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ABSTRACT

Dynamic Composition of Distributed Components

By

Ka'runkumar N. Biyani

The thesis focuses on the development of distributed applications that can add

and remove distributed components in order to adapt to environment conditions. A

distributed component means that the component consists of several component frac-

tions and when adding a distributed component to an application, each process in the

application is composed with one fraction of the distributed component. The addition

and removal of such distributed components introduces new challenges. Specifically,

it is necessary that the addition and removal satisfy the following three properties:

(1) atomicity, i.e., if a distributed component is added (respectively, removed) then all

of its component fractions are composed with (respectively, removed from) respective

processes; (2) minimal blocking, i.e., during the addition and removal of a distributed

component, the application should continue to execute or any blocking introduced

should be minimal; and (3) synchronization, i.e., while the component replacement

is being performed, processes that use the 01d component should not interact with

those that use the new component. The satisfaction of these properties is further

complicated as the component fractions may depend on each other. Hence, the thesis

develops a framework that supports the dynamic addition and removal of distributed

components while dealing with the dependency relation among the component frac-

tions. The thesis proposes such a framework based on the concept of distributed reset

that focuses on resetting the state of a system to a given global state.
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CHAPTER 1

Introduction

Separation of concerns is an important issue in evolving distributed applications. In

its most general form, it refers to the ability to identify, encapsulate and manipulate

those parts of an application that are relevant to a particular software concept, goal,

task or purpose. Separation of concerns is one of the primary motivations for orga-

nizing and decomposing an application into smaller and more manageable parts. An

appropriate separation of concern has been hypothesized to reduce the complexity

of an application, improve comprehensibility, and promote traceability within and

across the application components and throughout their lifecycle. Separation of con-

cerns also facilitates reuse, adaptation, customization and evolution, and simplifies

component integration.

We study the issues related to separation of concerns in the context of fault-

tolerant distributed applications. We begin with the observation that in the initial

design of many applications, it is difficult ——-if not impossible— to identify all the

faults that may occur. Hence, during the evolution of a fault-tolerant application, we

need to upgrade it to add fault—tolerance to new faults. Moreover, such addition needs

to be done without rewriting the entire application. In other words, while adding new

fault—tolerance, the existing application has to be reused. Furthermore, for a long-

running application, this addition of fault-tolerance may need to be dynamic, i.e.,

while the application continues to run, we may need to add fault-tolerance to new

faults.



In the context of fault-tolerant applications, we need to deal with their function-

ality and fault-tolerance. We propose an adaptive component-based framework that

enables such separation based on the theory of detectors and correctors presented

in [1]. In [1], it is shown that a fault-tolerant application consists of a fault-intolerant

application that deals only with the functionality in the absence of faults and a set

of fault-tolerance components that deal only with the fault-tolerance. These com-

ponents are based on the concept of detecting (and restoring) state predicates (as

opposed to faults or their symptoms) involving variables of the fault-intolerant appli-

cation. In [1], it is also shown that these components are necessary and sufficient for

a rich class of fault-tolerant applications that reuse the corresponding fault-intolerant

application.

We also find that the components used in different fault-tolerant applications as

well as the components used at different layers of an application are similar. For

example, the detectors used in problems such as leader election [2], mutual exclusion

[2] and termination detection [2] are similar. In each of these cases, the detector was

used to detect predicates of the form “for each process j, detect if local predicate

local.j is true.” While the local predicate being detected varied from application to

application, there was a significant overlap in the implementation of these detectors.

Likewise, components used at different layers of an application are also similar. This

suggests that techniques that can systematically reuse detectors and correctors are

beneficial. It is also possible that for a given application, alternative detectors and

correctors can be used to add fault-tolerance to it. For example, consider the problem

of data transfer from one source to one or more destinations where messages could

be lost. In this case, one could use a component based on the retransmission of

lost messages or one could use a component based on the concept of forward error



correction (FEC) (cf. Appendix A) where additional messages are sent up front.

While either of these components can provide the required fault-tolerance, the choice

depends on the environment, e.g., rate of message loss, computing power associated

with processes and application requirements.

Based on the above observations, we notice that to permit efficient reuse of fault-

tolerance components and to separate the fault-tolerance concern, it is important

to develop a framework that will support dynamic addition/removal/replacement of

these components and their reuse. There are several issues that need to be addressed

while adding these components. We discuss these issues in the following section.

Subsequently, we discuss in Section 1.2 how our framework deals with these issues.

1.1 Issues in Adding Fault-tolerance Components

In this section, we discuss the following issues that arise while adding a fault-tolerance

component to an intolerant distributed application: independent development of such

components, flexibility of adding components; ensuring correctness after the compo—

nents are added; addition, removal and replacement of components at run-time for

adaptation; permitting such addition and removal of components that are themselves

distributed.

Independent development. We expect that an appropriate and clean sepa-

ration of fault-tolerance and functionality will help clearly identify the role of the

developer who designs fault-intolerant applications and the developer who develops

fault-tolerance components. Specifically, an application developer should concen-

trate only on the functionality and not be concerned about providing fault-tolerance.

Also, the developer of fault-tolerance components need not be concerned about where



these components are used. Such independent development of distributed applica-

tions should make it easier to manage and deploy them.

Flexibility and reuse. The component-based design of fault-tolerant applica-

tions poses new issues related to the integration of fault-tolerance components with

an intolerant application. One of the important issues is the complexity of such in-

tegration. There should be no restrictions (or minimal restrictions) on the way the

intolerant application is developed or the way the fault-tolerance component is devel-

oped. Moreover, the tasks involved in the composition should not be an impediment in

using the fault-tolerance component. Such integration should be done at a high-level

and that synchronization between the intolerant application and the fault-tolerance

component be minimal. Further, this integration should be fast, easy and efficient.

Automating this integration should minimize human intervention. The reuse of fault-

tolerance components will be enhanced if we have fast and efficient mechanisms to

integrate these fault-tolerance components with an intolerant application.

Interference and correctness. The integration of fault-tolerance components

with an intolerant application may lead to interference that may hinder the intoler-

ant application from satisfying its functionality or it may prevent the fault-tolerance

component from providing the desired fault-tolerance. Hence, we need to ensure

that the fault-tolerance components added to the application do not interfere with

the functionality of the intolerant application and that the fault-intolerant applica-

tion does not prevent the fault-tolerance components from providing the required

fault-tolerance. Such interference freedom would ensure that the application would

continue to function correctly upon composition. These correctness requirements

have to be met, whether the components are added statically (at compile-time) or

dynamically (at run-time).



Adaptation. For a given application, there exist several fault—tolerance compo-

nents that provide the required fault-tolerance. In these circumstances, the choice of

a component depends on the environment. Specifically, it is possible that while sev-

eral components provide the required fault-tolerance, one component provides better

performance than other components in a given environment. Thus, an application

should be able to dynamically change a fault—tolerance component based upon its en-

vironment. Moreover, under such dynamic composition, the change of the component

should be transparent to the user of the application. In other words, the user of the

application should not be affected when the components are being changed.

Distributed fault-tolerance components. We often find fault-tolerance compo-

nents in the distributed applications that are themselves distributed. A distributed

fault-tolerance component consists of component fractions, one for each process in

an intolerant distributed application. Under such circumstances, reuse, correctness

and adaptation of fault-tolerance components introduce new challenges. For example,

when a distributed component is added, multiple processes on multiple processors are

affected. During this addition, if one process that has added its component fraction

interacts with another that has not added its component fraction then the results

will be unpredictable. Thus, we need to ensure that the addition of a fault-tolerance

component is (1) atomic, i.e., the addition of a fault-tolerance component across the

distributed application appears indivisible; (2) minimally blocking, i.e., during the ad-

dition of a fault—tolerance component, the application should continue to execute or

any blocking introduced should be minimal; and (3) synchronized, i.e., two processes

in the distributed application interact only if they are using fractions of the same com-

ponent. Similar issues arise when removing or replacing a distributed fault—tolerance

component.



1 .2 Proposed Framework

Based on the issues discussed in Section 1.1, in this thesis, we propose a framework

that supports dynamic composition of distributed fault-tolerance components while

enabling independent development and adaptation.

The main feature of this framework is its ability to dynamically add, remove

and replace distributed fault-tolerance components. More specifically, the framework

ensures that the three properties, namely, atomicity, continuity and synchronization,

are satisfied when a distributed component is added, removed and replaced. During

replacement, we do not assume any relationship between the current component and

the component being added. Moreover, our framework can be tailored to deal with

faults that may occur when changing components. Our approach for ensuring these

properties is based on distributed reset [3,4], which resets the state of a given system

to a given global state. I

Additionally, to ensure correct, flexible and interference-free integration of fault-

tolerance components with an intolerant distributed application, we introduce the

notion of contracts. These contracts are constraints imposed by the component on

the intolerant application. It specifies constraints under which this component can be

used. Satisfying the contract implies that the intolerant application adheres to all the

requirements imposed by the fault-tolerance component. Intuitively, if the contract is

satisfied, the fault-tolerance component will provide the required fault-tolerance when

integrated with the given intolerant application. Our framework also includes an

adaptation module that is responsible for providing adaptive fault-tolerance. Based

on the adaptation strategy, the adaptation module chooses a fault-tolerance compo-

nent for dynamic addition, removal or replacement.



Thus, our framework has the following features: (1) It enables dynamic compo-

sition of distributed fault-tolerance components to support adaptation. (2) It allows

efficient reuse of fault-tolerance components. (3) It can be used as a middleware to

provide fault-tolerance for faults occurring in a distributed application.

Organization of the report. The rest of the report is organized as follows:

In Chapter 2, we describe the overall architecture of our framework and explain the

functions of all the modules of the framework. We explain the reset subsystem and

how it is used for dynamic composition in Chapter 3. In Chapter 4 and Chapter 5,

and in Appendix B, we present examples where our framework is used. We discuss

some of the issues raised by our framework in Chapter 6. Finally, we describe the

related work in Chapter 7 and conclude in Chapter 8.



CHAPTER 2

Framework Architecture

In this chapter, we describe the architecture of our framework and explain each of its

modules. In our approach, we provide fault-tolerance to an intolerant application by

composing it with fault-tolerance components. The composition of fault-tolerance

components with an intolerant application can be asynchronous, synchronous or

mixed.

In asynchronous composition, the execution of the fault-tolerance component is

not synchronous with the execution of the intolerant application. Typical examples

of fault-tolerance components that require asynchronous composition are components

that do the backup of a system, components involved in monitoring environment

conditions, etc.

In synchronous composition, the fault—tolerance component is executed synchro-

nously with the intolerant application, i.e., when the intolerant application executes

some portion of its code, the fault-tolerance component needs to execute the corre-

sponding portion of its code. We choose method-level synchronization for synchronous

composition. Had we chosen a lower-level synchronization (e.g. statement-level),

the complexity of composition would have been high. Lower-level synchronization

is likely to be tedious to specify. Instead, method-level synchronization is expected

to be efficient and easier to specify compared to statement-level synchronization.

In method-level synchronization, the fault-tolerance component executes its method

when a certain method of the intolerant application is executed. Towards this end,

we trap the method of the intolerant application and pass control to the method of



the fault-tolerance component. Depending on its implementation, the fault-tolerance

component may call its own method and/or it may call the trapped method of the

intolerant application. The proactive component (cf. Chapter 4) and the AlternateR-

oute component (cf. Appendix B) are examples of components that use synchronous

composition. In case of proactive component, the decoding and encoding actions of

the proactive component executes synchronously with the send and receive actions of

the intolerant application.

Finally, in mixed composition, some piece of code is executed synchronously with

an intolerant application and some piece of code is executed asynchronously. The

reactive component (cf. Chapter 4) is an example of a component that uses mixed

composition. In this example, the send and receive actions of the reactive component

executes synchronously with the send and receive actions of the intolerant application;

and the processing of negative acknowledgements is executed asynchronously with the

intolerant application. 3

The developer of a fault-tolerance component specifies the methods that are ex-

ecuted synchronously and the methods that are executed asynchronously. The de-

veloper of an intolerant application provides guidelines as to what methods of an

intolerant application can be executed synchronously with a fault-tolerance compo-

nent. The developer of the intolerant application may specify individual methods

that may be considered for synchronous composition or allow all methods of a certain

type (e.g. methods from some class or all public methods) to be synchronized.

