierarchy

and prioritizing the constraints. First, current software hierarchy are implementation

independent; that is, each implementation of a component will have the same child

component dependency. Such a hierarchy may be not valid for a later deve10ped

version of a component with more features added. We would like to extend it to an

implementation dependent software hierarchy, so each version of a component may

have its own child component dependency, which will give component developers

more flexibility to deve10p later versions of components that can use different child

components. Again, this may raise problems that similarly occur in the prioritization

of the implementations.

Meanwhile, some constraints are critical, which have to be always satisfied, and best-

effort would be enough for others. Thus, the critical constraints will be assigned a

higher priority, and the feasible software constraints will be the ones in which the

critical constraints are satisfied. Consequently, the goal of the component assembly is

to search for the best software constraint, in which there are the most lower priority

constraints satisfied, from all the feasible software constraints.

168

7.2.2 CSML

Another performance improvement may be accomplished in the component specifica-

tion stage; use CSML to optimize the component constraints by checking the redundant

constraints for avoiding unnecessary constraints solving. From formulae 5.2, the con-

straints solving performance, P,, depends on the number of constraints sets and the

number of constraints in each set, 2 [Si], and it also is proportional to the range of

each parameter domain, I] [D,~|. To improve brute force constraints solving algorithm,

if more information may be extracted from the relationship between parameters, i.e.,

connectors, some redundancy may be found in the constraints sets. Thus, truth

checking for some values in domains or some constraints may be avoided, which will

reduce the terms 1'1 [0,] and Z [8,] respectively.

It also will be helpful to add more built-in macros for checking common used resource

and reservation, such as the remaining power, CPU speed, I/O bandwidth, etc. For

example of the GO game, by simply specifying macro for power constraint, CSML could

generate the Java code which can determine if a machine is powered by a battery.

Also, in the current implementation of CSML, the components are specified individ-

ually without checking the validity of dependency of child components during CSML

compilation time. Some errors will not show up until run-time. Therefore, it will

be nice to add some features so CSML will load the specification of child components

and do the dependency validity checking during the compilation time. Other minor

improvement may be a graphical user interface for CSML, so developer may have a

better overview about software architectures.

169

7.2.3 On—line Adaptation

Brew and reassembly are not fully integrated yet in the sense that software does not

know threshold of environmental change scale to use Brew or reassembly; that is, how

significant in the change of the environment should reassembly be used rather than

Brew. It is difficult and ambiguous to define the threshold because it is necessary to

quantize the environmental change. Currently, it still depends on human beings to

determine when one approach is better than the other. An automatic approach may

be accomplished by using the second level on-line adaptation with indirect informa-

tion; that is, to monitor the adaptation and efficiency of Brew and reassembly. For

instance, if an application repaired by Brew needs to be repaired frequently and the

repairing time is significant, it may indicate that Brew may not be ideal approach

for on-line adaptation and reassembly may be used. If the repairing time for using

reassembly is short, it may indicate that Brew may be better approach. The second

level on-line adaptation is applied to an adaptation, not an application, which may

be referred as first level on-line adaptation, and may bring some interesting research

challenges.

There is another extension of the functionality of Brew. The applications and Brew

form a closed loop, where the gap between the V0 and the remote controller is bridged

by a human. It is possible to add an adaptive algorithm that will automatically send

a control command based on the instrumentation results from VO. It requires to build

a interface that allows an adaptive algorithm to easily fill the gap to form a closed

loop that does not require any human intervention. The development of the adaptive

170

algorithm is separated from the applications and may be easily customized. Differ-

ent adaptive algorithms may also be swapped dynamically without terminating and

restarting the applications. Furthermore, they have less impact on the performance

of the applications because they are executed on different platforms.

Security also needs to be considered, particularly under wireless environments. Secu-

rity falls into two issues. The first one is to authenticate trustworthy persons to steer

the software. The second one is to avoid unwanted methods be invoked remotely.

Since brew use Java reflection APIS, basically all public methods of exported objects

and all static public methods of all classes could be invoked remotely, including the

methods which may cause unwanted consequences. One possible solution is to enforce

the developers to carefully design their software so that the methods not appropriate

for remote invocation would not be public, but this may not be practical because it

brings more constraints that are not directly related to software specifications and it

could take time to verify. It also does not allow different levels of authorities; that is,

different users may have different authorities to steer the software. A more practical

solution is to use a security profile file, so the RemoteControlManager may filter out

the unwanted invocations based on predefined profile and grant users different levels

of authorities.

171

APPENDICES

172

Appendix A

CSML of the Java MPEG Video

Player

This appendix lists the component and constraint specifications of the Java MPEG

video player in CSML. The specifications may be derived from table 6.1, 6.2, 6.3, 6.4,

fi5,6tifi7,and(18.

A.1 CSML for the root component player

1 (application name="p1ayer"

2 uri="http://www.cse.msu.edu/"korenson/class/player.jar"

3 steerable="on" registry-host="sushi">

4 (description)

5 the root component of the Java MPEG video player.

6 (/description>

7 (parameter name="frames" id="p11" value-type="int" upper="30"

8 lower="5" />

9 (parameter name="quality" id="p12" value-type="int" upper="8"

01 lower="1" />

173

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

(internal-connector id="f3">

(from-current parameter-id="f1" alias="var1" />

<fr0m-current parameter-id="f2" alias="var2" />

(definition)

return 7 * “var1# + 25 * ‘var2# == 235;

</definition>

</interna1-c0nnector>

<child-component name="displayer" id="c1" registry-host="sushi"

uri="http://www.cse.msu.edu/“korenson/class/displayer.jar" I>

<external-connector id="f4">

<from-current parameter-id="f1" alias="var1" />

<from-child child-id="c1" parameter="time" alias="var2" />

<definition>

return ‘var1# * “var2# == 1000;

</definition>

</externa1-connector>

<external-connector id="f5">

<from-current parameter-id="f2" alias="var1" />

(from-child child-id="c1" parameter="quality" alias="var2" I)

(definition)

return ‘varl == ‘var2#;

</definition>

</external-connector>

(main)

(instance name="p1ayer" child-id="c1" />

<required-service service="play" child-id="c1" />

(definition)

try {

player.play(args);

} catch(Throwable e) {

e.printStackTrace();

}

</definition>

</main>

45 (/application)

A.2 CSML for the component displayer

1 (component name="displayer" steerable="on"

2 registry-host="192.168.1.111"

174

(
D
o
c
u
m
e
n
t
s
-
w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

uri="http://www.cse.msu.edu/”korenson/class/displayer.jar")

<general>

<provided-service>

(declaration method-name="p1ay" return-type="void">

<argument name="videoFileName" value-type="String[]"/>

</declaration>

</provided-service>

(parameter name="time" id="p21" value-type="int" upper="200"

lower="40" I>

(parameter name="quality" id="p22" value-type="int" upper="8"

lower="1" />

<interna1-connector id="f1">

(from-current parameter-id="p21" alias="var1" />

(from-current parameter-id="p22" alias="var2" />

<definition>

return 7 * “var1# - 160 * “var2# tgt;= 120;

</definition>

</internal-connector>

<child-component name="decoder" id="c1"

registry-host="192.168.1.111" I)

<child-component name="RTOS" id="c2"

registry-host="192.168.1.111" />

</genera1> .

