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ABSTRACT

HIERARCHICAL BAYES MODELS FOR BEEF CATTLE GENETIC EVALUATION

UNDER EXTENSIVE MANAGEMENT CONDITIONS

By

Fernando Flores Cardoso

The overall aim of this project was to investigate several incompletely resolved issues

in statistical modeling applied to quantitative genetic inference of extensively managed

multiple-breed beef populations using Bayesian inference based on MCMC methods. A

hierarchical animal model (HIER) was developed for inference on genetic merit of

livestock with uncertain paternity. This model was compared to a model based on

Henderson's average numerator relationship (ANRM) in a simulation study and in an

application to growth data from Brazilian Herefords. For both simulated and Hereford

data, posterior inference on variance components was similar for ANRM and HIER, and

rank correlations on posterior means for genetic effects between the two models exceeded

0.90. Nonetheless, large differences in these posterior means between the two models

were observed for some animals. Furthermore, animals with uncertain paternity had

generally larger posterior stande deviations of genetic effects using the HIER model

likely because this model accounts for the uncertainty on sire assignment probabilities.

Bayesian model choice criteria consistently favored the HIER model over the ANRM

model in both simulated and Hereford data.

A hierarchical multiple-breed animal model (MBAM) was proposed and applied to

estimate genotypic effects, breed-specific additive genetic variances and variances due to

the segregation between breeds. Phenotypic records were modeled as function of additive

(A), dominance and A X A genetic fixed effects and random animal additive genetic



effects using appropriate multiple-breed additive variance-covariance specifications.

MBAM was validated on five two-breed simulated datasets and applied to the analysis of

post-weaning gain (PWG) records from Nelore-Hereford crosses. MBAM inference on

Nelore and Hereford genetic variances differed substantially and a non-zero segregation

variance was estimated between these breeds. The Pseudo Bayes Factor (PBF) heavily

favored the MBAM over the conventional animal model for both simulated and PWG

data. The main advantage ofMBAM is the flexibility in modeling heteroskedastic genetic

variances of the breed composition groups, hence improving genetic predictions. Finally,

the MBAM was extended to allow residual heteroskedasticity and robustness using

structural variance models. Six alternative structural specifications were evaluated:

Gaussian homoskedastic and heteroskedastic; Student t homoskedastic and

heteroskedastic; and Slash homoskedastic and heteroskedastic. Based on the PBF, the

Student t heteroskedastic model provided the best fit to PWG whereas the Gaussian

homoskedastic model provided the worst fit. Amongst the fixed factors considered for

residual heteroskedasticity (breed proportion, heterozygosity and sex) only

heterozygosity appeared to be important. Considerable heteroskedasticity was inferred

across random contemporary groups. Inference on genetic variance components changed

substantially depending on the structural specification for the residual variance.

Furthermore, inference based on the conventional Gaussian homoskedastic model led to

significant rerankings of animal genetic effects compared to the better fitting Student t

heteroskedastic specification, thereby having important implications for genetic

improvement programs.



To Magali and Nicole for their love and support

iv



ACKNOWLEDMENTS

I am deeply grateful for the extraordinary guidance, support and friendship that Dr.

Robert J. Tempelman has given me during the last four years, and which have been

decisive to my scholarship. I truly valued his never-ending patience and willingness to

help the countless times I have come to his office without an appointment. My gratitude

is extended to Drs. Dennis Banks, Ricardo Cardellino, Bryan Epperson, Cathy Ernst and

David Hawkins for their support to this work and for serving in my guidance committee.

I have to specially thank Dr. Ricardo Cardellino; without his encouragement I would not

have come to Michigan State University. Appreciation is given to Dr. Guilherme Rosa

for kindly revising and providing valuable suggestions, particularly on Chapter 4 of this

dissertation. I also thank the assistance given by Dr. Peter Saama at Quantitative Genetics

Lab. I greatly appreciated the help and the very productive discussions I had with my

fellow graduate students, Dr. Kadir Kizilkaya, Dave Edwards, Juan Steibel and Lan Xiao.

I am in debt with CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel

Superior), Ministry of Education, Brasilia, Brazil, for funding tuitions, fees and

scholarship during the whole course of my degree. I would also like to thank the College

of Agriculture and Natural Resources for support through the dissertation completion

fellowship.

Finally, I would like to thank my wife, Magali, my daughter, Nicole, my parents,

Francisco and Teresinha, and my brother, Eduardo, for their unconditional love and

support and for their great patience and understanding, especially in the toughest days of

the last four years.



TABLE OF CONTENTS

LIST OF TABLES .......................................................................................................... VIII

LIST OF FIGURES .......................................................................................................... XI

INTRODUCTION ............................................................................................................... 1

1. Prediction of performance and genetic merit .............................................................2

2. Multiple-sire mating and uncertain paternity ............................................................. 5

3. Heteroskedasticity and robustness ............................................................................. 8

4. Bayesian inference in animal breeding .................................................................... 12

5. General hypothesis ................................................................................................... 13

6. Specific aims ............................................................................................................ 13

CHAPTER 1 ...................................................................................................................... 15

BAYESIAN INFERENCE ON GENETIC MERIT UNDER UNCERTAIN

PATERNITY ..................................................................................................................... IS

1. Introduction .............................................................................................................. 16

2. The Bayes hierarchical model .................................................................................. 18

2.1. The reduced animal model with maternal effects ........................................... 18

2.2. Modeling uncertain paternity ..........................................................................20

3. Simulation study ......................................................................................................25

4. Results ......................................................................................................................3O

5. Discussion ................................................................................................................35

Appendix ......................................................................................................................38

CHAPTER 2 ......................................................................................................................43

GENETIC EVALUATION OF BEEF CATTLE ACCOUNTING FOR UNCERTAIN

PATERNITY .....................................................................................................................43

1. Introduction ..............................................................................................................44

2. Materials and methods .............................................................................................45

2.1. Data .................................................................................................................45

2.2. Bayesian inference ..........................................................................................47

3. Results ......................................................................................................................51

3.1. Posterior inference on variance components ..................................................51

3.2. Inference on Brazilian Hereford data..............................................................54

4. Discussion ................................................................................................................64

CHAPTER 3 ......................................................................................................................68

HIERARCHICAL BAYES MULTIPLE-BREED INFERENCE WITH AN

APPLICATION TO GENETIC EVALUATION OF A NELORE-HEREFORD

POPULATION ..................................................................................................................68

1. Introduction ..............................................................................................................69

vi



2. Material and Methods .............................................................................................. 70

2.1. Crossbreeding Model ......................................................................................70

2.2. Hierarchical Bayes model construction ..........................................................72

2.3. Simulation Study.............................................................................................75

2.4. Application to field data..................................................................................78

3. Results and Discussion ............................................................................................80

3.1. Simulation study ............................................................................................. 80

3.2. Post-weaning gain analysis .............................................................................84

4. Implications..............................................................................................................94

Appendix ......................................................................................................................95

CHAPTER 4 ......................................................................................................................98

ROBUST QUANTITATIVE GENETIC INFERENCE ON POST-WEANING GAIN OF

HEREFORD-NELORE CATTLE USING A MULTIPLE-BREED AND STRUCTURAL

RESIDUAL VARIANCES ANIMAL MODEL................................................................98

1. Introduction ..............................................................................................................99

2. Material and Methods ............................................................................................ 102

2.1. Nelore-Hereford data .................................................................................... 102

2.2. Hierarchical Bayes model ............................................................................. 103

3. Results and Discussion .......................................................................................... 113

3.1. Model choice ................................................................................................. 113

3.2. Robustness and detection of outliers............................................................. 114

3.3. Assessment of heteroskedasticity sources .................................................... 119

3.4. Variance components and heritabilities ........................................................ 124

3.5. Random additive genetic effects ................................................................... 129

4. Final remarks ......................................................................................................... 135

Appendix .................................................................................................................... 136

CONCLUSIONS.............................................................................................................. 140

1. This study in the context of beef cattle breeding ................................................... 140

2. Objectives revisited ................................................................................................ 141

3. Implications for genetic improvement of beef cattle ............................................. 143

4. Opportunities for further studies ............................................................................ 145

BIBLIOGRAPHY ............................................................................................................ 148

vii



LIST OF TABLES

Table 1.1. Posterior means of probabilities of sires being true sires (13(72'(”0"”) ly)))and

probability of sire assignments being equal to true sires (Prob(s;—- 351m) |y)) averaged

across sires and replicates for Traits 1 and 2 by multiple-sire group size and parents

versus non-parent animals..................................................................................................32

Table 2.1. Posterior median (PMED), 95% posterior probability intervals (PPI), and

effective sample size (ESS) of variance components averaged across ten replicated

datasets on Traits 1 and 2, obtained by the hierarchical model (HIER), a model based on

the average numerator relationship matrix (ANRM), and a model based on known sire

assignments (TRUE). Maximum (MAX) and minimum (MIN) posterior medians across

the ten replicates are also reported. ....................................................................................52

Table 2.2. The mean deviance D , penalty for effective number of parameters (pp) and

the Deviance Information Criterion (DIC = D + pp) averaged across the analysis of 10

simulated replicates for each of Traits 1 and 2 based on the ANRM and HIER models...54

Table 2.3. The deviance (D), penalty for effective number of parameters (pp) and the

Deviance Information Criterion (DIC) for ANRM and HIER models used for the analyses

ofpost-weaning gain (PWG) and weaning weight (WWT) on Brazilian Herefords. ........ 55

Table 2.4. Posterior median, 95% posterior probability intervals (PPI), and effective

sample sizes (ESS) of variance components (in kg2) and genetic parameters for post-

weaning gain in Brazilian Herefords, obtained by ANRM and HIER models. .................56

Table 2.5. Posterior median, 95% posterior probability intervals (PPI), and effective

sample sizes (ESS) of variance components (in kg2) for weaning weight in Brazilian

Herefords, obtained using ANRM and HIER models. ......................................................60

Table 2.6. Posterior medians, 95% posterior probability intervals (PPI), and effective

sample sizes (ESS) of genetic parameters for weaning weight in Brazilian Herefords,

obtained using ANRM and HIER models. ........................................................................61

Table 3.1. Distribution of post-weaning gain records per region according to individual

and maternal breed composition ........................................................................................ 80

Table 3.2. True value, posterior mean (PMEAN), posterior stande deviation (PSD),

posterior mode (PMODE), 95% posterior probability intervals (PPI), and effective

sample size (ESS) for variance components (VC) averaged over the five simulated

populations, obtained by a conventional animal model and by a multiple-breed animal

model.................................................................................................................................. 81

Table 3.3. Empirical averages and standard errors (SE) of posterior mean (PMEAN)

additive genetic variances, obtained by a multiple-breed animal model for different breed

compositions in the simulation study. For all breed compositions, the corresponding

viii



posterior mean and standard deviation using the conventional animal model (AM) was

84.3 at: 3.3 ...........................................................................................................................83

Table 3.4. Posterior means (PMEAN) :1: posterior standard deviations (PSD) in kg of

genetic fixed effects obtained by a multiple-breed animal model (MBAM) and an animal

model (AM) for post weaning gain in Nelore-Hereford crosses .......................................85

Table 3.5. Posterior mean (PMEAN), posterior standard deviation (PSD), posterior mode

(PMODE), 95% posterior probability intervals (PPI), and effective sample size (ESS) of

variance components (VC) estimated for post-weaning gain in Nelore-Hereford crosses,

obtained by a conventional animal model and by a multiple-breed animal model ...........87

Table 3.6. Posterior means (PMEAN), posterior standard deviations (PSD), posterior

modes (PMODE), 95% posterior probability intervals (PPI), and effective sample size

(ESS) of direct additive heritability of post-weaning gain (PWG) for different Nelore-

Hereford genotypes, obtained by a conventional animal model and by a multiple-breed

animal model ......................................................................................................................89

Table 3.7. Spearman rank correlation between posterior mean of additive genetic effects

obtained by a multiple-breed animal model and by a conventional animal model for all

animals and for different percentile MBAM groupings of animals within the most

frequent breed compositions. .............................................................................................91

Table 4.1. Log Marginal Likelihood (LML) in the diagonal and log Pseudo Bayes Factor

(difference between the LML of the models represented in the corresponding row and

column of the table) for six different models used in the analyses of post-weaning gain of

a Nelore-Hereford population .......................................................................................... 1 14

Table 4.2. Posterior mean (PMEAN), posterior standard deviation (PSD), posterior mode

(PMODE), 95% posterior probability intervals (PPI), and effective samples size (ESS)

for “fixed” effects scaling factors and for the environmental heterogeneity parameter (77)

on post-weaning gain residual variance, obtained from the Gaussian and Student t

heteroskedastic models .................................................................................................... 120

Table 4.3. Posterior mean (PMEAN), posterior standard deviation (PSD), posterior mode

(PMODE), 95% posterior probability intervals (PPI), and effective sample size (ESS) of

additive genetic (a; for breed b, b=1 for Nelores and b=2 for Herefords, 01312 for

between breed segregation), contemporary group (0;) and marginal residual (0,25)

variance components (VC) estimated for post-weaning gain, obtained by different

models. ............................................................................................................................. 125

Table 4.4. Posterior mean (PMEAN), posterior standard deviation (PSD), posterior mode

(PMODE), 95% posterior probability intervals (PPI), and effective sample size (ESS) of

phenotypic variances (dig) estimated for post-weaning gain of different genotypes (g),

obtained by four different models .................................................................................... 126

Table 4.5. Spearman rank correlation between posterior mean of additive genetic effects

on post-weaning gain for different combinations of the Gaussian homoskedastic (G-HO),

ix



Student t homoskedastic (T-HO), Gaussian heteroskedastic (G-HE) and Student t

heteroskedastic (T-HE) models for all animals and for animals ranked in the top ten

percentile for G-HO within the most fi'equent genotypes. ............................................... 131



LIST OF FIGURES

Figure 1.1. Mean squared error of prediction (MSEP) of posterior means of additive and

maternal genetic effects of parent and non-parent animals with uncertain paternity for

Traits l and 2 under three models, 1) HIER based on proposed hierarchical model, 2)

ANRM based on Henderson's average numerator relationship matrix, and 3) TRUE based

on knowledge of the true sire as a positive control. Within each group, bars sharing the

same letter are not statistically different at or=.05 .............................................................33

Figure 1.2. Rank correlation of additive and maternal genetic effects of parent and non-

parent animals with uncertain paternity for Traits 1 and 2 under three models, 1) HIER

based on proposed hierarchical model, 2) ANRM based on Henderson's average

numerator relationship matrix, and 3) TRUE based on knowledge of the true sire as a

positive control. Within each group, bars sharing the same letter are not statistically

different at 0t=.05. ..............................................................................................................34

Figure 2.1. Scatter plot of standard deviation (SD) of additive genetic effects of post-

weaning gain, in kg, of Brazilian Herefords with uncertain paternity, obtained by ANRM

vs. HIER. Solid line represents the least-squares fit represented by the reported regression

equation presented in the graph whereas the dashed line has slope one and null intercept.

R is the coefficient of determination for least-squares fit. Black arrows point to sires that

have substantial numbers (9 and 50) ofprogeny of their own. ..........................................58

Figure 2.2. Scatter plot of standard deviation (SD) of additive (a) genetic effects of

weaning weight, in kg, of Brazilian Herefords with uncertain paternity, obtained by

ANRM vs. HIER. Solid line represents the least-squares fit represented by the reported

regression equation presented in the graph whereas the dashed line has slope one and null

intercept. R2 is the coefficient of determination for least-squares fit. Black arrows point to

sires that have substantial numbers (17 and 87) ofprogeny of their own. ........................63

Figure 3.1. Posterior means (intermediate tick mark) and 95% posterior probability

intervals (end tick marks) of post-weaning gain of Hereford, Hereford backcross

(BCmmfofd)), advanced 3/8 (A3/8) Nelore 5/8 Hereford, F 1, and F2 and Nelore backcross

(BCmcmfi calves obtained by a Multiple-Breed Animal Model (MBAM).......................86

Figure 3.2. Posterior densities of the additive genetic breed and segregation variances

obtained by a Multiple-Breed Animal Model (MBAM) and of the homogeneous additive

genetic variance (assumed common to both breeds) obtained by a conventional Animal

Model (AM) for post-weaning gain in Nelore-Hereford crosses.......................................88

Figure 3.3. Scatter plot of posterior means of additive genetic effects of Herefords,

Nelores and F1’s obtained by a Multiple-Breed Animal Model (MBAM) versus those

obtained by a conventional Animal Model (AM) ..............................................................92

Figure 3.4. Scatter plot of posterior standard deviations of additive genetic effects of

Herefords, Nelores and Fl’s obtained by a Multiple-Breed Animal Model (MBAM)

versus those obtained by a conventional Animal Model (AM) .........................................93

xi



Figure 4.1. Scatter plot of standardized residuals of post-weaning gain on contemporary

group id using the Gaussian homoskedastic model. Three residuals from the same

contemporary group are highlighted for further inference to be presented later: 1.

Represents a mild outlier, being about three standard deviations (SD) from zero; 2.

Represents a null residual (perfect fit); and 3. Consists of an extreme outlier, -5.57 SD

from zero. ......................................................................................................................... 115

Figure 4.2. Posterior distribution of weight variables corresponding to observation 1

(Obs. l - a mild outlier); observation 2 (Obs. 2 — a nearly perfect model fit) and

observation 3 (Obs 3. — an extreme outlier) under two robust models: a) Student t

heteroskedastic model and b) Slash heteroskedastic model. ........................................... 117

Figure 4.3. Box-plots of random contemporary group scaling factors posterior means

according to the region of production: 1- located between 14°S and 16°S latitude; 2-

located between 21 °S and 23°S; and 3- located between 30°S and 32°S .................... 123

Figure 4.4. Posterior density of additive heritabilities of post-weaning gain for different

breed composition groups, Nelore, Hereford, F1 and Advance 3/8 Nelore (A38), obtained

by a) Gaussian homoskedastic, b) Student t homoskedastic, c) Gaussian heteroskedastic

and d) Student t heteroskedastic models .......................................................................... 127

Figure 4.5. Scatter plot of posterior means of additive genetic effects for post-weaning

gain obtained by the Gaussian homoskedastic (G-HO) and Student t homoskedastic (T-

HO) models (top) and, by the G-HO and Gaussian heteroskedastic (G-HE) models

(bottom), for the Nelore, Hereford and F1 breed composition groups ............................. 132

Figure 4.6. Scatter plot of posterior means of additive genetic effects for post-weaning

gain obtained by the Gaussian heteroskedastic (G-HE) and Student t heteroskedastic (T-

HE) models (top) and, by the Student t homoskedastic (T-HO) and T-HE models

(bottom), for the Nelore, Hereford and F1 breed composition groups ............................. 133

xii



INTRODUCTION

Beef products are sources of essential dietary amino acids and microelements (e.g.

iron). Supplying the market with these high quality products at a competitive price

depends on maximization of efficiency in production systems.

Animal breeders have a key role in the improvement of beef production systems.

Selection and planned crossbreeding systems can synergistically create more desirable

animal biotypes that match current production systems. The use of heterosis and

complementarity between breeds through crossbreeding (Gregory et al., 1999) is a tool

available to increase the efficiency of production without large increase in costs. Since

this has led to an increasing proportion of beef cattle populations being crossbred, genetic

evaluations have been further complicated by the varying genetic backgrounds and

degrees of crossbreeding found in these populations.

In order to accurately predict performance and to enhance genetic progress in

crossbred populations, it is necessary to develop and apply statistical methodology that

accounts for all salient sources of genotypic differences in economically important traits.

The complexity of the biological and environmental issues involved requires extensive

research effort. Bayesian statistics provides a set of flexible tools and a general modeling

framework in this regard (Sorensen and Gianola, 2002). Hierarchical Bayes models

(HBMs) can account for virtually any level of complexity that is present in the population

of interest and are particularly useful when records are correlated (Hobert, 2000), as is

typical of related animals. Moreover, HBMs allow for optimal combination of

information present in the data with previous inferences from the literature to estimate the

parameters of interest (e.g. genotypic means). The current “state-of-art” multiple-breed



genetic evaluation model for beef cattle in the United States uses a HBM to incorporate

prior knowledge on heterosis Wei et al., 1996).

1. Prediction of performance and genetic merit

The genetic value of an animal can be determined by the mean of its breed-

composition or genotypic group plus an individual deviation from its group (Arnold et

al., 1992; Elzo, 1994; Klei et al., 1996; Sullivan et al., 1999). Several approaches have

been considered to estimate means of breed-composition groups in multiple-breed

populations. The simplest strategy involves including breed-composition in the definition

of the contemporary group (CG) and estimating heterotic effects jointly with the CG

effects. However, this method reduces the number of possible direct comparisons and

connectedness in the population, since animals with different compositions are

considered to be in different CG even when they are raised together under the same

management and environmental conditions (Klei et al., 1996). Parsimonious models are

obtained by estimating breed-composition means as a function of additive (breed

proportion) and non-additive (degree of allelic and non-allelic interaction) genetic

coefficients. If heterosis is primarily due to dominance (allelic interaction) with no

epistasis, then it is proportional to heterozygosity (proportion of heterozygotes at

individual loci) (Gregory et al., 1999). Dickerson (1969; 1973), however, introduced the

concept of “recombination loss” to explain deviations from the heterozygosity found in

crossbred individuals. The recombination loss is equal to “the average fraction of

independently segregating pairs of loci in the gametes from both parents which are

expected to be non-parental combinations” (Dickerson, 1969). The effect of

recombination loss is attributable to the loss of favorable epistatic combinations present



in the gametes from purebreds as a result of long-term selection. Kinghorn (1987)

proposed several hypotheses and models to account for “epistatic loss” in crossbred

populations, and Wolf et a1. (1995) proposed a general model based on the two-loci

theory to account for dominance and epistatic effects.

Confoundedness and multicollinearity between the coefficients for genetic effects

complicates the estimation of dominance effects separately from epistatic effects such

that most of the models proposed for multiple breed evaluations are only based on

dominance effects (Cunningham, 1987; Klei et al., 1996; Miller and Wilton, 1999;

Sullivan et al., 1999).

Accounting for additive and heterotic mean effects on genetic evaluations can be

accomplished by several approaches, for example: by using information in the literature

to pre-adjust records (R080 and Fries, 1998; Sullivan et al., 1999), provided that the

published estimates are reliable and applicable to the population being evaluated; by

estimating these mean effects solely from the data of the population under investigation

(Arnold et al., 1992; Miller and Wilton, 1999); or by simultaneously using information

from the literature combined with data information, as in the benchmark model used

currently in the US. beef industry (Klei et al., 1996; Quaas and Pollak, 1999).

A deviation of the genetic merit of an individual from its group mean is due to

additive and non-additive genetic effects. Additive effects or breeding values indicate the

deviance fiom the population mean expected in the offspring of an individual when it is

mated at random to other individuals in the population, whereas non-additive effects are

useful to determine specific combining abilities between individuals (Falconer and

Mackay, 1996). These deviations are determined by the performance of an individual and



its relatives; therefore, it is important to properly account for covariances between

relatives when predicting genetic value of crossbred animals.

Theory to estimate the covariance between crossbred animals was presented by Lo et

al. (1993) for an additive model and by Lo et a1. (1995) for an additive and dominance

model. Under the additive model, (co)variances are modeled as a function of breed

specific additive variances and variances due to the segregation between breeds. These

segregation variances represent the additional variance observed in F2 individuals

compared to the Fl’s (Lo et al., 1993). These methods derive genetic means and

covariances between crossbred and purebred individuals from “identity modes” used to

determine the probability that related individuals share alleles that are identical-by-

descent (IBD). The additive and dominance model is derived for a two-breed and their

crosses scenario (Lo et al., 1995). This model has an exact theoretical derivation and can

accommodate the presence of inbreeding, but requires a relatively larger number of

variance components to be estimated (up to 25 when inbreeding is present).

Simplifications arise when the population is composed only by the two pure breeds and

Fl’s (Lo et al., 1997), and this model has been applied to swine data (Lutaaya et al.,

2001)

For more general crossbreeding schemes, the dominance model (Lo et al., 1995) can

be cumbersome due to the large number of dispersion parameters to be estimated, while

the additive model (Lo et al., 1993) can be implemented without great difficulty. An

alternative formulation of the additive model with a regression approach to account for

non-additive effects and a sire-matemal grandsire model implementation was proposed

by Elzo (1994) and applied to multiple-breed data (Elzo et al., 1998; E120 and Wakeman,



1998). Recently, Birchmeier et al. (2002) proposed an algorithm using restricted

maximum likelihood (REML) to estimate additive breed and segregation variances under

a typical animal model and general pedigree structure. Yet, several recently proposed

models (Klei et al., 1996; Miller and Wilton, 1999; Quaas and Pollak, 1999; Sullivan et

al., 1999) assume that all breeds have the same additive genetic variance and there is no

variance due to segregation between breeds in advanced crosses. A model including

additive and non-additive genotypic effects and random additive individual deviations

may offer a parsimonious model for genetic evaluation of multiple-breed populations.

2. Multiple-sire mating and uncertain paternity

Extensive beef cattle production systems ofien rely upon multiple-sire mating to

increase the probability of pregnancy, when the size of breeding groups, as a

consequence of paddock size, is too large to be sired by a single bull. Breeding cows are

exposed to more than one male within the same breeding season and consequently calves

born from these matings have uncertain paternity; they are known only to be sired by one

of the bulls in the mating group. This situation frequently occurs in pastoral operations

such as those found in Argentina, Australia, Brazil and parts of the United States. Other

causes of uncertain parentage include the use of artificial insemination followed by

natural breeding, accidental/unplanned breeding and insemination with pooled semen.

Pedigrees in these herds are uncertain and this can impact genetic evaluations by

decreasing accuracy of genetic value prediction and by reducing selection intensity if

animals with uncertain paternity are not considered for selection or are not included in the

evaluation.



Statistical methods have been developed for genetic evaluation of animals with

uncertain pedigree. A simple method that has been used is genetic grouping (Westell et

al., 1988), where “phantom parents” are assigned to animals with uncertain sire. Here,

“phantom parents” are grouped according to some criteria (e.g. gender, year of birth)

such that this group effect, fixed or random, is estimated. This specification is equivalent

to the assumption of an infinite number of non-inbred, unrelated possible sires, all having

equal probabilities (Perez-Enciso and Fernando, 1992; Sullivan, 1995). However, a finite

number of putative sires should be considered, if identification of each sire in each group

is known. The average numerator relationship matrix (ANRM), as proposed by

Henderson (1988), consists in constructing a relationship matrix based on the

probabilities of each putative male being the correct sire. This relationship matrix is the

correct covariance between animals when true probabilities are known (Perez-Enciso and

Fernando, 1992), and can be used to provide best linear unbiased predictions (BLUP) of

genetic merit for all sires based on the records of certain and/or uncertain progeny,

records of other relatives, and their own mates and records. A simple and rapid method to

compute the inverse of the ANRM is available (Famula, 1992). This method relaxes the

assumptions of no inbreeding and no relationship between candidate sires which are

required in genetic grouping.

The advantage in terms of selection response of using ANRM compared to genetic

grouping, when putative sires are recorded, has been demonstrated through simulation

(Perez-Enciso and Fernando, 1992; Sullivan, 1995). Differences in favor of ANRM

between the two models were larger when h2 was low and uncertainty high. Nonetheless,

this comparison entails that the true probabilities are known. With no prior knowledge,



equal probabilities might be assumed for each sire; however information from blood

types, genetic markers, records of mating behavior, fertility, breeding period and

gestation length could be used to assign probabilities that a given offspring has been sired

by different males (Foulley et al., 1987; Henderson, 1988). Nevertheless, it is unrealistic

to assume that those are the true probabilities and the BLUP properties of predictions

based on ANRM are seldom, if ever, attained.

