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ABSTRACT

SOLUTIONS TO THE FULLY DEVELOPED CONVECTION HEAT TRANSFER

PROBLEM 1N CORE ANNULAR FLOWS

By

Sriharsha Chunduru

Heat transfer in circular pipes with two concentric regions (core annular flows) is a

problem that arises in materials processing and the chemical industries. Examples Of this

problem include the flow Of Oil/water for a certain range Of Reynolds numbers and flow

through packed bed chemical reactors. In this work, the convection heat transfer problem

is solved for a core-annular flow that is both thermally and hydrodynamically fully

developed. Solutions are Obtained for an outer surface Of the pipe that is subjected tO

three different boundary conditions: uniform heat flux, constant wall temperature, and

convective heat flux. The velocity and the temperature profiles are calculated analytically

and Nusselt numbers are evaluated for the three cases. The analytical results are validated

by comparison with the solutions for the single-phase fluid.
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INTRODUCTION

Important engineering problems in the materials processing and chemical

industries involve heat transfer in a two-region channel flow. Examples include the flow

of two immiscible fluids and the flow through a packed bed chemical reactor. One of the

most important engineering applications of two-region flow is the flow of water and oil in

a pipe. Pipeline transport of highly viscous oil needs enormous pumping pressures to

overcome the high viscosity and the corresponding wall shear stress. It can be affected by

heating the oil and insulating the pipeline [1]. However these operations involve

considerable capital investments and operating expenditures. As discussed by Joseph et

al. [2], oil companies have had an intermittent interest in the technology of water-

lubricated transport of heavy oil since 1904.

In the past, experiments have been carried out to examine the possibility of water-

lubricated transportation of oil as discussed by Chaves et al. [1]. A number of flow

patterns were observed, such as water drops in oil, concentric oil-water flow and oil drops

in water. It was found out that of all the observed flow patterns, the flow of the highly

viscous oil as a core, with the water flowing only in the annular space between the pipe

and the core walls was the most desirable for simultaneous flow [1]. The pressure drop

measured over the pipe indicated that the addition of water greatly reduced the pressure

gradient. Ooms et al. [3] discussed theoretical models for core annular flows of a very

viscous oil core and a water annulus through a horizontal pipe.-AS long as oil core was

supplied at a velocity above a certain critical value, a water film remained between the

oil-core and the pipe wall.



However the amount of water used to transport the oil is determined by various

stability analyses. If the water used is large, there is always a problem of dewatering and

if the water used is less, there is a problem of fouling. Using cement-lined pipes as

discussed by Amey et al. [4] can reduce fouling to a considerable extent. Joseph et al. [5]

discussed the stability of annular flows. The annular flow is stable or can be stabilized

when the fluid having the higher effective viscosity occupies the core region and lower

viscosity fluid is in the annulus. Joseph et al. [6] also study the instability of the core

annular flow as the thickness of the lubricating fluid in the system increases. Thus,

volume ratio is a crucial factor in determining the stability. There is also a limitation on

the velocities of the fluids. A minimum velocity exists below which the core-annular flow

is unstable and results in oil slugs in water and a maximum velocity above which the flow

is replaced by water emulsions in oil as discussed by Prezioski et al. [7]. Extent of the

annular flow is determined by the location of the break-up point. Hason et al. [8]

discovered that the wall-film broke up at low flow rates and thus destroys annular flow

abruptly.

A practical aspect of this technology is the question of how to guarantee that a

certain oil-water system will operate in core-flow pattern. In practical situations, this flow

mode is brought about by using special inlet nozzles in combination with physiochemical

agents to facilitate wetting of the pipe wall by water and to stabilize the oil-water

interface [9]. Shut down and restart procedures must also be known. For the technique to

be practical, it should be possible to restart a pipeline from the stratified oil-water

situation to the core flow pattern in a reasonable amount of time without the requirement

of excessive pumping power [9]. In the late nineteenth century, development of Moody’s



chart involving Reynolds number and Fanning’s Friction factor facilitated the design and

development of Single-fluid pipeline systems. Ames et al. [10] extended this analysis to

lubricated pipelining. Thus core-annular flow has been a topic of research for quite some

time. However most of these works focus on the “fluid” part of the analysis. Most of the

literature neglects the thermal analysis of the core-annular flow. The possibility of using

these systems in cold regions such as on the ocean floors or in the arctic regions require a

detailed heat transfer analysis for a variety of boundary conditions.

Although the uniform wall heat flux problem is rather trivial, the constant wall-

temperature problem is a challenging one in the case of a single-fluid system. The case of

a convection boundary conditions applied on the outside of the pipe is also non-trivial.

Solution to the heat transfer problem of a single fluid flowing down a pipe has

been solved long ago by Graetz in 1885 [11]. Graetz neglected the variations of the

properties of the fluid with the temperature and found a mathematical solution for the

problem that was rediscovered by Nusselt in 1910[11]. In this work, a heat transfer

analysis of the core-annular flow is performed using an approach different than the one

used by Graetz to compute the temperature profiles and Nusselt numbers of the system

for three boundary conditions on the outer wall- constant wall heat flux, constant wall

temperature and convective heat flux



CHAPTER 1

PHYSICAL MODELS

The physical model for the two-region pipe flow and heat transfer problem is

Shown in Figure 1. Each region 1 or 2 contains a fluid that is immiscible with the fluid in

the other region.

 

Region 2    
  

Figure 1.1: Physical model for two region flow

The following assumptions will be employed in the development of the solution to the

heat transfer problem

(a) The flow is steady and hydrodynamically fully developed. This will lead to the only

non-zero velocity component being that in the streamwise direction and a constant

pressure gradient (- H) in the streamwise direction.

(b) The flow is thermally full developed. This will lead to a constant convective heat

transfer coefficient on the outer surface and a constant temperature derivative in the

streamwise direction.

(c) Three types of boundary conditions have been analyzed- constant heat flux on the

outer wall, constant wall temperature and convective boundary condition.



The Continuity equation in the Cylindrical coordinates for steady and incompressible

flow is [12]:

li<ru.>+li<ug>+3<u.)=o (11>

The components of the momentum equation are as follows:

r -momentum:

Bu ,

a:

1 1 a
+(U.V)u, 71.5 = —;d—’:+ g, +U(V2u, —————) (1.2) 

t9 -momentum:

Bug u u 1 8p 2 2 Bu _u9

————+ U.uV +_:__0:=__—+ 9+uv +—— —— 1.3 

Z -momentum:

———z—+(U.V)u- =——1-:—p+gz+UV2u (1.4)

where, the convective derivative is:

a 1 a
UV: u, -—+-—rug—86

a

, — 1.5

3r +u~ 32: ( )

The Laplacian operator is:

re a 132 32
—r(—+—V2: ———+

rar 3" r280—2— azz

(1.6) 

Since a symmetric flow is assumed,u9 =0. The flow is assumed to be hydrodynamically

. . . a . .
fully developed, it, =0. Usrng this value of u, in Eq (1.1), a—(uz ) = 0. Since the flow IS

2

symmetric, there is no 0 dependency. SO “z is a function of r only.



Consequently, when we use these above deductions in Eq (1.2), the r-momentum

equation reduces to:

1 8p
0:—._—_ 1.7,0 dr ( )

which means that the pressure p = f (19, Z). The 6 momentum equation (Eq 1.3) reduces

to the following form:

O=—igg (1.8)

,0 d6

which implies that p = f (2) only, in other words the pressure in the pipe flow changes

only in the axial direction. The z-momentum equation is

 

au. 13p 2

r + U.Vu =———+ +vV u 1.9
at ( )Z pdz 82 Z ( )

Using the established facts that the flow is steady, p = f(z) only, gZ = Oand that uZ is a

function of r only, Eq (1.9) can be reduced to the following form:

0=—l§’l+uv2u. (1.10)

raz “

Equation (1.10) further Simplifies to,

li[,d“z)=_fl (1.11)
r dr dr ,1!

 

where, H: — ip— (the pressure gradient)

The energy equation [12] is analyzed next.

3T 2 [(2 2 2) 2 2 2]
pcp[E+(U.V)T]=/<V T+/12£,,+496,6,+gzz +89: +€rz+5r6

(1.12)



where,

  

E _ Bu, __ laug u, BuZ

N Br ’ 66 r 36 r , 22‘ Oz

1811., Bug an, Bu. 1814, Bug Mg
  8 ———~— ,8 =—+ me =— +————— 1.13

fig r819 dz rz 82: 8r ”9 r80 8r r ( )

Equation (1.12) simplifies to,

8T 6T ka aT k02T azr
,pc _ pc _— _— — —— k :0 1.14

“'~ Pazfl" Par [rarirari‘flzagfl 332] ( )
 

.7

b

T =0. The flow is hydrodynamically
2

 Since heat transfer is symmetric in the pipe,

fully developed which results in the radial component of the velocity to be zero (u r = 0),

Equation (1.12) becomes, after transposition,

pcp 8T 1 a BT azr
— —— —— — — =0 1.15

”A k dz [rar(r )+ J ( )

Letting a = -k—, the thermal diffusivity of the fluid,

pcp

2
usz:[li( arj+a_r_] (1.16)
 

2

If we neglect axial conduction relative to the radial conduction then, ——2- = O , we obtain

Bz

the following energy equation for laminar flow in a circular tube.

rar Br a 82:

Since the flow is assumed to be thermally fully developed, the non-dimensional

temperature profile is invariant with z [13]. This can be expressed in the following

equation:



a T —T
_ _W_ :0 1.18

az1Tw—Tm]
( )

. . . . 8T

Differentiating and solvrng for Az’

  
8T_dfia_Tp-Téflw+7b-Ttflh__

(1.19)

Oz dz Tw —Tm dz Tw - Tm dz

The next chapter deals with the first boundary condition, which iS the constant heat flux

on the outer wall.



