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ABSTRACT
SOLUTIONS TO THE FULLY DEVELOPED CONVECTION HEAT TRANSFER
PROBLEM IN CORE ANNULAR FLOWS
By

Sriharsha Chunduru

Heat transfer in circular pipes with two concentric regions (core annular flows) is a
problem that arises in materials processing and the chemical industries. Examples of this
problem include the flow of oil/water for a certain range of Reynolds numbers and flow
through packed bed chemical reactors. In this work, the convection heat transfer problem
is solved for a core-annular flow that is both thermally and hydrodynamically fully
developed. Solutions are obtained for an outer surface of the pipe that is subjected to
three different boundary conditions: uniform heat flux, constant wall temperature, and
convective heat flux. The velocity and the temperature profiles are calculated analytically
and Nusselt numbers are evaluated for the three cases. The analytical results are validated

by comparison with the solutions for the single-phase fluid.
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INTRODUCTION

Important engineering problems in the materials processing and chemical
industries involve heat transfer in a two-region channel flow. Examples include the flow
of two immiscible fluids and the flow through a packed bed chemical reactor. One of the
most important engineering applications of two-region flow is the flow of water and oil in
a pipe. Pipeline transport of highly viscous oil needs enormous pumping pressures to
overcome the high viscosity and the corresponding wall shear stress. It can be affected by
heating the oil and insulating the pipeline [1]. However these operations involve
considerable capital investments and operating expenditures. As discussed by Joseph et
al. [2], oil companies have had an intermittent interest in the technology of water-
lubricated transport of heavy oil since 1904.

In the past, experiments have been carried out to examine the possibility of water-
lubricated transportation of oil as discussed by Chaves et al. [1]. A number of flow
patterns were observed, such as water drops in oil, concentric oil-water flow and oil drops
in water. It was found out that of all the observed flow patterns, the flow of the highly
viscous oil as a core, with the water flowing only in the annular space between the pipe
and the core walls was the most desirable for simultaneous flow [1]. The pressure drop
measured over the pipe indicated that the addition of water greatly reduced the pressure
gradient. Ooms et al. [3] discussed theoretical models for core annular flows of a very
viscous oil core and a water annulus through a horizontal pipe.-As long as oil core was

supplied at a velocity above a certain critical value, a water film remained between the

oil-core and the pipe wall.



However the amount of water used to transport the oil is determined by various
stability analyses. If the water used is large, there is always a problem of dewatering and
if the water used is less, there is a problem of fouling. Using cement-lined pipes as
discussed by Amey et al. [4] can reduce fouling to a considerable extent. Joseph et al. [5]
discussed the stability of annular flows. The annular flow is stable or can be stabilized
when the fluid having the higher effective viscosity occupies the core region and lower
viscosity fluid is in the annulus. Joseph et al. [6] also study the instability of the core
annular flow as the thickness of the lubricating fluid in the system increases. Thus,
volume ratio is a crucial factor in determining the stability. There is also a limitation on
the velocities of the fluids. A minimum velocity exists below which the core-annular flow
is unstable and results in oil slugs in water and a maximum velocity above which the flow
is replaced by water emulsions in oil as discussed by Prezioski et al. [7]. Extent of the
annular flow is determined by the location of the break-up point. Hason et al. [8]
discovered that the wall-film broke up at low flow rates and thus destroys annular flow
abruptly.

A practical aspect of this technology is the question of how to guarantee that a
certain oil-water system will operate in core-flow pattern. In practical situations, this flow
mode is brought about by using special inlet nozzles in combination with physiochemical
agents to facilitate wetting of the pipe wall by water and to stabilize the oil-water
interface [9]. Shut down and restart procedures must also be known. For the technique to
be practical, it should be possible to restart a pipeline from the stratified oil-water
situation to the core flow pattern in a reasonable amount of time without the requirement

of excessive pumping power [9]. In the late nineteenth century, development of Moody’s



chart involving Reynolds number and Fanning’s Friction factor facilitated the design and
development of Single-fluid pipeline systems. Arnes et al. [10] extended this analysis to
lubricated pipelining. Thus core-annular flow has been a topic of research for quite some
time. However most of these works focus on the “fluid” part of the analysis. Most of the
literature neglects the thermal analysis of the core-annular flow. The possibility of using
these systems in cold regions such as on the ocean floors or in the arctic regions require a
detailed heat transfer analysis for a variety of boundary conditions.

Although the uniform wall heat flux problem is rather trivial, the constant wall-
temperature problem is a challenging one in the case of a single-fluid system. The case of
a convection boundary conditions applied on the outside of the pipe is also non-trivial.

Solution to the heat transfer problem of a single fluid flowing down a pipe has
been solved long ago by Graetz in 1885 [11]. Graetz neglected the variations of the
properties of the fluid with the temperature and found a mathematical solution for the
problem that was rediscovered by Nusselt in 1910[11]. In this work, a heat transfer
analysis of the core-annular flow is performed using an approach different than the one
used by Graetz to compute the temperature profiles and Nusselt numbers of the system
for three boundary conditions on the outer wall- constant wall heat flux, constant wall

temperature and convective heat flux



CHAPTER 1
PHYSICAL MODELS
The physical model for the two-region pipe flow and heat transfer problem is
shown in Figure 1. Each region 1 or 2 contains a fluid that is immiscible with the fluid in

the other region.

___________________________________________________

Region 2

Figure 1.1: Physical model for two region flow

The following assumptions will be employed in the development of the solution to the

heat transfer problem

(a) The flow is steady and hydrodynamically fully developed. This will lead to the only
non-zero velocity component being that in the streamwise direction and a constant
pressure gradient (- H) in the streamwise direction.

(b) The flow is thermally full developed. This will lead to a constant convective heat
transfer coefficient on the outer surface and a constant temperature derivative in the
streamwise direction.

(c) Three types of boundary conditions have been analyzed- constant heat flux on the

outer wall, constant wall temperature and convective boundary condition.



The Continuity equation in the Cylindrical coordinates for steady and incompressible

flow is [12]:

22 (4 2 lg )+ ) =0 (1.1

The components of the momentum equation are as follows:

r -momentum:

6 -momentum:

dug LJurdg 1 dp 2 2 du,
MO (Vg +4r20 - - %P v Yy a3
= 9 +(UV)ug - 5 &0 o +U(Vug +—= 596 2 ) (1.3)

Z -momentum:

2“L+(U.V)u, =-ia—p+g + V2, (1.4)

ot “ p dz
where, the convective derivative is:
i (1.5)
0z

The Laplacian operator is:

V2

19 9. 1 2% 92
—(r—)+—

1.6
ror or r 892+az (16)

Since a symmetric flow is assumed, ug =0. The flow is assumed to be hydrodynamically

fully developed, u, =0. Using this value of u, in Eq (1.1), ai(uz )=0. Since the flow is
z

symmetric, there is no 6 dependency. So u, is a function of r only.



Consequently, when we use these above deductions in Eq (1.2), the r-momentum

equation reduces to:

0=_19 (1.7)

p dar
which means that the pressure p = f(6,z). The & momentum equation (Eq 1.3) reduces

to the following form:

0=_L9 (1.8)

p dé
which implies that p = f(z)only, in other words the pressure in the pipe flow changes

only in the axial direction. The z-momentum equation is

M U, =L P kg w2, (1.9)

ot p dz
Using the established facts that the flow is steady, p = f(z)only, g, =0and that u, is a

function of r only, Eq (1.9) can be reduced to the following form:
O0=-——+0V-u, (1.10)

Equation (1.10) further simplifies to,

li(,d“zjz_ﬂ (1.11)
rdr\ dr M

where, H= - % (the pressure gradient)

The energy equation [12] is analyzed next.

oT
pcp[E + (U.V)T] = kV2T + y[z(e;’-, ved el )+ Eg € ¥ 8,29]

(1.12)



where,

du, 10ug u, ou,
£, = , =——2+-L ¢ Z
rr ar 99 r aa r L az

_10u; Oug Ouy | Ouy _10u, Oup ug (1.13)
=700 4™ dz  or ' ro 00  or r '
Equation (1.12) simplifies to,

oT oT |k d( 9T\ k 9°T , 9°T
o, T LA P A LI -0 (14
oy v, S E A A PL a2 0 e

5

r4

Since heat transfer is symmetric in the pipe, 5572; =0. The flow is hydrodynamically

fully developed which results in the radial component of the velocity to be zero (u, =0),

Equation (1.12) becomes, after transposition,

2
uz(ﬁ)a_T_ 19 ,a_T +§__Z =0 (1.15)
92

Letting a = L, the thermal diffusivity of the fluid,

u,dT |19d( oT) 9T
e — — — — — 1.16
|:rar(r 8rj+az2} (1.16)

2

) ) ) ) ) T )
If we neglect axial conduction relative to the radial conduction then, — = 0, we obtain
0z

the following energy equation for laminar flow in a circular tube.