<customized version="on_the_fly"

uri="http://www.cse.msu.edu/“korenson/class/on_the_f1y.jar")

<description> on-the-fly version (/description>

(constraint-definition constraint-id:"f2">

<external-connector id="f2">

<from-current parameter-id="p21" alias="var1" />

(from-child child-id="c1" parameter="time" alias="var2" I)

<definition>

return “var1# <= “var2# + 70;

</definition>

</external-connector>

</constraint-definition>

</customized>

<customized version="buffer"

uri="http://www.cse.msu.edu/“korenson/class/buffer.jar")

(description) buffer version (Idescription)

(constraint-definition constraint-id="f2">

(external-connector id="f2">

(from-current parameter-id="p21" alias="var1" />

(from-child child-id="c1" parameter="time" alias="var2" />

(definition)

return 190 <= “var2# &&

175

48 “var2# &1t;= 1000;

49 </definition>

50 </external-connector>

51 </constraint-definition>

52 </customized>

53 </component>

A.3 CSML for the component decoder

1 (component name="decoder" steerable="on"

2 registry-host="192.168.1.111"

3 uri="http://www.cse.msu.edu/‘korenson/class/decoder.jar">

4 (general)

5 (provided-service)

6 (declaration method-name="decode" return-type="void">

7 (argument name="videoFileName" value-type="String[]"/>

8 </dec1aration> ‘

9 (/provided-service>

10 <parameter name="time" id="p31" value-type="int" upper="200"

11 10wer="40" />

12 <parameter name="quality" id="p32" value-type="int" upper="8"

13 10wer="1" />

14 (internal-connector id="f1">

15 (from-current parameter-id="p31" alias="var1" />

16 (from-current parameter-id="p32" alias="var2" I>

17 <definition>

18 return 7 * “var1# - 160 * “var2# agt;= 120;

19 (/definition>

20 (/internal-connect0r>

21 (child-component name="RTDS" id="c1"

22 registry-host="192.168.1.111" />

23 (/general>

24 (customized version="decoder_impl"

25 uri="http://www.cse.msu.edu/”korenson/class/decoder_impl.jar">

26 (description) the only one implementation </description>

27 </customized>

28 </component>

176

A.4 CSML for the component RTDS

1 (component name="RTDS" registry-host="192.168.1.111"

2 uri="http://www.cse.msu.edu/“korenson/class/RTDS.jar">

3 <general>

4 (provided-service id="sl")

5 (declaration method-name="setStartTime" return-type="void">

6 (description)

7 Set the start time when the CPU reservation is taking

8 effect. More precisely, after (millis + nanos) later,

9 the reservation will take effect.

10 (/description>

11 (argument name="millis" value-type="long"/>

12 (argument name="nanos" value-type="1ong"/>

13 (/declaration>

14 (declaration method-name="setComputeTime" return-type="void">

15 (description)

16 . Reserve the CPU time for each period.

17 </description>

18 (argument name="millis" value-type="long"/>

19 <argument name="nanos" value-type="10ng"/>

2O (Ideclaration) .

21 (declaration method-name="setPeriod" return-type="void">

22 <description>

23 Set period.

24 </description>

25 <argument name="millis" value-type="long"/>

26 <argument name="nanos" value-type="long"/>

27 (/dec1aration>

28 </general>

29 <customized version="TimeSys"

30 uri="http://www.cse.msu.edu/“korenson/class/timesys.jar")

31 (description) TimeSys version (/description>

32 (constraint-definition constraint-id="sl">

33 <resource-requirement>

34 (resource name="timesys-rt-1inux" id="r1">

35 (built-in>(timesys-linux-rt />(/built-in>

36 </resource>

37 </resource-requirement>

38 (Iconstraint-definition>

39 </customized>

40 <customized version="dummy"

41 uri=nhttp://www.cse.ms
u.edu/"korenson/class/

dummy.jar"

177

42 default="yes">

43 (description) Dummy version </description>

44 (/cust0mized>

45 (/component>

178

BIBLIOGRAPHY

179

Bibliography

[1] Timeline of Computing History. Information available at

http://www. computer. org/computer/timeline/timeline.pdf.

[2] Gordon Moore. Electronics. Cramming More Components onto Integrated Cir-

cuits, 38(8):114—117, April 1965.

[3] Motorola Semiconductor Products Sector. Information available at http://e-

www. motorola. com/.

[4] Intel(R) PCA Applications Processors. Information available at

http://www. intel. com/design/pca/applicationsprocessors/indez.htm.

[5] The Official Bluetooth Wireless Info Site. Information available at

http://www. bluetooth. com/.

[6] Infrared Data Association. Information available at http://www.irda.org/.

[7] IEEE P802.11, The Working Group for Wireless LANs. Information available

at http://grouper. ieee. org/groups/802/1 1/.

[8] Intel Corporation. Mobile Platform Vision Guide

for 2003, September 2002. Information available at

http://www. intel. com/design/mobile/platform/downloads/IMPVG03.pdf.

[9] Gartner, Inc. Information available at http://gartner.com.

[10] International Data Corporation. Worldwide PC Forecast Update 2002—2006,

July 2002. Information available at http://www.idc.com.

[11] International Data Corporation. US. Mobile Worker Population Forecast and

Analysis, 2002—2006, June 2002. Information available at http://www.idc.com.

[12] Rea-Song K0 and Matt W. Mutka. FRAME for Achieving Performance Portability

within Heterogeneous Environments. In Proceedings of the 9th IEEE Confer-

ence on Engineering Computer Based Systems (ECBS), Lund University, Lund,

SWEDEN, April 2002.

180

[13] Autoconf - GNU Project - Free Software Foundation (FSF). Information avail-

able at http://www.gnu. org/software/autoconf/autoconf. html.

[14] Automake - GNU Project - Free Software Foundation (FSF). Information avail-

able at http://www.gnu. org/software/automake/.

[15] The Icon Programming Language. Information available at

http://www. cs. arizona. edu/icon/.

[16] Ren-Song K0 and Matt W. Mutka. Adaptive Soft Real-Time Java within Het-

erogeneous Environments. In Proceedings of Tenth International Workshop on

Parallel and Distributed Real— Time Systems, Fort Lauderdale, Florida, April

2002.

[17] Kenneth P. Fishkin, Anuj Gujar, Beverly L. Harrison, Thomas P. Moran, and

Roy Want. Embodied User Interfaces for Really Direct Manipulation. Commu-

nications of the ACM, 43(9):75-80, September 2000.

[18] Mark Weiser and John Seeley Brown. The Coming Age of Calm Technology.

In Peter J. Denning and Robert M. Metcalfe, editors, In Beyond Calculation:

The Next Fifty Years of Computing, pages 75-85. Springer Verlag, 1997.

[19] Donald A. Norman. The Invisible Computer. MIT Press, Cambridge, Mass, ‘

1998.