CHAPTER 2

CONSTANT HEAT FLUX PROBLEM

The boundary condition of constant heat flux on the outer wall is considered below.

Writing the convection rate equation,

q; = h(TW — Tm ) =Constant (2.1)

where TW and Tm are the temperature of the outer wall and the mean temperature of the

fluid respectively. Since the non-dimensional temperature is invariant in the flow

direction, the boundary condition at the wall is then:

a a T —T
_ __ ___W =OA =R 2.2

ar[az[Tw—Tm]] t r 0 ( )

which can be written as:

a a T.—T
_. _ __W :0 A =R 2.3

az[ar[Tw—Tm]] t r 0 ( )

This means that,

ar YEW—YBI Tw"7h

[93)T -—T 3r ,=

[ a [LII = constant 2 ———RL (2.4)

r=R0

The wall heat flux can be defined as

8T
_ _ 2.5
ar )r_.R0 ( )q; = —k(

Comparing equations (2.3), (2.4) and (2.5), it can be deduced that h/kzconstant, or in

other words, h=constant for a constant property fluid [14].

Thus, it can be concluded from Eq (2.1) that TW —T,,, = constant.



In other words, fi—T—‘Y- = d—T"—' (2.6)

dz dz

Using Eq (2.6) in Eq (2.4) we get,

aT _ dTw
2.7Oz dz ( )

  

Combining Equations (2.6) and (2.7)

37 =fl=fl (2.8)
Oz dz dz

 

Using Eq (2.8) in Eq (1.17), for constant heat flux on the outer wall, we get

u dTm : Elba} (2.9)
dz r dr dr

Thus, the following differential equations are used to represent the conversation of

momentum and energy within a region. Since there are 2 fluids in our problem, subscript

i may be 1 or 2 to denote the region, 1 for the inner fluid and 2 for the outer fluid

respectively.

 li(,fl]= "H (2.10)
r dr dr .“i

And,

. T-

fli rL = “i dTm (2.11)

r dr dr dz

The boundary and matching conditions are as follows: -

At r = O (the centerline of the channel)

dul

_:0 2.12

dr ( )

flfl) (2.13)
dr

10



At r = R,- (the interface of the two regions)

u1 = 112 (2.14)

dul duo

— = ——" 2.15#1 dr #2 dr ( )

Pl = P2 (2.16)

T1 = T2 (2.17)

dTl dT2

k — = k — 2.18

1 dr 2 dr ( )

u2=0 aim

dT
k2 ——2 = qw (2.20)

dr

The matching conditions on the pressure and the temperature along with the fully

developed assumptions lead to the observation that both regions are subjected to the same

dT

pressure gradient (-H) and have the same axially temperature gradient —d—'l’—. An energy

2

balance on a differential element of length A2 and radius R0 is carried out below.

1111 W
 

Region 2       

Figure 2.1: Energy balance on an element of length dz

11



2 2 2

27IR0qde = (”R1 “171,1 )prCdeTm +7I(R0 — Ri )um,2pf,2cp,2dTm (2'21)

which can be written as: -

 

 

 

dTm = 2R0qw (2 22)

2 2 '

dz (pc‘p)1R12ulil,1 +(a‘p)2(R0 —Ri )u”l,2

where

1 R‘
um,1 = 2 [u1(r)2mdr (2.23)

i 0

1 R0

“m,2 : Iu2(r)272rdr (2.24)

”(R3 - R?) R],

NON-DIMENSIONALIZATION

Prior to solving the equations, the following non-dimensionalization is used.

 

,7__’_

R0

ui
v.:___

r “m

2 (2.25)

HR

GI: O

umidi

_ TITTC

l 2Roqw/ki

Then the momentum equation becomes:

libfl] = -01. (2.26)

77 dn (177

And, the energy equation becomes

12



l
 

mpg]_
" 2 2

’7 d" d” S21,1'777' V777,] + S211,“1 — 771' )vaI

In dimensionless form, the boundary and matching conditions become:

At 77 = O (the centerline of the channel)

d
i=0

d77

d6
_1-_0

6177

61—0

At 77 = 77,- (the interface between the two regions)

V1=V2

6111-512

d7] d7;

91:92

aa_da
dt] ([77

At 77 = 1(at the outer surface of the channel)

112:0

Several non-dimensional parameters appear from this scaling. We define them as

k1
Thermal Conductivity Ratio: y = 7(—

Dynamic Viscosity Ratio: /1 = _'u_1

#2

2

13

V7
(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)



R-

Radius Ratio: 777 = RL

0

1,m=n

Heat Capacity Ratio Function: Elm," = a),m > n i

l
,m<n

A) . 

(“p11

#6,; 2

Heat Capacity Ratio: (1) =

d .

Consider the momentum equation (2.26) 11 77—v'— = —G,-

’7 £177 d7?

Solving the momentum equation separately for the 2 fluids, we get,

VI = A”3’72
(2.36)

V2 = C ' D772
(2.37)

Where, A = 521.181,)? ‘18277.’2 + L08177i1777 '1481777 +__82771
4 4 4 2 2

B=§l
4

 
1 I 8277'

C=— +L0 - ——/t .+ ‘

Thus, the actual velocity profiles are:

 

  

W
741: lhR,?[—1—-i]+ 0 -—h—r2 (2.38)

4 #1 #2 4#2 4#1

W
112: 0 — h r2 (2.39)

4#2 4#2

14



The mean velocity profiles are:

For the inner fluid,

Ri

 

1

“771,1 = uf = ——2 Iu1(r)2flrdr

i O

For the outer fluid,

1 R0
“m,2 2 us 2 2 2 Iu2(r)2flrdr

”(R0 _Ri ) RI

The mean velocity of the 2-fluid system as a whole is evaluated as follows:

1 R0 R1

um =——é- Iu22flrdr+ IuIZJZrdr

”R0 Ri 0

The mean velocity profiles are then evaluated using the above equations:

u 1— h(2R3'#1 + R? (—2#1 + #2 ))
”I —

’ 8#1#2

 

h(R02 - R12)

8#2

“m,2 :

: h<R2m + R.-4(#2 — 74 >>

8Rti#1#2

 

“771

The next step involves the calculation of the temperature profiles:

SO considering the energy Equation, Eq (2.27),

  

1 d d6,- 1
_d_ 77 d : 2

2 vi

’7 ’7 ’7 91,7771 V771,] + 917.1(1‘ ’71 Wm.”

15

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)



INNER FLUID CALCULATIONS:

The non-dimensional temperature profile of the first fluid is calculated first using the

above equation:

4 2

91 = E77 ‘ F77 (2.47)

where, E = — gl ,

2 2
64(971771 VmJ +971,1(1—’71 )VmJI

F: (‘81771'2—82 +8277?)

2 2

16(Ql,l77i va +9[1,1 (l—ni )val)

This is converted to the dimensional form to get the following expression for the

temperature of the first fluid:

2

Let m=QI,l7712V771,I + 9[1,1 (1 T 771' )val (2'48)

: 4qu2(R§ —R,-2),u1 —(qu2(r2 -4R,?-) —32mk1R0Tcumfll),u2

32mk1Roum/1Lu2

 

T1

(2.49)

Once the temperature profile of the inner fluid is known, its mean temperature is

calculated.

R1

qu = ——2——— Tlul 2717‘dr (2.50)

1' “772,1 0

The mean velocity of the inner fluid is:

Ri

umJ = —2 u127zrdr =

72' i O

711(211'02 #1 + rah—2171 + 272 ))

8#1#2

 (2.51)

The mean temperature of the first fluid is:

16



24HngRr'2/112 + 384mk1Rchumfl12/12 T 192mklRoRizTcumlul (27111 T #2 )flz +

r 1 _ 417ngRSI/11 (—12#1 + 7772 ) + MRI-6047112 - 28711712 + 771%)
m, _

192mk1R0um#1272 (2R3p, + R? (—2,u1 + 172))

 

 

 

(2.52)

The temperature at the interface of the two fluids is calculated as:

Z. = Tl At r = R,-

T. = 41141131112771 + 32mkiRoTcum#1#2 + 1‘1quHM + 3m) (2 53)

' 32mkiRaum7t17tz

The heat transfer at the interface is given by:

dT

‘17 =—k1———1- At r=Ri

dr

2 3 2 2

_ _ 8HqR0 Ri#1 — ZHCIRI #2 - ZHCIRI (4R7 (#1 — #2) + Rt #2) (2 54)

l —
.

