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ABSTRACT 

 STATISTICAL APPROACHES FOR THE ANALYSIS OF MATCHED MRNA 
MICROARRAY DATA FROM DEGRADED TISSUES WITH APPLICATION TO 

UNFROZEN ARCHIVED NEWBORN BLOOD SPOTS FROM A CASE-CONTROL STUDY 
OF CHILDREN WITH CEREBRAL PALSY       

  

By 

Nhan Thi Ho  

Cerebral palsy (CP) describes a group of defects that are caused by damage to the motor- 

controlling centers of the brain. This damage occurs either during pregnancy, during childbirth, 

or in early infancy. Currently the etiology of CP is unclear but has been speculated to arise from 

hypoxia, infection and other influences. In this matched case-control study in children aged from 

2-16 years, we examined the mRNA expression patterns in blood for evidence of exposure to 

agents that have been associated with the development of CP. The prospective collection of 

newborn blood samples derived from CP cases and matched controls is not practical while 

archived unfrozen dried neonatal blood spots (uDNBS) have been showed to preserve a 

sufficient amount of mRNA to perform mRNA microarray analysis. Therefore, we utilized 

previously collected uDNBS for genome-wide expression profiling.  

mRNA expression data was derived from a set of 106 uDNBS, which represented 53 

subjects that subsequently developed CP and 53 age, gestational- age and gender- matched 

control subjects. Established methods for processing and analyzing of microarray data were used 

to study evidence of changes in gene expression between cases and controls.  The analysis 

focused on a gene set-based approach prioritizing seven pre-selected gene sets representing four 

major hypothesized pathophysiologic pathways of CP, i.e. inflammation, thyroid disorders, 

hypoxia/asphyxia, and coagulation disorders. The empirical inflammatory and hypoxic gene sets 



were significantly down-regulated while the empirical thyroidal gene set appears significantly 

up-regulated. The analysis of gene sets from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database also revealed some significant inflammatory related gene sets. Gestational age 

and CP type had interactive effects on the expression pattern of the three significant empirical 

gene sets.  

Several important technical and theoretical concepts were also evaluated in detail.  First, 

the time-dependent degradation of mRNA, or the difficulty in extracting mRNA from uDNBS 

over time, is inevitable, and this may affect the technical quality of microarray data produced 

from uDNBS. Thus, the quality issues of microarray data need to be taken into account when 

processing and analyzing microarray data from uDNBS. Further evaluation of the quality of 

microarray data over time showed that differential expression at individual gene and gene set 

level could be seen better in uDNBS of less than six years old. The proposed approach for 

selecting housekeeping genes helped pick up six potential housekeeping genes which can be 

used for quantitative polymerase chain reaction (qPCR) assays to validate microarray data.  

Second, the published literature for gene set analysis of matched case-control study 

design is meager, and existing microarray analysis methods may not function properly. Thus, the 

performance of existing methods was evaluated and new approaches have been developed to 

address many methodological aspects of gene set analysis of matched microarray data. Both the 

published GAGE (generally applicable gene set enrichment for pathway analysis) method and 

the proposed ZZ-GSA (two stage z-test for gene set analysis) approach can be used for gene set 

analysis of matched microarray data although each has some strengths and limitations especially 

in term of power and type I error.  
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INTRODUCTION 

The original plan of this dissertation is to describe the results of pathway analysis of 

mRNA microarray data from uDNBS of CP cases vs. matched controls from an ongoing 

matched case-control study investigating the etiology of cerebral palsy (the Origins, Wellness 

and Life history of CP (OWL) study). Possible pathways to CP during the peri-partum period are 

examined by gene set analysis of mRNA microarray data and by evaluating the influence of 

clinical context during the peripartum period on gene expression pattern. The hypotheses and 

research aims for these analyses include:  

Hypothesis 1: Inflammation, hypoxia/asphyxia, thyroid disorders in peri-partum period and 

coagulation disorders may be causal factors, or may contribute to the development of CP.   

Aim 1: Use the best existing methods of gene set analysis for microarray data to evaluate the 

differential expression of empirical and canonical gene sets selected to represent the four pre-

hypothesized pathways to CP.  

Hypothesis 2: Gene sets selected for pre-hypothesized pathways may not fully represent the 

pathways of interest. In addition, the pre-hypothesized pathways themselves may not fully 

represent all possible pathways contributing to the development of CP. Other disorders, 

represented by different gene pathways during the peri-partum period may also contribute to the 

development of CP.  

Aim 2: In addition to assessing gene sets of pre-hypothesized pathways, multiple gene sets 

representing various pathways from the KEGG database which includes clinically meaningful 

pathways should also be explored for their differences between cases and controls.  
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Hypothesis 3: The expression of genes in the causal pathways of CP may differ corresponding to 

covariates such as gestational age, CP type, or some newborn conditions. 

Aim 3: Stratify case-control differences in gene expression on some clinical covariates such as 

CP type (hemiplegia, diplegia, quadriplegia), gestational age (term vs. preterm), etc.  

The mRNA microarray data from uDNBS used in this dissertation are special due to the 

deterioration of microarray data quality over time of storage and the issues related to matching 

design. During the analytic process, some problems related to the methodology of processing, 

analyzing and validating of mRNA microarray data from heterogeneously degraded tissue of 

matched case-control study emerged. Published literature addressing these issues is meager and 

existing methods may not well handle different aspects of these issues. Therefore, these issues 

need to be discussed and possible methodological solutions need to be developed.  As a result, an 

alternative structure of this dissertation was suggested as below.  

ORGANIZATION OF THE DISSERTATION  

Together with the introduction section for the dissertation, the main chapters of this 

dissertation include:   

The first chapter covers a brief review about cerebral palsy, research on the etiology of 

cerebral palsy and the use of uDNBS. The OWL (Origins, Wellness and Life history of Cerebral 

Palsy) study, and laboratory techniques used for the OWL study will be described. This chapter 

also includes some review of overall procedures for analysis of mRNA microarray data.  

The second chapter corresponds to the three hypotheses and specific aims for pathway 

analysis. This core chapter covers the results of pre-hypothesized gene sets and multiple gene 

sets from gene set database (KEGG) using existing statistical methods for matched microarray 

data. Pre-hypothesized gene sets emphasize the pathways of interest and reduce the need for 
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adjusting for multiple testing.  Exploration of KEGG gene sets supplements and strengthens the 

results of pre-selected gene sets, and helps discover other potential pathways related to CP. Gene 

set analysis is also stratified by some important covariates to assess the effect of clinical context 

on gene expression patterns in CP cases vs. controls.  

The third chapter covers processing and exploratory analysis of mRNA microarray data, 

including evaluation of overall distribution and other characteristics of microarray data before 

and after filtering, normalization, aggregating to gene level. This chapter helps understand the 

characteristics of the microarray data used, patterns of mRNA degradation, and thus, helps orient 

the subsequent processing and analysis approaches and their use for mRNA microarray data 

from uDNBS.  

The fourth chapter covers qPCR validation for the results of mRNA microarray data. This 

chapter includes the approaches for selection of housekeeping genes, selection of genes for 

validation and the results of the comparison between qPCR and mRNA microarray data.  

The fifth chapter provides an evaluation of existing methods (including the methods used 

in previous chapters) and proposed modified methods of gene set analysis of matched microarray 

data in term of power, type I error, and influence of missing value. This chapter will describe a 

rigorous simulation and permutation approach as well as an imputation procedure. This chapter 

helps evaluate the performance of gene set analysis methods of matched data based on the log 

fold change of expression between cases vs. controls and also helps interpret the results of gene 

set analysis described in previous chapters.  

The sixth chapter is a conclusion chapter summarizing the results of all the above 

chapters, and discussing future research applications or directions that may come from the work 

of this dissertation.      
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CHAPTER 1. REVIEW    

About CP  

CP was first identified by an English surgeon named William Little in 1860. Initially, CP 

was known as "Cerebral Paralysis".1 2 In earlier days, CP was believed to be mainly caused by 

asphyxia during birth or prematurity. However, in 1897, a neurologist named Sigmund Freud 

advocated the idea that difficult or premature birth was only a symptom of other effects on fetal 

development, not the cause.3 Considerable research from the late 1980s up to date has shown 

that only a small percentage of CP cases results from lack of oxygen during birth. 4 5

The diagnosis of CP can usually only be confirmed when the child reaches the age of 2 

years. According to the report of CP committee consensus published in 2006,
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 “CP describes a 

group of permanent disorders of the development of movement and posture, causing activity 

limitation, that are attributed to non-progressive disturbances that occurred in the developing 

fetal or infant brain”.  “Motor disorders of CP are often accompanied by disturbances of 

sensation, perception, cognition, communication, and behavior, by epilepsy, and by secondary 

musculoskeletal problems”. Also according to this report, CP may be classified by the nature and 

typology of the motor disorder (e.g. spasticity, dystonia, choreoathetosis, ataxia), anatomic 

distribution (e.g. quadriplegia, diplegia, hemiplegia), functional motor abilities (e.g. Gross Motor 

Function Classification System (GMFCS) with 5 levels), accompanying impairments (epilepsy, 

hearing, vision disorders, mental retardation, etc), cause and timing (e.g. CP of clear postnatal 

origins, CP as part of genetic syndrome, etc). CP classification by anatomic distribution is 

commonly used in clinical practice.  
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Epidemiology and economic impact of CP  

According to some reviews published in 2006 and earlier, the prevalence of CP in the 

general population in Western countries is approximately 1-2 /1000 live births. Overall CP 

prevalence for the past 40 years is notably stable. Prevalence of CP may vary depending on how 

CP is defined, denominator used or real variation.7 8 9 However, according to some recent US 

population-based studies, the prevalence of CP seems to be higher than 3/1000 school-age 

children.10 11 12

The prevalence of CP increases significantly when gestational age decreases. The 

prevalence of CP is 14.6% for children born at 22 to 27 weeks of gestation, 6.2% at 28 to 31 

weeks, 0.7% at 32 to 36 weeks, and 0.1% in term infants. Prevalence of CP decreases 

significantly when GA is ≥ 27 weeks. Spastic CP is predominant in preterm infants. Other non -

spastic forms of CP are more common in term infants than in preterm infants.

   

13

People with CP often require special and costly medical and educational services for their 

whole life. This makes CP an important health care burden for any country. According to a study 

in the US in 2003, economic cost, including lost income, for each CP individual is about 

$921,000.

 

14

Review of studies investigating the etiology of CP  

   

Although CP is a major public health problem, research on the etiology of CP is still rare. 

Most recent etiologic studies have used data from administrative or medical record databases,15 

16 17 18 19 20 and some studies have focused only on infants < 32 weeks gestation or < 1kg. 21 
22 23 24 There has been only one recent US case-control study examining CP cases and controls 

that interviewed mothers.25   
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According to previous research, less than 20% of cerebral palsy can be attributed to 

intrapartum events and around 70-80% of CP cases are due to prenatal factors. Common prenatal 

factors that may contribute to the development of CP are intrauterine growth retardation, 

maternal thyroid abnormalities, intrauterine viral infections (e.g. CMV, Rubella), intrauterine 

infection/inflammation with a maternal response (consisting of chorioamnionitis), fetal 

inflammatory response, autoimmune and coagulation disorders, and some other factors such as 

cerebral dysgenesis, multiple birth, genetic factors. CP may result from a combination of 

antepartum and intrapartum insults. 26 27 28

Although the role of difficult birth on the development of CP is smaller than it was 

believed in the early days, adverse obstetric events remain one of the leading causes of CP since 

around one-third of children with CP had one or more birth related event.

  

29 Intrapartum 

hypoxia-ischemia is found in around one-sixth of CP children while around one-fourth of term 

born infants with cord blood pH < 7.0 (an evidence of peri-partum asphyxia) develop neonatal 

neurologic morbidity and mortality.30

Inflammation has been shown to play in an important role in developing CP. 

Chorioamnionitis has proved to double the risk of CP. 

     

31 32 In preterm, especially in extremely 

preterm infants, the role of fetal inflammation on brain damage is more predominant. 33 34 

Microbial organisms are found in amniotic cavity of around one-fourth or more of all preterm 

births.35 Fetal inflammation may be a major mechanism responsible for many complications 

during the perinatal period and infancy such as preterm birth, fetal periventricular leucomalacia, 

and CP. 36 37 Prenatal infections and inflammation are often accompanied by asphyxia or 

peripartum hypoxia. This “double-hit effect” often occurs in neonatal brain damage. 
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Proinflammatory cytokines may serve as major mediators in brain injury in newborns with either 

or both perinatal asphyxia and bacterial infection. Understanding the balance between 

neurodamaging and neuroprotective effects of cytokines is essential to neutralize the pathologic 

effects of inflammation associated with brain damage. 38 39

There are several situations in which thyroid hormone disorders may increase the risk of 

cerebral palsy. Transient hypothyroxinemia of prematurity (THOP) in which serum thyroid 

hormones T3, T4 is low but TSH is normal in premies till around 6 weeks after birth is common 

in extremely premature neonates born before 28 gestational weeks. 

  

40 41 42 43 44 45 46 This 

condition has been shown to increase the risk of CP to 3.6-4.4 fold at age 2 and cognitive 

impairment in early childhood. 47 48 Thyroid hormone supplementation may improve mental 

development in premature newborns although this has not been proved. 49 50 Maternal iodine 

deficiency has been believed to be associated with endemic neurologic cretinism of the offspring. 

Other maternal thyroid disorders such as high TSH or low free T4 measured at 12 gestational 

week may associate with some adverse neurodevelopmental outcomes such as lower Intelligent 

Quotation (IQ), lower psychomotor development index (PDI), 51 52 lower neonatal behavioral 

assessment scale (NBAS).53

Perinatal coagulation disorders, commonly manifested by perinatal arterial stroke, are 

associated with all anatomic types of CP but much more strongly with hemiplegia. 

  

54 55  More 

than one half of hemiplegic infants have at least one coagulation abnormality.56 Neonatal 

ischemic stroke of different forms (including perinatal arterial ischemic stroke, presumed pre- or 

perinatal stroke, and cerebral sinovenous thrombosis) is a leading cause of congenital 
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hemiplegia57 and can contribute to other long-term neurological impairment including seizures 

and cognitive disorders.58

Some studies have examined the genetic origin of CP. According a systematic review 

summarizing the results from more than 20 studies, CP has been found to be associated with 

some thrombophilic, cytokine, apolipoprotein E genes and some other SNPs. The most potential 

genes among these genes are factor V Leiden, methylenetetrahydrofolate reductase, 

lymphotoxin-a, tumour necrosis factor-a, eNOS and mannose binding lectin. However, metalysis 

has not confirmed these association.

    

59

The use of uDNBS and gene expression from uDNBS  

    

Gene expression in blood contains more than 80% overlap with the transcriptome of at 

least 9 organs, including the brain. 60 61 uDNBS are available in many states and may be a rich 

resource for epidemiological research. 62 Previous pilot work from our team has shown that 

mRNA extracted from long-term unfrozen storage of archived unfrozen dried neonatal blood 

spots (uDNBS) leftover from newborn genetic screening is sufficient to perform mRNA 

microarray analysis for genome-wide expression profiling. 63 More recent follow-up studies 

have detected gender specific expression patterns although the dynamic range of the mRNA 

expression is severely compressed.64

There have been some studies in the US and in Australia using newborn blood spots to 

study CP, but only to examine proteins, human DNA polymorphisms or viral RNA/DNA in 

frozen spots. 

    

65 66 67 68 69 70  No study has yet used dried newborn blood spots (uDNBS) to 

examine gene expression to study causal pathways to CP. We hypothesize the RNA expression 

patterns present in blood may provide a molecular "snapshot" into the neonatal state at the time 
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of delivery. Comparisons between the white blood cell transcriptome between control and 

affected newborns may give insights into the epidemiology of CP. 

Leveraging the existing OWL study to evaluate archived uDNBS expression patterns  

This is an on-going matched case-control study investigating the etiology of CP. Study 

subjects are recruited mainly from three regions of Michigan including Lansing, Ann Arbor, and 

Grand Rapids.  Cases are children ages 2-15 years with the diagnosis of CP assigned by a 

neurologist, physiatrist or family physician, and a Gross Motor Function Classification Score ≥1 

(classifying severity of CP). For access to birth certificates and blood spots, cases and controls 

must be born in Michigan. Age is matched and restricted to births since 1994 to reduce variation 

from aging of newborn blood spots. Little is known about how gender, GA, multiple birth, 

storage conditions, and age of stored samples affect mRNA expression in dried blood spots. 

Thus, to reduce systematic differences due to these factors, cases and controls (other than 

siblings) are matched on gender, birth year and GA in four categories (<28 weeks, 28-32 weeks, 

33-37 weeks, >37 weeks).   

For all cases and controls, clinical data are collected from maternal interview, birth 

certificate, birth hospital discharge abstract for mother and infant, clinician’s referral form 

indicating CP type, severity and associated conditions, parent reported form indicating level of 

gross motor (GMFCS) 71, manual (MACS),72 and speech function. Human mRNA and viral 

DNA are extracted from archived unfrozen dried newborn blood spots (uDNBS) which are 

obtained from the Michigan Biotrust for Health. 73

Maternal interviews (conducted via telephone) provide data on demographics, family and 

maternal medical history, prenatal screening tests, labor and delivery, and on the infant’s 

. Saliva samples from the child and parents 

are also collected to extract human DNA.  
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perinatal period including feeding behavior and neurologic findings. Michigan birth certificates 

provide data on approximately 100 pregnancy and perinatal variables. Hospital discharge 

abstracts provide diagnoses and procedure codes and length of hospital stay.     

Laboratory techniques used in OWL study  

mRNA microarray techniques   

Total RNA is extracted, purified and concentrated from three 3mm punches of uDNBS. 

Single-stranded cDNA is generated using the WT-Ovation Pico RNA Amplification System 

from NuGEN Technologies. The Agilent Whole Human Genome Gene Expression 8x60K 

Microarray assay platform is used to profile gene expression. Each array contains 60,000 

oligonucleotide probes (60bp) covering 27,958 Entrez gene RNAs and 7,419 long intergenic 

non-coding RNAs. 

qPCR technique  

Masked cDNA samples synthesized from neonatal blood spot RNA are used for qPCR 

analysis. For the genes selected for qPCR validation, specific optimized Taqman probes and 

primers were obtained from Applied Biosystems by Life Technologies (Carlsbad, CA) and qPCR 

was performed using Applied Biosystems 7500 Fast Real-Time PCR System. 

Summary of overall procedures for analysis of mRNA microarray data 

The study will have a discovery phase to identify major confounding factors that affect 

RNA expression in uDNBS that are not addressed by the case-control study design.  Next,  

expression patterns present in the uDNBS will be examined to identify expression patterns that 

associate with the CP disease state. The flow chart of common overall procedures for analysis of 

mRNA microarray data is shown in figure 1.1. Briefly, main stages of analysis include raw data 

processing, analysis of individual genes, analysis of gene sets, assessment of the influence of 
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covariates on analysis results, validation of results statistically, and validation of mRNA 

microarray data by qPCR.  
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Figure 1.1. Analytic procedure. 
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CHAPTER 2. ANALYSIS OF DIFFERENTIAL EXPRESSION USING EXISTING 

METHODS   

Abstract 

Background: The causes of cerebral palsy (CP), the commonest major motor disability of 

childhood, are known to operate during pregnancy and the perinatal period, but are poorly 

understood.  Many states archive residual filter paper blood after routine newborn genetic 

screening, and we have been shown that such specimens yield sufficient mRNA for gene 

expression profiling even after years of unfrozen storage.  We thus undertook to examine causal 

pathways to CP by examining the newborn expression of gene sets representing potential causal 

pathways to CP in children with and without CP.  

Methods: We selected one experimental and one curated gene set for each of three 

hypothesized pathways to CP (inflammatory, hypoxic and thyroidal) and one curated gene set 

reflecting coagulatory function for gene expression studies in unfrozen residual newborn blood 

spots archived by the Michigan Department of Community Health.  mRNA expression of gene 

sets was assessed, using DNA microarray on an Agilent platform, in the newborn blood of 53 

singleton children with CP and 53 control children without CP, individually matched on year of 

birth, gender and gestational age.  These seven pre-hypothesized gene sets, and a further 205 

exploratory gene sets from the Kyoto Encyclopedia of Genes and Genomes (KEGG), were 

analyzed for log2 fold change differences  between cases and controls using the Generally 

Applicable Gene Set Enrichment (GAGE) Method.  

Results: The empirical inflammatory and empirical hypoxic gene sets were significantly 

down regulated in term-born CP cases (N = 33) as compared to matched controls (p = 0.0007, 

0.0009 respectively), while both pathways were significantly up-regulated (p =0.0055, 0.0223 
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respectively) in preterm-born CP cases (N = 20). The empirical thyroidal gene set was 

significantly up-regulated in preterm-born CP (p = 0.0023).   Exploratory analysis of KEGG 

gene sets showed that the five most up-regulated gene sets (of 205) included a gene set with 

strong inflammatory signals (systemic lupus erythromatosus) as did the five most down-

regulated gene sets (leukocyte transendothelial migration).  

Conclusion: The newborn transcriptome as recorded on unfrozen archived filter paper 

blood spots can serve as a platform for investigating gene expression patterns in children who 

later develop CP or other developmental disorders.  Genes of inflammatory, hypoxic and 

thyroidal pathways were differentially expressed in children with CP compared to matched 

controls, and the pattern of differential expression differed in term-born and preterm-born CP 

cases.  Inflammatory processes operative during the peri-partum period appear to play an 

important role in the development of CP in both term and preterm infants.  

Introduction 

CP is a severe childhood neurological disorder that is characterized by impaired control 

of motor function and some other associated deficits such as mental retardation, epilepsy, 

learning disorders, visual and hearing impairment.74 CP occurs in 1-3 infants for every 1000 live 

births making it one of the most common of the disabling childhood disorders.75

The etiology of cerebral palsy is not well known. No study has yet examined gene 

expression from newborn blood spots to study the patho-physiological pathways leading to 

cerebral palsy (CP). Previous pilot work from our team has shown that mRNA extracted from 

 The prevalence 

of CP has not been reduced over the past several decades. People with CP often require special 

and costly medical and educational services for their whole life. This makes CP an important 

health care burden for any country.  
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long-term unfrozen storage of archived unfrozen dried neonatal blood spots (uDNBS) leftover 

from newborn genetic screening are sufficient to perform mRNA microarray analysis for 

genome-wide expression profiling. 76

Our on-going matched case-control study investigating the etiology of cerebral palsy 

(CP) in children aged from 2-16 years uses uDNBS.  The Agilent Whole Human Genome Gene 

Expression 8x 60 K Microarray platform is being used for the mRNA microarray assays.  

Clinical data are obtained from maternal interviews, birth certificates and maternal and newborn 

hospital discharge abstracts. Cases and controls are matched by age, sex, and gestational age in 

four categories.  

  

The analysis of gene expression for groups of genes (gene sets) is employed to examine 

the co-effect of genes in pathways leading to the development of CP. Gene set analysis of pre-

selected gene sets are done to specifically investigate the roles of the four pre-hypothesized 

pathways (including inflammation, thyroid disorders, hypoxia/asphyxia, and coagulation 

disorders). To discover other possible pathways contributing the development of CP, gene sets 

from gene set databases (such as KEGG) are explored. Clinical exposures during the prenatal 

and peri-partum period may play important roles in altering gene expression profiles. Thus, 

analysis integrating gene expression data and important clinical covariates is also drawn on to 

study the role of clinical exposures and gene expression patterns to the development of CP.  

We anticipate that the findings from the data in this study will help produce a more 

complete understanding of the etiology of CP. CP is a condition that largely develops during 

pregnancy and the peri-partum period. Thus, understanding the exposures during pregnancy and 

peripartum period is essential to understanding potential causal factors for CP.  
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Methods 

The mRNA microarray data and clinical data in this chapter is from archived unfrozen 

dried blood spots of 53 cerebral palsy case - matched control pairs of an on-going case-control 

study investigating the etiology of cerebral palsy. All 106 study subjects are singletons, 31 

females and 75 males, aged from 2.9-16 years. CP cases and controls are matched by year of 

birth, and gestational ages by 4 categories (<28 weeks, 28-32 weeks, 33-37 weeks, >37 weeks). 