A less restrictive method that deals with uncertainty on paternity probabilities and

different type of data sampling distributions (normal and binomial) is the empirical Bayes

procedure proposed by Foulley et a1. (1987; 1990). This method uses the data and an

approximate algorithm to calculate posterior probabilities of sire assignments. However,

its use is limited to sire models, not being developed for more general cases, such as

animal models.

Despite the encouraging results found in the literature, methods taking into account

uncertain paternity are not broadly used in genetic prediction. This could be due to the

fact that ANRM, the most studied and ready to implement method, requires the

knowledge of true paternity probabilities or at least “good” approximations of these

probabilities. And, on the other hand, methods that overcome such requirements, such as

those of Foulley et a1 (1987) and 1m (1992), are not generalized to the animal model,

most commonly used in such predictions.

Recent developments in molecular biology, statistics and computational power have

provided some solutions. Methods such as blood typing and genotyping could be used to

determine true paternity. Despite their precision, it is improbable that they could be used

in large scale with the unique purpose of determining paternity due to their costs.



However, genetic markers developed for other purposes may provide a source of prior

information that could be combined with the data to increase accuracy on prediction of

performance and to maximize selection response on populations undergoing multiple-sire

mating. The Bayesian framework facilitates the development ofmodels that fully account

for uncertainty on parentage, combining molecular prior information or subjective prior

information with performance of the individual, offspring and relatives, to predict genetic

merit of individuals pertained to or born from group mating. These predictions would be

a fimction of the posterior probabilities of each bull in the group being the correct sire of

the individual given the prior and data information. The proper genetic analysis of

animals with uncertain paternity would enhance genetic improvement and consequently

economic productivity of large populations raised in pastoral conditions and undergoing

multiple-sire mating.

3. Heteroskedasticity and robustness

Current methods for genetic evaluation based on Henderson’s mixed model equations

(Henderson, 1975) require knowledge of variance components to provide BLUP of

genetic values. Ofien, genetic and residual variances are assumed to be constant across

environments in these evaluations. However, heteroskedasticity has been reported in beef

cattle for growth performance (Garrick et al., 1989; Nunez-Dominguez et al., 1995;

Rodriguez-Almeida et al., 1995) and carcass scan traits (Reverter et al., 1997). Region,

herd, level of production, herd size, year, sex and class of age of dam are possible sources

for heterogeneity. For the case of crossbred populations, breed composition can also be

considered (Arnold et al., 1992; Garrick et al., 1989; Rodriguez-Almeida et al., 1995). A



parsimonious model for heterogeneous variances is essential, since the number of

parameters to be estimated can increase dramatically, making such analyses unfeasible

(Foulley and Quaas, 1995).

In general, the phenotypic variation in beef cattle weights increases proportionally

with the mean; e g. weaning weights have larger variance than birth weights (Koots et al.,

1994). Variance of performance in animals raised on better environmental conditions

might be expected to be larger than those grown in poorer environments and males may

be expected to have higher variability compared to females due to their typically higher

weights.

When several herds in different environments are involved in a genetic evaluation

program, the accuracy of selection will depend on a reasonably correct specification of

variance components in mixed mode] equations. The effect of heterogeneity of variances

is particularly important for the selection of cows, young bulls and heifers, because these

animals have records within one herd or environment and thus their evaluation can be

greatly affected by differences in environmental variances (Winkelman and Schaeffer,

1988).

Methods to assess sources of heterogeneity of variance have been proposed by

Gianola et al. (1992) and SanCristobal et al. (1993). The method of Gianola et al. (1992)

is based on regarding herd residual variances as random variables from a conveniently

defined distribution (i.e. scaled inverted chi-square). The estimates obtained represent a

compromise between a data based statistic (REML) and parameters of the distribution of

variances (hyperparameters). When the amount of information in particular stratum is

large, the REML part of the estimator dominates; otherwise the prior distribution is



weighted more heavily. Another advantage of this hierarchical specification is in terms of

borrowing of information across subclasses as is true for conventional random effects

models. In San Cristobal et al. (1993), an extension of the structural linear method for log

variances (Foulley et al., 1992) to genetic and residual effects is presented. The method

2

uses a log link for variances i.e. Ina? =m;k, where 0'., is the variance per subclass,

m;is a row incidence vector and 1. , a vector of unknown parameters influencing

heteroskedasticity. Procedures to estimate 3. were presented for marginal likelihood and

Bayesian point ofview, assuming informative prior information on components of 1..

Other than heteroskedasticity, the presence of observations influenced by factors not

accounted for in the statistical analysis and having potentially extreme influence (i.e.

outliers) can severely bias the genetic merit predictions, since most linear mixed models

used in animal breeding assume normally distributed residual and random effects. The

normal distribution is particularly vulnerable to presence of outliers (Rogers and Tukey,

1972).

Preferential treatment, inappropriate contemporary group formation, record errors and

animal misidentification are possible causes of outliers in beef cattle populations. The

presence of outliers is normally investigated prior to data analysis. This editing generally

consists of deleting observations that are considered extremely far from the phenotypic

mean of its class (i.e. greater than three standard deviations). However, the edits used in

determining which records are outliers are somewhat ad-hoc in nature and need to be

justified, particularly to the breeder(s) affected.

As an alternative to the deletion of observations, some symmetric heavy-tailed

distributions, such as Student t, Slash and Contaminated Normal, have been suggested
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and applied in place of the normal distribution for robust estimation (Lange and

Sinsheimer, 1993). These distributions are examples of Normal/independent families that

can better accommodate extreme observations due to their heavy-tailed feature (Lange

and Sinsheimer, 1993; Rogers and Tukey, 1972). They can be defined as the distribution

0 C e O O O O

of k drmensronal random vector y = u + :7:- , where p. rs the locatron vector of drmensron

w

k, w is a positive random variable with density p(w|v) (depending on the family

distribution), where v is a robustness parameter (degrees of freedom), and e is a k

dimensional random vector normally distributed with mean 0 and nonsingular covariance

matrix 2. Conditional to w, y is normally distributed with mean u and covariance matrix

2 / w. Moreover, the distribution ofw defines the marginal distribution of y.

In animal breeding, Stranden and Gianola (1999) recently introduced a hierarchical

Bayes model that specifies the residuals to have Student t rather than normal densities.

They presented a Monte Carlo Markov Chain (MCMC) strategy to provide inferences on

breeding values. Previous results from the same authors indicate that the Student I better

accommodates data situations that involve a prevalence of preferential treatment,

compared to the normal distribution (Stranden and Gianola, 1998).

It is possible to construct hierarchical Bayes models that parsimoniously account for

heteroskedasticity, while being robust to outliers. Extensions of the methods proposed by

Foulley et a1. (1992) and SanCristobal et a1. (1993) combined with Normal/independent

distributions (Lange and Sinsheimer, 1993) may provide robust tools to identify sources

of heterogeneity of variance in multiple-breed populations tested in diverse environments

by means of fully Bayesian inference.
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4. Bayesian inference in animal breeding

The milestone paper that introduces Bayesian inferences to animal breeding research

is credited to Gianola and Fernando (1986). The most striking, and perhaps controversial,

difference between Bayesian and classical (or frequentist) inference is that Bayesian

inference allows the incorporation of prior knowledge (Blasco, 2001 ). From a practical

point of view, if significant prior information is available, then ignoring it seems poorly

advised, especially when the inference complexity is high and data information is limited.

Hierarchical or multistage models are used in Bayesian inference to functionally

describe complex problems through a series of nested levels or sub-models (Sorensen and

Gianola, 2002). Distributional assumptions and parameter values associated with these

distributions (hyperpararneters in Bayesian terminology) are used to integrate prior

knowledge in the analyses. The Henderson’s mixed model equations (Henderson, 1973)

widely used in animal breeding are a classical example oftwo stage model.

Inferences (e.g. estimation of genotypic means or prediction of breeding values) are

derived from the joint posterior density, which consists of the product of all hierarchically

specified stages of the model. There are two primary methods to obtain estimates: 1) an

empirical Bayes approach, in which the joint mode of all parameters is obtained by

iterative methods, such as the Expectation-Maximization (EM) algorithm (Dempster et

al., 1977) and approximate “large sample” standard error derived from an information

matrix; 2) a fully Bayes approach, in this case MCMC, a simulation-intensive algorithm,

is used to derive marginal densities obtaining “exact” small sample inference on all

parameters (Gilks, 1996). The Metropolis-Hasting algorithm (Hasting, 1970; Metropolis,

1953) and the Gibbs sampler (Gelfand and Smith, 1990; Geman and Geman, 1984) are

12



the most common MCMC strategies used in animal breeding. A large number of cycles

are generated and samples are saved. Eventually, the sampler converges to the joint

posterior distribution. Values of each parameter drawn afier convergence are considered

random samples from its marginal posterior distribution and used to draw inference (e.g.

means, modes, medians, standard deviations, credibility sets, etc.) (Sorensen and Gianola,

2002)

Fully Bayesian methods have been used in the last decade for inference in animal

breeding problems in several applications, including variance component estimation

(Jensen et al., 1994; Wang et al., 1994b), prediction of selection response (Sorensen et

al., 1994; Wang et al., 1994a) and in threshold models for categorical data (Sorensen et

al., 1995; Wang et al., 1997). The possibility of combining prior and data information,

and the ability to provide exact small sample inference, make Bayesian methods

attractive for animal breeding and genetics problems, especially when the number of

parameters exceeds the number of observations.

5. General hypothesis

Precision of genetic merit prediction can be improved by the development and

application of Bayesian methods in the genetic evaluation of multiple-breed beef cattle

populations.

6. Specific aims

This project sought to improve genetic evaluations of multiple-breed populations,

taking advantage of the versatility of Bayesian statistics in dealing with complex

13



biological and environmental issues arising in these evaluations. The use of Bayesian

methods had been limited in the past by their computational requirements, but is now

possible due to the rapid increase in speed and memory capacity ofPCs and workstations.

The issues addressed are relevant topics for the beef industry; however the technology

being developed is general enough to be applied to other livestock species. More accurate

analyses will result in better prediction of breeding values and combining abilities

between individuals of different backgrounds, leading to an ultimate improvement of

efficiency in current production systems.

The overall aim was to investigate some incompletely resolved questions in statistical

modeling applied to the estimation of genetic parameters of extensively managed

multiple-breed populations. These issues included the partition of genetic variances,

uncertain paternity, heterogeneity of residual variances and robustness to outliers. As part

of this aim, fully Bayes genetic evaluation software, to be applied in multiple-breed beef

cattle populations was developed. The specific objectives were:

1) To develop and apply a hierarchical Bayes model for genetic evaluation of animals

originated from multiple-sire mating systems;

2) To develop and apply a hierarchical Bayes model for genetic evaluation of animals in

multiple-breed populations;

3) To extend the genetic evaluation models in 1) and 2) to account for heterogeneity of

residual variances across environments and provide greater robustness to outliers.

l4



CHAPTER 1

BAYESIAN INFERENCE ON GENETIC MERIT UNDER UNCERTAIN

PATERNITY

ABSTRACT: A hierarchical animal model is developed for inference on genetic

merit of livestock with uncertain paternity. Fully conditional posterior distributions for

fixed and genetic effects, variance components, sire assignments and their probabilities

are derived to facilitate a Bayesian inference strategy using MCMC methods. We

compare this model to a model based on Henderson's average numerator relationship

(ANRM) in a simulation study with 10 replicated datasets generated for each of two

traits. Trait 1 had a medium heritability (hz) for each of direct and maternal genetic

effects whereas Trait 2 had a high h" attributable only to direct effects. The average

posterior probabilities inferred on the true sire were between 1 and 10% larger than the

corresponding priors (the inverse of the number of candidate sires in a mating pasture) for

Trait 1 and between 4 and 13% larger than the corresponding priors for Trait 2. The

predicted additive and maternal genetic effects were very similar using both models;

however, model choice criteria (Pseudo Bayes Factor and Deviance Information

Criterion) decisively favored the proposed hierarchical model over the ANRM model.

Key Words: Uncertain paternity, Multiple-sire, Genetic merit, Bayesian inference,

Reduced animal model.
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1. Introduction

Multiple-sire mating is common on large pastoral beef cattle operations in Argentina,

Australia, Brazil and parts of the United States, for example. Here, groups of cows are

exposed to several males within the same breeding season. Consequently, pedigrees in

these herds are uncertain, adversely affecting accuracy of genetic evaluations and

selection intensities.

A number of statistical models have been proposed for genetic evaluation of animals

with uncertain paternity. One simple solution appears to be genetic grouping (Westell et

al., 1988), whereby “phantom parents” groups are assigned to animals within the same

mating pasture. In genetic grouping, phantom parent groups are typically defined to be a

contemporary cluster of unknown parents in order to minimize bias on breeding value

predictions due to genetic trend (Cantet et al., 1993; Quaas, 1988). The use of genetic

grouping for multiple-sire mating, however, is equivalent to assuming an infinite number

of non-inbred, unrelated candidate sires within each group, each candidate having the

same probability of being the correct sire (Perez-Enciso and Fernando, 1992; Sullivan,

1995) of the animal with uncertain paternity. However, only the candidate sires actually

used within a group or pasture should be considered.

This requirement is more aptly handled with the average numerator relationship

matrix (ANRM) proposed by Henderson (1988). The ANRM is based on knowledge of

true probabilities of each candidate male being the correct sire. The ANRM helps specify

the correct genetic variance-covariance matrix when these probabilities are presumed

known (Perez-Enciso and Fernando, 1992), thereby facilitating best linear unbiased

predictions (BLUP) of genetic merit. A simple and rapid algorithm to compute the
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inverse of the ANRM is available (Famula, 1992) and the advantage in selection response

of using ANRM versus genetic grouping, when candidate sires are recorded, has been

demonstrated by simulation studies (Perez-Enciso and Fernando, 1992; Sullivan, 1995).

Equal prior probabilities might be assumed for each sire; however information fi'om

blood typing, genetic markers, mating behavior, fertility, breeding period and gestation

length could also be used to make these probabilities more distinctive (Foulley et al.,

1987; Henderson, 1988).

A novel empirical Bayes procedure to infer upon uncertain paternity was proposed by

Foulley et a1. (1987; 1990). Their sire model implementation combines data and prior

information to determine the posterior probabilities of sire assignments for each animal

with uncertain paternity. With the advent of Markov chain Monte Carlo (MCMC)

techniques in animal breeding (Wang et al., 1994b), it is now possible to extend their

method to an animal model and allow a more formal assessment of statistical uncertainty

on genetic merit and of probabilities of sire assignments.

The objectives of this study were to: 1) develop a hierarchical animal model and

Bayesian MCMC inference strategy for the prediction of genetic merit on animals having

uncertain paternity; 2) use this model to estimate posterior probabilities of paternity, by

combining prior and data information; and 3) compare the performance of the proposed

model with a model based on the use of Henderson’s ANRM having equal prior

probability assignments for all candidate sires.
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2. The Bayes hierarchical model

2.1. The reduced animal model with maternal effects

Consider an n X 1 data vector y = {yij} , i=1,2,...,n; j=1,2...,q. Here i identifies the

record andj the animal associated with the ith record. We allow for the possibility of any

animalj having no record; nevertheless, a genetic evaluation may be desired on that same

animal if it is related to other animals having data. In the reduced animal model (RAM)

of Quaas and Pollak (1980), y is partitioned into two major subsets:

X Z Z e

yr xr erPr Z2: zerr +6,

The first 11,, X 1 subset yp of y is observed on qp animals that are identified as parents

or ancestors of other animals having data. In [1], yp is a linear function of a p x 1 vector

of "fixed" effects B, a qp X 1 vector of additive direct genetic effects ap, and a qp x 1

vector of additive maternal genetic effects mp. Here, ap and mp correspond to effects on

the qp parents. The design matrices connecting y, to B, ap and In,D are Xp, Z1,,, and Zzp,

respectively. The remaining n, x 1 data subset y, is recorded on terminal or non-parent

animals who are not parents of any other animals with data. As with y,,, y, is modeled

similarly as a function of B, and mp except that I rather than p is used as the subscript

index for the respective design matrices in [1]. Furthermore, y, is modeled as a linear

function (through ZI,P,) of ap. Here Z1, is a n, x q, design matrix and P, is a q, x q,, matrix

connecting the genetic effects of q, non-parent animals to that of their parents. That is, in

P,, row j, indexed j = qp+1,qp+2,...,q, connects the genetic effect of non-parent animal j

to that of its sire s; and dam d; such that the j, s; and j, d; elements of P, for identified

parents of animal j are equal to 0.5. The “residual” vector is composed of error terms ep
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and e,, respectively of parent and terminal animals, and additionally, for terminal animals,

of additive Mendelian genetic sampling terms in the vector 7,, which is connected to y,

through Z“.

We assume that the variance covariance matrix of the RAM residual vector is:

2
e I (re 0

R = var[ p :'= q” ' 2 2 ,

2117: +0, 0 ernrrzltaa + I(nae

where (2,, =diag{a)j}q is a q, X q, diagonal matrix, with the jth element

qup‘H

corresponding to the proportion of the additive genetic variance (of) on animal j that is

due to Mendelian sampling (Quaas, 1988); and of is the residual variance.

The structural prior specifications on the genetic effects are defined accordingly to

include only parent terms; i.e.

PU: ]|9]=N(°,G®App), [2]

2
a a I O O I O O

where G =[ a 0:] rs the genetrc vanance-covarrance matrix for direct and maternal

0' 0
am m

genetic effects with a; being the maternal genetic variance, and am the covariance

between direct and maternal genetic effects. Furthermore, App is the numerator

relationship matrix amongst all qp parent animals and (8 is the Kronecker or direct

product. For conjugate convenience, a joint bounded uniform or normal prior p(B) may

be specified for B, an inverted Wishart prior density p(G) specified for G and an inverted

gamma density p( of) specified for of.

In addition we have that
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[:12]=[1, ®P,][l::]+l:;:]. [3]

where a, and m, are respectively, the q, X1 vectors of additive and maternal genetic

effects associated with terminal animals. Furthermore, y, and 6, are each q, X 1 vectors of

additive and maternal Mendelian genetic sampling terms, respectively, also associated

with terminal animals and such that

7: 0

G ~ N ,G (8 fl .

[6, il [[0] a]

2.2. Modeling uncertain paternity

In populations undergoing multiple-sire mating, a number of males are possible

candidate sires for each of several animals. This translates into uncertainty on various

elements of P, for non-parent animals and on various elements of App for parent animals.

We first consider uncertain paternity on the q, non-parent animals indexed

Z

j = qp+1,qp+2,...,q, and associated with n, records in y,. Let ZI =I: l” J. Then if non-

II 1

parent j has uncertain paternity, this uncertainty translates into the j, .9} element of P,

being unknown or, equivalently, the 5;. element of z; ,1. being unknown, where 21,]. is the

row of Z1 matching with the address of y,,- in y. Suppose, that for animal j, there are v}.

possible candidate sires with identifications listed in s}. = {SE-1),S§2),....,s£v’)} The

distribution ofya, conditional on a given sire assignment 5‘} = s5.” , 1 S k S V}, on animal j

and all other parameters is given by:

20



"_ (k) 2 2 r r 2 (k) 2

yr} ll},ap,mp,sj —sj ,O'a,0’e ~N(x,jB+0.Sas(k) +0.5ad; +zzymp,0'e +60}- 0'0],

J

i = np+l,np+2,...,n;j = qp+1,qp+2,...,q. [4a]

Here x'.U. , and 2'20. are, respectively, the rows ofX and Z2 matching the address ofy,,- in y.

When animal j has certain paternity, v, = 1 such that then s; is not random. Note that the

conditioning on known d; (darn identification) is implied for all animals throughout this

chapter whereas the conditioning on s; = s5.” is explicitly provided given that s; may be

uncertain. This uncertainty is further reflected in [4a] by the term 605-") = w]. , (k)

.91 =sj

indicating that fraction 605.") of genetic variance attributable to Mendelian sampling for

animal j is a function of its inbreeding coefficient and hence of the sire assignment

5;. = 55*).

Now consider the possibility that at least one of the parent animals, indexed from 1 to

qp, has uncertain paternity such that elements of App are also uncertain. The sampling

distribution of ya, on parent animal j, j =1,2,...,qp, is not conditioned on uncertainty on

sires, that is,

2 r r 2

y,., lB,ap,mp,0'e ~ N(x,.jB+aj +zzymp,0'e ),

i=1,2,...,np;j=1,2,...,qp. [4b]

Uncertain paternity on parent animals is modeled with the second stage structural

prior on ap and mp in [2]. A useful decomposition of A}; as shown by Henderson (1976)

and Quaas (1988) is A; = TpnjpT; , where Tp is a qp X qp lower triangular matrix and
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Opp = diag{a)1}?”1 is qp X qp diagonal matrix analogous to 9“, but with elements

corresponding to the fraction of 03 due to Mendelian sampling on each parent animal j.

All of the diagonal elements of Tp are equal to 1 with at most two other elements per row,

say j, s; andj, d; , being equal to -0.5, if the corresponding parents 3;. and d; of animalj

are identified, for j = 1,2,...,qp. Consequently, IA;11,|=|Tp||fljp||TLI=lflgp| since

 

lTpl =1 . Given this result, the joint prior density of a, and m,, conditioned on App , can

be written as,

ap _g —1

p[m G,App oc |G| 2 lnpp|

p

xexp(-o.5(a;,rpn;;r;apg” + 2a;'rpn;;r;mpg‘2 + mgrpn;},r;,mpg22 )) [5]

where g'j is the (i,j)th element of G”1 for i,j = 1,2.

Let t'j denote the jth row of Tp. Then it can be readily shown that the additive and

maternal Mendelian sampling terms are respectively y]. = t'jap = 01—50; —.5ad. and

,- J

6]. = t'jm = m . —.5ms._ —.5md. for j = 1,...,qp If there are no known candidates for s;
P J j J

and d; then the corresponding parental contributions of as. and ad. to )3- and m . and

J 1 ‘1’

md. to Q are equal to 0, as would be true for each of the base population animals

1

qp

. 1 denote the vector of random sire assignments on parent
I:

j=1,2,...,q,, s q,. Let s; = {3;}

q . . .

_p be a particular realization of s; from the setanimals and sg‘) ={s§k)}

J=1
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Sp = {31,32,33,...,qu} such that the jth element of 85:) is one of the V] elements chosen

from sj. = {s§.l),s§2),....,s£v’)} for j = 1,2,...,qp. Note that for the qb base animals, s,- is an

empty set. We can then rewrite [5], explicitly conditioning on sire assignments as

follows:

[

p

xii—18w?) )—1 exp[-0.S(0)§-k) )-1 ((7?) )2 g” + (65.” )2 822 + 275k)5§k)812)]] , [6]

j:

q

G,s;,=s(:)] oc |G|_7p

 

()_
where (Sf-”=5,- 33:55” and 71'" ‘71   

53=SSH , indicating the natural dependence of

Mendelian sampling terms on the sire assignment s; = s3”. As there is no need to infer

upon uncertain paternity for the qb base animals, (05") = 1 for j = 1,2,...,q,, with {sydrh

i=1

being an empty subset of sg‘).

The third stage of the model specifies the prior probability for each of v,- males being

. . . . . s t q

the correct srre of an ammal 1. As we do sunrlarly for parents, we let s, ={sj} ‘ 1

J=qp+

denote the vector of random sire assignments on the non-parent animals and

35") = {s§k)}q denote a particular realization of s: from the set

qup+l

8 R q

S, ={sqp+l,sqp+2,...,sq}. For all q animals, we then write so‘) = (pk) ={s§k)}j=l as

s!
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t s. C

being a realization of s =[ f] = {s .}q 1 from the set S = {SW 8,}. The probability that

s3.” is the sire of animalj is defined as 7:5.“ = Prob(s;. = s5”) for k =1,2,...,vj such that

in?) =1. For animals with certain paternity, there is only one candidate 3; a $5.1) such

k=l

that 7:51) =1 and hence is constant. For each of the qb base animals, It?) is not specified

since there are no candidate sires. The set of probabilities u]. = {Its-1),7t§-2),...,fl'§-vj)} for

each one of v,- candidate sires for non-base animal j (j = qb+1,qb+2,...,q) may be

conceptually elicited using external information (e.g. genetic markers). The entire set of

probabilities n = {1:}. }q +1 is rarely known with absolute certainty, and so we might regard

qb

them as random quantities from a Dirichlet distribution:

' (”5.“) [7]

v~-l .

where a]. ={a§k)}kj=l, org-k) >0 for k= 1,2,...,vj and ”5”) =1- 2 It?) is constrained

accordingly. Specification of the set of hyper-parameters a = {11].}: q +

= b

1 might be based

on the assessed reliability of the source of external information on the prior probability of

each sire assignment.

We use [4a], [4b], and [6] as key expressions to determine the joint posterior density

of all unknown parameters
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P(B,ap,mp,s' = 8(k),fl,G,O'e2 Iy) oc

"p n I. k

Xl—Ip(yg' Ip’ ap’mpan) n p(yy' lflaapampvs! =85 )’0-3’0'e2)

i=1 t=np+l

.p(.,,,m is; =8“)G)p(B)Pr0b(S'=s(")ln)p(n|a)p(G)p(af) [8]

Here,

Prob(s.=s(k)|n)= 111 Prob(s;=S§-k)|nj)= Ill ”(71'5“)1 ,

Fab +1 j=qb+1 k=1

where 15.” =1 if .9} =11?) and 13k) = 0 otherwise. Furthermore,

”1' al")

(rf-”l“

The fully conditional distributions (FCD) of all unknown parameters/quantities or

P(n|a)= IT P(’t |a1)= Ill
j=Qb +1 j: b+l k=l

blocks thereof in [8] necessary to conduct MCMC inference with some details on the

sampling strategy itself are derived in the Appendix to this chapter. A good exposition

on MCMC implementations in hierarchical animal breeding models analogous to that

presented in this chapter is provided by Wang et al. (1994b).

3. Simulation study

A simulation study was carried out to compare two models for the prediction of

genetic merit allowing for uncertain paternity on some animals. The first model is the

hierarchical model proposed in this chapter (Section 2), which infers upon this

uncertainty using phenotypic data; the other model is based on the use of the Henderson's

average numerator relationship.
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Ten datasets were generated for each of two different types of traits. Trait 1 had

medium direct heritability (h: = 0.3 ), medium maternal heritability ( hf, = 0.2) and a

slightly negative direct-matemal correlation (ram = —0.2) as, for example, would

characterize weaning weight. Trait 2 had a high direct heritability (h: = 0.5 ), but null hf,

as would characterize post-weaning gain. The residual variance (of) was 60 and 50,

respectively for Traits 1 and 2.