[20] R. Want, B. N. Schilit, N. 1. Adams, R. Gold, K. Petersen, D. Goldberg, J. R.

Ellis, and M. Weiser. An Overview of the PARCTAB Ubiquitous Computing

" Experiment. IEEE Personal Communications, 2(6):28—33, December 1995.

[21] C. K. Kantarjiev, A. Demers, R. Frederick, R. T. Krivacic, and M. Weiser.

Experiences with X in a Wireless Environment. In Proceeding of the USENIX

Mobile and Location-Independent Computing Symposium, pages 117—128, Cam-

bridge, MA, 1993.

[22] Scott Elrod, Richard Bruce, Rich Gold, David Goldberg, Frank Halasz, William

Janssen, David Lee, Kim McCall, Elin Pedersen, Ken Pier, John Tang, and

Brent Welch. Liveboard: A Large Interactive Display Supporting Group Meet-

ings, Presentations, and Remote Collaboration. In Conference proceedings on

Human factors in computing systems, pages 599—607. ACM Press, 1992.

[23] Roy Want, Andy Hopper, Veronica Falco, and Jonathan Gibbons. The Active

Badge Location System. ACM Transactions on Information Systems (TOIS),

10(1):91-102, 1992.

[24] Thomas E. Truman, Trevor Pering, Roger Doering, and Robert W. Brodersen.

The Infopad Multimedia Terminal: A Portable Device for Wireless Information

Access. IEEE Transactions on Computers, 47(10):1073—1087, 1998.

181

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Roy Want, Trevor Pering, Gaetano Borriello, and Keith I. Farkas. Disappearing

Hardware. IEEE Pervasive Computing, 1(1):36——47, January/March 2002.

Roy Want and Bill N. Schilit. Guest editors’ introduction: Expanding the

horizons of location-aware computing. IEEE Computer, 34(8):31—34, August

2001.

Anantha Chandrakasan, Rajeevan Amirtharajah, SeongHwan Cho, James

Goodman, Gangadhar Konduri, Joanna Kulik, Wendi Rabiner, and Alice Wang.

Design Considerations for Distributed Microsensor Systems. In Proceedings of

1999 IEEE Custom Integrated Circuits Conference, pages 279-286, Piscataway,

N.J., 1999. IEEE Press.

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and

Kristofer S. J. Pister. System Architecture Directions for Networked Sensors.

In Proceedings of 9th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 93—104, New York, 2000.

ACM Press.

J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next Century Challenges: Mobile

Networking for ”Smart Dust”. In Proceedings of 5th ACM/IEEE International

Conference on Mobile Computing and Networks, pages 271—278, New York,

1999. ACM Press.

Jan M. Rabaey. Wireless beyond the Third Generation: Facing the Energy

Challenge. In Proceedings of the 2001 International Symposium on Low Power

Electronics and Design, pages 1-3, New York, 2001. ACM Press.

William R. Hamburgen, Deborah A. Wallach, Marc A. Viredaz, Lawrence S.

Brakmo, Carl A. Waldspurger, Joel F. Bartlett, Timothy Mann, and Keith I.

Farkas. Itsy: Stretching the Bounds of Mobile Computing. Computer, 34(4):28—

37, April 2001.

Mark Weiser, Brent Welch, Alan J. Demers, and Scott Shenker. Scheduling for

Reduced CPU Energy. In Proceedings of the Ist USENIX Symposium on Up-

erating Systems Design and Implementation, pages 13—23, USENIX, Berkeley,

Calif, 1994.

Jason Flinn. Extending Mobile Computer Battery Life through Energy-Aware

Adaptation. PhD thesis, Carnegie Mellon University, December 2001.

Y. Kim. Capacity Enhancement Technology of Samsung Soft Case Li-ion bat-

teries. In Proceedings of Power 2001: 9th Annual International Conference

on Power Requirements for Mobile Computing, Wireless Electronic Devices 65

Business/Consumer Applications, 2001.

Thad Starner. Human Powered Wearable Computing. IBM Systems Journal,

35(3-4):618—629, 1996.

182

[36] Nathan 8. Shenck and Joseph A. Paradiso. Energy Scavenging with Shoe-

Mounted Piezoelectrics. IEEE Micro, 21(3):30—42, May/June 2001.

[37] Sharon Thomas and Marcia Zalbowitz. Fuel cells, green power. Los Alamos

National Laboratory in Los Alamos, New Mexico, 1999. Information available

at http://education.lanl.gov/resources/fuelcells/fuelcells.pdf.

[38] Klaus Finkenzeller. RFID Handbook: Radio-Frequency Identification Funda-

mentals and Applications. John Wiley & Sons, New York, 2000.

[39] Antonio Regalado. Brain-Machine Interface. Technology Review, pages 98-100,

January/February 2001.

[40] Tim Kindberg and Armando Fox. System Software for Ubiquitous Computing.

IEEE Pervasive Computing, 1(1):70—81, January/March 2002.

[41] William Adjie—Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley.

The Design and Implementation of an Intentional Naming System. In Pro-

ceedings of the 17th ACM Symposium on Operating Systems Principles, pages

186—201. ACM Press, 1999.

[42] R. Droms. Dynamic Host Configuration Protocol. RFC 2131, Internet-Engi-

neering Task Force. Information available at http://www.ietf. org/. '

[43] S. Thomson and T. Narten. IPv6 Stateless Address Autoconfiguration.

RFC 1971, Internet Engineering Task Force. Information available at

http://www. ietf. org/.

[44] Ken Arnold, Robert Scheifler, Jim Waldo, Bryan O’Sullivan, and Ann Wollrath.

The Jini Specifications. Addison-Wesley, 1999.

[45] Jini Technology Architectural Overview, January 1999. Information available

at http://wwws.sun.com/software/jini/whitepapers/architecture.html.

[46] Jini Specifications v1.2, December 2001. Information available at

http://wwws. sun. com/software/jini/specs/.

[47] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Pro—

tocol, Version 2. IETF RFC 2608, June 1999. Information available at

http ://www. ietf. org/rfc/rfc2608. tit.

[48] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Templates and

Service: Schemes. IETF RFC 2609, June 1999. Information available at

http ://www. ietf. org/rfc/rfc2609. tzt.

[49] Universal Plug and Play Device Architecture, June 2000. Information available

at http://www. upnp. org/download/UPnPDA 10.20000613htm.

[50] Salutation Consortium. Salutation Architecture Specification Version 2. 00, June

1999. Information available at http://www.salutation.org/specordr.htm.

183

[51] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph, and

Randy H. Katz. An Architecture for a Secure Service Discovery Service. In

Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile

Computing and Networks, pages 24—35. ACM Press, 1999.

[52] Erik Guttman. Service Location Protocol: Automatic Discovery of IP Network

Services. IEEE Internet Computing, 3(4):71-80, July/August 1999.

[53] Tim Kindberg and John Barton. A Web-Based Nomadic Computing System.

Computer Networks, 35(4):443-456, March 2001.