1i(ar )_uz oT
or

— = 1.17
ror 4 a oz (1.17)

Since the flow is assumed to be thermally fully developed, the non-dimensional
temperature profile is invariant with z [13]. This can be expressed in the following

equation:



o(T,-T
—| ¥ =0 1.18
az[Tw—Tm) (L19)

. . . oT
Differentiating and solving for Az ,

aT _ dTw _ Tw -T dTw + Tw -T dTm

—_— (1.19)
oz dz T,-T, dz T,-T, dz

The next chapter deals with the first boundary condition, which is the constant heat flux

on the outer wall.



CHAPTER 2
CONSTANT HEAT FLUX PROBLEM
The boundary condition of constant heat flux on the outer wall is considered below.

Writing the convection rate equation,

q:v = h(T,, —T,, ) =Constant 2.1
where Ty, and Ty, are the temperature of the outer wall and the mean temperature of the

fluid respectively. Since the non-dimensional temperature is invariant in the flow

direction, the boundary condition at the wall is then:

a[i[ Ty -1 D:o At r=R, (2.2)

or| 9z\T, - T,

which can be written as:

ai(ai[TTw “TT D ~0 At r=R, (2.3)
C\Or\ 1y, =1Ly

This means that,

)

T, -T or) _

[ 9 ( id J] = constant = —J 24)
r=R,

or Tw - Tm Tw - Tm

The wall heat flux can be defined as

X T
qw = —k((’;—r),= R, (2.5)

Comparing equations (2.3), (2.4) and (2.5), it can be deduced that h/k=constant, or in
other words, h=constant for a constant property fluid [14].

Thus, it can be concluded from Eq (2.1) that T,, —7,,, = constant.



In other words, id?;‘i’- = f‘% (2.6)
Z Z

Using Eq (2.6) in Eq (2.4) we get,

T _ dT,
0z dz

(2.7)

Combining Equations (2.6) and (2.7)

oT _dl, _dT,, 2.8)
0z dz dz

Using Eq (2.8) in Eq (1.17), for constant heat flux on the outer wall, we get

DL Zi(rﬂ) 2.9)
dz rdr\ dr

Thus, the following differential equations are used to represent the conversation of
momentum and energy within a region. Since there are 2 fluids in our problem, subscript
i may be 1 or 2 to denote the region, 1 for the inner fluid and 2 for the outer fluid

respectively.

ldf dui) -H (2.10)
rdr dr y’s

And,
@i df dhi)_, 9l 2.11)
r dr dr dz

The boundary and matching conditions are as follows: -

At r = 0 (the centerline of the channel)

dul
oo 2.12
dr ( )
dT,
—=0 2.13
dr ( )

10



At r = R; (the interface of the two regions)

u=uy (214)
dul
— = Uy —= 2.15
o e (2.15)
P=P (2.16)
=T, (2.17)
dT)
kj—=k 2.18
Var 2 dr (218)
At r = R, (the outer surface of the channel)
up =0 (2.19)
dT:
ky—%=gq, (2.20)
dr

The matching conditions on the pressure and the temperature along with the fully

developed assumptions lead to the observation that both regions are subjected to the same

dT,
pressure gradient (-H) and have the same axially temperature gradient —d—'”— An energy
Z

balance on a differential element of length Az and radius R, is carried out below.

iy

Region 2

Figure 2.1: Energy balance on an element of length dz

11



2 2 2
27di'0qwdZ = (ﬂRi Um] )pf.lcp,ldTm +”(R0 — R, )”m,2pf,2cp,2dTm (2.21)

which can be written as: -

dT,, _ 2R,q,, 2.22)
dz (pcp)lRizum,l +(pcp)2(R02 _Riz)um,Z
where

PN

Uy =— [uy(r)2mrdr (2.23)

R,

Um,2 2 ) 1“2(")27”"1" (2.24)

(R, —R/") R

NON-DIMENSIONALIZATION

Prior to solving the equations, the following non-dimensionalization is used.

n=—
RO
) ti
u
’"HR2 (2.25)
G;= =
UmHi
_ Ti _Tc
' 2R,q,k;
Then the momentum equation becomes:
li(,,ﬁj - ¢, (2.26)
ndn\ dn

And, the energy equation becomes

12



Vi

l_d_[,,dgi ] _ ‘
ndn dn Ql,i77i2Vm,l + Q”J (I- 77’2 Wm,u1

In dimensionless form, the boundary and matching conditions become:

At 77 = 0(the centerline of the channel)

At n = n; (the interface between the two regions)

Vl =V2
,Qd_"l_zdﬁ
dn dn
01 :92
do, _do,
dn dn

At 1 =1(at the outer surface of the channel)

V2—_—0

Several non-dimensional parameters appear from this scaling. We define them as

Thermal Conductivity Ratio: y = 7(19—

2

Padl
M2

Dynamic Viscosity Ratio: 4 =

13

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)



R:
Radius Ratio: 7; = -
RO

lm=n

Heat Capacity Ratio Function: Q,, , =J@,m>n

%),m<n

Heat Capacity Ratio: @ = ((,gﬂ))_l_
P

Consider the momentum equation (2.26) 1d nﬁ = -G;
ndn\ dn

Solving the momentum equation separately for the 2 fluids, we get,

v =A-Bn? (2.36)
v, =C - Dn? (2.37)
where, A=Q+—l-glﬂ,2—lg277,-2+Log[77,-]m —liglﬂi*‘g—z@‘
4 4 4 2 2
B=5L
4
1 1 g2
C=—g, + Loglnn;| - = Agym; +221L
482 g[’?]ﬂ:( 2 817; 2 )
p=32
4

Thus, the actual velocity profiles are:

2
ut = lhRg(_L_L)Jtho LA (2.38)
4 M Hy) 4y ) 4u
_hRS _ h ;2 (2.39)
duy A

14



The mean velocity profiles are:

For the inner fluid,

R.
l l
U = Uf =— Iul(r)Zmdr
i
For the outer fluid,
1 R
U = Uy = s qu(r)Zmdr
ﬂ(Ro - Ri ) R;

The mean velocity of the 2-fluid system as a whole is evaluated as follows:

R, R;
ty =—| [up2mdr+ fu2mrdr
0 \ R; 0

The mean velocity profiles are then evaluated using the above equations:

_ h(2R3,u1 + Riz (=2uy + 1y))

Up | =

8y
_ h(RS - R})
Upo = _TZ—
B h(RSuy + R (uy — p1y))
Uy =

SR 111>
The next step involves the calculation of the temperature profiles:

So considering the energy Equation, Eq (2.27),

1 d do; 3 1
ndn\' dn) Q, n?v . +Q 2y,
Lii Vin,g 82y (I-n; )vm,ll

15

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)



INNER FLUID CALCULATIONS:

The non-dimensional temperature profile of the first fluid is calculated first using the

above equation:
4 2
O =En" -Fn (2.47)

81
2 2
64(Q 17 Vg +QuiA=07 Wp 11

where, E=-

2’

Fe (-&177 — 82+ 8277)
2 2
16(Q 17 Vg + L A=0 Vy 1)

This is converted to the dimensional form to get the following expression for the

temperature of the first fluid:

2
Let m=91,1’h'2 Vind Y1 A=17)p11 (2.48)

_ 4Hgr* (R} — R )y — (Har® (r> — 4R?) = 32mk R, Tou, 1) 12
32mk\ R ot i1 M2

I

(2.49)
Once the temperature profile of the inner fluid is known, its mean temperature is

calculated.