Microarray assays of Agilent platform were used to profile mRNA extracted from blood spots. 

Real time reverse transcriptase quantitative polymerase chain reaction (qPCR) were used to 

validate the expression of some selected genes. More details about this study, laboratory 

techniques and data from this study are described in previous chapters.  

Statistical methods 

All procedures for data processing and analysis were done using statistical software R 

(version 2.13.2). Unqualified spots were filtered using the method of Patterson et al (expression 

data were removed wherever gProcessed signal was less than twice the gProcessed signal 

error).77 Gene expression data were normalized using a between-array quantile normalization 

method,78 and further aggregated to the gene level using the mean of the expression signal of all 

probes of each gene.  Differential expression of individual genes was examined with the 

moderated paired t-test (which is appropriate for matched pairs) of the linear model and an 

empirical Bayes method implemented in R package limma. 79 80 The significance of gene 

expression was corrected for multiple testing using the false discovery rate (FDR) approach. 81 
82  Among several methods for gene set analysis, 83 84 we chose the Generally Applicable Gene 
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Set Enrichment (GAGE) method, probably the only published method specifically applicable to 

a matched case-control study. 85

Briefly, the GAGE method conducts a two-sample-like t-test to compare the expression 

of genes in the gene set of interest to the expression of all genes measured on the array of each 

matched pair:  

𝑡𝑘𝑙 = (𝑚 −𝑀)/�
𝑠2

𝑛
+
𝑆2

𝑛
 

   

where m and M are the mean log fold change of genes in the set and all genes in the 

array, respectively. s and S are the standard deviation of the log fold change of genes in the set 

and that of all genes in the array, respectively.  n is the number of genes in the set. The p-values 

of the individual within-pair t-tests are further summarized using a meta-test for global 

significance:  

x = −
1
𝐿
� logPkl
𝑘𝑙

 

which follows Gamma (k,l). This method allows calculating a test statistic and p-value 

for assessing differential expression of the gene set for each individual matched pair before 

summarizing all pairs for global significance. Heterogeneity in differential expression among 

matched pairs can also be examined. The global test further allows detection of the significance 

of a group of pairs with small p-values, which is important when some pairs are differentially up-

regulated while some others are down regulated. This is particularly relevant in a disorder such 

as CP, which is composed of sub-types likely to have distinct etiologies.  Genes within a gene set 

may also be regulated in different directions (up-regulated versus down-regulated).The use of the 
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absolute value of the log2 fold change of genes avoids the cancelation of the significance of 

genes in different direction of regulation, where a upper one-sided test is appropriate to assess 

the significance of gene regulation away from the normal expression.  

The analysis of gene sets were performed on pre-selected gene sets of the four pre-

hypothesized pathways and on gene sets of the Kyoto Encyclopedia of Genes and Genomes. For 

each of the four pathways, one empirical gene set (genes indentified from experiments) and one 

canonical gene set (genes derived from expert opinion) are selected. The empirical inflammation 

gene set includes the genes differentially expressed in cord blood of prematures with and without 

markers of fetal inflammation.86 The canonical inflammation gene set GO:005072; 

inflammatory response, and the canonical coagulation gene set, GO:0007596; blood clotting 

biological process, are obtained from the Gene Ontology (GO) database. No empirical gene set 

for coagulation is found. The empirical asphyxial gene set is derived from the experiments on 

responses of cells in tissue culture exposed to hypoxemia compared to normoxemia.87 The 

canonical asphyxial gene set is based on the view that hypoxia-inducible transcription factor 

(HIF) binds a consensus DNA sequence termed the hypoxia-responsive element (HRE).88 The 

canonical thyroid responsive element (TRE) gene set is also assembled using a similar 

approach.89 The experimentally derived gene set was isolated following human exposure to 

thyroid hormone.90

Analysis of imputed data 

   

The processed microarray dataset contains large percentage of missing values (20-70% 

for each array) after filtering unqualified spots. For simplicity, missing values were replaced by a 

value that approximate the smallest expression value of the remaining expression data after 

filtering (smallest log2 intensity was approximately 5 in this situation). The simple assumption 
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was that all missing values produced by filtering are low expression and are equally treated. This 

is a way to check for the robustness of the results. If the results of gene set analysis of imputed 

data (based on the above assumptions) are similar to those of the data with missing values, the 

results of gene set analysis may be robust (not sensitive to the effect of missing values). In other 

words, the purpose is to evaluate whether the loss of expression information due to missing 

values caused by filtering of unqualified spots, especially when taking fold change can distort the 

results or not, or to check whether the effect of missing values is too large to produce misleading 

or non-robust results for gene set analysis.   

Results  

Analysis of seven pre-selected gene sets representing four pre-hypothesized pathways to CP  

 Three of the seven gene sets, all empirical, showed significantly different regulation 

between cases and matched controls after adjusting for multiple testing when false discovery rate 

(FDR) was set at 0.05 (Table 2.1). The empirical inflammatory and asphyxial gene sets were 

both significantly down-regulated in CP cases, compared to controls (q-value is 0.0008 and 

0.0059 respectively and approximate effect size is -0.19 SD units and -0.16 SD units 

respectively), while the thyroidal gene set was significantly up-regulated (q-value is 0.0273 and 

the approximate effect size is 0.13 SD units). For the empirical inflammatory and asphyxial gene 

sets, the global P-values for up-regulation reached marginally significance (p-value=0.0791 and 

0.0983) but no longer significant after adjusting for multiple testing (q-value >0.1).      

To describe the extent of gene set differences between individual case and control pairs, 

and the degree of heterogeneity of these differences across pairs, the distribution of GAGE- t-

statistics for 7 gene sets, representing the difference in gene expression between cases and 

controls, is shown in Figure 2.1. The three significant gene sets (experimental inflammatory, 
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asphyxial and thyroidal) show many pairs with large differences in gene expression, while the 

canonical asphyxial and thyroidal gene sets show modest inter-pair differences. For the 

coagulation gene set and the canonical inflammatory gene set, virtually no differences within 

pairs are seen. Heterogeneity across pairs in differential expression is notable for all three 

significant gene sets. Pairs show large differences in either up or down regulation.   

The Fetal Inflammatory Response Syndrome (FIRS) Gene Set   

Among the hypothesized gene sets, the largest case-control differences in gene 

expression were seen for the FIRS gene set. Figure 2.2 shows the heatmap of the log2 fold 

change of all genes in FIRS gene set for all case-matched control pairs ordered by the magnitude 

of the GAGE t-statistics.  Positive t-statistics (up-regulation of case compared to control) are 

seen as red, negative t-statistics (down regulation of case compared to control) are seen as blue.  

The heatmap also shows that a considerable percentage of genes in FIRS gene set have missing 

values (grey color). The up or down regulation of the FIRS gene set in individual pairs seem to 

be driven especially by the following genes: S100A9 (S100 calcium binding protein A9), 

S100A12 (S100 calcium binding protein A12), ALOX5AP (arachidonate 5-lipoxygenase-

activating protein), PGLYRP1 (peptidoglycan recognition protein 1), HP (haptoglobin), FLOT1 

(flotillin 1), and FGR (Gardner-Rasheed feline sarcoma viral oncogene homolog).   
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Table 2.1. Gamma GAGE analysis for seven gene sets representing four pre-hypothesized 
pathways. 

Gene sets Reference to 
the source of 
the gene set 

Mean of 
GAGE 

t-
statistics 

(SD 
units)$ 

P-values 
(q-values)# 

for 
up-

regulation 

P-values 
(q-values) 
for down# 
regulation 

P-values (q-
values)# for 

Bi-
directional 
regulation 

Coagulative      
Canonical 

(n=93; ne=92) 
GO:0007596; 
blood clotting 

-0.08 0.9749 
(>0.1) 

0.7737 
(>0.1) 

0.6048 (>0.1) 

Inflammatory      
canonical (n=31; 

ne=31) 
GO:0050727; 
regulation of 
inflammatory 

response 

-0.10 0.9870 
(>0.1) 

0.7796 
(>0.1) 

0.9439 (>0.1) 

empirical (n=36; 
ne=36) 

Fetal 
inflammatory 

response 

-0.19 0.0791 
(>0.1) 

0.0001 
(0.0008) 

0.2139 (>0.1) 

Asphyxial      

canonical (n=37; 
ne=36) 

Hypoxia 
 

0.18 0.1656 
(>0.1) 

0.9401 
(>0.1) 

0.9620 (>0.1) 

empirical (n=127; 
ne=126) 

Hypoxia 
 

-0.16 0.0983 
(>0.1) 

0.0016 
(0.0059) 

0.9749 (>0.1) 

Thyroidal      

canonical (n=200; 
ne=198) 

V$T3R_Q6; 
TRE 

consensus 

-0.03 0.8183 
(>0.1) 

0.7344 
(>0.1) 

0.9993 (>0.1) 

empirical (n=140; 
ne=139) 

Thyroid 
hormone 

0.13 0.0039 
(0.0273) 

0.2873 
(>0.1) 

0.9767(>0.1) 

$ Since the number of genes in all seven selected gene sets is >30, the GAGE t-statistic 
approximates a z-statistic. Thus, the mean of GAGE t-statistics, which can be expressed in terms 
of standard deviation (SD) units, is an approximation of effect size.  
# global P values of all pairs, with q-values in parentheses calculated to adjust for multiple 
testing using q-values R package with FDR set at 0.05. n Number of genes in the gene set. ne 
Number of genes of the gene set that are found  in the array used in this study.    
  



  

22 
 

 

 

Figure 2.1. GAGE t-statistics for the seven pre-hypothesized gene sets. 
a, b, c, d, e, f, g: canonical coagulation, canonical inflammation, empirical inflammation, 
canonical asphyxia, empirical asphyxia, canonical thyroid, empirical thyroid gene sets 
respectively. For each graph: X-axis: matched pair (total 53 pairs); Y-axis: scale of GAGE t-
statistic; each bar within each graph: the GAGE t-statistic of the gene set for each pair. 
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Figure 2.2. Heatmap of FIRS gene set with pairs ordered by magnitude of GAGE t-
statistics. 
(a) FIRS gene set in which the matched pairs are ordered by the values of the GAGE t-statistics 
of the pairs from most positive to most negative. 
(b) Heatmap: X-axis: matched pairs in the same order as the upper graph; Y-axis: gene names. 
Each small square represents log2 fold change of each of all genes of FIRS gene set of each of 
all pairs. Gradient scale for color from bluest (most negative log2 fold change or the gene 
expresses lowest in case vs. control) to white (log2 fold change is zero or the gene expresses 
equally in case vs. control) to reddest (positive log2 fold change or the gene expresses highest in 
case vs. control): – 4 to 0 to + 4. Grey color: absence of data (missing values) due to unmet 
filtering criteria.  
(For interpretation of the references to color in this and all other figures, the reader is referred to 
the electronic version of this dissertation). 
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Table 2.2. Gene expression findings for three gene sets stratified by GA and CP type. 
Gene sets Empirical inflammatory  gene 

set 
Empirical asphyxial gene set Empirical thyroidal gene set 

 Mean 
GAGE 
t-stat 

P-values 
up 

P-values 
down 

Mean 
GAGE 
t-stat 

P-values 
up 

P-values 
down 

Mean 
GAGE 
t-stat 

P-values 
up 

P-values 
down 

Gestational age          

>=37 weeks 
(n=33) 

-0.42 0.6567 0.00007 -0.36 0.5014 0.00089 -0.04 0.1345 0.1204 

<37 weeks 
(n=20) 

0.19 0.0055 0.1537 0.16 0.0223 0.2381 0.42 0.0023 0.7353 

CP type$          
Quadriplegia 
(n=24)  

-0.26 0.60869 0.02830 -0.18 0.11721 0.01024 0.08 0.01865 0.16745 

Diplegia (n=15)  0.16 0.03753 0.23559 0.03 0.27462 0.30122 0.32 0.10591 0.84832 

Hemiplegia 
(n=13)    

-0.45 0.11210 0.00009 -0.32 0.30896 0.01476 0.01 0.09332 0.19450 

$CP type missing for 1 case 
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Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets  

We explored case-control differences for the 205 gene sets archived by KEGG (2009 

version).  The five most up-regulated gene sets in CP cases compared to controls were: 

Ribosome, Systemic lupus erythematosus (SLE), Olfactory transduction (OT), Cell cycle (CC) 

and Oxidative phosphorylation (OP).  Down-regulation was seen most strongly for three of the 

above five - Ribosome, CC and SLE, and for Leukocyte transendothelial migration (LTM) and 

Regulation of actin cytoskeleton (RAC) gene sets.  

Using the approach of Storey to control for the false discovery rate (FDR), Ribosome, 

SLE and OT remained significantly up-regulated, Ribosome, LTM and RAC remained 

significantly down-regulated, and the Ribosome gene set was significantly bi-directionally 

regulated (table 2.3). The heterogeneity of individual pair contrasts in the three gene sets 

significantly perturbed in both directions can be seen in Figure 2.3.  
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Table 2.3. Most up- regulated and most down-regulated KEGG gene sets in cases compared to controls. 

Most up-regulated gene sets Most down-regulated gene sets 
Most bi-directionally regulated gene 

sets 
Gene sets P- values q-values$ Gene sets P-values q-values$ Gene sets P-values q-values$ 
Ribosome 4.4e-40 9.1e-38 Ribosome 4.1e-42 8.3e-40 Ribosome 1.9e-14 3.9e-12 

SLE 1.7e-06 1.8e-04 LTM 4.2e-04 3.5e-02 BTF 3.3e-03 >0.1 
OT 5.8e-05 3.9e-03 RAC 5.1e-04 3.5e-02 APM 4.9e-02 >0.1 
CC 2.4e-03 >0.1 CC 1.8e-03 9.5e-02 PD 5.0e-02 >0.1 
OP 5.6e-03 >0.1 SLE 9.2e-03 >0.1 MODY 5.1e-02 >0.1 

$ q-values were calculated using q-values R package with FDR set at 0.05. SLE: Systemic lupus erythematosus, OT: Olfactory 
transduction, CC: Cell cycle, OP: Oxidative phosphorylation, LTM: Leukocyte transendothelial migration, RAC: Regulation of actin 
cytoskeleton, BTF: Basal transcription factors, APM: Aminophosphonate metabolism, PD: Parkinson’s disease, MODY: Maturity 
onset diabetes of the young.
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Figure 2.3. GAGE-t-statistics of five most significant KEGG gene sets. 
a, b, c, d, e respectively: Ribosome, SLE: Systemic Lupus Erythematosus, LTM: Leukocyte 
Transendothelial Migration, RAC: Regulation of Actin Cytoskeleton, OT: Olfactory Traduction.   
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Assessing Significant Gene Set Findings in CP sub-sets  

The heterogeneity of GAGE t-statistics across pairs suggests the need to stratify on 

covariates such as gestational age and motor type. Table 2.2 shows the findings for each gene set 

for children born at 37 weeks or later (N pairs = 33), before 37 weeks (N pairs= 20), with 

quadriplegia (N pairs = 24), diplegia (N pairs = 15) and  hemiplegia (N pairs = 13).   

FIRS shows an interaction with gestational age; among 20 premature pairs, FIRS was 

significantly up-regulated in CP cases, whereas among 33 term-born pairs, FIRS was 

significantly down-regulated among cases.  The FIRS up-regulation seen in premature cases was 

paralleled by up-regulation in diplegic cases, who are dominantly premature. In parallel, the 

strongest contribution to down-regulation of inflammation came from hemiplegic cases (N = 13) 

who are nearly all born at term. Quadriplegia also showed down regulation of FIRS, but not as 

strongly as hemiplegia.  

The empirical asphyxia gene set also showed significant up-regulation in premature cases 

and the opposite with term cases. As in the case of FIRS, the down-regulated signal was stronger 

than the up-regulated signal, reflecting the larger number of term-born cases in our sample. 

Hemiplegia and quadriplegia showed down-regulation of the asphyxial gene set in about equal 

measure. The thyroidal up-regulation signal was derived entirely from prematures and from 

children with quadriplegia. 

After adjusting for multiple testing, the ribosome gene set is significantly up- and down-

regulated in both term and preterm CP cases compared to controls (q-values <<0.0001) (Table 

2.4). The SLE, OP and Pathogenic Escherichia coli infection (PECI) gene sets are significantly 

up-regulated in preterm born CP (q-values <0.05) only. OT, on the other hand, is significantly 

up-regulated in term CP (q-values <0.05). After adjusting for multiple testing, the ribosome gene 
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set is significantly up- and down- regulated in all 3 CP types (q-values <0.0001). SLE is 

significantly up regulated in diplegic CP (q-value <0.05) (table 2.5).  

Analysis of individual genes  

The analysis for all individual genes available in the arrays reveals that no individual gene was 

significantly differentially expressed between cases and controls, after adjusting for multiple 

testing. The lack of single gene expression differences confirms the value of gene set analysis for 

aggregating coordinated expression signals from related genes in gene sets in exploring 

pathophysiological pathways to disease.
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Table 2.4. Results of KEGG gene sets stratified by GA. 
 GA>=37wks GA<37wks 

 Top up regulated gene 
sets 

Top down regulated 
gene sets 

Top up regulated gene 
sets 

Top down regulated 
gene sets 

Gene sets P-values q-values P-values q-values P-values q-values P-values q-values 
Ribosome 3.2e-18 6.6e-16 1.3e-27 2.7e-25 1.2e-24 2.5e-22 1.1e-16 2.2e-14 

SLE 9.2e-03 >0.1 6.5e-03 >0.1 6.5e-06 6.6e-04 >0.05 >0.1 
OT 2.2e-04 2.2e-02 >0.05 >0.1 3.6e-02 >0.1 9.2e-03 >0.1 
CC 3.2e-02 >0.1 5.4e-03 >0.1 1.2e-02 >0.1 >0.05 >0.1 
OP >0.05 >0.1 >0.05 >0.1 1.2e-03 4.8e-02 >0.05 >0.1 

LTM >0.05 >0.1 8.3e-04 5.6e-02 4.1e-03 >0.1 >0.05 >0.1 
RAC >0.05 >0.1 6.4e-04 5.6e-02 1.6e-02 >0.1 >0.05 >0.1 

Apoptosis >0.05 >0.1 5.7e-03 >0.1 3.7e-02 >0.1 >0.05 >0.1 
GHD >0.05 >0.1 6.4e-03 >0.1 >0.05 >0.1 >0.05 >0.1 
PECI >0.05 >0.1 >0.05 >0.1 1.1e-03 4.8e-02 >0.05 >0.1 

SLE: Systemic lupus erythematosus, OT: Olfactory transduction, CC: Cell cycle, OP: Oxidative phosphorylation, LTM: Leukocyte 
transendothelial migration, RAC: Regulation of actin cytoskeleton, GHD: Graft-versus-host disease, PECI: Pathogenic Escherichia 
coli infection.  
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Table 2.5. Results of KEGG gene sets stratified by CP type. 
Gene sets Quadriplegia (n=24) Diplegia (n=15) Hemiplegia (n=13) 

 
P-

values 
up 

q-value 
P-

values 
down 

q-value 
P-

values 
up 

q-value 
P-

values 
down 

q-value 
P-

values 
up 

q-value 
P-

values 
down 

q-
value 

Ribosome 1.6e-22 3.4e-20 2.2e-28 4.6e-26 8.2e-10 1.6e-07 5.1e-08 1.1e-05 4.3e-12 8.9e-10 1.8e-10 3e-08 

SLE 4.4e-03 >0.1 4.6e-02 >0.1 1.9e-04 1.9e-02 >0.05 >0.1 2.4e-02 >0.1 4.3e-03 >0.1 

OT 1.3e-03 >0.1 >0.05 >0.1 1.2e-02 >0.1 >0.05 >0.1 >0.05 >0.1 >0.05 >0.1 

LTM 1.1e-02 >0.1 4.1e-02 >0.1 >0.05 >0.1 >0.05 >0.1 >0.05 >0.1 4.5e-03 >0.1 

RAC >0.05 >0.1 2.4e-02 >0.1 >0.05 >0.1 2.0e-02 >0.1 >0.05 >0.1 3.2e-02 >0.1 

CC >0.05 >0.1 3.1e-02 >0.1 >0.05 >0.1 >0.05 >0.1 2.7e-02 >0.1 2.4e-02 >0.1 

OP >0.05 >0.1 >0.05 >0.1 3.7e-02 >0.1 >0.05 >0.1 6.9e-03 >0.1 >0.05 >0.1 
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Analysis of imputed data  

Briefly, for the 7 preselected gene sets, results are similar to those of non-imputed data 

and the similarity is clearer when stratifying on GA (table 2.6). For the KEGG gene sets, the top 

up regulated gene sets are the same and in the same order as those of the dataset with missing 

values. The results of the top down regulated KEGG gene sets are also similar to those of the 

dataset with missing values, except for a slight difference in order, and one additional down 

regulated gene set (UMP) (table 2.7). Thus imputing values to missing data did not materially 

change our results on gene set analysis.  
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Table 2.6. Results of 7 pre-selected gene sets from dataset with imputation for missing 
values. 

 All GA GA>=37wks GA<37wks 

Gene sets P values 
UP 

P-values 
DOWN 

P values 
UP 

P-values 
DOWN 

P values 
UP 

P-values 
DOWN 

Inflammatory       
canonical 0.95413 0.75982 0.98644 0.45653 0.49302 0.90513 
empirical 0.04142 0.000014 0.52683 0.000009 0.00377 0.11562 
Thyroidal       
canonical 0.95934 0.83449 0.81971 0.88131 0.94878 0.51051 
empirical 0.00038 0.12671 0.11309 0.88424 0.00011 0.43578 
Asphyxial       
canonical 0.42742 0.88891 0.51491 0.86248 0.34002 0.69644 
empirical 0.00478 0.017 0.09259 0.02492 0.00614 0.16318 

Coagulative       
canonical 0.94373 0.91647 0.95229 0.89563 0.65688 0.71440 
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Table 2.7. Results of gene set analysis of KEGG gene sets from dataset with imputation for 
missing values. 

Top up regulated gene sets Top down regulated gene sets 
Gene sets P-values Gene sets P-values 
Ribosome 4.0e-47 Ribosome 2.5e-46 

SLE 3.7e-08 RAC 5.6e-04 
OT 2.3e-05 SLE 8.1e-04 
OP 2.4e-03 UMP 6.0e-03 
CC 5.8e-03 LTM 6.1e-03 

  CC 8.7e-03 
SLE: Systemic lupus erythematosus, OT: Olfactory transduction, CC: Cell cycle, OP: Oxidative 
phosphorylation, LTM: Leukocyte transendothelial migration, RAC: Regulation of actin 
cytoskeleton, UMP: ubiquitin mediated proteolysis.  
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qPCR validation of mRNA data  

To validate our microarray findings, we used qPCR techniques to examine the 

housekeeping genes, ACTB (beta actin) and PPIA (peptidylprolyl isomerase A), both commonly 

used in the literature to validate microarray findings. To validate genes differentially expressed, 

we selected FCGR2A (Fc fragment of IgG, low affinity IIa receptor), a representative gene of the 

Lupus pathway, which was among the most significantly differentially regulated gene sets in the 

KEGG database.  

For ACTB and PPIA genes, the correlation coefficient between the log2 intensity of 

microarray data and mean CT (cycle threshold value) of qPCR was –0.52 (P < 0.0001) (figure 

2.4) For FCGR2A, the correlation coefficient between the log2 intensity of microarray data and 

mean CT of qPCR is –0.43 (P < 0.0001) and the correlation coefficient between log2 fold change 

of microarray data and log2 fold change of qPCR data was 0.38 (P = 0.0197) (figure 2.5).  
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Figure 2.4. Correlation between qPCR and microarray data of housekeeping genes. 
a: ACTB gene, b: PPIA gene. Cor: correlation coefficient.  
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Figure 2.5. Correlation between qPCR and microarray data of representative gene 
(FCGR2A) of SLE gene set. 
a: log2 expression, b: log2 fold change. Cor: correlation coefficient. 
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Discussion 

uDNBS are available in many states and may be a rich resource for epidemiological 

research. 91

Apart from a few genetic risk factors that we do not focus on, many environmental or 

behavioral exposures or risk factors may be altered, treated or avoidable. Most of the factors 

contributing to the inflammatory, thyroidal and hypoxic/asphyxial pathways may be averted. 

