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ABSTRACT

THE QOBE ALGORITHM: STOCHASTIC CONVERGENCE

ANALYSIS AND APPLICATION TO CLASSIFICATION

By

Gihan Mandour

The quasi-optimal bounding ellipsoid (QOBE) algorithm has potential for applica-

tion and theoretical development in many applications involving estimation of linear

parametric models. QOBE offers superior adaptation, improved accuracy, efficient

use of innovation in the data, improved computational efficiency, robustness to mea-

surement noise and to deviation from the assumed noise model, and a set of feasible

solutions supplementing the single point estimate.

Deterministic convergence analysis of the QOBE algorithm has been investigated

in the literature. However, in many real-time DSP applications the signals to be mod-

eled are approximated as the output from a linear shift-invariant filter whose inputs

are stochastic signals. Therefore, there is a need for stochastic convergence analysis

of an algorithm used in any system parameter identification or estimation to ensure

its proper performance.

This research analyzes the convergence properties of the QOBE algorithm in a

stochastic framework and provides insights into its operation in practical applica-

tions. For stochastic analysis, the innovations and the bounded noise sequences are

modeled as random variables defined on a probability space. Mathematical formula-

tions of theorems proving the almost sure convergence of the central estimator and

that the hyperellipsoidal membership set associated with QOBE cannot converge to

a point set, are constructed.

Simulation studies are performed to show the performance of the QOBE algorithm,

its tracking capabilities, and demonstrate potential uses in classification problems.
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Chapter 1

Introduction and Background

1 .1 Introduction

Many digital signal processing (DSP) applications require parametric signal mod-

els. Linear-in-parameters systems form a broad class of models that has been exten-

sively investigated. Many system identification or parameter estimation techniques

have been developed to estimate the unknown parameters in a linear model.

Set membership (SM) algorithms are used to identify linear-in-parameters signal

or system models of the form

y,, = 63rn+ez (1.1)

in which 0., E Rm is the unknown “true” parameter vector to be identified; {11.3,} is a

sequence of measurable vectors of dimension m; and {5;} is a noise sequence or an

error sequence. SM algorithms have recently begun to find their way into the DSP field

because of their tremendous potential for application and theoretical development in

virtually any application involving estimation of linear parametric models. The basic

idea of the estimation procedure is to provide a set of solutions that are compatible

with the observations 23,, and the disturbance constraint 5;. Thus the estimate is a set

in parameter space rather than a single vector as in the least square (LS) estimation



techniques [1]. In some applications, the center of the parameter set can be used as

a point estimate for the model parameters, while in other applications the entire set

of parameters might be of interest [2] A widely researched class of SM algorithms

is that involving bounded error (BE) constraints where a pointwise bound on the

disturbance sequence is assumed. The optimal bounding ellipsoid (OBE) algorithms

belong to the class of BE methods. The bounding ellipsoid associated with an OBE

algorithm can be calculated recursively in real time using an algorithm of relatively

low computational complexity. Like all SM methods, the OBE algorithms seek a

membership set in the parameter space which is guaranteed to contain all solutions

that are compatible with the model of the underlying process, the assumptions on

the noise and the observation data.

OBE identification algorithms are of practical use in many real-time signal-

processing applications and have received considerable attention [3]-[16]. With respect

to the conventional recursive methods like recursive least squares (RLS) [1],[2],[17]-

[22], OBE identifiers offer superior adaptation, improved accuracy, efficient use of in-

novation in the data, improved computational efficiency, robustness to measurement

noise and to deviation from the assumed noise model, and a set of feasible solutions

supplementing the single point estimate. The references in [3],[4],[7]-[16],[23]-[38] pro-

vide a broad and current overview of such work.

This research is concerned with a specific SM algorithm known as the quasi

optimal bounding ellipsoid (QOBE) algorithm [39]-[41]. The QOBE algorithm is a

member of the class of general OBE algorithms [10] but its particular structure gives it

properties that yield special application performance and makes it worthy of separate

investigation . QOBE algorithm’s convergence properties have been studied in a de-

terministic framework. The purpose of the present work is to analyze the convergence

properties of QOBE in a stochastic framework, and to furnish an understanding of

its operation in practice through application studies, such as classification problems.