32mRoumtul/l2

Finally, the Nusselt Number at the interface of the inner fluid of the inner fluid is given

by:

= (11 ,,. 2R7

(Ti T T771,1) kl

 

Nu“ (2.55)

with the values taken from Eq (2.52), (2.53), (2.54)

OUTER FLUID CALCULATIONS:

The next step involves calculating the temperature profile of the second fluid. The

velocity and the mean velocity of the second fluid (outer fluid) are as follows:

_H(R§—r2)
(2.56)

4#2

 

“2

l7



  

R0 2 2
H R —R-

umfl = 21 2 IuZZflrdr: ( 0 ') (2.57)

”(R0 TRi )Ri 4#2

Equation (2.46) is solved first to get the non-dimensionalzed temperature profile and then

converted into the dimensional form to get the following result:

r R-

(ankzkf UREA + R? (4771 + 3772» + kl <4an<Logt-I—,—1 — LogiR—'1)Ri4#2
0 0

+ #1(4HqR02(mr2 - (m + 2(m — n)Log[RL] — 2(m — 71)L0g[%])R,-2 ) +

0 0

R-

Hq(—mr4 + (m + 4(m — 2n)L0g[—REr—] — 4(m — 2n)Log[El—])R,-4) + 32mnk2 RoTcumflz)

 

T2 =
0 0

32mnklk2R0u’nfll #2

(2.58)

where 11: 97,27712 V771,] + 917.2(1‘ 7772 )VmJI

m = 91.17712va + 977,1(1— 77:2)1’771,” (2'59)

The mean temperature of the second fluid is given by:

1 R0

Tm,2 = 2 2 ITzuz 2717111”:

”(R0 —R1 )um,2 R1

 

(7712mqklkfjp1 + 12717-77247:leszp1 —36h2nqk1RgR,-2,u1 +

48h2quog(R./Ro )k1R06R1'2#1 -48h2nqLog(R.- /Ro )kIRSRim +

24h2nqk2R06R12p1 —367127122111793R?”l + 84h2nqkleRi4pl —

24h2qu08(Ri/Ro)k1RgRi4#1 + 48h2nqLog<R.-/R0>k1R3R.-“m —

72722an<2R§R,-4pl + 20h2mqk1RgRi6fl1 —6Oh2nqk1R§R,-6,ul +

727¢2nqk21r§1ri6p1 ~3h2mqk1R,8,u1 + l2h2nqk1R,8,u1 — 24h2nqk2R,8,u1 —

18h2nqkle‘Ri4p2 + 24h2nqLog(R,- /R0)k1R;‘R,-“p2 +18h2nqk2R§pr2 +

24h2nqk1Rg'R16fl2 - 36h2nqk2RgRl-6fl2 — 6h2nqklRl-8,u2 + 18h2nqk2Ri8/12 +

192hmnk1k2Rchfl1y2um + 384hmnk1k2R03Ri2Tc17117217,, + 192hmnk1k2R0 Rfrc#1Mum

l92hmnk1k2R0 (R3 — R12 )2 #I#2um
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(2.60)

THE NUSSELT NUMBER AT THE OUTER WALL:

To find the Nusselt number at the outer wall, we need to compute the mean temperature

of the system in total:

Ri R0

Tm = —Tl—— Iu1T127zrdr + quT2 27zrdr (2.61)

oum 0 RI

The temperature of the outer wall is given by:

Twa” =T2 AI r = R0 (2.62)

The heat transfer at the interface is given by:

dT

qw : Tk2 drz at r = R0 (2.63)

The Nusselt number at the outer wall is given by:

2R
N170: qw * 0 (2.64)

(Tm T Twall ) k2

 

Where qw,Tm ’Twall are given by Eq (2.63), (2.61) and (2.62)

RESULTS AND VALIDATION:

Since there is no literature with which we can validate the Nusselt numbers for the 2

fluids case, we validate it using the standard one-fluid case.

If we set 77,-=1. It means that the inner radius is equal to the outer radius, or in other

words, there is only one fluid in the system and it’s the inner fluid. And the Nusselt

numbers should converge to the Nusselt number of the one-fluid case.

19



The two Nusselt numbers, the Nusselt number at the interface of the first fluid, Nu“ and

the Nusselt number at the outer wall, Nu” were evaluated for radius ratiozl. The Nusselt

k

number at the outer wall yielded a value of exactly igk—la We get an extra factor of the

2

ratio of the 2 thermal conductivities due to the way we define the Nusselt number. It has

been defined with respect to the second fluid thermal conductivity. However there is no

second fluid if the radius ratio is exactly equal to 1. Now, if it is scaled with respect to the

first fluid (which is the only fluid present in the system), the Nusselt number simplifies to

a value of exactly 4.36 that is the Nusselt number of a single fluid flowing in a pipe with

constant heat flux on the outer wall [12].

. . . . 48 .

The Nusselt number at the 1nterface for the first flu1d also yields a value of exactly 1—1— 1f

the radius ratio is equal to l, which is to be expected because the interface is at the wall in

that condition.

Another method in which the Nusselt number expression was validated was by assuming

that both the fluids 1 and 2 are the same. In that case, the Nusselt number at the outer

wall gave :11? irrespective of the value of the radius ratio.
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Radius Ratio
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NUM 8

0.2 0.4 0.6 0.8 1.0

7.9

7.8 t

7.7

7.6   

Figure 2.2: Nusselt number at the interface as a function of the radius ratio

As can be seen from Figure 2.2, the Nusselt number at the interface approaches the value

of 8 when the radius ratio approaches zero. This is because the inner fluid flow becomes

a plug flow as the radius ratio becomes very very small. And the Nusselt number of a

plug flow is 8.

Although not exactly visible in the graph, when the radius ratio approaches 1, the Nusselt

number is equal to 4.36.
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Nuo

1.5  
0.2 0.4 0.6 0.8 1.0

Radius Ratio

Figure 2.3: Nusselt number at the wall as a function of radius ratio

From Figure 2.3, we can see that the Nusselt number at the outer wall becomes 4.36

when the radius ratio equals zero, in which case the only fluid present in the system is the

inner fluid. When the radius ratio equals 1, the Nusselt number at the outer wall

converges to a value of 1.029. From the program, it has been observed that the Nusselt

number at the outer wall converges to 1.029 at a value of radius ratio of 0.9999999999.

However when the radius ratio becomes 1, the only fluid present in the system is the

inner one. Thus, the Nusselt number at the outer wall must be scaled with respect to the

inner fluid by multiplying 1.029 by the ratio of thermal conductivities. In this case, the

ratio of thermal conductivities is:

k—1 — ——O'145 = 0.236
k2 ‘ 0.613

The Nusselt number at the outer wall becomes:

N110 ‘—‘ -l-02—9 = 4.360

0.236



Thus, the results have been validated

Following are the plots of Temperature as a function of the radial position for different

values of radius ratios. An entry temperature of TC =1000c was assumed with the

following properties of the fluids:

Table 2.1:Properties of the two fluids

 

 

 

 

 

 

 

 

Oil Water

Density (,0) 884.1 997

kg / m3

Heat Capacity (cp ) 1909 4179

J / KgK

Viscosity (fl) 0.486 0855* 106-6

NS / m2

Thermal conductivity (k) 0.145 0.613

W /mK

Thermal Diffusivity (a) 0.859*10e-7 1.47 l * 106-7

m2 / s

Prandtl Number ( Fr) 6400 5.83   
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Figure 2.4: Temperature of the system as a function of radial position for different radius

ratios.
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Figure 2.5: Temperature of the system as a function of radial position for extreme radius

ratios.
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CHAPTER 3

CONSTANT TEMPERATURE ANALYSIS

Consider Eq (1.18) and Eq (1.19)

82 Tw - Tm

aT _ dTw _ Tw -T dTw + TW —T dTm

az dz Tw - Tm dz Tw - Tm dz

 

(3.1)

(3.2)

The boundary condition of constant wall temperature reduces the above Eq (3.1) and Eq

(3.2) to

a_T_ Tw"T dTm

az TW—Tm dz

 

Figure 3.1 gives the energy balance on an element of length dz.