[54] Choonhwa Lee and Sumi Helal. Context Attributes: An Approach to En-

able Context-awareness for Service Discovery. In Proceedings of the Third

IEEE/[PS] Symposium on Applications and the Internet, Orlando, Florida,

January 2003.

[55] Guanling Chen and David Kotz. A Survey of Context-Aware Mobile Com-

puting Research. Technical Report TR2000—381, Dept. of Computer Science,

Dartmouth College, November 2000.

[56] John Barton, Tim Kindberg, and Shreyas Sadalgi. Physical Registration: Con-

figuring Electronic Directories using Handheld Devices. Technical Report HPL- ,

2001-119, HP Labs, Palo Alto, CA 94304, USA, May 2001. Available at

http://www. hpl. hp. com/techreports/2001/HPL-2001-1 1 9.pdf.

[57] Robert Grimm, Janet Davis, Ben Hendrickson, Eric Lemar, Adam MacBeth,

. Steven Swanson, Tom Anderson, Brian Bershad, Gaetano Borriello, Steven

Gribble, and David Wetherall. Systems Directions for Pervasive Computing.

In Proceedings of the 8th Workshop Hot Topics in Operating Systems, pages

128—132, 2001.

F

[08] Nicholas Carriero and David Gelernter. Linda in Context. Communications of

the ACM, 32(4):444—458, 1989.

[59] N. Davies, S. P. Wade, A. Friday, and G. S. Blair. Limbo: A Tuple Space Based

Platform for Adaptive Mobile Applications. In Proceedings of the IFIP/IEEE

International Conference on Open Distributed Processing and Distributed Plat-

forms, pages 291—302. Chapman & Hall, Ltd., 1997.

[60] Brad Johanson and Armando Fox. ’Ihplespaces as Coordination Infrastructure

for Interactive Workspaces. In Proceeding of Workshop Application Models and

Programming Tools for Ubiquitous Computing, 2001. Information available at

http://choices. cs. uiuc. edu/Ubi T001301/pub/08-for.pdf.

[61] Mark Weiser and John Seely Brown. Designing Calm Tech-

nology. PowerGrid Journal, 1, 1996. Information available at

http://www. ubiq. com/weiser/calmtech/calmtech.htm.

184

[52]

[63]

[64]

[65]

1'66]

[67]

[68]

I69]

[70]

[71]

Brian D. Noble, Morgan Price, and Mahadev Satyanarayanan. A Pro-

gramming Interface for Application-Aware Adaptation in Mobile Computing.

In Proceeding of USENIX Symposium on Mobile and Location-Independent

Computing, USENIX, Berkeley, Calif, 1995. Information available at

http://choices. cs. uiuc. edu/Ubi T001501/pub/08-foz.pdf.

Bruce Zeus] and Dan Duchamp. A General Purpose Proxy Filtering Mech-

anism Applied to the Mobile Environment. In Proceedings of the 3rd An-

nual ACM/IEEE International Conference on Mobile Computing and Networks,

pages 248—259. ACM Press, 1997.

Armando Fox, Steven D. Gribble, Yatin Chawathe, and Eric A. Brewer. Adapt-

ing to Network and Client Variation Using Active Proxies: Lessons and Per-

spectives. A special issue of IEEE Personal Communications on Adapation,

pages 10-—19, August 1998.

David D. Clark and David L. Tennenhouse. Architectural Considerations for

a New Generation of Protocols. ACM SIGCOMM Computer Communication

Review, 20(4):200—208, 1990.

Emre Kiciman and Armando Fox. Using Dynamic Mediation to Integrate COTS

Entities in a Ubiquitous Computing Environment. 'In Proceeding of the 2nd

International Symposium on Handheld and Ubiquitous Computing, volume 1927

of Lecture Notes in Computer Science, pages 211-226, Berlin, 2000. Springer-

Verlag. '

Brad A. Myers, Rishi Bhatnagar, Jeffrey Nichols, Choon Hong Peck, Dave

Kong, Robert Miller, and A. Chris Long. Interacting at a Distance Using

Semantic Snarfing. In Ubicomp 2001: Ubiquitous Computing, volume 2201

of Lecture Notes in Computer Science, pages 305—314, Berlin, 2001. Springer-

Verlag.

Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy

Hopper. Virtual Network Computing. IEEE Internet Computing, 2(1):33—38,

January/February 1998.

Todd D. Hodes, Randy H. Katz, Edouard Servan-Schreiber, and Lawrence A.

Rowe. Composable Ad Hoc Mobile Services for Universal Interaction. In Pro-

ceeding of the 3rd International Symposium on Mobile Computing and Network-

ing, pages 1—12, New York, 1997. ACM Press.

Shankar R. Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry

Winograd. ICrafter: A Service Framework for Ubiquitous Computing Environ-

ments. In Ubicomp 2001: Ubiquitous Computing, volume 2201 of Lecture Notes

in Computer Science, pages 56—75, Berlin, 2001. Springer-Verlag.

Chester Fitchett and Saul Greenberg. The Phidget Architecture: Rapid De-

velopment of Physical User Interfaces. In Proceeding of Workshop Application

185

[72]

[73]

[74]

[75]

[75]

[77]

[78]

[79]

[80]

Models and Programming Tools for Ubiquitous Computing, 2001. Information

available at http://choices. cs.uiuc. edu/UbiToolsOI/pub/1 7-fitchett.pdf.

Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit:

Aiding the Development of Context-Enabled Applications. In Proceeding of

ACM SIGCHI Conference on Human Factors in Computing Systems, pages

434—441, New York, 1999. ACM Press.

Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman, Pete Steggles,

Andy Ward, and Andy HOpper. Implementing a Sentient Computing System.

Computer, 34(8):50—56, August 2001.

Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steven A.

Shafer. EasyLiving: Technologies for Intelligent Environments. In Proceeding

of the 2nd International Symposium on Handheld and Ubiquitous Computing,

volume 1927 of Lecture Notes in Computer Science, pages 12—29, Berlin, 2000.

Springer-Verlag.

Michael H. Coen, Brenton Phillips, Nimrod Warshawsky, Luke Weisman,

Stephen Peters, and Peter Finin. Meeting the Computational Needs of In-

telligent Environments: The Metaglue System. In Proceeding of the Ist In-

ternational Workshop Managing Interactions in Smart Environments, Berlin,

1999. Springer-Verlag.

Roy Want, Kenneth P. Fishkin, Anuj Gujar, and Beverly L. Harrison. Bridging

Physical and Virtual Worlds with Electronic Tags. In Proceeding of 1999 Con-

ference on Human Factors in Computing Systems, pages 370—377, New York,

1999. ACM Press.

Jun Rekimoto and Yuji Ayatsuka. CyberCode: Designing Augmented Reality

Environments with Visual Tags. In Proceeding of Designing Augmented Reality

Environments, pages 1—10, New York, 2000. ACM Press.

Deborah Caswell and Philippe Debaty. Creating Web Representations for

Places. In Proceeding of the 2nd International Symposium on Handheld and

Ubiquitous Computing, volume 1927 of Lecture Notes in Computer Science,

pages 114-126, Berlin, 2000. Springer-Verlag.