Each population included 80 sires, 400 dams (480 parents) and 2 000 non-parent

animals, all of which descended from 20 base sires and 100 base dams. From these base

animals, five generations were created. Fifteen males and 75 females were randomly

selected from each generation to be parents of the next generation. Furthermore, five sires

and 25 dams from the previous generation's breedstock were retained, such that a total of

20 sires and 100 dams were used as the breeding group for each generation. That is, the

population was structured to have overlapping generations. The probability of any

offspring being assigned to an uncertain paternity situation was 0.3. If an animal had

uncertain paternity, it was randomly assigned to one of six possible multiple-sire groups

in each ofthe five generations. These groups had six different sizes: v,- = 2, 3, 4, 6, 8 or 10

candidate sires. Once the group was chosen, one of the males in the group was selected to

be the true sire with either equal (UV!) or unequal probability relative to the rest of the

candidate sires (the actual probabilities used to assign progeny to sires in each group can

be obtained from the author by request). The latter scenario was intended to represent the

dominant male situation, common in beef cattle (DeNise, 1999). The five sires selected

from the previous generation's breedstock had only certain progeny. An additional ten

sires were used in group matings but also had certain progeny, whereas the remaining
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five sires had only uncertain progeny. One group of three sires in each population was

formed with sires having only uncertain progeny with the purpose of comparing the

performance of the two models in the case where sires have only their own record and

pedigree as the only source of information for their genetic evaluation, other than

uncertain progeny. All other mating groups had at least one sire that was known to be

sires of other animals. We deliberately intended to mimic the situation observed in some

ranches under genetic evaluation in Brazil. These ranches select their own young bulls to

serve their herd by natural service (NS) and also collect semen from their own top bulls

to be used in artificial insemination (AI). Moreover, they import external genetics

especially through AI. In this scenario, the sires can be categorized in three different

ways: 1) sires having only known progeny (i.e. imported AI bulls); 2) sires having both

known and uncertain progeny assignments, such as top herd bulls that are used by Al or

known NS mating but also by uncertain NS in multiple sire pastures during the breeding

season and 3) sires having only uncertain progeny assignments.

Only one record was generated per each animal. For both traits, the overall mean was

equal to 100 and a fixed effects factor with three levels, having values 25, -25 and 0, was

randomly assigned to generate the individual records.

The ten replicates for each of the two traits were analyzed using three different

models:

1) HIER: A hierarchical mixed effects model fully accounting for uncertainty on sire

assignments as proposed in Section 2.
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2) ANRM: A linear mixed effects model based on the average numerator relationship

matrix (Henderson, 1988). Equal and fixed probabilities were assigned to each

candidate sire of animals pertaining to uncertain paternity.

3) TRUE: A linear mixed effects model based on the true sire assignments, as if there

was no uncertainty on assignments. This model was included to serve as a positive

control for the other two models.

For all three models, a MCMC sampling chain of G = 20 000 cycles was run after a

burn-in period of 4 000 cycles. In order to concentrate our attention on the relative

performance of the models for breeding value prediction, variance components were

considered to be known. Flat bounded priors were placed on each fixed effect. Na’r’ve

equal prior probabilities, i.e. inverse of the number of candidate sires within each group,

. . . . . l
were specrfied on each srre assrgnment to an anrmal. By setting a5.” =— for

v.

J

k= 1,2,...,vj, we have that Z:1 a5.” =1, and the same weight is statistically given to

prior and data information in the sampling of sire assignments for thejth animal in the set

of animals with uncertain paternity.

The parameters used to compare the methods studied were the mean squared error of

prediction (MSEP), the mean bias of prediction (MBIAS) and Spearman rank

correlations between estimated and true genetic values. The MSEP for each model was

10

estimated as 2£0th — uh}. )2 /q/10 , where 10 denotes the number of replicates, q is the

11:1 1:1

total number of parent or non-parent animals with uncertain paternity per replicate, 22,”. is

the estimated genetic additive or maternal effect for animalj in replicate h and ”hr is the

28



true genetic additive or maternal effect for animal j in replicate h. MBIAS was similarly

10

estimated as Zifihj —u,,j )/q/10.

h=l 1:1

Variables describing uncertain paternity, specifically, s; and n5.” , were analyzed

separately for parents and non-parents, as parents were considered to have greater

amounts of information on their genetic merit compared to non-parents. Sires had on

average 23.6 progeny, while dams averaged 5.9 progeny. Within each group size

category, animals with certain paternity and with uncertain paternity were considered

separately. Pairwise comparisons based on genetic merits estimated under the three

different models were performed using a t-test.

We also considered two model choice criteria: the Pseudo Bayes Factor (PBF)

(Gelfand, 1996) and the Deviance Information Criterion (DIC) (Spiegelhalter et al.,

2002). For comparing, say, models M1 and M2, the corresponding PBF was determined to

be:

" P(YyIY(_g-)aM1)
 PBFLZ = H p(y,-,- |y(_.-,-)’M2) ,

where p(y,.j |y(_,.j),M,) is the conditional predictive ordinate (CPO) for observation yy,

intended to be a cross-validation density, which suggests what values of y,.}. are likely

when Model M, is fit to all other observations yH.) except y,.]. A MCMC approximation

for the CPO of Model M, with parameters 0 is obtained by a harmonic mean of the G

MCMC cycles
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The DIC is composed by a measure of global fit, posterior mean of the deviance, and

a penalization for complexity of the model. The deviance for Model M, using the null

standardization from Spiegelhalter et a1. (2002) can be estimated by

G

D, =éZ—2 log p(y|0(’),M,). The ‘complexity’ of Model M, is determined as the

(=1

effective number of parameters given by po = D, — D, (0) where

r
D (0)=—210gp(y|0,M,) with 0 being the posterior mean of 0. That is, ppm

represents the difference between the posterior mean of the deviance and the deviance

based on the posterior mean of the parameters under Model M,. The DIC for Model M, is

then determined as:

DIC, = D, + pm”.

Smaller values of DIC are indicative of a better-fitting model.

4. Results

Since it was unclear to us whether the indicator variable 3;. or parameter 716k) should

be used for inferring uncertainty with respect to assignment of sire k to animal j, we

considered both variables. Inference on the probabilities of the true sires for animals with

uncertain paternity in the HIER model was based on determining the frequency of

MCMC samples of s; that were equal to the true sire, designated as Prob(s; = syn”) ly) ,

j ly) the posterior mean of ”5"”) , the probability parameterand by determining E(7r(.m)
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identified with syn”), the true sire ofj. These summaries are presented separately for

parent and non-parent animals with uncertain paternity in Table 1.1 for both Traits 1 and

2. The average posterior probabilities attributed to the true sire (i.e. based on

Prob(s;. = 55.”) |y)) were between 1 and 10% larger than the respective priors (l/v, for a

respective mating group of size v1) for Trait l and between 4 and 13% larger than the

priors for Trait 2. Inference on uncertain paternity using Prob(s;. = 39"“) ly) had a

slightly better general performance than inference based on E no”) |y . The larger
1

differences between average posterior and prior probabilities in Trait 2 may be a result of

the higher heritability. These differences were generally statistically significant (P<.05),

based on one-sample t tests.

The consistently higher probability attributed to 35m) by HIER indicates that this

model tends to infer towards the correct sire; however, the small magnitude of these

differences suggests that phenotypes may not be sufficiently informative to precisely

infer upon paternity assignments under these two trait scenarios. The average

Prob(s; 259"”) |y) for mating groups of size v, = 3 and formed with sires with

exclusively uncertain progeny were 0.348 for Trait 1 and 0.360 for Trait 2. These

probabilities were consistent with those determined for other groups of size v, = 3 but

including sires that had also certain progeny. That is, the HIER model performed

similarly in terms of probabilities of assignments to sires whether or not sires have both

certain and uncertain progeny or only uncertain progeny as source of information.
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Table 1.1. Posterior means of probabilities of sires being true sires (EVEN!) | y)) and

probability of sire assignments being equal to true sires (Prob(s; = 35.”) |y)) averaged

across sires and replicates for Traits 1 and 2 by multiple-sire group size and parents

versus non-parent animals.

 

Multiple-sire group size

Parameter Animal

 

 

 

 

Category 2 3 4 6 8 10

Traitl

E(n§.‘”“)|y) Parents 0.513 0.341 0.259 0.175 0.126a 0.105

E(7r§.m)|y) Non-parents 0.509 0.339 0.259 0.172 0.130 0.103

'= (true)

Problsj 31 'y) Parents 0.525 0.349 0.269 0.183 0.127 0.110

‘= (true)

Pmblsi S! 'y) Non-parents 0.517 0.345 0.268 0.178 0.134 0.105

Trait2

13(7:(.ym)| ) Parents 0.510 0.343 0.265 0.177 0.132 0.105

E(7r(m)| y) Non-parents 0.520 0.346 0.270 0.179 0.134 0.106

SUM)

Pmblsz': 5'1 'y) Parents 0.521 0.352 0.280 0.188 0.138 0.111

*= (true)

P‘Oblsj ‘1 'y)Non-parents 0.540 0.360 0.289 0.191 0.143 0.111

 

aPosterior probability is not statistically different from the prior of its group size at or=.05

In terms of MBIAS, none of the three models were significantly different from any

other under all situations analyzed, and the results are not presented here. The mean

squared error of prediction (MSEP) and rank correlation on additive and maternal genetic

effects of parents and non-parents, with uncertain paternity for Trait 1 (medium 113 -

additive and maternal effects) are presented in Figures 1.1 and 1.2, respectively. As
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Figure 1.1. Mean squared error of prediction (MSEP) of posterior means of additive and

maternal genetic effects of parent and non-parent animals with uncertain paternity for

Traits 1 and 2 under three models, 1) HIER based on proposed hierarchical model, 2)

ANRM based on Henderson's average numerator relationship matrix, and 3) TRUE based

on knowledge of the true sire as a positive control. Within each group, bars sharing the

same letter are not statistically different at or=.05

expected, the MSEP was always smaller and rank correlation higher for TRUE compared

to ANRM and HIER, showing that the use of multiple-sire matings adversely affects

accuracy of genetic evaluations (Sullivan, 1995). Posterior means of additive and

maternal genetic effects were very similar for HIER and ANRM with no significant

difference in MSEP and rank correlations on these posterior means between these

models. There was, however, a tendency for smaller MSEP and higher rank correlation

under HIER for animals with uncertain paternity. There seems to be not enough

information, at least in this simulated scenario, to discriminate between ANRM and

HIER for MSEP and rank correlation of genetic evaluations using only phenotypic
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Figure 1.2. Rank correlation of additive and maternal genetic effects of parent and non-

parent animals with uncertain paternity for Traits l and 2 under three models, 1) HIER

based on proposed hierarchical model, 2) ANRM based on Henderson's average

numerator relationship matrix, and 3) TRUE based on knowledge of the true sire as a

positive control. Within each group, bars sharing the same letter are not statistically

different at or=.05.

records. This result may be associated with the small differences between prior and

posterior probabilities of sire assignments under HIER.

For Trait 2, the MSEP and rank correlation were also not statistically different

between ANRM and HIER across the ten simulated datasets (Figures 1.1 and 1.2). Here,

the differences in terms of rank correlation among models were somewhat smaller

relative to Trait 1. This result may be due to the higher hz, and therefore the decreased

importance of pedigree information, i.e. sire assignments, relative to phenotypes for

prediction of genetic effects.
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We applied two model choice criteria, the PBF and DIC as previously described, to

compare the statistical fit of the two models, ANRM and HIER. The PBF for all

replicates were always favorable for HIER compared to ANRM, with magnitudes ranging

from 2.1><102 to 2.4><107 for Trait 1, and from 6.3><107 to 2.6><1024 for Trait 2. The

calculated DIC were also always in favor of HIER compared to ANRM ranging from a

differences of 9 to 41 for Trait 1 and fiom 33 to 115 for Trait 2. These results appear to

be decisively in favor of the HIER model as Spiegelhalter et al. (2002) has suggested a

DIC difference of 7 to be an important difference in model fit. For Trait 1, the average

DIC over the ten replicates was 17 843 for HIER (13mm =17 135 and pD(HlER)= 709) and

17 866 for ANRM (DANRM =17 164 and ppm/WW) = 702); and for Trait 2 we obtained an

average DIC of 17 553 for HIER (13mm =16 605 and PD(HIER)= 949) and of 17 630 for

ANRM (DANRM =16 704 and pD(ANRM) = 926). The primary reason for a smaller DIC for

HIER compared to ANRM was the smaller mean deviance (5,) of HIER. The difference

in terms of D, was large enough to compensate the penalty for a larger effective number

of parameters (ppm) applied to HIER. These two model choice criteria (PBF and DIC)

clearly indicate that the HIER model provides a better statistical fit than the ANRM

model to the simulated data involving animals with uncertain paternity.

5. Discussion

We proposed in this study a firlly Bayesian approach for prediction of genetic merit of

animals having uncertain paternity. Similar to the empirical Bayes sire model method of

Foulley et al. (1987), our procedure combines data and prior information to determine
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posterior probabilities of sire assignments. Nevertheless, our method represents an

important extension since it uses more recently developed MCMC tools to provide small

sample inference based on the animal model, the most common model for current genetic

evaluations. Our method can be readily extended to multiple-trait or other quantitative

genetic (e.g. random regression) models without great conceptual difficulty. It could also

be easily generalized to the case of uncertain dams; however, this is not a typical scenario

in livestock breeding.

The results obtained from our simulation study indicate that a model accounting for

uncertainty on sire assignments provides a better fit to data characterized by uncertain

paternity relative to a model based on the use of the average numerator relationship

matrix (Henderson, 1988). The relative performance between the two models might be

expected to increase with h2 since the power of discriminating between candidate sires

should intuitively increase. We previously have shown that when h2 = 0.10, there was no

significant difference between prior and posterior probabilities of sire assignments

(Cardoso and Tempelman, 2001). However, the lower the hz, the greater the importance

of data on uncertain progeny in the prediction of a sire's genetic merit (Sullivan, 1995).

The difference between the two models, nevertheless, does not necessarily increase with

higher heritabilities, since the importance of pedigree information relative to phenotypic

information decreases with respect to the prediction of genetic merit. Thus our work

suggests the largest differences in performance between the two models exist for traits

with intermediate h). Nonetheless, due to similarity in terms of rank correlation, and

especially in the absence of prior information from e.g. genetic markers, the ANRM
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model may be preferable for genetic evaluation of large populations given the potential

savings in computational time.

In the presence of prior information on sire assignments, the hierarchical model

presented in this study represents an important alternative for genetic prediction. That is,

in addition to the incorporation of prior probabilities on sire assignments, as also possible

with ANRM, the HIER model allows for the integration of the uncertainty about these

prior probabilities in the prediction of genetic merit. Genetic markers, for example,

represent an important objective source of prior information. Moreover, the HIER model

represents a general framework which could be extended to model the quality of genetic

marker information contributing to sire assignment (Rosa et al., 2002).

The use of multiple-sire mating is common in large beef cattle populations raised in

pastoral conditions. Currently, about 25-30% of the calves evaluated by the beef cattle

improvement programs in Brazil derive from multiple-sire mating. Multiple sire matings

are used to improve pregnancy rates, since the average size of breeding groups, as a

function of paddock size, is too large to be sired by a single bull. Other examples of

uncertain parentage include the use of AI followed by NS, accidental or unplanned

breedings, and A1 with pooled semen as is common in swine production. Multiple-sire

matings are also commonly found in some sheep production systems.

The impact of modeling uncertain paternity, either through ANRM or HIER, is

expected to be particularly important for large herds. These herds provide sizable gene

pools for selection, thereby offering great potential for genetic improvement programs;

however, the exclusive use of single matings is costly and generally impractical in these

operations due to their size and labor commitments. Genetic evaluation systems that
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model uncertain paternity will aid genetic improvement of economically important traits

in large populations raised in pastoral conditions and undergoing multiple-sire mating.

Appendix

Specification offully conditional distributions

3:451) Z2], with Zl
  

Let 0=[B',a},,m},]'; W,(k)=[X Zl 5:31") indicating the

dependency of this design matrix on sire assignments s: = 85") for non-parent animals;

—I

V1111 0px2q,

and (29) )— = , with A; 3;) :39) indicating the dependence of
—1 —1

024po G ®App,;=,(;)

. . . . O k . _ .

parental relatronshrps on srre assrgnments sp = SE) for parent ammals, and V"; berng an

p X p diagonal matrix consistent with a N(B0,V”) prior assignment on B. If

V3"; = 0 then p(B) cc 1. We, however, adopted a proper bounded uniform prior on B,
pxp’

which is equivalent to specifying Vii—til = 0px, but with values of B constrained to be

within the specified bounds. Then, it can be readily shown using results from Wang et al.

(1994b) that the FCD of 0 is multivariate normal, that is,

0|s' =s(k),G,o,2,y~N(0(k),C(k)) [A1]

where

-1

6(11) : C(It) [w’(k) .(Rsk))'l y +[vnflpo] ]

2qpx1
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-1 - "I

for C(k)=(W,(k)'(RSk)) W,(")+(2g‘))) , with Rik)=Rls;=sS") indicating the

dependency ofR on sire assignments s: = ssh) on non-parents.

The FCD of sire assignments in s. are considered separately for parents and non-

parent animals. For parent animals, the FCD of the sire assignment on animalj is:

Prob(s; =s(.k,p,)|Ba m, ,s.=s(k.)1r,,e2G0', y)
I ‘1’

= n§*)(a’ik))"exp[—.5(w§.*))"U(2))g
n +(5(2))2822+2(,§k))(5111))g12)]

gn§.*)(w)k))-lexp[-.5(m§k))_l((,10
)’gn (510) g22,2(,§0)(511%.,»

j = qb+l,qb+2,..., q, [A2]

9
 

where s:j = s93.) is used to denote the conditioning on sire assignments for all animals

other thanj. For non-parent animals, the FCD of the sire assignment on animalj is:

“j,

- 2’10- + 2)“”exp(--s(az + ws-*>a:)“1erti, [A3]

int-“(oz + ws*>02)"”exv(--5(az + 115-"02) (4))
k=l

where e,“)=y,.j——x;jB—0.5a (,0 —0.5ad. —z'2,.jmp and j = qp+l,qp+2,...,q. Therefore,

3] j

Prob(s;. =s(",,,)|Ba ,mp ,_s.=s(k.)rr,,,2Ga ,y)

MCMC inference on sire assignments require random draws from generalized Bernoulli

(i.e. single trial multinomial) distributions.

The FCD's for the probabilities of sire assignments are given by:

(Ir) v} (k) agkhlgfl—l

p(rr,|B,ap,mp ,s =s ,,Go2,y)ocn(7rj ) , [A4]

k=l
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which corresponds to a series of Dirichlet distributions forj = qb+ l , qb+2,. . .,q.

The FCD's of each of of and G using the RAM specification do not have

recognizable forms. Bink et al. (1998) suggested univariate Metropolis-Hastings

sampling updates for various functions of variance components in their RAM-based

specification. We alternatively base our MCMC algorithm on the method of composition

using specifically Algorithm 2 of Chib and Carlin (1999) except that their data

distribution is fully marginalized over the random effects whereas the RAM specification

in [1] is only marginalized over the non-parent genetic effects. The joint posterior

density of all parameters in a full animal model can be obtained from the reduced animal

model as follows

p(B,a,m | s. =s(k),G,0',2,y) = p(B,ap,mp ls. =s(k),G,0',2,y)

Xp(7,,5, lapsmpaGas‘ =S(k)) - [A5]

That is, a random draw from [A5] is equivalent to a random draw from [A1] followed

by a random draw from p(y,,6, lap,mp,G,s. =80”) that can be readily derived as a

sequence of univariate draws from the additive 75k) and maternal 610‘) Mendelian

sampling term. Specifically, this involves sampling first from

(60(1)) e“) l +(w5k))-1 ‘1

(.k) a m s'=s(")G0'2 ~NID -—1—+—— 1— — ——
71 '5’ p’ p’ ’ ’ e’y 02 0.2 0.2 0,2 0,2

e a e

followed by
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‘ 12 wl")

(Sf-k) I 7,,B,a,,m,,s = s("),G,af,y ~ NID[-g—,,7§-"),—’,,]

g g

j = qp+l,qp+2,. . ..,q, [A7]

Let p(G) be a conjugate inverted Wishart prior density with parameters vg and Go

1

V8:-

 such that E(G | vg,Go ) = G;'. The FCD ofG given the augmentation of the RAM

joint posterior density in [8] with y, and 6, is:

q+v +3

p((; 1 p,a,m,s‘ = sl"),a,2,y) oc |G|‘—2— exp(—0.51race(c" (sG +0: ))), [A8]

where

[a'A'ia a'A'lm ]

SC =

m'A'la m'A'lm .

These components of so can be readily computed without explicitly determining a, and

m,. For example, using results from Quaas (1988) and those in this chapter,

2

i -l __ i —l r —l I -l __ 7<i

aA a-apAppap+y,fl,,y,,where 1,9,, y,— i —.

j=q +1601
P

Finally, let p(of) be an inverted-gamma density with parameters a, and [3,. Then

the FCD of 03 is also inverted-gamma and given by:

p(aez lB,a,m,s = 8(k)’G’y) 0C (0': )—("/2+a¢'l) exp[_—12—(£2£+ fie )] ' [A9]
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The first np elements of e are ep = {e ,j}

The last n, elements of e are ejk) = (eff) — AV}

410
1 which are residuals due to records on parents.

I:

q . . . .

wrth elk) =e, . (1.) 1nd1catrng the

j=qp+l 51:31

11 d f ' ' t ' — I“) t ' a1epen enceo e, on srre assrgnmen S S, —S, 01'] non-paren anrm S.

1)

2)

3)

4)

5)

6)

The MCMC sampling scheme can thus be summarized as follows:

Draw samples of B, ap, and 111,, from [A1] using the proposition from the appendix of

Wang et al.(1994b);

Draw samples of y, and 8, from [A6] and [A7];

Compute Sc using the samples of ap, mp, 7,, and 5, in order to sample G from a scaled

inverted Wishart distribution [A8];

Determine e5“) and combine with e,, to sample 0'2 from an inverted-gamma

distribution [A9];

For each animal j with uncertain paternity, independently draw a sire s; using as the

probability of assignment either [A2] if the animal is parent or [A3] if the animal is

non-parent.

For each animal j with uncertain paternity, independently draw it]. from a Dirichlet

distribution [A4].
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CHAPTER 2

GENETIC EVALUATION OF BEEF CATTLE ACCOUNTING FOR

UNCERTAIN PATERNITY

ABSTRACT: A hierarchical Bayes (HIER) model for the quantitative genetic

analysis of performance data when some animals have uncertain paternity was compared

to a model based on the use of Henderson's average numerator relationship matrix

(ANRM). A simulation study consisted of ten datasets characterized by 30% of animals

having uncertain paternity for each of two traits: one having moderate heritabilities for

direct and maternal genetic effects on weaning weight (WWT) and another having high

heritability for direct genetic effects on post-weaning gain (PWG). Posterior inference on

the variance components was very similar between the two models. In an application to

WWT and PWG data from Brazilian Herefords, posterior inference on variance

components was also very similar between ANRM and HIER. Furthermore, rank

correlations on posterior means for genetic effects between the two models exceeded

0.90. Nevertheless, large differences in posterior means between these two models were

observed for some animals. Furthermore, animals with uncertain paternity had generally

larger posterior standard deviations of genetic effects using the HIER model likely

because the HIER model, unlike the ANRM model, infers upon sire assignment

probabilities. Bayesian model choice criteria consistently favored the HIER model over

the ANRM model in both simulation and Hereford data analysis studies.

Key Words: Bayesian inference, Beef cattle, Genetic evaluation, Multiple-sires,

Uncertain paternity.
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1. Introduction

The use of multiple-sire mating is common in extensive beef cattle production

systems in countries such as Argentina, Australia, Brazil, and United States. Due to the

size of herds and pasture paddocks, cows are generally exposed to more than one male

within the same breeding season, thereby generating uncertainty on paternity assignments

and adversely affecting accuracy of breeding value predictions.

Best linear unbiased prediction (BLUP) of genetic merit based on the average

numerator relationship matrix (ANRM) (Henderson, 1988), has been the method of

choice for genetic evaluation of animals with uncertain paternity. Furthermore, this

procedure has been proven in simulation studies to increase selection response compared

to the use of genetic groupings (Perez-Enciso and Fernando, 1992; Sullivan, 1995). The

ANRM is based on knowledge of the true probabilities of each candidate male being the

correct sire, and its inverse is readily computable (Famula, 1992). Alternative methods

that infer upon uncertainty on paternity have been proposed (Foulley et al., 1987; Im,

1992) but have been restricted to sire model specifications.

We recently proposed a hierarchical animal model for inference on genetic merit of

individuals with uncertain paternity and their sire assignments using Bayesian MCMC

methods (Chapter 1). Based on a simulation study, the average posterior probabilities

attributed to the true sire based on this model were between 1 and 13% larger than the

respective priors (the inverse of the number of candidate sires) with differences

depending upon heritabilities and multiple-sire group sizes. Posterior means of additive

and maternal genetic effects obtained using the hierarchical model were very similar to

those based on the ANRM; nevertheless, Bayesian model choice criteria consistently
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favored the proposed model over ANRM. In this simulation study, variance components

were treated as known as typical ofmany current genetic evaluation systems.

The objectives of the current study were: 1) to validate the use of the model presented

in Chapter 1 for quantitative genetic inference on variance components in situations

characterized by uncertain paternity, 2) to demonstrate the utility of this model for the

analysis of weaning weight and post-weaning gain data in Brazilian Herefords, and 3) to

further compare the relative merit of this hierarchical model with a model based on the

use of Henderson's ANRM.

2. Materials and methods

2.1. Data

2.1.1. Simulation study

The simulation study of Chapter 1 was revisited for the purpose of comparing their

hierarchical model with one based on the use of the ANRM. This study consisted of ten

simulated datasets or replicates for each of two different types of traits. Trait 1 had

medium direct heritability (h: =0.3) and medium maternal heritability ( hf,= 0.2) and a

slightly negative direct-maternal genetic correlation (ram= -0.2) as, for example, would

characterize weaning weight. Trait 2 had a high direct heritability (h: =0.5), but null h;

as would characterize post-weaning gain. The residual variance (of) was 60 and 50,

respectively, for Traits l and 2.

Each simulated dataset involved 80 sires, 400 dams (480 parents) and 2000 non-

parent animals, and the probability of any offspring deriving from an uncertain paternity
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situation (i.e. a multiple sire mating group) was 30%. Only one record was generated for

each of the two traits per each animal. Our design was intended to mimic a likely

situation in extensively managed beef cattle populations, where sires can be grouped into

one of three different categories: 1) sires having only certain progeny (including AI

bulls); 2) sires having certain and uncertain progeny, and 3) sires having only uncertain

progeny. Additional details on the design of the simulation study can be found in

Chapter 1.

2.1.2 Herefordperformance data

To demonstrate a comparison of the hierarchical model described in Chapter 1 with a

model based on the use of the ANRM, MCMC procedures were used to analyze

performance records of Hereford calves raised in a single Southern Brazilian herd from

1991 to 1999. These records are part of the data collected by the Brazilian Breeders

Association and Gensys Associate Consultants within a large-scale genetic evaluation

program called the “Delta G Connection”.

Animals were raised on extensive sub-tropical pasture conditions. Traits analyzed

were weaning weight (WWT) and post-weaning gain (PWG). The mean i standard

deviation for WWT was 172.6 i 35.6 kg whereas that for PWG was 110.7 :1: 30.4 kg.

Ages of calves at weaning ranged from 100 to 293 days with mean 202 days, whereas

mean post-weaning test periods ranged from 111 to 453 days with mean 218 days. This

herd was characterized by extensive multiple-sire mating with excellent recording on

identification of candidate bulls within each multiple-sire group. A total 5,399 records on

WWT and 3,402 records on PWG were analyzed. Including base population animals
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within the pedigree file, there were a total of 6,905 animals genetically evaluated for

WWT and 4,703 animals evaluated for PWG.

For WWT, there were 4,228 (61.2%) animals with certain paternity and 1,171

(17.0%) animals with uncertain paternity leaving the remaining 1,506 (21.8%) as base

population animals. For PWG, there were 2,702 (57.4%) animals with certain paternity,

700 (14.9%) with uncertain paternity and 1,301 (27.7%) base population animals. The

number of candidate males in the multiple-sire groups, with respective group sizes in

parenthesis by trait, i.e. (WWT/PWG), were 2 (57/23), 3(2/2), 4 (234/167), 5 (207/117), 6

(272/176), 10 (135/43), 12 (16/9) and 17 (248/163).