 

 Region 2     
 

Figure 3.1: Energy balance on an element of length dz

(3.3)

ZHRqu(Z)dZ = (URI-214,,” )pf,lcp,ldTm + I-I(R02 _ Ri2 )um,2pf,26p,2dTm

dTm 251w R0

— 2 2 2

dz (pcp )1 R1 ”m,l + (,OCP )2 (R0 _ Ri )um.2
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(3.4)

(3.5)



d7", 2qw"(x)R0
 

 

 

 

 

 

 

 

=
(3.6)

dz (pc )1 R2 R-2

{(pcp )2R§[ P ”3%! + (1 ——‘:,—)u..,2 1}
(pcp )2 R0 R0

Substituting the above expression from Eq (3.6) into Eq (3.3), we get:

a_T : (Tw — T) 2qw"(x)R0 (3 7)

82 (T —T ) (pc )1R-2 82 '

W m {(pcp )2 R02[ P —£2_um,l + (1" ’iz'mml ]}

(pcp )2 R0 R0

2: = (1.8)”) 2(Tw —T) (3 8)

az (T —T> (pc )1 R2 R2 '
W m {(pcp )2 R02[—£__12um,1 + (1-%)um,2]}

(pcp )2 R0 R0

But, Jig)— = h. (3.9)

(Tw "'Tm)

From the definition of Nusselt number (on the outer wall),

0 k2

Using Eq (3.9) in the above definition of the Nusselt number, Eq (3.8) reduces to:

az 2R0 2 (pep )1 R,—2 R? '

{(pcp )2 R0[—TumJ + (1" —2)um,2 ]}

(“p )2 R0 R0

27; _ a2(Tw —T)Nu0 (3 12)

az _ (pc )1 R2 R-2 '

{R02 P fund + (1— %)um,2 ]}

(,0Cp )2 R0 R0

The energy equation Eq (1.17) l—a—(fl r] = u—Z—a—T reduces to the following form:

r Br Br a 02
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  —— r— = (3.13)
rar Br (I 2(pcp)1§: R2

1 a[ 67) uZ a2(Tw—T)Nuo

{R  u ,1+(1-—i—)u ’21}
0 (mp)2 R02 m R02 m

Since there is only one velocity component, the z-component, uzis replaced by u for

simplicity.

The Boundary and the matching conditions are as follows:

At r = 0 (at the centerline of the channel)

dz-
— 0 3.14

dr ( )

At r = R, (at the interface of the two regions)

 

T1 2T2 (3.15)

dTl dTo

k — = k " 3.16

1 dr 2 dr ( )

At r = R0 (at the outer surface of the channel)

T2 = Twall (3.17)

INNER FLUID CALCULATIONS:

Thus for the first fluid, the energy equation (3.14) becomes:

 

 

la 0T1 _u1 a2(Tw—T)Nu0

7570‘ 1%)"sz 2 (pcph R} R,-2 (3'18)

{R0 2 um,1 + (1—7)um,2]}

(pcp)2 R0 R0

2

u1 = 1hr,2(i——1—]+—h—ro— —-i—r2(1=rom Eq 2.38)

4 #1 #2 4#2 4#1

Defining new parameters:



6,-2T1—Tw Andn=7:—,

0

Equation (3.18) simplifies to:

ii 77%. +[M—N772]Nu 9 =0 (3.19)
ndn r177 01

a' 2 “'8'

‘j‘(81—82)77i + ’42

where M = . 2 2 . (3.20)

(”i vm,lw+ (1_’7i )Vm,2)

 

0’1

781

And N = 4 2 2 . (3.21)

(771' vaw +(1— 771' )vm,2)

 

a,- = —- (3.22)

And the other variables are same as defined in the constant heat flux problem.

Equation (3.19) is solved by the Method of Frobenius [15]:

Let 191 = 77“ Zann" (3.23)

n=0

Substituting the value of 6, in Eq (3. 19) we get:

2(71 + s)(n + s --1)a,,775+"—2 + 2(n + s)a,,77"+s"2 + (M — N772)Nu0 2071”,!” =0

n=0 n=0 n=0

(3.24)

Equating the coefficient of the lowest power of 77 which is the coefficient of 775—2:

s(s —1)ao + sao = 0 (3.25)

which leads to s=0,0. (Double root)
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If the indicial equation has 2 equal roots, as in Eq (3.25), at y = m1 and y =m2, the

solution is given by [16] :

d

y = Cl (1’)",1 + 62(1) (3.26)

Mg

Thus, the solution in our case is given by:

21191
6 =6 6 _ +c —1 1(1)... 218s].-.

191 = Cl Zann" +c21n77 Zann" (3.27)

n=0 n=0

From the boundary condition (3.14), 526—1 = 0 at 77 = 0 , we get c2 = 0. Eq (3.27) reduces

77

to the following form:

61 =C1 Zuni)" or (91 = ZAnn" (3.28)

n=O n=0

Substituting in Eq (3.24), we get,

Z(n)(n —1)A,,77"‘2 + Z(n).c1,,n"“2 + (M — N772)Nu0 221,77" =0

n=2 n=1 ":0

(3.29)

Equating the corresponding coefficients of 77 powers to zero:

MN

770 22/12 +2742 +MNu0A020
:3 [122— “0
 

A0

77‘:6A3+3A3 +MNu0A1 =0 :> A3 =0
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[MA2 — NAG] Nuo

16

 

’72: 12/14 +4A4 +Nu0[MA2 —NA0]:O:> A4 :_

773220145 +5A5 +Nu0[MA3 —NA1]=0 —_—> A5 =0

MA— A

-[ 4 N2]Nu 274:30/16 +6A6 +Nu0[MA4 —NA2]=0:> A6 =

 

 

 

 

 

36 0

In General:

A” = 0 for n 2 odd,

Nuo

= 2 [——MA,,_2 + NA,,_4] For n: even and n>2

n

MN

and, A2 = — 4“0 A0 (3.30)

OUTER FLUID CALCULATIONS:

For the second fluid (outer fluid), the energy equation (3.13) becomes:

T - T N
li(,§I§)=u_2 a2( W ) ”0 (3.31)

rar 8r a2 2 (pcph R72 1.2

{(pcp)2Ro —2um,1 + (1" —2)um,2]}

(pcp)2 R0 R0

2

h

u2 = r0 — irz (From Eq 3.39)

4#2 4#2

Equation (3.31) simplifies to:

1 d d6
——[n——2]+[P—Q272]Nu062 =0

77 dn d0

§l A

P = . 4 . And Q== 4  
2 2 2 2 A

(771' V171,] + (00— 771' ”1112) (771' vm,l + (”(1 — 771' ”1212)

Equation (3.32) is solved by the Method of Frobenius:
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[.6162 = ”3 an77"

72:0

Substituting the value of 62 in Eq (3.32) we get:

n=0 77:0

202 + s)(n + s —1)b,,773+"‘2 + Z (n + s)b,,n"“‘2 + (M — N772 )Nuo ann"+s = 0

(3.33)

Equating the coefficient of the lowest power of 77 which is the coefficient of 773—2 in Eq

(3.33) to zero, we arrive at the following indicial equation:

s(s —1)b0 + sbo = 0

which leads to 8:0. (Double root)

Thus, the solution in our case is given by:

d62

92 = 63(92 )szo “4(1)

5:0

02 = C3 anfln + 641117] anfln

71:0 7720

From the boundary condition (3.15), (3.16), (3.17), we get,

62(7]=1)=0

491(77=777)=6’2(77=777)

d9

k1‘—1‘=k2—N77=777

6177

Equation (3.36) can be rewritten as:

92 = 237777” +2071 1117777"

77:0 77:0

Substituting in Eq (3.33), we get,

32

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)



Z(n)(n — 013,77"—2 + Z(n)(n —1)D,, 1n7777"_2 +Z(n)D,,77"_2 4.20”” (77 — 1) +

”:2 ”:2 n=1 "=0

2003,77” +ZD,,27"‘2 +Z(n)D,, In 7777"—2 +Z(P)B,,77"Nuo + 2(1),, )PNuO77" ln77 +

n=l n=0 n=1 n=0 n=0

-Z<Bn >QNuon”+2 — 2(1),. )QNu077"+2 In 77 = 0 (3.41)

"=0 n=O

Equating the corresponding coefficients of 77 powers to zero:

77’1 :2D1+Bl =0

770 : 482 + 402 + P80 Nuo = 0 (3.42)

77‘: 983 + 603 + PBlNuO =0

772 :16B4 + 804 + Nu0[P82 — Q30] = 0

OOOOOOOOOOOOOOOO

Equating the coefficients of Logarithmic terms:

77'1 In 77: DI = 0

:70 1n 2; :41)2 + PDONuO = 0 (3.43)

2710177003 + PDlNuO = 0

7721;127:1604 + (PD2 —QDO)Nu0 = 0

From Eq (3.42) and Eq (3.43), we can deduce that all the odd D,- 's are equal to zero.

In General, the values of D, 's are:

DZn+1=O ’
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PNuO

 

Dz = — 4 DO

Nu

D277 : 2 )02 [QDZn-4 — PD2n—2] (3-44)

’1

where n varies from 0 to co and n is an integer.

When the use the fact that all the odd D,’s are equal to zero from Eq (4.44) in the set of

Equation (3.42), we can deduce that all the odd B, 's are equal to zero.

 

In General:

BZn+1 = O

NuO 11

3277 =__2[QBZn—4 _ P8271-2]__DZM (3'45)

2n) n

PN

32 = ”0 (Do ‘30)

where n varies from 0 to co and n is an integer.

Using the Boundary Condition (3.15)

49107 = 777') = 9207 = ’77)

ZAZnnizn = 232717772” + 202727712" “1777' (3-46)

=0 n—0 n—0

Using the Boundary Condition (3.16)

dklfl=k2_
(177 (177

yZ(2n)A2n77,-Z" l = 2(2n)827777i2n 1 + 2(2n)D2n771 n [In 771‘ + 2132717” 71

71:1 72:1 77:1 n=0

(3.47)
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From Eq (3.30), Eq (3.44), Eq (3.45), we realize that all Azi's are a function of A0 only,

all D27'S are a function of D0 only and all 3285 are a function of D0 and B0 only.