1.2 QOBE Algorithm

QOBE shares most of the motivating principles and algorithmic structure with

the other OBE algorithms; however, it has other geometric and classic least-squares

interpretations that promote its use in potential applications. The name QOBE has

been used in the literature to indicate both the similarities and differences between

QOBE and previous instances of OBE.

The OBE algorithms in general are used to identify a linear-in—parameters discrete-

time model of the form (1.1). One special case that is used extensively in many signal

processing applications and on which we will base our study is the auto-regressive

with exogenous input (ARX) model [2, 18] , in which .7:,, = [y,,_1, ,y,,_,,,u,,,

,u,,_,,]T is the observed data sequence consisting of samples of an observable input

sequence {an} and output sequence {y,,} [13]. In this case m = p + q + 1 in (1.1) and

6. = [01“ ,a,.,b...b1., ,b,.]7‘.

The OBE algorithm, in general, is based on the assumption that {5;} has a

pointwise energy bound that is known a priori

8:2 s 7,2, for all n (1.2)

At each n, these bounds imply two hyperplanes in parameter space

HI: {9 lyn=6Tx+7n} and H; = {0 |y,,=0T:r-7,,} (1.3)

between which 0. must lie. The intersection of these pairs of hyperplanes over time

forms a polytope in W", which can be shown [10] to be a subset of a hyperellipsoidal

set at time it given by

a, ‘1—3‘ {a |(6—6,,)TC,,(6-6,,) < M} (1.4)



where 1%,, is expressed as

52,, =6ICn6n-l-ZA, (73—3/3) +rso, n=1,2,.. (1.5)

3:1

1
The ellipsoid center, 6’", It", and matrix P,, dr—e-f C; are computed recursively using

 

[9, 10, 42]

G" = Igpn—NL‘n (1.6)

5,, = 3],, — 0,1123" (1.7)

1 finPn—lxnxTPn—l

P" = — P,,_ — n 1.8

an 1 an + :BnGn ( )

6n = 671—1 + [BnannEn (19)

art/811572;
1%,, = annn_1+ fin7n - (1.10)

an + flnGn

It is also useful for theoretical purposes to note that Cm the so-called covariance

C11 — anCn-l I finxnxn

Recursions (1.6) - (1.10) comprise the basis for a general OBE algorithm. OBE

algorithms are distinguished from one another by the choices of the positive weighting

sequences {an} and {fin} according to the optimization criterion that minimizes the

size of the set (2,, at each iteration.

In the QOBE algorithm, the scalar Km is minimized at each iteration by letting

fin = An and 01,, = 1, then seeking the optimal An, a strategy first used by Dasgupta

and Huang [4]. Since {an} and {3"} are functions of An, then the optimization

criterion is performed with respect to A" only. The optimal weight for QOBE is



found by solving F,,(/\) = 0 where

 

F,,()\) =a,,)\2+b,,)\+c,, (1.11)

in which

a,, = 73,03,

bn = 2712,01:

c,, = (73—53,) (1.12)

Thus yielding

1 Isnl 6n
A, = — —— — 1 = 1.1

an (7n ) Gn7n ( 3)

where (5, dg [8,] — 7, and the reduced value of 5,, is computed as

Kn = lin_1— 67:16,? (1.14)

Note that a necessary and sufficient test for the existence of the positive root is c,, < 0.

Therefore, the algorithm updates the estimators only when 0,, < 0.

QOBE algorithms are distinguishable by their ability to selectively use the in-

coming data to update the ellipsoid and the central estimator. When the observations

at time n contain no innovation in the sense that they cannot be used to reduce the

size of the set 9,,_1, then they are discarded. This implies that no valid weights can

be found at this instant and thus the effort of updating at this time can be avoided.

Therefore, depending on the properties of the sequence {8?}, QOBE algorithms often

update only 10 percent of the time or less.



1.3 Review of QOBE Algorithms

This section is based largely on the review in the papers by [7]-[12],[14],[23]-

[25],]39],[40],[43]-[46]. In 1968, Schweppe published the first bounding ellipsoid algo-

rithm [23] for estimating the state parameters of a linear dynamic system using noisy

observations. He derived the algorithm under the assumption that both the input

and the observation errors are unknown but bounded. His choice of bounding the

optimum estimate set by an ellipsoid was due to fact that an ellipsoidal approxima-

tion algorithm has certain computational advantages. However, as Scheweppe notes,

this new algorithm was presented with no convergence proof and required impractical

computational loads.