2.2. Bayesian inference

2.2.1. Analyses ofSimulation Study

For each of the ten replicates on each of the two traits (i.e. single trait analyses) in the

simulation study, variance components were estimated using Reduced Animal Model

(RAM) implementations (Quaas and Pollak, 1980) for each of three different models:

1) HIER: A hierarchical mixed effects model fully accounting for uncertainty on sire

assignments as proposed in Chapter 1.

2) ANRM: A linear mixed effects model based on the average numerator relationship

matrix (Henderson, 1988).

3) TRUE: A linear mixed effects model based on the true sire assignments, as if there

were no uncertainty on assignments.

For the ANRM model, equal and fixed probabilities were assigned to each candidate

sire for animals having uncertain paternity. The TRUE model was included to serve as a
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positive control for the other two models. In the HIER model, an equal prior probability,

i.e., the inverse of the number of candidate sires within the particular mating group, was

specified for each candidate sire of an animal with uncertain paternity using a Dirichlet

prior density. The hyperparameters of this prior density were each equal to the inverse of

the number of candidate sires in a group as in Chapter 1. Diffuse scaled inverted chi-

square prior distributions were specified for each variance component, i.e.

0'2 ~ (120': ) 1,72 where 0'3 was the true value for the respective variance component with

v = 8 being the prior degrees of belief in all cases. Additionally, for the analysis of

WWT, an inverted Wishart prior density G ~ [W2 (vGo,v) with E(G) =—V—§Go was
V..—

2

o 0'

placed on G =[ 0 “fl where Go represented the true value of G, again with v = 8.

0' 0'
am m

Here a": is the additive genetic variance, of, is the maternal genetic variance and 0a,, is

the direct maternal genetic covariance. For all three models, a MCMC sampling chain of

20,000 cycles was run after a burn-in period of 4,000 cycles on each dataset.

Furthermore, the deviance information criterion (DIC) (Spiegelhalter et al., 2002) and

Pseudo Bayes Factors (PBF) (Gelfand, 1996) were computed from the MCMC output as

model choice criteria. Additional details on DIC and PBF computations specific to the

ANRM and HIER models are provided in Chapter 1. Smaller DIC values are indicative

of better model fit whereas PBF ratios less than one for the ANRM relative to the HIER

model favor the HIER model.
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2.2.2. Analyses ofHerefordperformance data

The trait PWG was modeled as a linear function of fixed effects (i.e. effects with flat

or bounded uniform subjective priors) and random effects (i.e. effects with multivariate

normal structural prior specifications). Fixed effects included gender, linear and

quadratic effects of age of dam (2 to 12 years), linear and quadratic effects of age of calf

at the end of the test period (305 to 658 days), and linear and quadratic effects of post-

weaning test period (111 to 453 days). Random effects included multivariate normal

additive genetic effects (1,932 parents), with correlation determined by the numerator

relationship matrix (NRM), and normally, identically, and independently distributed

(niid) effects of contemporary groups (year-season-management; 237 levels). The two

competing models differed in their treatment of NRM; i.e. it was either inferred upon

using the HIER model of Chapter 1 or it was determined using the ANRM of Henderson

(1988). For both models, a Gibbs chain of 70,000 cycles was run, after 4,000 cycles of

burn-in.

The statistical model for WWT included the fixed effects of gender, linear and

quadratic effects of age of dam, linear and quadratic effects of age of calf at weaning

(100 to 293 days), and the linear effect of birth weight (16 to 60 kg). Random effects

included jointly multivariate normal additive and maternal genetic effects with

correlation within and between these two sets of effects determined by a NRM

(determined by HIER or by ANRM), 0'3 , 0'3, and ram or, equivalently, the additive

maternal genetic covariance 0' - r 0'30; . Additional random effects included niid
am_am

2

dam permanent environmental effects (2,281 levels) with variance 0,, and niid
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contemporary group effects (96 year-season-management subclasses) with variance 0,28.

MCMC chains of 180,000 and 120,000 cycles were run for HIER and ANRM,

respectively, after 4,000 cycles of burn-in.

For each variance component, the initial monotone sequence approach (Geyer, 1992)

was used to determine effective sample size (ESS), which is an estimate of the number of

independent draws with information content equivalent to that contained within the

dependent samples (Sorensen et al., 1995). The length of MCMC chain was determined

such that all parameters had an ESS of at least 100. There was surprisingly slow “mixing”

in the MCMC chain for WWT based on the RAM specification for the HIER model in

Chapter 1. Therefore, we adopted a full animal model implementation for HIER and

ANRM in the analyses of WT, whereas the RAM implementation was maintained for

the HIER and ANRM analyses of PWG. Priors on scalar variance components were

scaled inverted chi-square distributions, that is, 0'2 ~ (103)]? . For PWG, we specified

0'3 =200 for 03, 0'3 =100 for 0'2, and 0': =800 for 038; whereas for WWT, we

2

p, and 03 = 600 for 0,28. Moreover, thespecified 03 =200 for 0'3; 0'3 =100 for 0'

prior on the additive genetic variance-covariance matrix for WWT was specified to be

100 —5

G ~ IW2 [v[ 5 50],v]. As with the simulation study, v = 8 for all (co)variance

components and a Dirichlet prior was specified on the candidate sire probabilities with

the same hyperparameter specifications. Posterior means, medians, the 2.5th and 97.5th

percentiles and standard deviations of the parameters were obtained from the marginal

posterior densities. Posterior means and standard deviations of genetic effects were also
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determined using the ANRM and the HIER models. Finally, DIC and PBF were

computed as measures of model choice.

3. Results

3.1. Posterior inference on variance components

Variance components were estimated for each of the ten replicates simulated for each

trait. The posterior median, 2.5% and 97.5% posterior percentiles averaged over the ten

replicates using all three models are presented in Table 2.1. The minimum and maximum

posterior median estimated over the ten replicates is also presented.

The averaged posterior medians obtained by using the TRUE sire assignments (Table

2.1) were very close to the true variance component values which were always included

within each replicate’s 95% equal-tailed posterior probability interval (PPI), determined

as the range between the 2.5th and 97.5'“ percentiles of the posterior densities for

individual replicates on each trait. For both the ANRM and HIER models, the true

variance component values were generally well included in the each replicate’s 95% PPI

and the posterior medians (Table 2.1) were generally close to their respective true values.

The 95% PPI using both the HIER and ANRM models did not include the true value of

the 0'0," and 0'3 for Trait 1 in one replicate, and the true 03 for Trait 2 in another

replicate; nevertheless, collectively, these results were well within probabilistic (i.e. 95%

coverage) expectation. There was naturally more uncertainty being modeled using

ANRM and slightly more so using HIER relative to the TRUE model which, as expected,

translates into reduced precision on variance component inference. Furthermore, as we

compare the average, minimum and maximum posterior medians across the ten replicates

51



Table 2.1. Posterior median (PMED), 95% posterior probability intervals (PPI), and

effective sample size (ESS) of variance components averaged across ten replicated

datasets on Traits 1 and 2, obtained by the hierarchical model (HIER), a model based on

the average numerator relationship matrix (ANRM), and a model based on known sire

assignments (TRUE). Maximum (MAX) and minimum (MIN) posterior medians across

the ten replicates are also reported.

 

 

Method Parametera PMED PPI MIN MAX ESS

Trait 1

ANRM 03 =30 29.79 (19.01, 44.36) 20.42 39.37 140

a... =- -517 (-14.46, 2.22) -1455 1.93 111

03. =20 21.40 (14.39, 30.54) 13.33 25.31 138

0.2 =60 59.55 (50.64, 67.62) 50.41 66.11 183

HIER 03 =30 34.31 (21.41, 52.20) 21.06 49.75 114

6..., =-5 -7.62 (-1794, 0.41) -19.70 0.34 119

03. =20 22.71 (15.33, 32.02) 14.29 27.61 184

03 =60 56.24 (45.51, 65.23) 42.74 65.68 139

TRUE 03 =30 29.45 (19.16, 43.54) 21.95 37.19 152

0m =-5 4.74 (-13.78, 2.51) -1095 2.25 117

<73. =20 21.15 (14.31, 30.19) 13.14 24.26 143

03 =60 59.86 (51.76, 67.30) 54.54 65.15 210

Trait 2

ANRM GS =50 48.91 (39.17, 60.31) 40.94 62.11 527

03 =50 49.74 (43.14, 56.30) 44.31 55.02 644

HIER 03 =50 50.07 (39.91, 61.57) 42.18 66.13 508

0.2 =50 47.52 (40.85, 54.37) 40.80 54.08 575

TRUE 03 =50 48.67 (38.86, 60.33) 41.74 63.01 528

0.2 =50 50.09 (43.79, 56.32) 45.49 54.50 671
 

“of = additive variance, 0'",

2...

O'c—

2 = maternal variance, oam= additive-matemal covariance, and

residual variance with true values specified.
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for each trait as obtained by HIER (Table 2.1) to their true values, there appears to be a

tendency for the posterior median to underestimate 0'3 for both traits. In the RAM

implementation of HIER, candidate sires with sampled genetic effects that lead to smaller

residual deviances should have a greater probability of being sampled as the sire of

individuals with uncertain paternity, given the form of the full conditional density used to

sample sire assignments of non-parent individuals (See Equation [A3] in Chapter 1).

Similarly larger posterior medians of 0'2 tended to be associated with the HIER model.

Model choice criteria (DIC and PBF) were always in favor of the HIER model versus

the ANRM model for both traits in all replicates (i.e. low PBF ratios for ANRM/HIER).

The PBF, obtained as the n-ary product of observation-specific conditional predictive

ordinate (CPO) ratios for ANRM/HIER across all records (Cardoso and Tempelman,

2003), varied from 4.85x10'2 to 2.78><10'22 for Trait 1 and from 1.49><10'7 to 8.12x10'28

for Trait 2. The DIC for both traits and models averaged across the 10 replicates are

presented in Table 2.2. This criterion consists of a deviance component D , which was

always smaller for HIER compared to ANRM, and a penalty (pp) for effective number of

parameters, which was always larger for HIER compared to ANRM. However, pD was

not large enough to overcome the smaller D such that DIC = D + p13 was always smaller

for HIER in all replicates and for both traits. Both criteria therefore favored the HIER

model as a better fit to simulated data, when variance components were unknown, being

consistent with our previous conclusions where variance components were treated as

known (Chapter 1).
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Table 2.2. The mean deviance D , penalty for effective number of parameters (pp) and

the Deviance Information Criterion (DIC = D + pp) averaged across the analysis of 10

simulated replicates for each of Traits 1 and 2 based on the ANRM and HIER models.

 

 

Method 1’) pg DIC

Trait I

ANRM 17,153 701 17,853

HIER 16,976 788 17,764

Trait 2

ANRM 16,714 913 17,627

HIER 16,590 949 17,539
 

3.2. Inference on Brazilian Hereford data

3. 2. I Post-weaning gain

DIC and its components for each of the ANRM and HIER model analyses of PWG

are presented in Table 2.3. Similar to results obtained from the simulation study, D for

HIER was smaller than that for ANRM. Although pD was larger for HIER compared to

ANRM, the resulting DIC favored HIER over ANRM, as the advantage attained in D

was greater than the smaller pp associated with ANRM. The HIER model appears to fit

the data better since a DIC difference between two models exceeding seven is considered

to be somewhat decisive (Spiegelhalter et al., 2002). Moreover, the PBF for

ANRM/HIER obtained for PWG was 9.695 X 102, indicating that the HIER model fitted

the data approximately 10 times better than ANRM using this measure.

Both models provided similar inference for variance components and associated

genetic parameters (Table 2.4). Our heritability determination did not include 038 as part

of the phenotypic variance in order to facilitate comparisons with literature (de Mattos et

al., 2000; Koots et al., 1994; Meyer, 1992), where contemporary group effects are
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Table 2.3. The deviance (D), penalty for effective number of parameters (pp) and the

Deviance Information Criterion (DIC) for ANRM and HIER models used for the analyses

of post-weaning gain (PWG) and weaning weight (WWT) on Brazilian Herefords.

 

 

Method 1‘) p1) DIC

PWG

ANRM 28,379 829 29,208

HIER 28,329 860 29,189

WWT

ANRM 44,072 2,136 46,208

HIER 44,043 2,148 46,190
 

generally considered as fixed. The posterior median additive heritability (h: ) was 0.23

and 0.24, for ANRM and HIER, respectively. These point estimates, although smaller

than the average value of 0.31 based on an extensive literature review (Koots et al.,

1994), are well within the anticipated range for extensively managed production

environments and considerably larger than point heritability estimates for yearling

weights of Hereford cattle raised in Australia (Meyer, 1992). The 95% PPI for each

variance component overlapped widely between the two models, suggesting no practical

difference between models for variance component and genetic parameter inference on

PWG.

The rank correlation between posterior means of additive genetic effects obtained by

the two different models was greater than 0.99, whether estimated for all animals or

stratified by base population animals (i.e., no pedigree information), for animals with

certain paternity, or for animals with uncertain paternity. For animals ranked in the top

10% and t0p 5% for posterior mean additive genetic values by HIER, the rank correlation

with ANRM was still greater than 0.99 for base animals and animals with certain
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Table 2.4. Posterior median, 95% posterior probability intervals (PPI), and effective

sample sizes (ESS) of variance components (in kgz) and genetic parameters for post-

weaning gain in Brazilian Herefords, obtained by ANRM and HIER models.

 

 

Parametera Posterior median PPI ESS

ANRM

'13 0.231 (0.153, 0.316) 254

03 73.8 (48.0, 103.6) 254

0.2 246.5 (221.5, 271.2) 368

0.2, 404.5 (334.3, 494.0) 34,871

HIER

hi 0.244 (0.162, 0.336) 337

03 78.2 (51.1, 111.2) 334

03 242.9 (216.5, 268.2) 487

03g 404.5 (333.9, 493.8) 35,691
 

ah:= additive heritability; 03= additive variance; 0,2= residual variance; and

2
0' g =contemporary group variance.

C

paternity. However, for animals with uncertain paternity, the rank correlation dropped to

0.98 and 0.94, for animals in the top 10% and 5%, respectively. Despite these slightly

lower rank correlations, there was general agreement between the two models in terms of

ranks with any substantial differences naturally relating to the modeling of uncertainty on

paternity assignments. In particular, the differences in posterior means on direct genetic

effects between ANRM and HIER ranged from —1.22 to 2.94 kg which is not necessarily

trivial relative to the genetic standard deviation J03 .

Both HIER and ANRM models lead to similar posterior standard deviation of

additive genetic values for base population animals and for animals with known sires
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(data not shown); however, for individuals with uncertain paternity, the HIER model

generally had larger posterior standard deviations of additive genetic values, particularly

when these standard deviations were high (Figure 2.1). The posterior standard deviations

using the ANRM model were generally less than those of the HIER model above a

posterior standard deviation of 7.13 kg as based on the intersection of the two lines

provided in Figure 2.1. The first line is the line of best fit between the two sets of

posterior standard deviations whereas the other line is a unitary line (i.e. of slope l and

intercept 0). The estimated slope (0.68) from the line of best fit indicates that beyond a

posterior standard deviation of 7.13 kg, which includes almost all animals as observed in

Figure 2.1, the posterior standard deviation for a ANRM based genetic evaluation

increases only 0.68 kg for every kg increase in the HIER posterior standard deviation.

These posterior standard deviations can be readily interpreted as being analogous to

standard errors of prediction predominantly used by industry to determine reliabilities of

estimated breeding values based on BLUP. Therefore, potentially upward biases in

reported reliabilities for estimated breeding values using ANRM may occur for animals

having uncertain paternity. This result is anticipated since the ANRM model treats sire

assignments probabilities as known whereas the HIER model infers upon these

probabilities. Admittedly, the slightly larger additive genetic variance for HIER may also

contribute to the slightly larger standard deviations observed in Figure 2.1. It is curious

to note from Figure 2.1 that the two animals having the smallest posterior standard

deviations for additive genetic merit (as pointed out with black arrows) have their

corresponding ANRM versus HIER posterior standard deviations fall on a unitary line
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Figure 2.1. Scatter plot of standard deviation (SD) of additive genetic effects of post-

weaning gain, in kg, of Brazilian Herefords with uncertain paternity, obtained by ANRM

vs. HIER. Solid line represents the least-squares fit represented by the reported regression

e uation presented in the graph whereas the dashed line has slope one and null intercept.

R is the coefficient of determination for least-squares fit. Black arrows point to sires that

have substantial numbers (9 and 50) of progeny of their own.

(i.e. with slope one and null intercept). Both individuals are sires having a fairly large

number of known progeny in the dataset. The sire with smallest standard deviation

(represented by a triangle symbol in Figure 2.1) had 50 known progeny whereas the

other sire (represented by a square symbol in Figure 2.1) had 9 known progeny with

records on PWG. Subsequently, the estimated reliabilities of their genetic evaluations for

PWG are ahnost identical between the two models, as would be expected in such a

scenario.
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3.2.2. Weaning weight

As with PWG, we observed a smaller D and DIC for the HIER model compared to

ANRM model for the analysis ofWT (Table 2.3). However, the pp difference between

the HIER and ANRM models was smaller for WWT compared to PWG. This may be due

to the lower total (i.e. additive and maternal) heritability (Willham, 1972) for WWT as

estimated by a posterior median of 0.13 in this population. As for PWG, WWT

heritabilities were calculated omitting the contemporary group variance in the phenotypic

variance. Low heritabilities lead to less powerful discrimination between candidate sires

based only on phenotypes (Chapter 1). For example, we have previously observed that

there was no difference between prior and posterior probabilities of sire assignments

when h,,2=0.10 (Cardoso and Tempelman, 2001). Given these circumstances, the ANRM

and HIER models might be expected to fit equally well to WWT. Nevertheless, there was

an appreciable DIC difference between the two models in favor of the HIER model

(Table 2.3). Moreover, the PBF ofANRM to HIER obtained for WWT was 1.654 X 10";

i.e. HIER is estimated to fit the data approximately six times better than ANRM.

Posterior inference on variance components and genetic parameters using ANRM and

HIER were very similar as presented in Tables 2.5 and 2.6. The 95% PPI for each

variance component and genetic parameter widely overlapped with posterior medians

being very similar between the HIER and ANRM models (Table 2.5). Despite a

substantially negative posterior median, the 95% PPI for 0'0," included zero under both

models.
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Table 2.5. Posterior median, 95% posterior probability intervals (PPI), and effective

sample sizes (ESS) of variance components (in kgz) for weaning weight in Brazilian

Herefords, obtained using ANRM and HIER models.

 

 

Parametera Posterior median PPI ESS

ANRM

03 58.1 (33.8, 95.9) 153

a... -21.1 (-58.3, 4.1) 131

03. 80.4 (40.7, 131.5) 130

“in 194.5 (157.4, 231.6) 331

03 206.3 (183.1, 225.2) 219

63, 295.9 (223.2, 401.1) 34,234

HIER

03 58.0 (34.1, 108.3) 167

U... -234 (-62.6, 1.2) 127

03. 82.7 (45.5, 135.6) 171

“in 195.0 (157.1, 230.7) 394

03 205.9 (177.2, 224.9) 221

03g 296.4 (223.9, 401.4) 48,448
 

§= additive variance; 00,, = additive-maternal covariance; 0'2 = maternal variance;

2

"I

G,,, = permanent maternal environment variance; 0'} =

2
deg =contemporary group variance.

residual variance; and

The posterior mean for h: was 0.12 under both models (Table 2.6) and appears low

compared to results from a study on Angus cattle raised and controlled under similar

conditions where the corresponding point estimate was 0.26 (Cardoso et al., 2001) and

compared to results of several Hereford studies in the literature (Koots et al., 1994;

Meyer, 1992). The posterior mean for hf, was 0.18 for ANRM and 0.19 for HIER, being

similar to point estimates derived from studies on Hereford populations of Australia
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Table 2.6. Posterior medians, 95% posterior probability intervals (PPI), and effective

sample sizes (ESS) of genetic parameters for weaning weight in Brazilian Herefords,

obtained using ANRM and HIER models.

 

 

Parametera Posterior median PPI ESS

ANRM

hf 0.117 (0.067, 0.201) 151

ran. -0.320 (-O.617, 0.076) 142

hi. 0.183 (0.089, 0.323) 129

11,2 0.132 (0.083, 0.194) 248

p2 0.393 (0.317, 0.461) 290

HIER

’23 0.117 (0.068, 0.229) 156

r... -0350 (-O.632, 0.021) 164

hi. 0.190 (0.101, 0.344) 157

113 0.129 (0.079, 0.196) 363

p2 0.396 (0.319, 0.463) 337
 

' h; = additive heritability; r,,, = additive-maternal correlation; hf, = maternal heritability;

h} = total heritability; and p2 = permanent maternal environment fraction of the

phenotypic variance.

(Meyer, 1992), the United States of America, Canada and Uruguay (de Mattos et al.,

2000). The posterior mean of 0,2,, was surprisingly high, accounting for almost 40% of

the phenotypic variance (excluding 0'38) under both models (Tables 2.5 and 2.6).

Previous investigators determined that maternal environments account for 15 to 23% of

the phenotypic variance for WWT in Herefords (de Mattos et al., 2000; Meyer, 1992).

Relatively higher estimates of 0,2,, tend to be found in Herefords than for other breeds

(Meyer, 1992, 1993) indicating that perhaps milk production is a critical discriminating
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factor with Hereford dams. Moreover, maternal environment effects have been

consistently found to be more important than maternal genetic effects for Hereford herds

(Meyer, 1992). Furthermore, estimates of 0'; may be biased upwards by the presence of

non-additive genetic variation.

As for the PWG analysis, there was general agreement between the two models for

posterior means for genetic effects for WWT. The rank correlation between posterior

means of additive genetic effects was greater than 0.99 for all animals with certain and

uncertain paternity and 0.97 for all base animals. For animals ranked in the top 10% and

top 5% by posterior means of additive genetic effects by HIER, the rank correlation

between the two models was greater than 0.97 for animals with certain paternity.

However, for base animals and animals with uncertain paternity, the rank correlations

dropped to between 0.90 and 0.94. For maternal genetic effects, the corresponding

correlation was always 0.99 or greater, regardless of stratification. As for PWG, any

difference from a perfect rank correlation in estimated breeding values between the two

models, beyond Monte Carlo variability, would be due to the modeling of uncertainty on

paternity assignments. Differences in posterior means of additive genetic effects for

WWT between ANRM and HIER models ranged from -2.17 to 1.57 kg for animals with

uncertain paternity.

The two models had similar posterior standard deviations of additive and maternal

genetic effects for base animals and animals with certain paternity (data not shown);

however individuals with uncertain paternity tended to have larger standard deviations of

additive (Figure 2.2) and maternal (data not shown) genetic values under the HIER model

compared to the ANRM model. As with PWG, this also suggests a potential upward bias
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Figure 2.2. Scatter plot of standard deviation (SD) of additive (a) genetic effects of

weaning weight, in kg, of Brazilian Herefords with uncertain paternity, obtained by

ANRM vs. HIER. Solid line represents the least-squares fit represented by the reported

regression equation presented in the graph whereas the dashed line has slope one and null

intercept. R2 is the coefficient of determination for least-squares fit. Black arrows point to

sires that have substantial numbers (17 and 87) ofprogeny of their own.

in reported reliabilities for estimated breeding values using ANRM BLUP for WWT.

We note that for WWT, unlike that for PWG, the posterior density of the additive genetic

variance was virtually identical between the two models, thereby eliminating this as a

possible cause for general differences in posterior standard deviations between the two

models for individual additive genetic effects. The same two animals having additive

genetic effects with the smallest posterior standard deviations for PWG in Figure 2.1,

were also observed in Figure 2.2 (pointed by black arrows) as having the smallest

posterior standard deviations for WWT. The respective number of known progeny with

WT records for the two sires were 87 (sire represented by a triangle symbol in Figure

2.2) and 17 (sire represented by a square symbol in Figure 2.2). The corresponding
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standard deviations for the two sires under the two models fall close to a unitary line in

Figure 2.2 indicating that, as with PWG, the uncertainty on genetic merit for sires with a

substantial number ofknown progeny is virtually identical between the two models.

4. Discussion

We validated by simulation study that the hierarchical Bayes model (HIER) of

Chapter 1 is able to provide reliable inference on variance components when paternity is

uncertain for some animals. Furthermore, Bayesian model choice criteria indicated this

model to be a better fit to such data relative to a model based on the average numerator

relationship matrix (ANRM) (Henderson, 1988).

We have also presented an application to PWG and WWT records on Brazilian

Herefords. We found that the HIER model provided a better data fit compared to ANRM

for the analysis ofPWG and WWT. The difference between the two models is heritability

(I12) dependent: as h) decreases, the power for discriminating between candidate sires

decreases such that the models become less distinctive from each other. On the other

hand, the lower the hz, the greater is the importance of pedigree relative to individual

phenotypic information and hence of modeling uncertain paternity for the prediction of

genetic merit (Farnula, 1993; Sullivan, 1995).

The main advantage of the more complex HIER model compared to the ANRM

model is in terms of properly accounting for reduced precision on genetic merit inference

due to uncertainty on sire assignments. For genetic evaluations, there may be

pragrnatically little difference between models for rankings of estimated breeding values;

however the estimated reliabilities associated with breeding values of animals with
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uncertain paternity would tend to be appreciably lower using the HIER model compared

to the ANRM model, since the latter assumes that the true probabilities of paternity are

known. Furtherrnore, there were some appreciable differences in posterior means of

additive genetic merit for some animals. In a simulation study, Kerr et al. (1994a) found

that ANRM tends to overestimate the accuracy of prediction and the selection response

compared to the true additive relationship matrix, as consequence of a wrong garnetic

model assumption (i.e. genes cannot be transmitted from multiple-sires).

The computational time required to complete each MCMC cycle was actually very

similar between the ANRM and HIER models. It appears that the time required to sample

sire assignments and probabilities in HIER was balanced against the extra elements that

need to be added to the mixed model equations using ANRM, since even the inverse of

the ANRM is quite dense due to the incorporation of average relationships (Famula,

1992). For large scale genetic evaluations on a national or breed association level, it

appears that a computationally tractable empirical Bayes or “plug-in” strategy may be

advisable and may perhaps lead to potentially very little or no difference in estimated

breeding values and standard errors of prediction relative to MCMC based inference.

This conclusion was drawn by Kizilkaya et al. (2002) in the context of threshold mixed

model analyses of calving ease scores. Current genetic evaluation plug-in methods such

as BLUP based on fixed values for variance components and other hyperparameters may

produce reasonable predictors provided the variance components and other

hyperparameters can be well estimated using marginal likelihood based methods or

reasonably specified (Natarajan and Kass, 2000). This issue may deserve further
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investigation if implementation of HIER model for genetic evaluation systems is

considered.

The HIER model represents an important alternative for genetic prediction on beef

cattle populations undergoing multiple-sire mating. These populations are generally

raised in extensive pastoral conditions with multiple-sire matings used to increase the

probability of pregnancy, since the size of cow breeding groups, as a function of paddock

size, is generally too large to be sired by a single bull. Other causes of uncertain

parentage include the use of artificial insemination followed by natural breeding or

accidental/unplanned breeding. The paternal contribution to the breeding value of

animals with uncertain paternity using the HIER model would be a function of the

posterior probabilities of each male in the group being the correct sire of the individual

given the prior and data information. Uncertain parentage issues pervade other livestock

production systems as well (Van-Arendonk et al., 1998) such that our proposed model

may be suitably adapted in those instances. Genetic markers additionally provide a useful

source of objective prior information to be incorporated in the analysis.