Equation (3.46) and Eq (3.47) are now solved to get D0 and B0 in terms of the third

unknown which is A0.

Now, the wall boundary condition 192 (77 = 1) = 0 to get the following equation (and arrive

at the following equation:

0: i 82,1772" + i Dznnzn 1n77 where 77 =1

n=0 n=0

(3.48)

The values of DO and B0 are known in terms of A0. Thus Eq (3.48) takes the form:

A0 [equation *1 = 0 (3.49)

The equation* in Eq (3.49) is solved to get the Nusselt number in terms of all the two-

fluids parameters. The value of the Nusselt number varies depends on the number of

terms in the summation. However, as we later observe, the value converges after 10 terms

and the value doesn’t change appreciably upon increasing the number of terms than that.

Following is the flowchart to solve the Nusselt number of a two-fluid system which is

thermally and hydrodynamically fully developed and assuming that both the fluids are

[ m]

1
Input the value

of radius ratio

Newtonian.
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Input the values of

fluid properties

Enter the

pressure gradient

Calculate various ratios such as

a,7./l,gl.32.m,n,p.q,w

Calculate the value of A2,. 's in

terms of AO

 

 

   

 

   

  

 

Calculate the value of 9,

 

 

 

Calculate the values of D2148 in terms

of DO
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Calculate the values of By 's in terms

of B0 and D0

Calculate the value of 02

1
Apply interface conditions on 61 and 62

1

Calculate the value of B0 and D0 in

terms of A0

Apply boundary condition (outer wall) and

calculate Nuo

   

 

   

 

   

 

   

 

   

 

Stop

 

Figure 3.2: Flowchart to solve the Nusselt number for the two-fluid case
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The point to be noted here is that the solution is not complete as yet. This is because we

still have to find the temperature profiles of the two-fluids. And for that, we need to

compute the values of A0 , Bo and D0. Since 30 and Do are functions of A0, the two

temperature profiles can be evaluated once A0 is known.

Consider Eq (3.12)

 

 

g: 0.720,, —-T)Nu0

82: — .2 .2

1R3 (”C”)‘5'3um.1+<1—5‘3>um.211
(706,02 R0 R0

Equation (3.12) can be reduced to the following form:

17: = a2(Tw —T)Nu0

az {Rgummn

 

 

pcp.2 um Ra2 R3

where A =

u"!

u .2 2 2

] m Jzam, Vm,l + (1-777" )vm,2

Let 6=T—Tw and “EZ—

0

Equation (3.50) reduces to the following form:

86 +Nu062az :0

R039" umRoA

 

From Eq (3.28), 191 = 214.77"

=0

61=A0 +A2772 +A4774 “16776 + ..........

A2 2 A4 4
61=A0(1+—:-77 +—77 + ......... )

46 A0

Equation (3.53) can also be written as:

38

(3.50)

(3.51)

(3.52)

(3.53)



61=A0Y Where Y=(l+§l772+fl774+ ......... )

Ao 46

Substituting Eq (3.54) in Eq (3.52), we get the following equation:

_Y_aAO + NuOAOYa2 —0

R0 8; ungA

 

Or,

 

8A0 + N“0140612 :0

a; umROA

Define a new non-dimensional quantity called the Peclet number,

Pe : um.2R0

a2

Equation (3.56) reduces to the following form:

 

3A0 + 2Nu0A0 : O

a; PeA

—2Nu0§'

= C * __

A0 m1 l

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

Assume an inlet mean temperature of 6,",0 at the point where the flow gets

hydrodynamically fully developed (2:0). The mean temperature at the point f = 0 is

1 771

9771.0 =—‘2‘— 19m 271776177

”777' Vm,l O

— 2N

Using the value of A0 = C *exp(—P—:O£) from Eq (3.59) in Eq (3.60),

e

6m,0

777'

22 fll+élnz+§i774+ ............)(a—bnzpn

A0 A0
777' vm,l 0
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(3.60)

(3.61)



where, the velocity of the first fluid (inner fluid) is given:

g 1 1 g

V1 :a_b772, a:__2_+_g177i2__g277i2,
b:__1

4 4 4 4

Thus, the value of C is calculated from Eq (3.61) and the value of 191 is:

191 = A0 + A2772 + A4774 + A6776 + .......... (3.62)

An = 0 For n = odd,

 

 

 
 

N

= “20 [—MAn_2 + NAn_4] For n: even and n>2

72

MN

and, A2 = — 4140 A0

63- 2 a-g2 a-

—'—(81-82)771 +—'—— 481
4 4 , N = , 4

675717.10) + (1‘ 7772 )Vm,2) (7772 Vm.1(0 + (1" 7712 )Vm,2 )

— 2N

And A0 = C * apt—530;] where,

6m,0

771'

2 (1+l—4-2—772+éi774+ ............](a—b772)d77

A0 A02

771' vm,l O

 

 

RESULTS AND VALIDATION

The Nusselt numbers were calculated at three locations, at the outer wall, at the interface

for the first fluid and at the interface for the second fluid. The two fluids considered for

the sake of analysis were engine oil at the inside and water at the outside. The properties

of oil and water are taken from Table 2.1.
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v = k—1=0.236

k2

,1 =fl =568421

#2

a) = (pcp )1 =0.4051 (3.63)

(pcp)2

,- = $4712

“1

The Nusselt number at the outer wall (N170) was calculated for different values of

radius ratios varying from 0 to 1 following the steps outlined in the flowchart in Figure

3.1. Because there was no existing solution for Nusselt number in a two-fluid case, the

results were compared with the Nusselt number at the outer wall for a single fluid and

constant temperature boundary condition. The value of Nu0 was evaluated at various

values of radius ratio (77,- = R,- / R0) close to zero. As the radius ratio approaches zero, it

implies that the only major fluid in the system is the second fluid. Thus, the Nusselt

number at the outer wall must approach the Nusselt number’s value of the single fluid

case. The Nusselt number at the outer wall of a tube with a single fluid flowing in it and

constant wall temperature boundary condition is 3.65679 [12]. The value of Nusselt

number Nuoin the two-fluid case was 3.6575 for 77,. = 0.01 and 3.6568 for 77,. = 0.001.

Thus, these results show that the Nusselt number expression for the two-fluid system is

right as it approaches the value of that of a single fluid system with similar boundary

conditions.

The system also approaches the single-fluid system, if the radius ratio approaches

1. If 77,. is close to 1, it would imply that the only component present in the pipe is the
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inner fluid (011). Thus, the Nusselt number at the outer wall must converge to 3.65679.

Nu0 Was evaluated for radius ratios close to 1. The value of Nu0 was 0.8648 for 77,. =1.

However it must be noted that Nuo is evaluated with respect to the outer fluid.

qw 2R0

(Tw — Tm) k2

N110 —
 

Nu0 must now be calculated with the inner fluid because if 771:1, there is no outer fluid

in the system. Thus 0.8648 is now scaled with respect to the inner fluid (the only fluid in

the system).

 

 

  

" 2R
Nuo = qw . 0

(Tw —Tm) k1

k2
Thus, Nuo =0.8648*—

k1

N170 =0.8648* 0613 =3.656

0.145

4.5 — Nu"

4 1
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3 1
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Figure 3.3: N170 vs. 77,-
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From Figure 3.3, it can be observed that N170 increases as radius ratio increases to a

value of 0.4 and then drops. To understand this phenomenon, the total energy in the fluid

was plotted as a function of the radius ratio. Figure 3.4 shows the energy of the inner

fluid, energy in the outer fluid and the total energy in the fluid as a function of the radius

ratio. Total e denotes the energy in the entire fluid and el and e2 denote the energy in the

first and the second fluid respectively. It can be seen that the total energy in the fluid

increases till the radius ratio increases to a value of 0.4. The nusselt number at the outer

wall is dependent on the heat transfer that in turn is dependent on the total energy in the

fluid. Thus, the Nusselt number at the outer wall increases till the radius ratio of 0.4 and

then drops, showing the same pattern as the total energy in the fluid.

1.60E+06 —

1.40E+06 ~

1.20E+06 ~

1.00E+06 —

+total e

+91

+92

8.00E+05 ~

6.00E+05 -

4.00E+05 ~

2.00E+05 ~   0.00E+00
0 0.2 0.4 0.6 0.8 1

Radius Ratio

Figure 3.4: Energy in the fluids vs. 77,-
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The next step was calculating the Nusselt number at the interface for the inner fluid.

‘11 2’1
=—— (3.64)

(Ti _Tm,1) k1

NHL]

.771
611 = ICE" |r=r,-

T,- =Temperature of the interface

TmJ = Mean Temperature of the inner fluid

The Nusselt number at the interface is now verified again with the Nusselt number at the

outer wall for the single fluid case. If the radius ratio goes to 1, 77,. = 1, the interface is

now at the wall, and thus Nuhl should be same as that of the wall Nusselt number for the

single fluid. The following chart shows how the radius ratio affects the Nusselt number at

the interface.