R;
5 Tyu 2mrdr (2.50)
i¥ml 0o

Tm,l =

The mean velocity of the inner fluid is:

R;

2 ' R2 I
u) 27rdr = (2Ro 4 + Ri'( L 2))

2.51)
8u 1y

Up) = 2
i 0

The mean temperature of the first fluid is:

16



24HngRi2/u12 + 384mk1R3Tcumﬂ12ﬂ2 - 192mk1RoRizTcum/ul (2uy = pp))pp +
oo AHR2 R} (~12p4) +Tpap) + HgRE (244} — 28110y +T13)
m,l =
192mky R yu pty fy (2R2 pty + RF (=241 + 142))

(2.52)
The temperature at the interface of the two fluids is calculated as:
T,=T At r=R;
' 32mk R oty by '
The heat transfer at the interface is given by:
dT,
qi =—k]_1 At r=R,~
dr
8HgR2 R,y ~ 2HgR u — 2 (uy - 2
_ 8HqR, R;py —2HqR; 4y —2HqR; (4R;” () — 42) + Ri 143)
q; = (2.54)

32mR yu ) 12
Finally, the Nusselt Number at the interface of the inner fluid of the inner fluid is given
by:

i 2R
(Tl - Tm,l ) kl

Nuj (255)

with the values taken from Eq (2.52), (2.53), (2.54)

OUTER FLUID CALCULATIONS:

The next step involves calculating the temperature profile of the second fluid. The
velocity and the mean velocity of the second fluid (outer fluid) are as follows:

_H(R?-r?%)

(2.56)
4uy

Uz

17



R, 2 2
H(R; - R;
Up o = ——71——2— ju2 2y = T Ro ~R) (2.57)
m(R; R g, 44y

Equation (2.46) is solved first to get the non-dimensionalzed temperature profile and then

converted into the dimensional form to get the following result:

r R;
(HingkyR? (RS gy + R (44t +3443)) + ky (4Hng(Logl~ )~ Logl- DR} 1y

o o

+ 44y (4HgR? (mr? — (m +2(m - n)Log[RL] ~2(m- n)l,og[%])R,-2 )+

o o

Hq(—mr4 +(m+4(m- 2n)L0g[—kr—] —4(m - 2n)l.og[£i—])R,-4 ) +32mnky R, T u,, t>)

T —_ 0 (]
) =
32mnk1k2Roum.”1 )
(2.58)
where n= Q1,2'71'2Vm,l + QIl.2 (1_ 7712 )vm.ll
m=Q 7V + Q- n? W1 (2.59)

The mean temperature of the second fluid is given by:

| )
[Tyup 27rdr =

Typ =
ARG =R gy

(Th®mgk RSy +12h*mak RS R? ) — 36h*nqk\RER, 1y +

48h>mqLog (R; | R,k RS R} 1y — 48h*nqLog (R; /Ry k| RORT ) +

24h%ngk, RERE py - 36h*mak RA R 11y +84h*ngk RER? 1y -

24h>mqLog (R; R, YkyRy R} py +48h° nqLog(R; /R, )k Ry Ry 1y -

72h%ngk, R2R? ) + 20n%mak R RS 11y — 60h%ngk\R2RS 1y +

72h%ngk, R R 1y — 3h®mgky RS ) +12h% ngkyRE 1) — 24h® nqky RSy -

18h%ngk;R2 R uy + 24h%ngLog(R; /R, )k R R 1ty +18h%ngkyRAR 1y +

24h%ngk;R2R® 1ty —36h>ngkyR2 RS o — 6% ngk RS y +18h%ngky RS s +

192hmnk ko ROT, pty oty + 384hmnk ko RO RAT,. sty piyu,y, +192hmnk ko R, RET, pa ou,,
192hmnk ko R, (R - RF)? sy payu,,

18



(2.60)
THE NUSSELT NUMBER AT THE OUTER WALL.:
To find the Nusselt number at the outer wall, we need to compute the mean temperature

of the system in total:

R; R,
Ty =—5—|| JuT2mdr|+| [u,Tp2mdr (2.61)
o¥m |\ 0 R;

The temperature of the outer wall is given by:

Twall =T2 At r= Ro (2.62)

The heat transfer at the interface is given by:

T
gy =k, 51‘172 at r=R, (2.63)

The Nusselt number at the outer wall is given by:

9w * 2R,

Nu, =
(Tm _Twall) k2

(2.64)

Where q,,,7T,,,T,,, are given by Eq (2.63), (2.61) and (2.62)

RESULTS AND VALIDATION:

Since there is no literature with which we can validate the Nusselt numbers for the 2
fluids case, we validate it using the standard one-fluid case.

If we set 7;=1. It means that the inner radius is equal to the outer radius, or in other
words, there is only one fluid in the system and it’s the inner fluid. And the Nusselt

numbers should converge to the Nusselt number of the one-fluid case.

19



The two Nusselt numbers, the Nusselt number at the interface of the first fluid, Nu,, and

the Nusselt number at the outer wall, Nu, were evaluated for radius ratio=1. The Nusselt

k
number at the outer wall yielded a value of exactly %Zl— We get an extra factor of the
2

ratio of the 2 thermal conductivities due to the way we define the Nusselt number. It has
been defined with respect to the second fluid thermal conductivity. However there is no
second fluid if the radius ratio is exactly equal to 1. Now, if it is scaled with respect to the
first fluid (which is the only fluid present in the system), the Nusselt number simplifies to
a value of exactly 4.36 that is the Nusselt number of a single fluid flowing in a pipe with

constant heat flux on the outer wall [12].
The Nusselt number at the interface for the first fluid also yields a value of exactly %—f— if

the radius ratio is equal to 1, which is to be expected because the interface is at the wall in
that condition.
Another method in which the Nusselt number expression was validated was by assuming

that both the fluids 1 and 2 are the same. In that case, the Nusselt number at the outer

wall gave f:_§ irrespective of the value of the radius ratio.
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Figure 2.2: Nusselt number at the interface as a function of the radius ratio
As can be seen from Figure 2.2, the Nusselt number at the interface approaches the value
of 8 when the radius ratio approaches zero. This is because the inner fluid flow becomes
a plug flow as the radius ratio becomes very very small. And the Nusselt number of a
plug flow is 8.
Although not exactly visible in the graph, when the radius ratio approaches 1, the Nusselt

number is equal to 4.36.
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Figure 2.3: Nusselt number at the wall as a function of radius ratio
From Figure 2.3, we can see that the Nusselt number at the outer wall becomes 4.36
when the radius ratio equals zero, in which case the only fluid present in the system is the
inner fluid. When the radius ratio equals 1, the Nusselt number at the outer wall
converges to a value of 1.029. From the program, it has been observed that the Nusselt
number at the outer wall converges to 1.029 at a value of radius ratio of 0.9999999999.
However when the radius ratio becomes 1, the only fluid present in the system is the
inner one. Thus, the Nusselt number at the outer wall must be scaled with respect to the
inner fluid by multiplying 1.029 by the ratio of thermal conductivities. In this case, the

ratio of thermal conductivities is:

ﬁ:p_‘_lﬁzo,z:;é

ky, 0613

The Nusselt number at the outer wall becomes:

Nug =02 _ 4 360
0.236



Thus, the results have been validated
Following are the plots of Temperature as a function of the radial position for different
values of radius ratios. An entry temperature of 7, =100°c was assumed with the

following properties of the fluids:

Table 2.1:Properties of the two fluids

Oil Water
Density (0) 884.1 997
kg Im’
Heat Capacity (c,) 1909 4179
J !/ KgK
Viscosity () 0.486 0.855*10e-6
Ns/m?
Thermal conductivity (k) 0.145 0.613
W /mK
Thermal Diffusivity (&) 0.859*10e-7 1.471*10e-7
m* /s
Prandt]l Number ( Pr) 6400 5.83
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Figure 2.4: Temperature of the system as a function of radial position for different radius

ratios.

24



Theta

i — 0001 e

s //
160 | feee-s - ---0999 ,
150 | //

I s

r Ve
140 [ //
130 | o
120 f P
1o | e

0.2 04 0.6 0.8 1.0
Radial Position

Figure 2.5: Temperature of the system as a function of radial position for extreme radius

ratios.
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CHAPTER 3
CONSTANT TEMPERATURE ANALYSIS
Consider Eq (1.18) and Eq (1.19)

o(T,-T
w20 3.1
az[Tw—T ] G-

m

or _dr, T,-T dT,, T,-T dI,

z (3.2)
dz dz T,-T, dz T,-T, dz

The boundary condition of constant wall temperature reduces the above Eq (3.1) and Eq
(3.2)to

a_T_: TW_T dTm (3.3)
oz T,-T, dz

Figure 3.1 gives the energy balance on an element of length dz.