Our framework helps in the composition of a fault-tolerance component with an

intolerant application. This composition can be performed statically or dynamically.

Further, for a distributed application, since the fault-tolerance component is often dis-

tributed, the composition involves composing the fault-tolerance component fractions



with the processes of the intolerant application. Towards this end, we instantiate a

framework node at each process in the fault-intolerant application (cf. Figure 2.1).

Each framework node consists of a component manager, an adaptation module and a

reset module (cf. Figure 2.2). The component manager performs the addition and the

removal of fault-tolerance component fractions. The adaptation module selects the

fault-tolerance component based on an adaptation strategy. The reset module ensures

that the addition and removal of fault-tolerance component is atomic, continuous and

synchronized. The framework interacts with the intolerant application and the com-

ponent library. The component library contains detectors and correctors along with

their contracts. A component can be added to or removed from the library. In the

following sections, we discuss the individual modules of the component framework

and present their functionalities.
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10



 

Intolerant Application

   

  

  

   

    

 

Process

Function trap & callback contract

I Component '

I Manager

] Adaptation Reset E

: Module Module 1
      

Fault-tolerance Framework

.....................................................

 contract

  
External Fault—tolerance

Interface Component (Library)
  
 

Figure 2.2: Architecture of the Framework Node

2.1 Component Manager

The function of the component manager is to add and remove fault-tolerance compo-

nent fractions. Based on the contract with the intolerant application, it intercepts the

function call of the intolerant application. Then, it calls the corresponding function

of the fault-tolerance component. Subsequently, based on the application require—

ments, the fault-tolerance component function may call another function and/or it

may call the intolerant application function that was intercepted. To facilitate dy-

namic composition, the component manager also communicates with other modules

of the framework, namely, the adaptation module (Section 2.3) and the reset module

(Section 2.4).

11



2.2 Contracts

The contract defines the constraints that are imposed on the process of a fault-

intolerant application and the component fraction installed at that process. The

contracts used at different processes need not be identical, i.e., it is possible that the

contract between one process and its component fraction may be different from the

contract between another process and its component fraction. The contract between

the fault-intolerant application and the fault-tolerance component is the collection

(conjunction) of individual contracts between the processes in the application and

the fractions of the component.

The contract consists of two parts, an enforceable contract and an unenforce-

able contract. In its enforceable contract with the framework, the fault-tolerance

component specifies its requirements from the fault-intolerant application. These re-

quirements include the parameters of the expected method, their types, values and

the relation between them. The contract between the fault-intolerant application and

the framework specifies the methods (including their parameters) that are exposed

(e.g. are public) by the fault-intolerant application. The component manager at each

process verifies these enforceable contracts when it integrates the fault-intolerant ap—

plication with the fault—tolerance components. The unenforceable contracts explicitly

identifies the conditions under which the fault-tolerance guarantees can be provided.

While these unenforceable contracts are not currently used during composition, we

expect that in future version of the framework, some of the provisions in this part

will be verified. Unless otherwise specified, in the rest of the paper, we use the term

contract to mean the enforceable part of the contract.

12



2.3 Adaptation Module

The adaptation module is responsible for adaptation of fault-tolerance components.

As noted earlier, we can have multiple fault-tolerance components that may be used

to provide fault-tolerance. Moreover, the performance of a fault-tolerance component

may vary depending on the environment conditions. Hence, for a given environment,

we may have one fault-tolerance component that performs better than the others. The

adaptation module is responsible for selecting an appropriate fault-tolerance compo-

nent from the component library. Towards this end, the adaptation module needs

to know the adaptation strategy that is specified by the user. In the current imple-

mentation, we do not provide adaptation strategies. Instead, the adaptation module

provides a user interface through which the user can choose the fault-tolerance com-

ponent to be added or removed. Further, for simplicity, in our current implementation

we allow the adaptation module at one proceSs to initiate the component change. It

is possible to extend our framework so that any process can initiate the component

change based on the approach presented in Chapter 6.

In future, we plan to provide a teaming module alongside the adaptation mod-

ule. This learning module will learn about the new components that are added to

the library and will identify the adaptation strategy based on some information pro-

vided by the components in the library. It will also monitor environment changes to

determine situations under which a component addition/removal will be done.

2.4 Reset Module

The reset module deals with the case where a fault-tolerance component being added

or removed is distributed across the processes of a distributed application. It ensures

that the addition and removal of this fault-tolerance component is atomic, continuous

13



and synchronized. In this context, a reset operation is an operation in which an

application process removes an old component and starts using a new component.

The reset is initiated when the component manager has verified the contract of the

new fault-tolerance component that the adaptation module has chosen. The reset

module communicates with the component manager to get information, such as name

of the new component and its location. The three main functions of the reset module

are: (1) when the reset is in progress, the processes involved in the reset communicate

only if they are using the fractions of same component; (2) upon successful completion

of the reset, all processes involved use the new component, and (3) upon unsuccessful

completion, all processes involved use the old component. The reset module uses the

distributed reset protocol [3,4] to perform the above functions. We discuss this module

and how it achieves the addition/removal of distributed components in Chapter 3.

2.5 Component Library

The component library acts as a repository of reusable detectors and correctors.

The framework, when necessary, can select one or more of these components for

static/dynamic addition. Components can be dynamically added to the library. The

library also provides a default component. When no component is added, this default

component is used. When the component manager traps an exposed method, if

the default component is used, it simply calls that method back. By providing this

component, we can treat addition/removal of a fault-tolerance component as a special

case of component replacement.

14



CHAPTER 3

Reset-based Composition of Distributed Components

As mentioned earlier, a fault-tolerance component in a distributed application may

itself be distributed. This introduces new challenges in the integration of these fault-

tolerance components with a fault-intolerant application. While the fault-tolerance

components are added or removed across processes of a distributed application, we

need to ensure that the application continues to provide its functionality. We first

discuss the three important challenges, namely, atomicity, minimal blocking and syn-

chronization that arise during dynamic addition of distributed components. These

challenges also apply during removal and replacement of distributed components.

Atomicity. When a distributed fault-tolerance component is added to an intol-

erant application, we need to ensure atomicity of such integration, i.e., all fractions

of the distributed component should be installed across the processes of an intoler-

ant application involved in providing fault-tolerance. In other words, if an initiating

process adds its component fraction, then all other processes involved in providing

fault-tolerance should add their component fraction as well. Only when all the pro-

cesses have added their component fractions, can we ensure that the added component

will provide the required fault-tolerance. In some cases, fault-tolerance could be pro-

vided even if some processes (including the component fraction at these processes)

fail. However, in such cases, it is typically necessary to add the component fraction

for each non-failed process. Hence during this discussion, we ignore this special case

and assume that the component fraction must be added to each process involved in

providing fault-tolerance.



Minimal Blocking. Another challenge is that during the addition of a distributed

component, the application should not be blocked. While it is desirable that the

addition of a distributed component be entirely non-blocking, it is not always possible

to do so due to dependency among component fractions. We, therefore, require that

the blocking introduced during the addition be minimal.

Synchronization. All processes involved in addition of fault-tolerance components

may not add the component fraction at the same time. Hence, we will have a situation

where some processes have added their component fractions, while some others have

yet to add their fractions. If a process that has added a component fraction interacts

with another that has not, then the results can be unpredictable. Therefore, the

framework must ensure that interactions do not cross a composition-boundary, i.e., a

process that has added a component fraction does not interact with another process

that has not added the corresponding component fraction.

Our component framework uses the distributed reset protocol [3,4] to deal‘with

atomicity, minimal blocking and synchronization. In Section 3.1, we discuss the

features of the reset protocol that are applicable in this context. In Section 3.2, we

discuss the challenges imposed by distributed components and provide solutions to

deal with these challenges. Then, in Section 3.3, we describe, how our framework uses

the reset protocol. In Section 3.3, we also explain how we modified the reset protocol.

In Section 3.4, we discuss how to deal with faults that occur during component

additions, removal or replacement.

3.1 Distributed Reset Protocol

The reset-subsystem in [3,4] can be embedded in an arbitrary distributed system in

order to allow the processes to reset the system to a given global state. In the model
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in [3, 4], each process consists of an application module and a reset module. The

application module at any process may begin the reset operation to reset the system

to a given global state. The function of a reset module is to (1) reset the state of the

application to a state that is reachable from a given global state, and (2) inform the

application module when the reset operation is complete.

The reset solutions in [3,4] deal with atomicity, minimal blocking and synchroniza-

tion. Regarding completion, each reset-operation satisfies the following two proper-

ties. ( 1) Every reset operation is non-premature, i.e., if the reset operation completes,

then all processes have been reset and the program state is reachable from the given

global state. (2) Every reset operation eventually completes, i.e., if an application

module at a process initiates a reset operation, eventually the reset module at that

process informs the application module that the reset operation is complete. Re-

garding continuous operation, the reset protocol enables the distributed application

to continue functioning while the processes are individually reset. More specifically,

these solutions allow the program computation to proceed concurrently with the reset,

to any extent that does not interfere with the correctness of the reset. Finally, regard-

ing synchronization, the solutions in [3,4] identify a reset boundary, which determines

the application modules that can interact safely among themselves.

To simplify the reset operation, the reset module maintains a rooted spanning

tree [5,6] of all non-failed processes. It uses this spanning tree to perform a diffusing

computation [7] in which each process resets its state. The diffusing computation

begins at the root of the spanning tree. The root of the tree resets the state of its

local application module and initiates a reset wave that propagates along the tree

towards the leaves; whenever the reset wave reaches a process, the process resets the

state of its local application module and propagates the reset wave to its children.

17



After the reset wave reaches a leaf, it is reflected as a completion wave towards the

root. A process completes the reset after all of its children have completed. The reset

is complete when the root receives the completion wave from all its children.

3.2 Dealing With Dependency Among Component Fractions

We use the distributed reset protocol to add, remove, or replace a fault-tolerance

component across a distributed application. As discussed earlier, a fault-tolerance

component consists of multiple fractions that are distributed across an application.

These component fractions may exhibit some kind of dependency that restricts us

from adding or removing them arbitrarily. In this section, we describe how the de-

pendency relation among fault-tolerance component fractions affects their addition

and removal. Then, in the next section, we explain how we use the distributed re-

set protocol in adding or removing a fault-tolerance component across a distributed

application.

Safe states of a component. A component fraction of a distributed component

cannot be removed arbitrarily as other component fractions or the local application

process may depend on it. For example, if component fraction :1: requires a response

from y to continue then removal of y can lead to incorrect functioning, e.g., deadlock,

of 2:. Likewise, the application process where a: is installed may be dependent on :c.

To deal with these problems, we introduce the notion of a safe state. The safe state of

a component fraction is further classified as a global safe state and a local safe state. A

component fraction is in a global safe state if (1) no other component fraction depends

on it, and (2) the application process where that component fraction is installed does

not depend on it. Thus, if a component fraction is in a global safe state, then it

is safe to remove it, as its removal will not affect any other component fractions or
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the application. A component fraction is in a local safe state, if the application can

be blocked safely at the process where the component fraction is installed. When a

component fraction is in a local safe state, other component fractions may depend on

it. However, in a local safe state, the application process at the component fraction

does not depend upon the current state of the component fraction. Hence, the appli-

cation process can be blocked (from communicating with other processes) until the

new component fraction is added at that process. We assume that periodically the

component fraction at each process will be in a local safe state.

To identify local safe states and global safe states, each component fraction pro-

vides a function, checkState, whose return value is safetoremove (global safe state),

safetoblock (local safe state) or unsafetoremove. The return value of the checkState

function at the component fraction j is determined based on the current state of j and

on the state information of the other component fractions received by j in the past.