Thus, if these pathways are among important causal pathways of CP, there should be a hope for 

the reduction of CP prevalence. In other words, understanding causal pathways of cerebral palsy 

via gene expression and clinical data may help develop strategies to prevent CP in the future and 

thus may help reduce lifetime health care burden caused by CP. 

 If gene expression profiling, especially via gene set analysis, can reveal potential 

risk factors or causal pathways to CP, we may set a scientific precedent for future studies using 

gene expression profiling from uDNBS to investigate the etiology of other disorders potentially 

of perinatal origin such as autism, etc.  

The analysis of differential expression has provided some interesting results. The FIRS 

(empirical inflammatory gene set) contains the genes that are up-regulated in preterm newborns. 

These genes are also up-regulated in preterm born CP cases vs. controls. This suggests that CP 

may share some mechanism or pathological processes with FIRS or FIRS is a part of the path 

leading to CP in preterm. However, these same genes are more down regulated in term born CP. 

It is hard to speculate the pathological mechanism but this may suggest that there may be a 

difference in mechanisms leading to CP between term and preterm CP. For empirical hypoxia 

gene set, the pattern of differential expression is similar to that of FIRS gene set in that it is more 

down regulated in term and slightly more up regulated in born CP. Thus, the genes in this gene 

set may be regulated similarly to the genes in FIRS gene set. The empirical thyroidal gene set is 
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only up regulated in preterm born CP. This may be linked to the fact that preterm newborns often 

have thyroid hormone disorder.  

The significant differential expression of the three above empirical gene sets represent 

inflammatory, thyroidal and hypoxic pathways suggests that there is a possible coordination of 

genes in FIRS, hypoxic and thyroidal pathways in developing CP. In other words, many 

pathways may coordinate to produce CP, not just a single pathway.  

In addition, there may be an important effect of GA on differential expression patterns of 

the above three gene sets. Thus, pathological processes leading to CP may be different in term 

and preterm newborns. The effect of GA is biological and patho-phyiological meaningful and 

may match with current understanding of CP in preterm-born CP. The findings on term-born CP 

is quite new and may lead to new hypothesis about difference in mechanism or causal pathways 

to CP in term and preterm born CP.  

Among KEGG gene sets, several gene sets (SLE, LTM) related to inflammatory 

processes are significantly either up or down regulated. Lupus gene set contains genes related to 

multiple inflammatory processes such as T cell and B cell receptor signaling pathways, LTM, 

Jak-STAT signaling pathway, cytokine-cytokine receptor interaction, complement and 

coagulation cascades, Apoptosis, tissue injury and damage, etc. RAC largely overlap with LTM 

gene set and thus, the significant result of RAC may be due to overlapping genes with LTM.  

The pattern of differential expression of SLE and LTM are similar to FIRS in that they 

are more up-regulated in preterm born CP and more down regulated in term born CP. Several 

gene sets related to inflammation are more up-regulated in preterm born CP (SLE, LTM, 

Apoptosis, PECI) and more down-regulated in term born CP (SLE, LTM, Apoptosis, GHD). 

However, only SLE is significant (down regulation) after adjusting for multiple testing. The 
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results of KEGG supplement and strengthen the results of 7 selected gene sets and indicate that 

different processes related to inflammation in peri-partum period may play important role in 

developing CP.  

Methodologically, a broad and deep analysis strategy has been employed for the analysis 

of differential expression. First, although analysis of individual genes reveals no significance 

gene, the analysis aggregating genes as gene sets produces important and interesting results. 

Thus, gene set or pathway analysis is essential in investigating pathways to CP. Second, 

examining pre-selected gene sets for the four pre-hypothesized pathways helps focus on the most 

potential pathways to CP and also reduces the need for adjusting for multiple testing. Extensively 

exploration of other gene sets from KEGG database help fully examine and discover other 

possible pathways contributing to the development of CP. Third, we performed the test for both 

uni-directional gene sets (genes in the set are regulated in the same direction) and bi-directional 

gene sets (genes in the set are regulated in different directions). Fourth, the global test of GAGE 

based on gamma distribution helps detect differential expression across pairs either 

homogeneously or heterogeneously. Fifth, for a given gene set, a significant global gamma test 

in a direction of differential expression (up or down) indicates that there are at least some pairs in 

the samples significantly differentially expressed in that direction. Thanks to this characteristic, 

the global gamma test of GAGE help detect heterogeneity in differential expression across 

matched pairs (some pairs are up regulated and some other pairs are down regulated). Other 

available gene set analysis methods are incapable of detecting differential expression when there 

is large heterogeneity. Our samples are clinically heterogeneous in gestational age, CP types. 

Thus, the GAGE method is appropriate to use to screen for differential expression either 

homogeneously or heterogeneously. 



  

41 
 

Furthermore, technically, the quality of our microarray data is validated via the 

acceptably good correlation with qPCR data, a so called “gold standard”. Statistically, repeating 

the analysis on the dataset with imputation for missing values can evaluate how missing values 

due to filtering of unqualified spots affect the results of the analysis of differential expression. 

The results of both qPCR data and analysis of imputed data indicate that the quality of 

microarray data is acceptably good and the results of gene set analysis using the GAGE method 

on our microarray data is relatively robust. 

Analysis of differential expression in term of gene sets: methodological issues   

The interpretation of the results should take into account the fact that the global gamma 

test of GAGE may be sensitive to extremely small p-values of a few pairs. It is unknown about 

type I error or false positive rate of the GAGE method. Thus, simulation and permutation on 

randomly selected gene sets of different sizes on actual microarray data is necessary to evaluate 

type I error of the GAGE method.  

In addition, the GAGE method may also have some limitations. Although it is probably 

the only published gene set analysis method applicable to matched data, this method is based on 

fold change of gene expression values between case vs. matched control for each matched pair. 

While fold change may be appropriate for matched paired data, it is a relative measurement of 

difference which is sensitive to small values. Thus, inference from hypothesis testing must be 

cautious. In addition, except for stratified analysis, the GAGE method is not capable of 

evaluating the interaction or confounding effects of multiple covariates, especially continuous 

covariates. In clinical or epidemiological studies, many covariates may need to be taken into 

account when interpreting of gene set analysis results. Thus, there should be a need to develop 
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more rigorous approaches for gene set analysis to handle different aspects of microarray data in 

clinical epidemiological context.  

Besides, several gene sets or pathways may have similar effects or may cooperate in 

disease development. There is also overlap in genes between gene sets that may affect the results 

and interpretation of the results when examining multiple gene sets. Therefore, a statistical 

method that can describe and test for the correlation or co-effect of gene sets as well as the 

influence of overlapping genes between gene sets is necessary to understand and quantify the 

relationship between gene sets or pathways.  

Data processing and validation: methodological issues 

First, some loss of mRNA, especially in older unfrozen blood spots, has been 

documented, and may affect the quality or quantity of mRNA used for gene expression profiling 

and thus effect the quality of microarray data generated from those mRNA samples. In older 

samples, with lower microarray data quality, the expression signal detected from microarray data 

may be too weak in all phenotypes for the genes of interest to be shown to be differentially 

expressed. Therefore, it is important to systematically explore the patterns of mRNA microarray 

quality which may indirectly reflect mRNA degradation or the amount of extractable mRNA 

with respect to age of NBS samples. It is also essential to evaluate the influence of mRNA 

microarray data quality on the possibility of detecting differential expression.  

Second, a good normalization method should be able to account for systematic variations 

across arrays due to systematic variations in biological or clinical or technical characteristics 

across mRNA samples. The conventional quantile normalization method that we are using and 

other available published normalization methods can barely address this issue. Thus, an approach 

that can better address the trend of mRNA microarray quality over time as well as the effects of 
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other covariates on the distribution of detected expression signals across samples needs to be 

developed to process microarray data like ours.  

Third, when using qPCR to validate mRNA microarray data, housekeeping genes are 

often needed to accurately quantify RNA. Housekeeping genes are often selected as genes with 

similar expression level in microarray data across samples. However, in old mRNA samples, the 

level of gene expression signal detected may decrease across samples over time. As a result, it 

may not be appropriate to apply the same criteria for selection of house-keeping genes for 

microarray data from degraded mRNA. We are using some commonly used housekeeping genes 

in literature for qPCR. However, it is unknown that whether these genes are the appropriate 

housekeeping genes for our actual microarray data. Thus, an approach for selecting 

housekeeping genes taking into account the pattern of variation of detected expression signal 

over age of samples is needed.   
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CHAPTER 3: ASSESSMENT OF MICROARRAY DATA QUALITY    

Abstract 

Background: Archived unfrozen newborn blood spots (NBS) collected on filter paper are 

widely available, and have been shown to retain mRNA sufficient for gene expression profiling. 

Quantifying the external factors that influence the number of mRNA species and/or quality of the 

mRNA retained by the filter paper can suggest the most efficient ways of using mRNA from 

NBS to explore the perinatal origins of diseases.  

Methods: We evaluated the effect of storage time on the mRNA species detected using 

gene expression microarrays.  NBS samples were stored for various times (3 – 16 years) and we 

investigated how mRNA storage time affected the expression patterns. We used the NBS of 53 

cerebral palsy cases and 53 matched controls from an ongoing case-control study in whom 

differential expression of several gene pathways has been demonstrated.  

Results:  The RNA integrity number (RIN) (2.3+/-0.71) and the 28s/18s rRNA ratio (~0) 

are persistently low across NBS samples of all ages. We found that for the majority of genes, the 

signal intensity depended on the storage time of the NBS sample. This decrease in signal was 

detected using both microrrays and qPCR detection methods. Nonetheless, differential 

expression at the individual gene level (of the gender-specific genes XIST and KDM5D) and at 

the gene set level (the fetal inflammatory response syndrome (FIRS) gene set) is detectable, but 

the signal is more pronounced in NBS samples that were stored for six years old or less.  

Conclusion:  Differential expression of genes by experimental and control conditions can be 

ascertained in NBS stored between 3-16 years.  Since mRNA microarray data quality decreases 

over time, potentially muting the extent of differential expression, we recommend prioritizing 

NBS of six years old or less for study.   
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Introduction 

Newborn blood spotted on filter paper (NBS) is used in every state and most 

industrialized countries for genetic screening. Archives of leftover blood spot material are 

available in many states,92 and mRNA can be extracted from archived NBS, even after many 

years of unfrozen storage. 93 94 95 96 We have shown that mRNA extracted from archived 

unfrozen NBS is of sufficient quality to permit mRNA microarray analysis for genome-wide 

expression profiling.97

 Newborn blood spot collection differs from most human blood collection modalities in 

that no collecting tube is used, but blood is spotted directly from a heel stick incision onto filter 

paper and dries in minutes. The absence of a liquid environment appears to reduce the activity of 

the ribonucleases and micro RNAs that degrade mRNA, as most mRNA species are within the 

cell are quickly degraded after being transcribed. However, some loss of mRNA, especially in 

older unfrozen blood spot samples is likely and this loss may affect the quality of mRNA used 

for gene expression profiling.  

 Thus NBS are a potential resource for research that uses gene expression 

patterns in the newborn period to study diseases of perinatal origin.  

A commonly used method for assessing RNA quality is the RNA integrity number (RIN), 

which ranges from 1 (which usually indicted large amounts of mRNA degradation) to 10 (which 

usually indicates largely intact mRNA).98 Other methods of RNA quality assessment are the 

28s/18s rRNA ratio method, 99 100 the degradometer,101 and the RNA quality scale (RQS).102 

While RIN, 28s/18s rRNA ratios are useful proxies for measuring RNA quality, they do not 

inform us if it is possible to still detect a subset of differential expression of genes that can exist 

between experimental and control groups.  
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In this chapter, we address two topics related to assessing and addressing the quality of 

mRNA microarray data obtained from archived unfrozen dried blood spots using Agilent 

microarray platform. We first address approaches for assessment of patterns of mRNA 

microarray quality which may indirectly reflect mRNA degradation or the amount of extractable 

mRNA with respect to age of NBS samples. We also address the influence of mRNA microarray 

data quality on the possibility of detecting differential expression. We anticipate that our 

approaches may help provide guidelines for using NBS in gene expression profiling, helping to 

make the best use of DNBS, a potentially rich resource for epidemiological and clinical studies. 

Methods 

The mRNA microarray dataset used for illustrative purposes in this paper is derived from 

archived unfrozen newborn blood spots of 53 singleton cerebral palsy cases and 53 matched 

controls (year of birth, sex, gestational age) who are part of on-going case-control study 

investigating the etiology of cerebral palsy. Among the 106 study subjects, 31 are female and 75 

male, with ages ranging from 2.9 - 16 years. More details about this study are described in 

previous chapters.  

Approaches for assessing patterns of mRNA microarray data quality over time.   

We examine the following features of raw microarray data:  

(1) The distribution of RIN and 28s/18s rRNA ratio across age of NBS samples. 

(2) The brightness of raw images across samples and across age of blood spots;  

(3) The overall distribution of raw unprocessed probe intensity data by age of blood spots 

as assessed using density plot and box plots;  

(4) The slope of detected expression intensity by age of blood spots for raw aggregated 

gene data for all genes available in the arrays.  
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We employ the commonly used method for filtering unqualified spots of microarray data 

of Paterson et al, in which probe intensity is removed when the gProcessed signal is less than two 

times the gProcessed signal error.103

To have a further detailed look at the pattern of the detected expression signal of mRNA 

microarray data of individual genes, we examined the pattern of detected expression signals of 

some common housekeeping genes including PPIA, ACTB, GAPDH. We then examined 

whether this pattern can also be seen or can be validated in qPCR data of these genes.  

 We compare the number of aggregated genes being filtered 

out and number of genes remaining after filtering across samples and across age of blood spots.  

We applied quantile normalization for filtered microarray data with a simple modification by 

stratifying by age groups.  

Effect of mRNA microarray quality over time on detecting differential expression from 

microarray data  

We assess the effect of mRNA data quality over time on two commonly used approaches 

in microarray work:  

(1) The effect of mRNA microarray data quality by age of samples on detecting differential 

expression of individual genes; We illustrate this process using our work on detecting genes 

(XIST and KDM5D) differentially expressed by gender.  

(2) The effect of mRNA microarray data quality by age on detecting differential expression of 

gene sets. We illustrate this process using our work showing that an inflammatory gene set is 

differentially expressed in children with and without CP.  

All data exploration and analysis were done in R version 2.13.2. The R limma package 

was used for data processing and linear model for microarray data as implemented in the R 

limma package 104 105 is used for the analysis of differential expression of individual genes 
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between genders. The GAGE (Generally applicable gene set analysis) method is used for gene 

set analysis.106

Results  

  

Pattern of mRNA microarray data quality over age of blood spots 

The RIN values were determined for the mRNA samples isolated from 106 NBS cases. 

The average RIN for all samples was 2.3±0.71 with the exception of a small percentage of 

outliers. Next, we looked for an association between RIN value and storage time of the NBS.  

Somewhat unexpectedly, the RIN tends to be similar between NBS sample regardless of the 

storage time (figure 3.1a). These results are consistent with the 28s/18s ratio. This ratio is zero 

for nearly all samples and does not show a time-related trend (figure 3.1b).   

Although, the RIN numbers did not show a trend with the storage time of the NBS, we 

noticed that there was a variation of the overall fluorensensce intensity that was hybridized to the 

microarrays images. In this visual inspection, the mRNA species isolated from NBS samples 

stored for a shorter amount of time tended to produce "brighter" array images and the mRNA 

isolated from NBS samples stored for a long amount of time tended to produce darker array 

images (figure 3.2). Based on this visual inspection, we tested whether flouresence intensity of 

the overall array varied by NBS storage time.  
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Figure 3.1. The distribution of RIN and 28s/18s ratio across samples with respect to age of 
blood spots. 
a: RIN, b: rRNA 28s/18s ratio.    
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Figure 3.2. Examples of brightness of raw microarray images with respect to age of blood 
spots. 
 (a: 4 years; b: 8 years; c: 14 years).  
 

a b c 
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Density plots and box plots of log2-transformed raw (non-normalized) intensity data for 

mRNA populations isolated from all 106 samples showed that the NBS with shorted storage 

times tended to produce more higher intensity signals and NBS with longer storage time tended 

to produce more lower intensity signals (figure 3.3a). The trend of the distribution over age of 

blood spots (samples are ordered by age of blood spots continuously) can be seen more visually 

with the box plots (figure 3.3b). The median values of log2 intensity of each of all arrays are 

significantly linearly decreased over age of blood spots (figure 3.4).  

To determine if the decrease in fluoresence intensity was due a decrease in the entire 

population of mRNA or was limited to a small set of genes, a linear modeling approach was 

used. For this approach, for each gene, the expression values from each of the 106 samples were 

isolated and relationship between the log2-transformed intensity and NBS storage time was 

determined. For 89% of the 21500 genes tested, a significant decrease in expression value was 

associated with NBS storage time (figure 3.5). In other words, the raw log2 intensity of almost 

all of the genes linearly decreased as storage time increased. We call the linear slope indicating 

the decreasing of detected expression signal over age of blood spots for each gene the 

“decreasing slope”.  
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Figure 3.3. Distribution of expression intensity before quantile normalization by age of 
blood spots. 
a: density plot; b: box plot.  
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Figure 3.4. Median of log2 intensity of all genes of each of all arrays by age of blood spots 
before and after filtering. 
a: before filtering; b: after filtering.   

4          6         8        10        12       14      16 
                      Age of blood spots  

4          6         8        10        12       14      16 
                      Age of blood spots  

   
   

   
M

ed
ia

n 
of

 lo
g2

 in
te

ns
ity

 
5.

0 
   

   
   

   
 5

.5
   

   
   

   
  6

.0
   

   
   

   
   

6.
5 

   
   

   
M

ed
ia

n 
of

 lo
g2

 in
te

ns
ity

 
5.

5 
   

   
 6

.0
   

   
 6

.5
   

   
 7

.0
   

   
 7

.5
 

  

  

Smooth line 
Fitted line 

Smooth line 
Fitted line 

a 

b 



  

54 
 

Another method to determine if detection of mRNA species varies with NBS storage time 

is to examine the number of features (probes) on the microarrays that show signal intensity 

above a presumed background level. After applying the filtering method of Paterson et al, the 

number of genes that were determined to be within the background range was found to linearly 

increase based on the storage time of the NBS (p-value <0.0001). Likewise, the number of gene 

expression features remaining for subsequent analysis decreases linearly with the NBS storage 

time (figure 3.6). Of a total of 21500 genes available in the arrays approximately 35%, 50% and 

55% genes are determined to be within the background noise range when the NBS are stored for 

less than 5 years, between 5 and 10 years, and greater than 10 years old, respectively. The mean 

number of genes remaining is approximately 13551, 10730, 9925 from blood spots <5, 5-10, >10 

years old respectively.  

The detected expression signal of the three housekeeping genes ACTB, PPIA, GAPDH 

are significantly decreased over age of blood spots in microarray data (p.value<0.0001; slope=-

0.23, -0.15, -0.14, respectively) (figure 3.10 upper panel). The mean of cycle threshold 

(CTmean) of qPCR data of these genes significantly increases over age of NBS (except some 

outliers for PPIA) (figure 3.10 lower panel).  
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Figure 3.5. Slope of log2 expression signals of all genes vs. age of blood spots of raw 
microarray data after aggregated to gene level. 
a: linear slopes; b: p-values of the slopes.  
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Figure 3.6. Number of genes filtered out and number of genes remaining in the arrays after 
filtering. 
a: Number of genes filtered out; b: Mean number of genes filtered out and remaining by age 
group.    
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Figure 3.7. Number of genes of the 7 preselected gene sets remaining after filtering of 
unqualified spots by age of blood spots. 
a, b, c, d, e, f, g respectively: Canonical coagulation, Canonical inflammation, Empirical 
inflammation, Canonical hypoxia, Empirical hypoxia, Empirical thyroid, Canonical thyroid. 
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Influence of decreasing pattern of detected expression signal on detecting differential expression   

To determine if the remaining signal intensities detected by the microarray platform 

actually reflect the mRNA species examined, we examine two genes that are known to be 

differentially regulated between the male and female populations. The XIST gene is expressed 

exclusively in females as part of the system of X chromosome inactivation. Like the other genes, 

the XIST signal intensity significantly decreases with age of NBS storage in both the female 

(slope=-0.14, p.value=0.0012) and for male (slope=-0.02, p.value=0.0226) derived samples.  

However, log2-transformed signal intensity of the XIST gene is higher in females than in males 

for blood spots mainly before about age 6 years (figure 3.8a). T-test for the difference in mean of 

log2 intensity between males and females stratified by age groups are all significant but the 

difference is larger for age group ≤ 6 years than age group >6 years for both XIST (p.value 

<0.0001, ∆mean=1.58 and 1.05 for age group ≤ 6 years and > 6 years respectively)  

Analogous to XIST, the KDM5D gene is localized to the Y-chromosome and is 

expressed in several tissues in males.  The log2 intensity of KDM5D significantly decreases over 

age of blood spots for males (slope=-0.08, p.value=0.0205) but not for females (slope=-0.09, 

p.value=0.1150) probably due to smaller sample size of females. Although less visually clear 

than XIST, for KDM5D, log2 intensity of males is higher than that of females for blood spots <6 

years old and becomes less separate from that of females for blood spots >6 years old (p.value 

<0.01, ∆mean=1.24 and 0.98 for age group ≤ 6 years and > 6 years respectively) (figure 3.8b).  
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Figure 3.8. Expression signal of XIST and KDM5D genes between males and females. 
a: XIST; b: KDM5D.  

4         6        8        10      12      14      16 
                  Age of blood spots  

4         6        8        10      12      14      16 
                  Age of blood spots  

   
   

   
   

   
   

   
Lo

g2
 in

te
ns

ity
  

4 
   

   
   

   
 6

   
   

   
   

  7
   

   
   

   
  8

   
   

   
   

  9
 

   
   

   
   

   
   

   
Lo

g2
 in

te
ns

ity
  

4 
   

   
   

 6
   

   
   

  7
   

   
   

  8
   

   
   

  9
   

   
   

 1
0 

XIST  

KDM5D  

Female 
Male 

Female 
Male 

a 

b 



  

60 
 

We made ratios of expression intensity between of CP case and age-matched control 

individuals. For almost all of the genes, linear modeling approach did not show significant linear 

relationship between relative expression values (log2 fold change) and NBS storage time. Then 

we examined whether gene sets of interest showed age-effects. The number of genes of the 7 

preselected gene sets remaining after filtering of unqualified spots showed a significant 

relationship with age of blood spots (p-values <0.0001) (figure 3.7). For the three gene sets 

showing significant differential expression between cases vs. controls, the GAGE-t-statistics of 

each matched pairs are standardized by converting to equivalent z-statistics using Stouffer’s 

method. The absolute values of these converted z-statistics are then plotted against age of NBS 

of the pairs. For the empirical inflammatory gene set which contain small number of genes 

(n=36), the absolute values of z-statistics are significantly linearly decreased over age of blood 

spots (slope x=-0.72, slope x2 =0.04, p.value<0.001) (figure 3.9). Almost all of the z-statistics 

that are >1.96 are from the pairs with age <6. Chi-square test for the global significance of the z-

statistics across pairs is strongly significant for the age group ≤ 6 years (p.value <0.0001) and not 

significant for age group > 6 years (p.value=0.43). For the other two gene sets (empirical 

hypoxia gene set and empirical thyroid gene set) which contain large number of genes (n=127 

and n=140 respectively), the effect of age of blood spots on the magnitude of z-statistics is not 

linearly significant.  
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Figure 3.9. Absolute values of GAGE- z-statistics of FIRS gene set of matched pairs over 
age of blood spots.
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Figure 3.10. Detected expression signal of common housekeeping genes over age of blood spots. 
a, b, c of upper panel: microarray data; d, e, f of lower panel: qPCR data.
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Discussion 

Our findings suggest that although RIN and 28s/18s ratio are low similarly across age of 

blood spot samples, younger spots do yield more detailed mRNA information than do older 

blood spots.  The RIN results may suggest that mRNA retaining from NBS of age from 3 to 16 is 

degraded severely regardless of age of spot. Yet, the RIN may not accurately reflect the trend of 

mRNA microarray data quality. The RIN may describe the relative quality of mRNA but cannot 

depict how microarray data generated from that mRNA is qualified across samples or whether it 

is qualified enough for detecting differential expression.   