Region 2

Figure 3.1: Energy balance on an element of length dz
- 2 2 2
2I1Ryq,, (2)dz = (I_IR,- Um,1 )pf.lcp,ldTm +II(Ry”™ — R; )um,2pf,2cp,2dTm
(34)

dl,, _ 249, R, 3.5)

2 2 2
dz (pep) Rty + (p‘p )2 (R = Ry 2
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dT,, 2q,, (X)R

A AN 2 GO
(e RIS S+ (=" 0 1)
( P)2 0 o

Substituting the above expression from Eq (3.6) into Eq (3.3), we get:

or _ (1,,-7) 2q,, (R

=W > g 5 (3.7)
oz (T,-T,) 2. (PCp)L R; R!
¥ " {(pcp)ZRo[ £ 2 U ) +(l——l—2')um.2]}
(pcp)2 R R?
JaT _ fl:v(x) 2T, -T) (3.8)
0z (Tw _Tm) (,OCP)I R2 R,2
{( p)2 o[—_'"_ Um,] +(1——2)um,2]}
(pcp)2 R R?

But, _aw® (3.9)

(TW "l)
From the definition of Nusselt number (on the outer wall),

Nu, = f(_Z_IiQ (3.10)

o k2

Using Eq (3.9) in the above definition of the Nusselt number, Eq (3.8) reduces to:

aT k2 Nuo 2(T - T) (3 1 1)

0z 2R, , (ocp)1 R? R? .

{( p)2 o[— ) Up ] +(1__E')um,2]}
( p)2 0 RO
%, (e R2 R? '
{Rz[ P um s (1- —17)“’1:.2 1}
(pcp )2 Ro
10(dT u, oT - .
The energy equation Eq (1.17) P Tr = ——a— reduces to the following form:
ror\ dr a
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13( BT) u, (T, —T)Nu,

LT _u,
ror\ or (pcp,) R2 R

“ R il + ==, 51)

Y e g2 ™

(3.13)

Since there is only one velocity component, the z-component, u_is replaced by u for

simplicity.
The Boundary and the matching conditions are as follows:
At r =0 (at the centerline of the channel)

d,

oo
dr

At r = R, (at the interface of the two regions)

I, =T,
T, T
w0
dr dr

At r = Ry (at the outer surface of the channel)

T =Tyau
INNER FLUID CALCULATIONS:

Thus for the first fluid, the energy equation (3.14) becomes:

1 a( aT,) U ay(T,, —T)Nu,
ror\ or

Defining new parameters:
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(3.15)

(3.16)

(3.17)
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Equation (3.18) simplifies to:

1d

— [”iﬁ} +[M -~ Nn*INu, 6, =0
ndn

dn

a; ag
j(gl—gz)m2+ ‘42

where M= 5 5 A
(771' Vim0 + (- n; )vm,2 )

a;
781
And N =+ 5 5 \
(’71' vl)t,lw+(1_77i )vm,2)
as
a; = —_—
o)

And the other variables are same as defined in the constant heat flux problem.

Equation (3.19) is solved by the Method of Frobenius [15]:

Let 6 =n’ Zan”n
n=0

Substituting the value of 6, in Eq (3.19) we get:

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

Z(n +s)(n+s-— l)anﬂﬁn_2 + Z(n + s)a,,77"+s_2 +(M - N772 )Nu,, Za,,n"” =0

n=0 n=0

Equating the coefficient of the lowest power of 7 which is the coefficient of 77“‘_2:

s(s-Da, +sa, =0

which leads to s=0,0. (Double root)
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If the indicial equation has 2 equal roots, as in Eq (3.25), at y=m; and y =mj,, the

solution is given by [16] :

d
y=q (y)ml +tC (E}%) (3.26)
m)

Thus, the solution in our case is given by:

deé
6y =c1(6)),- + Cz(d—lj
s=0

A)

6=c Y an" +cylnn Y an” (3.27)
n=0 n=0

From the boundary condition (3.14), ‘;—6’1 =0 at 7=0, we get ¢, =0. Eq (3.27) reduces
n

to the following form:
6=c; ) a,n" or 6 =Y An" (3.28)
n=0 n=0
Substituting in Eq (3.24), we get,
> () -DAR"E+ Y (MAN"E + (M = Nn?*)Nuy Y. An" =0
n=2 n=1 n=0
(3.29)

Equating the corresponding coefficients of 7 powers to zero:

MN,
7° 1240 +2A9 + MNu,A, =0 = Ay =——0

AO

n':6A3 +3A3 + MNu,A| =0 = A3 =0
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. MA, - NA
7%: 12A4 +4A4 + Nu,[MAy — NA,1=0=> A4 = —[——21—6——0]Nuo
773Z20A5 +5A5+Nu0[MA3—NA1]=0 = A5 =0

MA4 — NA
n*: 30Aq + 6Ag + Nu,[MA, — NA)]1=0=> Ag = _[MA - NAy

36 °
In General:
A, =0 forn=odd,
Nu,
= [-MA,,_» + NA,,_4] For n=even and n>2
n
and, Ay =-— M’Z Yo 4, (3.30)
OUTER FLUID CALCULATIONS:
For the second fluid (outer fluid), the energy equation (3.13) becomes:
19 ,-a_Ti =42 ay (T, —T)Nu, (3.31)
ror\ dor ) o 5 (oep) Ri2 1’2
{(pcp)ZRo[ _zum,l +(1——2)um,2]}
(ﬂ‘p )2 Ro Ro
h 2
, =% M 2 gromEq 3.39)
du;  Auy

Equation (3.31) simplifies to:

1d[_do
——[7]—2]+[P—Q772]Nu092 =0

ndn| - dn
82 82
P=1 4 AndQ=1— .
(ﬂi Vi, T w(l-n; )vm,Z) (’71’ Vi, + w(l-n; )vm,2)

Equation (3.32) is solved by the Method of Frobenius:
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Let 6, = n’ anﬂ"
n=0

Substituting the value of 8, in Eq (3.32) we get:

S+ s)n+s-Db,n "2+ Y (n+)byn™ T + (M ~ Np?)Nu, Y byn" ™ =0

n=0 n=0

(3.33)

Equating the coefficient of the lowest power of 7 which is the coefficient of 77:_2 in Eq

(3.33) to zero, we arrive at the following indicial equation:
s(s=1b, +sb, =0
which leads to s=0. (Double root)

Thus, the solution in our case is given by:

d6,
0y =c3(0y) _ +cq| —2
2 C3( 2)5_0 C4[ ds js:O

6 =c3 ib,,n" +cq4lnny ib,,n"
n=0 n=0
From the boundary condition (3.15), (3.16), (3.17), we get,
6;(n=1)=0
6(n=m1;)=0,(n=n;)

kl_dﬂzlqgiz_ Atﬂzﬂi
dn dn

Equation (3.36) can be rewritten as:

0, = ZBn”n +ZDn 1“’7’7"
n=0 n=0

Substituting in Eq (3.33), we get,
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(3.37)

(3.38)
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S ()(n-DB,n" 2 + Y. (m)(n-DD, Inny™ 2+ (m)D, "2+ D" F(n-1) +

n=2 n=2 n=l1 n=0

Y B, 1"+ D™ +Y. (D, nnn" 2 + 3 (P)B, 7" Nuy + 3 (D, )PNu,n" Inn +

n=1 n=0 n=1 n=o n=0

- (B, )ONu "% - > (D,)QNu, 7" Inn =0 (3.41)
n=0 n=0

Equating the corresponding coefficients of 7 powers to zero:
n':2D,+B; =0
n°:4By +4D, + PB,Nu, =0 (3.42)
n': 9By + 6D3 + PB;Nu,=0
n°:16B4 +8D4 + Nu,[PB, —QB,]1=0

................

................

Equating the coefficients of Logarithmic terms:
77_1 Inp:D; =0
7°Inn:4Dy + PD,Nu, =0 (3.43)
7'Inn:9D5 + PD;Nu, =0
n%Inn:16Dy +(PDy —QD,)Nu, =0
From Eq (3.42) and Eq (3.43), we can deduce that all the odd D;'s are equal to zero.

In General, the values of D;'s are:

D2n+l =0,
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PNuO

D, =- D,
2 2 Do
Nu
Dy, = —Oz[QDzn—4 ~ PDy, 5] (344)
(2n)

where n varies from 0 to e and n is an integer.

When the use the fact that all the odd D,'s are equal to zero from Eq (4.44) in the set of

Equation (3.42), we can deduce that all the odd B,'s are equal to zero.