Large herds provide a great potential for selection and genetic progress, but very

ofien the exclusive use of single mating is very costly, maybe impractical, due to size of

the operations and labor required. Some genetic evaluation programs, however, exclude

animals with uncertain paternity from inclusion. Nonetheless, simulation results have

shown that the loss in selection response due to multiple-sire mating compared to single

mating is less than 10%, particularly when dams are recorded (Kerr et al., 1994b;

Sullivan, 1995), while the exclusion of performance records on animals with uncertain

paternity from the evaluation can represent a reduction on expected selection response up
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to 33% compared with the use of Henderson’s ANRM and up to 24% compared to

genetic grouping (Sullivan, 1995), depending on h2 and percentage of animals with

uncertain paternity. The HIER model confers additional modeling advantages over the

ANRM model, provided that the trait of interest does not have a very low heritability.

It is unlikely that identification or pedigrees of all candidate sires would be recorded

for all individuals with uncertain paternity in some populations such that a hybrid genetic

evaluation model might be used, for example, one that models sire assignment

uncertainty (as in HIER) but uses phantom or genetic grouping (Westell et al., 1988) for

animals where candidate sire identifications are not available. One natural phantom group

would be the mating groups themselves. However, inference on the average genetic merit

of the males in the group may be highly confounded with other fixed effects (i.e.

contemporary groups), especially if small groups are created (Quaas, 1988). Treating

contemporary groups and/or genetic groups, as random effects with mild levels of

connectedness might mitigate this issue somewhat.
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CHAPTER 3

HIERARCHICAL BAYES MULTIPLE-BREED INFERENCE WITH AN

APPLICATION TO GENETIC EVALUATION OF A NELORE-HEREFORD

POPULATION

ABSTRACT: The primary objective of this study was to develop and apply a

hierarchical multiple-breed animal model (MBAM) to estimate genotypic effects, breed-

specific additive genetic variances and variance due to the segregation between breeds.

Phenotypic records were modeled as function of additive (A), dominance and A X A

genetic fixed effects and random animal additive genetic effects using appropriate

multiple-breed additive variance-covariance specifications. We validated the MBAM on

five simulated datasets derived from a population based on crosses from two breeds

having a two-fold difference in genetic variance. Posterior means of all variance

components obtained by MBAM, in each of the five populations were seemingly

unbiased with 95% posterior probability intervals (PPI) having expected coverage. We

also analyzed a dataset of 22,717 post weaning gain (PWG) records of a Nelore-Hereford

population (40,082 animals in the pedigree). MBAM inference on Nelore and Hereford

additive genetic variances (in kgz) differed substantially. Herefords had a posterior mean

genetic variance of 85.2 with a 95% PPI of (63.2, 108.5) whereas the corresponding

values for the Nelores were 23.8 and (13.0, 39.5), respectively. The posterior mean

variance due to the segregation between these breeds was 8.4 with a 95% PPI of (2.3,

24.8). The posterior mean of the genetic variance obtained by a conventional animal

model (AM) was 60.5, presumed common for the two breeds, with a 95% PP] of (44.3,

77.7). The homogeneous residual variance posterior mean was 339.4 with a 95% PPI of

(324.4, 354.0) using MBAM; corresponding values using AM were 346.0 and (331.0,
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360.8), respectively. The Pseudo Bayes Factor heavily favored the MBAM over the AM

for both simulated and PWG data, thereby having important implications for improved

precision on genetic merit predictions. The main advantage ofMBAM is the flexibility in

modeling heteroskedastic genetic variances of the breed composition groups, hence

improving genetic predictions.

Key Words: Bayesian inference, Beef cattle, Crossbreeding, Genetic Evaluation,

Multiple-breed, Post-weaning gain.

1. Introduction

Crossbreeding increases efficiency of livestock production by exploiting heterosis

and complementarity between breeds (Gregory et al., 1999). Hence, an increasing

proportion of the livestock populations are crossbred animals. Crossbreeding is

synergistic with selection as factors to improve beef production. Furthermore, genetic

trend is proportional to the accuracy of selection (Falconer and Mackay, 1996). For

crossbred animals, this accuracy depends on properly specified genetic covariances

between relatives (Fernando, 1999).

The genetic merit of an animal is comprised of the mean of its breed composition

group plus its individually specific deviation from the group (Arnold et al., 1992; Elzo,

1994; Klei et al., 1996). Other than residual effects, individual deviations are due to

random additive and non-additive genetic effects which can be estimated using

phenotypic records on the individual and its relatives. In order to most efficiently use this

data, it is imperative to properly model genetic covariances between relatives as specified
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by Lo et al. (1993) for an additive genetic deviations model. A model including fixed

additive and non-additive genotypic effects with random additive individual deviations

may be satisfactorily parsimonious for genetic evaluation of multiple-breed populations.

A hierarchical Bayes model effectively combines data and prior information and provides

a particularly useful framework for inference on additive breed and segregation

variances.

The objectives of this study were to: 1) propose a hierarchical Bayes construction of

the multiple-breed animal model from Lo et al. (1993) to estimate genotypic effects and

individual additive deviations when breed and segregation variance components are

unknown; 2) validate the model using simulated data, and to 3) apply the proposed model

to a dataset of post-weaning gains on purebred and crossbred animals derived from

Hereford and Nelore cattle and raised in diverse environments.

2. Material and Methods

2.1. Crossbreeding Model

Genotypic eflects. Let g denote a particular genotype (i.e. breed composition)

composed of B breeds. Also, let 1?, be the proportion of alleles from the bth breed

(b=1,2,...,B), and fbb. be the probability that for a randomly chosen locus from an

individual in g, one allele is derived from Breed b and the other allele is derived from

Breed b', allowing for the possibility that b=b' (b'=l,2,...,B). A general model is

assumed for the genotypic effect; that is, the deviation 6,, ofg from the overall population

mean p, based on the two-loci theory and absence of inbreeding was presented by Wolf

et al. (1995):
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where 74, is the additive effect of Breed b, 701,b, is the dominance effect involving

Breeds b and b', 7AA”, is the additive X additive effect involving Breeds b and b',

7A0 is the additive X dominance effect involving the interaction of Breed b with the

b(b'b')

dominance effect of Breeds b' and b” and 7DD(bb')(b'b') is the dominance X dominance

effect involving the interaction between the dominance effect of Breeds b and b' and the

dominance effect of Breeds b' and b". The extension of [1] to include other effects (e.g.,

maternal breed effects) can naturally involve analogous terms. The coefficients required

in [1] can be obtained from the parental generation for the animal as follows:

f, =0.5(f,,‘+fbd); fbb=f,ff,,"; f,,.=);,'f,;.’+);,: ,f‘, for b=1,..., B; b'=1,..., B;

b < b'. Here s and d denote paternal and maternal group, respectively.

In order ensure identifiability of the parameters in [1], restrictions must be invoked.

. . . . B

ReStI'lCtIOI‘lS on the breed proportion coefficrents are natural, namely 21):] fb =1,

2 fbb =1 and f,,-— fbb +0.5:fbb. For the case of crosses involving only two breeds,

bsb

we suggest the following parameter restrictions: 7,2 = 0, 70“ = 7022 = 0 , and

74411 = 74422 = 0 ’ SUCh that 7401(11) = £10102) = 740201) = 740202) = 7402(2) =0’ and

= 0. Then [1] simplifies to:
7000001) = 700(12)(22) = 700(11)(22) = 70(12)(22) = 700(22x22)
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6g = yAlfI +7DI2-II2 +7AA12 2-f1 -f2 +7ADl(12)fI IIZ +yDD(lz)(12)-/l§ ’ [2]

having five parameters and therefore requiring at least six breed composition groups to

allow their estimability jointly with ,u. Here, [2] is simply a reparameterization of the

model proposed by Hill (1982). Conceivably, genetic effects could interact with other

non-genetic effects, such as age of dam, gender and region (Arthur et al., 1999; Klei et

al., 1996), yielding a straightforward extension of Equation [1]. On the other hand,

simpler models can be obtained by setting some effects of the general model in [1] equal

to zero. For instance, a recombination loss model based on additive X additive epistasis

(Dickerson, 1973; Kinghom, 1980) is attained by letting all 7,10 and 70%,.Xb.b.)
b(b’b')

effects be equal to zero.

2.2. Hierarchical Bayes model construction

First stage. The first stage of the model specifies the conditional sampling density of

the n X 1 data vector y = {yj} . The component of this density for a record on individual

j, is

y}.|B,y,a,0',2~N(xi,B+x'2jy+z'ja,0'ez), j e S, [3]

where B is a p X 1 vector of non-genetic effects (e.g. gender, age of dam, contemporary

groups, etc.), 7 is a t X 1 vector of genetic fixed effects with breed-specific components

for 741’ 70“,, 7,44,,» 7408(a'a-)’ and 700(ba'xa-t-) as specified in Equation [1]; a is a q X 1

vector of animal additive genetic effects; and x1}, x’zj , and z', are known row incidence

vectors, with the elements of x'zj determined by the coefficients for genetic effects (fb’s
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and fib-’s) as defined in Equation [1]. Moreover, S represents the sample of size n of

animals having records; typically n < q since a includes effects for ancestor animals

without records. Finally 0': represents the residual variance, assumed to be homogeneous

across breed groups.

Second stage. Prior densities are assumed for location parameters:

11mm ~N(B.,Vr), 141

rlrmV, ~N(10,V,), [5]

and

alt~N(0.G(«p)), 161

where [3,, 1,, VB and V, are specified. The additive genetic variance-covariance matrix

C(19) is a function of more than one dispersion parameter in (p for crossbred

populations as defined by Lo et al. (1993). Elements of C(19) can be computed by the

tabular method having as diagonal elements:

8 _ B-l B

Var(aj)=2fb’0'ib 4222437,: +fbdfb‘.’)o§bb, +.5cov(a;,aj.’) [7]

b=l b=1 b’>b

forj = 1,2,. . .,q. Here a; and 07 represent, respectively, the additive genetic effect of the

sire and the dam ofj; 0,2,, is the additive variance of breed b; and of“), is variance due to

the segregation between breed b and b' or the additional variance observed in the F2

. 2 B 2 3-1, B

generatron over the F1, such that (p = {0,1,}H ,{0' }s , defines the components of
(’5 b=l,b'>b

genetic variance. Following Quaas (1988), Lo et a1. (1993) showed that the inverse of

C(11)) can be computed using:
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(9111))" =111-2119111))" (I—P),

where I is an identity matrix, P is a matrix relating progeny to parents and 9(0) is a

diagonal matrix with thejth diagonal element is defined as:

m,=Var(a )— .25(Var(a;)+Var(aj))— .5eov(aj.,a;’), [8]

which is a linear function of elements of 1]). For the case of non-inbred populations

cov(aj., aj'—) 0 and [8] canbewrrttenas

B

rat +z2 2(am1:12 + 12.148292...)
b:

 
2(44'11225 + amid/”300.3,, )2

where pgs, pgd, mgs, and mgd represent, respectively, the paternal grandsire, paternal

granddam, maternal grandsire and maternal granddarn of individual j. In this case

(G ((11)).1 can be directly determined without computing G (qr).

Third stage: Scaled inverted chi-square prior densities are specified on the variance

components as follows:

 

 

 

 

 

2 2 2 _[ve+2] yes:

p(ae Ve’se)m(O-e) 2 exp “-20.2 3 [9]

v +2

p(ofiblva,sib)oc(0'ib )1 A: lexp[-V2A"Szib ], b=1,..., B; [10]

48

_V_‘Sl&_2] v 32
2 2 [ S ' S ' _ , I_

Plairlvs..»2s.rHas...) ’ exp[-—bfi§f)tb"w 3-1.1, ~b+1,-~. 8.1111
bb'
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2 2 _ 2 _ ,_
Here, we, s , va, sAb, b — 1,...,B, amt/SW, SSW, b — 1,...,B-1, b — b+1,...,B are

specified hyperparameters.

Joint posterior density: The joint posterior density is the product of [3], [4], [5], [6],

[9], [10], and [11] and is given by:

p(flmamflf ICJ) = l—[p(y,- IB,7,a,03)p(B | B0,Vp)p(7 | YoaVy)
jeS

B 3-1 B

2 2 2 2 2 2

XP(3|‘P)P(0} IVe’Se )Hp(O'Ab IVAb’S/tb) “p(asbb' lVSbb"SSbb')’

b=l b=l b'>b

_ 2 2 2 2 2
where g“(Bo’vfl’yo’vy’ve’se’vzfi"”9VAB’SA1’°"9SAB’VS|2""9VSB413’s/112’°"’SSB_]3)

denotes the vector of hyperparameters.

Full conditional densities: The full conditional densities (FCD) of all unknown

parameters/quantities or blocks thereof necessary to conduct MCMC inference are

derived in the Appendix to this chapter.

2.3. Simulation Study

A crossbreeding system simulation study was conducted. Five datasets were

generated, each based on two base purebred populations consisting of 240 animals per

purebred. For each dataset, six sires and 20 dams from each purebred population were

then randomly selected and mated inter se to produce purebred offspring, and to animals

of the other breed to produce the F1 generation. The F1 animals were then randomly

selected (12 sires and 40 dams) and mated inter se and to the base populations to produce

F2 and backcross animals, respectively. In a final stage, six sires and 20 dams from each

of the backcross groups and 12 sires and 40 dams from the Fz’s were randomly selected

and mated to produce an advanced generation of intercross animals with several different
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breed compositions. The total number of animals was set to 4,000, but the number of

animals of each genotype was random and unbalanced within each dataset. There were

approximately 300 animals for each purebred, 370 Fl’s, 450 Fz’s, 490 animals for each

backcross, and 1,600 advanced intercross animals. Inbreeding was avoided in all matings.

One record per animal was generated based on an arbitrarily chosen overall mean and

fixed genotypic effect, a random additive genetic effect and a random normally,

identically, and independently distributed residual effect. The additive genetic effect of

an animal j was generated using [8] as aj =0.5aj. +0.50;l +2h/c—o: , where z,- ~ N(0,1),

j=1,2,. . .,q. The parental contributions from a; and a? are null when parents were not

identified, as in the case of base population animals, such that 0)]. is then the

corresponding breed-specific additive genetic variance.

The genetic variance for Breed l (0324]) was set to 100.0, for Breed 2 (03212 ) to 50.0,

and for the segregation variance between Breeds 1 and 2 (032) to 20.0. The residual

variance (of) was set to 100.0. To validate our Bayesian model choice criterion (see

later), we also simulated five populations where 0,2,1 :0; =75.0, 0:” =0.0, and

Z = 100.0 , this situation being equivalent to the conventional animal model assumption

of no influence of crossbreeding on genetic variances.

Inference was based on MCMC and two different models: the Multiple-breed Animal

Model (MBAM) described in this study and a conventional Animal Model (AM) that

assumed equal breed genetic variances with no between-breed segregation variance.

Uniform bounded priors were utilized for the variance components. The length of chain
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was G = 60,000 cycles after a burn-in period comprising 10,000 cycles. For each

dispersion parameter, the initial monotone sequence approach (Geyer, 1992) was used to

calculate effective sample sizes (ESS), which estimates the number of independent

samples with information content equivalent to that contained within the 60,000

dependent samples (Sorensen et al., 1995).

Various measures were used to compare MBAM and AM in terms of genetic merit

prediction including the mean squared error of prediction (MSEP), the mean bias of

prediction (MBIAS) and Spearman rank correlations between estimated and true genetic

5

values. The MSEP for each model was determined as 2293”. -a,y. )2/q/5 , where 5

h=l 1:1

denotes the number of replicates, q = 4000 is the total number of animals per replicate,

(3,”. is the estimated direct additive genetic effect for animalj in the replicate h and ah}. is

s

the true value of am. MBIAS was similarly determined as §:(&,y —a,y. )/q/5 .

= j:

Model choice criterion. We considered the Pseudo Bayes Factor (PBF) (Gelfand,

1996) as the basis for model choice. The PBF involves the evaluation of the first stage

density in [3] on each MCMC sample. For comparing MBAM and AM, the

corresponding PBF is determined to be:

 

PBFMBAM,AM =n p(yj IY(-j))MM,

jes p(y, |y(_1))“,

where p(y1' |y(_j))MBAM and p(yj |y(_j))AM are model specrfic conditional predictive

ordinates (CPO) for observation y,. A MCMC approximation for the CPO of model M is

obtained by a harmonic mean:
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p(y/ |y(‘j))M z ELZ?|p-l(yj |p(l),y(l),a(l)’o.2(l)) ’

= e M

 

where B“),y“),a(’) and of“) are the post burn-in MCMC samples for 0,7,1! and of,

respectively, I = 1,2,...,G. An overall PBF across the five replicates was obtained by

WMBAMJM = CXP(Z:=1108(PBFMBAM,AM )h/s) .

2.4. Application to field data

We applied the model described in this study (MBAM) to the analysis of post-

weaning gain (PWG) records of a beef cattle population under genetic evaluation in

Brazil and consisting of Hereford and Nelore cattle and their various crosses. We also

applied a conventional AM to compare results with those from the proposed MBAM. As

in the simulation study, MCMC was used for inference in both models.

The records were collected between 1974 and 2000 by the Brazilian National

Breeders Association and Gensys Associated Consultants within a large-scale genetic

evaluation program called “Delta G Connection”. After deleting contemporary groups

with less than ten animals and sires with less than five offspring, there were 22,717

records of PWG from 15 different herds with a total of 40,082 animals in the pedigree

file. Animals were raised on extensive pasture conditions in three different regions, of

which two were in the tropical area and one in the sub-tropical area of the Country.

Region 1 comprised of two farms located between 14°S and 16°S latitude with 5,410

records (23.8%), Region 2 had three farms located between 21 °S and 23°S with 3,110

records (13.7%), and Region 3 had ten farms located between 30°S and 32°S with

14,197 records (62.5%). The average PWG was 98.2 kg i 41.2. The age of calves at
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weaning ranged from 114 to 300 days (208 days on average) and the average post-

weaning test period was 280 days, ranging from 106 to 483 days.

Animals with records had breed compositions that ranged from purebred Hereford to

7/8 Nelore; however, purebred Herefords and Fl’s provided about 90% of the records

(Table 3.1). There were no purebred Nelore animals with records. Dams were mostly

represented by purebreds of the two breeds (Table 3.1). Most animals with records in the

tropical part of the Country (Regions 1 and 2) were Fl’s. This structure is due to the fact

that these herds belonged to Hereford breeders from southern Brazil and Nelore breeders

from central Brazil cooperating on the production of crossbred Braford animals.

Non-genetic effects included in both models (elements of B) were the main effects of

region, gender, length of the post-weaning test period, and linear and quadratic age of

dam effects, the latter being included to model possible compensatory growth due to age

of dam. The elements of 7 were specified based on the ‘epistatic 1053’ model (Kinghom,

1980) for a two-breed scenario; i.e. Equation [2] with 7AD](12) = yDDtIZXIZ) = 0. The fixed

effects portion of the model was further augmented to allow for interaction between

gender, length, and age of dam polynomials with breed proportion. Region by breed

proportion interaction was not modeled due to multicollinearity problems since nearly all

animals with records in Regions 1 and 2 were Fl’s (Table 3.1). Contemporary groups

(herd, year, season and management subclasses) were modeled as uncorrelated random

effects. Due to lack of objective prior information on this population, we adopt bounded

uniform priors on B and y, and conjugate relatively noninforrnative specifications on

variance components, specifically, VAl = VA2 =v512 =ve =5; s2 :5; =80; SE” =10,
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Table 3.1. Distribution of post-weaning gain records per region according to individual

and maternal breed composition

 

 

 

 

Breed Individual Maternal

composition Region 1 Region 2 Region 3 Region 1 Region 2 Region 3

Nelore 0 0 0 5,347 3,001 0

BC<N=Iore> 0 0 91 0 0 2

F1(H><N) 5,346 2,997 0 63 108 0

F1(N><H) 0 0 375 0 0 994

F2 0 18 35 0 0 0

3/8Nelore 0 79 1,006 0 0 405

BCmmrom 3 12 560 0 o 26

Hereford 0 0 1 1,660 0 0 12,317

Others 56 4 470 0 1 453

and s),2 = 350.

The length of the MCMC chain for PWG was 200,000 cycles after burn-in for both

MBAM and AM. Posterior means, modes, key percentiles and standard deviations of the

parameters were obtained from their marginal posterior densities.

3. Results and Discussion

3.1. Simulation study

Posterior means, modes, standard deviations, and 95% confidence sets for variance

components averaged over the five simulated populations as obtained by MCMC using

MBAM or AM are presented in Table 3.2. The average posterior mean and mode of all

variance components obtained by MBAM appeared to indicate these point estimates as

being essentially unbiased. The individual 95% confidence sets included the true

parameter value in 19 out of 20 cases (based on four variance components estimated
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Table 3.2. True value, posterior mean (PMEAN), posterior standard deviation (PSD),

posterior mode (PMODE), 95% posterior probability intervals (PPI), and effective

sample size (ESS) for variance components (VC) averaged over the five simulated

populations, obtained by a conventional animal model and by a multiple-breed animal

model

 

 

VCa True PMEAN PSD PMODE PPI ESS

Conventional animal model

0'3 - 84.33 9.71 83.16 (66.59, 104.46) 856

of 100.00 105.11 5.94 105.58 (93.18, 116.47) 1,108

Multiple-breed animal model

03,] 100.00 106.42 14.11 105.53 (80.04, 135.25) 1,245

03,2 50.00 48.67 10.43 46.95 (30.17, 70.90) 1,046

01%” 20.00 21.34 8.24 19.63 (6.86, 38.56) 1,205

of 100.00 100.20 6.09 99.98 (88.04, 111.93) 1,003

 

'03 = additive genetic variance, of= residual variance, 03] = additive genetic variance

for breed 1, 0,242 = additive genetic variance for breed 2, 0;” = additive genetic variance

due to segregation between breeds 1 and 2.

within each of five populations), thereby falling within probabilistic expectation. The

single additive genetic variance estimated using AM was slightly greater than the average

of the two true values for the breed-specific genetic variances, this deviation being partly

due to the non-zero between-breed segregation variance. Considering the complexity of

the multiple-breed population structure and the sample sizes in this study, the results

presented in Table 3.2 indicate that MBAM based on MCMC provides a reliable

procedure to estimate additive genetic variance components on populations consisting of

crossbred animals.

81



The PBF was used to compare the MBAM versus AM for fit of each simulated

dataset. The PBF for MBAM/AM varied from 9.785 X 102 to 3.337 X 106 in the five

replicates of the two-breed population, being always in favor of MBAM and with an

overall value of 2.543 X 104. However, when the five data sets with a purebreeding

assumption on genetic variances were analyzed, the PBFs were either in favor of AM or

inconclusive; the range of values was from 1.163 X 10'5 to 5.472 and the overall PBF was

6.073 x 102, being in favor of AM. Hence, the PBF was either able to correctly choose

the right model with certainty or, at the very least, did not ever decisively choose the

wrong model.

In addition, we compared the models in terms of prediction of additive genetic

effects. The overall mean squared error of prediction (MSEP), averaged across all

animals and the five simulated populations, was 34.92 :1: 0.45 for the AM and

34.61 i 0.45 for the MBAM. Also, the overall mean bias (MBIAS) was 0.23 :1: 0.28 and

0.24 :1: 0.27, respectively for AM and MBAM and the overall Spearman rank correlation

(RANK) between predicted and true genetic values was 0.75 :1: 0.01 for AM and

0.75 :1: 0.01 for MBAM These same comparisons were also considered within breed

composition groups (data not shown) with results not clearly pointing out advantages for

either model.

The main advantage of MBAM over AM appears to be in terms of accounting for

genotype differences in genetic variability. To further illustrate this point, we present in

Table 3.3 the true and the estimated additive genetic variance (0,2,) for different breed

composition groups. With MBAM, the genetic variance of each breed composition group

is a function of breed specific variances and the segregation variance; for example, the
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Table 3.3. Empirical averages and standard errors (SE) of posterior mean (PMEAN)

additive genetic variances, obtained by a multiple-breed animal model for different breed

compositions in the simulation study. For all breed compositions, the corresponding

posterior mean and standard deviation using the conventional animal model (AM) was

84.3 :1: 3.3

 

 

Breed composition True value PMEAN :1: SE3

P1 100.0 106.4 :t 5.4

BC] 97.5 102.7 3: 2.8

F; 75.0 77.5 :1: 3.1

F2 95.0 98.9 :1: 4.1

BCz 72.5 73.8 i 4.1

P2 50.0 48.7 :t 4.8

 

‘ Based on five simulated two-breed populations.

genetic variance of the F2 groups 0in is obtained by 0.5032,1 +0.50%2 +o§l2 and, in

3 B—1 8

general, for genotype g by 0A8 =Zfb‘“ ifizzqu’fbf + ff]: )asbb (Lo et al.,

b=l b=lb'>b

1993), whereas a common genetic variance is attributed to all breed compositions in AM.

The genetic variances estimated by MBAM were always closer to the true value

compared to AM, for all considered genotypes. For example, the parental groups (P; and

P2) posterior means for genetic variances, 0'3] and 03,2 , were respectively 9.3% and

66.0% closer to the true values when estimated by MBAM compared to AM (Table 3.3).

It is clear then that MBAM adequately characterizes the heterogeneous genetic variability

due to different breed compositions in the simulated crossbred populations.

83



3.2. Post-weaning gain analysis

Model choice. For the analysis of PWG in the Nelore-Hereford cross dataset, the PBF

comparing MBAM/AM was 1.152X104. This implies that the marginal probability of data

p(y | M,) obtained by MBAM was more than 10,000 times larger than that obtained by

AM, suggesting then that the MBAM is a decisively better fit.

Genotypic eflects. Posterior means and standard deviations of genetic fixed effects on

PWG obtained by MBAM and AM using Kinghom’s epistatic loss parameterization

(Kinghom, 1980) are presented in Table 3.4. Inferences obtained using both models were

similar, and no significant differences could be detected between MBAM and AM in

terms of posterior means of genetic effects (Table 3.4). Mean PWG decreased as the

Nelore proportion increased. As expected, dominance favorably affected PWG while

additive X additive interaction, i.e. recombination loss, adversely affected PWG. We also

attempted to fit the two-loci model (Hill, 1982; Wolf et al., 1995); however, this fit was

not successfirl due to extremely high correlations between coefficients of genetic effects:

ranging from 0.92 between additive X additive (2flf2) and dominance X dominance

( fé) to a maximum of 0.99 between fl: and additive >< dominance ( fl fa) coefficients.

A similar problem was observed by Birchmeier et al. (2002), who eventually decided

upon a model with only additive and dominance effects but no epistatic effects.

Nonadditive genetic fixed effects are generally difficult to estimate using field data

because of confounding and multicollinearity (Birchmeier et al., 2002; Klei et al., 1996),

particularly between various epistatic effects. Consequently, genetic fixed effects in

proposed multiple-breed genetic evaluation systems have only generally included
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Table 3.4. Posterior means (PMEAN) i posterior standard deviations (PSD) in kg of

genetic fixed effects obtained by a multiple-breed animal model (MBAM) and an animal

model (AM) for post weaning gain in Nelore-Hereford crosses

 

  

 

we“ (warmer) PMéfiIAEPSD PMEAAIE: PSD

Additive (2,1) -28.30 :1: 9.95 -3095 :1: 10.25

Dominance (70.2 ) 37.10 :t 5.00 35.773: 4.91

Additive x additive (7,212) -31.56 :t 9.05 -29.05 :1: 8.72
 

additive and dominance effects (Cunningham, 1987; Klei et al., 1996; Miller and Wilton,

1999; Sullivan et al., 1999). Prior information on genetic fixed effects, as it is available

from the literature, might be useful for analyses of poorly structured datasets as is

common for crossbred beef cattle (Quaas and Pollak, 1999). The use of prior density

specifications on elements of 7 further mitigates the effects of multicollinearity amongst

genetic effects coefficients. Reliable estimates of dominance effects are available from

the literature (e.g. Gregory et al., 1999); however, reliable estimates of epistatic effects

are lacking (Arthur et al., 1999; Koch et al., 1985). Simple recombination loss

specifications for y (Dickerson, 1973; Kinghom, 1980; Kinghom, 1987) provide a useful

compromise between the two-loci model (Hill, 1982; Wolf et al., 1995) and currently

used additive/dominance models in that epistatic effects are modeled with only one

parameter in a two breed population as we have done.