Brad Johanson, Greg Hutchins, and Terry Winograd. PointRight: A System for

Pointer/Keyboard Redirection among Multiple Displays and Machines. Tech-

nical Report CS-2000-03, Computer Science Department, Stanford University,

Stanford, Calif, 2000.

Suchitra Raman and Steven McCanne. A Model, Analysis, and Protocol Frame-

work for Soft State-Based Communication. In Proceeding of Special Interest

Group on Data Communication, pages 15—25, New York, 1999. ACM Press.

186

[811

[82]

[83]

[84]

[85]

[86]

[87]

[881

[89]

[90]

[91]

[92]

Marc Langheinrich. Privacy by Design: Principles of Privacy—Aware Ubiquitous

Systems. In Ubicomp 2001: Ubiquitous Computing, volume 2201 of Lecture

Notes in Computer Science, pages 273—291, Berlin, 2001. Springer-Verlag.

Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting Mobile Com-

munications: The Insecurity of 802.11. In Proceedings of the 7th Annual Inter-

national Conference on Mobile Computing and Networks, pages 180-188. ACM

Press, 2001.

Laura Marie Feeney, Bengt Ahlgren, and Assar Westerlund. Spontaneous Net-

working: An Application-Oriented Approach to Ad Hoc Networking. IEEE

Communications Magazine, 39(6):176—181, June 2001.

Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. Elliptic Curves in Cryptog-

raphy. Cambridge University Press, Cambridge, UK, lst edition, 2000.

Adrian Perrig, Robert Szewczyk, J.D. Tygar, Victor Wen, and David E. Culler.

SPINS: Security Protocols for Sensor Networks. In Proceedings of the 7th Annual

International Conference on Mobile Computing and Networks, pages 189—199.

ACM Press, 2001. '

Frank Stajano and Ross Anderson. The Resurrecting Duckling: Security Issues

for Ad Hoc Wireless Networks. In Security Protocols, volume 1796 of Lecture

Notes in Computer Science, pages 172—194, Berlin, 1999. Springer-Verlag.

Eran Gabber and Avishai Wool. How to Prove Where You Are: Tracking the .

Location of Customer Equipment. In Proceedings of the 5th ACM Conference

on Computer and Communications Security, pages 142—149. ACM Press, 1998.

Tim Kindberg and Kan Zhang. Context Authentication Using Constrained

Channels. Technical Report HPL—2001-84, Hewlett-Packard Laboratories, Palo

Alto, Calif, 2001.

Luca Cardelli and Andrew D. Gordon. Mobile Ambients. In Foundations of

Software Science and Computation Structures, volume 1378 of Lecture Notes in

Computer Science, pages 140-155, Berlin, 1998. Springer-Verlag.

Pasi Eronen and Pekka Nikander. Decentralized Jini Security. In Proceeding

of Network and Distributed System Security 2001, pages 161—172, The Internet

800., Reston, Va., 2001.

Pattie Maes. Computational Reflection. PhD thesis, Laboratory for Artificial

Intelligence, Vrije Universiteit Brussel, Brussels, Belgium, January 1987.

Java 2 Platform, Standard Edition (J2SE) API Specification. Information avail-

able at http://java.sun.com/apis.html.

187

[93] Pattie Maes. Concepts and Experiments in Computational Reflection. In Con-

ference Proceedings on Object-Oriented Programming Systems, Languages and

Applications, pages 147—155. ACM Press, 1987.

[94] Brian C. Smith. Reflection and Semantics in a Procedural Language. Technical

Report 272, Massachusetts institute of Technology. Laboratory for Computer

Science, Cambridge, Massachusetts, 1982.

[95] Daniel P. Friedman and Mitchell Wand. Reification: Reflection without Meta-

physics. In Proceedings of the 1984 ACM Symposium on LISP and Functional

Programming, pages 348—355, 1984.

[96] R. W. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning.

In B. L. Webber and N. J. Nilsson, editors, Readings in Artificial Intelligence,

pages 173—191. Kaufmann, Los Altos, CA, 1981.

[97] Kenneth A. Bowen. Meta-Level Programming and Knowledge Representation.

In Proceedings of the International Conference on Artilicial Intelligence and its

Applications, 1986.

[98] R. Davis and DB. Lenat. Knowledge-Based Expert Systems in Artificial Intel-

ligence. McGraw—Hill, New York, 1982.

[99] JOhn E. Laird, Paul S. RosenbloOm, and Allen Newell. Chunking in SOAR: A

The Anatomy of a General Learning Mechanism. Machine Learning, 1:11—46,

‘1986. .

[100] P. Hayes. The Language GOLUX. PhD thesis, University of Essex, United

Kingdom, 1974.

[101] M. Genesereth. Prescriptive Introspection. In P. Macs and D. Nardi, editors,

Meta-Level Architectures and Reflection. June 1987.

[102] Ole-Johan Dahl and Kristen Nygaard. Simula: an algol-based simulation lan-

guage. Communications of the ACM, 9(9):671—678, 1966.

[103] Adele Goldberg and Alan Kay. Smalltalk-72 Instruction Manual. Technical

Report SSL 76-6, Learning Research Group, Xerox Palo, Alto Research Center,

1976.

[104] D. Moon and D. Weinreb. The Lisp Machine Manual. MIT AI Lab, 1981.

[105] Adele Goldberg and David Robson. Smalltalk-80: the Language and its Imple-

mentation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[106] Mark Stefik and Daniel G. Bobrow. Object-Oriented Programming: Themes

and Variations. AI Magazine, 6(4), 1986.

[107] Brian C. Smith and Carl Hewitt. A PLASMA Primer (draft). MIT Artificial

Intelligence Laboratory, Cambridge, Massachusetts, October 1975.

188

[108] H. Lieberman. A Preview of ACT1. MIT Artificial Intelligence Laboratory,

MIT AI-MEMO 625, Cambridge, Massachusetts, 1981.

[109] Russel Greiner. RLL-1: A Representation Langauge Language. Working Paper

80—9, Stanford Heuristic Programming Project, October 1980.

[110] Jean-Pierre Briot and Pierre Cointe. The OBJVLISP Model: Definition of a

Uniform, Reflexive and Extensible Object Oriented Language. In Proceeding of

the 7th European Conference on Artificial Intelligence, pages 270—277, Brighton,

UK, 1986.

[111] L. Steels. The KRS Concept System. Technical Report 86-1, Artificial Intelli-

gence Laboratory, Brussels Free University, Brussels, Belgium, 1986.

[112] Daniel G. Bobrow and Gregor Kiczales. The Common LiSp Object System

Metaobject Kernel - A Status Report. In Proceedings of the 1988 ACM Con-

ference on Lisp and Functional Programming, pages 309—315, Snowbird, Utah,

United States, 1988. ACM Press.

[113] Object-Oriented Programming in COMMON LISP: A Programmer’s Guide to

CLOS. Addison-Wesley, 1989.