In General:
Byp+1 =0
Bon = NL% [0B2y-4 ~ PByy2]- D, (3.45)
2n) n
B, = PI:uO (Do - Bo)

where n varies from 0 to e and n is an integer.

Using the Boundary Condition (3.15)

6(n=n)=6,(n=n;)

(e o] 2 e o] oo
ZAZn”i "= ZB2n77i2n + ZD2n77i2" In7; (3.46)
=0 n—0 n—0

Using the Boundary Condition (3.16)

72(2'1)142,177,‘2"_1 = Z(Zn)Bz,,niz"_l + Z(2n)D2,,77,~2”'l Inn; + ZDz,,niz"‘l

n=1 n=1 n=1 n=0

(3.47)
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From Eq (3.30), Eq (3.44), Eq (3.45), we realize that all Az,-'s are a function of A, only,

all D2,~'s are a function of D, only and all Bz,-'s are a function of D, and B, only.
Equation (3.46) and Eq (3.47) are now solved to get D, and B, in terms of the third
unknown which is 4.

Now, the wall boundary condition &, (7 =1) = 0to get the following equation (and arrive
at the following equation:

0= i By, + i Dy, n*" Infj where =1

n=0 n=0

(3.48)
The values of D, and B, are known in terms of A;. Thus Eq (3.48) takes the form:

Aglequation*)=0 (3.49)
The equation* in Eq (3.49) is solved to get the Nusselt number in terms of all the two-
fluids parameters. The value of the Nusselt number varies depends on the number of
terms in the summation. However, as we later observe, the value converges after 10 terms
and the value doesn’t change appreciably upon increasing the number of terms than that.

Following is the flowchart to solve the Nusselt number of a two-fluid system which is

thermally and hydrodynamically fully developed and assuming that both the fluids are

START

Input the value
of radius ratio

Newtonian.
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l

Input the values of
fluid properties

|

Enter the
pressure gradient

|

Calculate various ratios such as
a,y,A,gl,g2,m,n,p,q,w

l

Calculate the value of A,,'s in
terms of A

Calculate the value of 6,

Calculate the values of D,,'s in terms
of D,
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Calculate the values of B,,'s in terms

of B, and D,

Calculate the value of 8,

l

Apply interface conditions on &, and 6,

I

Calculate the value of B, and D, in

terms of A,

Apply boundary condition (outer wall) and
calculate Nu

Stop

Figure 3.2: Flowchart to solve the Nusselt number for the two-fluid case
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The point to be noted here is that the solution is not complete as yet. This is because we
still have to find the temperature profiles of the two-fluids. And for that, we need to
compute the values of Ay, By and Dy. Since By and Dy are functions of Ay, the two

temperature profiles can be evaluated once A is known.

Consider Eq (3.12)

or _ o, (T,, —=T)Nu,
z , (pc,) R? R?
(Rol——L =Lt + (1=~ 21)
(0cp)2 R R

Equation (3.12) can be reduced to the following form:

aT _ a»(T,, —T)Nu,

o (3.50)
02 {RJunlAl)
pcplumlR'2 R'2 Um,)2 2 2
where A= . —’-—i2-+ l——‘? = N=on v, +A=n7 W, (3.51)
ﬂ‘p.z Um RO RO U
Let =TT, and { =
RO
Equation (3.50) reduces to the following form:
Nu 6,
96_, Nug 2 20 (3.52)
R,0(  u,RZA
From Eq (3.28), 6, = D>_A,n"
=0
6, =4 +A2r72 + A4774 +A6776 F oo
A 2 Ay 4
0, =Ay(l+—=n"+—n" +........ ) (3.53)
Ag Ao

Equation (3.53) can also be written as:
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6, = AgY Where y=(+l2p2, 8008,
Ag Ag

Substituting Eq (3.54) in Eq (3.52), we get the following equation:

_Y_aAO + Nqu()Ya'z ~0
R, ¢ umRozA

Or,

aAO + Nu0A0a2 ~0
o  u,R,A

Define a new non-dimensional quantity called the Peclet number,

Pe = U, 2R,
129)

Equation (3.56) reduces to the following form:

aAO + 2Nu0A0 -0
14 PeA

- 2Nu0§)

=C*ex
Ao p[ PeA

(3.54)

(3.55)

(3.56)

3.57)

(3.58)

(3.59)

Assume an inlet mean temperature of 6, at the point where the flow gets

hydrodynamically fully developed (z=0). The mean temperature at the point { =0 is

L
Om0 =—>—— IBIVI 27ndn
i Vm) 0

Using the value of Ay =C *exp(——ile:‘L;J from Eq (3.59) in Eq (3.60),
e

9," ,0

7
22 J(l+ﬁn2+—Ain4+ ............ J(a—bnz)dn
NiVml o Ao Ag

C =

39
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where, the velocity of the first fluid (inner fluid) is given:

1 1
V1=a‘b772, a=%2‘+1817712‘282'7:2’b=%

Thus, the value of C is calculated from Eq (3.61) and the value of 6, is:

6, = Ay + Agmp® + Agn* + Agn® + ... (3.62)

A, =0 For n = odd,

N
= u20 [-MA,,_5 + NA,_4] For n=even and n>2
n
MN,
and, A2 =- 4u0 Ao
Q; 2 ;g a;
(g1 - 82 )i T —g]
__4 4 _ 4
M = 2 2 N = 2 2
(”i vm,lw+(1_77i )Vm,2) (771' vm,lw+(1_77i )vm,2)
—2Nu0{
And = C *exp| ————— | where,
Ao p( PeA j
_ am,O
2 7 Ay 2 A4 4 2
5 I+—=n"+—n +...... (a—bn )dn
i Vm,) o AO AO

RESULTS AND VALIDATION

The Nusselt numbers were calculated at three locations, at the outer wall, at the interface
for the first fluid and at the interface for the second fluid. The two fluids considered for
the sake of analysis were engine oil at the inside and water at the outside. The properties

of oil and water are taken from Table 2.1.
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k

v=-L=-0236
ko

A=21 —s68421
Ho

o= 4 4051 (3.63)
(Pcp)2

a
a; =—2=1.712
)

The Nusselt number at the outer wall ( Nug) was calculated for different values of
radius ratios varying from O to 1 following the steps outlined in the flowchart in Figure
3.1. Because there was no existing solution for Nusselt number in a two-fluid case, the
results were compared with the Nusselt number at the outer wall for a single fluid and

constant temperature boundary condition. The value of Nu,was evaluated at various
values of radius ratio (7; = R; /R, ) close to zero. As the radius ratio approaches zero, it

implies that the only major fluid in the system is the second fluid. Thus, the Nusselt
number at the outer wall must approach the Nusselt number’s value of the single fluid
case. The Nusselt number at the outer wall of a tube with a single fluid flowing in it and

constant wall temperature boundary condition is 3.65679 [12]. The value of Nusselt
number Nu,in the two-fluid case was 3.6575 for 7, =0.01 and 3.6568 for 7, =0.001.
Thus, these results show that the Nusselt number expression for the two-fluid system is
right as it approaches the value of that of a single fluid system with similar boundary
conditions.

The system also approaches the single-fluid system, if the radius ratio approaches

1. If n,is close to 1, it would imply that the only component present in the pipe is the
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inner fluid (oil). Thus, the Nusselt number at the outer wall must converge to 3.65679.

Nu, Was evaluated for radius ratios close to 1. The value of Nu,was 0.8648 for 7, =1.

However it must be noted that Nu, is evaluated with respect to the outer fluid.

_ qw 2R,
(Tw - Tm ) k2

Nu()

Nu, must now be calculated with the inner fluid because if 7, =1, there is no outer fluid

in the system. Thus 0.8648 is now scaled with respect to the inner fluid (the only fluid in

the system).

Thus,

4.5 -

3.5 A

3

2.5 A

1.5 A

0.5 -

dw 2R,
(Tw_Tm) kl

Nuo =

k
Nup=0.8648% —Z
ky

0.613

Nuy=0.8648* =3.656
0.145

Nu,

0.2 04

0.6

0.8

Figure 3.3: Nug vs. n;
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From Figure 3.3, it can be observed that Nu, increases as radius ratio increases to a

value of 0.4 and then drops. To understand this phenomenon, the total energy in the fluid
was plotted as a function of the radius ratio. Figure 3.4 shows the energy of the inner
fluid, energy in the outer fluid and the total energy in the fluid as a function of the radius
ratio. Total e denotes the energy in the entire fluid and el and e2 denote the energy in the
first and the second fluid respectively. It can be seen that the total energy in the fluid
increases till the radius ratio increases to a value of 0.4. The nusselt number at the outer
wall is dependent on the heat transfer that in turn is dependent on the total energy in the
fluid. Thus, the Nusselt number at the outer wall increases till the radius ratio of 0.4 and

then drops, showing the same pattern as the total energy in the fluid.