9 Nu“

8 A

7.1

  O n r 1 1 . ' 1

0 0.2 0.4 0.6 0.8 1 1.2

Radius Ratio

Figure 3.5: Nu“ vs. 77,-



As can be observed from Figure 3.5, the value of Nu“ is 8 as the radius ratio approaches

0. This is because as the radius ratio is close to 0, it would mean that the inner fluid flow

is same as that of a plug flow. As can be seen in literature, the Nusselt number for a plug

flow type problem is 8. And as the radius ratio approached 1, the value of Nu” is exactly

3.657 that again validate our expression for the Nusselt number at the interface.

The next step that was done was to make the two fluids the same. If both the inner and

the outer fluid are the same, the Nusselt number at the outer wall must be equal to 3.6567

for all values of radius ratio. The value of N170 approached 3.6567 irrespective of the

value of radius ratio thus validating the results. The following plots show the temperature

variance with the Radial position.
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Figure 3.6: Temperature vs. radial position for different values of 77,-
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CHAPTER4

CONVECTIVE BOUNDARY CONDITION

One of our initial assumptions in solving this problem was that the flow is

thermally fully developed.

8 T -T
_ W _—_0 4.1 

Equation (4.1) reduces to the following form:

(4.2)  

a: _ dTw _ Tw —T d7}, _ dTm

az dz Tw — Tm dz dz

From Eq. (3.4) and Eq (3.5), the energy balance on a element of length dz gives,

2T1R0qw(x)dz = (1176211,,1 )prcdeTm + 11(R02 — Rf )umzpfgcp’szm (4.3)

(1TH! 2gW R0
 

  

= (4.4)

dz (,OCP)1 RizumJ + (pcp )2 (R02 —R1'2)um,2

dTNI ___ 2qW"(x)R0 (4 5)

dz (,0c )1 R-2 R-2 .
2 P 1 1

{(90 )2R [———u ,1+(1——)u ,211

p 0 (706,02 R3 m R2 m
0

The convective boundary condition implies that there is a fluid outside the pipe whose

convective heat transfer coefficient is denoted by h... [17]. Therefore, the boundary

condition is,

Qw" : hoo (Too — Tw) : h0(Tw —Tm) (4'6)

Equation (4.6) reduces to

N17000:» — Tw) = Nuo (Tw - Tm)

where,
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hooZR .2R

Nam: 0 and Nu0=hO 0

1‘2 k2

  (4.7)

From Eq. (4.7) we can arrive at the value of the wall-temperature gradient in terms of the

mean temperature and the two Nusselt numbers.

 

  

  

  

dTw : N170 dTm (4.8)

dz N170 + Nuoo dz

Substituting the above value from Eq (4.8) in Eq (4.2), we get,

3T _ N170 dTm + Tw —T Nuoo dTm

az N170 + Nuoo dz Tw —T,,, Nuo + Nuoo dz (49)

From the definition of the heat transfer at the wall,

" _ _ qw
qw — hoo(T,,,, —TW) :> Tw —T°,, -—

h... (4.10)

Substituting this value in Eq (4.10)

_ £111: _ T

8T _ N“0 dTm + 00 hoe Nuoo dTm

az Nuo + Nu... dz Tw -Tm Nuo + Nu... ‘13 (4.11)

(Irv : h_0 : NuO

8T _ Nuo dTm NuO Nuoo dTm + Tc,o —T Nuoo dTm
  

32 — N170 + Nuoo dz — Nuoo N170 + Nuco dz Tw — Tm Nuo + Nu0° dz

(4.13)

67 _ Too—T N11,, dTm
_ __ (4.14)

dz Tw —Tm N170 + Nuc,o dz

 

From Eq (4.5),
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dTm 2q,,,"(x)RO

dz (pc )1 R2 R-2

{(pcp)2R02[ P —%u7n,l+(l_—12')“m,2]}

(mp)2 R R
0 0

 

 

( ) 2 u 2 u

where, A = .m% "1’1 + (1_512_) m,2

(mp)l R0 um R0 u,"

82 Tw -Tm NuO + Nuoo (pcp)” RoumA

 

From the definition of heat transfer at the wall,

qw : h0(Tw _Tm)

Using the expression from Eq (4.16) in Eq (4.15), we get,

2

91 = (T... —T> Nu” ho
Bz Nuo +Nu°o (pep)” RoumA

 

ho = Nu0.k2 /2R0

So, from Eq (4.17) and Eq (4.18), we get,

N cc,N

a—T=(T...—T> “ “0 “2
Bz NuO + Nuoo RozumA

 

The energy equation for the flow is,

13( BT]_uBT
_ r_ ___

rBr Br aBz

Using the value of $3): from Eq (4.19) in Eq (4.20),

z

 
_ r— ——

r Br Br

N N0011( GT]: u 8820004) uo u 1

um (I N170 +Nu°° R311
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261w

(pep )2RoumA

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)



Non-dimensionalising Eq (4.21), 6 = T — T00 and 77 = -RL , we get the following Eq (4.22)

for the inner fluid.

where

And

i—‘Z— nd—B‘ +[M—N772]Nu 6, =0

ndn dn

ai( 2 aigZ

—- 81—82)” +—

M 14 l 4

@lzvaw + (1_ "1'2 )vm.2)

fl
N = . 4 81 ‘

2 2

(771' vm,lw+(1—77i )vm,2)

 

 

Nu = NuONuoo

Nuo + Nuc,o

(4.22)

(4.23)

(4.24)

The above set of equations (4.22)-(4.24) are same as that in the constant temperature case

except that Nu0 in Eq (3.19)-(3.22) is replaced with Nu .

Similarly, for the outer fluid, we get the following Eq (4.25)

ndn dn

g_2

_ g 4 .

“(2 2 l”i vm,l +w(1_77i )vm,2

Q

Q: . 4 .

(”£2va + ‘00— 7712)Vm,2)
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li[nfl:l+[P-Q772]Nu 62 =0 (4.25)

(4.26)

(4.27)



Since the equations are of the same structure as the constant temperature case, the

temperature profiles will also be similar. The boundary and interface conditions are given

in Eq (4.28)-Eq (4.30)

 

At 77 = 0,

£1.91. = 0 (4.28)

dn

At 77 = 77,,

116; = L62

d7? 0177

91 = 62 (4.29)

Atnzl,

(162 + Nu°° 62 : 0
(4.30)

d7] 2

Using the method of Frobenius, the expressions for thetal and theta2 are given by Eq

 

 

(4.31) and Eq (4.32).

61 = ZAnn" (4.31)

=0

A,"+1 = 0 For n = odd,

MNu

A” = — A!)

' 4

2n : Nuoz [NA2n—4 — MA2n-7]

‘ (2n) " ' '

62 = 23,177” +2 D" 1mm" (43?)

n=0 n=0
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D2n+l _O’BZn+l —O

[UVu IUVu

D2—_ Do 32: (Do Bo)

4 , 4

Nu Nu l

: D7n— PD’Iz—7 ’ B7" = 0 B7n— _ PB2ri—2 D21:2n (2”)2 [Q .. 4 _ _] _ (2)1)” [Q 4 ] _

Of,

6, = 2.42,,77" And 6, = 232,27" +20,” 1mm"

n=0 n=0 n=0

MNu PNu PNu

A22" 4 A()’D2:- Do Bzz—(Do-Bo)

Nu

A2" : 2 02 [NA2n—4 —MA’2n-2]

( ’1) (4.33)

Nu 1

2n=—— B2n— —PB"n—" __D2n.. (2n)2 [Q .. 4 .. -] n ..

Nu

2n : Wmez—4 — PDZn-Z]

Using the Boundary Condition (4.29)

6.07 =77.) =6207= 77,)

2A2n77i2n : 282nm?" + 202,177.?" 11177.- (4-34)

n =0 n—0 n -0

Using the Boundary Condition (4.29)

 

6 6,

k1 sz2 d 8

dry dry

yZ(2n)A2n 771,211-1 z 29,1)anm2n—1 + Z (2”)02,, m,2n-1 1n 77; + Z Dznmzn-i

n=1 n=1 n=l n20
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(4.35)

From Eq (4.33) we realize that all A2143 are a function of A0 only, all Dzi's are a

function of D0 only and all Bzi's are a function of D0 and 30 only. Eq (4.34) and Eq

(4.35) are now solved to get D0 and 30 in terms of the third unknown which is A0.

Now, the wall boundary condition is solved to get the following equation

0=§12n.B2,z + i D2,, + Elva—“’82,, (4.36)

n=l n=0 n=0 2

The values of D0 and BO are known in terms of A0 . Thus Eq (4.36) takes the form:

A0 [equation *] = O (4.37)

The equation* in Eq (4.37) is solved to get the Nusselt number in terms of all the two-

fluids parameters and Nusselt number of the fluid outside the tube.

RESULTS AND VALIDATION

The Nusselt numbers were calculated at the outer wall and at the interface. From Eq.