[114] Gregor Kiczales, Jim des Rivires, and Daniel G. Bobrow. The Art of Metaobject

Protocol. MIT Press, 1991.

[115] Ramana Rao. Implementational Reflection in Silica. In Proceedings of European

Conference on Object-Oriented Programming, volume 512 of Lecture Notes in

' Computer Science, pages 251—266, Geneva, Switzerland, July 1991. Springer-

Verlag.

[116] Yasuhiko Yokote. The Apertos Reflective Operating System: The Concept and

Its Implementation. In Andreas Paepcke, editor, Proceedings of the Confer-

ence on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA), volume 27, pages 414—434, New York, NY, 1992. ACM Press.

[117] Mamdouh H. Ibrahim, editor. Proceedings of the OOPSLA ’91 Workshop on

Reflection and Metalevel Architectures in Object-Oriented Programming, 1991.

[118] Jr Avadis Tevanian. Architecture-Independent Virtual Memory Management

for Parallel and Distributed Environments: The Mach Approach. Technical

Report CMU—CS—88-106, Carnegie Mellon University, December 1987.

[119] E. Abrossimov, M. Rozier, and M. Shapiro. Generic Virtual Memory Manage-

ment for Operating System Kernels. In Proceedings of the 20th ACM Symposium

on Operating Systems Principles, pages 123—136. ACM Press, 1989.

[120] H. Tokuda and C. W. Mercer. Arts: a distributed real-time kernel. ACM

SIGOPS Operating Systems Review, 23(3):29—53, 1989.

189

[121] Jecel M. Assumpcao Jr and Sergio T. Kofuji. Bootstrapping the Object Oriented

Operating System Merlin: Just Add Reflection. In Chris Zimmerman, editor,

Advances in Object-Oriented Metalevel Architectures and Reflection, chapter 5.

CRC Press, 1996.

[122] Urs Hiilzle, Bay-Wei Chang, Craig Chambers, Ole Agesen, and David Ungar.

The SELF Manual. Version 1.1. Unpublished manual, February 1991.

[123] Jecel M. Assumpcao Jr. Adaptive Compilation in the Merlin System for Par-

allel Machines. In Proceeding of IEEE/USP International Workshop on High

Performance Computing, pages 155-166, March 1994.

[124] The TUNES Project for a Reflective Computing System. Information available

at http://tunes.org/.

[125] Object Management Group, Framingham, Mass. CORBA v2.2 Specification,

1998.

[126] N. Brown and C. Kindel. Distributed Component Object Model Protocol-

DCOM/1.0. Information available at http://www.microsoft.com/com.

[127] Java Remote Method Invocation. (RMI). Information available at

http://java.sun. com/products/jdk/rmi/.

[128] Gordon S. Blair, G. Coulson, P. Robin, and M. Papathomas. An Architec-

ture for Next Generation Middleware. In Proceedings of the IFIP International

Conference on Distributed Systems Platforms and Open Distributed Processing,

London, 1998. Springer-Verlag.

[129] Yi-Min Wang and Woei-Jyh Lee. COMERA: COM Extensible Remoting Ar-

chitecture. In Proceedings of the 4th USENIX Conference on Object-Oriented

Technologies and Systems (COOTS), pages 79—88. USENIX, April 1998.

[130] Fabio Kon, Manuel Roman, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Clau-

dio Magalhéies, and Roy H. Campbell. Monitoring, Security, and Dynamic

Configuration with the dynamicTAO Reflective ORB. In Proceedings of the

IFIP/ACM International Conference on Distributed Systems Platforms and

Open Distributed Processing (Middleware’2000), number 1795 in LNCS, pages

121—143, New York, April 2000. Springer-Verlag.

[131] D. Schmidt and C. Cleeland. Applying Patterns to DeveIOp Extensible ORB

Middleware. In IEEE Communications Magazine, volume 37, pages 54—63.

IEEE CS Press, Los Alamitos, Calif, 1999.

[132] Baochun Li, William Kalter, and Klara Nahrstedt. A Hierarchical Quality

of Service Control Architecture for Configurable Multimedia Applications. In

Journal of High Speed Networks, Special Issue on Management of Multimedia

Networking. IOS Press, 2001.

190

[133] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Soft-

ware Architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40-52,

October 1992.

[134] Mary Shaw and David Garlan. Software Architecture: Perspectives on an

Emerging Discipline. Prentice Hall, April 1996.

[135] Steve Vestal. A Cursory Overview and Comparison of Four Architecture De-

scription Languages. Technical report, Honeywell Technology Center, February

1993.

[136] D. Garlan, editor. Proceeding of the Ist International Workshop Architectures

for Software Systems, April 1995.

[137] David Garlan, Walter Tichy, and Frances Paulisch. Summary of the dagstuhl

workshop on software architecture. ACM SIGSOFT Software Engineering

Notes, 20(3):63—83, 1995.

[138] AL. Wolf, editor. Proceeding of the 2nd International Software Architecture

Workshop, October 1996. .

[139] J. Magee and DE. Perry, editors. Proceeding of the 3rd International Software

Architecture Workshop, November 1997.

[140] David Garlan, Robert Allen, and John Ockerbloom. Exploiting Style in Ar-

chitectural Design Environments. In Proceedings of SIGSOFT’94: The Second

ACM SIGSOFT Symposium on the Foundations of Software Engineering. ACM

Press, December 1994.

[141] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor.

Using object-oriented typing to support architectural design in the C2 style. In

Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software

Engineering, pages 24—32. ACM Press, 1996.

[142] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Language and Envi-

ronment for Architecture-Based Software Development and Evolution. In Pro-

ceedings of the 1999 International Conference on Software Engineering, pages

44—53, 1999.

[143] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jefl' Kramer. Specifying

Distributed Software Architectures. In W. Schafer and P. Botella, editors, Pro-

ceeding of the 5th European Software Engineering Conference, volume 989, pages

137—153, Sitges, Spain, 1995. Springer-Verlag, Berlin.

[144] Jeff Magee and Jeff Kramer. Dynamic Structure in Software Architectures. In

Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software

Engineering, pages 3—14. ACM Press, 1996.

191

[145] Pam Binns, Matt Englehart, Mike Jackson, and Steve Vestal. Domain-Specific

Software Architectures for Guidance, Navigation and Control. International

Journal of Software Engineering and Knowledge Engineering, 6(2):201—227,

June 1996.

[146] David C. Luckham, John L. Kenney, Larry M. Augustin, James Vera, Doug

Bryan, and Walter Mann. Specification and Analysis of System Architecture

Using Rapide. IEEE Transactions on Software Engineering, 21(4):336—355,

1995.

[147] David C. Luckham and James Vera. An Event-Based Architecture Definition

Language. IEEE Transactions on Software Engineering, 21(9):717—734, 1995.

[148] Mark Moriconi and R. A. Riemenschneider. Introduction to SADL 1.0: A

Language for Specifying Software Architecture Hierarchies. Technical Report

SRI-CSL—97-01, SR1 Int’l, March 1997.

[149] Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider. Correct architecture

refinement. IEEE Transactions on Software Engineering, 21(4):356—372, 1995.