The 28s/18s ratio of zero in almost all samples are due to the absence of the 28s peak. 

The 28s/18s ratio is an indirect measurement of mRNA degradation since it is based on the 

availability of rRNA.  Some studies have suggested that the correlation between 28s/18s ratio 

and mRNA integrity is weak. 107 108

Our explorations of microarray data produced from NBS samples show a consistently 

decreasing pattern of detected expression signal with increasing age of spot. Since there is a 

systematic decrease in intensity between younger blood spots and older blood spots, a 

normalization method should be able to account for this systematic variation across age of blood 

spots. Our simple modification to the conventional quantile normalization method can address 

this decrease trend in part. However, we are developing a customized supervised normalization 

approach that can better address the trend of mRNA microarray quality over time as well as the 

effects of other covariates on the distribution of detected expression signals across samples.  

 Thus, theoretically, in samples severely degraded based on 

28s profile, the 18s and other RNAs species may remain intact. Thus, 28s/18s may not be 

informative as to the chances of detecting differential gene expression in the experimental 

situation.  
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For almost all genes available in the arrays, the expression signal is significantly 

diminished over age of blood spots. This decreasing trend is validated by the qPCR data of the 

three common housekeeping genes ACTB, PPIA and GAPDH. The low signal of all genes in all 

older blood spots may make the detection of differential expression of genes between different 

biological statuses more difficult in older blood spots.  

The decreasing trend of detected expression signal either in microarray data or in qPCR 

data may indirectly reflect the increasing degradation trend of mRNA in blood spots over age of 

blood spots. However, there is no visible trend of RIN and 28s/18s over age of blood spots; thus, 

this decreasing trend may not reflect the quality (degradation) of mRNA from the samples but 

rather the decreasing quantity of mRNA that is extractable from the same amount of blood spot 

sample over age of NBS.  

The differential expression of the two gender specific genes, XIST and KDM5D, were 

much more clearly detected in blood spots <6 years old. At the gene set level, although gene sets 

with large number of genes may not be affected, example of the empirical inflammatory gene set 

which contains a small number of genes also shows that significant z-statistics are almost from 

the blood spots of pairs younger than 6 years old. Thus, although mRNA may still be obtained 

for blood spots of >6 years old, the quantity or the quality of extractable mRNA may be low and 

thus lower the possibility of detecting differential expression from the microarray data generated 

from these mRNA samples.   

In summary, considerable amount of mRNA can be obtained from NBS permitting the 

detection of differential expression between biological statuses, even after ten years of unfrozen 

storage. However, due to mRNA degradation or the decrease in the amount of extractable mRNA 

over time, the older blood spots may produce microarray data of lower quality and this may 
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lower the possibility of detecting differential expression of genes. The possibility of detecting 

differential expression either at individual gene level or gene set level is higher in blood spots < 

6 years old and become less likely for blood spots > 6 years old. Thus, for studies examining 

gene expression from NBS to investigate the differential expression pattern between biological 

statuses, blood spots of < 6 years old should be prioritized for study. 
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CHAPTER 4. APPROACH FOR SELECTING HOUSEKEEPING GENES FROM 

MICROARRAY DATA OF HETEROGENEOUSLY DEGRADED MRNA SAMPLES   

Abstract 

When using qPCR to validate mRNA microarray data, housekeeping genes are often 

needed to accurately quantify RNA. Housekeeping genes are often selected as genes with similar 

expression level in microarray data across samples. However, in degraded mRNA samples, the 

levels of gene expression signal detected may decrease across samples over time. Thus, it may 

not be appropriate to apply the same criteria for selection of house-keeping genes for microarray 

data from degraded mRNA. In this chapter, we propose an approach for selecting housekeeping 

genes based on the slopes of detected expression signal over age of samples of all genes for 

microarray data from heterogeneously degraded mRNA samples. This approach can be 

generalized to other types of microarray data in which detected expression signal of genes may 

be influenced by other variables. mRNA microarray and qPCR data from archived unfrozen 

dried newborn blood spots (uDNBS) of different storage duration will be used to illustrate this 

approach.  

Introduction  

Real time quantitative reverse transcription polymerase chain reaction (qPCR) is a 

reliable method to quantify expression level of genes and thus is often used to validate mRNA 

microarray data. Artifactual variation or error in measuring gene expression level by qPCR can 

be due to variations across samples in initial sample amount, mRNA content per unit mass of 

total RNA, sample preparation, sample loading, sample or nucleic acid quality, RNA 

degradation, cDNA synthesis efficiency. Thus, housekeeping genes are often used as endogenous 

controls for determining the availability of relatively intact RNA (cDNA) and especially for 
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normalization of qPCR data to correct the above potential errors in quantifying the expression 

level of the target genes. 109 110 Housekeeping genes are genes that are often believed to 

express ubiquitously at a stable level in different biological contexts. Thus, housekeeping genes 

are often selected from array-based expression profiles as genes with expression levels above 

background and with similar expression levels across samples. However, some commonly used 

housekeeping genes such as GAPDH, and beta-actin (ACTB) have been reported to express 

differently across tissue types, or respond differently to different stimuli or experimental 

conditions. 111 112 113 114 115 116 117 118

Selecting proper housekeeping genes is essential to accurately quantify RNA. Thus, 

carefully examining the behavior or pattern of expression signal of potential housekeeping genes 

together with other genes in studied samples is critical. In some types of tissues, or in some 

experimental conditions, commonly known housekeeping genes in the candidate list for testing 

may all not satisfy the criteria for being unregulated housekeeping genes to be used. Thus, it is 

often necessary to explore or screen a large list of genes of all genes available, or to find out the 

not-well-known but appropriate genes to serve as control genes. 

 Therefore, in practice, usually a set of housekeeping 

genes are tested to find the proper ones that are not regulated in the studied condition.  

119 120 More extensive meta-

analysis of multiple gene array samples can be helpful in identifying novel potential 

housekeeping genes with enhanced stability.121 Sometimes, no single housekeeping gene is 

qualified enough. In such circumstances, the geometric means of multiple, carefully-selected 

housekeeping genes will improve accuracy in the normalization of qPCR data.122 A model 

based variance estimation approach proposed by Andersen et al, which evaluates both variation 

of candidate housekeeping genes and variation between sample subgroups, can provide a 
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systematic and robust strategy to identify stably expressed genes appropriate for 

normalization.123

In degraded mRNA samples, the detected gene expression signal of non-regulated 

housekeeping genes may not be similar across samples but may be decreased or different across 

the age of samples. Thus, it may not be appropriate to apply the conventional criteria for 

selection of house-keeping genes to microarray data from degraded mRNA. In this paper, we 

will describe the slopes of detected expression signals over age of samples of all genes available 

in the arrays. We then propose an approach for selecting housekeeping genes for microarray data 

from degraded mRNA based on overall slopes of all genes available in the arrays over age of 

samples. This approach will be illustrated by mRNA microarray and qPCR data from archived 

unfrozen dried newborn blood spots (uDNBS) of different storage duration. Our approach can be 

generalized to other types of microarray data in which detected expression signal of genes may 

be influenced by other variables. In addition, our proposed approach can be easily implemented 

and can quickly provide potential housekeeping genes for specific microarray study.  

   

Methods  

For microarray data of ideal homogeneous tissue with no or little mRNA degradation, the 

slopes of detected expression signal of all genes over a given variable (e.g. age of samples) 

center around zero. In other words, the median of the slopes of the detected expression signal of 

all genes over a given variable is approximate zero. The qualified housekeeping genes are those 

with similar detected expression signals across samples and thus are those genes with slopes of 

detected expression signals of all genes over a given variable (e.g. age of samples) that are close 

to zero, or close to the median of the slopes. In other words, the qualified housekeeping genes are 

those with slopes that approximate the median of the slopes of all genes available in the arrays.  
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For microarray data of mRNA that is degraded heterogeneously across samples, the 

detected expression signal of all genes may be systematically different across samples or may be 

decreased across age of samples. Thus, the slopes of detected expression signal of all genes over 

a given variable (e.g. age of samples) may not center around zero. For qualified housekeeping 

genes, the detected expression signal may not be similar across samples but may decrease over 

age of samples. Alternatively, the slopes of detected expression signals of all genes over age of 

samples may not be close to zero but may be negative. Following the above logic, the qualified 

housekeeping genes are not those with similar detected expression signal across samples but are 

those with slopes of detected expression signal that approximate the median of the slopes of all 

genes available in the arrays. Following this logic, selection of housekeeping genes can be done 

with the following steps:  

(1) compute the slopes of detected expression signal (log2 intensity) over age of samples 

for each of all genes available in the arrays;  

(2) compute the robust estimate of the median of all of the slopes with 95% confidence 

interval (95CI) by using a re-sampling approach. This can be done by randomly sampling 1000 

slopes out of the computed slopes of all genes and calculating the median of these 1000 slopes. 

This procedure can be repeated many times to calculate many median slopes (e.g. 1000 times to 

calculate 1000 median slopes). The 95CI of the median slope would fall within the 2.5% centile 

and 97.5% centile of the calculated median slopes.   

(3) select the genes with slopes within 95CI of the median slope as housekeeping genes.   

To ensure the selected housekeeping genes are not regulated by the studied condition 

(cases vs. controls), the above procedures are repeated for case subgroups and control subgroups 

of samples. The genes with slopes within 95CI of the median slopes of both the case and control 
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subgroups are qualified in both subgroups and thus are not regulated by their membership in the 

studied groups. In addition, to assure that the selected housekeeping genes are not influenced by 

experimental technical conditions, such as batch effects, the above procedures are repeated for 

two batches of the data. The genes with slopes within 95CI of the median slopes of both batches 

are qualified in both batches and thus are not affected by laboratory batches. Furthermore, to 

minimize the possibility of selecting false positive genes, and to enhance the robustness of the 

selection, the selected housekeeping genes are those with slopes within 95CI of the median 

slopes of both case and control sub-groups and 95CI of the median slopes of both batches. For 

even more reliable result, among these genes, the genes with slopes within 95CI of the median 

slope of all subjects are selected as housekeeping genes for qPCR. 

Housekeeping genes = A ∩ (B1 ∩ B2) ∩ (C1 ∩ C2)  

where A, B1, B2, C1, C2 are the genes with slopes within 95CI of the whole dataset, 

batch 1, batch 2, case group, control group, respectively (∩ means joint probability). Ideally, the 

selected housekeeping genes are the genes that belong to all A, B1, B2, C1, C2.  

ACTB, PPIA, GAPDH, RN28S1 are of the most commonly used housekeeping genes 

and have been evaluated in newborn blood. ACTB was reported to be the least variable while 

GAPDH was the most variable in neonate blood with hypoxic and acidotic condition.  RN28S1 

has shown to be the least variable gene in hypoxic condition. Examples of slopes of some 

commonly used housekeeping genes including ACTB, PPIA, GAPDH, and three rRNA genes 

RN28S1, RN18S1 and RN5-8S1 are examined to evaluate the pattern of RNA degradation of 

mRNA and rRNA. In addition, slopes of separate probes of these genes are inspected to assess 

how degradation is different for different probes of a gene thus allowing us to select the most 

optimal probes for designing primers for qPCR assays. To evaluate the quality of microarray 
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data as compared to qPCR data, we examined the trend of qPCR CT mean over age of blood 

spots for the four genes ACTB, PPIA, GAPDH, RN28S1.   

All analyses are done using statistical software R (version 2.13.2). Qualified 

housekeeping genes should have expression signals above background noise.  Thus, we 

employed the commonly used method for filtering unqualified spots of microarray data of 

Paterson et al, in which probe intensity is removed when the gProcessed signal is less than two 

times the gProcessed signal error.124

The mRNA microarray dataset used for illustration in paper is from archived unfrozen 

dried blood spots of 53 cerebral palsy cases and 53 matched controls of an on-going case-control 

study investigating the etiology of cerebral palsy. CP cases and controls are matched by year of 

birth, and gestational ages. Microarray assays were done in two batches in which batch 1 

contains 21 case - matched control pairs and batch 2 contains 32 case – matched control pairs. 

All 106 study subjects are singletons and aged from 2.9-16 years by the time mRNA is extracted 

from their newborn blood spots for microarray assays.  

 The filtered probe data are normalized using quantile 

normalization method and then aggregated to the gene level using the mean value of the 

expression signal of all available probes of each gene. The processed data is used to compute 

degradation slopes over age of blood spots of each gene. R codes for implementing the proposed 

housekeeping gene selection procedures are available upon request.  

Results 

Microarray data  

The slopes of detected expression signal over age of blood spots of all genes (and their p-

values) of raw data and of filtered and normalized data are shown in figure 4.1. For raw data, the 

degradation slopes of almost all of the genes are negative and almost all (89%) of the p-values of 
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the slopes are significant. This indicates that the detected expression signals of almost all genes 

significantly decrease over age of samples, that is, the RNAs of almost all genes are degraded 

increasingly over time. For filtered and normalized data, because low intensity signals were 

filtered out generating large percentage of missing values, most of the slopes are still negative, 

although less negative than those of raw data.  

The 95%CI of the median of the slopes of all genes over age of blood spots of all 106 

subjects, 53 cases, 53 controls, 42 subjects of batch 1 and 64 subjects of batch 2 are (-0.041; -

0.035), (0.044; -0.037), (-0.049; -0.043), (-0.044; -0.037), (-0.055;-0.043) respectively. There are 

6 genes with slopes that fall within the 95%CI of the median of the slopes of both case and 

control groups and both batch 1 and batch 2 including BAIAP2, CSTL1, ZNF544, FLJ45340, 

PRDX2, RCCD1. Description of these genes is shown in table 1. After applying filtering, 

normalization and aggregating of probe signals to the gene level, the slopes of these genes are all 

approximate -0.04 except ZNF544 with slope of -0.05. All slopes are statically significant except 

ZNF544 and PRDX2 (figure 4.2). Among these genes, RCCD1 has its slope within 95CI of the 

median slope of all subjects. It is also notable that the variation of the detected expression signal 

of these genes is quite small (the difference between the lowest signals to highest signals is 

mostly within 1-3 unit of log2 intensity). This is a favorable characteristic of housekeeping 

genes. The slopes of different raw probes of each of these genes are shown in figure 4.3.  
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Figure 4.1. Slopes and p-values of quantile normalized log2 expression signal of all genes 
available in the arrays over age of blood spots. 
a: linear slopes; b: p-values of the slopes. 
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Figure 4.2. Slopes of log2 expression signal over age of blood spots of six selected housekeeping genes.  
a, b, c, d, e, f: BAIAP2, CSTL1, ZNF544, FLJ45340, PRDX2, RCCD1.  
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Figure 4.3. Slopes of log2 expression signal over age of blood spots of selected housekeeping genes.  
a, b, c, d, e: BAIAP2, CSTL1, ZNF544, RCCD1, PRDX2.   
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Table 4.1. Description of housekeeping genes selected by the proposed approach. 
Gene 
symbol  

Gene full 
name 

Systematic 
Name 

Gene 
type 

Gene function* Selected 
Agilent 
probeUID 

Suggested Agilent microarray 
probe sequence for qPCR 

BAIAP2# BAI1-
associated 
protein 2 

NM_006340 protein 
coding 

Encode brain-
specific 
angiogenesis 
inhibitor (BAI1)-
binding protein 

13151 TGGCACTACGGAGAGAGTGA 
GAAGACCAAGATGCGGGGCT 
GGTTTCCCTTCTCCTACACC 

CSTL1# cystatin-like 1 NM_138283 protein 
coding 

encompasses 
proteins that contain 
multiple cystatin-
like sequences 

38832 AACAATGCCAGCAACGACAC 
CTACTTATATCGAGTCCAGAG 
GCTAATTCGAAGTCAGATG 

ZNF544 zinc finger 
protein 544 

NM_014480 protein 
coding 

No description in 
Pubmed 

11935 AGCTATCAGTGCGACGTGTAT 
TAAGCAGCGGTTGTGACTCAT 
TGAACATCAGAGGACATA 

FLJ45340 uncharacterized 
LOC402483 

     

PRDX2 peroxiredoxin 
2 

NM_181738 protein 
coding 

encodes a member 
of the peroxiredoxin 
family of 
antioxidant 
enzymes, which 
reduce hydrogen 
peroxide and alkyl 
hydroperoxides 

31413 TGACTTCAAGGCCACAGCGGT 
GGTTGATGGCGCCTTCAAAGA 
GGTGAAGCTGTCGGACTA 

RCCD1# RCC1 domain 
containing 1 

NM_033544 protein 
coding 

No description in 
Pubmed 

5541 TTGCTTTTGAGTGTTAGATAAA 
TGGAATCCTGTGTATGTGCTTT 
TGTGTCGTTTTTGTCA 

*From Pubmed Gene database.  #Better choice for qPCR assay. 
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For the commonly used housekeeping genes, the slopes of ACTB, PPIA, GAPDH are -

0.23, -0.13, -0.15 respectively with p-values <0.0001 (figure 4.4). The slopes of these 3 genes are 

at 1.5, 10.5, and 8 centile of the slopes of all the genes available in the arrays, respectively. The 

slopes of the detected expression signals of different probes of ACTB, PPIA, GAPDH follow the 

general decreased trend of the genes (figure 4.6 upper panel). For five probes of GAPDH, the 

expression signals of different probes are different and the slope of the probe with highest 

expression signal is the most negative. For these genes, the sequence of the probe with highest 

detected expression signal of each gene is used to help design primer for qPCR assays.  
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Figure 4.4. Slopes of detected expression signal (log2 intensity) over age of blood spots of 
commonly used housekeeping genes.  
a: ACTB, b: GAPDH, c: PPIA.   
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There are three ribosomal RNAs (rRNAs) available in the arrays: RN28S1, RN18S1 and 

RN5-8S1. Their detected expression signals appears to vary or disperse a lot across subjects and 

seems not to clearly follow the general decreasing trend over time as of mRNAs. Although the 

slopes of RN28S1, RN18S1 and RN5-8S1 are negative ( -0.03, -0.05, -0.07 respectively), none 

of these degradation slopes are statistically significant with P-value >0.1. (figure 4.5, figure 4.6 

lower panel).  

qPCR data   

CT mean of the ACTB, GAPDH and PPIA (except some outliers) increases with age of 

blood spots. In other words, the amount of cDNA of these genes decreases over age of blood 

spots. CT mean or the amount of cDNA of RN28S1 is similar across age of blood spots. This 

indicates that the decrease trend of detected expression signals of those genes over age of blood 

spots seen in microarray data is also seen in qPCR data.  
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Figure 4.5. Slopes of detected expression signal (log2 intensity) over age of blood spots of rRNA genes. 
a, b, c: RN5-8S1, RN18S1, RN28S1. 
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Figure 4.6. Different patterns of slopes of detected expression signal (log2 intensity) over age of blood spots for mRNA and 
rRNA probes.  
a, b, c: PPIA, ACTB, GAPDH; d, e, f: RN28S1, RN18S1, RN58S1.  
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Figure 4.7. qPCR CT mean over age of blood spots of genes with qPCR data. 
a, b, c, d: ACTB, GAPDH, PPIA, RN28S1.  
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Discussion  

The degradation trend of mRNA over age of blood spots is reflected in the negative 

slopes of detected expression signal over age of blood spots of most of all genes in our 

microarray data. Since almost all of the slopes of the genes available in the arrays are negative, 

the median of the slopes is also negative. As a result, housekeeping genes are expected to have 

negative slopes of detected expression signal over age of blood spots.  

Using our proposed approach for selecting housekeeping genes, six new potential 

housekeeping genes are discovered from our microarray data. These six genes all have similar 

degradation slopes and their degradation slopes are within 95CI of the median slopes of cases, 

controls and batches. The variation or dispersion of the detected expression signal of the three 

genes RCCD1, BALAP2, CSTL1 is smallest, and their negative degradation slopes are 

statistically significant. Although these genes still follow the decreasing trend due to mRNA 

degradation over age of blood spots, the small variation of their expression signal across subjects 

within a given age of blood spots make them appropriate to be used as housekeeping genes. 

Among these genes, RCCD1 has its degradation slope within 95CI of the median slope of all 

subjects, and is thus better candidate for a housekeeping gene. In other words, the order from 

most to least favorable housekeeping gene among these six selected genes is RCCD1 > 

BALAP2, CSTL1 > ZNF544, FLJ45340, PRDX2. The detected expression signals of different 

microarray probe types of each of the above genes are different. Thus, for the genes selected for 

qPCR, the sequences of the probes with higher intensity in microarray data should be used to 

help design the sequences for the qPCR primers of the corresponding genes.  

The expression signal of rRNA genes does not clearly follow the decreasing trend over 

age of blood spots as other mRNA genes. The slopes of these genes are close to the slopes of the 
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genes selected by our proposed approach. However, these slopes are not statistically significant 

and more importantly, there is a huge variation of the detected expression signal of these genes 

across subjects within a given age of blood spots. Therefore, in our microarray data, rRNA genes 

may be less qualified to serve as housekeeping genes.  

For the three commonly used housekeeping genes encoding mRNA ACTB, PPIA, 

GAPDH, there is a large variation of expression signal across samples within a given age of 

blood spots. The slopes of these genes are much more negative, or the expression signal of these 

genes are more prominentlydecreased over age of blood spots than those of the above six genes 

selected by our proposed approach. Their slopes (-0.23, -0.13, -0.15) are at 1.5, 10.5, and 8 

centile of the degradation slopes of all the genes available in the arrays, respectively and thus, are 

at the extreme end as compared to those of all other genes available in the arrays. Therefore, for 

our microarray data, these genes may be less likely to qualifiedly serve as housekeeping genes.  

The qPCR CT mean over age of blood spots of the three commonly used housekeeping 

genes ACTB, PPIA, GAPDH and of the gene RN28S1 confirm both the decreasing trend of 

expression signal over age of blood spots for the genes encoding mRNA, and the unclear trend of 

expression signal over age of blood spots for the genes encoding rRNA. This indicates that the 

quality of our microarray data is validated by qPCR data, and that what we observe from our 

microarray data such as the decreasing trend of detected expression signal over age of blood 

spots is reliable. Therefore, our proposed approach for selecting housekeeping genes based on 

the decreasing trend of detected expression signal over age of blood spots observed from our 

data is rooted in reliable evidence.  

Our proposed approach can provide a robust selection of housekeeping genes. First, our 

approach is based on the robust estimates of the median of the degradation slopes of all genes 
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using re-sampling technique. Second, we employ several validation strategies for the selection 

including validation of selection between the experimental vs. control groups, between 

laboratory technical batches as well as all subjects as a whole. This approach can also be used to 

test the eligibility of a list of candidate housekeeping genes by comparing their degradation 

slopes with the estimated median of the slopes of all the genes in the arrays.  

Our proposed approach of selecting housekeeping genes is based on the logic that the 

slopes of detected expression signal of housekeeping genes over a given variable (age of blood 

spots in our data) approximate the median of the slopes of all genes over that variable. Thus, our 

approach can be generalized to other types of microarray data in which detected expression 

signal of genes may be influenced by other variables. In addition, our proposed approach can be 

easily implemented and can quickly provide potential housekeeping genes for a specific 

microarray study.  

There may be some more work to be done to further evaluate the performance of our 

proposed approach such as qPCR for the selected housekeeping genes (using, for example, the 

three best genes RCCD1, BALAP2, CSTL1) and for some important target genes from 

significant pathways. The qPCR data of these selected housekeeping genes are then used to 

normalize qPCR data of target genes using the geometric mean method of Vandesompele et al. 