(4.36), it can be seen that the Nusselt number at the outer wall, Nuo, a function of the

Nusselt number of the fluid outside the pipe, Nu... The following table 4.1 shows the

dependency of Nuo on Nu... for a radius ratio of 0.001 and 1. As can be seen from Table

4.1, the Nusselt number at the outer wall converges to the constant temperature case in

the case of very high Nu... and to the constant heat flux case in the case of very low Nu...

[17]. The same dependency was observed for other radius ratios also. Figure. 4.1 shows

Nusselt number at the outer wall for 3 different radius ratios as a function of Nu...

53



Table 4.1: Dependency of Nuo on Nu...

 

 

 

 

 

 

 

 

 

 

  

"FD-0001 ”i=1

Nu.o Nuo Nu... Nuo

10° 3.65 106 0.86(3.65)

103 3.65 103 0.86(3.66)

102 3.66 102 0.87(3.66)

10 3.68 10 O.87(3.68)

1 4.26 1 l.00(3.98)

0.1 4.30 0.1 1.01(4.27)

0.01 4.35 0.01 1.02(4.33)

0.0001 4.36 0.0001 1.03(4.36)

10" 4.36 10'6 1.03(4.36)   
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Figure 4.1: Nuo vs. Nu... for different radius ratios

The values of A0 ,80 and Do need to be computed. Since B0 and D0 are functions of

A0 , the two temperature profiles can be evaluated once A0 is known.

Consider Eq (4.17)

a_T : (T... _ T) Nu... 2h0 _a2(T.,, —T)Nu

az Nu0+Nu°° (pcp)”ROumA— {RozumA}

 
 

(4.38)
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2 2

pCpJ um,1 R' R' “"12 2 2
where A = —'2 + 1" —12 = (0771' Vm,l + (1_ 771' )Vm,2

.0ch “m R0 R0 “m

7

&;

Let 6=T—Too and f: 

0

Equation (4.38) reduces to the following form:

86 +Nu6a2 _

R034” ungA

 

From Eq (4.31), 61 = 2 Ann"

n=0

61: A0 + A2772 + A4774 +A6776 + ..........

42 2 A4 4
61=AO(1+—77 +—77 + ......... )

40 46

Equation (4.40) can also be written as:

A A

61=A0Y Where Y=(1+—ln2+—4—n4+ ......... )

Ao Ao

Substituting Eq (4.41) in Eq (4.39), we get the following equation:

1.3/‘0 + NuAOYa2 _ 0

R0 0; ungA

 

Or,

8140 + Nil/4002 : 0

8: umROA

 

Define a new non-dimensional quantity called the Peclet number,

P8 = um '2R0

a2
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(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.45)



Equation (4.43) reduces to the following form:

 

 

3A0 + 21vqu = 0 (4.46)
a; PeA

—2Nu{= * 4.47An C exp£ PeA ] ( )

Assume an inlet mean temperature of 6,",0 at the point where the flow gets

hydrodynamically fully developed (2:0). The mean temperature at the point 4' = 0 is

771'

——1— (1911;127:2742; (4.48)
6m,0 = 2

7277i vm,l 0

— 2N
Using the value of A0 = C *expLP—uAOCJ from Eq (4.47) in Eq (4.48),

e

6
C = ”“0 (4.49)

771'
22 m1+43772+i4774+

............J(a—b772)d77
40 A6771' vm,1 0

 

 

where, the velocity of the first fluid (inner fluid) is given:

80 1 2 1

v1 =a—b772, az—4-‘+Zgi771 ‘182'712,b=%—

Thus, the value of C is calculated from Eq (4.49) and the value of 61 is:

61 = A0 + 42272 + A4774 + A6776 + .......... (4.50)

A” = 0 For n = odd,

_Nu

n2

[—MA,,_2 + NAn_4] For n: even and n>2

MN

and, A2 =-— 4qu 
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and

_i 0182 9;

4 —4 81

g . ,N= -

(81 . 82 )771'2 + 4

(ntzvaa) + (1'— 7712 )vm,2)

M =
.

2 2

(771' vaCI) + (1— 77i )Vm,2)

 

—2Nu§

= C ex where,40 P[ P A ]

 

 

e

C = ”— 6m,0

1

22 I£l+§lnz+éin4+ ............](a—b772)dn

771' vm,l 0 A0 A0

The temperature profiles as shown below have been plotted with the Nusselt number

Nu“, taken as 10.
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Figure 4.2: Temperature profiles for extreme radius ratios
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Figure 4.3:Temperature profiles for different radius ratios
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CHAPTER 5

SUMMARY AND CONCLUSIONS

Core-annular flow, which has a very important role in oil industry, has been

analyzed so far in this work. The oil—water flow has been analyzed for three boundary

conditions- constant wall heat flux, constant wall temperature and convective boundary

condition. In all the cases analytical solutions have been derived for velocity profiles,

temperature profiles and Nusselt numbers. The Nusselt numbers thus evaluated

analytically were validated by comparison with the solutions for the single fluid case.

The usefulness of water-lubricated oil flow can be found from the result that the

mean velocity of the fluid system increased almost by a factor of 2000 for the same

pressure gradient when the water in the system was increased from zero to 10%. Thus,

the pumping pressure that is needed to pump the two—fluid flow, which has 10% water, is

very less compared to the pumping pressure that would be needed to pump oil alone. The

pumping pressure needed further decreases if the water in the pipe is increased. However

the problem of dewatering limits the amount of water that can be used.

In the constant heat flux case, the Nusselt number at the outer wall converged to

4.36 in three cases—

(a) the radius ratio approached zero

(b) the radius ratio approached one

(c) the two fluid properties were made equal.

The Nusselt number at the interface for the inner fluid converged to 4.36 when the radius

ratio approached one and converged to 8 when the radius ratio converged to 0. This

60



implies that the inner fluid behaves like a slug flow when the inner radius becomes very

small.

Similar analysis was performed in constant temperature case. The method of

Frobenius was used to get the analytical solutions for temperatures and hence the Nusselt

numbers. Similar to the first boundary condition, the Nusselt number at the outer wall

approached 3.65 in three cases

(a) the radius ratio approached zero

(b) the radius ratio approached one

(c) the two fluid properties were made equal.

Similar to the constant heat flux case, the Nusselt number at the interface approached 8

when the radius ratio approached 0 and 3.65 when the radius ratio approached 1. Figure

3.3 shows that Nusselt number at the outer wall increases with radius ratio till a value of

0.4 and then keeps decreasing. As can be seen from Figure 3.4, the energy in the two-

fluid system rises till the radius ratio reaches a value of 0.4 and then falls. The nusselt

number at the outer wall is dependent on the heat transfer that in turn is dependent on the

total energy in the fluid. Thus, the oil-water system will have maximum heat transfer at

the wall at a radius ratio of 0.4.

The convective boundary condition was different from the above two conditions

in that the Nusselt numbers are a function of the Nusselt number of the fluid outside the

outer pipe (Nu...) As expected, the Nusselt number at the outer wall approached that of

the constant heat flux case when the Nusselt number of the fluid outside the pipe (Nu...)

was made zero (in other words, it was the zero wall heat flux case). The Nusselt number
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at the outer wall approached the constant temperature case when Nu... was made very

large.

62



APPENDIX

The software “Mathematica” was used to solve for various parameters. Following are

some of the important statements.

The following equations solve for the velocity profiles.

1

DSOlve[%:: —91: Vll’7] I ’7]

1

; DU? D[V2['7] I 0] i 77]

DSolve[%-- —gz. V207], n]

 

  

  

 

1 2 92 1 2 1 2 1 9201
Vl=—-— +—+—— -—— '+ ' '-—)1 ‘+4U 91 4 491771 49201 109101] I71( 2 9101 )

v2— 93 - ”292 +Log[n] n- (-1 4910+ 92'”)
4 4 1 2 1

hr2 1 1 1 hr2
u1—— +—hrE(—-—l+ o;

401 4 1141 112/ 4#2

hr2 hrg
=- +

4112 4112

umeanl = Integrate[u127r r, {r, 0, ri}] / (7T r12)

umean2= Integrate[u2*2* 71 *r, {r, r1, ro}l/ (7r (1302-1112))

 1 1 .. 1um: * u1*2*zr*rdlr+ u2*2*71*rdr

Ititi‘o2 \0 r' I

The following set of equations solve for the temperature profiles in the case of constant

heat flux boundary condition. The variable I denotes the radius ratio.

1

:7- D10D191[n] . n]. n]
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V

DSolve[96:= $1,61M], r7

1

; D10 D[92[n] , n] , r1]

DSolve[%:= 173, 9210] , r7]

n

_ n4 91 02 (-i2 91+2i24 1091i] 91-92+i292 -2i21091i] 92)
 

64 m 1610

T1[r_] ::el*2*ro*q/k1+Tc

T2[r_l ==92*2*ro*q/k2+Tc

Temp[r_] :=u1[r] *T1[r] * r*2*7r

Integrate[Temp[rl , {r, 0. rlll

Tmean1[r_] = %/ (mr12)

Qinterface= -k (D[T1[r] , r]; r = i

r = i; Tinterface = T1[r_]

Qinterface

Tinterface - Tmeanl [r]

 
Nuinterfacel =

Temp2[r_] :=u2[r] *T2[r]* r*2*n

Integrate[Taup2[r] , {r, r1, r0}]

'ITnean2[r_] = %/ (71* (roz—r12))

'I‘Itiean1*r12*mtiean1+'1‘rnean2* (r02_r12) *umean2
 

'Imeanz ;

rozseum

r: r0;

'IWall: T2[r]

Nuo= qw
 

'IWall — 'Imean '



The following statements evaluate the nusselt number and the temperatures of the two

fluids in the constant temperature boundary condition.