1.60E+06 -
1.40E+06 -
1.20E+06 -
1.00E+06 -
—e—total e

—&—el
—&—e2

8.00E+05 -

6.00E+05 -

4.00E+05 -

2.00E+05 -

0.00E+00
0 0.2 0.4 0.6 0.8 1

Radius Ratio

Figure 3.4: Energy in the fluids vs. »;

43



The next step was calculating the Nusselt number at the interface for the inner fluid.

q; 2r;

=4 i (3.64)
(Tt - Tm,l) kl

Nu,-’l

dT
q; =k d_rl |r=r,'

T; =Temperature of the interface
T,, 1 =Mean Temperature of the inner fluid

The Nusselt number at the interface is now verified again with the Nusselt number at the

outer wall for the single fluid case. If the radius ratio goes to 1, 7, =1, the interface is
now at the wall, and thus Nu,, should be same as that of the wall Nusselt number for the

single fluid. The following chart shows how the radius ratio affects the Nusselt number at

the interface.

Nu;

.

0 0.2 0.4 0.6 0.8 1 1.2
Radius Ratio
Figure 3.5: Nu; | vs. n;



As can be observed from Figure 3.5, the value of Nu; is 8 as the radius ratio approaches
0. This is because as the radius ratio is close to 0, it would mean that the inner fluid flow
is same as that of a plug flow. As can be seen in literature, the Nusselt number for a plug
flow type problem is 8. And as the radius ratio approached 1, the value of Nu,, is exactly
3.657 that again validate our expression for the Nusselt number at the interface.

The next step that was done was to make the two fluids the same. If both the inner and
the outer fluid are the same, the Nusselt number at the outer wall must be equal to 3.6567
for all values of radius ratio. The value of Nugapproached 3.6567 irrespective of the

value of radius ratio thus validating the results. The following plots show the temperature

variance with the Radial position.

Theta

200

150

100

50

0 0.2 0.4 0.6 0.8 1.0

Radial Position

Figure 3.6: Temperature vs. radial position for different values of #;
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Figure 3.7: Temperature vs. radial position for extreme values of #;
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CHAPTER 4
CONVECTIVE BOUNDARY CONDITION
One of our initial assumptions in solving this problem was that the flow is

thermally fully developed.

o(T,-T
— = =0 4.1
az(Tw—Tm) “-1)

Equation (4.1) reduces to the following form:

4.2)

or _dT, T, -T (dT, dT,
dz dz T,-T,\ dz dz

From Eq. (3.4) and Eq (3.5), the energy balance on a element of length dz gives,

2M1R,q,, (x)dz = (I'IR,-Zu,,,J )p 1€ padTy + TI(Ry% = Rty 20 £2€p2dT, (4.3)

dT”l 2q w RO

= (4.4)
2 2_ o2
4z (pcp )\ R tmy +(pr)2 (Ry =R Jup 2
dT,, _ 2q,, (X)R, (4.5)
dz (pcp) R2 R? .
(e p)2 R + (1= 2 1)
(ﬂ‘p)2 Ro RO

The convective boundary condition implies that there is a fluid outside the pipe whose
convective heat transfer coefficient is denoted by h.. [17]. Therefore, the boundary
condition is,

Gy =heo(Too =T,) = ho(T,, =T,,) (4.6)
Equation (4.6) reduces to

Nu, (T, -T,,) = Nuy(T,, —-T,)

where,
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2R 2R
Nu,, = hee 2R, and Nug = ho 2R, 4.7

ky ky

From Eq. (4.7) we can arrive at the value of the wall-temperature gradient in terms of the

mean temperature and the two Nusselt numbers.

dT,, _ Nug dT,, 4.8)
dz  Nug+ Nu, dz
Substituting the above value from Eq (4.8) in Eq (4.2), we get,
oT _ Nug dT,, N T, -T Nu,, dT,,
dz Nug+Nu, dz T, -T, Nug+Nu, dz 4.9)
From the definition of the heat transfer at the wall,
" _ qw
qw =ho (T =T, ) =T, =T, ——
hes (4.10)
Substituting this value in Eq (4.10)
_4w _ T
oT _ Nug  dT, .  he Nu,, dT,
az Nuo +Nu°° dz TW —T,n Nuo +Nu°° dz (411)
dw _hy _ Nug
heo (Tw - Tm ) he Nug, 4.12)
or _ Nug dT,, Nuy Nu,  dT,, N T.-T Nu,,  dT,,

9 Nug + Nu,, dz - Nu,, Nuy+ Nu,, dz T, —T, Nug+Nu, dz

(4.13)

oT _ T.,-T Nu, dTm

L. (4.14)
oz T, -T, Nug+Nu, dz

From Eq (4.5),

48



dT,, 2q,, (0R,

2q,,

{(pc,)2 R

2
where, A = +(1- R—l

(ﬂ'p )l Rlz
_zum.l
(ﬂ‘p)Z Ro

Umn2

(oep)y R02 Upm R02 Um

2q,,

+(1- R_z')um,2 1}

dz T,, =Ty, Nug + Nu, (pcp)ll Roup, A

From the definition of heat transfer at the wall,

QW" = hO (T, -T,)

Using the expression from Eq (4.16) in Eq (4.15), we get,

I _ (1., ~1)—er 2o
dz Nug + Nu, (pCp)Il Roup, A
hO = Nuo.k2 /2R0
So, from Eq (4.17) and Eq (4.18), we get,
aT Nu,,Nu a
=T -T) 02
0z Nug + Nue, R %u, A

The energy equation for the flow is,

13( ar)_uar

ror r—a—r— -;—a;

Using the value of %—T from Eq (4.19) in Eq (4.20),
z

r—
ror\ or) u, «

li( aT) U

T)

NugNu,,
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Nug + Nu,, R2A

(0cp)2 Roup A

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

4.21)



Non-dimensionalising Eq (4.21),6 =T -T,, and = RL , we get the following Eq (4.22)

o

for the inner fluid.

14 nd—gl +[M —N7*INu 6, =0 (4.22)
ndn| dn ’

Q; 2,482
7’(81“82)’7;’ +'T
where M =+ 4.23)

(”izvm,lw +(1- 771'2 .2 )

a;
7 81
N =+ 4.24)

(Ut'zvm,lw +(1- 771'2 Wm,2 )

And

Nu = IVM()}VLI00
Nugy + Nu,

The above set of equations (4.22)-(4.24) are same as that in the constant temperature case
except that Nu, in Eq (3.19)-(3.22) is replaced with Nu .

Similarly, for the outer fluid, we get the following Eq (4.25)

li[77(1—02}+[P—Q772]Nu 6, =0 (4.25)
ndn| dn

82
P=y 4 (4.26)

(”t'zvm,l +o(l- 771'2 )vm.2)

82
Q= : 4 (4.27)

771'2Vm.1 +o(l- 771'2 W2 )
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Since the equations are of the same structure as the constant temperature case, the
temperature profiles will also be similar. The boundary and interface conditions are given

in Eq (4.28)-Eq (4.30)

Atn=0,
a6 _, (4.28)
dn
At n=n;,
gﬁe_lz_‘w?
dn dn
91 =92 (429)
Atn=1,
‘_iﬂ’-_+ Nu, 6, =0 (4.30)
dn 2

Using the method of Frobenius, the expressions for thetal and theta2 are given by Eq

(4.31) and Eq (4.32).
6= A" 4.31)
=0

A,,, =0 Forn =odd,

MNu
A, =~ A,
i 4
Nu,
by — NA’? _MA‘a 9
2n (2’1)2 [ 2n-4 ..n—-]
6, = 203"77" +‘;Dn In7m" (4.32)
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D2n+l = 0 ’ B2n+l = O
PNu PNu
D, =- 4 D, B, = (Do—Bo)
Nu Nu 1

2n [QDZn—4 - PDZ/:—Z] ’ B.’.n

2n

[QBZH-4 - PBZn-Z ] - D
n

" @n? " ny?

el = ZAZnnn And 02 = iBZAU’I +iD2n ]n7777"

n=0 n=0 n=0
MNu
A, =- Au’Dﬂz-PNuDo Bz=PNu(Do_Bo)
4 - , 4
Nu
A’.’n = 2 02 [NAZn—4 - MAZn-Z]
(2n) (4.33)
Nu 1
B,, = B,,,—PB,, ,|-—D,,
2 (2}'1)2 [Q 2n-4 2 ..] n 2
Nu
2 = W[QD2n—4 - PDzn—z]
Using the Boundary Condition (4.29)
6, (n=n)=6,(n=n,)
D AT =) Byni"+ Y. Dyn Iny, (4.34)
n=0 n-0 n-0

Using the Boundary Condition (4.29)

a8, _, do,

" dn dn

}’2(2n)A2n77',2'1-1 = Z(zn)annizn_l + Z(zn)D2n77i2n—l In 77’ + ZDZ,,ﬂizn—l

n=1 n=1 n=1 n=0
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(4.35)

From Eq (4.33) we realize that all Az,-'s are a function of Ag only, all Dzi's are a

function of Dy only and all B;_,-'s are a function of Dy and B( only. Eq (4.34) and Eq
(4.35) are now solved to get Dy and By in terms of the third unknown which is Ay.