Then the qPCR data of the target genes are compared with microarray data of those genes. In 

addition, the degradation slopes of genes in microarray data may also be influenced by the 

normalization method applied for microarray data. Thus, proper normalization method for 

microarray data should be developed and used. Then our proposed approach should be repeated 

to select housekeeping genes from the new normalized data.  
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CHAPTER 5. GENE SET ANALYSIS OF MATCHED GENE EXPRESSION DATA: AN 

EVALUATION OF EXISTING AND PROPOSED METHODS ON POWER, TYPE I ERROR 

AND INFLUENCE OF MISSING VALUES   

Abstract  

Motivation: Methods for gene set analysis of matched gene expression data have not been 

well established and evaluated. We address essential issues where the published literature is 

meager: (1) We test and apply a two stage z-test approach for gene set analysis (ZZ-GSA) of 

matched genome-wide expression data based on modifications of existing methods using log fold 

change to assess both homogeneity and heterogeneity in differential expression across matched 

pairs; (2) We evaluate power of existing methods and our two stage z-test approach for gene set 

analysis of matched microarray data corresponding to different sample sizes, effect sizes, gene 

set sizes; (3) Evaluate type I error of existing methods and two stage z-test approach; (4) We 

evaluate the performance of existing methods and the two stage z-test approach to data with and 

without missing values, and accordingly propose panels of adjustments for statistical significance 

for microarray data with and without missing values.  

Results: Our simulation study, permutation study and analysis results of actual data have 

shown that for matched microarray data: (1) the ZZ-GSA approach can assess gene set 

differential expression homogeneously and heterogeneously across matched pairs; (2) this 

approach has high power and reasonable type I error in detecting differential expression of gene 

sets when applied to existing log fold change methods of gene set analysis; (3) with proper 

implementation, both ZZ-GSA and existing methods perform well on microarray data with and 

without missing values; (4) our permutation approaches can be used to create reference panels 
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for type I errors, and for adjustment of statistical significance for different methods of gene set 

analysis on different microarray datasets with different levels of missing values.  

Introduction 

Gene set analysis methods for mRNA microarray data can be classified into several 

categories. One category of methods is based on t-tests of individual genes such as the 

Kolmogorov-Smirnov running sum summarization; 125 "maxmean" summarization; 126 

assessment of gene set overlap using hypergeometric tests, 127 the two-step Q1-Q2 test, 128 the 

“GSEA-made-simple” method of Irizarry et al.129 Another category is based on regression 

models of individual genes; examples are the empirical Bayesian generalized linear models of 

Goeman et al (2004),130 the linear model of Jiang and Gentleman (2006).131 Another category 

is based on log fold change of individual genes between experimental and control groups 

including the parametric t-profiler, 132 Parametric analysis of gene set enrichment (PAGE)133 

and generally applicable gene set enrichment (GAGE) (Lou 2009). 134

Of the methods employing the log fold change, the PAGE method was originally 

developed for non-matched data. The central limit theorem is applied to log2 fold change 

between the mean expression of experimental and control groups to test the difference of mean 

log fold change of genes within the gene set of interest (m) from that of all genes on the array 

(M): 

𝑧 =
m − M
S/�g

 

   

where S is the standard deviation of the log fold change over all genes, and g is the 

number of genes in the gene set of interest.   
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The t-profiler method was also originally developed for non-matched data. A t-test is 

used to compare mean of log fold change of the genes in the gene set vs. the remaining genes in 

the array:  

𝑡𝐺 =
µ𝐺 − µ𝐺′

S�1/𝑁𝐺 + 1/𝑁𝐺′
 ~𝑡𝑁𝐺−2 

Where  

𝑆 = �
(𝑁𝐺 − 1) × 𝑆𝐺2 + (𝑁𝐺′ − 1) × 𝑆𝐺′2

𝑁𝐺 + 𝑁𝐺′ − 2
 

µG is the mean expression log-fold change of the NG genes in gene set G, µG’ is the 

mean expression log fold change of the remaining NG’ genes and s is the pooled standard 

deviation obtained from the estimated variances for gene set G and remaining genes G’.  

The GAGE method appears to be the only published gene set analysis method 

specifically applicable for matched case-control studies. For each matched pair, the GAGE 

method uses a two-sample-like t-test to compare the expression of genes in the gene set of 

interest to the expression of all of the genes measured on the array:  

𝑡𝑘𝑙 = (𝑚 −𝑀)/�
𝑠2

𝑛
+
𝑆2

𝑛
 

where m is the mean of log fold change of genes in the set, M is the mean of all genes in 

the array, s is the standard deviation of the log fold change of genes in the set, S is the standard 

deviation of the log fold change of all genes in the array, n is the number of genes in the set. This 

procedure is followed by a meta-test for global significance, derived from the sum of the 
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negative logarithms of the p-values of the individual within-pair t-tests based on a Gamma 

distribution.  

x = −1
𝐿
∑ logPkl𝑘𝑙  , 

where (PX>x)~Gamma(K,1). 

However, the two-sample t-test assumes a normal distribution and independence of two 

samples. While the log2 fold changes of all genes for each pair are not necessarily normal 

distributed, and the gene set is a tiny part of all genes in the array.  In addition, its global meta-

test may be oversensitive to extreme values in just a few pairs and can produce a significant p-

value for a data set with differential expression in only one or two pairs. In addition, for data set 

with large heterogeneity among pairs (e.g. some pairs are up-regulated and some pairs are down-

regulated) the meta-test can be confusingly significant for both up and down regulation for a 

gene set. As a result, the meta-test for global significance of the GAGE method may be not a 

robust test. Furthermore, there has been no paper we know of systematically addressing the issue 

of heterogeneity in differential expression among matched pairs.  

 Recently, Brooke L. Fridley et al evaluated power of various self-contained gene set 

analysis methods at different sample sizes based on simulation.135

Missing values after filtering background noise or unqualified spots in microarray data 

can be troublesome for any statistical method. Statistical assumptions may be satisfied in data 

without missing values but no longer satisfied in data with missing values, especially when the 

percentage of missing values is large. However, not much attention has been paid to the 

influence of missing values on the performance of gene set analysis methods.   

 However, there is no 

published method we know of with formulas for estimating sample size and power for the 

analysis of gene sets especially for matched data.  
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In this chapter, we propose:  

(1) A two stage z-test approach that modifies the existing methods of gene set analysis 

based on log fold change for non-matched data to make these methods applicable for matched 

data to assess both homogeneity and heterogeneity in differential expression across pairs for both 

uni-directional gene set and bi-diectional gene set.  

Furthermore, we aim to:  

(2) Evaluate power corresponding to different sample sizes, effect sizes, gene set sizes of 

different existing methods after applying our modification for gene set analysis of matched data.  

(3) Evaluate type I error of different existing methods after applying our modification 

proposed method for gene set analysis of matched data.  

(4) Evaluate the performance of different existing methods after applying our 

modification approach on matched microarray data with and without missing values and 

accordingly propose panels for type I error and panel of adjustments for statistical significance 

for data with and without missing values.  

We will demonstrate our method and approaches by simulation study, permutation and 

analysis of actual mRNA microarray data from Michigan archived dried newborn blood spots 

(DNBS) of our on-going matched paired case-control study on cerebral palsy.    

Methods 

The two-stage z-test approach for gene set analysis (ZZ-GSA) 

The general idea of the two-stage z-test approach is that to test the differential expression 

of a given gene set, a z-statistic is calculated for each matched pair first and then a second z-test 

is calculated to test for global significance across pairs. This approach may be applied to modify 

the methods of gene set analysis based on the log fold change of non-matched data to make it 
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applicable for matched data. The procedures are as below. In stage one, instead of calculating the 

test statistic based on the log fold change of the mean expression of the experimental group vs. 

that of the control group, the test statistic is calculated based on the log fold change of expression 

of each individual experimental subject vs. its matched control. If these test statistics of 

individual matched pairs are z-statistics, a stage two z-test is performed on these z-statistics to 

test for global significance across pairs. If the initial test statistics of individual matched pairs in 

stage one are not z-statistics (for example t-statistics), these test statistics are converted into z-

statistics based on their corresponding one sided p-values, and then a stage two z-test is 

performed on these converted z-statistics to test for global significance across pairs. The stage 

two global test based on converted z-statistics is similar to the approach of Stouffer et al first 

proposed for meta-analysis.136

When ZZ-GSA is applied to the PAGE method, instead of calculating one z-score based 

on the log2 fold change of mean expression of the case group vs. the control group, for each 

matched case-control pair i, a z-score zi is calculated in testing the difference of mean log fold 

change of genes within the gene set of interest (mi) from that of all genes on the array (Mi):  

𝑧𝑖 =
mi − Mi
Si/�gi

 

 We applied the ZZ-GSA approach to the PAGE and the t-profiler 

methods.  

where Si is the standard deviation of the log fold change over all genes of pair i, and gi is 

the number of genes in the gene set of interest. The z-scores (z1, …, zn) of n pairs are iid ~ N(0, 

1). A second stage global z-score is then calculated for the n pairs in the study with:  
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𝑍 = (�𝑧𝑖
𝑛

𝑖=1

)/√𝑛 

 .  

Under the null hypothesis of no significance, Z ~ N(0,1).  

When ZZ-GSA is applied to the t-profiler method, in stage one, a tiG is calculated for 

each matched pair. One sided p-value pi is calculated for each tiG and then converted to zi 

corresponding to pi. A stage two z-test for global significance based on the converted zi is 

calculated similarly to above.   

While we were preparing this manuscript, the authors of the GAGE method, Luo et al, 

modified their meta-test for global significance using Stouffer’s method to adjust for the 

drawbacks of summarizing using gamma distribution. In this update, the p-value calculated for 

the GAGE t-statistic of each pair is converted to a z-score corresponding to that p-value. The 

global Z is calculated from these converted zi similarly to the global z-test described above. The 

modified version of the GAGE method may be considered another version of the ZZ-GSA 

approach when applying to the GAGE method.  

Our simulation study and permutation and analysis of actual mRNA microarray data 

evaluates power and type I error of the ZZ-GSA approach when applied  to the PAGE and t-

profiler methods, in comparison with the modified GAGE method (Stouffer GAGE) and the 

early version of the GAGE method (gamma GAGE).  

When case-control pairs are heterogeneous (i.e. some pairs are up-regulated while some 

pairs are down-regulated for a given gene set), the global z-test based on the mean of zi as above 

become insensitive. Thus, a simple global chi-square statistic:   

X2 = (z1
2+…+zn

2)  
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with n degrees of freedom should be calculated, instead. This chi-square statistic can 

detect perturbation of gene sets in any direction and thus, can be sensitive to  either 

homogeneous pairs or heterogeneous pairs. This chi-square test can be over-sensitive, however, 

when the number of pairs is large. So, in a study with the number of case-control pairs n > 20, 

we propose using a standardized chi-square test to detect the heterogeneity among pairs:  

Ez = [� (Zi –𝑍𝑖)2−(𝑛 − 1)]/2(n − 1)
𝑛

𝑖=1
  

Ez follows standard normal distribution if n>20.137

 Bidirectional gene set. For gene sets in which some genes are up regulated and some 

genes are down regulated in cases vs. controls, the stage 1 z-test described above is insensitive 

and thus, should be modified as below: 

 This test is sensitive if the pairs are 

heterogeneous, but may be not sensitive if pairs are homogeneous.   

zi2d =  (mi2d -Mi2d)/(Si2d/�𝑔),  

where mi2d, Mi2d is the mean of the absolute value of log fold change of genes in the set 

and of all genes, respectively, Si2d is standard deviation of the absolute values of log fold change 

of all genes for pair i. The stage two global z-test is calculated similarly as above. However, 

since the testing hypothesis is that the genes in the gene set are more perturbed than overall 

genes in the array, for both zi of stage 1 and Z of stage 2 global test, only upper 1 sided test 

should be considered.  

Estimating required sample size and power 

The sample size (n= number of matched pairs) and power calculation for the global z-test 

follows the formulas of an one sample z-test:138  
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n = { Zα/2 + Z1-β}2  (σ /Δ)2 and; 

power = Φ{ Zα/2 + √𝑛(Δ/σ)},   

where Δ /σ is the effect size to be detected:  

 Δ /σ= (│μ1- μo│)/σ = │𝑍𝑖│ = [(mi − Mi)/Si]�𝑔  

in this case, Φ is the cumulative density function of the standard normal distribution 

N(0,1),  n is the number of pairs, g is the number of genes in the gene set, μ1 is the mean of Zi, 

μo is the reference mean, which is zero in this case, σ is the reference standard deviation of Zi 

which is 1 in this case, mi is the mean of log fold change of gene set for pair i, Mi is the mean of 

log fold change of all genes for pair i, Si is the standard deviation of the log fold change of all 

genes of pair i, and g is the number of genes in the gene set. Thus, power and required sample 

size depend on the size of the change between case and control and also the size of gene set. 

(│μ1- μo│)/σ is the conventional standardized effect size which is dependent on gene set size. 

(mi − Mi)/Si is the gene set standardized effect size, which is independent of gene set size.  

For bidirectional gene sets, the formula is similar, but only an upper 1 sided test can be 

used for global significance. Thus, Zα should replace Zα/2.  

Simulation study 

We simulated microarray data imitating the overall distribution shape of our real quantile 

normalized log2 intensity microarray data by generating a random number of chi-square 

distributions of 3 degree of freedom plus 5 and then taking values of the range from <5 and <18. 

Each simulated dataset contains either 20, 50, 100, 200 or 500 pairs and each simulated array 

contains 20000 genes. We aimed to test the performance of the ZZ-GSA approaches when 

applied to the PAGE (PAGE-ZZ-GSA), the t-profiler (t-profiler-ZZ-GSA) and the GAGE 

method (Stouffer GAGE or GAGE-ZZ-GSA) in comparison with the original GAGE (gamma 
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GAGE). We evaluated the methods in term of power and type I error of the tests corresponding 

to different sample sizes, effect sizes and gene set sizes in testing for gene set significance. For 

each scenario, 1000 simulated expression datasets are created and thus, 1000 tests using ZZ-GSA 

approaches and gamma GAGE were done.  

Power estimation for ZZ-GSA vs. gamma GAGE. We manipulated the expression values 

of simulated datasets to create differential expression (up-regulation in this simulation study) 

between cases and controls at different effect sizes for different gene set sizes. A total of 

5x3x5x3 (=225) non-null scenarios were generated. The proportion of significant tests (power) 

out of a total of 1000 tests using ZZ-GSA approaches and gamma GAGE on 1000 simulated 

datasets were calculated for each scenario corresponding to sample sizes of 20, 50, 100, 200, 500 

pairs, gene set sizes of 20 (small size), 100 (average size), 400 (large size) genes and five 

different crude effect sizes (mean log2 fold change of genes in the set across pairs of 0.05, 0.1, 

0.2, 0.5, 1). Gene set standardized effect sizes calculated from corresponding mean log2 fold 

changes of genes in the gene set across pairs are 0.015, 0.03, 0.06, 0.15, 0.3. Conventional 

standardized effect sizes for gene set of 20, 100, 400 genes respectively are 0.06, 0.12, 0.24, 

0.63, 1.26 and 0.14, 0.28, 0.56, 1.43, 2.86 and 0.29, 0.57, 1.14, 2.85, 5.7. The crude effect size 

(mean log2 fold change of genes in the set across pair) was generated by random number of 

normal distribution with mean equal to crude effect size and standard deviation equal to 0.5, 1 

and 1.5. For each sample size, each gene set size, and each effect size, the power of a test was 

calculated by averaging proportion of significant test out of 1000 tests from 1000 simulated 

datasets of those 3 different standard deviations.  

Type I error of ZZ-GSA vs. gamma GAGE. A total of 15 null scenarios were generated. 

For each of the 1000 simulated microarray datasets of different sample sizes (20, 50, 100, 200, 
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500 matched case-control pairs), we performed ZZ-GSA and gamma GAGE tests for randomly 

selected gene sets of 3 different sizes: small (20 genes), average (100 genes) and large (400 

genes). The proportion of significant tests out of 1000 tests (type I error) for each of these null 

scenarios was calculated. 

Application to actual matched microarray data: the pilot data of a case-control study 

on cerebral palsy 

To illustrate the method, we performed permutation and applied ZZ-GSA approach and 

gamma GAGE to our pilot batch of microarray data which contain 21 matched case-control pairs 

(about 10% of the total planned sample size of our on-going study). Degradation of mRNA is 

expected in these samples and thus, a large percentage of missing values after filtering 

unqualified spots is anticipated. Microarray data, after being normalized using quantile 

normalization method and aggregated to the gene level, were used for gene set analysis. Three 

versions of the dataset were used. In one version, we did not apply filtering on raw data and thus, 

this dataset contains no missing values and was used to test the performance of ZZ-GSA and 

GAGE on microarray data without missing values. In another version, we used the method of 

Patterson et al 139 to filter out unqualified spots, and thus, this dataset was used to test the 

performance of ZZ-GSA and GAGE on microarray data with a considerable percentage of 

missing values of from 20% to 70%. In the third version of the dataset, we replaced the missing 

values by the smallest expression value of the remaining expression data after filtering (smallest 

log2 intensity was 5.7 in this situation). The distribution of expression values of this dataset 

would be “strange” with a high peak due to the large number of genes with same log2 intensity 

values of 5.7. The distribution of log fold change of all genes of each pair would contain high 

peak due to a large number of genes with same log2 fold change values of 0. This dataset was 
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used to test the performance of ZZ-GSA and GAGE on microarray data with unusual 

distributions, or the distribution of log fold change across genes is not identical.  

We carried out two sets of experiments on each of the three versions of our data: (1) 

Permutation to test the ZZ-GSA approach and gamma GAGE on randomly selected gene sets of 

different sizes from 10 to 500 genes to create a panel of reference of type I error, normal 

distribution evaluation, and proportion of outliers corresponding to each gene set size; (2) 

Testing the methods by exploring 205 KEGG (Kyoto Encyclopedia of Genes and Genomes) 

gene sets.  

Permutation on randomly selected gene sets   

Test for normal distribution of calculated z-statistics. We checked the assumptions on 

normal distribution of z-statistics of individual pairs by examining the z-statistics of gene sets of 

size from 10 to 500 genes. For each gene set size, for the first (no missing values) and the third 

(imputed missing values) version of our dataset, for each of the 21 pairs, we randomly sample 

1000 times from the pool of all genes in the arrays and calculated the z-statistic for each of the 

1000 samples. For the second version of the dataset (containing 20%-70% of missing values), 

since many gene set containing all missing values were expected to be randomly sampled and 

thus, no (or missing) z-statistics would be calculated, we sampled 2000 times instead of 1000 

times. We then examined the distribution of z-statistics calculated from those 1000 or 2000 

samples for each gene set size for each pairs by calculating mean, standard deviation and 

performing a one sample Kolmogorof-Smirnov test for normal distribution. For each gene set 

size, we also examined the observed probability of large z-statistics to evaluate the tails of the 

distribution of z-statistics by calculating the proportion of z-statistics <-3 or >3 of all z-statistics 

calculated.  
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Test for type I error. For each of the three versions of the datasets, we performed ZZ-

GSA tests and gamma GAGE tests on each of the 1000 random samples for each gene set of 

different size from 10 to 500 genes. The proportion of significant tests out of 1000 tests (type I 

error) for each gene set size corresponding to p-values set at 0.01, 0.05, 0.1 were calculated.    

Test for gene set significance using KEGG gene sets  

KEGG gene sets of different sizes representing different pathways were obtained from 

the KEGG database. We chose to use KEGG gene sets because they are patho-physiologically 

relevant to clinical diseases. For each of the three versions of the datasets, we performed ZZ-

GSA and GAGE tests for each of the 205 selected KEGG gene sets.  

Results  

Simulation study 

The power of the global z-test of PAGE-ZZ-GSA and the Stouffer modified GAGE test 

are shown in figure 5.1 (the power of T-profiler-ZZ-GSA is similar to that of PAGE-ZZ-GSA 

and thus is not shown here). For each gene set size, each sample size, and each simulated up-

regulation effect size, the power of ZZ-GSA in detecting up-regulation is higher than the power 

of Stouffer GAGE. For smaller simulated up-regulation effect sizes, the gamma GAGE test, 

confusingly, produced a large proportion of significant tests for both up and down regulation 

(figure 5.2). For example, for the gene set size of 100 genes with simulated mean log2 fold 

change for up-regulation of genes in the set across pairs at 0.05 and 0.1, all gamma GAGE tests 

of 1000 tests for up-regulation and all gamma GAGE tests of 1000 test for down-regulation are 

significant.  

The type I error of different tests of ZZ-GSA approach and the gamma GAGE are shown 

in table 5.1. The type I error of ZZ-GSA is almost equal to random chance when applied for 
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PAGE, T-profiler, and their global simple chi-square test, and the test for bi-directional gene 

sets. The standardized chi-square test is more conservative and picks up no false positive. The 

type I error of ZZ-GSA is smaller than random chance when applied to GAGE (Stouffer GAGE). 

The gamma GAGE method produces less false positive than random chance.  

The gamma GAGE method is more sensitive to large perturbations in only a few pairs 

and thus the results may not be robust and can be confusing. In another set of simulations where 

1000 simulated datasets with only 5 out of 50 pairs (10%) with mean log2FC of 1 for a given 

gene set were generated, 100% of 1000 tests using gamma GAGE are significant while only 9% 

of 1000 tests using ZZ-GSA are significant. In another 1000 simulated datasets in which around 

40% of pairs are up regulated and 40% are down regulated, 99% of 1000 gamma GAGE tests are 

significant for both up-regulation and down regulation. The global z-test of ZZ-GSA does not 

have these drawbacks. The combination of use of the global second stage z-test (test for 

perturbation of gene set in similar direction across pairs or homogeneous pairs) and a simple chi-

square test (screen for any important differential expression of gene set in any direction across 

pairs) and a standardized chi-square test (test for heterogeneity of differential expression among 

pairs) can help detect any perturbation, and thus increase power without increasing type I error. 