The posterior means and 95% PPI for breed group effects as obtained by MBAM for

the most frequent genotypes with records (Hereford, Backcrosses, F1, F2 and 3/8 Nelore)

in Region 3 (between 30°S and 32°S) are presented in Figure 3.1. These means were

very similar under MBAM and AM, varying from a minimum difference of 0.10 kg for
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Figure 3.1. Posterior means (intermediate tick mark) and 95% posterior probability

intervals (end tick marks) of post-weaning gain of Hereford, Hereford backcross

(BC(Hcl-¢ford)), advanced 3/8 (A3/8) Nelore 5/8 Hereford, F1, and F2 and Nelore backcross

(BCMIOM) calves obtained by a Multiple-Breed Animal Model (MBAM)

Herefords to a maximum difference of 1.00 kg observed on 131’s. The same mean

differences would be observed in the other two regions since interaction between region

and breed composition effects were not modeled.

Additive genetic variances and heritabilities. Variance components for post-weaning

gain (PWG) estimated by MBAM and AM are presented in Table 3.5. The genetic

variances obtained for the Nelore and Hereford breeds by MBAM differed substantially

in magnitude. Herefords had a posterior mean genetic variance that was almost fourfold

that obtained for the Nelore breed with no apparent overlap between the 95% posterior
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Table 3.5. Posterior mean (PMEAN), posterior standard deviation (PSD), posterior mode

(PMODE), 95% posterior probability intervals (PPI), and effective sample size (ESS) of

variance components (VC) estimated for post-weaning gain in Nelore-Hereford crosses,

obtained by a conventional animal model and by a multiple-breed animal model

 

VCa PMEAN PSD PMODE PPI ESS

Conventional animal model

 

2

02 60.46 8.65 61.01 (44.31, 77.69) 225

03g 900.47 43.40 906.53 (818.11, 988.72) 15,389

03 345.99 7.60 346.80 (331.03, 360.79) 291

Multiple-breed animal model

‘73. 23.80 6.86 22.44 (13.02, 39.52) 171

”/26 85.17 11.28 84.11 (63.17, 108.45) 223

03242 8.42 5.84 4.71 (2.32, 24.75) 2,436

03.; 897.98 43.31 888.59 (816.69, 986.13) 13,685

0.2 339.39 7.51 339.59 (324.35, 353.98) 259
 

a 2 _ o o o o 2 _ .

024 — addrtrve genetrc varrance, 0'63 — varrance due to contemporary groups,

2 _
0', — residual variance, 0321.: additive genetic variance for Nelore breed, 032,2 = additive

genetic variance for Hereford breed, of,” = additive genetic variance due to segregation

between breeds.

probability intervals (PPI) obtained for these parameters (Table 3.5). Using the

conventional AM, a posterior mean intermediate to the Nelore and Hereford posterior

mean genetic variances in the MBAM was obtained, as shown in the posterior densities

of these variances (Figure 3.2). The posterior mean of the variance due to the segregation

between the Hereford and Nelore breeds had a magnitude of about 35.4% of the Nelore

genetic variance posterior mean, but represented only 9.9% of Hereford genetic variance

posterior mean (Table 3.5). These percentages were larger than those found for birth and

weaning weight of crosses of Angus and Brahman in Florida, ranging from 1.4 to 3.1%
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Figure 3.2. Posterior densities of the additive genetic breed and segregation variances

obtained by a Multiple-Breed Animal Model (MBAM) and of the homogeneous additive

genetic variance (assumed common to both breeds) obtained by a conventional Animal

Model (AM) for post-weaning gain in Nelore-Hereford crosses

(E120 and Wakeman, 1998). The magnitude of the segregation variance relative to the

Hereford genetic variance (9.9%) was, however, somewhat smaller compared to results

obtained for birth weight of Hereford-Nelore crosses in Argentina (16.5%) (Birchmeier et

al., 2002). The Nelore variance was 73.5% of the magnitude of the Hereford variance in

birth weight in their study, whereas Nelores had a genetic variance for PWG that was

only 27.9% that for Herefords (Table 3.5) in our study. Heritabilities for the most

prevalent genotypes in the studied population are presented in Table 3.6. Heritabilities

were determined by not including the contemporary group variance as part of the
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Table 3.6. Posterior means (PMEAN), posterior standard deviations (PSD), posterior

modes (PMODE), 95% posterior probability intervals (PPI), and effective sample size

(ESS) of direct additive heritability of post-weaning gain (PWG) for different Nelore-

Hereford genotypes, obtained by a conventional animal model and by a multiple-breed

animal model

 

 

Breed composition PMEAN PSD PMODE PPI ESS

Conventional animal model

Overall 0.15 0.02 0.15 (0.11, 0.19) 225

Multiple-breed animal model

Nelore 0.07 0.02 0.06 (0.04, 0.11) 168

BCtNeIore) 0.11 0.02 0.11 (0.08, 0.15) 188

F1 0.14 0.02 0.14 (0.10, 0.18) 179

F2 0.16 0.02 0.15 (0.12, 0.20) 251

A3/3-N610re 0.17 0.02 0.17 (0.13, 0.22) 244

BCtHcreford) 0.18 0.02 0.18 (0.14, 0.22) 214

Hereford 0.20 0.02 0.20 (0.15, 0.25) 219
 

“ Advanced generation of 3/8 Nelore and 5/8 Hereford composition.

phenotypic variance; this was intended to make our estimates comparable with other

within-herd heritability estimates from the literature where contemporary

groups are often fitted as fixed effects. (Eler et al., 1995; Koots et al., 1994; Meyer,

1992). The posterior mean of the additive heritability (hi) obtained by MBAM were

between a minimum of 0.07 for purebred Nelores and a maximum of 0.20 for purebred

Herefords, with other genotypes having intermediate values. As expected, the posterior

mean hf, under the AM had an intermediate value (0.15). These estimates are

considerably smaller the average value 0.31 determined for PWG as based on 177 studies

(Koots et al., 1994). The Hereford h}, estimate is, however, within the expected range for
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the extensive production environments in Brazil and is larger than the heritability

estimate of 0.16 for yearling weight of Hereford cattle raised on pasture production

systems in Australia (Meyer, 1992). The posterior mean obtained for hf, for Nelores was

very low and was less than the corresponding estimate of 0.16 observed for yearling

weight in another Brazilian Nelore purebred dataset (Eler et al., 1995). Since purebred

Nelores were only represented by parents without records in our population, it may be

difficult to compare these two different sets of results due to, for example, different

management systems.

Despite the availability of methodology to estimate multiple-breed additive genetic

variances (Birchmeier et al., 2002; Elzo, 1994), several recently proposed models (Klei et

al., 1996; Miller and Wilton, 1999; Quaas and Pollak, 1999; Sullivan et al., 1999) assume

that all breeds have the same additive genetic variance and that there is no genetic

variance due to segregation between breeds in advanced crosses. One advantage of the

Bayesian MBAM over the specifications of Elzo (1994) and Birchmeier et al. (2002) is

the ability to incorporate prior information on breed specific and segregation genetic

variance components. Even though existing prior information for segregation variances is

limited (Birchmeier et al., 2002; E120 and Wakeman, 1998), there is extensive

information available on breed specific variances (e.g. Koots et al., 1994; Meyer, 1992)

that could be incorporated using [10].

Animal additive genetic efi'ects. Ranking animals for genetic merit and eventual

selection is a chief objective in breeding programs. The Spearman rank correlation

between additive genetic effects obtained by MBAM and AM overall genotypes and for

the most frequent genotypes in the dataset, are presented in Table 3.7. Rank correlations,
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Table 3.7. Spearman rank correlation between posterior mean of additive genetic effects

obtained by a multiple-breed animal model and by a conventional animal model for all

animals and for different percentile MBAM groupings of animals within the most

frequent breed compositions.

 

 

 

. . Spearman Rank Correlation

Breed composrtron N 100% Top 10% Top 5%

Overall 40,082 0.977 0.884 0.835

Nelore 7,445 0.995 0.970 0.972

BC(NcIorc) 91 0.984 0.933 0.800

F.(H><N) 8,343 0.987 0.894 0.891

F1(NxH) 375 0.975 0.951 0.946

F2 53 0.968 0.900 1.000

A3/8- Nelore“ 337 0.996 0.985 0.975

BCthtord) 580 0.995 0.916 0.906

Hereford 19,976 0.994 0.948 0.941
 

 

alAdvanced generation of 3/8 Nelore and 5/8 Hereford composition.

across all animals and within each genotype were very high, being always greater than

0.96. However, if consideration is limited to the top 10% and top 5% animals ranked by

MBAM, the rank correlation for genetic merit across all genotypes decreased,

respectively, to 0.88 and to 0.84. Hence, substantial differences exist between MBAM

and AM models when selecting top animals as breedstock. The observed decrease in rank

correlations within genotype from using all animals to the top 10% and the top 5% was

generally not as sharp as when we considered all groups together (Table 3.7). It appears

that ranks are less affected within genotypes than across all animals being likely due to

the different genetic variances (and consequently dispersion of genetic effects) that are

specified for each breed composition group under MBAM as opposed to the conventional
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Figure 3.3. Scatter plot of posterior means of additive genetic effects of Herefords,

Nelores and Fl’s obtained by a Multiple-Breed Animal Model (MBAM) versus those

obtained by a conventional Animal Model (AM)

AM. The scatter plots in Figure 3.3 of the posterior means of additive genetic effects for

MBAM versus AM for Hereford, Nelore and F, ’s provide additional evidence for the

difference between models in terms of accormnodating the breed composition specific

variability of genetic effects; that is, the MBAM is much more flexible in accommodating

the different variability observed on diverse genotypes. There was also some difference

between models in terms of posterior standard deviations of animal genetic values as can

be observed for Hereford, Nelore and Ft’s in Figure 3.4. Posterior standard deviations

would be used for computing accuracy ofthe genetic evaluations in Figure 3.3.
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Figure 3.4. Scatter plot of posterior standard deviations of additive genetic effects of

Herefords, Nelores and Ft’s obtained by a Multiple-Breed Animal Model (MBAM)

versus those obtained by a conventional Animal Model (AM)

Expected progeny differences (EPD) in a multiple-breed scenario are a function of

fixed and random genetic effects (Arnold et al., 1992; Elzo, 1994; Klei et al., 1996;

Sullivan et al., 1999). The coefficients for the fixed genetic effects (additive, dominance,

etc.) will depend on the mate’s genotype and, therefore, comparison between candidates

for selection should be made for specific breed compositions of the mates. The additive

genetic effect corresponds to the general combining ability of the individual and does not

depend on the genotype of the mates. The determination of specific combining abilities

requires the estimation of non-additive genetic variances. Even though theory for a full
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additive and dominance two-breed genetic model is available (Lo et al., 1995), this model

requires a much larger number of variance components to be estimated (up 25 when

inbreeding is present) and thus may be cumbersome for practical applications.

Generalization of the model applied in this study for the case of multiple-traits or

additive-maternal genetic effects could be attained by using multiple-breed variance-

covariance genetic matrices (Cantet and Fernando, 1995) and a Wishart proposal density

in the Metropolis-Hastings algorithm.

Due the computational limitations of MCMC, MBAM could be implemented for

genetic evaluation of large beef cattle populations using an empirical Bayes approach. In

this case, variance components could be previously estimated for a subset of the data on

the population of interest using MCMC. The mixed model equations as from [A1] in the

Appendix can then be used to provide empirical best linear unbiased estimates (BLUE)

for elements of B and y and BLUP of a.

4. Implications

The multiple-breed animal model specifies the additive genetic variance of each

breed composition group as firnction of breed-specific and segregation variances, thereby

sufficiently characterizing the genetic heteroskedasticity of these groups in crossbred

populations. In contrast, the standard animal model assumes constant genetic variances

across groups and no segregation variance. Accordingly, the proposed hierarchical model

enhances flexibility for modeling the dispersion of genetic merit within breed groups,

thereby having important implications for improved precision on prediction of genetic
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merit. This advantage increases with increasing differences in breed-specific variances

and with the magnitude ofthe segregation variances.

Appendix

Fully Conditional Densities (FCD)

In what follows the FCD are present using the notation “ELSE” to denote the data

vector y and all other parameters treated as known in the FCD in question.

Fixed and random location parameters. Let

   

F . _
x;xl + vg'af xgx2 xgz iy + V;'13003

c = X'zxt X',x2 + We: X'ZZ . and r = 'zy + VJ'roaf .

zx, Z'x2 Z'Z + (G (6))‘1 of _ Z'y _ 

where Xl ={xij} , X2 ={x'2j}, and Z={z'j} ,j e S. Following Wang et al. (1994b), it

can be shown the location parameters have the following multivariate normal

distribution,

[0' y' a'IlELSE~N([fi' 9' ajflc) [A1]

where [0' “7' 5'], =Cr.

Residual variance. The FCD of error variance is scaled inverted chi-square:

 

p(G),2 | ELSE) oc (0;,2 )-[n+‘:+2)

[A2]

 xexp[— 2;: ((y —xlt-xzv—Za)' (y “xrB—xz'i —Za)+v.s3)]

Additive genetic variances. The FCD of genetic variances are not of standard forms:

95



 

£442. ' G "l 2

P(0',24,, |ELSE)oc IG («pH—5(0A,)[22)exp[—a ( (3’)) a —V2A;Zb ], b=1,..., B;[A3]

 

 

2 2052‘w

VS ,+2 , -l 2

p(aé...IELSE) 140))(a... )l”” lexp[—:<G<t>> W]

b=1,...,B-1; b'=b+l,..., B. [A4]

A Metropolis-Hastings (MH) algorithm, can be used to sample from [A3] and [A4].

The MH implementation was based on a random walk specification (Chib and

Greenberg, 1995) with scaled inverted chi-square proposal density. A proposal value 02

is generated from a scaled inverted chi-square distribution with scaling factor equal to the

value of the parameter in the previous cycle 0'3“” times the degrees of freedom v: , i.e.:

 ..W .2).(.2)—t2—r—)(;.a,])[,;]exp[_...a-n]c ’ c c 2029 '

C

To improve mixing, the degrees of freedom v; were tuned during the burning period

such that the acceptance of proposal values was about 40% (Chib and Greenberg, 1995).

The acceptance rate is given by:

2[t-l] 2' _
ac(ac ,ac )—

l f a \l
p[ac2 |9(-02),y]q(0_3 0,2[1-11)

<min . .1 if p(ac2"”10(2).y)q(03[””,03‘)>0
020-1] 0 , 2[t—1] 0c 0“

fl" ' 1-3")qu( )
(1, otherwise
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where 0( 2) is the vector of all parameters but of , c = A1,, Sbb'. Finally, to facilitate the

computations, we use the fact that IG ((p)| = lfl(q))| = q a). and that a'(G ((p))-1 a can
1:) ,

q” 1 2 1 d 2
be computed as 20)]. aj + i w}. (al. —.5aj —.5aj ) , where qb denotes the number of

'=l j=qb+l

base animals (animals with both parents unknown).
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CHAPTER 4

ROBUST QUANTITATIVE GENETIC INFERENCE ON POST-WEANING

GAIN 0F HEREFORD-NELORE CATTLE USING A MULTIPLE-BREED AND

STRUCTURAL RESIDUAL VARIANCES ANIMAL MODEL

ABSTRACT: The objective of this study was to propose and apply hierarchical

Bayes models with structural residual variances, combining heteroskedastic and heavy-

tailed densities, for the prediction of genetic merit in multiple-breed populations. Data

comprised 22,717 post weaning gain (PWG) records of a Nelore-Hereford population

(40,082 animals in the pedigree). A 3 X 2 factorial specification for the residual variances

based on distributional (Gaussian versus Student 1 versus Slash) and variability

(homoskedastic versus heteroskedastic) assumptions was evaluated: Gaussian

homoskedastic (G-HO); Student t homoskedastic (T-HO); Slash homoskedastic (S-HO);

Gaussian heteroskedastic (G-HE); Student t heteroskedastic (T-HE); and Slash

heteroskedastic (S-HE). Based on Pseudo Bayes Factors, the T-HE provided the best fit

to PWG with G—HO performing the worst. For the T-HE model, the posterior mean

(PMEAN) i posterior standard deviation (PSD) of the degrees of freedom parameter (v)

was 7.33 i 0.48 therefore, reflecting evidence for a residual distribution much heavier

tailed than Gaussian for PWG. An illustration of the use of robust models to investigate

outliers is also presented. Amongst various fixed factors (breed proportion, breed

heterozygosity and sex), only breed heterozygosity may be important (P<0.10) as a cause

for residual heteroskedasticity. Contemporary group (CG) effects were an important

random source of residual heteroskedasticity with the ratio between the largest and

smallest CG residual variances being about 20. In the comparison of homoskedastic
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heavy-tailed versus heteroskedastic heavy-tailed models, there was some evidence that

homoskedastic error models may misinterpret records in high variance subclasses as

outliers. Inference on genetic variance components changed considerably depending on

the structural specification for the residual variance. The Herefords had a larger PMEAN

genetic variance compared to the Nelores in the G-HO and T-HO models, whereas the

converse was true in the G-HE and T-HE models. The between-breed segregation

variance was the least affected among genetic components by the different model

specifications. Inferences based on the conventional G-HO model led to remarkable

rerankings of animal genetic effects for selection compared to the better fitting T-HE

specification. Therefore, the use of normal homoskedastic residual specifications in

current genetic evaluation models may be impeding genetic progress.

Key Words: Bayesian inference, Heteroskedasticity, Heterogeneity of variance, Robust

models, Structural models.

1. Introduction

Crossbreeding and selection are two of the most important tools available to increase

the efficiency of livestock production through genetic means, utilizing heterosis and

complementarity between breeds (Gregory et al., 1999). However, prediction of genetic

merit (genetic evaluation) and selection on multiple-breed populations are complicated by

different genetic backgrounds and degrees of crossing present in these populations. The

response to selection is proportional to the accuracy of genetic merit predictions
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(Falconer and Mackay, 1996), which naturally depends on correct specification of the

genetic evaluation model.

Livestock performance is generally measured across diverse production systems and

environments, with data quality often compromised by the occurrence of recording error,

preferential treatment and the effect of injury or disease. Hierarchical Bayes models

provide a general framework to address problems arising from poorly structured data

(Sorensen and Gianola, 2002). A variety of hierarchical model constructions have been

used to address heteroskedasticity (Foulley et al., 1992; Foulley and Quaas, 1995;

Gianola et al., 1992; SanCristobal et al., 1993) and robustness to outliers (Stranden and

Gianola, 1998, 1999). These two issues have been tackled separately; however, there is

no conceptual difficulty in considering them jointly (Kizilkaya and Tempelman, 2003).

Residual heteroskedasticity has been reported in beef cattle for growth performance

(Garrick et al., 1989; Nunez-Dominguez et al., 1995; Rodriguez-Almeida et al., 1995)

and carcass scan traits (Reverter et al., 1997) with region, herd, level of production, herd

size, year, sex and class of age of dam being identified as contributors. Breed

composition as a source of heteroskedasticity could also be considered in crossbred

populations (Arnold et al., 1992; Garrick et al., 1989; Rodriguez-Almeida et al., 1995).

Several statistical approaches have been considered for modeling heteroskedasticity,

the more notable approaches being that due to Gianola et al. (1992) and SanCristobal et

al. (1993). The method of Gianola et al. (1992) is based on regarding herd residual

variances as random variables fiom a scaled inverted chi-square distribution such that the

estimates obtained represent a compromise between a data based statistic (REML) and

parameters of the distribution of variances (hyperparameters) based on a borrowing of
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information across subclasses. In SanCristobal et al. (1993), the structural linear method

for log variances of Foulley et al. (1992) was extended to genetic and residual effects.

The method uses a log link to model variances as a linear function of unknown dispersion

parameters.

Beyond heteroskedasticity, the accuracy of estimated breeding values nevertheless

depends upon the quality of the performance and pedigree data provided. The presence

of observations influenced by factors not accounted for in the statistical analysis and

potentially having extreme influence (i.e. outliers), can severely bias parameter estimates

and genetic evaluations, since most linear mixed models used in animal breeding assume

that residual and random effects follow a (light-tailed) normal distribution. Preferential

treatment, disease, inappropriate contemporary group formation, record errors and animal

misidentification are possible reasons for outliers in beef cattle populations. Data editing

generally involves deleting observations that are considered extremely far from the

phenotypic mean of its class (usually three or more standard deviations) or the ratio

record/mean of its class fall outside the range of 60% to 140% (Bertrand and Wiggans,

1998)

An alternative to the deletion of plausible, albeit extreme, observations is the use of

symmetric heavy-tailed densities, such as the Student t, slash and contaminated normal,

for specifying residual distributions (Lange and Sinsheimer, 1993). These densities are

examples of Normal/independent distribution families that can better accommodate

extreme observations due to their heavy-tailed features (Lange and Sinsheimer, 1993;

Rogers and Tukey, 1972). In animal breeding, Stranden and Gianola recently introduced

a hierarchical Bayes model that specifies residuals to have Student I rather than normal
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densities. The use of Student t residuals have been shown to better accommodate data

characterized by preferential treatment, compared to a normal residual density (Stranden

and Gianola, 1998).

The objectives of this study were: 1) to propose a hierarchical Bayes model

combining residual heteroskedasticity and heavy-tailed residual densities for the

prediction of genetic merit in multiple-breed populations, and 2) to apply the proposed

model to a dataset on post-weaning gains from purebred and crossbred animals derived

from Nelores and Herefords raised in diverse environments, in order to identify sources

of residual heteroskedasticity and to assess the need for outlier-robust genetic

evaluations.

2. Material and Methods

2.1. Nelore-Hereford data

Data analyzed in this study consisted of post-weaning gain (PWG) records of a beef

cattle population comprising of Herefords, Nelores and their crosses under genetic

evaluation in Brazil. The records were collected between 1974 and 2000 by the Brazilian

National Breeders Association and Gensys Associated Consultants within a large-scale

genetic evaluation program called “Delta G Connection”. After deleting contemporary

groups with less than ten animals and sires with less than five offspring, there were

22,717 records of PWG from 15 different herds with a total of 40,082 animals in the

pedigree file. The animals were grown on extensive pasture conditions in three different

regions, of which two were in the tropical area and one in the sub-tropical area of the

Country. Region 1 comprised of two farms located between 14°S and 16°S latitude with
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5,410 records (23.8%), Region 2 had three farms located between 21 °S and 23°S with

3,110 records (13.7%), and Region 3 had ten farms located between 30°S and 32°S with

14,197 records (62.5%). The average PWG :t standard deviation was 98.2 i 41.2 kg.

Breed composition groups were highly unbalanced across the various regions.

Animals with records had breed proportions ranging from purebred Hereford to 7/8

Nelore (there were no purebred Nelore animals with records); however, purebred

Herefords and Fl’s represented about 90% of the records. Dams were mostly represented

by purebreds of the two breeds and most of the animals with records in the tropical part

of the country (Regions 1 and 2) were F's. More details on the structure of this data set

are presented in Chapter 3.

2.2. Hierarchical Bayes model

2.2.1. Multiple-breed animal model with structural residual variances

The first stage of the model specifies the conditional sampling density of the n x 1

data vector y = {yf}jes . The component of this density for a record on individualj, is

2 I 2 .

yj lli,y,a,0'ej ~ N(xljfl+x'2jy+z'ja,aej), 1 e s, [1]

where B is a p X 1 vector of non-genetic effects, 7 is a t X 1 vector of “fixed” genetic

effects, a is a q x 1 vector of animal additive genetic effects; and xi}, x'zj , and z'j are

known row incidence vectors; more information on these location parameters can be

found in Chapter 3. Moreover, S represents the sample of size n of animals having

records; typically n < q since a includes effects for ancestor animals without records.

Finally, 0'3]. represents the residual variance, specific for animal j. Following Foulley et
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al. (1992), a linear mixed model is assumed for the log residual variance:

1030222, =,ue +p'j.r+q'jo+rj, where r={r,}K and o={u,}l:H are, respectively, vectors
1

of “fixed” and random dispersion parameters, and p'j and q'j are known incidence

vectors relating the elements on 1' and u to the residual variance of animal j. Moreover,

r,- is an “error” term for the residual variance associated with record j. This specification

translates to a multiplicative model on of}. :

2 _ I , __ ye K 7):ij L 01qu '1'
0e}-—exp(,ue+pjr+qjo+rj)—e xl:l—Ik=le ]x[nl=le xe ,

which can be expressed as:

_ K - L

a. _2232[H)=)2f”‘]2<[f1)=1 7”]
e
1 .

w}

 

, [2]

where 62e = e”" represents a “reference” residual variance; ’1): = e”‘ and 4", = e“’ are,

respectively, “fixed” and random positive multiplicative dispersion parameters or scaling

factors; pfl, and qj, are known incidence quantities, corresponding to the kth and 1th

elements of p', and q'j , respectively; and w]. = e-" is an independent weight variable.

Note that for identifiability purposes, restrictions must be applied to the parameters in

2. = {1k L; in the same manner to that required for classical fixed effects (Searle, 1971).

In the second stage we specify our prior assmnptions on all unknowns defined in

Equations [1] and [2]. For the location parameters we adopt the following ordinary

assumptions:

6)!)va ~N(p.,vp), [3]
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mow, ~ N(v.,V,), [41

and

a|(p~ N(0,G(o)), [5]

where [30 and 70 are prior means, and VB , V7 and G((p) are prior variance-covariance

matrices. The additive genetic variance-covariance matrix G ((p) is a function of more

than one dispersion parameter in (p for crossbred populations, as defined by Lo et al.

1993' — 23 2“EH 2“mad" ' fb db( ),1.e. qr— {aAb}b=l’{GSbb'}b=l,b'>b . ere, 0A,, rs ea 1t1vevar1anceo ree

and of“, is variance due to the segregation between breed b and b' or the additional

variance observed in the F2 generation over the F1. Additional details are provided in

Chapter 3.

For dispersion parameters or scaling factors determining record specific residual

variances, prior distributions are specified based on the nature of the factor. For the

“fixed” effects factor, we adopt inverted gamma distributions, specified as follows:

 
p( ’3 50,1)... (63 We”) exp[—%} [6]

p(xlk |a(,)k,,6(,)k ) cc (,1,( )_(a(‘)"+l) exp{--'B—£3k—] , k=1,..., K. [7]

Bounded uniform priors (between zero and an arbitrary positive value) may alternatively

be specified on 21,, .

Furthermore, a structural prior is used to model the random multiplicative scaling

factors included on §= {5,}:l. We conveniently choose this structural prior to be an
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inverted gamma distribution with parameters 77 and 77—1 (Kizilkaya and Tempelman,

2002),

(77-1)” “(’7“) (_77-_1] I_ 1 2 1

, — , ,ooo ; . 8

p(§1|27)= PM)——(6) exp 4,, ,L 27> [ ]

Here E05,) =1 and Var(§,) = —1—3 (defined for 77> 2), such that as 77 —-) oo , the random
77 .—

effect factor's influence on residual heteroskedasticity diminishes. Note that with the

specification in [8], there is a borrowing of information across the L levels of the random

factor, just as there is for classical random effects modeling of location parameters.