When a component fraction is in local safe state or global safe state, the information

is propagated to other component fractions. This information can, in turn, allow

those component fractions to enter local/global safe states. We explain, in Section

3.3, how the reset module uses the checkState function during reset.

Dependency relation for a component. Now, we discuss different types of

dependency relations that exist for a distributed component and how we deal with

those dependency relations. For this discussion, we say that component fraction 2:

depends on component fraction y if there exists a state where removal of y causes

incorrect functioning of at.

1. No dependency. This is the simplest case. In this case, there exists no de-

pendency among component fractions and they can be removed independently.
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Hence, all the component fractions will (eventually) return safetoremove when

checkS'tate is invoked.

. Acyclic dependency for removal. As the name suggests, this case deals

with the situation where the dependency relation among component fractions

is acyclic. It follows that there is at least one component fraction such that no

other component fraction depends on it. This fraction can now be removed as

checkState for this fraction will return safetoremove. The removal of this com-

ponent fraction will, in turn, enable the removal of other component fractions,

and so on.

. Acyclic dependency with blocking. Consider a case where we have two

component fractions 2: and y that are mutually dependent. In other words, :5

(respectively, y) cannot be removed while y (respectively, :13) is still running.

Further, assume that the application at x can be blocked and the knowledge

that the application at :r is blocked enables the removal of y. Now, we could

remove the fractions as and y as follows: block application at 1;, remove y and

remove as. In this case, initially, when checkState is invoked at a: (respectively,

y), it will return safetoblock (respectively, unsafetoremove). Later, at some point

after a: is blocked, checkState at y will return safetoremove and subsequently,

checkState will return safetoremove at :c. More generally, after introducing

the notion of blocking, if the dependency relation among component fractions

becomes acyclic, then the corresponding component fractions can be removed

as in case 2.

. Cyclic dependency. Here the component fractions exhibit mutual depen-

dency even after introducing blocking. Hence, they cannot be removed using
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any of the three cases discussed above. Possible ways to deal with such depen-

dency are as follows:

- It is likely that the mutual dependency among component fractions does

not exist during all the time while the application is running. There may be

instances during run-time, when the component fractions do not depend

on each other. Hence, we can add/remove component fractions during

those instances.

- Another approach could be to ignore the dependency relation. Although,

this approach may fail in general, if the new component is stabilizing fault-

tolerant [8] then it will eventually reach a state from where it will work

correctly. This approach is presented in [9].

3.3 Using Distributed Reset For Dynamic Composition

As discussed in Chapter 2, each process of an intolerant distributed application is

instantiated with a framework node that includes a reset module. In this section, we

describe how the reset module helps in dynamic addition/removal of a fault-tolerance

component. We discuss replacement of a fault-tolerance component; addition and

removal being special cases of replacement. For this discussion, assume that the

adaptation module at a process, say X, has decided to change the fault-tolerance

component. We call X the initiator.

The adaptation module at X informs the component manager at X about the

required change. The component manager at X generates the magic number for

the instance of a new component. The magic number is generated by using the

initiator ID, the current time at the initiator, and it is used to uniquely identify

the instance of the fault-tolerance component. The component manager appends this
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magic number in the message header while communicating with component managers

at other processes of the application. The component manager at X, now, uses the

reset module for changing the fault-tolerance component.

The reset consists of two waves: a reset-initialization wave, and a replacement

wave. The replacement wave consists of two sub-waves, namely, a reset-transition

wave and a reset-completion wave. We first present the outline describing the reset

process and then explain in detail each of the reset waves. The reset module at X

initiates the reset by sending the reset-initialization wave. In the reset-initialization

wave, all processes change to the transit state and initialize the component fraction of

the new distributed fault-tolerance component. Thus, in the transit state, a process

has initialized the new component fraction, although it is still using the old com-

ponent fraction. After all processes have set themselves into the transit state, the

reset-initialization wave completes successfully. In case any process [does not set it-

self into transit state during the reset-initialization wave, the reset-initialization wave

completes unsuccessfully. The option of unsuccessful completion is provided to deal

with the case where the processes need to obtain their component fraction remotely

and they fail to do so. If the reset-initialization wave completes unsuccessfully, com-

ponent replacement is abandoned.

Upon successful completion of the reset-initialization wave, the reset module at

the initiator starts the replacement wave. The replacement wave begins with the

reset-transition wave from the initiator (root) towards leaves. Each process receiving

the reset-transition wave invokes the checkState function of the component fraction to

determine the state of the component fraction. During the reset-transition wave, the

processes remove the old component fraction and add the new component fraction

depending on the state information returned by the function. After a leaf process has

22



completed the replacement of its component fraction, it sends the reset-completion

wave to its parent. Further, if a non-leaf process has completed the replacement of

its component fraction and it has received the reset-completion wave from all of its

children, it propagates the reset-completion wave to its parent. The reset-completion

wave eventually reaches the initiator X. We allow another reset to start only if the

first reset is completed (successfully or unsuccessfully). For simplicity, we assume

that only one process can initiate the component change. This assumption can be

weakened by allowing any process to change the component by using the approach

in [3] where other processes communicate their decision to the initiator. We now

explain the reset waves in detail.

Reset-initialization wave. The reset module at X initializes the reset by sending

the reset-initialization wave to all its neighbors. The reset module uses the component

manager protocol to communicate with other reset modules. The component manager

protocol communicates information such as the name of the component, the magic

number of the component, the location of the server where components are available,

etc. Each process that receives the reset-initialization wave performs the following

tasks:

1. It sets its parent to the first process from which it received the reset-initialization

wave.

2. It propagates the reset-initialization wave to all its neighbors except its parent.

3. If a process receives the reset-initialization wave again it informs the sender of

the identity of its parent. This information is used to form a tree.

4. If the process that receives the reset-initialization wave is a leaf (i.e., no neighbor

process has set its parent to this process), it initializes the new component
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and sets itself into the transit state, where it is still using the old component

while waiting to use the new component. If the process fails to initialize the

new component (e.g. if it lacks the required resources), it sets itself into the

error state. The process that has set itself into the transit state or error state

communicates its state to its parent.

5. When a process has received the transit state message from all its children, it

sets itself into transit state by initializing the new component. If it receives the

error state information from any of its children or if it fails to initialize the new

component fraction, it sends the error state message to its parent. Eventually,

the root process receives the transit state or the error state information from

its children. If it receives the error state information from any of its children,

it can restart the reset-initialization wave or abandon component replacement

based on the threshold value set for the number of reset-initialization waves

that can be initiated. In case component change is abandoned, other processes

would be informed about this so that they can return to normal state. If the

root process receives transit state information from all its children, it initializes

the new component and sets itself into the transit state.

Reset-transition wave. When all processes are in the transit state, i.e., at the

successful completion of the reset-initialization wave, the initiator X starts the reset-

transition wave. This reset wave uses the function checkState that each component

fraction provides. When a process receives the reset-transition wave, it performs

following task:

1. It propagates this wave to all its children.
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2. It invokes the checkState function, which returns one of the three values: safe-

toremove, safetoblock or unsafetoremove.

(a) If the function returns safetoremove, the process removes the old com-

ponent and starts using the new component. It then sets itself into the

normal state. Further, it adds the magic number for the new component

instance in the message header of all the messages that it sends. All the

other processes that participated in the reset are now either in the transit

state or the normal state (if a process has already changed its fraction).

The processes in the transit state continuously check the magic number of

the messages received. If the process has not started using the new com-

ponent, it buffers all the messages that contain the new magic number.

Note that, once an old component is discarded, the component manager

does not need to buffer messages and it can forward all messages to the

new component.

If the function returns safetoblock, the component manager blocks the ap-

plication process at that component fraction. After a component fraction

receives information about other component fractions being removed or

other application processes being blocked, eventually, the function check-

State at the blocking process will return safetoremove. When that occurs,

we follow case 2a.

If the function returns unsafetoremoue, it is periodically invoked till it

returns safetoblock or safetoremove, in which case we follow the case 2b

or 2a respectively. For efficiency, we call checkState when the intolerant

application and the fault-tolerance component synchronize.
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Reset-completion wave. The transition wave is reflected towards the initia-

tor (root) as the reset-completion wave. The leaf process sends the reset-completion

wave to its parent after it removes the old component fraction and starts using the

new component fraction. Any non-leaf process, which completes the component frac-

tion replacement and receives the reset-completion wave from all its children, sends

the reset-completion wave to its parent. When the initiator performs the compo-

nent replacement and receives the reset-completion wave from all of its children, the

component replacement is complete.

Claim. The atomicity, minimal blocking and synchronization properties are satisfied

during component replacement if the component does not exhibit cyclic dependency.

Proof sketch. The component replacement starts with an initialization wave. If

the initialization wave completes unsuccessfully, then none of the component fractions

is replaced. After successful completion of the initialization wave, the reset module

starts a transition wave. The component fractions are replaced during the transition

wave. A completion wave is propagated towards the initiator when the replacement of

the component fraction is complete. In our approach, the completion wave is deferred

to handle the dependency relations that exist during the component replacement.

As long as the dependency is not cyclic dependency, both the transition wave and

the completion wave eventually complete ensuring that all processes replace their

component fractions. Thus, component replacement is atomic.

The component replacement blocks the application only when the component frac-

tion is being replaced. Once it is safe to remove a component fraction, it is replaced

and the application is unblocked. Thus, the component replacement introduces block-

ing only if it is required to safely replace the component fractions. It follows that

component replacement is minimally blocking.
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During component replacement, old component fractions do not communicate

with new component fractions; such communication would violate the dependency

relation. For example, if the old component fraction at process j communicates with

the new component fraction at process It, it would mean that the old component

fraction at k was removed while the old component fraction at j was still depending

on it. Further, if the new component fraction installed at k communicates with j

that is using the old component fraction, the component manager at j buffers these

messages. When the new component fraction is added at 3', the buffered messages

are delivered to the new component fraction. Thus, component fractions of different

components do not communicate with each other. Therefore, component replacement

is synchronized. [:1

Addition and removal of distributed component. In the above discussion, we

considered the replacement of a distributed component. The addition and removalare

special cases of replacement. During instantiation of our framework with the applica-

tion, our framework traps the functions exposed by the developer of the application

and transfers the control to the default component that simply calls back the trapped

function. Now, for addition of a distributed component, we remove the default com-

ponent and replace it with the new component. In one conservative approach, the

checkState function can be implemented as follows: Initially, all component fractions

of the default component return safetoblock. When all the neighbors are blocked, the

checkState function returns safetoremove. For applications where there is two—way

communication between neighbors, this implementation of checkState ensures mini-

mal blocking. For applications where there is one-way communication between some
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neighbors, minimal blocking can be ensured if checkState at a process returns safe-

toremove without waiting for the status of processes that do not communicate with

it.

Remark. In the distributed reset protocol described in [3,4], a tree module main-

tains a spanning tree of non-failed processes and a diffusing computation is used to

propagate the reset wave across all the processes. In our modified reset protocol, we

generate the spanning tree on the fly during reset-initialization wave. We can also

have another module that generates and maintains the spanning tree. The initiator

becomes the root of the spanning tree. In this case, reset-initialization would not

need to do the additional work of creating a spanning tree. All the reset waves would

use the spanning tree created by the tree module.

3.4 Dealing with Faults during Component Replacement

In this section, we discuss the extension of the approach in Section 3.3 to deal with

faults that occur during addition, removal or replacement. The algorithm discussed in

Section 3.3 is a variation of the intolerant version of the programs in [3,4]. By treating

the algorithm in Section 3.3 as an intolerant application and using the fault-tolerance

components from [3,4], we can (statically) add fault-tolerance to that program.