The use of the three tests thus helps us to interpret the results properly.   
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Table 5.1. Type I error from simulated data. 
Number of matched 

pairs  20 100 200 500 

Gene set size Reference# 20 100 400 20 100 400 20 100 400 20 100 400 
ZZ-GSA              

Z-test Up 
0.010; 
0.050; 
0.100 

0.001; 
0.052; 
0.099 

0.006; 
0.063; 
0.122; 

0.002; 
0.037; 
0.077; 

0.005; 
0.041; 
0.082 

0.006; 
0.056; 
0.099 

0.001; 
0.041; 
0.092 

0.009; 
0.040; 
0.087 

0.006; 
0.054; 
0.102; 

0.007; 
0.037; 
0.077; 

0.007; 
0.051; 
0.083 

0.010; 
0.046; 
0.091 

0.008; 
0.051; 
0.072 

Z-test Down 
0.010; 
0.050; 
0.100 

0.008; 
0.023; 
0.071; 

0.001; 
0.041; 
0.111; 

0.015; 
0.069; 
0.122; 

0.015; 
0.081; 
0.112 

0.001; 
0.026; 
0.081 

0.011; 
0.061; 
0.102 

0.007; 
0.043; 
0.072; 

0.005; 
0.041; 
0.081; 

0.008; 
0.059; 
0.091; 

0.011; 
0.041; 
0.100 

0.004; 
0.036; 
0.091 

0.009; 
0.051; 
0.101 

T-profiler Up 
0.010; 
0.050; 
0.100 

0.002; 
0.060; 
0.111 

0.009; 
0.069; 
0.122 

0.003; 
0.050; 
0.070 

0.011; 
0.022; 
0.073 

0.009; 
0.068; 
0.091 

0.001; 
0.041; 
0.082 

0.006; 
0.041; 
0.122 

0.006; 
0.060; 
0.112 

0.007; 
0.037; 
0.082 

0.008; 
0.032; 
0.065 

0.006; 
0.048; 
0.095 

0.007; 
0.051; 
0.072 

T-profiler Down 
0.010; 
0.050; 
0.100 

0.009; 
0.030; 
0.071 

0.002; 
0.061; 
0.121 

0.012; 
0.060; 
0.123 

0.021; 
0.061; 
0.132 

0.001; 
0.033; 
0.092 

0.008; 
0.043; 
0.126 

0.004; 
0.026; 
0.071 

0.007; 
0.054; 
0.110 

0.009; 
0.061; 
0.079 

0.009; 
0.051; 
0.102 

0.006; 
0.043; 
0.094 

0.011; 
0.053; 
0.106 

Chi-square 
0.010; 
0.050; 
0.100 

0.010; 
0.068; 
0.110 

0.004; 
0.043; 
0.112 

0.005; 
0.021; 
0.060; 

0.011; 
0.038; 
0.081 

0.004; 
0.043; 
0.092 

0.005; 
0.031; 
0.061; 

0.009; 
0.030; 
0.089 

0.004; 
0.033; 
0.090 

0.015; 
0.051; 
0.086; 

0.009; 
0.040; 
0.009 

0.004; 
0.033; 
0.100 

0.011; 
0.041; 
0.104; 

Standardized  
chi-square 

0.010; 
0.050; 
0.100 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

Bi-direction gene set 
0.010; 
0.050; 
0.100 

0.001; 
0.041; 
0.098 

0.005; 
0.049; 
0.112 

0.009; 
0.067; 
0.131 

0.004; 
0.032; 
0.092 

0.001; 
0.049; 
0.093; 

0.001; 
0.051; 
0.083 

0.002; 
0.031; 
0.110 

0.008; 
0.049; 
0.073 

0.004; 
0.038; 
0.079 

0.001; 
0.021; 
0.120 

0.009; 
0.039; 
0.082 

0.001; 
0.037; 
0.069 
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Table 5.1. (cont’d) 
Number of matched 

pairs  20 100 200 500 

Gene set size Reference# 20 100 400 20 100 400 20 100 400 20 100 400 
GAGE              

Gamma up 
0.010; 
0.050; 
0.100 

0; 
0.001; 
0.010 

0; 
0.002; 
0.004 

0; 
0.001; 
0.003 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

Gamma down 
0.010; 
0.050; 
0.100 

0; 
0.001; 
0.002 

0; 
0.001; 
0.003 

0; 
0.002; 
0.002 

0; 
0; 
0 

0 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0 
0; 
0 

0; 
0; 
0 

Bi-direction gene set 
0.010; 
0.050; 
0.100 

0; 
0.003; 
0.006 

0; 
0.001; 
0.002 

0; 
0.002; 
0.003 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

Stouffer up$ 
0.010; 
0.050; 
0.100 

0.001; 
0.010; 
0.120 

0.001; 
0.001; 
0.004 

0.001; 
0.002; 
0.005 

0; 
0.023; 
0.094 

0; 
0; 
0 

0; 
0; 
0 

0; 
0.020; 
0.111 

0; 
0.001; 
0.003 

0; 
0; 
0 

0; 
0.021; 
0.114 

0; 
0.002; 
0.004 

0; 
0; 
0 

Stouffer down$ 
0.010; 
0.050; 
0.100 

0.001; 
0.050; 
0.110 

0.001; 
0.002; 
0.003 

0.001; 
0.003; 
0.004 

0; 
0.032; 
0.110 

0; 
0; 
0 

0; 
0; 
0 

0.002; 
0.033; 
0.102 

0; 
0; 
0 

0; 
0; 
0 

0.001; 
0.042; 
0.112 

0; 
0; 
0 

0; 
0; 
0 

Bi-direction gene set$ 
0.010; 
0.050; 
0.100 

0.001; 
0.010; 
0.040 

0.000; 
0.001; 
0.003 

0.001; 
0.001; 
0.003 

0.002; 
0.016; 
0.067 

0; 
0.002; 
0.009 

0; 
0; 
0 

0.001; 
0.007; 
0.018 

0; 
0.003; 
0.007 

0; 
0; 
0 

0.001; 
0.006; 
0.017 

0; 
0.001; 
0.006 

0; 
0; 
0 

Type Ierror (proportion of significant tests out of 1000 tests on random sets of genes from 1000 simulated datasets) were calculated 
for significant level of p-values set at 0.1, 0.05, 0.01 respectively. #Reference: expected false positives due to random chance for 
significant p-value set at <0.01, <0.05, <0.1. $Modified GAGE using Stouffer’s method.   
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Figure 5.1. Power of PAGE-ZZ-GSA vs. (Stouffer) GAGE-ZZ-GSA. 
The simulated mean log2 fold change is for up-regulation (MLFC: mean log2 fold change of genes in the gene sets across pair >0). 
Results of the tests for up-regulation are shown. Upper panels: ZZ-GSA, lower panels: Stouffer-GAGE. For each gene set size of 20, 
100, 400 genes, power (proportion of significant tests out of 1000 simulations) was calculated corresponding to different crude effect 
sizes (mean log2 fold change of all genes in the gene set across pairs) 0.05, 0.1, 0.2, 0.5, 1.  Gene set standardized effect sizes 
calculated from corresponding mean log2 fold change of genes in the gene set across pairs are 0.015, 0.03, 0.06, 0.15, 0.3. 
Conventional standardized effect sizes for gene set of 20, 100, 400 genes respectively are 0.06, 0.12, 0.24, 0.63, 1.26 and 0.14, 0.28, 
0.56, 1.43, 2.86 and 0.29, 0.57, 1.14, 2.85, 5.7. a, b, c: PAGE-ZZ-GSA; d, e, f: GAGE-ZZ-GSA.   
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Figure 5.2. Power of gamma GAGE approach. 
The simulated mean log2 fold change is for up-regulation (mean log2 fold change of genes in the gene sets across pair >0). Upper 
panels: gamma GAGE test for up-regulation, lower panels: gamma GAGE test for down-regulation. For each gene set size of 20, 100, 
400 genes, power (proportion of significant tests out of 1000 simulations) was calculated corresponding to different crude effect sizes 
(mean log2 fold change of all genes in the gene set across pairs) 0.05, 0.1, 0.2, 0.5, 1.  Gene set standardized effect sizes calculated 
from corresponding mean log2 fold change of genes in the gene set across pairs are 0.015, 0.03, 0.06, 0.15, 0.3. Conventional 
standardized effect sizes for gene set of 20, 100, 400 genes respectively are 0.06, 0.12, 0.24, 0.63, 1.26 and 0.14, 0.28, 0.56, 1.43, 2.86 
and 0.29, 0.57, 1.14, 2.85, 5.7. a, b, c: test for up regulation; d, e, f: test for down regulation. 
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Pilot data of the cerebral palsy study 

Permutation on randomly selected gene sets 

Distribution of z-statistics. Table 5.2 and 5.3 shows the results for the tests for the normal 

distribution of calculated z-statistics for gene set sizes from 10 to 500 genes for three versions of 

the datasets when applying for PAGE, and GAGE respectively. The results for T-profiler are 

similar to those for PAGE. For all gene set sizes and for all pairs, the mean of the z-statistics is 

approximate zero and the standard deviation of the z-statistics is approximately 1. The results are 

similar for PAGE z-statistics and for T-profiler-z-statistics. For the first version of the dataset 

without missing values, one sample Kolmogorof-Smirnov (K-S) tests for the normal distribution 

of z-statistics for each of the 21 pairs are all non significant for gene set sizes from 20 or more, 

and are significant in some pairs for gene set sizes <20. For the third version of the dataset with 

imputed missing values, one sample K-S tests for the normal distribution of z-statistics for each 

of the 21 pairs are all not significant for gene set sizes from 30 or more and are significant in 

some pairs for gene set sizes <30. For the second version of the dataset with missing values, one 

sample K-S tests for the normal distribution of z-statistics for each of the 21 pairs are all not 

significant for gene set sizes from 60 or more and are significant in some pairs for gene set sizes 

<60. In other words, the z-statistics approximate the standard normal distribution for gene set 

sizes from 20 or more for data without missing values, for gene set sizes from 30 or more for 

data with imputed missing values, and for gene set sizes from 60 or more for data with large 

percentage of missing values. For the datasets without missing values and imputed missing 

values, the proportion of outliers (z-statistics <-3 or > 3) are approximately the tail probability of 

the standard normal distribution for gene set sizes from 50 or more, and 70 or more, respectively. 

For the second dataset with a large percentage of missing values of up to 70%, the proportion of 
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outliers (z-statistics <-3 or > 3) are approximately the tail probability of the standard normal 

distribution for gene set sizes from 120 or more (table 5.4 and 5.5). In other words, the shape of 

the distribution of the z-statistics approximate the standard normal distribution for average and 

large gene sets, and the distribution of z-statistics contains slightly heavy tails for gene sets of 

small sizes. GAGE-z-statistics follow the normal distribution better than PAGE and T-profiler z-

statistics for data with missing values, especially for smaller gene set sizes.   
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Table 5.2. Panel of test for normal distribution of PAGE-z-statistics of random sets of genes from actual microarray data. 

Gene set size 10 15 20 30 40 60 80 100 120 160 200 250 300 400 500 
First version of microarray data without missing values 

K-S P-value 
(min;mean;max) 
Reference>0.05 

0.004; 
0.469; 
0.997 

0.023; 
0.529; 
0.978 

0.123; 
0.652; 
0.985 

0.113; 
0.616; 
0.949 

0.094; 
0.671; 
0.999 

0.287; 
0.765; 
0.998 

0.359; 
0.792; 
0.987 

0.391; 
0.780; 
0.997 

0.196; 
0.728; 
0.998 

0.195; 
0.658; 
0.964 

0.296; 
0.726; 
0.998 

0.162; 
0.723; 
0.981 

0.231; 
0.706; 
0.985 

0.182; 
0.669; 
0.996 

0.255; 
0.809; 
0.987 

Mean z-
stastistics 

(min;mean;max) 
Reference=0 

-0.077; 
-0.009; 
0.048 

-0.053; 
-0.010; 
0.039 

-0.075; 
-0.009; 
0.045 

-0.072; 
-0.015; 
0.051 

-0.053; 
-0.007; 
0.046 

-0.072; 
0.005; 
0.073 

-0.069; 
-0.002; 
0.063 

-0.051; 
0.007; 
0.083 

-0.043; 
-0.001; 
0.036 

-0.075; 
-0.006; 
0.089 

-0.078; 
0.002; 
0.074 

-0.039; 
0.003; 
0.052 

-0.083; 
-0.008; 
0.032 

-0.066; 
0.004; 
0.059 

-0.042; 
0.018; 
0.082 

SD z-stastistics 
(min;mean;max) 

Reference=1 

0.954; 
1.001; 
1.053 

0.959; 
0.991; 
1.068 

0.958; 
1.006; 
1.053 

0.975; 
0.997; 
1.032 

0.959; 
1.006; 
1.039 

0.963; 
0.998; 
1.028 

0.970; 
1.001; 
1.037 

0.958; 
1.006; 
1.053 

0.962; 
0.999; 
1.038 

0.962; 
0.996; 
1.041 

0.956; 
0.995; 
1.040 

0.949; 
0.987; 
1.036 

0.967; 
1.006; 
1.050 

0.981; 
1.008; 
1.038 

0.947; 
0.987; 
1.036 

Second version of microarray data with missing values 

K-S P-value 
(min;mean;max) 
Reference>0.05 

<0.001; 
0.089; 
0.797 

<0.001
; 

0.073; 
0.462 

<0.001
; 

0.087; 
0.377 

0.001; 
0.231; 
0.730 

0.033; 
0.325; 
0.863 

0.160; 
0.521; 
0.985 

0.116; 
0.603; 
0.992 

0.059; 
0.529; 
0.958 

0.258; 
0.687; 
0.929 

0.092; 
0.746; 
0.992 

0.232; 
0.651; 
0.993 

0.105; 
0.651; 
0.999 

0.389; 
0.791; 
0.977 

0.150; 
0.663; 
0.995 

0.420; 
0.766; 
0.998 

Mean z-
stastistics 

(min;mean;max) 
Reference=0 

-0.049; 
-0.011; 
0.033 

-0.036; 
-0.002; 
0.039 

-0.049; 
0.002; 
0.044 

-0.044; 
-0.004; 
0.038 

-0.028; 
0.001; 
0.036 

-0.021; 
0.015; 
0.051 

-0.035; 
-0.005; 
0.039 

-0.031; 
0.004; 
0.042 

-0.032; 
-0.001; 
0.037 

-0.033; 
0.001; 
0.053 

-0.054; 
-0.002; 
0.054 

-0.052; 
-0.001; 
0.064 

-0.043; 
0.003; 
0.070 

-0.066; 
-0.012; 
0.057 

-0.035; 
0.006; 
0.039 

SD z-stastistics 
(min;mean;max) 

Reference=1 

0.959; 
1.002; 
1.046 

0.959; 
0.999; 
1.043 

0.962; 
1.000; 
1.043 

0.974; 
1.007; 
1.052 

0.971; 
0.994; 
1.002 

0.966; 
0.998; 
1.024 

0.979; 
1.000; 
1.022 

0.981; 
1.003; 
1.013 

0.970; 
0.996; 
1.024 

0.970; 
0.990; 
1.028 

0.958; 
0.992; 
1.039 

0.970; 
0.992; 
1.015 

0.953; 
0.991; 
1.030 

0.966; 
0.991; 
1.032 

0.970; 
0.988; 
1.010 
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Table 5.2. (cont’d) 
Gene set size 10 15 20 30 40 60 80 100 120 160 200 250 300 400 500 

Third version of microarray data with imputed missing values 
K-S P-value 

(min;mean;max) 
Reference>0.05 

0.004; 
0.433; 
0.985 

0.048; 
0.359; 
0.896 

0.046; 
0.529; 
0.973 

0.057; 
0.656; 
0.998 

0.098; 
0.643; 
0.950 

0.111; 
0.648; 
0.999 

0.089; 
0.742; 
0.986 

0.351; 
0.789; 
0.992 

0.266; 
0.676; 
0.969 

0.411; 
0.764; 
0.998 

0.305; 
0.735; 
0.995 

0.433; 
0.758; 
0.998 

0.254; 
0.776; 
0.999 

0.235; 
0.753; 
0.994 

0.145; 
0.829; 
0.997 

Mean z-
stastistics 

(min;mean;max) 
Reference=0 

-0.081; 
-0.015; 
0.044 

-0.051; 
0.004; 
0.063 

-0.057; 
-0.005; 
0.068 

-0.052; 
0.001; 
0.076 

-0.038; 
-0.001; 
0.044 

-0.059; 
0.007; 
0.056 

-0.064; 
-0.015; 
0.024 

-0.053; 
0.001; 
0.050 

-0.053; 
-0.001; 
0.038 

-0.044; 
0.004; 
0.092 

-0.067; 
0.014; 
0.063 

-0.059; 
0.001; 
0.041 

-0.067; 
-0.005; 
0.065 

-0.062; 
-0.008; 
0.047 

-0.058; 
0.013; 
0.060 

SD z-stastistics 
(min;mean;max) 

Reference=1 

0.940; 
0.984; 
1.055 

0.968; 
0.999; 
1.045 

0.963; 
1.005; 
1.055 

0.971; 
1.009; 
1.030 

0.964; 
0.993; 
1.045 

0.971; 
0.998; 
1.032 

0.956; 
1.001; 
1.046 

0.940; 
0.994; 
1.050 

0.951; 
0.991; 
1.048 

0.963; 
0.996; 
1.035 

0.925; 
0.984; 
1.032 

0.949; 
0.999; 
1.062 

0.930; 
0.993; 
1.052 

0.927; 
0.980; 
1.008 

0.958; 
0.986; 
1.038 
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Table 5.3. Panel of test for normal distribution of GAGE-z-statistics of random sets of genes from actual microarray data. 
Gene set size 10 15 20 30 40 60 80 100 120 160 200 250 300 400 500 

First version of microarray data without missing values 
K-S P-value 

(min;mean;max) 
Reference>0.05 

0.004; 
0.469; 
0.997 

0.023; 
0.529; 
0.978 

0.123; 
0.652; 
0.985 

0.113; 
0.616; 
0.949 

0.094; 
0.671; 
0.999 

0.287; 
0.765; 
0.998 

0.359; 
0.792; 
0.987 

0.391; 
0.780; 
0.997 

0.196; 
0.728; 
0.998 

0.195; 
0.658; 
0.964 

0.296; 
0.726; 
0.998 

0.162; 
0.723; 
0.981 

0.231; 
0.706; 
0.985 

0.182; 
0.669; 
0.996 

0.255; 
0.809; 
0.987 

Mean z-
stastistics 

(min;mean;max) 
Reference=0 

-0.077; 
-0.009; 
0.048 

-0.053; 
-0.010; 
0.039 

-0.075; 
-0.009; 
0.045 

-0.072; 
-0.015; 
0.051 

-0.053; 
-0.007; 
0.046 

-0.072; 
0.005; 
0.073 

-0.069; 
-0.002; 
0.063 

-0.051; 
0.007; 
0.083 

-0.043; 
-0.001; 
0.036 

-0.075; 
-0.006; 
0.089 

-0.078; 
0.002; 
0.074 

-0.039; 
0.003; 
0.052 

-0.083; 
-0.008; 
0.032 

-0.066; 
0.004; 
0.059 

-0.042; 
0.018; 
0.082 

SD z-stastistics 
(min;mean;max) 

Reference=1 

0.954; 
1.001; 
1.053 

0.959; 
0.991; 
1.068 

0.958; 
1.006; 
1.053 

0.975; 
0.997; 
1.032 

0.959; 
1.006; 
1.039 

0.963; 
0.998; 
1.028 

0.970; 
1.001; 
1.037 

0.958; 
1.006; 
1.053 

0.962; 
0.999; 
1.038 

0.962; 
0.996; 
1.041 

0.956; 
0.995; 
1.040 

0.949; 
0.987; 
1.036 

0.967; 
1.006; 
1.050 

0.981; 
1.008; 
1.038 

0.947; 
0.987; 
1.036 

Second version of microarray data with missing values 
K-S P-value 

(min;mean;max) 
Reference>0.05 

0.075; 
0.552; 
0.897 

0.018; 
0.573; 
0.998 

0.124; 
0.687; 
0.997 

0.171; 
0.731; 
0.730 

0.193; 
0.825; 
0.863 

0.126; 
0.767; 
0.985 

0.196; 
0.793; 
0.992 

0.112; 
0.705; 
0.998 

0.209; 
0.752; 
0.996 

0.392; 
0.746; 
0.992 

0.232; 
0.651; 
0.993 

0.346; 
0.821; 
0.999 

0.389; 
0.791; 
0.977 

0.150; 
0.663; 
0.995 

0.420; 
0.766; 
0.998 

Mean z-
stastistics 

(min;mean;max) 
Reference=0 

-0.049; 
-0.011; 
0.033 

-0.036; 
-0.002; 
0.039 

-0.049; 
0.002; 
0.044 

-0.044; 
-0.004; 
0.038 

-0.028; 
0.001; 
0.036 

-0.021; 
0.015; 
0.051 

-0.035; 
-0.005; 
0.039 

-0.031; 
0.004; 
0.042 

-0.052; 
0.003; 
0.047 

-0.033; 
0.001; 
0.053 

-0.054; 
-0.002; 
0.054 

-0.052; 
-0.001; 
0.064 

-0.043; 
0.003; 
0.070 

-0.066; 
-0.012; 
0.057 

-0.035; 
0.006; 
0.039 

SD z-stastistics 
(min;mean;max) 

Reference=1 

0.959; 
1.002; 
1.046 

0.959; 
0.999; 
1.043 

0.962; 
1.000; 
1.043 

0.974; 
1.007; 
1.052 

0.971; 
0.994; 
1.002 

0.966; 
0.998; 
1.024 

0.979; 
1.000; 
1.022 

0.981; 
1.003; 
1.013 

0.973; 
0.999; 
1.046 

0.970; 
0.990; 
1.028 

0.958; 
0.992; 
1.039 

0.970; 
0.992; 
1.015 

0.953; 
0.991; 
1.030 

0.966; 
0.991; 
1.032 

0.970; 
0.988; 
1.010 
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Table 5.3. (cont’d) 
Gene set size 10 15 20 30 40 60 80 100 120 160 200 250 300 400 500 

Third version of microarray data with imputed missing values 
K-S P-value 

(min;mean;max) 
Reference>0.05 

0.004; 
0.433; 
0.985 

0.048; 
0.359; 
0.896 

0.056; 
0.529; 
0.973 

0.057; 
0.656; 
0.998 

0.098; 
0.643; 
0.950 

0.111; 
0.648; 
0.999 

0.089; 
0.742; 
0.986 

0.351; 
0.789; 
0.992 

0.333; 
0.779; 
0.999 

0.411; 
0.764; 
0.998 

0.305; 
0.735; 
0.995 

0.433; 
0.758; 
0.998 

0.254; 
0.776; 
0.999 

0.235; 
0.753; 
0.994 

0.145; 
0.829; 
0.997 

Mean z-
stastistics 

(min;mean;max) 
Reference=0 

-0.081; 
-0.015; 
0.044 

-0.051; 
0.004; 
0.063 

-0.057; 
-0.005; 
0.068 

-0.052; 
0.001; 
0.076 

-0.038; 
-0.001; 
0.044 

-0.059; 
0.007; 
0.056 

-0.064; 
-0.015; 
0.024 

-0.053; 
0.001; 
0.050 

-0.059; 
0.004; 
0.079 

-0.044; 
0.004; 
0.092 

-0.067; 
0.014; 
0.063 

-0.059; 
0.001; 
0.041 

-0.067; 
-0.005; 
0.065 

-0.062; 
-0.008; 
0.047 

-0.058; 
0.013; 
0.060 

SD z-stastistics 
(min;mean;max) 

Reference=1 

0.940; 
0.984; 
1.055 

0.968; 
0.999; 
1.045 

0.963; 
1.005; 
1.055 

0.971; 
1.009; 
1.030 

0.964; 
0.993; 
1.045 

0.971; 
0.998; 
1.032 

0.956; 
1.001; 
1.046 

0.940; 
0.994; 
1.050 

0.960; 
1.000; 
1.061 

0.963; 
0.996; 
1.035 

0.925; 
0.984; 
1.032 

0.949; 
0.999; 
1.062 

0.930; 
0.993; 
1.052 

0.927; 
0.980; 
1.008 

0.958; 
0.986; 
1.038 

Mean, SD of z-statistics and Kolmogorof-Smirnov p-value were calculated from 1000 samples for each gene sets for each pairs. 
Mean(min;max) of these values of 21 pairs were then calculated.  
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Table 5.4. Panel of proportion of outliers of individual pair PAGE-z-statistics of random sets of genes. 

Gene set 
size 10 15 20 30 40 60 80 100 120 160 200 300 500 

First version of microarray data without missing values 
Reference# 
=0.00269 0.00576 0.00366 0.00452 0.00414 0.00376 0.00285 0.00276 0.00257 0.00352 0.00281 0.00300 0.00285 0.00204 

Second version of microarray data with missing values 
Reference# 
=0.00269 0.14459 0.06961 0.03476 0.01352 0.00690 0.00466 0.00407 0.00435 0.00364 0.00319 0.00311 0.00288 0.00276 

Third version of microarray data with imputed missing values 
Reference# 
=0.00269 0.00557 0.00576 0.00547 0.00414 0.00366 0.00380 0.00323 0.00342 0.00376 0.00257 0.00261 0.00242 0.00209 

Outliers in this context are defined as z-statistics >3 or <-3. #Reference: proportion of outliers of standard normal distribution.  
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Table 5.5. Panel of proportion of outliers of individual pair GAGE-z-statistics of random sets of genes.  

Gene set 
size 10 15 20 30 40 60 80 100 120 160 200 300 500 

First version of microarray data without missing values 
Reference# 
=0.00269 0.00554 0.00376 0.00462 0.00421 0.00357 0.00292 0.00259 0.00261 0.00349 0.00279 0.00313 0.00279 0.00214 

Second version of microarray data with missing values 
Reference# 
=0.00269 0.09941 0.03021 0.00905 0.00084 0.00007 0.00000 0.00000 0.00000 0.00000 0.00000 0.00004 0.00006 0.00004 

Third version of microarray data with imputed missing values 
Reference# 
=0.00269 0.00549 0.00536 0.00537 0.00422 0.00359 0.00382 0.00318 0.00341 0.00368 0.00256 0.00251 0.00245 0.00206 

Outliers in this context are defined as z-statistics >3 or <-3. #Reference: proportion of outliers of standard normal distribution.  
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Type I error. The results of type I error for the first and the third version of the dataset are 

shown in table 5.6 and 5.7 respectively. For the second version of the dataset with missing 

values, the results are similar to those of the first version of the dataset without missing values. 