Finally to conclude this stage, there are several possible distributional assmnptions on

the weights w = {wj}j€S that yield a Normal/independent specification on records (e.g.

Contaminated Normal, Student t, Slash, or Double Exponential distributions). We

specifically consider two heavy-tailed alternatives to the Normal distribution: the Student

t and the Slash distributions.

A Student t distribution on yj’s is obtained by letting p(wj Iv) be Gamma( 142, 172),

which has the following density function:

(v/2)V/2w"/2lexp(—wj v/2)

p(Wj IV): Fol/2)

 , j e S, v> 0, w]. >0. [9]

Alternatively p(wIv) may be specified as having the following distributional form:

p(wjlv)=ijv—l,je s, v> o,o< wj 51, [10]

in which case we have a Slash distribution on yj’s.

106



The third stage of the model corresponds to inverted gamma prior distributions on the

genetic variance components in q) , defined as follows:

p(afibIaAbJJAb)oc(a§b)"(a‘b+l)exp[-%], b=1,..., B; [11]

Ab

 

p(agar laSw 2 265w ) at (05215 )—(aSbb' +1) exp[- AZ“! ]’ b=12°"2 B;

5b,,

b’=b+l,..., B. [12]

Finally, arbitrary priors on 77 and on v can be specified as p(n) and p(v),

respectively.

The joint posterior density is the product of [1], [3], [4], [5], [6], [7], [8], [9] or [10],

[ll], [12], p(n) and p(v),given by:

p(flmawfiikéwmwI€,y)=l'1p(y,-mama; )p(B|BO,Vp)p(7 | 702V?)
jeS

 

K

><p(a|<1))12(<3212
k:

_ L

2.2mp(2.)a(.).,2(.).)gp(2,)n)np(w,)v) ,
l jeS

mB

xgp(aib laAb 226241,) “140%”. Has”. aflsbbv )P('7)P(V)

l b'>b@
-

II

where

§=(BO,VB ’YO’V‘Y ’ée’fie’QIl)""°’q1)K’4I{)l’-"’AA)K’a/fi ,...,aAB,fl4 ,...,flAB ,aSIZ ,...,aSB_lB,flsl2 ,u',flSB-IB)

is the vector of hyperparameters.

The firll conditional densities (FCD) of all unknown parameters/quantities or blocks

thereof necessary to conduct MCMC inference are derived in the Appendix to this

chapter.
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2. 2. 2. Model specificationfor Nelore-Hereford data

The following linear model was used to explain a PWG record (yflm) on animal j;

pertaining to contemporary group (GC) I (I=1,2,...,940), Region r (r=1,2,3), and Sex s

(s=1,2):

y,.,” =p+APWPj +5.40de +fi,AoDjj +CG, +12, +5, +7“? ”Duff,“ ”muff;

+74xPWPf1jPWPj +7Aleon1de0de +7Aleoszrde0D3, +7Aleflsz +0} +9}

Here, p is the overall mean; 51, ,62, and fl; are unknown elements of B associated,

respectively, with the length of the post-weaning test period (PWPj), linear and quadratic

age of dam (Aode) effects, where the subscript a;- refers to the dam of animal j.

Moreover, CG, represents the effect of the 1th CG (herd, year, season and management

subclasses), assumed to be an uncorrelated random effect; R, represents the effect of the

rth region; and S, is the gender effect, which are also non-genetic effects pertaining to

B. The effects corresponding to elements of 7 were 7A1 , the additive effect of the Nelore

breed; 70” the dominance effect involving the Nelore and Hereford breeds; 7M12 , the

additive X additive effect involving the Nelore and Hereford breeds; and interactions of

the individual Nelore fraction of alleles ( fij ) with PWP and sex, respectively denoted by

7,1”pr and 7,,le , and of the maternal Nelore fraction of alleles ( fldj ) with AoD and

A002, respectively denoted by yAleoD and 7 Additionally, fig is the
AleoD2 .

heterozygosity coefficient, which represents the probability that for a randomly chosen

locus from individual j, one allele is derived from the Nelore breed and the other allele is
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derived from the Hereford breed. Furthermore, a,- is the random additive genetic effect of

animalj and e,- is residual term associated with the record on animalj.

A 3 x 2 factorial representation was used in the specification of six different models

for residual variances with one factor being the distributional specification (Gaussian,

Student t or Slash) and the other factor defining the nature of the variability

(homoskedastic versus heteroskedastic). All six model versions were applied and

compared in terms of fit to the PWG data, thereby having the same location parameters

and genetic dispersion parameters specification, but differing in their residual variance

structure as follows:

1)

2)

3)

4)

Gaussian homoskedastic (G-HO): This was the model used in Chapter 3. Residuals

and records were assumed to have Normal distribution with a homogeneous residual

variance, that is W]. =1 and 0'82}, = 5,2 for all j.

Student t homoskedastic (T-HO): in this model, conditioned on wj ’s, residuals were

assumed to have Normal distribution with a common residual variance; however the

wj ’s are assume to have the distribution specified on [9] and consequently residuals

have a Student t distribution.

Slash homoskedastic (S-HO): in this model, conditioned on W]. ’s, residuals were

again assumed to have Normal distribution with a common residual variance, whereas

the wj ’s are assume to have the distribution specified on [10] and consequently

records have a Slash distribution.

Gaussian heteroskedastic (G-HE): in this case residuals and records were assumed to

have Normal distribution with heterogeneous residual variance, that is W]. =1, for all
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j, and of]. = 531112111sz223173;, , such that the residual variance for animalj on CG 1, is

a multiplicative function of Sex (’11), proportion of Nelore breed (2.2) and

heterozygosity coefficient between Nelore-Hereford breeds (23) “fixed” effects and of

a CG random effect (61). Here, pjl is equal to one if the animal is a male and zero if

female, p].2 =flj and p].3 =f15.

5) Student t heteroskedastic (T-HE): this model combines the properties of models 2)

—2 P11 P12 P13
0'

and 4), such that ofj = ‘1‘ ’12 13 é" , for all j, where the w]. ’s are assume to

w.

I

have the distribution specified in [9].

6) Slash heteroskedastic (S-HE): this model combines the properties of models 3) and

 

-—2 P}! P12 P13

0' . 9

4), such that of} = “’21 )7 13 5’ , for all j, where the wj s are assume to have

"’1'

the distribution specified in [10].

The length of the MCMC chain for PWG was 200,000 cycles after 15,000 cycles of

burn-in for all six models. Means, modes, key percentiles and standard deviations of the

parameters were obtained from their respective marginal posterior densities. For each

dispersion parameter, the initial monotone sequence approach (Geyer, 1992) was used to

calculate effective sample sizes (ESS), which estimates the number of independent

Samples with information content equivalent to that contained within the 200,000

dependent samples (Sorensen et al., 1995).
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2.2.3. Model choice criterion

We considered the Pseudo Bayes Factor (PBF) (Gelfand, 1996) as a means of model

choice. The PBF involves the evaluation of the first stage density in [1] for each MCMC

cycle; let p(yj. |y(_j),Mm) be the conditional predictive ordinate (CPO) for observation

yj, intended to be a cross-validation density, suggesting what values ofy, are likely when

Model Mm is fit to all other observations y(_j) except y,. Letting

0' =[B' g' a' 5,2 1' E] , a MCMC approximation for the CPO is obtained by a

-1

harmonic mean p(yj |y(-j)2Mm)z(éZ:lp'l(yj [0(1),Mm )) , where 00) is the post

burn-in MCMC sample for 0, I = 1,2,. . .,G.

An approximate log marginal likelihood (LML) overall observations can be obtained

-1

by: LML",=Zlogp(yj|y(_j),Mm)zZ(%Z:1p"(yj|0('),Mm)) . Finally, for

jeS jeS

comparing, say, models M1 and M2, the corresponding PBF is determined to be

12131:;2 = exp(LML, — LML, ).

2. 2. 4. Prior specifications

Due to lack of objective prior information on this population, we adopt bounded

uniform priors on B, y and 2.. Conjugate specifications were adopted on genetic variance

components, specifically, a4 = aA2 = 6le2 = 2.5 ; 3,1. = ,BA2 = 2.5 x 80 and

165. 2 = 2.5x10 , such that the prior guesses and these components were 02,241 = 0,2,2 =80

2

and 02%” =10. For the “reference” residual variance 6, , we had 07, = 2.5 , and ,6, was
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specified such that the prior guess on the marginal residual variance with respect to w,

denoted by 0125 , was the same for all models. This prior was based on a REML estimate

of 63 for this PWG data being a; = 350. Accordingly, B, = 2.5x 350 for the Gaussian

V

 

—2 350 for the Student t models (T-HO and T-

V

models (G—HO and G-HE); ,7}, = 2.5x

v—l
 HE); and Be =2.5x 350 for the Slash models (S-HO and S-HE). Moreover, we

v

specified p(nlam =0.03,B(,7) =0.01)oc 77%)-l exp(—fl(”)77), which is based on a prior

guess on the heterogeneity parameter of 77 = 3 , but with very large variance (300).

Furthermore, p(v|a(v),fl(v))ocya(")_lexp(—,6(V)V), with am =0.04 and p(,) =0.01 for

Student t models, and “(2’) =0.015 and ’60) =0.01 for the Slash models. That is, our

guess of the prior mean was v = 4 for T-HO and T-HE and v = 1.5 for S-HO and S-HE.

2. 2. 5. Genetic parameters

The additive genetic variance of genotype g, denoted 023,8 , was obtained by

Gig = flgai, + fife/2,2 +2(f,’f2’ + fidfzd )a§12 , where f; indicates the proportion of

breed b with b=l being Nelore and b=2 being Hereford. The superscript i refers the

genotype of the group itself (g), paternal (s) and maternal (d). The marginal residual

- 2 2 _ —2 0.3197 ff #5 .
varrance of genotype g (0'58) was calculated by 05g — a, 11 22 23 for Gaussran

models; by 0125,; =1353210'3 1972.298 2.39% for Student t models; and by
V—
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a; = LEZA°23w7AfKAGf1§ for Slash models. Here 0.3197 represents 171 = 121—21., or

n8 _
V 1

jeS

the proportion of calves that were male and f3 is the heterozygosity coefficient of

genotype g. For homoskedastic models 21=22=23=L The phenotypic variance ofg is then

2 _ 2 2 . . . . . . . 2 _ 2 2 .

opg — 0'5g +0313 such that its addrtrve heritability rs hAg - 0'Ag /0P8 . We deliberately

omit the contemporary group component in the phenotypic variance to make our

heritability estimates comparable with most results found in the animal breeding

literature (Koots et al., 1994), where contemporary groups are often considered as fixed

factors.

3. Results and Discussion

3.1. Model choice

Among the six different models used to analyze the PWG data, the T-HE model

provided the best fit. This model had the largest LML (Table 4.1) and had a PBF of

9.328 X 1019, when compared to the S-HE model, which provided the next best fit. It is

clear that the conventional G-HO model is not an appropriate choice for this data set as

PBF’s approach zero when this model is compared to all other five models fit (Table 4.1).

In terms of accounting for outliers, the Student t specification performed better than

the Slash for both assumptions about the residual variance, homoskedasticity and

heteroskedasticity (Table 4.1). Therefore, we concentrate our inferences throughout this

chapter on the Student t models, just presenting some key comparisons with the Slash

models in terms of outlier detection in Section 3.2. Other researchers analyzing birth

weights of rats, however, found better data fits for the Slash distribution compared to the
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Table 4.1. Log Marginal Likelihood (LML) in the diagonal and log Pseudo Bayes Factor

(difference between the LML of the models represented in the corresponding row and

column of the table) for six different models used in the analyses of post-weaning gain of

a Nelore-Hereford population

 

 

Modela G-HO T-HO S-HO G-HE T-HE S-HE

(3-140 -lOO,563 -940 -352 -1,108 4,511 -l,465

T440 -99,623 88 -168 -571 -525

S-HO -99,711 -256 -659 -613

G-HE -99,455 -403 -357

T-HE -99,052 46

S-HE -99,098
 

aG: Gaussian; T: Student t; S: Slash; HO: homoskedastic; HE: heteroskedastic.

Student t, Contaminated Normal and Gaussian distributions, nevertheless the advantage

over the Student t distribution was minimal (Rosa et al., 2003). From Table 4.1, it appears

that heteroskedasticity was more important than outlier robustness, as the G-HE model

fitted the data much better than either robust homoskedastic models, T-HO and S-HO.

3.2. Robustness and detection of outliers

3. 2. 1. Residual analysis ofthe Gaussian homoskedastic model

Our primary motivation for adopting robust models derived from the analysis of the

fitting to PWG provided by the Chapter 3 model. As can be seen in Figure 4.1, there were

several standardized residuals lying outside the range ofi 4.0 standard deviations.

Moreover, the kurtosis of the standardized residual distribution was 2.72, indicating that

this distribution is leptokurtic. Clearly, the normality assumption on the residuals of this

PWG data set is not met, explaining the substantial advantage in fit observed (Table 4.1)
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Figure 4.1. Scatter plot of standardized residuals of post-weaning gain on contemporary

group id using the Gaussian homoskedastic model. Three residuals from the same

contemporary group are highlighted for further inference to be presented later: 1.

Represents a mild outlier, being about three standard deviations (SD) from zero; 2.

Represents a null residual (perfect fit); and 3. Consists of an extreme outlier, -5.57 SD

from zero.

of robust models when compared to their normal counterparts. The skewness of the

estimated residuals was 0.34, being of moderate magnitude. Procedures dealing with

skewness are, however, available (Fernandez and Steel, 1998) and can be added to the

hierarchy of the models without great difficulty.

The posterior distributions of the robustness parameters (v) were fairly symmetric for

all robust models used (data not shown). The posterior mean i standard deviation of v,

was 7.33i0.48 and 2.20i0.09, respectively for the T-HE and S-I-IE models.
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Corresponding estimates for the T-HO and S-HO models were 4.79 :I: 0.21 and

1.66 d: 0.05, respectively. The effective number of samples was always greater than 500

for these parameters.

The smaller the values of v (i.e. the fatter tails of the heavy-tailed distribution) found

when residual homoskedasticity as opposed to heteroskedasticity is modeled illustrate the

interdependence between heteroskedasticity and detection of outliers. This was verified

for both Student t and Slash distributions. It is reasonable to assert then that some

observations appearing to be outliers under a homoskedastic model may not be

considered as such when the variance of its resident subclass is allowed to be larger using

heteroskedastic models.

Beyond attenuating the effect of extreme observations on parameter estimates, robust

models can be used to better detect the presence of outliers (Rosa et al., 2003). The

posterior distributions of the weight variables wj’s provide valuable information to

classify observations as outliers or not outliers. To illustrate this point, we deliberately

chose three observations of the same contemporary group and save all samples of their

corresponding weight variables: 1- represents a mild outlier, being 3.08 standard

deviations (SD) above zero; 2- represents a near zero residual or a perfect fit (0.02 SD);

and 3- consists of an extreme outlier, being -5.57 SD from zero (Figure 4.1). Graphs of

the posterior distribution of these observations obtained form T-HE and S-HE models are

presented in Figure 4.2. One essential difference between posterior distribution of wj’s

from Student t and Slash models is that in the former model wj’s are defined on the

positive real line whereas wj’s are only defined between 0 and 1 in the latter model. This
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Figure 4.2. Posterior distribution of weight variables corresponding to observation 1

(Obs. 1 - a mild outlier); observation 2 (Obs. 2 — a nearly perfect model fit) and

observation 3 (Obs 3. — an extreme outlier) under two robust models: a) Student t

heteroskedastic model and b) Slash heteroskedastic model.
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distinction results in fairly different shape of posterior distributions between the T-HE

and S-HE models for W1, W2 and W3, weights corresponding to observations 1, 2 and 3,

respectively. Nevertheless, both models successfully identify observation 3 as an extreme

outlier. The posterior mean and 95% posterior probability interval (PPI) for W3, were 0.18

and (0.05, 0.42) for the T-HE model. Corresponding values for the S-HE model were

0.10 and (0.02, 0.28). These sharp distributions concentrated around low values for W3

qualify observation 3 as an outlier and attenuate its effect on other parameters estimates.

On the other hand, W2 has a relatively flat distribution widely spread throughout the

corresponding parameter spaces, for the T-HE and S-HE models. The posterior mean and

95% PPI for W2 corresponding to these models were 1.11 and (0.31, 2.39), and 0.72 and

(0.25, 0.99), respectively. These results clearly indicate that observation 2 is not an

outlier. The case of observation 2, serves as an illustration to the interdependence

between robustness and heteroskedasticity mentioned above. The standardized residual of

this observation from G-HE model was 2.53, which is less than 3.07, which was obtained

using G-HO. This is, at least partially, due to that observation’s contemporary group

(CG) having inflated residual variance (the posterior mean :t standard deviation of its

corresponding CG random scaling factor was 1.63 i 0.23). The T-HE model does not

conclusively declare this observation as an outlier, because the 95% PPI for W] under this

model (0.12, 1.07) includes 1.00, which corresponds to the neutral weight value. Yet, the

posterior mean of W], being 0.46, indicates that observation 1 is down-weighted for

inferences.

Under the Slash distribution the inference on W] is subtler, because the parameter

space is constrained to be between 0 and l and we cannot use an objective criterion as in

118



the case of the Student t distribution (i.e. if 1.00 is include or not in the confidence set for

the desired level of precision). The posterior mean and 95% PPI for W] were,

respectively, 0.36 and (0.06, 0.89) for the S-HE model. Despite the relatively low value

of the posterior mean of W1, the wide range of the confidence set and the shape of its

weight variable distribution in Figure 4.2a make difficult to assert this observation as an

outlier.

In addition, weight variables could be used for data collection quality control. For

instance, the posterior mean of the weights may provide an indication ofthe quality ofthe

data originated on each herd. Herds having a high frequency of low values for the

posterior mean of weights may have serious issues with the quality of the data collection.

Furthermore, scatter plots of the weight variables over time may be useful to determine

the profile of the data collection process within each herd; for example, if there is

currently a problem or there was a problem in the past. Such plots could also help to

check effectiveness of adjustment measures applied when data collection problems are

identified.

Finally, it is important to note that the robust models automatically weight each

observation for inferences, such that outlying records provide smaller contributions to

parameter estimates.

3.3. Assessment of heteroskedasticity sources

3. 3. 1. Fixed effects

Posterior inference on “fixed” scaling factors for residual heterogeneity obtained by

the G-HE and T-HE models are presented in Table 4.2. None of the considered “fixed”
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Table 4.2. Posterior mean (PMEAN), posterior standard deviation (PSD), posterior mode

(PMODE), 95% posterior probability intervals (PPI), and effective samples size (ESS)

for “fixed” effects scaling factors and for the environmental heterogeneity parameter (7])

on post-weaning gain residual variance, obtained from the Gaussian and Student t

heteroskedastic models

 

 

Effect (parameter) PMEAN PSD PMODE PPI ESS

Gaussian heteroskedastic model

Gender (21) 1.14 0.09 1.13 (0.98, 1.32) 1,712

Nelore proportion (22) 0.94 0.35 0.75 (0.43, 1.73) 146

Heterozygosity (2.3) 0.77 0.15 0.71 (0.52, 1.10) 142

Environmental (77) 3.46 0.25 3.44 (3.00, 3.96) 1,190

Student t heteroskedastic model

Gender (111) 1.13 0.09 1.11 (0.97, 1.31) 1,218

Nelore proportion (2.2) 1.15 0.45 0.80 (0.48, 2.20) 160

Heterozygosity (23) 0.70 0.16 0.61 (0.46, 1.06) 111

Environmental (77) 3.96 0.32 3.88 (3.36, 4.63) 1,109
 

factors turned out statistically “significant” since all 95% posterior probability intervals

included 1.00, for both models.

The distribution of the gender scaling factor (21) was very similar under the G-HE

and T-HE models and it is to some extent surprising that there was no effect of sex on the

residual variability of PWG, because other authors found gender as a significant factor

causing heteroskedasticity on growth of beef cattle (Garrick et al., 1989; Rodriguez-

Almeida et al., 1995). Males showed, however, a tendency for larger variability (e.g. the

posterior Pr(2., >1) =O.9378 for the T-HE model), with absence of statistical

significance perhaps attributed, at least in part, to lack of power and to poor

environmental conditions, which did not allow males to express in full their extra growth
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potential (the average daily gain :1: standard deviation was 0.432 3: 0.170 kg for males and

0.338 i 0.131 kg for females).

In spite of these results, there were remarkable effects of heteroskedasticity on

variance components, heritabilities and genetic effects inference (Sections 3.4 and 3.5).

These effects may be, at least in part, due to the extra uncertainty introduced by Nelore

proportion (12) and heterozygosity (’13) effects on heteroskedasticity. The posterior

Pr(/13 >1): 0.0449 for the T-HE model provides some indication that as heterozygosity

increases (and consequently heterosis) the residual variance decreases. This is consistent

with the idea that heterozygosity acts as buffer against environmental variation (Lynch

and Walsh, 1998).

3.3.2. Random efi’ects

Environmental residual heteroskedasticity was assessed by allowing contemporary

group (CG) specific residual variances. Contemporary groups were formed such that

animals included in the same CG were born in the same herd, year and season and were

kept under the same environmental, management and feeding conditions throughout their

productive life. Contemporary groups scaling factors were assumed to be random

realizations of an inverted gamma distribution depending on the heterogeneity parameter

I], as described in Equation [8]. Posterior inference on 77 is presented on Table 4.2. The

small range of values observed for 77 in both specifications of heteroskedastic models,

Gaussian and Student t, indicates that there is large heteroskedasticity among CG’s. The

largest scaling factor under T-HE was 5.57 and the smallest was 0.28, leading to ratio of

about 20 times between the estimated residual variances of these two CG’s.
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The posterior mean of 77 under the G-HE model of 3.46 was slightly smaller than the

one for T-HE of 3.96. This was expected since the T-HE model attenuates the effects of

outliers, which could inflate the variance within CG’s. Using a structural multiplicative

implementation analogous to G-HE to estimate herd specific residual variances on birth

weights and calving ease scores of Piemontese cattle, Kizilkaya (2002) also found very

low posterior means (<5) for 77, concluding that there was heteroskedasticity across herds

for these traits.

Although region was not explicitly fit as a fixed effect on the residual variance,

regional heteroskedasticity can be inferred fiom the random CG scaling factors, because

CG’s are nested within region. Box plots of the random scaling factors for each of three

different regions where PWG data were collected are presented in Figure 4.3. The

average :1: standard deviation of these random scaling factors was 0.93 d: 0.39, 0.97 :h 0.46

and 1.02 :1: 0.57, respectively, for Regions 1, 2 and 3. The region specific box-plots

(Figure 4.3) widely overlap and there is no indication of significant regional differences

on average residual variances. The dispersion of the scaling factor, however, tends to

increase from Region 1 to 2 and from 2 to 3, and clearly the number of extreme

observation is larger in Region 3. This may be due, at least partially, to larger number of

CG’s on this region (621 in Region 3 versus 198 in Region 1 and 121 in Region 2), which

increases the chance of observing extreme values of the random scaling factors inverse

gamma distribution, but may also be due to true regional heteroskedasticity on random

scaling factors. This possibility could be statistically verified by allowing region specific

heterogeneity parameters (77) and comparing their posterior distributions.
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Figure 4.3. Box-plots of random contemporary group scaling factors posterior means

according to the region of production: 1- located between 14°S and 16°S latitude; 2-

located between 21 °S and 23°S; and 3- located between 30°S and 32°S

Another possible cause of regional differences could be the level of production and

environmental quality as, in general, growth traits variances tend to be proportional to

means for beef cattle (Koots et al., 1994). Farms belonging to Region 1 are located in a

poorer environment compared to Regions 2 and 3. This can be demonstrated by the

average PWG 3: standard deviation, which was 82.4 d: 21.2 kg, 105.5 i 39.5 kg and

107.7 i 39.3 kg, respectively for Regions 1, 2 and 3. Scaling factors tend to be larger as

the mean of the respective contemporary groups increases with an estimated correlation

coefficient between these two variables of 0.40. Furthermore, most of the contemporary
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groups with extreme residual variances (9“, > 3) were composed exclusively by Hereford

animals and located in Region 1.

3.4. Variance components and heritabilities

Despite the same variance-covariance structure for the random genetic effects across

the six different models employed to analyze PWG, inference on genetic variance

components changed considerably depending on the structural specification for residual

variance. Posterior inferences based on the G-HO, T-HO, G-HE and T-HE models are

presented in Tables 4.3 and 4.4 for variance components, and on Figure 4.4 for

heritabilities of four breed composition groups: the purebreds Nelore and Hereford, the F1

and the 3/8 Nelore 5/8 Hereford cross, which is the genotype of the Braford breed.

The 95% PPI of the marginal residual variance based on the four different models

 

(of: = 6,2 for G-HO; of: = 53/1103 19721322812343“ for G-HE; of. = 6": for T-HO; and
V—

02 =—V—521,°-3'971.§’-228'2£-4347 for T-HE, where 0.3197, 0.2281 and 0.4347 are,
E V—2 e

respectively, the average value ofpfl, p12 and p13) widely overlapped and point estimates

(posterior means and models) were relatively constant across the different residual

structure assumptions (Table 4.3). There was, nevertheless, a slight increase in the

marginal residual variance using the G-HO compared to all structural models. This was

not surprising since the structural models are more flexible to accommodate the

extraneous variation and therefore a larger portion of this variability is expected to be

included in residual variance than in other causal components of the model (Stranden and

Gianola, 1999). A similar increase was observed on CG variances (Table 4.3).
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Table 4.3. Posterior mean (PMEAN), posterior standard deviation (PSD), posterior mode

(PMODE), 95% posterior probability intervals (PPI), and effective sample size (ESS) of

additive genetic (Gib for breed b, b=1 for Nelores and b=2 for Herefords; 01312 for

between breed segregation), contemporary group (03g) and marginal residual ( 02,25)

variance components (VC) estimated for post-weaning gain, obtained by different

models.