If we were to add the fault-tolerance component from [3], the resulting algo-

rithm will ensure that stabilizing fault-tolerance [8] is provided to faults including

process/channel failures/repairs and transients. Thus, even if these faults occur,

eventually the application will recover to a state from where subsequent component

replacements will be correct, i.e., atomic, minimally blocking and synchronized. If we

were to add the fault-tolerance component from [4], in addition to the stabilizing fault-

tolerance to these faults, the resulting algorithm will provide masking fault-tolerance

28



to process/channel failures/repairs. Thus, if only process/channel failures/repairs oc-

cur then the component replacement will be always correct. Moreover, if more general

faults such as transients occur then the algorithm will recover to a state from where

subsequent component replacements will be correct. Since the algorithm in Section

3.3 can be used as an input to the framework, it follows that any fault-tolerance

property that can be added to the reset program can be added to our framework.
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CHAPTER 4

Application of the Framework for Message Communication

In this chapter, we illustrate how we use our framework, from Chapter 2, in the con-

text of a message communication application. We have chosen this simple application

because it allows us to demonstrate most of the features of our framework including

the availability of multiple distributed fault-tolerance components, the need for dy-

namic composition, and dependency among component fractions. We first explain the

abstract version of the intolerant application and the correctors used to provide fault-

tolerance in this application. Then, we explain how the application is implemented

in Java.

4.1 Abstract Version of Message Communication

We will first discuss an abstract version of the intolerant message communication

application, the faults and the corrector in terms of guarded commands. Each action

is represented in the following form:

(name) :: (guard) ——+ (statement)

The guard of an action is a boolean expression over the program variables. The

statement of an action updates zero or more program variables. An action can be

executed only if its guard evaluates to true. To execute an action, the statement of

that action is executed atomically.

Variables. For simplicity, in this section, we assume that there is only one sender and

one receiver. (Our Java implementation, discussed in Section 4.2, deals with multiple

receivers.) The sender process generates a message m and sends that message to the
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receiver process. The application maintains the following variables for each message

m:

o sendinfuture (m): the sender will send message m in future.

0 intransit (m): the message m is in transit from the sender to the receiver.

0 received (m): the receiver has received message m.

Actions. The actions of an intolerant message communication application are as

follows:

sender; send_in-future(m) ——> send_in_future(m) :2 false;

intransit(m) :2 true;

receiver; intransit(m) ——> intransit(m) := false;

received(m) :2 true;

Invariant. The invariant characterizes the set of all states from where the intoler-

ant application satisfies its specification. Initially, Vm :: send-in_future(m) is true.

Subsequently, if send_in-future(m) becomes false, then intransit(m) becomes true.

If intransit(m) becomes false, then received(m) becomes true. Thus, the invariant

of the intolerant application is as follows (Note that this invariant is not unique;

a stronger invariant that requires exactly one of these predicates to be true is also

acceptable):

invariant: Vm:: send_in_future(m) V intransit(m) V received(m);

Fault. The invariant of this application is violated if messages are lost. The fault

action is represented as follows:

faultzz intransit(m) ——> intransit(m) :2 false;
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Correctors. Several correctors are available to provide fault-tolerance to message

loss. The correction predicate, the predicate to which the intolerant application

should be restored after the occurrence of faults, of a corrector that provides required

fault-tolerance is:

‘v’m :: invariant(m)

We consider two fault-tolerance components, a proactive component and a reac-

tive component, in this example. The former is based on the idea of forward error

correction (FEC) whereas the latter is based on the idea of retransmission. Each of

these fault-tolerance components consists of component fractions that are installed

at the sender and the receiver processes of the intolerant application.

The proactive component sends extra (n—k) parity packets for each group of is data

packets. If any data packet gets lost during transmission, the receiver can generate

the lost data packet if it receives at least k packets from a group that contained the

lost data packet. Thus, the actions of the proactive component are as follows (Note

that this corrector is designed for the fault where no more than (n — k) packets are

lost from each group):

senders Vn, k : n, k > 0,n > k : for each group of k data packets

send k data packets and (n — k) parity packets;

receiver; flinvariant(m) /\ at least k packets are received from

group containing n packets ——> received(m) = true;

The reactive component detects if invariant(m) is false. Subsequently, it satisfies

invariant(m) by setting send_in_future(m) to true. Thus, the action of the reactive

component is as follows:

sender; pinvariant(m) ——> send_in_future(m) 2: true;
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4.2 Java Version of Message Communication

In this section, we discuss how the message communication application and the two

components are implemented in Java. The sender process has a function called send

and the receiver process has a function called receive. These functions are exposed by

the intolerant program, i.e., the fault-tolerance component can trap these functions to

provide the required fault-tolerance. The component manager at the sender process,

which intercepted the send function of the intolerant application, invokes the appro-

priate function of the fault-tolerance component that is specified by the adaptation

module.

Contracts. Now, we discuss the contracts that we have defined for this application.

We classify contracts into two types: one that can be verified formally, and another

that cannot be verified formally. The contract that cannot be verified formally is

represented as a document. One such contract states that for every call to a send

function made by a sender there should be corresponding receive call made by a

receiver. The contracts that can be verified formally are represented in a meta-

application file and a meta-component file. The meta-application file contains the

contract between our framework and the intolerant application whereas the meta-

component file contains the contract between our framework and the fault-tolerance

component. There is one meta-application file for each application process and one

meta—component file for each component fraction.

A meta-application file is either supplied by the developer of the intolerant ap-

plication or it can be generated automatically from the intolerant application. We

are currently exploring efficient ways of generating this file. The entries in the meta-

application file for the intolerant application process (sender) are as follows (The

entries for the receiver process are similar):
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sendClass:java. netDatagramS'ocket

sendI-‘unctionzsend

sendNumOfArguments:1

sendArguments:java. net.DatagramPacket

sendPacketArgumentNumber:O

This file specifies the name of the methods that are exposed by the sender process

and other information related to these methods. In this case, the method exposed by

the sender process is send. The details about this method such as its class, number

of arguments, etc. are stored in the meta-application file.

A meta-component file is associated with each fault-tolerance component fraction.

This file contains entries similar to a meta-application file. It has some parameters

that are to‘be instantiated with appropriate parameters from the meta-application

file before installing this component and some parameters that are supplied by the

component developer. The entries in the meta-component file for the fraction of the

proactive component at the sender process are as follows (The entries for the fraction

at the receiver process and for the reactive component are similar):

functionNamezsend

functionClasszjava.net.DatagramSocket

functionArguments:java.net.DatagramPacket

componentFunction: fee-send

In this particular example, during composition the functionName is instantiated

with send from the meta-application file. Similar instantiations are also performed
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for other entries. The component uses this file to obtain information about the func-

tions of the intolerant application. This information is provided through appropriate

instantiation of the parameters of the meta-component file from the meta-application

file. This file also has information about the component that is used by the framework.

The component manager at the sender process traps the send function of the

sender process and transfers the control to the fee-send function of the fault-tolerance

component. Similarly, at the receiver process, the component manager traps the

receive function of the receiver process and transfers the control to the fee-receive

function of the fault-tolerance component. When the control is transferred from the

intolerant application to the component, the component performs the tasks required

by FEC and, if necessary, calls the trapped function of the intolerant application to

perform the actual send/receive.

The instantiation of parameters of the meta-component file is done by manual

matching of the meta-application file and the meta-component file. We save the meta-

component file after it has been instantiated with the application related parameters

from the meta-application file. Hence, the future use of the meta—component file dur-

ing the new instantiation of the component would not require any human intervention.

We are exploring heuristics that will allow us to do this matching automatically with

minimal human intervention.

Dependency relations. Now, we consider the dependency relation among the

component fractions of the proactive component. The component fraction at the

sender process encodes the data packets, generating (n — k) parity packets for each k

data packets. The component fraction at the receiver gets k data packets by decoding

the group of n packets. We notice from the functions of the component fractions

that there exists acyclic dependency for removal among these component fractions.
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More specifically, the component fraction at the receiver process is dependent on the

component fraction at the sender process. In other words, if the component fraction

at the receiver process is removed before the component fraction at the sender process,

then the receiver may not be able to decode the encoded packets that it might still

receive from the sender process. Also, the component fraction at the sender process

cannot be removed while it has processed a partial group of packets.

Now, we discuss the tasks involved in removing the proactive component (say,

to add the reactive component). As discussed in previous paragraph, dependency

relation in the component fractions fall in the category acyclic dependency for re-

moval. Hence, we remove the component fraction at the sender before removing the

component fraction at the receiver. Moreover, at the sender, checkState returns un-

safetoremove when a partial group of packets is sent. When the component fraction

at the sender has sent a complete group and has not started encoding another group,

the checkState at the sender returns safetoremove. Finally, the knowledge about the

removal of the component fraction at the sender enables the removal of the component

fraction at the receiver.

Now, let us consider the dependency relation among the component fractions of

the reactive component. The component fraction at receiver sends a negative ac-

knowledgement for a lost packet. The component fraction at the sender retransmits

the packet for which it receives a negative acknowledgement. Clearly, these com-

ponent fractions are mutually dependent. The component fraction at the receiver

process cannot be removed before the component fraction at the sender process is

removed. Also, the component fraction at the sender process cannot be removed

before the component fraction at the receiver process, since the receiver may have

already sent a negative acknowledgement before knowing about the removal of the
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component fraction at the sender. However, in this case the checkState at the sender

returns safetoblock, as the sender process can be blocked from sending messages. The

knowledge about the blocking of the component fraction at the sender enables the

removal of the component fraction at the receiver. Thus, the dependency relation of

the reactive component falls in the category acyclic dependency with blocking.

Now, we discuss the tasks involved in removing the reactive component. Based on

the dependency relation, we first block the application process at the sender. While

the application process at the sender is blocked, the component fraction at the sender

can still handle the negative acknowledgement from the receiver and can retransmit

any lost packets. Eventually, the receiver will reach a state where it has recovered all

the lost packets. At this point, the component fraction at the receiver can be safely

removed. Subsequently, the removal of the component fraction at the receiver will

. allow the safe removal of the component fraction at the sender.

4.2.1 Implementation Results

In our current implementation, we have one sender and one receiver. There are

three components that we have used: default component, proactive (FEC) component

and reactive (ACK-NACK) component. The component manager of our framework

traps the send function of the sender process and passes the control to the default

component fraction installed at the sender process. The default component fraction

at the sender process calls back the send function of the sender process. Similarly,

the component manager traps the receive function of the receiver process and passes

control to the default component fraction installed at the receiver process, which calls

back the receive function of the receiver process. We replace the default component
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with the proactive component and vice-versa. Further, as discussed earlier, we also

replace the proactive component with reactive component and vice-versa.

The sender and receiver process runs on two different machines. The machines are

Intel Pentium IV with windows 2000 operating system and are connected on a LAN.

We have also implemented FEC without using our framework. The FEC parameters

are (20,16) and losses are emulated by dropping packets randomly. We obtain the

receiver throughputs for two cases: FEC without our framework and FEC with our

framework. We note from Figure 4.1 that the throughput is not affected while using

our framework.
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We obtain similar results for the reactive component (cf. Figure 4.2). Also, the

delay remains unchanged while using our framework.

38



CHAPTER 5

Extension of the Framework for Preserving State

In Chapter 4, we described the use of our framework in the context of a message-

communication application. We explained the replacement of a proactive component

(fee-based component) with a reactive component (acknowledgement-based compo-

nent) and vice-versa. This replacement did not require the transfer of state infor-

mation from one component to another. However, in some applications we need

to preserve state information of a component before replacing it with another. In

this chapter, we explain how we can preserve state information during component

replacement. We explain this in the context of a tree correction component.

Problems such as leader election [2], mutual exclusion [2,10] and termination de-

tection [2,7] often organize processes in a tree. The application dealing with such

problems has a tree component that manages this tree. There are many tree compo-

nents available [11—13]. Although each of them deals with correcting a tree whenever

a process fails they have some advantages and limitations over others. These tree

components can be classified based on the number and types of faults they can tol-

erate, the time they need for recovery, and the resources they utilize. Thus, it is

often beneficial to change a tree component based on the environmental conditions

and application requirements.