[150] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M.

Young, and Gregory Zelesnik. Abstractions for Software Architecture and Tools

to Support Them. Software Engineering, 21(4):314-335, 1995.

[151] 'Mary Shaw, Robert DeLine, and Gregory Zelesnik. Abstractions and, Implemen-

' ' tations for Architectural Connections. In Proceeding of the 3rd International

Conference on Configurable Distributed Systems, Annapolis, Maryland, May

1996.

[152] Michael M. Gorlick and Rami R. Razouk. Using Weaves for Software Con-

struction and Analysis. In Proceedings of the 13th International Conference on

Software Engineering, pages 23—34. IEEE Computer Society Press, 1991.

[153] Robert Allen and David Garlan. A Formal Basis for Architectural Connection.

ACM Transactions on Software Engineering and Methodology, 6(3):213-249,

1997.

[154] David Garlan, Robert T. Monroe, and David Wile. ACME: An Architecture

Description Interchange Language. In Proceedings of CASCON’97, pages 169—

183, Toronto, Ontario, November 1997.

[155] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A Highly-

Extensible, XML-Based Architecture Description Language. In Proceedings of

the Working IEEE/IFIP Conference on Software Architectures, Amsterdam,

Netherlands, August 2001.

[156] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. An Infrastructure

for the Rapid Development of XML-based Architecture Description Languages.

192

In Proceedings of the 24th International Conference on Software Engineering,

Orlando, Florida, May 2002.

[157] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison

Framework for Software Architecture Description Languages. IEEE Transac-

tions on Software Engineering, January 2000.

[158] Xiaohui Gu, Klara Nahrstedt, Wanghong Yuan, Duangdao Wichadakul, and

Dongyan Xu. An XML-based QoS Enabling Language for the Web. In Journal

of Visual Language and Computing (Special Issue on Multimedia Languages for

the Web). Academic Press, December 2001.

[159] G. Wiederhold, P. Wegner, and S. Ceri. Towards Megaprogramming: A

Paradigm for Component-Based Programming. Communications of the ACM,

pages 89-99, November 1992.

[160] K. Nilsen. Adding Real-Time Capabilities to Java. Communications ACM,

pages 49—56, June 1998.

[161] William Foote. Theory versus Practice in Real-Time Computing with '

the JavaTM Platform. Available at http://java.sun.com/people/billf/real-

time/isorc99ips.

[162] William Foote. Real-Time Extensions to the JavaTM Platform: a Progress

' Report. Available at http://java.sun.com/people/billf/real-time/rtss98WIP.ps.

[163] Lisa Carnahan and Marcus Ruark, editors. Requirements for Real— Time Eztene

sions for the Java Platform: Report from the Requirement Group for Real- Time

Extensions for the Java Platform. NIST Special Publication 500—243, Septem-

ber 1999. Available at http://www.nist.gov/itl/div897/ctg/real-time/rt-doc/rtj

-final—draft.pdf.

[164] The Real-Time for JavaTM Experts Group. The Real- Time Specification for

Java. Available at http://www.javaseries.com/rtj.pdf.

[165] Real-Time JavaTM Working Group. Real— Time Core Extensions. Available at

http://www.j-consortium. org/rtng/rtce. I. 0. 14 .pdf.

[166] K. Nilsen. Real-Time Core Extensions for the JavaTM Platform. Available at

http://www.j-consortium.org/rtng/rtss.12-1-99.ppt.

[167] JSR: Java Specification Request. Distributed Real-Time Specification. Infor-

mation available at http://jcp.org/jsr/detail/050.jsp.

[168] Daniel A. Reed, Robert D. Olson, Ruth A. Aydt, Tara Madhyastha, Thomas

Birkett, David W. Jensen, Bobby A. A. Nazief, and Brian K. Totty. Scal-

able Performance Environments for Parallel Systems. Technical Report 1673,

Urbana, Illinois, 1991.

193

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

Daniel A. Reed, Keith A. Shields, Will H. Scullin, Luis F. Tavera, and Christo-

pher L. Elford. Virtual Reality and Parallel Systems Performance Analysis.

Computer, 28(11):57—67, 1995.

J. S. Vetter and D. A. Reed. Real-Time Performance Monitoring, Adaptive

Control, and Interactive Steering of Computational Grids. The International

Journal of High Performance Computing Applications.

Weiming Gu, Greg Eisenhauer, Karsten Schwan, and Jeffrey Vetter. Falcon:

On-line monitoring and steering of parallel programs. Concurrency: Practice

and Experience, 10(9):699-736, 1998.

Jeffrey Vetter and Karsten Schwan. Progress: A Toolkit for Interactive Pro-

gram Steering. In Proceedings of the 24th International Conference on Parallel

Processing, pages 139—142, Urbana, IL, 1995.

Falcon and Progress: Platforms for Interactive High Performance Programs.

Information available at http://www. cc. gatech. edu/systems/projects/Steering/.

G. Geist, J. Kohl, and P. Papadopoulos. CUMULVS: Providing Fault-Tolerance,

Visualization, and Steering of Parallel Applications. In The International

Journal of Supercomputer Applications and High Performance Computing, vol-'

ume 11, pages 224—235, 1997. '

S.G. Parker and CR. Johnson. SCIRun: Applying Interactive Computer

Graphics to Scientific Problems. In SIGGRAPH 96, 1996.

S. G. Parker, M. Miller, C. D. Hansen, and C. R. Johnson. An Integrated

Problem Solving Environment: the SCIRun Computational Steering System. In

3Ist Hawaii International Conference on System Sciences (HICSS-31), volume

vii, pages 147—156, January 1998.

Abdul Waheed, Diane T. Rover, Matt Mutka, Aleksander Bakic, and David

Pierce. Vista: A Framework for Instrumentation System Design for Multi-

disciplinary Applications. In Proceedings of the 4th International Workshop

on Modeling, Analysis, and Simulation of Computer and Telecommunications

Systems, pages 192—195, San Jose, CA, February 1996.

Daniel A. Reed, Christopher L. Elford, Tara M. Madhyastha, Evgenia Smirni,

and Stephen E. Lamm. The Next Frontier: Interactive and Closed Loop Perfor-

mance Steering. In Proceedings of the 1996 International Conference on Parallel

Processing Workshop, pages 20—31, Bloomingdale, IL, August 1996.

SA. Khaddaj. Animation and Integration of Material Growth Simulations in a

Visual Programming Environment. International Journal of Imaging Systems

and Technology, 7(3):246—255, 1996.

194

[180] S. Doi, T. Takei, Y. Akiba, K. Muramatsu, H. Matsumoto, L.C.J. van Rijn, and

BC. Schultheiss. A Real-Time Visualization System for Computational Fluid

Dynamics. NEC Research and Development, 37(1):114—123, January 1996.

[181] R. Grosso, K. Wechsler, T. Ertl, and M. Schafer. Computational Steering and

Visualization for Multiblock Multigrid Flow Simulations. In High-Performance

Computing and Networking. International Conference and Exhibition, pages

927—928, Brussels, Belgium, April 1996.