 

 

VC PMEAN PSD PMODE PPI ESS

Gaussian homoskedastic model

“3'1 23.80 6.86 22.44 (13.02, 39.52) 171

02212 85.17 11.28 84.11 (63.17, 108.45) 223

0'31. 8.42 5.84 4.71 (2.32, 24.75) 2,436

0028 897.98 43.31 888.59 (816.69, 986.13) 13,685

0'12; 339.39 7.51 339.59 (324.35, 353.98) 259

Student t homoskedastic model

03241 46.24 10.90 47.45 (26.77, 69.34) 170

04212 60.11 8.54 59.85 (44.72, 77.46) 191

05212 7.48 4.76 4.41 (2.27, 20.44) 3,030

“is 946.15 45.43 938.06 (861.00, 1038.84) 20,324

012-: 352.08 8.32 352.62 (335.67, 368.22) 380

Gaussian heteroskedastic model

03211 119.74 23.52 123.46 (76.97, 167.94) 215

03212 33.84 5.84 32.61 (23.59, 46.69) 213

0:12 9.04 6.65 4.73 (2.35, 27.33) 2,043

03g 927.13 44.79 919.76 (843.80, 1018.97) 26,191

0122: 354.82 12.66 354.18 (330.81, 380.23) 824

Student t heteroskedastic model

03241 124.87 21.75 125.55 (82.35, 166.81) 236

02242 40.89 6.70 40.44 (28.27, 54.97) 194

01312 8.03 5.53 4.53 (2.31, 22.98) 2,532

03g 949.30 46.07 943.69 (863.35, 1042.94) 25,394

0'12; 346.19 12.18 345.83 (323.05, 370.61) 744
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Table 4.4. Posterior mean (PMEAN), posterior stande deviation (PSD), posterior mode

(PMODE), 95% posterior probability intervals (PPI), and effective sample size (ESS) of

phenotypic variances (0,2,8) estimated for post-weaning gain of different genotypes (g),

obtained by four different models

 

 

Parameteral PMEAN PSD PMODE PPI ESS

Gaussian homoskedastic model

“31 363.19 7.86 362.28 (348.30, 379.23) 351

02221 424.56 6.44 424.55 (412.15, 437.52) 413

0’2”F1 393.87 4.19 393.56 (385.84, 402.29) 1,025

025311) 409.44 6.53 408.14 (398.91, 425.27) 1,802

Student t homoskedastic model

of} 398.31 10.63 398.61 (378.35, 419.82) 340

0’22 412.18 7.51 411.27 (397.99, 427.39) 989

G’Z’Fr 405.25 7.24 403.71 (391.67, 419.93) 699

0:38))! 413.99 7.98 413.77 (399.61, 431.03) 1,565

Gaussian heteroskedastic model

0’21 507.06 144.60 431.47 (297.88, 837.26) 135

0122 446.06 18.88 446.19 (411.18, 485.25) 2,364

0’2’1'1 370.21 13.51 368.19 (345.21, 398.30) 1,986

0123811 420.03 19.56 420.24 (383.34, 459.92) 217

Student t heteroskedastic model

0’21 588.31 182.89 443.20 (316.66, 1008.29) 157

0’22 444.61 18.41 442.08 (410.21, 482.56) 1,990

of,F1 366.45 13.08 364.94 (342.15, 393.66) 1,102

0’238N 425.17 20.67 420.84 (385.80, 466.29) 185
 

ag = Nelore (1), Hereford (2), F1 and 3/8 Nelore (38N).
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a) Gaussian homoskedastic model b) Student t homoskedasflc model
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Figure 4.4. Posterior density of additive heritabilities of post-weaning gain for different

breed composition groups, Nelore, Hereford, F1 and Advance 3/8 Nelore (A38), obtained

by a) Gaussian homoskedastic, b) Student t homoskedastic, c) Gaussian heteroskedastic

and (1) Student t heteroskedastic models

Among the genetic variance components, the segregation variance 0%” was the least

affected by the different model specifications and its posterior mean and mode were quite

similar across the four models (Table 4.3). The genetic variances for the Nelore and

Hereford breeds were widely affected by the different structural specification. Allowing

for heteroskedasticity had a larger impact on inferences than allowing for robustness. The

Herefords had a larger genetic variance compared to the Nelores in the G-HO and T-HO
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models, whereas the opposite situation was observed for the G-HE and T-HE models, i.e.

the Nelores were more variable than the Hereford under these models (Table 4.3).

Despite a non significant Nelore proportion scaling factor (21) under both G-HE and

THE models (Table 4.2), the impact of heteroskedasticity is appreciable. The wide 95%

PPI for the phenotypic variance of the Nelore breed obtained by the heteroskedastic

models indicated poor precision for infening upon this parameter (Table 4.4). This

situation could be anticipated, since purebred Nelores are only represented by parents

without records and all the information to estimate their genetic and residual variances

derives solely from crossbred progeny. Due to this data structure limitation, greater

uncertainty on phenotypic variances using the G-HE and T-HE models appears to be

more realistic than the relatively sharp 95% PPI obtained from the G-HO and T—HO

models (Table 4.4). For breed composition groups with data, the phenotypic variance is

expected to be somewhat constant across models, because it has to reflect the variation

noticed on the records (Falconer and Mackay, 1996). This was, to some extent, observed

on Herefords, F 1’s and 3/8 Nelores in Table 4.4; the largest difference between the

minimum and maximum posterior mean of this component was 9.6% observed for Fr’s

between the T-HO and T-HE models. This difference is most likely due to heterozygosity

effect on decreasing the residual variance of Fl’s.

The changes in heritability inference between models reflect the differences on

genetic and phenotypic variances. The relationship between genetic variance of Hereford

and Nelore breeds is further shown in the posterior density of heritabilities for these two

breeds under the four different models considered (Figure 4.4). Heritability for the Nelore

breed was larger than for the Hereford breed under the heteroskedastic models (G-HE
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and T-HE) and vice-versa for the homoskedastic models (G-HO and T-HO). The F1’s

tend to have larger heritability under the heteroskedastic models (G-HE and T-HE)

compared to homoskedastic models (G-HO and T-HO), as a consequence of larger

genetic variance ( 03,171 = 0.502 + 0.50232 ) and smaller F1 phenotypic variance (Table 4.4)

under the heteroskedastic models. The heritability of the 3/8 Nelore group was similar

across the four different models. The extra uncertainty in the Nelore variance components

introduced by the G-HE and T-HE models is also demonstrated for heritability inference,

which presented flatter posterior distributions (Figure 4.4).

One possible reason for the dramatic change in variance components and heritabilities

of Nelores and Herefords between the homoskedastic and heteroskedastic models is that

most of the contemporary groups with extreme residual variances (4‘, > 3) were

composed exclusively by Hereford animals. It is reasonable to assume that most of this

extra variation would be captured by the Hereford genetic variance when the residual

variance is assumed homoskedastic across breed groups.

3.5. Random additive genetic effects

Inferences on random additive genetic effects have two major purposes in animal

breeding programs; they serve to rank animals for selection of parents of future

generations and to predict the expected progeny difference (EPD) — a differential

observed on the progeny of a particular animal relative to the population mean when this

animal is mated at random to other individuals in the population. The Spearman rank

correlation between additive genetic effects for the most relevant combinations of the G-

HO, G-HE, T-HO and T-HE models are presented in Table 4.5, overall and for the most
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frequent breed compositions in the dataset. The rank correlation among the Gaussian and

Student t counterpart models (G-HO vs. T-HO and G-HE vs. T-HE) were considerably

high overall and within genotype, being always greater than 0.95 for homoskedastic

models and greater than 0.98 for the heteroskedastic models. However, when we only

consider animals ranked in the top 10% using the G-HO model, the rank correlation

among the genetic values of these top animals by G-HO and T-HO models decreased

considerably (Table 4.5). This is an expected consequence of accounting for outliers; as

outlying observations often lead to extreme genetic value prediction on the animal

corresponding to the record and close relatives, particularly when the outlying record is

the main source of information for these individuals. This is further evident in Figure 4.5

(top graph), where posterior means additive genetic effects for Nelores, Herefords and

F1 ’5 obtained by the G-HO model are plotted against the corresponding predictions using

the T-HO model. In this plot we observed that several animals with extreme genetic

effects under the G-HO model are shifted towards the center of their distribution under

the T-HO model; e.g. the F1 animal associated with observation 3 (extreme outlier

described in section 3.2) has a posterior mean of -13 kg under the G-HO model but of

only of -4 kg under the T-HO model (Figure 4.5 — top graph). A lower rank correlation

was also observed between the G-HE and T-HE models when considering only the top

10% animals to that for all animals (Table 4.5); however, the magnitude of the decrease

in correlation and the degree of change in genetic effects predictions (Figure 4.6 — top

graph) were not as significant as they were between the G-HO and T-HO models. Rank

correlations between the G-HO and G-HE models tend to be even smaller than between

the G-HO and T—HO models (Table 4.5). One possible reason for the relatively low
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Table 4.5. Spearman rank correlation between posterior mean of additive genetic effects

on post-weaning gain for different combinations of the Gaussian homoskedastic (G-HO),

Student t homoskedastic (T-HO), Gaussian heteroskedastic (G-HE) and Student t

heteroskedastic (T-HE) models for all animals and for animals ranked in the top ten

percentile for G-HO within the most frequent genotypes.

 

Breed

. . N G-HO vs. T-HO G-HO vs. G-HE G-HE vs. T-HE T-HO vs. T-HE

composrtron

Including all animals Within genotype

Overall 40,082 0.95 0.83 0.99 0.92

Nelore 7445 0.99 0.97 0.99 0.98

Hereford 19,976 0.96 0.91 0.98 0.96

F1 8,718 0.96 0.86 0.99 0.93

3/8 Nelore 1,452 0.96 0.95 0.99 0.98

Considering only animals ranked in the top 10% by G-HO Within genotype

Overall 4,008 0.58 0.39 0.95 0.77

Nelore 745 0.36 0.56 0.85 0.53

Hereford 1,998 0.47 0.44 0.92 0.85

F. 872 0.70 0.60 0.94 0.82

3/8 Nelore 145 0.48 0.41 0.77 0.73
 

correlation between genetic predictions obtained by the G-HO and G-HE models on the

top 10% animals is that, in accounting for heteroskedasticity, the G-HE model allow for

more balanced selection of animals across environments, whereas a larger proportion of

animals from the most variable environments tend be ranked near the top when

heterogeneous variances are ignored (Gianola, 1986; Gianola et al., 1992). Moreover, the

remarkable difference in genetic variances among G-HO and G-HE (Table 4.3) affects

the dispersion of genetic prediction within different breed composition (Figure 4.5 —

bottom graph) and consequently the manner in which these predictions overlap in the

whole population, thereby decreasing the overall rank correlation. Several Hereford
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Figure 4.5. Scatter plot of posterior means of additive genetic effects for post-weaning

gain obtained by the Gaussian homoskedastic (G-HO) and Student t homoskedastic (T-

HO) models (top) and, by the G-HO and Gaussian heteroskedastic (G-HE) models

(bottom), for the Nelore, Hereford and F1 breed composition groups
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Figure 4.6. Scatter plot of posterior means of additive genetic effects for post-weaning

gain obtained by the Gaussian heteroskedastic (G-HE) and Student t heteroskedastic (T-

HE) models (top) and, by the Student t homoskedastic (T-HO) and T-HE models

(bottom), for the Nelore, Hereford and F1 breed composition groups
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animals had their genetic effects predictions shifted towards the center of the distribution

when comparing the G-HE and G-HO models. However, this was not the case of the

genetic effect of the animal associated with observation 3, which was extreme under both

Gaussian models (G-HE and G-HO).

Furthermore, the results from Table 4.5 provide additional evidence that there is

overlap in accounting for heteroskedasticity and robustness, as rank correlations were

higher between the Gaussian and Student t models under the heteroskedastic models (G-

HE and T-HE) compared to their homoskedastic counterparts (G-HO and T-HO), and

between homoskedastic and heteroskedastic models under robustness (T-HO and T-HE)

than under Gaussian specification (G-HO and G-HE). Similar scenarios are observed in

Figures 4.5 and 4.6, where the correspondence between the Gaussian and Student t model

under the heteroskedasticity (G-HE and T-HE) was larger than under homoskedasticity

(G-HO and T-HO) and was larger between homoskedastic and heteroskedastic models

under robustness (T-HO and T-HE) than under Gaussian specification (G-HO ‘and G-

HE).

The relationship (slopes) among the genetic effects under different models within

genotype (Figure 4.6) reflects change in genetic variability between models. As genetic

variability increases the range and the spread of genetic effects also increases, e.g. the

Nelore genetic variance is much larger under the G-HE model than under the G-HO

model and so is the dispersion of posterior mean genetic effects of Nelores. The standard

deviations (SD) of genetic effects follow similar relationships with the genetic variance

as that of the genetic effects; therefore, comparisons between models in terms of these
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SD follow according to their differences in genetic variances and, for brevity, results are

not shown here.

4. Final remarks

The heteroskedastic robust models presented here combine features of the structural

models presented by Foulley et al. (1992) and Kizilkaya and Tempelman (2002) with

those of some heavy-tailed distributions of the Normal/independent family (Lange and

Sinsheimer, 1993; Rosa et al., 2003) in a general framework. In addition to the

application shown for an animal breeding problem, these models have potentially

important uses in other research areas, for example gene expression with microarray data

(Ibrahim et al., 2002).

We concentrated our attention on heteroskedasticity of residual variances;

nonetheless, there is no conceptual difficulty to extend the structural specification to

other random components of the model, such as genetic variances (as in SanCristobal et

al., 1993) and contemporary groups, which have shown to be the largest source of

variation in the PWG data (Table 4.3).

The use of robust models will increase the stability of the model based predictions

(e.g. genetic evaluations), providing a much more appropriate treatment of outliers than

simply deleting extreme records. In animal breeding, the edits used in determining which

records are outliers are somewhat ad-hoc in nature and often hard to justify. For example,

the ratio record/mean of its class approach advocated by Bertrand and Wiggans (1998) if

applied to our PWG data would have resulted on the deletion of 1,517 records (6.7% of

the data), which fall outside the range of 60% to 140%. However, only a fraction of these
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records should corresponds to true outliers and the approach seems too strict for this

particular data set.

Finally, results from Section 3.4 and 3.5 indicate the importance of properly

accounting for sources of heteroskedasticity and outliers to reliably infer upon genetic

merit of crossbred animals. In our Nelore-Hereford population, inference based on the

typical assumption of Gaussian homoskedastic errors (G-HO model) led to remarkably

different ranking of top animals for selection compared to most appropriate Student t

heteroskedastic errors specification (T-HE model) - the rank correlation between genetic

effects obtained by these two models for animals ranked in the top 10% by the G-HO

model was 0.36 — thereby hindering genetic progress.

Appendix

Fully conditional densities (FCD)

In what follows the FCD are presented using the notation “ELSE” to denote the data

vector y and all other parameters treated as known in the FCD in question.

Let 0'=[B' 7' a']; Xl ={xjj}, X2={x'2j}, and Z={z'j},j e S; Moreover, let
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Following Wang et al. (1994b), it can be shown the location parameters have the

following multivariate Normal distribution,

0|ELSE~ N(é,c), [A1]

where 0 = Cr.

The FCD for the “mean” residual variance can be shown to have the following

inverted gamma density:

 

_ _ fl+07e+l l W-(y--X' .B-X' .g—z'.a)2 -—

p(O'ezlELSE)OC(0'e2)‘(2 )exp —g3_ 1;? lzfilezfjkljll; [‘11: +161: [A2]

Moreover, the “fixed” dispersion parameters have the following FCD:
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k=1,..., K; [A3]

which is of inverted gamma form if pJ-k is an indicator variable or, equivalently, k

corresponds to a classification effect (e.g. gender); however [A31 is not of recognizable

form if pjk corresponds to a continuous variable (as e.g. breed proportion or

heterozygosity). In the latter case, the sampling process requires a Metropolis-Hastings

(MH) step. This step was based on random walk algorithm (Chib and Greenberg, 1995)

using an inverted Gamma proposal density distribution with scale parameter equal to the

value of the parameter in the previous cycle times its shape parameter. The shape

parameter was tuned during the burning period such that the acceptance of proposal

values was intermediate for optimal MCMC mixing (Chib and Greenberg, 1995).
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The FCD of random multiplicative effects on residual variance are of inverted gamma

form (Kizilkaya and Tempelman, 2002), as follows:

jGS
———+ +1
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l=1,..., L; [A4]

The FCD for the weights Wj ’s depend on the choice of p(Wj |v). Adopting [9], i.e.

the Student t specification, these FCD correspond to series of Gamma densities, given

by:

V_+l_1
7 7 p 2

. ELSE ( 2 )6 _ _1_ +(yj-X1jB-ijg-Zja)

P(le )OC W, XP W; 2 V Eznffllfjk “1:1 (27,-;

je S, wj >0. [A5]

 

On the other hand, adopting [10] as the p(wj Iv), we have truncated Gamma

densities, given by:

v+l

[ ) (ye-1K1li-X'z-g-Z’a)2
p(wleLSE)ocwj 2 exp -w,. 24311:,lffl‘111f317”

jes,0<wj 31. [A6]

 

One suitably and relatively “noninforrnative” prior on 77 is 77 ~ Gamma(am, 76(0)),

77> 1, with small values of a“) and '807) and 76(0) << am (Liu, 1996). Using this

specification, the FCD of 77 is given by:
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27)

which does not have recognizable and also requires MH sampling. In this case we used a

transformation strategy, and sampled 1/1 = log(77) using a random walk sampler with a

Gaussian proposal density centered at the value of 177 in the previous cycle and with

variance tuned during MCMC burn-in for optimal MCMC mixing (Chib and Greenberg,

19951

The FCD for the robustness parameter v depends on the choices of p(wj Iv) and

p(v). Similarly to 77, we chose the prior on v to be v ~ Gamma(aM, '30) ) , v > 0.

Under the Student t specification (i.e. p(wj Iv) as in [9]), the FCD of v is given by:

 

nv/2+a(V-l

V v2

p leLSE cc 1. w./ exp —v2 w.+,8, , [A8]

( ) 126/32272;; ’ [ /[,Zs ’ ”U

which does not have a recognizable form, but can be sampled using a MH algorithm

similar to the one used on [A7].

Alternatively, adopting the Slash specification (i.e. p(Wj Iv) as in [10]), the FCD of

v is given by :

p(v | ELSE) oc vnmo’).l exp[—v[,6(v) — Z log(wf )J] ’ [A9]

jeS

which is a gamma distribution .

The reader interested in the FCD of genetic variances is referred to Chapter 3, which

presented details on these FCD and a MH scheme. More details on the MH

implementations and a FORTRAN 90 code can be obtained fiom the author upon request.
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CONCLUSIONS

1. This study in the context of beef cattle breeding

Genetic evaluation programs for multiple-breed beef cattle populations selected for

various economically important traits are required to improve efficiency and

competitiveness in the modern beef industry. Beef cattle performance programs are

usually carried out on diverse production systems and environments, with measurements

and data quality often compromised by the occurrence of recording error, preferential

treatment, the effect of injury or disease, and pedigree errors. Hierarchical models present

a general framework to address problems arising from the nature of field data structure; a

variety of multistage propositions have been advocated to handle issues such as uncertain

paternity (Foulley et al., 1987; Henderson, 1988), heterogeneity of variance (Foulley et

al., 1992; Foulley and Quaas, 1995; Gianola et al., 1992; SanCristobal et al., 1993), and

outlying observations (Rosa, 1999; Stranden and Gianola, 1998, 1999), for instance. In

Chapters 1 and 2, methodology for genetic evaluation using a fully Bayesian approach

was proposed and applied to the prediction of genetic merit of animals having uncertain

paternity. Similar to the empirical Bayes sire model method of Foulley et al. (1987), the

procedure combines data and prior information to determine posterior probabilities of sire

assignments, whereas Henderson’s method (Henderson, 1988) is solely based on prior

information. Nevertheless, our method represents an important extension since it uses

more recently developed MCMC tools to provide small sample (i.e. non-asymptotic)

inference based on the animal model, the most common model for current genetic

evaluations. In Chapter 4, we present hierarchical Bayes models combining in a general

framework features of the structural models presented by Foulley et al. (1992) and
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Kizilkaya and Tempelman (2002) with heavy-tailed distributions of the

Normal/independent family (Lange and Sinsheimer, 1993) to allow heteroskedastic and

robust inference on genetic merit. Heteroskedasticity and robustness have been addressed

individually in the past.

Crossbreeding is a key tool available to increase the efficiency of production through

heterosis and complementarity between breeds (Gregory et al., 1999). A hierarchical

Bayes model to predict performance on crossbred beef populations, based on additive and

non-additive genotypic effects and additive genetic individual deviations was proposed in

Chapter 3. The ability to combine data and literature information and the implementation

of a more realistic modeling of the additive genetic variability and correlation between

relatives on crossbred populations (Lo et al., 1993) are distinctive features of this model

that will help to improve accuracy of genetic predictions and, consequently, selection

response (Falconer and Mackay, 1996).

2. Objectives revisited

1) To develop and apply a hierarchical Bayes model for genetic evaluation of

animals originated from multiple-sire mating systems.

This objective is particularly relevant for extensive beef cattle production systems,

which often rely upon multiple-sire mating to increase the probability of pregnancy, as

the size of breeding groups is often too large to be sired by single bulls. Statistical

modeling developments and validation referring to this objective were accomplished by
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Chapter 1, and an example of application to beef cattle genetic evaluation was presented

in Chapter 2.

2) To develop and apply a hierarchical Bayes model for genetic evaluation of

animals in multiple-breed populations.

This objective was fully addressed by Chapter 3. In this chapter, a multistage

hierarchical Bayes construction of the multiple-breed animal model from Lo et a1. (1993)

was proposed to estimate genotypic effects and individual additive deviations when breed

and segregation variance components are unknown. This model was validated using

simulated data and applied to a dataset of post-weaning gains on purebred and crossbred

animals derived from Hereford and Nelore cattle and raised in diverse environments. One

limitation was the computational time required to obtain the necessary number of samples

to do MCMC based inference. However, an empirical Bayes approach could be adopted

for genetic evaluation of large beef populations. In this case, variance components could

be estimated from a data subset using MCMC, followed by the use of Henderson’s mixed

model equations (Equation [A1] in the appendix to Chapter 3) to provide empirical best

linear unbiased estimates (BLUE) for genotypic effects and prediction (BLUP) of

individual additive deviations.

3) To extend the genetic evaluation models in l) and 2) to account for heterogeneity

of residual variances across environments and provide greater robustness to

outliers.
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A structural framework extending hierarchical models to account for residual

heteroskedastic and to provide robustness to outliers was proposed in Chapter 4. Despite

our developments being concentrated on the hierarchical multiple-breed animal model

(Objective 2), these are readily extendable to the case of uncertain paternity, merging the

developments in Chapters 1 and 4.

3. Implications for genetic improvement of beef cattle

Beef cattle herds raised on pastoral conditions are often subjected to multiple-sire

mating. Currently, about 25-30% of the calves evaluated by the beef cattle improvement

programs in Brazil derive from multiple-sire matings. For these herds, the uncertain

paternity hierarchical model (HIER) proposed in this study represents an important

alternative for genetic prediction. In addition to the incorporation of prior probabilities on

sire assignments, the HIER model allows for the integration of the uncertainty about

these prior probabilities in the prediction of genetic merit. Genetic markers, for example,

represent an important objective source of prior information. Results from the simulation

study (Chapter 1) and from the analysis of growth records on Brazilian Herefords

(Chapter 2) indicated that the HIER model provided a better fit to data characterized by

the presence of uncertain patemity compared to a model based on the average numerator

relationship matrix (ANRM) (Henderson, 1988). For genetic evaluations, there may be

pragmatically little difference between models for rankings of predicted genetic values.

The main advantage of the HIER model is in terms of properly accounting for reduced

precision on genetic merit inference due to uncertainty on sire assignments, thereby

143

 



providing a better risk assessment for the decision process in terms of selection and the

number of mates assigned to each selected animal. The estimated reliabilities associated

with genetic values of animals with uncertain paternity would tend to be appreciably

lower using the HIER model compared to the ANRM model, since the latter assumes that

the true probabilities of paternity are known.

Most of the beef produced in the US, Brazil and other countries is derived form

crossbred animals. Genetic evaluation of multiple-breed populations is, however,

complicated by the different genetic backgrounds and degrees of crossing present in these

populations. Confoundedness and multicollinearity between the coefficients for

genotypic effects makes it difficult to precisely estimate such effects solely from data on

multiple-breed cattle. Moreover, in order to predict animal additive genetic effects, it is

crucial to properly model genetic covariances between crossbred relatives as specified by

Lo et al. (1993). The hierarchical multiple-breed animal model presented in Chapter 3

effectively combines data and prior information to predict genetic merit and provides a

useful framework for inference on multiple-breed genetic variances. This model specifies

the additive genetic variance of each breed composition group as a function of breed-

specific and segregation variances, thereby sufficiently characterizing the genetic

heteroskedasticity of these groups in crossbred populations. In contrast, the conventional

animal model assumes constant genetic variances across groups and no segregation

variance. Accordingly, the proposed hierarchical model enhances flexibility for modeling

the dispersion of genetic merit within breed groups, thereby having important

implications for improved precision on prediction of genetic merit. Furthermore, prior

information on genotypic effects, as it is available from the literature, might be useful for
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analyses of poorly structured datasets as is common for crossbred beef cattle (Quaas and

Pollak, 1999) and might also further mitigate the effects of multicollinearity amongst

genetic effects coefficients.

The appropriate treatment of sources of heteroskedasticity and to outliers provided by

the hierarchical Bayes model with structural residual variances (Chapter 4) would

increase the stability of genetic evaluations. This is particularly relevant for beef cattle

populations, since the diversity of environmental, management and feeding conditions to

which the animals are subjected during their productive life creates several possible

sources of heteroskedasticity and other data perturbations. Results from Chapter 4 have

provided strong evidence to the importance of properly accounting for sources of

heteroskedasticity and outliers to accurately infer upon genetic merit of crossbred

animals. In the studied Nelore-Hereford population, inference based on the typical

assumption of Gaussian homoskedastic errors led to remarkable rerankings of animals for

selection compared to most appropriate Student t heteroskedastic errors specification.

These results have potentially important implications for genetic improvement programs

based on conventional genetic evaluation models.

4. Opportunities for further studies

The hierarchical Bayes model presented in Chapter 1 provides a general framework to

account for uncertain paternity. One potentially relevant extension of this model is to

directly integrate genetic marker information in the model as was proposed through prior

distribution specifications. This would allow, for example, to assess the quality of the

marker information contributing to determine sire assignment (Rosa et al., 2002).
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For large scale genetic evaluations on a national or breed association level, it appears

that a computationally tractable empirical Bayes or “plug-in” strategy may be advisable

and would likely lead to potentially very little or no difference in estimated breeding

values and standard errors of prediction relative to MCMC based inference. This

implementation deserves further investigation with the marginalization over prior

probabilities of sire assignments employed by Foulley et al. (1987) as a suitable strategy

to accomplish this task.

The multiple-breed animal model of Chapter 3 is presented in a single trait context;

however, generalization for the case of multiple-traits or additive-maternal genetic effects

could be attained by using multiple-breed variance-covariance genetic matrices as

proposed by Cantet and Fernando (1995) following Lo et a1. (1993) and a Wishart

proposal density in the Metropolis-Hastings algorithm.

Given that uncertain paternity is also seen in multiple-breed populations, another

promising development is to combine the features of the uncertain paternity model of

Chapter 1 with those of the multiple-breed animal model of Chapter 3. The hierarchical

structure of these models facilitates this task. Under multiple-sire mating, uncertainty is

introduced on various elements of G (17)) , thru 11’ and {2((p) , and possibly on elements of

X2, if not all possible sires have the same breed composition. In this situation, the

sampling density (first stage) would be conditioned on the sire assignment, i.e. s; = 55") ,

15 k S v,, for animalj. For example, Equation [3] of Chapter 3 would be replaced by:

. k I Ik I a

y}. |B,7,a,sj =5) ),02,2 ~N(x1jB+x2(j)y+zja,o,2), j e S,
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k . . . . . .
where x38.) rs x'zj . (1) , i.e. wrth coeffrcrents of genetrc “fixed” effects based on the srre

51:31

assignment s; = sy‘). The prior distribution of a (in the second stage) would also change

from a | (7) ~ N(0,G(rp)) to a | ens. =sm ~ N(0,G(k)(¢)). Here, the notation is that of

Chapter 1, and the extra developments required as a consequence of the conditioning of

G(qi) on sire assignments for all animals with uncertain paternity s. = 80‘), given that

G‘"’(¢)=G(¢)  
,2=,(k) , would follow directly from the decomposition of C(19).

Moreover, the additional stages required to sample sire assignments would be analogous

to those presented in Chapter 1.

Finally, despite the attention in Chapter 4 being centered on heteroskedasticity of

residual variances, there is no conceptual difficulty to extend the structural specification

to other random components of the model, such as genetic variances (as in SanCristobal

et al., 1993) and the contemporary group variance, which have shown to be the largest

source of variation in the Nelore-Hereford post-weaning data.
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