Now, we discuss the need for preserving state while changing the tree component.

If no state of the old tree component is preserved when we remove it, then information

about the existing tree is lost. Therefore, after a component change, the new tree

component will have to form a tree again. Until the new tree is constructed, the
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application may conclude that the underlying tree is broken even though no faults

have-occurred. This incorrect conclusion can be prevented if we extract the existing

tree information from the current component and provide this information to the new

component.

5.1 Issues in Preserving State During Component Change

To transfer state information from one arbitrary component to another arbitrary com-

ponent is complicated, because while developing one component, one does not know

about all the existing components and one cannot anticipate the new components

that can be developed later. Thus, if a new component is developed then we need

to perform 2N new transformations where N is the number of existing components.

This is highly undesirable because of large number of such transformations as well

as the fact that we may not have access to the details of all existing components in

order to perform such transformations. To limit the situations under which the state

information can be preserved, we focus on the notion of component hierarchy.

For simplicity we consider a component hierarchy of height two. At the bottom we

have a primitive component. At the top we have multiple enhanced components that

are derived from the primitive component. We need to perform two new transforma-

tions for each new component: conversion of a primitive component to an enhanced

component and vice-versa. We impose a few restrictions on the development of com-

ponents in this hierarchy. First, the primitive component has to be available during

the development of the new component and its methods have to be exposed, since

the new component (enhanced component) is to be derived from the primitive com-

ponent. Another restriction that we impose is that the enhanced component should
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be able to understand the communication from the primitive component, i.e., under-

stand messages sent by the primitive component. This is a reasonable requirement,

since the enhanced component is derived from the primitive component.

We call the transformation from primitive component to enhanced component as

a scale-up operation and the vice-versa as the scale-down operation. The state in-

formation of the primitive component can be easily preserved during transformation

from the primitive component to the enhanced component, because of this hierar-

chical component development. Also, during the scale-down operation the enhanced

component is able to transfer state information that can be stored by the primitive

component. Intuitively, during the scale-down operation some of the properties of

the enhanced component are lost.

Any tree component performs two main functions: ( 1) maintains parent-child re-

lationship among processes, and (2) reconstructs the tree when any process fails (this

will modify the parent-child relationship among processes). The primitive tree com-

ponent in this example of tree correction stores the information about the tree. It does

not do tree reformation. The enhanced tree component in addition to maintaining

parent-child relationship also reconstructs a tree whenever any process fails. More-

over, a component fraction of the enhanced component can understand the commu-

nications from a component fraction of the primitive component, since the enhanced

component is derived from the primitive component. However, the reverse is true

only if the enhanced component communicates with the primitive component using

a protocol that the primitive component can understand. In the next section, we

explain how we use the notion of component hierarchy explained in this section to

replace a tree component while preserving state information.
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5.2 Replacing a Tree Component

We use the notion of component hierarchy discussed in Section 5.1 to replace one

enhanced tree component with another enhanced tree component. We perform the

following steps to replace a tree component:

1. Change the current enhanced tree component to the primitive tree component.

- This is a scale-down operation as the current enhanced tree component is

derived from the primitive tree component. At the end of this step, the

primitive tree component will represent the same tree as the current tree

component.

2. Change the primitive tree component to the new enhanced tree component.

- This is a scale-up operation as the new enhanced tree component is derived

from the primitive tree component. At the end of this step, the new

enhanced tree component will represent the same tree as the primitive

tree component.

We use the distributed reset protocol, discussed in Chapter 3, to replace the old

enhanced tree component with the primitive tree component and then to replace the

primitive tree component with the new enhanced tree component.

We replace a component fraction of the old enhanced tree component with a

component fraction of the primitive tree component only when all of its neighbors are

either blocked or are using the component fractions of the primitive tree component.

We note that the dependency relation during the replacement of the old enhanced

tree component with the primitive tree component can be relaxed (i.e., dependency

among component fractions can be reduced), since the enhanced tree component is
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derived from the primitive tree component. To relax the dependency relation during

replacement, the old enhanced tree component will need to communicate with the

primitive tree component using the protocol that the primitive tree component can

understand. In this case, we can arbitrarily remove the component fractions of the

old enhanced tree component and add the primitive tree component fractions.

During the change from the primitive tree component to the new enhanced tree

component, we can replace the component fractions arbitrarily because we know that

the component fraction of the new enhanced tree component can interact with the

component fraction of the primitive tree component. We note that, the new enhanced

tree component will continue to communicate with its neighbors using the protocol

that the primitive tree component can understand until it finds that all of its neighbors

also use the new enhanced tree component.

5.2.1 Tree Components

In this subsection, we consider the two enhanced tree components (one is stabilizing

and other is nonmasking) and develop a primitive tree component that will help us

demonstrate how the notion of component hierarchy is used to preserve state infor-

mation while changing from one enhanced tree component to another enhanced tree

component. We first explain each of the tree components and define their invariants

and fault-span, and then we describe how we change from the nonmasking to the

stabilizing component and vice-versa. An invariant of a program p is a state pred-

icate S such that S 75 false, S is closed in p, and every computation of p starting

from a state in S satisfies the problem specification of p. Informally, an invariant of

p includes the states reached in fault-free executions of p. A fault-span of program

p for a fault-class F is a predicate T such that T is closed in p and F. Informally,
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the fault-span includes the set of states that p reaches when executed in the presence

of actions in F. We consider fault actions that fail-stop and/or repair nodes, thus,

change the set of up nodes:

Fail-stop :: up ——> up := false;

Repair :: pup —> up 2: true;

{initialize the state of the process}

For sake of simplicity, we assume that fault actions do not disconnect the set

of up nodes; else, if the set is disconnected, the up nodes in each partition will

reconfigure themselves into a separate rooted tree. We also assume that repair actions

can reinitialize the state of the corresponding nodes.

Stabilizing tree component from [3]. In the tree correction algorithm from [3],

the rooted spanning tree is represented by a “father” relation between the processes.

Each tree.i module (fraction of the stabilizing component at the ith process) main-

tains a variable f.i whose value denotes the index of the current father of process i. It

also maintains a variable root.i that denotes the root of the tree it is in. The variable

d.i denotes length (number of hops) of the path from itself to the root. The module

also maintains a variable N.i that denotes the nodes that are adjacent to i. The

initial graph of the father relation may be arbitrary. It is shown in [3] that starting

at any state, the algorithm is guaranteed to eventually reach a state satisfying the

invariant SS, where

SS E (k = ma1:{i|i is up}) /\

(Vi : i is up:

(i =k=> (root.i=i/\f.i =i/\d.i=0)) A

(i¢k=>(root.izkA(3j:jEN.i:f.i=j /\ d.i=d.j+1))))
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At each state in SS, for each process 2', root.i equals the highest index among

all up processes, ft is such that some shortest path between process i and the root

process root.i passes through the father process f.i, and d.i equals the length of this

path. Therefore, a rooted spanning tree exists. Also, note that each state in SS is a

fixed-point; i.e., once the tree.i modules reach a state in SS, no action in any of the

tree.i modules is enabled. The fault-span of stabilizing tree component is defined as

true. The spanning tree algorithm from [3] is shown in the Figure 5.1.

 

module tree.i(i : 1..M)

var root.i,f.i : 1..M;

d.i : integer;

N.i : list;

parameter j : 1..M;

begin

(root.i < i) V

(f.i = i A (root.i aé i V d.i aé 0)) V

(f.i ¢ (N.i u {i}) v d.i 2 M) ———> root.i, f.i,d.i :2 2,2,0

f.i=jAjEN.iAd.i<MA

(root.i ¢ root.j V d.i 7:5 d.j + 1) ——) root.i, d.i := root.j, d.j + 1

(root.i < root.j Aj E N.i A d.j < M) —> root.i, f.i,d.i :2 root.j,j,d.j + 1

end

Figure 5.1: Stabilizing Tree Component [3].

 

Nonmasking tree component from [2]. The spanning tree algorithm from [2]

considers an undirected, connected graph that consists of M nodes named 1, ..., M.

At each instant, each node in the graph is either “up” or “down”. Two nodes in the

graph are “adjacent” ifl' they are both up and there is an edge between them. Each
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node j maintains a variable p.j whose value denotes the current parent of the process

j. The actions of j may involve communication only with nodes that are adjacent

to j. Each node maintains a variable Adj.j whose value denotes the set of nodes

adjacent to j. The graph of the p variables of the up nodes is a rooted tree that spans

all up nodes (and the root node of the tree is its own parent).

To handle trees that are not rooted, i.e., trees that have a node whose parent is

down, a variable col .j , for “color” of j is introduced. The value of col.j is maintained

by j to be green as long as all ancestors ofj are up; else, the value of col .j is maintained

by j to be red. In other words, j colors itself red iff its parent is down or is colored

red.

To handle multiple rooted trees, a variable root.j , for “root” of j is introduced to

merge trees. The value of root.j is maintained by j to be the index of the root node

of the tree that j is in. The spanning tree algorithm from [2] is shown in the Figure:

5.2.

The fault-span of the nonmasking tree component is:

TN 2 graph of the parent variables of up nodes is a forest

A (Vj :j is up : TN1.j ATN2.j ATN3.j ATN4.j), where

TNl-J’ =(co0-J—— red => (M if AdJ'J' U U} V col (19J)- r600)

TN2.j =(.pj= => root.j = j)

TN3.j =(pp.j 7t j => root.j > 3)

TN4.j = (p.j E Adj.j => (root.j _<_ root.(p.j) V col.(p.j) = red

The invariant of the nonmasking tree component is:

SN 2 TN A (Vj :: SN1.j A SN2.j A SN3.j), where

SN1.j = (col.j 2 red <= (p.j ¢ Adjj U {j} V col.(p.j) 2 red))

SN2.j = col.j 2 green
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node j(j:1..M)

var root.j,p.j:1..M;

col.j : {green, red};

Adj.j : list;

parameter k : 1..M;

begin

col.j = green A

(p.j ¢ Adj.j U {j} V col.(p.j) 2 red) —-) col.j := red

col.j = red A

(Vk : k ¢ Adj.j Vp.k 75 j) —> col.j,p.j, root.j :2 green,j,j

k E Adjj A root.j < root.k A

col.j = green A col.k 2 green —) p.j, root.j :2 k, root.k

end

Figure 5.2: Nonmasking Tree Component [2].

 

SN3.j = Vk : k E Adj.j => root.j = root.k)

Primitive tree component. The primitive tree component from which the two

enhanced tree components (stabilizing and nonmasking) are derived is shown in the

Figure 5.3.

The invariant SP of the primitive tree component is:

SP E graph of the parent variables of up nodes is a forest A

(k = ma:r{i|i is up}) A

(Vi : i is up:

(i = k :> (r.i = i Afather.i = i)) A

(i ¢ k :> (r.i = k A (Elj :j E adjacent.i :father.i = j)))
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module tree.j(j : 1..M)

var r.j,father.j : 1..M;

adjacenti : list;

parameter k : 1..M;

begin

N0Actions

end

Figure 5.3: Primitive Tree Component

 

The fault-span of the primitive tree component is defined as true. The primitive

component performs no action. It only maintains the parent-child relationship. Each

fraction of the primitive component also maintains a root value that denotes root of

the tree.

5.2.2 Changing from Nonmasking to Stabilizing Tree Component

In this subsection, we discuss how the nonmasking component is replaced by the

stabilizing component. In the first step we change the nonmasking tree component

to the primitive tree component and then in the second step we change the primitive

tree component to the stabilizing tree component.

Replacing nonmasking component by primitive component. In replacing

from the nonmasking component to the primitive component, we have to preserve the

tree maintained by the nonmasking component. In other words, the state of the tree

has to be transferred from the nonmasking component to the primitive component.

During reset-transition wave (cf. Section 3.3) the initialize routine (cf. Figure 5.4)

of the primitive component fraction is invoked. This routine copies the values of the
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variables (p.3', root.j , and Adj.j ) from the corresponding component fraction of the

nonmasking component. The reset module reads these variables from the nonmasking

component fraction and passes these values as arguments to the initialize routine

of the primitive component fraction.