Now, the wall boundary condition is solved to get the following equation

0=)2nBy, + Y, Dy + ), —=B,, (4.36)
n=1 n=0 n=0 2

The values of Dy and B are known in terms of A . Thus Eq (4.36) takes the form:
Ao[equation *] =0 4.37)
The equation* in Eq (4.37) is solved to get the Nusselt number in terms of all the two-
fluids parameters and Nusselt number of the fluid outside the tube.
RESULTS AND VALIDATION
The Nusselt numbers were calculated at the outer wall and at the interface. From Eq.
(4.36), it can be seen that the Nusselt number at the outer wall, Nug, a function of the
Nusselt number of the fluid outside the pipe, Nu.. The following table 4.1 shows the
dependency of Nug on Nu., for a radius ratio of 0.001 and 1. As can be seen from Table
4.1, the Nusselt number at the outer wall converges to the constant temperature case in
the case of very high Nu.. and to the constant heat flux case in the case of very low Nu.,
[17]. The same dependency was observed for other radius ratios also. Figure. 4.1 shows

Nusselt number at the outer wall for 3 different radius ratios as a function of Nu...
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Table 4.1: Dependency of Nuj on Nu..

1;=0.0001 ni=l

Nu.. Nug Nu. Nug
10° 3.65 10° 0.86(3.65)
10° 3.65 10° 0.86(3.66)
10° 3.66 10° 0.87(3.66)
10 3.68 10 0.87(3.68)
1 4.26 1 1.00(3.98)
0.1 4.30 0.1 1.01(4.27)
0.01 4.35 0.01 1.02(4.33)
0.0001 4.36 0.0001 1.03(4.36)
10 4.36 10 1.03(4.36)
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Figure 4.1: Nug vs. Nu., for different radius ratios
The values of Ay, By and Dgneed to be computed. Since By and Dy are functions of
Ap , the two temperature profiles can be evaluated once A, is known.

Consider Eq (4.17)

M _ o _y_Mus 2hy  _ap(T.. —T)Nu

3z Nug +Nueo (pcp) i RotmA  (R2u, A}

(4.38)

55



2 2
fo o u R Rf |u
where A= T i (l i —I—J - =wni2vm,l +(1- 771'2 )vm,Z

R2

PCp2 Um Rg 0 Um

Let =T -T., and ¢ = ——
Ry

Equation (4.38) reduces to the following form:

86 Nu9af2
+

=0
RyIS  u,REA

From Eq (4.31), 6, = Y_A,n"
=0

01=A0+A2172+A4774+A6776+ ..........
Ay 2 Ay 4

6 =Ag(l+—=n"+—n" +....... )
Ag Ao

Equation (4.40) can also be written as:

6, = AgY Where Y _q+fzp2 Ba e,
Ag Ag

Substituting Eq (4.41) in Eq (4.39), we get the following equation:

Y dAg N NuAgYa, ~0
Ry o¢ ungA

Or,

aAO + NuA0a2 -0
¢ u,RyA

Define a new non-dimensional quantity called the Peclet number,

_ um 2R0
a

Pe
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(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.45)



Equation (4.43) reduces to the following form:

aﬂ + EN—MAQ =0 (4.46)
of PeA

s - 2Nu§') 4.47
Ag=C exp( PeA 4.47)

Assume an inlet mean temperature of 6,0 at the point where the flow gets

hydrodynamically fully developed (z=0). The mean temperature at the point { =0 is

ni
1
Omo =—5— |61vi27mdn (4.48)
i Vm,l o

Using the value of Ay =C *exp(%) from Eq (4.47) in Eq (4.48),
e.

6
C= m.0 (4.49)

i
22 I(l+é2—772+ﬂ774+ ............ J(a—bnz)dn
7 Vm1 o Ag Ag

where, the velocity of the first fluid (inner fluid) is given:

v=a-bn’, a= £2 +_]l'gl’7i2 _lgzniz,b=&
4 4 4 4

Thus, the value of C is calculated from Eq (4.49) and the value of 6, is:

6, = Ag + Ayn® + Agn® + Agn® + ... (4.50)

A, =0 Forn =odd,

=£v—2u—[—MA,,_2 + NA,_4] For n=even and n>2
n

B MNu
4

and, Ay =

Ay
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a; ) @89 Q;
(g1 - ga)ni +—2= —4'-81

G
M=+

4
N =
2 ’ 2 2
(ﬂizvm,lw +(1-7; )Vm,Z) (771' Vm 1@+ (1 =7 )v""z)
-2Nu(
and =Cex where,
Ao p[ PeA j
7]
C= - m,0
l
22 I(1+f‘lnz+ﬂn4+ ............ ](a—b772)zh7
NiVmi o Ao 4o

The temperature profiles as shown below have been plotted with the Nusselt number

Nu_ taken as 10.
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Figure 4.2: Temperature profiles for extreme radius ratios
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Figure 4.3: Temperature profiles for different radius ratios
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CHAPTER §
SUMMARY AND CONCLUSIONS

Core-annular flow, which has a very important role in oil industry, has been
analyzed so far in this work. The oil-water flow has been analyzed for three boundary
conditions- constant wall heat flux, constant wall temperature and convective boundary
condition. In all the cases analytical solutions have been derived for velocity profiles,
temperature profiles and Nusselt numbers. The Nusselt numbers thus evaluated
analytically were validated by comparison with the solutions for the single fluid case.

The usefulness of water-lubricated oil flow can be found from the result that the
mean velocity of the fluid system increased almost by a factor of 2000 for the same
pressure gradient when the water in the system was increased from zero to 10%. Thus,
the pumping pressure that is needed to pump the two-fluid flow, which has 10% water, is
very less compared to the pumping pressure that would be needed to pump oil alone. The
pumping pressure needed further decreases if the water in the pipe is increased. However
the problem of dewatering limits the amount of water that can be used.

In the constant heat flux case, the Nusselt number at the outer wall converged to
4.36 in three cases-

(a) the radius ratio approached zero

(b) the radius ratio approached one

(c) the two fluid properties were made equal.

The Nusselt number at the interface for the inner fluid converged to 4.36 when the radius

ratio approached one and converged to 8 when the radius ratio converged to 0. This
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implies that the inner fluid behaves like a slug flow when the inner radius becomes very
small.

Similar analysis was performed in constant temperature case. The method of
Frobenius was used to get the analytical solutions for temperatures and hence the Nusselt
numbers. Similar to the first boundary condition, the Nusselt number at the outer wall
approached 3.65 in three cases

(a) the radius ratio approached zero

(b) the radius ratio approached one

(c) the two fluid properties were made equal.

Similar to the constant heat flux case, the Nusselt number at the interface approached 8
when the radius ratio approached 0 and 3.65 when the radius ratio approached 1. Figure
3.3 shows that Nusselt number at the outer wall increases with radius ratio till a value of
0.4 and then keeps decreasing. As can be seen from Figure 3.4, the energy in the two-
fluid system rises till the radius ratio reaches a value of 0.4 and then falls. The nusselt
number at the outer wall is dependent on the heat transfer that in turn is dependent on the
total energy in the fluid. Thus, the oil-water system will have maximum heat transfer at
the wall at a radius ratio of 0.4.