[182] Paul R. Woodward. Interactive Scientific Visualization of Fluid Flow. Com-

puter, 26(10):]3—25, October 1993.

[183] G.D. Kerlick and E. Kirby. Towards interactive Steering, Visualization and

Animation of Unsteady Finite Element Simulations. IEEE Visualization 1993,

pages 374—377, 1993.

[184] Matthias Deegener, Gerd Grosse, Werner John, Bettina Khnapfel, Michael

Llohr, and Hanno Wirth. Rapid Prototyping with MUSE. In Proceeding for

the Dedicated Conferences on Mechatronics and Supercomputing Applications

in the Transportation Industries, number 625-632, 1994.

[185] .G. Hanyzewski and M. Mull. HERMES: A Tool Kit for Developing Distributed

Modeling Applications. Nanotechnology, 7(3):193-196, 1996.

[186] R. de Souza and Yuanhong Zhang. SimEnvir++z An Object-Based Simulation

Environment. Computers in Industry, 30(3):211—217, October 1996.

[187] MC. Chan, G. Pacifici, and R. Stadler. A Platform for Real-Time Visualization

and Interactive Simulation of Large Multimedia Networks. In Proceedings of

the 4th International Workshop on Parallel and Distributed Real— Time Systems,

pages 47—52, Honululu, HI, April 1996.

[188] Mei C. Chuah and Steven F. Roth. On the Semantics of Interactive Visualiza-

tions. In Proceedings of the Symposium on Information Visualization ’96, pages

29—36, San Francisco, CA, October 1996. IEEE Press.

[189] Mikael Jern and Rae A. Earnshaw. Interactive Real-Time Visualization System

Using a Virtual Reality Paradigm. In M. Gobel, H. Muller, and B. Urban, edi-

tors, Proceedings of the 5th Eurographics Workshop on Visualization in Scien-

tific Computing, pages 174—189, Rostock, Germany, May 1994. Springer-Verlag.

[190] Nils J. Nilsson. Shakey the robot. Technical Report 323, A1 Center, SRI

International, 333 Ravenswood Ave., Menlo Park, CA 94025, April 1984.

[191] Rodney A. Brooks. A Robust Layered Control System for a Mobile Robot.

IEEE Journal of Robotics and Automation, 2(1):14—23, March 1986.

195

[192] Theodore Q. Pham, Kevin R. Dixon, Jonathan R. Jackson, and Pradeep K.

Khosla. Software Systems Facilitating Self-Adaptive Control Software. In Pro-

ceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2000.

[193] Seiji Yamada and Jun’ya Saito. Adaptive Action Selection without Explicit

Communication for Multi-Robot Box-Pushing. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, 1999.

[194] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic,

A. Quilici, D. Rosenblum, and A. Wolf. An Architecture-Based Approach to

Self-Adaptive Software. IEEE Intelligent Systems, 14(3):54——62, May 1999.

[195] GNU Go - GNU Project - Free Software Foundation (FSF). Information avail-

able at http://www.gnu. org/software/gnugo/.

[196] Vipin Kumar. Depth-First Search. In S. C. Shapiro, editor, Encyclopaedia of

Artificial Intelligence, volume 2, pages 1004-1005. John Wiley and Sons, Inc.,

1987.

[197] Allen Parrish, Brandon Dixon, and David Cordes. A Conceptual Foundation

for Component-Based Software Deployment. Journal of Systems and Software,

2001.

[198] Don Batory and Sean O’Malley. The Design and Implementation of Hierarchical

Software Systems with Reusable Components. ACM Transactions on Software

Engineering and Methodology, 1(4):35_5—398, October 1992.

[199] John Cheesman. What is a Component, February 1998. Information available

at http://www. cbdedge. com/cbdweb/technology/whatComp.html.

[200] Mary Shaw. The Coming—of—Age of Software Architecture Research. In Pro-

ceedings of the 23rd International Conference on Software Engineering, pages

656—664a, Toronto, Canada, 2001. IEEE Computer Society.

[201] Extensible Markup Language (XML). Information available at

http://www.w3.org/XML/.

[202] ISO 8879:1986 Information processing - Text and office systems - Stan-

dard Generalized Markup Language (SGML). Information available at

http://www.iso.org/.

[203] Aleksandar Bakié, Matt W. Mutka, and Diane T. Rover. Real-Time Perfor-

mance Visualization and Analysis Using Distributed Visual Objects. In Proceed-

ings of the IEEE Workshop on Middleware for Distributed Real- Time Systems

and Services, pages 154—161, December 1997.

[204] Alan K. Mackworth and Eugene C. Freuder. The Complexity of Constraint

Satisfaction Revisited. Artificial Intelligence, 59(1-2):57—62, 1993.

196

[205] Alain Papazoglou. JavaGO. Information available at

http://www.papazoglou.net/go/javago.html.

[206] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J. M. Anderson. Quantifying

the Energy Consumption of a Pocket Computer and a Java Virtual Machine.

Communications of the ACM, pages 49—56, June 1998.

[207] Joerg Anders. MPEG-l-Player. Information available at

http://rnvs. informatik. tu-chemnitz. de/‘jan/MPEG/MPEGLPlayhtml.

[208] Moving Picture Experts Group (MPEG). Information available at

http://mpeg.telecomitalialab.com.

[209] TimeSys. Real-Time Embedded Linux. Information available at

http://www.timesys.com/.

[210] Java JIT Compiler. Information available at

http://wwws.sun. com/software/solaris/jit/.

[211] The JIT Compiler Interface Specification. Information available at

http://java.sun. com/docs/ji_t.-interface. html.

[212] Fran Crumb. Robot demonstrates self-adaptive software techniques. Air Force

Research Laboratory Public Affairs, January 2000. Information available at

http://www. af. mil/news/Jan2000/n20000107.000021.html.

[213] Nomadic Technologies, Inc., Mountain View, CA. Namad

XRDEV Software Manual, March 1999. Information available at

http://nomadic.sourceforge. net/production/manuals/xrdev—1. 0.pdf. gz.

[214] Mark Weiser. The Computer for the 21st Century. Scientific American,

265(3):66—75, September 1991. Reprinted in IEEE Pervasive Computing, Jan-

Mar 2002, pp. 19-25.

[215] Sun Microsystems, Inc., Palo Alto, CA. Java 2 Platform Micro Edition (J2ME)

Technology for Creating Mobile Devices, May 2000. Information available at

http://java.sun. com/products/cldc/wp/KVwa.pdf.

[216] Sumi Helal. Pervasive Java. IEEE Pervasive Computing, 1(1):82-85, Jan-

uary/March 2002.

[217] John Gaschnig. Performance Measurement and Analysis of Certain Search

Algorithms. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, 1979.

Available as Technical Report CMU-CS-79—124.

[218] Vipin Kumar. Algorithms for Constraints Satisfaction problems: A Survey.

The AI Magazine, by the AAAI, 13(1):32—44, 1992.

197

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[HI]HIHIIIHIH‘INHNI‘I]IIIIHWWIHIMII