When the initialize routine of the primitive component fraction at the leaf pro—

cess is complete, the leaf process sends the reset-completion wave to its parent. When

a process receives reset-completion wave from all its children, and the initialize

routine of the primitive component fraction at that process is complete, then that

process propagates the reset-completion wave to its parent. Eventually, the initiator

receives the reset-completion wave from all its children. When the initialize routine

of the primitive component fraction at the initiator is complete and it has received

reset-completion wave from all its children, the replacement from the nonmasking

component to the primitive component is complete. At this point, the initiator starts

the step 2 to replace the primitive component with the stabilizing component.

Claim 1. If the invariant of the nonmasking component is satisfied before the change

and no faults occur during change then the invariant of the primitive component is

satisfied after the change.

Proof. If the invariant of the nonmasking component is satisfied and no faults

occur during the change, then no actions of the nonmasking component are enabled

and the nonmasking component represents a rooted spanning tree. The execution of

the actions of the initialize routine of the primitive component fractions maps the

original tree represented by the nonmasking component to a tree represented by the

primitive component. If a node was a root in the nonmasking component, it stays as

a root in the primitive component. Also, the parent-child relationship among nodes
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remains the same. Thus, if we begin in a state where SN is satisfied and no faults

occur during the change, then SP will be satisfied after the change. Cl

Claim 2. If the invariant of the nonmasking component is not satisfied before

the change or faults occur during the change then the fault-span of the primitive

component is satisfied after the change.

Proof. Since the fault-span of the primitive component is defined as true, the

 

claim is trivial. Cl

module initialize.j (j : 1..M)

var r.j,father.j : 1..M;

adjacenti : list;

parameter k : 1..M;

input p.j,root.j : 1..M;

Adj.j : list;

begin

true —) father.j,r.j,adjacent.j := p.j,root.j,Adj.j

end

Figure 5.4: Initializing Primitive Component From Nonmasking Component

 

Replacing primitive component by stabilizing component. During the re-

placement from the primitive component to the stabilizing component, the values of

the variables of the primitive component are copied into the variables of the stabiliz-

ing component as follows:

f.i = father.i; root.i = r.i; N.i = adjacenti;

To initialize the variables, each component fraction of the stabilizing component has
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the initialize routine (cf. Figure 5.5). This routine is called during reset-transition

wave. While initializing the variables, the following two properties has to be ensured:

- If the invariant of the primitive component is satisfied and no faults occur

during the change, then the actions of the initialize routine should preserve

the invariant of the stabilizing component.

- If the invariant of the primitive component is not satisfied or if faults occur

during the change, then the actions of the initialize routine should preserve

the fault—span of the stabilizing component.

Now, to check whether the invariant of the primitive component is satisfied, we

introduce two new routines get_snapshot and check_invariant in all fractions of

the primitive component. During the reset-initialization wave, the reset module will

collect the snapshot of all the component fractions. After the reset-initialization wave

is completed, the initiator invokes the check_invariant routine of the component

fraction installed at the initiator. The snapshot of all the processes collected during

reset-initialization is passed to the check_invariant routine, which checks if the

invariant of the primitive component is satisfied or not. The return value of the

check_invariant is either true or false. (To check if the invariant is satisfied, we

need check_invariant routine only at the initiator. However, since the initiator is

not fixed, we provide check_invariant routine at all processes.) The value returned

by check_invariant is passed to the initialize routine of all fractions during reset-

transition wave. Further if the invariant of the primitive component is not satisfied

(i.e., either the tree is broken or their are cycles) or faults occur during the change,

then the stabilizing component should preserve its fault-span, namely true.
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module initialize.i(i : 1..M)

var root.i,f.i : 1..M;

d.i : integer;

N.i : list;

parameter k : 1..M;

input father.i,r.i : 1..M;

adjacent.i : list;

prim_invariant : true, false

begin

S11 : prim-invariant = true A

father.i = i A r.i = i ——> f.i, root.i, N.i, d.i :2

father.i, r.i, adjacent.i, 0

S12 : prim-invariant = true A

father.i E adjacent.i A r.i = root.(father.i)

—> f.i, root.i, N.i, d.i :=

father.i, r.i, adjacent.i, d.(father.i) + 1

SI3 : prim_invariant = false V

(father.j ¢ adjacent.j U {j}) V

(father.j =j A r.j aéj) V

(father.j séj A j 2 r.j) V

(father.j E adjacentj A r.j > root.(p.j))

—-) f.j,root.j,N.j,d.j := j,j,adjacent.j,0

end

Figure 5.5: Initializing Stabilizing Component from Primitive Component

 

The initialize routine of the stabilizing component is shown in the Figure 5.5.

Actions SI1 and SI2 are executed when the original tree is good (i.e., original tree is

a rooted spanning tree). Actions SI3 is executed when the original tree is not good or

when faults have occurred during the change. The initialize routine returns true

if any of the actions is executed. If no actions are executed, then the initialize

routine returns false. The initialize routine is called repeatedly till it returns true.
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These actions of the initialize routine are executed only when their correspond-

ing guard is true. For action SI2, its guard remains false till the father.i variable

of the father process is set and hence the action SI2 will not be executed. If the

invariant of the primitive component is true then the sequence of events will be as

follows: First the root process will execute the action SI1. Then all the children of

the root process will execute the action SI2. This will propagate all the way down

to the leaf processes.

When the leaf process has completed its initialization (i.e., its initialize routine

returns true), it sends reset-completion wave to its parent. When a process receives

reset-completion from all its children and it has completed its initialization, it prop-

agates the reset-completion wave to its parent. Eventually, the initiator will receive

reset-completion wave from all its children and will complete its initialization. At

this point, the component replacement is complete.

Remark. We note here that the fault-span of the stabilizing component is true.

Therefore, we can arbitrarily initialize the variables of the stabilizing component and

still stay in the fault-span.

Claim 3. If the invariant of the primitive component is satisfied before the change

and no faults occur during the change then the invariant of the stabilizing component

is satisfied after the change.

Proof. If the invariant of the primitive component is satisfied and no faults

occur during the change, then from Claim 1, the primitive component represents the

original tree represented by the nonmasking component. The primitive component

executes no actions.

The action SI1 of the initialize routine of the stabilizing component is enabled

at the root process. The execution of the action SI 1 maps the root of the tree
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represented by the primitive component to the root of the tree represented by the

stabilizing component. The action SI1 establishes i = k => (root.i = i A f.i =

i A d.i = 0), which is in the invariant SS of the stabilizing component.

The non-root processes have none of the actions enabled until the root executes the

action SI1. After the root executes the action SI1, children of the root (i.e., fractions

at a distance (in a tree) of 1 from the root) have the action SI2 enabled. The execution

of the action SI2 maps the children of the root of the tree represented by the primitive

component to the children of the root of the tree represented by the stabilizing compo-

nent. The action SIZ establishes Vi : i is up and i is at a distance of 1 from the root :

(i 76 k => (root.i = k A (Elj : j E N.i : f.i =j A d.i = d.j +1)), which is in the

invariant of the stabilizing component.

After the children of the root executes the action SI2, their children (i.e., fractions

at a distance of 2 from the root) have the action SI2 enabled. Subsequently, the

execution of the action SI2 at fractions at a distance of 2 from the root enables the

action SI2 at fractions at a distance of 3 from the root. Eventually, the execution

of the action SI2 at the non-root processes maps the non-root nodes of the tree

represented by the primitive component to the non-root nodes of the tree represented

by the stabilizing component. Thus, if a node was a root in the primitive component,

it stays as a root in the stabilizing component. Also, the parent-child relationship

among nodes remains the same. Further, as the invariant of the primitive component

is satisfied and no faults occur during the change, the only actions of the stabilizing

component that are enabled and executed are SI1 and SI2. When all fractions have

completed their initialize routine (i.e., they have executed either the action SI1

or SI2) the invariant of the stabilizing component is established.
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Thus, if we begin in a state where SP is satisfied and no faults occur during the

change, then SS will be satisfied after the change. Cl

Claim 4. If the invariant of the primitive component is not satisfied before the change

or faults occur during the change then the fault-span of the stabilizing component is

satisfied after the change.

Proof. The primitive component executes no actions. If the invariant of the

primitive component is not satisfied or faults occur during the change, then the action

SI3 of the stabilizing component is executed that establishes: root.i = i A f.i =

i A d.i = 0, which is in the fault-span, namely true. [:1

5.2.3 Changing from Stabilizing to Nonmasking Component

In this subsection, we discuss replacement of the stabilizing component with the

nonmasking component. As discussed in Section 5.2.2, this is a two step process. We

first change from the stabilizing component to the primitive component and then we

replace the primitive component by the nonmasking component.

Replacing stabilizing component by primitive component. In replacing from

the stabilizing component to the primitive component, the state of the tree has to

be transferred from the stabilizing component to the primitive component. During

reset-transition wave, the initialize routine (cf. Figure 5.6) of the primitive com-

ponent fraction is invoked. This routine copies the values of the variables (f.j, root.j,

and N.j ) from the corresponding component fraction of the stabilizing component.

The reset module reads these variables from the stabilizing component fraction and

passes the values as arguments to the initialize routine of the primitive component

fraction.
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module initialize.j (j : 1..M)

var r.j,father.j : 1..M;

adjacent.i : list;

parameter k : 1..M;

input f.j,root.j : 1..M;

N.i : list;

begin

true —> father.j,r.j,adjacent.j :2 f.j,root.j,N.j

end

Figure 5.6: Initializing Primitive Tree Component From Stabilizing Component

 

As the fractions of the primitive component complete their initialize routine,

the reset-completion wave (as discussed in Section 5.2.2) is propagated towards the

initiator. When the initialize routine of the primitive component fraction at the

initiator is complete and it has received reset-completion wave from all its children, the

replacement from the stabilizing component to the primitive component is complete.

At this point, the initiator starts the step 2 to replace the primitive component with

the nonmasking component.

Claim 5. If the invariant of the stabilizing component is satisfied before the change

and no faults occur during change then the invariant of the primitive component is

satisfied after the change.

Proof. If the invariant of the stabilizing component is satisfied and no faults

occur during the change, then no actions of the stabilizing component are enabled

and the stabilizing component represents a rooted spanning tree. The execution of

the actions of the initialize routine of the primitive component fractions maps the

original tree represented by the stabilizing component to a tree represented by the
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primitive component. If a node was a root in the stabilizing component, it stays as '

a root in the primitive component. Also, the parent-child relationship among nodes

remains the same. Thus, if we begin in a state where SS is satisfied and no faults

occur during the change, then SP will be satisfied after the change. Cl

Claim 6. 1f the invariant of the stabilizing component is not satisfied before the

change or faults occur during the change then the fault-span of the primitive compo-

nent is satisfied after the change.

Proof. Since the fault-span of the primitive component is defined as true, the

claim is trivial. El

Replacing primitive component by nonmasking component. The replace-

ment of the primitive component by the nonmasking component is similar to the

replacement of the primitive component by the stabilizing component as discussed in

Section 5.2.2.

The initialize routine of the nonmasking component is shown in the Figure

5.7. Actions N11 and N12 are executed if the invariant of the primitive component

is satisfied and no faults occur during the change. Action N11 is executed at the

root process and action N12 is executed at the non-root processes. If the invariant

of the primitive component is not satisfied or if faults occur during the change, then

the initialize routine of the nonmasking component has to ensure that it preserves

the fault-span. In this case, the action N13 is executed.

If the invariant of the primitive component is true then the sequence of events

will be as follows: First the root process will execute the action N11. Subsequently

all the children of the root process will execute the action N12. This will propagate

all the way down to the leaf processes, which will then execute the action N12.