The convective boundary condition was different from the above two conditions
in that the Nusselt numbers are a function of the Nusselt number of the fluid outside the

outer pipe (Nu..). As expected, the Nusselt number at the outer wall approached that of

the constant heat flux case when the Nusselt number of the fluid outside the pipe (Nu..)

was made zero (in other words, it was the zero wall heat flux case). The Nusselt number
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at the outer wall approached the constant temperature case when Nu.. was made very

large.
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APPENDIX
The software “Mathematica” was used to solve for various parameters. Following are
some of the important statements.

The following equations solve for the velocity profiles.

1
; D(nD(vi[n]l, n]l, n]

DSolve([% == -g1, Vvi[n], n]

1
; D[nD[vz2[n]l, n}, n]

DSolve([% = -g2, v2[n], n]

Vl—-z’? gl'*f +Zgl’7i—z g2ni+ Log[ni] ’71.(‘—2‘/\9'1771+ )
w2 n? gz + Log[n] n; (_i Ag1ni+ g2 Ui)
4 4 U2 :
hr? 1 1 1) hr?
ul = - +—hr§(———}+ °;
47 4 1 2/ 4p
hr? hr?
W= -—— 4
duz 42

umeanl = Integrate(u12rr, {r, 0, ri}]/ (n ri?)

umean? = Integrate[u+«2+ n «r, {r, ri, ro}]/ (0 (roz—riz))

1 (= Yo )
Um = *\J u1*2*n*rdr+j u2*2*7r*rdr}
0 rj

The following set of equations solve for the temperature profiles in the case of constant

heat flux boundary condition. The variable I denotes the radius ratio.

1
"r']' D[nD[e1(n], nl, n]
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DSolve[ == %, 61(n], 77]

1

- D[nD[62(n], n], n]

DSolve[%== 2, 62(n], n]
n

oy 791 n® (-1’ g1+21% 2 Log(i] g1-g2+ i®g2 -2 4% Log[i] g2)

64 m 1ém
Ti[r_] :=61+*2xro*xq/ky + T¢
T2(r_) :=62%2xTo+q/ka+ Tc
Temp[r_] :=ui[r] *Ti[r]* r*2+7
Integrate([Tamp[r], {r, 0, r1}]
Tmeanl(r_] = %/ (7« r1°)
Qinterface= -k (D[Ty1[r], r};r=1

r=1i; Tinterface =T [r_]

Qinterface
Tinterface - Tmeanl [r]

Nuinterfacel =

Temp2 [r_] :=u2[r] *T2[r]+ r+2xrn
Integrate[Temp2[r], {r, rl, ro}]
Tmean2(r_] = %/ (5 » (xo® - r1?))

) Tmeanl » r12 « umeanl + Tmean2 » (ro2 - r12) * umean? )

Tmean o2 * Up !
r=r0;

Twall = T,[r]

Nuo = e




The following statements evaluate the nusselt number and the temperatures of the two
fluids in the constant temperature boundary condition.

A[2] = -mxA[0] »nu0/ 4;

thetal = A[0] + A[2] * (n"2);

DO[A[2*1] = (nu0/ (4*xixi)) « (NxA[2+1-4] -
m*A[2+«1-2]), {1, 2, 15, 1}];

Do[thetal = thetal+A[2+1i] «» (n~(2+1)), {i, 2, 15, 1}];
Dee[2] = -p*Dee[0] +nul/ 4;
B[2] = -p+ (B[0] - Dee[0]) »nu0 / 4;

theta2 = B[0] + B[2] *n »n + Dee[0] » Log[n] +
Dee[2] »Log[n] » (n"2);

Do[Dee[2*1] = (nu0/ (4xix1i)) » (QxDee[2+1-4] -
p+xDee[2x1i-2]), {1, 2, 15, 1}];

Do[B[2*1i] = (nu0/ (4+xix1i)) » (Q«B[2+1i-4] -p*B[2+x1i-2]) -
(1/1i) »Dee[2x1i], {i, 2, 15, 1}];

Do[theta2 = theta2+ B[2x1] *n" (2 +1) +
Dee[2«i] xLog[n] « (n"~(2x1)), {i, 2, 15, 1}];

derthetal = D[thetal, n];
dertheta2 = D[theta2, n];
n=0.5;ni=0.5;

w= (884.1x1909) / (997 4179) ;
ni=0.5;

a=1.471/0.859;

¥y =0.145/0.613;

A=0.486/ (0.855«% (10"-6)) ;
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gl=1+0.2%x0.2/(2+2%0.486);

g2=1%«0.2+0.2/ (2*2%x0.855+«10"-6) ;

vI2=g2/4-(g2/8) x (1+ (ni"2));

vml = (-g1l/8-g2/4+gl/4)«(ni~2) +g2/4;

m= ((gl-g2) *ni*2+g2) »a/ (4% (Ni*2+vml+w + (1 -ni”*2) xvm2)) ;
n=oa*gl/ (4 (Ni*2+«vmlxw+ (1-ni"2) »vm2));

pP=9g2/ (4 (ni*2*xvml*w+ (1 -ni”2) »vm2)) ;

a=Dp;

A[0] =1.0;

eqgn = {thetal - theta2 == 0, y » derthetal - dertheta2 == 0};
Solve[egn, {B[0], Dee[0]}];

Dee[2] = -p*xDee[0] *nu0/ 4;

B[2] = -p* (B[0] - Dee[0]) »+nu0/ 4;

theta2 = B[0] + B[2] *xn »n + Dee[0] = Log(n] + Dee[2] +Log[n] * (n"2) ;

Do[Dee[2*1i] = (nMu0/ (4dxix 1)) » (q«Dee[2+1i - 4] -
p*Dee[2+1i-2]), {1, 2, 15, 1}];

Do[B[2+*1] = (nu0/ (4*i+1)) » (q*B[2+1-4] -p+*B[2+1-2]) -
(1/1) «Dee[2+1], {1, 2, 15, 1}];

Do[theta2 = theta2+ B[2+1i] *+n" (2« 1) +
Dee[2+1i] xLog[n] « (n~(2+1)), {i, 2, 15, 1}];

nu0 = 3.85; theta2

nu0l = 3.86; theta2
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Plot[theta2, {nu0, 3.85, 3.86}]
thetaminlet = 100;

nN=.; A[2] = -mxA[0] xnu0/ 4;

thetal = A[0] +A[2] *+ (n"2);

DOo[A[2%1] = (nu0/ (4+i+x1)) +« (n+xA[2+«1i-4] -m+A[2+1-2]), {i, 2, 15, 1}];
Do[thetal = thetal+A[2+1] * (n~(2+1)), {1, 2, 15, 1}]

1 2 g2 1 .2 1 .2
vli= -— 1+ —+—glni“- —g2ni
40 g 2 49 49

Integrate[ (thetalxvlsn), {n, 0, ni}]
c = thetaminlet *xnis«nisvml/ (2+ %)

a=w*vml*+ni*ni+ (1-ni»ni) +vm2; A[0] = c+Exp[-2+nu0+Z/ (pexa)]
A[2] = -m*A[0] »nu0/ 4;

thetal = A[0] + A[2] » (n"2);

DO[A[2%1] = (nuO/ (4+i«1i)) + (N+A[2+1i-4]) -m«A[2+1-2]), {1, 2, 15, 1}];
Do[thetal = thetal+A[2+1] « (n*(2+1)), {i, 2, 15, 1}];

pe = 200; thetal

B[0] = B[0] »A[0] ; Dee[0] =Dee[0] « A[0] ;

Dee[2] = -p*Dee(0] *nu0/4;

B[2] = -p* (B[0] - Dee[0]) »+nu0/ 4;

theta2 = B[0] + B[2] *n *xn+ Dee[0] « Log[n] +
Dee([2] »Log([n] * (n"2);

Do[Dee[2+1] = (mu0/ (4xix1i)) » (q+Dee[2+1-4] -
p*Dee[2+1-2]), {i, 2, 15, 1}];

DO[B[2+1] = (nMu0/ (4+ix1i)) » (Q+B[2+1i-4] -p*B[2x1-2])
-(1/1i) »Dee[2+1], {i, 2, 15, 1}];
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Do[theta2 = theta2 + B[2+ 1] *+n"~ (2« 1) +
Dee[2+1i] «xLog(n] » (n~(2+1)), {1, 2, 15, 1}];

The same procedure as above is repeated for convective boundary condition except that

the term Nug in the constant temperature condition is replaced by Nu .
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