A[2] = —m*A[0] *nuO/ 4;

thetal = A[O] + A[2] * (17"2);

DO[A[2*i] = (nuO/ (4*i*1))*(n*A[2*i—4] —

m*A[2*i—2]), {i, 2, 15, 1}];

Do[theta1= theta1+A[2*i] * (r)"(2*i)), {i, 2, 15, 1}];

Dee[2] = —p*Dee[0] *nu0/4;

B[2] = -p* (B[O] —Dee[0]) *nuO/ 4;

theta2 = B[O] +B[2] *r] *n+Dee[0] * Logtn] +

D9912] *Iogtn] * (17"2);

Do[Dee[2*i] = (nuO/ (4*i* i)) * (q*Dee[2*i—4] -

p*Dee[2*i-2]), {i, 2, 15, 1}];

Do[B[2*i] = (nu0/ (4.141)) * (q*B[2*i-4] -p*B[2*i-2]) —

(l/i) *Dee[2*i], {i, 2, 15. 1}];

Do[theta2= theta2+B[2*i] *n"(2*i) +

Dee[2*i] *Logtn] * (0"(2*i)). {i, 2.15.1}1;

derthetal = D[theta1, n];

dertheta2=D[theta2, n];

n=0.5;ni=0.5;

w: (884.1*1909) / (9971:4179);

ni= 0.5;

a: 1.471/0.859;

y: 0.145/0.613;

A: 0.486/ (0.8551: (100—6));
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g1: l*0.2*0.2/ (2*2*0.486);

g2: 1*O.2*O.2/ (2*2*0.855*10A-6)7

va=g2/4-(9’2/8)*(1+(ni"2));

vml= (—gl/8—g2/4+g1/4)*(ni"2) +g2/4;

m: ((gl—g2) *ni"2+92) *a/ (4* (ni"2*vml*w+ (l-ni"2) *vm2));

n=a*g1/ (4* (ni"2*vml*w+ (1—ni"2) *va));

p=g2/ (4* (ni"2*vml*w+ (l—ni"2) *Vm2));

CI=P:

A[0]=1.0;

eqn= {thetal— theta2 == 0, y * derthetal- dertheta2 == 0};

Solve[eqn, {B[0],Dee[0]}]:

Dee[2] =-p*Dee[0] *nu0/4;

B[2] = —p* (B[O] —Dee[0]) *nuO/ 4;

theta2 = 1310] +3121”? *n+Dee[0] *Log[n1+Dee[2] *LOgM] * (0‘2);

Do[Dee[2*i] = (nuO/ (4*i*i)) * (q4Dee[2*i—4] —

p*1be[2*i_2])l {it 2: 15: 1}];

D0[B[2*i] = (nuO/ (4*i*1)) * (q*B[2*i—4] —p*B[2*i—2]) -

(1/i) *Dee[2*i], {i, 2. 15. 1}];

Do[theta2= theta2+B[2*i] *17"(2*i)+

Dee[2*i] *I-Ogl’ll * (UA(2*i)): {i, 2, 15. 1}];

nuO = 3.85; theta2

nuO = 3 . 86; theta2
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Plot[theta2, {nu0, 3.85, 3.86}]

thetaminlet = 100;

(7:4 A[2] = -m*A[O] *nu0/4;

thetal: A[O] +A[2] * (nc2);

Do[A[2*i] = (nuO/ (441* i)) * (n*A[2*i—4] —m*A[2*i-2]) , {i, 2, 15, 1}];

Do[theta1= theta1+A[2*i] * (r}"(Z*i)), {i, 2, 15, 1}]

1 2 92 1 .2 1 -2
v1=—— 1+———+— 1n1-— 2n1

4179 4 4g 4g

Integrate[(theta1*v1*n) , {r}, O, ni}]

c=theta1nirflet*ni*ni*vml/ (2*%)

a=w*vml*ni*ni+ (1—ni*ni) *vm2; A[O] = c«Exp[—2*nu0*§/ (pe*a)]

A[2] = -m*A[0] *nu0/4;

thetal: A[O] +A[2] * (0‘2);

Do[A[2*i] = (nuO/ (41.1.1)) . (n*A[2*i-4] -m*A[2*i-2]), (i, 2, 15, 1}];

Do[thetal= theta1+A[2*i] * (n"(2*i)), {i, 2, 15, 1}];

pe= 200; thetal

B[O] = B[O] *A[0] ,- Dee[O] =Dee[0] *A[0];

Dee[2] = —p*Dee[0] *nu0/4;

B[2] = -p* (B[O] —Dee[0]) *nuO/ 4;

theta2 = B[O] +B[2] *r] *r;+Dee[0] * Log[r)] +

Dee[2] *109177] * (0A2);

Do[Dee[2*i] = (nuO/ (4*i-k 1)) ~1- (q*Dee[2*i—4] —

p*Dee[2*i-2]), {i, 2, 15, 1}];

D0[B[2*i] = (nuO/(4*i*1))* (q*B[2*i—4] —p*B[2*i—2])

—(1/i)*Dee[2*i], {i, 2, 15, 1}];
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Do[theta2 = theta2+B[2* i] *n"(2 * i) +

Dee[2*i] *LOgM] * (77"(2*i)), {i, 2. 15. 1}];

The same procedure as above is repeated for convective boundary condition except that

the term Nuo in the constant temperature condition is replaced by Nu .

68



10.

REFERENCES

Charles, M.E., Govier, G.W., Hodgson, G.W., 1961, The horizontal pipeline flow

of oil-water mixtures, Canadian Journal of Chemical Engineering, 39, 27-36.

Joseph, D.D., Bai, R., Chen, K.P., Renardy, Y.Y., 1997, Core Annular flows,

Annual Review Of Fluid Mechanics, 29, 65-90.

Ooms, G., Sega], A., VanDerwes, A.J., 1984, A theoretical model for core-annular

flows of a very viscous oil core and a water annulus through a horizontal pipe,

International Journal Of Multiphase Flow, 10(1), 41-60.

Amey, M.S., Ribiero, G.S., Guevera, E., Bai, R., Joseph, D.D., April 1996, Cement

lined pipes for water lubricated transport of heavy oil, International Journal Of

Multiphase Flow, 22(2), 207-221.

Joseph, D.D., Bannwart, A.C., Liu, Y.J., Nov 1996, Stability of annular flows and

slugging, International Journal Of Multiphase Flow, 22(6), 1247-1254.

Joseph, D.D., Renardy, M., Renardy, Y., 1984, Instability of the flow of two

immiscible liquids with different Viscosities in a pipe, Journal Of Fluid Mechanics,

141(Apr), 309-317.

Luigi Preziosi, Kangping Chen, Daniel D. Joseph, Apr 1989, Lubricated pipelining-

stability of core-annular flows, Journal Of Fluid Mechanics, 201, 323-356.

Hason, D., Mann, U., Nir, A., 1970, Annular flow of two immiscible liquids —I-

Mechanisms, Canadian Journal Of Chemical Engineering, 48, 514-520.

Hewitt, G.F., Delhaye, J.M., Zuber, N., Core-annular flow of oil and water through

a pipeline, Multiphase Science And Technology, Volume 2, 427-437, Hemisphere

Publishing Corporation, Washington.

Ames, M.S., Bai, R., Guevera, E., Joseph, D.D., Liu, K., Dec 1993, Friction factor

and hold up studies for lubricated pipelining-I, International Journal Of Multiphase

Flow, 19(6), 1061-1073.

69



ll.

12.

13.

14.

15.

l6.

17.

Max Jacob, Heat Transfer, Volume 1, Seventh Printing, 1959, John Wiley and Sons,

New York.

Kays, W.M., Crawford, M.E., 1980,Convection heat and mass transfer, Mc Graw

Hill, New York.

Incroperra P. Frank, Dewitt P. David, 1981, Fundamentals of Heat Transfer, John

Wiley and Sons, New York.

Kakac, Sadik and Yener, Yaman, 1995, Convective heat transfer, CRC Press Inc.,

Ann Arbor.

Somerton, C.W., 2002, Teaching Heat Transfer: A Sturm-Liouville approach to

fully developed duct flow heat transfer, Department of Mechanical Engineering,

Michigan State University.

Grewal, B.S., August 1998, Advanced Engineering Mathematics, Khanna

Publishers, Delhi, India.

Somerton, C.W., 2002, Fully Developed Flow and Heat Transfer in a Circular Duct

with an External Convective Condition, Department of Mechanical Engineering,

Michigan State University.

70



ll

1 7

3 1293 02467 0717

ll

 