The leaf process sends reset-completion wave to its parent when it has completed its
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initialization. When a process receives reset-completion wave from all its children

and it has completed its initialization, it propagates the reset-completion wave to

its parent. Eventually, the initiator will receive reset-completion wave from all its

children and will complete its initialization. At this point the component replacement

is complete.

 

module initialize.j (j : 1..M)

var root.j,p.j : 1..M;

col.j : {green, red};

Adj.j : list;

parameter k : 1..M;

input father.j,r.j : 1..M;

adjacent.j : list;

prim.invariant : true, false

begin

N11 : prim-invariant = true A

father.j = j A r.j =j ——> p.j,root.j,Adj.j,col.j :=

father.j, r.j, adjacent.j, green

N12 : prim_invariant = true A

father.j 6 adjacent.j A

col.(p.j) 2 green A r.j = root.(p.j)

—~) p, j, root.j, Adj.j, col.j :2

father.j, r.j, adjacent.j, green

N13 : (prim_invariant = false) V

(father.j ¢ adjacent.j U {j}) V

(father.j =j A r.j #j) V

(father.j 763' A j Z r.j) V

(father.j E adjacent.j A r.j > root.(p.j))

——+ p.j,root.j,Adj.j,col.j :2

j, j, adjacent.j, red

end

Figure 5.7: Initializing Nonmasking Component from Primitive Component
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Remark. We note that, unlike as discussed in Section 5.2.2 for the stabilizing

component, here we cannot initialize the variables of the nonmasking component

arbitrarily to preserve the fault-span.

Claim 7. 1f the invariant of the primitive component is satisfied before the change

and no faults occur during the change then the invariant of the nonmasking component

is satisfied after the change.

Proof. If the invariant of the primitive component is satisfied and no faults occur

during the change, then from Claim 5, the primitive component represents th original

tree represented by the stabilizing component. The primitive component executes no

actions.

The action N11 of the initialize routine of the nonmasking component is en-

abled at the root process. The execution of the action N11 maps the root of the tree

represented by the primitive component to the root of the tree represented by the non-

masking component. The action N11 establishes root.j = j A p.j = jA col.j = green,

which is in the invariant SN of the stabilizing component.

The non-root processes have none of the actions enabled until the root exe-

cutes the action N11. After the root executes the action N11, children of the

root (i.e., fractions at a distance (in a tree) of 1 from the root) have the action

N12 enabled. The execution of the action N12 maps the children of the root of

the tree represented by the primitive component to the children of the root of the

tree represented by the stabilizing component. The action N12 establishes Vj :

j is up andj is at a distance of 1 from the root : (p.j 6 Adj.j A root.j = root(p.j) A

col .j 2 green), which is in the invariant SN of the stabilizing component.

After the children of the root executes the action N12, their children (i.e., fractions

at a distance of 2 from the root) have the action N12 enabled. Subsequently, the
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execution of the action N12 at fractions at a distance of 2 from the root enables the

action N12 at fractions at a distance of 3 from the root. Eventually, the execution

of the action N12 at the non-root processes maps the non-root nodes of the tree

represented by the primitive component to the non-root nodes of the tree represented

by the nonmasking component. Thus, if a node was a root in the primitive component,

it stays as a root in the nonmasking component. Also, the parent-child relationship

among nodes remains the same. Further, as the invariant of the primitive component

is satisfied and no faults occur during the change, the only actions of the nonmasking

component that are enabled and executed are N11 and N12. When all fractions have

completed their initialize routine (i.e., they have executed either the action N11

or N12) the invariant of the nonmasking component is established.

Thus, if we begin in a state where SP is satisfied and no faults occur during the

change, then SN will be satisfied after the change. [I]

Claim 8. If the invariant of the primitive component is not satisfied before the change

or faults occur during the change then the fault-span of the nonmasking component is

satisfied after the change.

Proof. The primitive component executes no actions. If the invariant of the

primitive component is not satisfied then the actions N11 and N12 are not enabled

at any processes. Further if the invariant of the primitive component is not satisfied

or faults occur during the change, the action N13 of the nonmasking component is en-

abled and executed. The execution of action violates the invariant of the nonmasking

component. However, the action N13 establishes p.j = j A root.j = j A col.j 2 red,

which is in the fault-span TN of the nonmasking component. When all fractions have

completed their initialize routine, the fault-span TN is established. Thus, if we
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begin in a state where SP is not satisfied or faults occur during the change, then TN

will be satisfied after the change. Cl

Thus, by using the notion of component hierarchy, we can transfer the state informa-

tion from one component to another. We note that during replacement:

- If the invariant of the original component was satisfied, i.e., if the tree was good

before a change, and no faults occur during the change, then the invariant of

the new component is satisfied, i.e., the tree remains good after the change.

- If the invariant of the original component was not satisfied, i.e., if the tree was

broken before a change, or if faults occur during the change, then the invariant

of the new component will eventually be satisfied, i.e., the tree will eventually

be corrected due to the actions of the new component.

In this chapter, for simplicity we considered the component hierarchy of two compo—

nents. However, we can easily extend it to more than two components. In this case,

if two components X1 and X2 are derived from a component X in a component hi-

erarchy, then during the change from X1 to X2, we can do the scale-down operation

from X1 to X and then the scale-up operation from X to X2.
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CHAPTER 6

Discussion

The framework proposed in this paper raises several questions about how it can be

used and modified to suit different applications. We discuss some of these questions

below.

Who initiates the component change? Can any process initiate the component

change?

Although in Section 3.3, we assumed that only one process initiates the component

change, it is possible to extend it so that other‘processes can also initiate a component

change. Towards this end, we use the approach in [3] where the processes are arranged

in a tree. In this case, any process that wants to change a component sends itsirequest

to the root. The root process then initiates the component change as mentioned

in Section 3.3. This approach also takes care of network partitioning where each

partition has its own root process that can perform the component change for that

partition.

Is the reset-initialization wave necessary? What are its advantages and disadvan-

tages?

As discussed in Section 3.3, a reset-initialization wave is used to initialize the compo-

nents and create a spanning tree. We note that, the reset-initialization wave is not a

requirement for our framework. If we assume that all processes already have the com-

ponent fractions initialized, then we do not need the reset-initialization wave. If the

components are changed frequently and all processes can always succeed in installing
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the new component, then it would be more efficient to remove the reset-initialization

wave. However, if we remove the reset-initialization wave then the overhead incurred

by the component manager will increase as it has to check the incoming messages in

all cases to determine if a component change is in progress. Also in this case, the

process will not have an option to abort the component change. Thus, the decision

of using a reset-initialization wave is a tradeoff in performance and flexibility rather

than a requirement.

Can dynamic composition be improved if the components being added are backward

compatible with the current component?

Yes. If the new component is backward compatible, then we can add the new compo—

nent without dealing with the dependency relation among the component fractions.

This is due to the fact that the new component fraction at a process can interact with

the current component fractions at other processes. Note however that, in general

backward compatibility is not satisfied. Hence, in many situations, the component

fractions of the new component cannot interact with the component fractions of the

current component. The framework can be enhanced to simplify composition in this

special case. We have not considered this issue in this paper since we are mainly

interested in providing dynamic composition in cases where the new component and

the current component are not related.
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CHAPTER 7

Related Work

In this chapter, we discuss work related to the framework discussed in this paper. We

also point out how our framework differs from the previous work.

7.1 Related work on Composition of Fault-tolerance

FRIENDS [14] (Flexible Architecture for Implementing Fault Tolerant and Secure

Distributed Applications) is a software-based architecture for implementing fault-

tolerant applications. The software-based architecture of [14] is composed of subsys-

tems and libraries of metaobjects. Common services required for implementing the

metaobjects are provided by the subsystems. A library of fault-tolerance strategies

consisting of metaobject classes is implemented on top of the corresponding sub—

system. For this reason, the programmer developing a library needs to be aware

of the underlying subsystem implementation. The system layer in [14] consists of

three necessary sub-systems, namely, fault tolerant sub-system, secure communica-

tion subsystem and group-based distribution sub-system. The user layer is divided

into application layer and metaobject layer.

In [15], Panwar, Agha and Sturman, describe a language framework, MAUD

(Meta-level Architecture for Ultra Dependability), for dependable systems by focus-

ing on modularity and composition. In [15], the meta-level of the system consists of

aspects that are relevant to fault-tolerance. Thus, in [15], the base objects specify
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application specific functionality whereas the meta-level objects specify the fault-

tolerance protocols. In their prototype implementation of MAUD, an application and

its dependability protocols are linked together at compile time.

Our framework differs from the approaches in [14, 15] in that our framework deals

with the addition/removal of distributed components by considering the dependency

relation among component fractions in a distributed component. Also, in our frame-

work, the intolerant application and the fault-tolerance component specify a contract

that describes what the latter needs from the former and what it can use while pro-

viding fault-tolerance. Based on the need for separation of concerns, the contract of

the intolerant application is developed by the developer of the intolerant application

and the contract of the fault-tolerance component is developed by the developer of

the fault-tolerance component.

7.2 Adaptive Programming

Gouda and Herman [9] consider the problem of adding/removing distributed stabi-

lizing fault-tolerance components. By definition, starting from an arbitrary state, a

stabilizing component recovers to a state from where its subsequent computation sat-

isfies its specification. Thus, even if one ignores the dependency relation among com-

ponent fractions, after the addition of a new stabilizing fault-tolerance component,

it will recover to a legitimate state. It follows that even if the dependency relation

among component fractions is cyclic and the components being added are stabiliz-

ing fault-tolerant, then the techniques in [9] can be used to dynamically add/remove

those components.

In their approach, some incorrect computation can occur during a component

change, because they ignore the dependency relation among component fractions. In
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contrast, by taking the dependency relation among component fractions into con-

sideration, we ensure that the change of a component does not cause an incorrect

Operation. Moreover, our framework can also deal with components that are not

stabilizing fault-tolerant.

7.3 Related Work on Adaptation in Distributed Systems

Chen et a1. [16] have presented an adaptation process that consists of change detection,

agreement, and adaptive action. Our approach of changing components is orthogonal

to the approach in [16]. In [16], either the dependency relation is ignored or is handled

implicitly. This can lead to excessive blocking or incorrect results during component

change. We explicitly account for any dependency during component change while

ensuring minimal blocking. Secondly, in their approach, faults that occur during the

change are not considered. Our approach deals with faults that can occur during

component change (cf. Section 3.4). Unlike in [16], the reset module described in the

paper deals only with the adaptive action that replaces the fault-tolerance component.

However, the approach in [16] for change detection and agreement can be combined

with our work to build adaptive component-based distributed systems. Further, our

work on component change can be used in [16] to ensure that the dependency relation

is correctly handled.

7.4 Electronic Switching Systems

Examples such as ESS (Electronic Switching Systems) [17] support dynamic addi-

tion/removal of components. However, in these examples, the system consists of a

set of applications. When a new component is added, old applications continue to run

using the old component whereas the new applications will use the new component.
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When all the old applications terminate, the old component can be removed. Thus,

we can view this system as a set of two disjoint systems; one using the old compo-

nent and the other using the new component. By contrast, in our framework, there

is only one (long-running) application that needs to change the component dynam-

ically. Hence, we cannot use a solution where the old and new components execute

concurrently until the applications using the old component terminate.

7.5 Composition at Binary Level

Modifying the source code to allow composition is a difficult task, because firstly the

source code is rarely available and secondly because of cryptic nature of source code.

Although the composition of components at the binary level is also not any easy

task, it is highly desirable and the binary code is easily available. Binary component

adaptation (BCA) [18] allows components to be composed in binary form. BCA

rewrites component binaries before (or while) they are loaded and it does not require

any source code access. Keller and Hblzle [18] describe the Java implementation of

BCA and explain how BCA can improve the reusability of Java components. Rather

than creating new classes such as wrapper classes, the definition of the original class is

modified for allowing component adaptation. In the implementation of BCA, a class

file is modified before it it passed on to the native JDK loader (cf Figure 7.1). The

modifier operates on the internal representation of the class that the loader builds.