These results show that type I error of PAGE-ZZ-GSA and t-profiler- ZZ-GSA is less than or 

equal to random chance. The false positive rate produced by the simple chi-square test of the ZZ-

GSA is a bit larger than random chance, but <0.05 when the p-value for significance is set at 

<0.01. Thus for simple chi- square tests, the p-value should be <0.01 to claim significance. The 

proportion of false positive of standardized chi-square test is equal to zero for gene set sizes 

larger than 10. The proportion of false positives of the gamma GAGE and Stouffer- GAGE tests 

are less than chance for the first version of dataset without missing values, and for the third 

version of the dataset with imputed missing values. Thus these tests are more conservative in 

picking up false positives.  

For tests for bidirectional gene sets, the type I error of ZZ-GSA when applied to PAGE, 

T-profiler, and GAGE is considerably higher than random chance. The type I error is <0.05 when 

the p-value for significance is set at <0.005 for the first dataset without missing values and for 

the second dataset with missing values. The type I error is <0.05 when the p-value for 

significance is set at <0.001 for the third dataset with imputed missing values. Since there is a 

large percentage of genes with log2 fold change values of zero in the dataset with imputed 

missing values, this produces more false positives for the test for bidirectional gene sets, where 

the mean of absolute values of log2 fold change of expression values of genes in the set is 

compared with the mean of the absolute values of log2 fold change of expression values of all 

genes. The type I error for the test of bidirectional gene set of gamma GAGE is smaller than 

random chance. 
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Table 5.6. Panel of type I error of random sets of genes for microarray data without missing values. 
Gene set size Reference# 10 20 30 40 60 80 100 120 160 200 250 300 400 500 

ZZ-GSA                

Z-test  Up 
0.010; 
0.050; 
0.100 

0.004; 
0.027; 
0.056 

0.006; 
0.027; 
0.065 

0.005; 
0.028; 
0.069 

0.004; 
0.023; 
0.063 

0.005; 
0.031; 
0.062 

0.006; 
0.033; 
0.070 

0.004; 
0.030; 
0.068 

0.003; 
0.034; 
0.078 

0.003; 
0.026; 
0.068 

0.002; 
0.024; 
0.072 

0.004; 
0.032; 
0.075 

0.000; 
0.023; 
0.062 

0.005; 
0.031; 
0.075 

0.003; 
0.032; 
0.076 

Z-test  Down 
0.010; 
0.050; 
0.100 

0.006; 
0.027; 
0.078 

0.005; 
0.034; 
0.072 

0.003; 
0.033; 
0.079 

0.003; 
0.027; 
0.075 

0.002; 
0.022; 
0.059 

0.004; 
0.026; 
0.070 

0.007; 
0.046; 
0.079 

0.007; 
0.029; 
0.072 

0.005; 
0.032; 
0.082 

0.003; 
0.022; 
0.061 

0.003; 
0.029; 
0.075 

0.005; 
0.030; 
0.073 

0.006; 
0.033; 
0.058 

0.001; 
0.018; 
0.059 

T-profiler Up 
0.010; 
0.050; 
0.100 

0.002; 
0.025; 
0.063 

0.001; 
0.028; 
0.072 

0.002; 
0.031; 
0.07 

0.005; 
0.026; 
0.063 

0.002; 
0.027; 
0.066 

0.006; 
0.035; 
0.072; 

0.005; 
0.030; 
0.072 

0.005; 
0.033; 
0.083 

0.004; 
0.038; 
0.082 

0.001; 
0.029; 
0.068 

0.004; 
0.041; 
0.084 

0.003; 
0.025; 
0.06 

0.007; 
0.033; 
0.084 

0.003; 
0.034; 
0.083 

T-profiler 
Down 

0.010; 
0.050; 
0.100 

0.002; 
0.023; 
0.074 

0.005; 
0.030; 
0.076 

0.006; 
0.032; 
0.080 

0.001; 
0.037; 
0.078 

0.001; 
0.026; 
0.058 

0.003; 
0.032; 
0.070 

0.008; 
0.041; 
0.084 

0.004; 
0.029; 
0.070 

0.007; 
0.033; 
0.095 

0.002; 
0.028; 
0.061 

0.005; 
0.035; 
0.074 

0.005; 
0.039; 
0.078 

0.007; 
0.038; 
0.076 

0.001; 
0.022; 
0.059 

Chi-square 
0.010; 
0.050; 
0.100 

0.051; 
0.120; 
0.171 

0.048; 
0.101; 
0.141 

0.048; 
0.098; 
0.140 

0.041; 
0.112; 
0.158 

0.042; 
0.090; 
0.138 

0.030; 
0.082; 
0.142 

0.033; 
0.099; 
0.155 

0.039; 
0.097; 
0.142 

0.036; 
0.095; 
0.143 

0.038; 
0.084; 
0.131 

0.030; 
0.080; 
0.124 

0.038; 
0.101; 
0.148 

0.028; 
0.086; 
0.128 

0.032; 
0.080; 
0.126 

Standardized 
chi-square 

0.010; 
0.050; 
0.10 

0.000; 
0.001; 
0.001 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

Bi-direction* 
0.010; 
0.050; 
0.10 

0.088; 
0.148; 
0.197 

0.091; 
0.172; 
0.225 

0.084; 
0.152; 
0.219 

0.093; 
0.174; 
0.226 

0.086; 
0.169; 
0.213 

0.095; 
0.178; 
0.245 

0.078; 
0.146; 
0.206 

0.089; 
0.161; 
0.212 

0.087; 
0.153; 
0.214 

0.068; 
0.149; 
0.200 

0.081; 
0.170; 
0.223 

0.087; 
0.180; 
0.249 

0.078; 
0.160; 
0.222 

0.075; 
0.152; 
0.207 
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Table 5.6. (cont’d) 
Gene set size Reference# 10 20 30 40 60 80 100 120 160 200 250 300 400 500 

GAGE                

Gamma up 
0.010; 
0.050; 
0.10 

0.001; 
0.001; 
0.004 

0; 
0.001; 
0.004 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0.001; 
0.001; 
0.003 

0; 
0.001; 
0.002 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0.001; 
0.004; 
0.004 

0; 
0.001; 
0.002 

Gamma 
down 

0.010; 
0.050; 
0.100 

0; 
0; 

0.001 

0; 
0; 
0 

0.001; 
0.001; 
0.002 

0; 
0.001; 
0.001 

0.001; 
0.002; 
0.004 

0; 
0.002; 
0.002 

0; 
0.001; 
0.001 

0; 
0; 
0 

0; 
0; 
0 

0.001; 
0.002; 
0.003 

0; 
0; 
0 

0.001; 
0.004; 
0.004 

0; 
0.001; 
0.002 

0; 
0.001; 
0.002 

Bi-direction 
0.010; 
0.050; 
0.100 

0; 
0.010; 
0.21 

0; 
0.021; 
0.043 

0; 
0.028; 
0.045 

0; 
0.031; 
0.041 

0; 
0.039; 
0.056 

0; 
0.049; 
0.063 

0; 
0.046; 
0.068 

0; 
0.051; 
0.074 

0; 
0.046; 
0.065 

0; 
0.045; 
0.069 

0; 
0.046; 
0.071 

0; 
0.047; 
0.061 

0; 
0.040; 
0.064 

0; 
0.052; 
0.080 

Stouffer up$ 
0.010; 
0.050; 
0.100 

0.001; 
0.003; 
0.028 

0; 
0.003; 
0.018 

0.001; 
0.006; 
0.022 

0; 
0.004; 
0.017 

0; 
0.003; 
0.025 

0; 
0.013; 
0.016 

0.001; 
0.002; 
0.021 

0; 
0.005; 
0.025 

0; 
0.003; 
0.022 

0; 
0.009; 
0.032 

0; 
0.007; 
0.031 

0; 
0.006; 
0.021 

0; 
0.004; 
0.027 

0; 
0.005; 
0.020 

Stouffer 
down$ 

0.010; 
0.050; 
0.100 

0; 
0.007; 
0.018 

0; 
0.007; 
0.022 

0; 
0.004; 
0.019 

0; 
0.005; 
0.022 

0; 
0.005; 
0.029 

0; 
0.005; 
0.022 

0.001; 
0.005; 
0.027 

0.001; 
0.010; 
0.022 

0; 
0.005; 
0.029 

0; 
0.005; 
0.033 

0; 
0.009; 
0.022 

0; 
0.005; 
0.040 

0; 
0.003; 
0.023 

0; 
0.009; 
0.029 

Bi-direction$ 
0.010; 
0.050; 
0.100 

0.034; 
0.083; 
0.115 

0.062; 
0.107; 
0.135 

0.068; 
0.121; 
0.136 

0.061; 
0.124; 
0.139 

0.073; 
0.129; 
0.171 

0.079; 
0.148; 
0.181 

0.099; 
0.173; 
0.181 

0.098; 
0.163; 
0.186 

0.090; 
0.159; 
0.186 

0.094; 
0.168; 
0.218 

0.093; 
0.174; 
0.189 

0.097; 
0.171; 
0.225 

0.096; 
0.171; 
0.218 

0.112; 
0.170; 
0.217 

Bi-direction 
0.010; 
0.050; 
0.100 

0; 
0.010; 
0.21 

0; 
0.021; 
0.043 

0; 
0.028; 
0.045 

0; 
0.031; 
0.041 

0; 
0.039; 
0.056 

0; 
0.049; 
0.063 

0; 
0.046; 
0.068 

0; 
0.051; 
0.074 

0; 
0.046; 
0.065 

0; 
0.045; 
0.069 

0; 
0.046; 
0.071 

0; 
0.047; 
0.061 

0; 
0.040; 
0.064 

0; 
0.052; 
0.080 

Stouffer up$ 
0.010; 
0.050; 
0.100 

0.001; 
0.003; 
0.028 

0; 
0.003; 
0.018 

0.001; 
0.006; 
0.022 

0; 
0.004; 
0.017 

0; 
0.003; 
0.025 

0; 
0.013; 
0.016 

0.001; 
0.002; 
0.021 

0; 
0.005; 
0.025 

0; 
0.003; 
0.022 

0; 
0.009; 
0.032 

0; 
0.007; 
0.031 

0; 
0.006; 
0.021 

0; 
0.004; 
0.027 

0; 
0.005; 
0.020 

#Reference: expected proportion of false positive (type I error) corresponding to significant level of p-value set at 0.01, 0.05, 0.1. 
*proportion of significant test for all gene set sizes are <0.05 for p-value set at 0.001. 
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Table 5.7. Panel of type I error of random sets of genes for microarray data with imputed missing values.  
Gene set size Reference# 10 20 30 40 60 80 100 120 160 200 250 300 400 500 

ZZ-GSA                

Z-test  Up 
0.010; 
0.050; 
0.100 

0.004; 
0.025; 
0.063 

0.006; 
0.033; 
0.077 

0.005; 
0.045; 
0.087 

0.009; 
0.035; 
0.071 

0.007; 
0.039; 
0.079 

0.009; 
0.036; 
0.083 

0.011; 
0.042; 
0.081 

0.007; 
0.039; 
0.097 

0.008; 
0.039; 
0.091 

0.007; 
0.047; 
0.095 

0.006; 
0.037; 
0.092 

0.011; 
0.040; 
0.087 

0.004; 
0.029; 
0.064 

0.007; 
0.044; 
0.104 

Z-test  Down 
0.010; 
0.050; 
0.100 

0.011; 
0.049; 
0.100 

0.007; 
0.049; 
0.098 

0.007; 
0.039; 
0.092 

0.002; 
0.036; 
0.083 

0.004; 
0.030; 
0.058 

0.006; 
0.050; 
0.093 

0.005; 
0.046; 
0.078 

0.006; 
0.029; 
0.098 

0.008; 
0.032; 
0.082 

0.007; 
0.022; 
0.061 

0.010; 
0.029; 
0.084 

0.006; 
0.030; 
0.081 

0.006; 
0.033; 
0.086 

0.010; 
0.018; 
0.074 

T-profiler Up 
0.010; 
0.050; 
0.100 

0.004; 
0.035; 
0.075 

0.004; 
0.043; 
0.085 

0.008; 
0.045; 
0.086 

0.008; 
0.037; 
0.088 

0.006; 
0.037; 
0.083 

0.004; 
0.038; 
0.081; 

0.008; 
0.044; 
0.086 

0.004; 
0.042; 
0.094 

0.006; 
0.044; 
0.087 

0.012; 
0.045; 
0.100 

0.007; 
0.039; 
0.096 

0.007; 
0.042; 
0.086 

0.005; 
0.036; 
0.069 

0.009; 
0.053; 
0.107 

T-profiler 
Down 

0.010; 
0.050; 
0.100 

0.010; 
0.043; 
0.108 

0.004; 
0.044; 
0.105 

0.003; 
0.043; 
0.090 

0.005; 
0.041; 
0.075 

0.006; 
0.033; 
0.065 

0.006; 
0.052; 
0.096 

0.006; 
0.038; 
0.078 

0.007; 
0.040; 
0.093 

0.007; 
0.040; 
0.079 

0.009; 
0.040; 
0.089 

0.007; 
0.044; 
0.088 

0.007; 
0.033; 
0.083 

0.008; 
0.056; 
0.095 

0.010; 
0.036; 
0.085 

Chi-square 
0.010; 
0.050; 
0.100 

0.038; 
0.094; 
0.131 

0.044; 
0.106; 
0.155 

0.035; 
0.088; 
0.146 

0.032; 
0.074; 
0.125 

0.032; 
0.076; 
0.127 

0.023; 
0.078; 
0.136 

0.026; 
0.070; 
0.114 

0.031; 
0.079; 
0.109 

0.018; 
0.068; 
0.094 

0.028; 
0.057; 
0.127 

0.018; 
0.071; 
0.124 

0.022; 
0.074; 
0.148 

0.014; 
0.053; 
0.093 

0.012; 
0.063; 
0.099 

Standardized 
chi-square 

0.010; 
0.050; 
0.10 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

Bi-direction* 
0.010; 
0.050; 
0.10 

0.114; 
0.21; 
0.243 

0.115; 
0.200; 
0.249 

0.114; 
0.196; 
0.246 

0.115; 
0.179; 
0.237 

0.112; 
0.194; 
0.230 

0.113; 
0.187; 
0.230 

0.120; 
0.199; 
0.245 

0.110; 
0.189; 
0.243 

0.121; 
0.194; 
0.238 

0.093; 
0.217; 
0.273 

0.081; 
0.186; 
0.247 

0.087; 
0.185; 
0.257 

0.107; 
0.194; 
0.251 

0.105; 
0.188; 
0.241 
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Table 5.7. (cont’d) 
Gene set size Reference# 10 20 30 40 60 80 100 120 160 200 250 300 400 500 

GAGE                

Gamma up 
0.010; 
0.050; 
0.10 

0.001; 
0.001; 
0.004 

0; 
0.001; 
0.004 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0.001; 
0.001; 
0.003 

0; 
0.001; 
0.002 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0; 
0; 
0 

0.001; 
0.004; 
0.004 

0; 
0.001; 
0.002 

Gamma down 
0.010; 
0.050; 
0.100 

0; 
0; 

0.001 

0; 
0; 
0 

0.001; 
0.001; 
0.002 

0; 
0.001; 
0.001 

0.001; 
0.002; 
0.004 

0; 
0.002; 
0.002 

0; 
0.001; 
0.001 

0; 
0; 
0 

0; 
0; 
0 

0.001; 
0.002; 
0.003 

0; 
0; 
0 

0.001; 
0.004; 
0.004 

0; 
0.001; 
0.002 

0; 
0.001; 
0.002 

Bi-direction 
0.010; 
0.050; 
0.100 

0; 
0.010; 
0.21 

0; 
0.021; 
0.043 

0; 
0.028; 
0.045 

0; 
0.031; 
0.041 

0; 
0.039; 
0.056 

0; 
0.049; 
0.063 

0; 
0.046; 
0.068 

0; 
0.051; 
0.074 

0; 
0.046; 
0.065 

0; 
0.045; 
0.069 

0; 
0.046; 
0.071 

0; 
0.047; 
0.061 

0; 
0.040; 
0.064 

0; 
0.052; 
0.080 

Stouffer up$ 
0.010; 
0.050; 
0.100 

0.001; 
0.003; 
0.028 

0; 
0.003; 
0.018 

0.001; 
0.006; 
0.022 

0; 
0.004; 
0.017 

0; 
0.003; 
0.025 

0; 
0.013; 
0.016 

0.001; 
0.002; 
0.021 

0; 
0.005; 
0.025 

0; 
0.003; 
0.022 

0; 
0.009; 
0.032 

0; 
0.007; 
0.031 

0; 
0.006; 
0.021 

0; 
0.004; 
0.027 

0; 
0.005; 
0.020 

Stouffer 
down$ 

0.010; 
0.050; 
0.100 

0; 
0.007; 
0.018 

0; 
0.007; 
0.022 

0; 
0.004; 
0.019 

0; 
0.005; 
0.022 

0; 
0.005; 
0.029 

0; 
0.005; 
0.022 

0.001; 
0.005; 
0.027 

0.001; 
0.010; 
0.022 

0; 
0.005; 
0.029 

0; 
0.005; 
0.033 

0; 
0.009; 
0.022 

0; 
0.005; 
0.040 

0; 
0.003; 
0.023 

0; 
0.009; 
0.029 

Bi-direction$ 
0.010; 
0.050; 
0.100 

0.034; 
0.083; 
0.115 

0.062; 
0.107; 
0.135 

0.068; 
0.121; 
0.136 

0.061; 
0.124; 
0.139 

0.073; 
0.129; 
0.171 

0.079; 
0.148; 
0.181 

0.099; 
0.173; 
0.181 

0.098; 
0.163; 
0.186 

0.090; 
0.159; 
0.186 

0.094; 
0.168; 
0.218 

0.093; 
0.174; 
0.189 

0.097; 
0.171; 
0.225 

0.096; 
0.171; 
0.218 

0.112; 
0.170; 
0.217 

Bi-direction 
0.010; 
0.050; 
0.100 

0; 
0.010; 
0.21 

0; 
0.021; 
0.043 

0; 
0.028; 
0.045 

0; 
0.031; 
0.041 

0; 
0.039; 
0.056 

0; 
0.049; 
0.063 

0; 
0.046; 
0.068 

0; 
0.051; 
0.074 

0; 
0.046; 
0.065 

0; 
0.045; 
0.069 

0; 
0.046; 
0.071 

0; 
0.047; 
0.061 

0; 
0.040; 
0.064 

0; 
0.052; 
0.080 

Stouffer up$ 
0.010; 
0.050; 
0.100 

0.001; 
0.003; 
0.028 

0; 
0.003; 
0.018 

0.001; 
0.006; 
0.022 

0; 
0.004; 
0.017 

0; 
0.003; 
0.025 

0; 
0.013; 
0.016 

0.001; 
0.002; 
0.021 

0; 
0.005; 
0.025 

0; 
0.003; 
0.022 

0; 
0.009; 
0.032 

0; 
0.007; 
0.031 

0; 
0.006; 
0.021 

0; 
0.004; 
0.027 

0; 
0.005; 
0.020 

#Reference: expected proportion of false positive (type I error) corresponding to significant level of p-value set at 0.01, 0.05, 0.1. 
*proportion of significant test for all gene set sizes are <0.05 for p-value set at 0.001. 
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KEGG gene sets 

The analysis results of 205 KEGG gene sets for 3 versions of the data are shown in table 5.8, 5.9, 

5.10 respectively. For the first version of the dataset without missing values and the third version 

of the dataset where missing values were imputed, the Lupus gene set is picked up as 

significantly up-regulated by both ZZ-GSA and GAGE. Ribosome is picked up as 

heterogeneously differentially expressed across pairs by ZZ-GSA, picked up as both significantly 

up-regulated and down-regulated by gamma GAGE, and not picked up by Stouffer GAGE.  

Although the Ribosome gene set remains the most perturbed gene sets by the chi-square test of 

ZZ-GSA and by gamma GAGE for both up and down regulation, fewer gene sets are picked up 

as significantly differentially expressed (before adjusting for multiple testing) in the second 

version of the dataset with missing values than in the first and the third version of the dataset. 

This suggests that missing values may cause loss of important expression data especially for the 

analysis method using ratio where missing only in either cases or controls can cause missing 

values for the ratio between cases and controls. For the third dataset where missing values were 

imputed as the smallest expression values, the log2 fold change data contain large percentages of 

the same value of zero. As a result, larger false positives may be produced for the test for 

bidirectional gene sets. The results presented are before adjusting for multiple testing. After 

adjusting for multiple testing using the q-value R package (cite Storey FDR 2002), the Ribosome 

gene set remains significant consistently in the three versions of the dataset and the Lupus gene 

set remains significant in the first and third version of the dataset. 
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Table 5.8. Test for significance of KEGG gene sets for microarray data without missing values. 

Gene sets 
PAGE 

ZZ-GSA 
 

T 
profiler 
ZZ-GSA 

Chi 
square 

S chi 
square 

Bi 
direction 

GAGE 
Gamma 

Bi 
direction# 

GAGE 
Stouffer 

Bi 
direction$ 

Up          
SLE 0.00016  8.4e-18 1.4e-02 0.01150 8.7e-05 7.6e-02 0.00814 >0.1 
PCM 0.03142  >0.1 >0.1 0.00849 >0.1 >0.1 >0.1 >0.1 

MODY 0.04918  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
GM 0.08776  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 

Down          
TRSP 0.00525  1.5e-04 >0.1 >0.1 2.3e-02 >0.1 0.02919 >0.1 
LTM 0.00848  4.7e-13 4.9e-02 >0.1 1.7e-03 >0.1 0.05248 >0.1 
RAC 0.00993  2.1e-10 >0.1 >0.1 2.3e-03 >0.1 0.04232 >0.1 
AtRB 0.01122  8.6e-02 >0.1 >0.1 >0.05 >0.1 0.05470 >0.1 
PPP 0.01195  4.3e-06 >0.1 0.03901 5.5e-02 >0.1 0.02107 >0.1 

Apoptosis 0.01289  2.3e-09 >0.1 >0.1 4.6e-03 >0.1 0.05639 >0.1 
CCRI 0.01449  5.0e-02 >0.1 >0.1 >0.1 >0.1 0.05594 >0.1 
PCB 0.02795  >0.1 >0.1 >0.1 >0.1 >0.1 0.09409 >0.1 
FAM 0.04611  >0.1 >0.1 >0.1 >0.1 >0.1 0.09934 >0.1 

UCMAG 0.07030  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
Heterogeneity in differential expression across pairs 

Ribosome >0.1 >0.1 5.1e-
108 1.5e-43 0.00000 *** 2.9e-17 >0.1 2.6e-10 

NKCMC >0.1 >0.1 2.6e-14 2.4e-02 >0.1 6.3e-03** >0.1 >0.1 >0.1 
OT >0.1 >0.1 1.5e-10 8.5e-02 0.01228 0.01012* 2.4e-02 >0.1 8.4e-02 

PD >0.1 >0.1 1.9e-09 >0.1 0.02252 2.2e-02 
** >0.1 >0.1 >0.1 

OP >0.1 >0.1 3.0e-09 >0.1 0.04498 2.4e-02** >0.1 >0.1 >0.1 

BCRSP >0.1 >0.1 4.05e-
09 >0.1 >0.1 5.7e-02** >0.1 >0.1 >0.1 
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Table 5.8. (cont’d) 

Gene sets 
PAGE 

ZZ-GSA 
 

T 
profiler 
ZZ-GSA 

Chi 
square 

S chi 
square 

Bi 
direction 

GAGE 
Gamma 

Bi 
direction# 

GAGE 
Stouffer 

Bi 
direction$ 

EHEC >0.1 >0.1 1.4e-08 >0.1 0.00572 >0.1 9.4e-02 >0.1 >0.1 
EPEC >0.1 >0.1 1.4e-08 >0.1 0.00572 >0.1 9.4e-02 >0.1 >0.1 

Bi-directional gene set 
NM >0.1 >0.1 >0.1 >0.1 0.00849 >0.1 >0.1 >0.1 8.9e-02 

FAEM >0.1 >0.1 >0.1 >0.1 0.01036 >0.1 >0.1 >0.1 >0.1 
SLE: Systemic lupus erythematosus, PCM: Porphyrin and chlorophyll metabolism, MODY: Maturity onset diabetes of the young, 
GM: Glutathione metabolism, TRSP: Toll-like receptor signaling pathway, LTM: Leukocyte transendothelial migration, RAC: 
Regulation of actin cytoskeleton, AtRB: Aminoacyl-tRNA biosynthesis, PPP: Pentose phosphate pathway, CCRI: Cytokine-cytokine 
receptor interaction, PCB: Pantothenate and CoA biosynthesis, FAM: Fatty acid metabolism, UCMAG: Urea cycle and metabolism of 
amino groups, NKCMC: Natural killer cell mediated cytotoxicity, OT: Olfactory transduction, PD: Parkinson's disease, OP: Oxidative 
phosphorylation, BCRSP: B cell receptor signaling pathway, EHEC: Pathogenic Escherichia coli infection – EHEC, EPEC: 
Pathogenic Escherichia coli infection – EPEC, NM: Nitrogen metabolism, FAEM: Fatty acid elongation in mitochondria. *P-value for 
up regulation, **P-value for down regulation, ***Both P-value for up and down regulation are <<0.0001. #Test for bi-directional gene 
sets using GAGE Gamma test. $ Test for bi-directional gene sets using GAGE Stouffer test.  
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Table 5.9. Test for significance of KEGG gene sets for microarray data with missing values. 