The class loader parses the Java class file and stores the various components in an

object hierarchy. Each component of the class file format, such as fields, methods,

attributes, and various other entries, is represented by a C++ class.

We have studied some of the issues to allow binary level composition of distributed

components using our framework. In future work, we will implement the composition
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Figure 7.1: Integration of BCA system into JDK VM [18]

at binary level. We will use techniques discussed in [18] to make changes to the

binary so that we can integrate our framework with an intolerant application and .

apply similar techniques to the component binaries.

7.6 Reflection and Run-time Composition in Java

We used computational reflection [19] to implement our framework. A reflective sys-

tem is a system that incorporates structures representing itself. Self-representation

makes it possible for the system to reason about and act upon itself. A reflective sys-

tem is causally connected to the underlying behavior it describes. Causal connection

implies that changes made to the self-representation are immediately mirrored in the

underlying system’s actual state and behavior, and vice-versa.

Reflection is one of the features in Java programming language. It allows an

executing Java program to examine or “introspect” itself, and manipulate its internal

properties. We use the reflection feature of Java to dynamically add Java components.

Additional information about Java reflection is available in [20,21].
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7.6.1 Byte-code Rewriting

In this section, we discuss how Kava [22] uses byte-code rewriting to add behavioral

reflection to Java. Load-time byte-code rewriting techniques can be used to adapt

and customize the behavior of Java classes as discussed in [22]. One advantage of this

approach is that it doesn’t require a modified compiler or JVM. Kava is implemented

on t0p of a standard JVM.

The Kava system allows each object or class to be bound to a metaobject. At

the meta level runtime behaviors such as method invocation, method execution, field

access, etc. can be redefined by the metaobject implementation. The metaobject

implementation is constructed using reified aspects of the runtime object model.

Kava implements behavioral reflection in Java using byte code transformation as

the underlying technique. In future work, we will use techniques discussed in [22] to

make behavioral changes to the intolerant application and to the binary distributed

components to allow them to be composed dynamically with our framework.
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CHAPTER 8

Conclusion and Future Work

This thesis presented an adaptive component-based framework that can dynamically

add, remove, and replace distributed components to an application. The framework

ensured that changing a component satisfies the three properties, atomicity, minimal

blocking and synchronization. The framework also ensured that the dependency

relation among component fractions of a given component is correctly handled during

dynamic composition. Moreover, as discussed in Section 3.4, the framework can be

tailored to deal with faults that occur during a component change.

The thesis illustrated this framework in the context of fault—tolerant applications

where a fault-intolerant application is composed with fault-tolerance components.

The examples of message communication (cf. Chapter 4) was used to illustrate the

availability of multiple components, need for dynamic composition, and different de-

pendency relations among component fractions. The thesis also illustrates the use

of the framework in Siesta, Simple NEST Application Simulator [23], developed at

Vanderbilt University. In this application, the system consists of 50 nodes. Fault-

tolerance routing components are developed for Siesta (cf. Appendix B) and it is

shown how to dynamically change these components using the approach presented

in this thesis. Although in these examples, only one fault-tolerance component was

used at a time, the framework does permit the case where multiple fault-tolerance

components are used simultaneously. For example, in the context of message commu-

nication, the thesis hierarchically composed the proactive component and the reactive
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component, discussed in Chapter 4. The thesis also proposes the extension of the

framework using the notion of component hierarchy to preserve state information.

In the context of fault-tolerant applications, the framework enables independent

development of the corresponding fault-intolerant application and the corresponding

fault-tolerance components. Towards this end, the designer of a fault-intolerant ap-

plication provides a set of methods that can be used while adding fault-tolerance

components. Also, the fault-tolerance component specifies the set of methods it ex-

pects from the fault-intolerant application. During composition, this information is

matched —for method renaming, parameter renaming, etc— to determine how the

fault-intolerant application and the fault-tolerance component are composed. Within

these constraints, the development of the fault-intolerant application and the fault-

tolerance components can proceed independently.

The framework also enables the reuse of fault-tolerance components. The compo-

nents used for message communication are clearly applicable in several other domains.

A component, similar to that presented in Appendix B, is used for routing in ad-hoc

networks [24].

There are several possible extensions to this work. Currently, the source code

is preprocessed so that the functions exposed by the fault-intolerant application are

trapped and each process is composed with the fraction of the default component (cf.

Chapter 2). To increase the applicability of the framework, the use of binary version

of the fault-intolerant application is being considered. Specifically, the approaches

such as that in [18, 22, 25] are used so that a given binary is modified in such a way

that the exposed functions are appropriately trapped.

While this framework is written in Java, it has the potential to be applicable in

adding fault-tolerance to a fault-intolerant application in languages such as C/C++.
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However, as the current approach uses Java reflection while composing components,

new approaches are being devised that will allow the composition of components in

these languages.

Although, the discussion and implementation in this thesis focused on fault-

tolerance components, the approach in this thesis can be used in other areas where it

is possible to identify independent components that need to be dynamically added.

In the context of security, in [26], it is shown that a security failure is often a result

of number of faults. Also, in [27], it is shown that the theory of detectors and correc-

tors can be applied for adding fault-tolerance to Byzantine faults and these faults are

often important in the context of modeling security threats. We are currently explor-

ing techniques similar to those used in separating functionality and fault-tolerance to

separate functionality and security aspects of an application. These techniques will

enable us to use the approach mentioned in this paper to adaptively change these

security components with changing environment conditions.
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APPENDIX A

Forward Error Correction

Reliable communication protocols require that all the intended recipients of a

message receive the message intact. Automatic Retransmission Request (ARQ) tech-

niques are used in unicast protocols, but they do not scale well to multicast protocols

with large groups of receivers, since segment losses tend to become uncorrelated thus

greatly reducing the effectiveness of retransmissions. In such cases, Forward Error

Correction (FEC) techniques can be used, consisting in the transmission of redun-

dant packets (based on error correcting codes) to allow the receivers to recover from

independent packet losses.

Forward Error Correction (FEC) is well-studied and widely used technique for

reliable communication. FEC is used from application domains ranging from space

communication to reliable data storage on disks. The idea of FEC is simple: given

a communication channel with known error probabilities, use error correcting codes

to send redundant information with a data stream, enabling the receiver to correct

errors/losses, at a desired recovery rate, without contacting the sender.

Forward Error Correction is the technique by which a sender prevents loss of

message by sending redundant information along with the original data, enabling

the receiver to reconstruct lost data without contacting the sender. FEC techniques

make extensive use of error correcting codes, which can be computationally inten-

sive. Hence, FEC was successfully used primarily at bit-level where the unit of data

involved in encode/decode operations were in the order of a few bits. Packet level
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FEC was studied in [28,29]. In [28] it is shown that packet level FEC can be im-

plemented by transmitting M redundant packets after each set of N regular packets,

so all packets can be reconstructed if at least N out of N + M packets are received.

Packet level forward error correction is not very difficult to implement. The network’s

characteristics can be used to the set the level of redundancy.

There are not many actual implementations of FEC that exist today, despite the

widespread use of error correcting codes in many fields of information processing, and

a general consensus on the usefulness of FEC techniques within some of the Internet

protocols. The main reason being concerns related to the complexity of implementing

such codes in software. In [30] the author has given a basic description of erasure

codes. An implementation of a simple erasure code to be used in network protocols

is described in [30]. As shown in Figure A], 1: blocks of source data are encoded at

the sender to produce n blocks of encoded data, such that any I: of the n encoded

packets can be used to reconstruct the k source packets. The receiver can recover

from up to n — k losses in a group of n encoded packets.
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Figure A.1: Encoding/Decoding Operation of FEC. [30]
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APPENDIX B

Application of the Framework for Routing

In this chapter, we discuss the application of our framework for routing in Siesta

[23], a simple NEST (Network Embedded Software Technology) application simula-

tor. Siesta is developed by the Institute of Software Integrated Systems, Vanderbilt

University. It provides the flexibility of testing and experimenting the beam vibra-

tion control application that arises in a NEST scenario. It can also be used to test

middleware services of other NEST systems.

B.1 Beam Vibration Control Application

The setup for the beam vibration control application is shown in Figure RI.

The application consists of 50 nodes aligned along the beam that is subjected to

an outside disturbance. Each node has a sensor and an actuator. Sensors measure

the point velocity of the vibration of the beam and the actuators produce point

force input to counter the vibration. The objective of this application is to control

the beam vibration in response to the disturbance. We consider the case where

distributed control is used to control the beam vibration in Siesta. In distributed

control, each node sends its sensor values to other nodes that are within a specified

distance (called the reach of the node). Each node then calculates its actuator output

based on a weighted average of its own sensor value and the sensor values it received.

(The actual algorithm used to determine the actuator output is not relevant for this

discussion and hence, is omitted.)
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Siesta defines an adjacency relation among the nodes. This relation specifies the

nodes that can communicate directly with each other. Communication between non-

adjacent nodes is achieved using the static routing information maintained at each

node. The intolerant version of the application does not deal with faults, i.e., if

a node/router fails, it affects the distributed control at the nodes that are within

the reach of the failed node. Hence, we focused on the design of a fault-tolerance

component for routing. If a node/router fails, this fault-tolerance component routes

the messages using alternate links. We describe how we specified this component and

composed it with the intolerant application, next.

B.2 Fault-tolerance Component for Routing in Siesta

In Siesta, for every clock event, each node can create or execute an action. The

Router. RouteMessage object creates an action if the router has some packets to send,

by invoking the method create. The create method in the intolerant application is

split into three methods: getNextHop, setNethop and route. The route method uses

getNertHop to determine the next hop of a message and creates an action that sends
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this message. Such a split makes it easier to understand the create method and makes

it amenable for method-level synchronization.

Our framework uses the meta-application file (the contract between the framework

and the intolerant application) to determine the methods that need to be trapped.

This file specifies the methods that are exposed by the intolerant application to the

fault-tolerance component. The meta-application file is as follows:

functionzcreate

class:nest.mw.Router.RouteMessage

returntypeznest.mw.Action

arglist:nil

nexthop_get:getNextHop

nexthop_set:setNextHop

sendzroute

Based on the above meta-application file, our framework traps the create method

of the Router.RouteMessage object. Additionally, the intolerant application also pro-

vides a method for getting the next hop of a message (nexthop_get field), a method

for setting the next hop of a message (nezthop_set field) and a method for sending a

message (send field).

We developed a fault-tolerance component, AlternateRoute that routes the mes-

sages in alternate links if the current next hop has failed. It requires that the in-

tolerant application provide methods for getting the next hop of a message (getNez-

tHop), for setting the next hop of a message (setNez‘tHop) and for sending a message

(route). The method information can be determined from the fields nexthop_get, ner-

thop-.set and send in the meta-component file (the contract between the framework

77



and the fault-tolerance component). Since Siesta is a simulation environment, the

information about the nodes/routers that have failed is statically available to the

component. However, it can be modified so that the component determines the fail-

ure of nodes/routers dynamically. If the next hop has failed, the component finds a

non-failed node that is nearest to the destination. The component uses the method

provided in the meta-application file of the intolerant application to change the next

hop of the message. The component then calls the route method provided in the

meta-application file of the intolerant application. The meta-component file for this

component is as follows:

intol_function:

intol_class:

nexthop_get:

nexthop_set:

send:

ftcomponent_method:ftRoute

When this component is instantiated, our framework matches the meta-application

file with the meta-component file to determine how the component and the intoler-

ant application are composed. During dynamic addition/removal of AlternateRoute

component, we find that the component fractions of AlternateRoute do not exhibit

mutual dependency. Therefore, the removal of this component is simple; in the reset-

transition wave, each node can remove its component fractions independently.

If a new routing component is developed for Siesta, it can also be added dy-

namically. Towards this end, the new component will need the corresponding meta-

component file. The framework will use the meta-application file of the intolerant
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application and the meta-component file of the new component during instantiation.

As mentioned above, the removal of AlternateRoute component can be achieved easily

in the reset-transition wave.
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