Gene sets 
PAGE 

ZZGSA 
 

T 
profiler 
ZZ-GSA 

Chi 
square 

S chi 
square 

Bi 
direction 

GAGE 
Gamma 

Bi 
direction# 

GAGE 
Stouffer 

Bi 
direction$ 

Up          
SLE >0.1  6.1e-06 >0.1 >0.1 0.0933 >0.1 >0.1 >0.1 
PCM 0.02106  >0.1 >0.1 0.02589 >0.1 >0.1 >0.1 0.07048 

MODY >0.1  2.2e-02 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
GM >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 

Down          
TRSP 0.02491  >0.1 >0.1 >0.1 >0.1 >0.1 0.0616 >0.1 
LTM 0.00368  4.2e-06 >0.1 >0.1 1.05e-2 >0.1 0.0289 >0.1 

RAC 0.01132  5.6e-04 >0.1 >0.1 >0.1 >0.1 0.0563 >0.1 
AtRB >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
PPP >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 

Apoptosis >0.1  >0.1 >0.1 >0.1 3.7e-2 >0.1 >0.1 >0.1 
CCRI 0.00183  1.2e-03 >0.1 >0.1 >0.1 >0.1 0.0201 >0.1 
PCB >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
FAM >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 

UCMAG >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
Heterogeneity in differential expression across pairs 

Ribosome 0.00190** >0.1 7.6e-40 7.3e-08 0.00035 *** 8.2e-10 0.0176 0.00224 

NKCMC 0.01478** >0.1 2.3e-02 >0.1 >0.1 >0.1 >0.1 0.0694 >0.1 
OT >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 5.8e-05 >0.1 >0.1 
PD >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
OP >0.1 >0.1 5.3e-03 >0.1 >0.1 >0.1 3.7e-02 >0.1 >0.1 
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Table 5.9. (cont’d) 

Gene sets 
PAGE 

ZZGSA 
 

T 
profiler 
ZZ-GSA 

Chi-
square 

S chi 
square 

Bi 
direction 

GAGE 
Gamma 

Bi 
direction# 

GAGE 
Stouffer 

Bi 
direction$ 

BCRSP 0.04286** >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
EHEC >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
EPEC >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 

Bi-directional gene set 
NM >0.1 >0.1 >0.1 >0.1 0.00514 >0.1 >0.1 >0.1 >0.1 

FAEM >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
ASP@ >0.1  >0.1 >0.1 0.00011 1.3e-02* >0.1 >0.1 0.00165 

SLE: Systemic lupus erythematosus, PCM: Porphyrin and chlorophyll metabolism, MODY: Maturity onset diabetes of the young, 
GM: Glutathione metabolism, TRSP: Toll-like receptor signaling pathway, LTM: Leukocyte transendothelial migration, RAC: 
Regulation of actin cytoskeleton, AtRB: Aminoacyl-tRNA biosynthesis, PPP: Pentose phosphate pathway, CCRI: Cytokine-cytokine 
receptor interaction, PCB: Pantothenate and CoA biosynthesis, FAM: Fatty acid metabolism, UCMAG: Urea cycle and metabolism of 
amino groups, NKCMC: Natural killer cell mediated cytotoxicity, OT: Olfactory transduction, PD: Parkinson's disease, OP: Oxidative 
phosphorylation, BCRSP: B cell receptor signaling pathway, EHEC: Pathogenic Escherichia coli infection – EHEC, EPEC: 
Pathogenic Escherichia coli infection – EPEC, NM: Nitrogen metabolism, FAEM: Fatty acid elongation in mitochondria, ASP: 
Adipocytokine signaling pathway. *P-value for up regulation, **P-value for down regulation, ***Both P-value for up and down 
regulation are <<0.0001. #Test for bi-directional gene sets using GAGE Gamma test. $ Test for bi-directional gene sets using GAGE 
Stouffer test. @Gene set are not significant in the dataset without missing values.  
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Table 5.10. Test for significance of KEGG gene sets for microarray data with imputed missing values. 

Gene sets 
PAGE 

ZZ-GSA 
 

T 
profilerZZ-

GSA 

Chi-
square 

S chi 
square 

Bi 
direction 

@@ 

GAGE 
Gamma 

Bi 
direction# 

GAGE 
Stouffer 

Bi 
direction$ 

Up          
SLE 2.8e-05  1.7e-15 4.1e-02 2.0e-10 1.1e-04 2.1e-05 0.00355 >0.1 
PCM >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 

MODY >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
GM 5.6e-02  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 

Down          
TRSP 0.00184  >0.1 >0.1 7.7e-11 >0.1 >0.1 0.02340 >0.1 
LTM 0.00307  1.9e-12 6.6e-02 0.00000 1.8e-03 2.2e-07 0.03764 8.3e-09 
RAC 0.00773  2.8e-09 >0.1 4.6e-14 9.8e-03 2.9e-06 0.04906 1.6e-07 
AtRB 0.00344  >0.1 >0.1 >0.1 >0.1 >0.1 0.03221 >0.1 
PPP >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 

Apoptosis 0.00799  1.6e-07 >0.1 0.00000 2.2e-02 4.0e-07 0.05797 7.4e-09 
CCRI 0.00010  2.9e-08 >0.1 1.6e-08 >0.1 >0.1 0.00464 >0.1 
PCB >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
FAM >0.1  >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 

UCMAG 0.00707  >0.1 >0.1 >0.1 >0.1 >0.1 0.05388 >0.1 
CSP@ 0.00164  >0.1 >0.1 >0.1 >0.1 1.5e-05 0.02710 3.5e-07 

Heterogeneity in differential expression across pairs 

Ribosome >0.1 >0.1 1.8e-
119 9.7e-52 0.00000 *** 8.7e-34 >0.1 4.5e-28 

NKCMC 0.00191** >0.1 6.9e-12 8.2e-02 0.00000 2.7e-03 
** 1.2e-08 0.03027** 5.7e-10 

OT 2.0e-02* >0.1 1.2e-12 5.1e-02 >0.1 6.5e-05 *  0.04591*  

PD >0.1 >0.1 8.2e-08 >0.1 1.9e-13 2.2e-02 
** 5.8e-08 >0.1 >0.1 
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Table 5.10. (cont’d) 

Gene sets 
PAGE 

ZZ-GSA 
 

T 
profiler 
ZZ-GSA 

Chi 
square 

S  chi 
square 

Bi 
direction 

@@ 

GAGE 
Gamma 

Bi 
direction# 

GAGE 
Stouffer 

Bi 
direction$ 

OP >0.1 >0.1 2.8e-08 >0.1 3.1e-06 2.4e-02**  >0.1 >0.1 
BCRSP >0.1 >0.1 1.7e-06 >0.1 0.00000 5.0e-02** 2.5e-08 >0.1 1.7e-10 
EHEC >0.1 >0.1 6.6e-06 >0.1 0.00000 >0.1 4.0e-09 >0.1 2.0e-11 
EPEC >0.1 >0.1 6.6e-06 >0.1 0.00000 >0.1 4.0e-09 >0.1 2.0e-11 

Bi-directional gene set 
NM >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1  

FAEM >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 >0.1 
MAPKSP@ >0.1 >0.1 >0.1 >0.1 0.00000 >0.1 1.8e-11 >0.1 1.4e-14 

CC@ >0.1 >0.1 >0.1 >0.1 0.00000 >0.1 9.2e-09 >0.1 6.2e-11 
SLE: Systemic lupus erythematosus, PCM: Porphyrin and chlorophyll metabolism, MODY: Maturity onset diabetes of the young, 
GM: Glutathione metabolism, TRSP: Toll-like receptor signaling pathway, LTM: Leukocyte transendothelial migration, RAC: 
Regulation of actin cytoskeleton, AtRB: Aminoacyl-tRNA biosynthesis, PPP: Pentose phosphate pathway, CCRI: Cytokine-cytokine 
receptor interaction, PCB: Pantothenate and CoA biosynthesis, FAM: Fatty acid metabolism, UCMAG: Urea cycle and metabolism of 
amino groups, CSP: Calcium signaling pathway, NKCMC: Natural killer cell mediated cytotoxicity, OT: Olfactory transduction, PD: 
Parkinson's disease, OP: Oxidative phosphorylation, BCRSP: B cell receptor signaling pathway, EHEC: Pathogenic Escherichia coli 
infection – EHEC, EPEC: Pathogenic Escherichia coli infection – EPEC, NM: Nitrogen metabolism, FAEM: Fatty acid elongation in 
mitochondria, MAPKSP: MAPK signaling pathway, CC: Cell cycle. *P-value for up regulation, **P-value for down regulation, 
***Both P-value for up and down regulation are <<0.0001. #Test for bi-directional gene sets using GAGE Gamma test. $ Test for bi-
directional gene sets using GAGE Stouffer test. @Gene sets that are not significant in the datasets without missing values. @@More 
than 20 pathways are extremely significant. This is more likely to be false positive due to many imputed values of zero..  
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Discussion 

This chapter focuses heavily on simulation and permutation to test and evaluate the 

performance of the two-stage z-test approaches when applied to three existing methods (PAGE, 

GAGE and T-profiler) in comparison with the gamma GAGE method for gene set analysis of 

matched microarray data. The gene set analysis methods and approaches were examined for 

power, type I error, satisfaction of statistical assumptions, influence of missing values and 

influence of unusual data distributions or unusual data structure.  

Both the results from purely simulated data and experiments on actual microarray 

datasets supplement and support each other. Expression values in our simulated datasets are 

independent and identical distributed. Our simulated datasets do not account for gene specific 

expression patterns or correlations in expression among genes. Thus, simulated datasets were 

mainly used for the comparison of power of different approaches, and for demonstration of some 

special situations. Permutation on actual microarray data can evaluate the performance of 

different approaches on real usual and unusual microarray data where the expression pattern can 

be different across genes or the correlation in expression among genes exist, or large ties are 

produced by a large percentage of genes having the same ratio of expression values between 

cases and matched controls.  

Statistically, the two stage z-test approach for gene set analysis assumes that for each 

matched pair the log fold changes are independently and identically distributed (IID) across 

genes. However, on actual microarray data where the expression of genes may be correlated, and 

the distribution of expression of genes may not be identical, the permutation results show that the 

z-statistics satisfy standard normal distribution for gene set sizes of 20 genes or more. For the 

third version of the dataset, missing values after filtering are imputed as the smallest values of 
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log2 expression values and thus the log2 fold changes of each pair contain from 20% to 70% of 

genes with log2 fold changes at the same value of zero. The distribution of log2 fold changes in 

this imputed data set is very unusual, contains large ties among genes, and may not be identical 

across genes. However, the z-statistics still satisfy the standard normal distribution for gene set 

sizes from 30 or more.  

In theory, the z-statistics may have some drawbacks. Firstly, since they are based on the 

mean, they may be sensitive to some extreme values of the log2 fold change of some genes in the 

gene sets, especially for gene sets of small size. This is reflected by the fact that the proportion of 

large z-statistics (z<-3 or z>3) is slightly higher than the expected proportion from the standard 

normal distribution for gene set sizes ≤50 and approximately equal to the expected proportion for 

gene set sizes > 50 for the dataset without missing values and for the dataset with imputed 

missing values. For the second version of the dataset, since there is a large percentage of missing 

values, the number of genes in the set that actually have expression values is much smaller than 

the gene set size itself. As a result, a considerably higher proportion of large z-statistics for small 

and average gene set sizes is predicted. However, the second stage z-test average one more time 

the z-statistics of individual pairs, thus the type I error of the global z-test is just equal to, or 

smaller than random chance for both simulated data and for actual microarray data with and 

without missing values. To avoid a higher risk of false positives due to large z-statistics of 

individual pairs, especially for datasets with large percentages of missing values, the panel of the 

proportion of large z-statistics for different gene set sizes from 10 to 500 genes (table 5.4 and 

5.5) can be used to adjust the p-value of the global z-test. One possible solution is that if the 

observed proportion is k times larger than the expected proportion, the adjusted global p-value of 

global z-test of a gene set of corresponding size may be k times the observed global p-value. 
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Secondly, the stage 1 z-test does not account for variance within gene sets. However, the 

combination of the tests for one-directional gene set, and the test for bi-directional gene sets 

addresses the variability of expression values of genes in the set. In addition, for matched 

microarray data, variation of differential expression across matched pairs may be of more interest 

than variation of expression ratio across genes in the set. The variation of differential expression 

across matched pairs can be partially addressed by the combined use of a global z-test, a simple 

chi-square test and a standardized chi-square test.  

The combination of the three stage 2 global tests:  z-test, simple chi-square test and 

standardized chi-square test can detect both homogeneity and heterogeneity in differential 

expression across pairs. The global z-test can only detect differential expression in the direction 

that is more predominant across pairs (homogeneous). The global standardized chi-square test 

can detect differential expression in 2 two opposite directions across pairs (heterogeneous). This 

test is not very sensitive, and may not be a good test for sample sizes with < 20 pairs. The global 

simple chi-square test can detect differential expression homogeneously or heterogeneously 

across pairs for any sample size. Thus, a simple chi-square test can be used as a “screening” test 

for perturbation of gene sets. However, this test can be very sensitive and can produce false 

positive rates slightly higher than random chance. Thus for simple chi- square tests, the p-values 

should be <0.01 to claim significance, and this test should be confirmed by a global z-test or a 

standardized chi-square test.  

In term of power, the gamma GAGE approach is over sensitive for perturbation in only a 

few pairs, and thus, can confusingly produce high power for both up and down regulation for up-

regulation simulation. The global z-test of ZZ-GSA when applied to PAGE, GAGE, and T-

profiler does not have this drawback. The global z-test of PAGE-ZZ-GSA has considerably 
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higher power than the (Stouffer) GAGE-ZZ-GSA in detecting differential expression in one 

direction in the gene set.  

In terms of type I errors of the tests for one directional gene sets, false positive rates of 

both gamma and Stouffer GAGE approach are lower than random chance and lower than the 

PAGE-ZZ-GSA and T-profiler. However, except for the global simple chi-square test whose 

type I error is predictably slightly higher than random chance, type I error of the global z-test of 

ZZ-GSA is lower or approximates random chance and type I error of the standardized chi-square 

test of ZZ-GSA is almost zero.  

The false positive rate of the ZZ-GSA approach for bidirectional gene sets is 

considerably larger than random chance. For gamma GAGE, the type I error of the test for 

bidirectional gene sets is lower than random chance. Thus, the tests for bidirectional gene sets of 

the ZZ-GSA approach should be used with caution. For ZZ-GSA, the test can only be claimed 

for significant if p-value <0.001.    

The PAGE-ZZ-GSA and T-profiler-ZZGSA have better power than the (Stouffer) 

GAGE-ZZ-GSA, while the type I error of ZZ-GSA is smaller or equal to random chance. While 

the advantage of (Stouffer) GAGE-ZZ-GSA is small type 1 error, its low power can be a 

concern. The gamma GAGE is sensitive to the perturbation in only a few pairs. Thus, although 

its type I error is much smaller than random chance, the use of this test and the interpretation of 

its results should be cautious.  

The current GAGE software available in Bioconductor can only be used for microarray 

data without missing values. For microarray data with many missing values, this software 

package can produce unacceptably large false positive rate of up to 90-100%. Thus, it cannot be 

used. The current GAGE software needs to be re-programmed or modified in order to handle 
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missing values properly. Our R program for implementing the ZZ-GSA approach and modifying 

the GAGE software to handle microarray data with and without missing values is available upon 

request.  

The permutation results on actual microarray data in terms of type I error and satisfaction 

of statistical assumptions in this paper can be used as a reference for future use of the ZZ-GSA 

and GAGE on different microarray datasets. However, different datasets may contain different 

percentages of missing values, so the reference panel for datasets with missing values may be 

somewhat different for different datasets. Thus, although it is not a must, rerunning the 

permutation could produce customized reference panels for datasets with missing values (our R 

program for simulation and permutation study will be freely available upon request).  

The KEGG gene sets represent different patho-physiological and biological pathways and 

are of different sizes. Thus KEGG gene sets are appropriate for demonstrating the PAGE-ZZ-

GSA and GAGE approaches for gene set analysis of our microarray data of CP cases and their 

matched controls. The combination of use of the global z-test, simple chi-square test and 

standardized chi-square test of PAGE-ZZ-GSA can pick up more significant gene sets than the 

Stouffer GAGE without increasing type I error. The combination use of these 3 tests can help 

describe how the gene set is differentially expressed across pairs, homogeneously or 

heterogeneously and whether up or down regulation is more predominant. For example, for the 

Lupus and the Leukocyte transendothelial migration (LTM) gene sets, without taking multiple 

test testing into account, the p-value of the Lupus gene set is <0.05 by the global z-test for up-

regulation and by the global standardized chi-square test in the first and the third version of the 

dataset. For the LTM gene set, the p-value is <0.05 by the global z-test for down-regulation and 

by the global standardized chi-square test. Thus, differential expression of Lupus and LTM gene 
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sets is heterogeneous across pairs (some pairs are up regulated and some pairs are down 

regulated), however, up-regulation is more predominant for the Lupus gene set and down-

regulation is more predominant for the LTM gene set. For porphyrin and chlorophyll metabolism 

(PCM) gene sets, p-values are <0.05 by the global z-test for up-regulation and >0.05 by the 

global chi-square tests. This gene set is homogenously up-regulated across pairs. The global z-

test of the (Stouffer) GAGE-ZZ-GSA is similar to that of PAGE-ZZ-GSA and t-profiler-ZZ-

GSA, but has lower power and smaller type I error. Thus, this test can be used confirmed the 

results of the global z-test of PAGE-ZZ-GSA or t-profiler-ZZ-GSA.  

The pilot microarray dataset in 3 versions used in this paper is only about 10% of our 

planned sample size. Commonly used filtering and normalization approaches were used to 

process the raw data. The results presented in this paper are mainly for evaluation and 

demonstration of statistical approaches. Results may be somewhat different with larger sample 

sizes or with different approaches for processing raw microarray data of degraded mRNA or with 

different approaches for imputing missing values.   

In summary, both the gamma GAGE and the ZZ-GSA approaches can be used for gene 

set analysis of matched microarray data. The combination use of the global z-test, simple chi-

square test and standardized chi-square test of the proposed ZZ-GSA approach increases power 

in detecting differential expression both homogeneously and heterogeneously across pairs with 

statistically reasonable type I errors, and helps interpret the pattern of differential expression 

across pairs properly. The gamma GAGE and (Stouffer) GAGE-ZZ-GSA approaches produce 

very low false positive rates. However, the (Stouffer) GAGE has lower power than PAGE- ZZ-

GSA and T-profiler-ZZ-GSA. The gamma GAGE can be over sensitive to perturbation in a few 

pairs, and interpretation of the results should thus take this issue into account. The test for bi-
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directional regulation of the gene set of PAGE-ZZ-GSA, T-profiler-ZZ-GSA, (Stouffer) GAGE-

ZZ-GSA produces considerably high false positive rates, and thus, should be used with caution. 
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CHAPTER6. SUMMARY, FUTURE RESEARCH APPLICATIONS AND DIRECTIONS   

Gene set analysis of microarray data from uDNBS of 53 CP cases vs. matched controls of 

the OWL study has revealed the role of three of the four pre-hypothesized pathways of CP. 

Empirical gene sets representing hypoxia and inflammation are significantly down-regulated 

while the empirical gene set representing thyroid hormone disorders is significantly up-regulated. 

The differential expression of these three gene sets may suggest a co-effect or correlation of the 

three pathways of inflammation, hypoxia and thyroid disorders on the development of CP. Thus, 

a statistical method is needed to evaluate the correlation among gene sets. Of the three significant 

gene sets, the empirical gene set representing the fetal inflammatory response syndrome appears 

to be the most prominent. The analysis exploring other gene sets from the KEGG database also 

reveals the differential expression of inflammatory-related gene sets. This indicates that 

inflammation may play an important role in the development of CP during the peri-partum 

period. The stratified analysis shows that the empirical inflammatory gene set seems to up-

regulated in uDNBS of preterm newborns while down-regulated in term newborns. This 

indicates an interaction effect between gestational age and this inflammatory gene set.   

The results of pathway analysis suggest that uDNBS of long term storage yield 

considerable amount of mRNA for genome wide gene expression profiling and differential 

expression of gene sets may be found. However, further exploration and examination of 

microarray data from uDNBS has revealed significantly decreasing trend of microarray data 

quality over time of storage. The deterioration of microarray data quality over time may reduce 

the possibility of detecting differential expression of individual genes or gene sets. The initial 

results from 53 CP case –matched control pairs suggest that differential expression of individual 
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genes as well as gene sets may be preserved better in uDNBS of less than 6 years old. Therefore, 

we recommend prioritizing uDNBS of six years old or less for study.  

The decreasing trend of detected expression signal over time of storage is found 

significantly in around 90% of all genes available in the arrays. This makes the criteria for 

selection of housekeeping genes based on stable expression signal across samples inapplicable. 

The proposed approach for selection of housekeeping genes based on the median of decreasing 

slopes of expression signal of all genes takes this decreasing trend into account and may be 

generalized if there are other covariates that affect the trend of detected expression signal. For 

microarray data used in this dissertation, this approach helps us to select six potential 

housekeeping genes which are selected robustly across all arrays as well as across case-control 

groups and laboratory batches. However, the qualification of these genes may need further 

evaluation by qPCR. Also, the simple conventional quantile normalization method is used to 

produce the processed microarray data used for the selection of these genes. Thus, the list of 

potential housekeeping genes may change if other methods of normalization which take the 

decreasing trend of expression signal into account are used.  

Both the original gamma GAGE method and the proposed ZZ-GSA approach can be used 

for gene set analysis of matched microarray data as long as the strength and weakness of each 

approach is understood and is taken into account properly. The combination use of the global z-

test, simple chi-square test and standardized chi-square test of the proposed ZZ-GSA approach 

increases power in detecting differential expression both homogeneously and heterogeneously 

across pairs with statistically reasonable type I error and helps interpret the pattern of differential 

expression across pairs properly. The gamma GAGE and (Stouffer) GAGE-ZZ-GSA approaches 

produce very low false positive rates. However, the (Stouffer) GAGE has lower power than 
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PAGE- ZZ-GSA and T-profiler-ZZ-GSA. The gamma GAGE can be oversensitive for 

perturbation in a few pairs, and the interpretation of the results should take this issue into 

account. For the test of bidirectional regulation of gene set, the gamma GAGE can produce 

reliable results while the PAGE-ZZ-GSA, T-profiler-ZZ-GSA, (Stouffer) GAGE-ZZ-GSA 

produces considerably high false positive rates, and should be used with caution. 
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