Following the footsteps of Scheweppe, Witsenhausen[43] , and Bertsekas and

Rhodes [24] introduced the SM algorithm using similar assumptions of bounded-

input and bounded-noise. However, Bertsekas and Rhodes showed that SM is similar

in structure and comparable in simplicity to the Kalman-Bucy filter [48] known to be

the best linear estimator for the Gaussian white noise case.

In 1979, Fogel [25], studied for the first time the problem of estimating a mem-

bership set of unknown parameters of a dynamic system. The analysis yielded an

OBE identification algorithm for the ARX model with bounded-energy constraints

on the noise sequence. In a deterministic sense, Fogel has shown that the sequence

of bounding hyperellipsoids asymptotically reduces to a point set (the true model

parameter vector). Fogel’s assertion that the convergence of his algorithm implies

the convergence of the OBE algorithm has remained controversial [7, 9].

In 1982, Fogel and Huang [44] formulated system parameter identification as a

membership-set estimation problem and proposed the first OBE algorithm (FH/OBE)

that employs selective updating to ignore redundant data. Selective updating in

FH/OBE is achieved by using a weighting strategy that assigns a sequence of weights

{q,-} to incoming data points. In the FH/OBE algorithm, a set measure defined on Rm



that reflects the geometric size of the set is defined such that only data points which

can reduce such size of the set are used. If g,- is zero then the new data point contains

no useful information to reduce the set size and thus it can be discarded. The results

of FH/OBE algorithm are comparable to the LS estimation method while achieving

0(m2) computations . However, Fogel and Huang expressed the convergence of their

algorithm only when the observation error is white noise and with known pointwise

upper bounds. This assumption was employed to make use of Fogel’s previous asser-

tion [25] and therefore has rendered some argument about the validity of their proof

[10]-[12],[14].

A new minimization strategy was introduced by Dasgupta and Huang in 1987 [4].

They considered minimization of Kn, a scalar, to facilitate convergence. However, later

Deller et al. [9, 10] questioned the interpretability of the algorithm’s optimization

criterion since minimization of 5,, had no apparent relation to the hyperellipsoid

volume. Dasgupta and Huang proved that their algorithm (DH/OBE) is simple, of

0(m) complexity, and its parameter estimates converge asymptotically to a region

around the true parameter.

Several attempts have been made to implement the minimization strategy of

Dasgupta and Huang within an OBE algorithm that has geometric and least square

interpretations [8],[39]-[40],[45]-[46],[48]. In 1996, Gollamudi et al. [39] presented a

SM state estimation scheme based on the DH/OBE algorithm to recursively estimate

the state of a system with bounded inputs and noise. The algorithm showed significant

performance and computational savings in terms of the mean-square error in the state

estimate. In 1997, the same group of authors [46] introduced a novel formulation of the

linear-in—parameters SM filtering problem and presented an adaptive algorithm named

“SMART”. SMART, the set-membership adaptive recursive technique, was derived

using the SM filtering framework of DH/OBE while implementing the same recursions

as the normalized least mean square (NLMS) algorithm. The technique offered non-



increasing size of the set estimates in the parameter space. In 1997, Nagaraj et al.

introduced the “official” QOBE [40] with its asymptotic convergence properties and

selective-updating capabilities. The algorithm used the same minimization criterion

as the one developed by Dasgupta and Huang and was shown to reduce the percentage

of updates and have excellent tracking performance. The convergence analysis of the

QOBE algorithm for identification and filtering was presented by Deller et al., in 1997

[41]. They showed that QOBE represents a “hybrid” between the set-membership

weighted recursive least square SM-WRLS algorithm and the DH/OBE algorithm

where QOBE implements the same weighting technique as the one used in SM-WRLS

but uses the minimization technique used by Dasgupta and Huang. However, their

convergence analysis was restricted to a deterministic setting. Since then, many

papers have been published by this group of authors and others interested in the

development of the QOBE algorithm and its implementation in many of the DSP

applications [38] , [40]- [4 1] , [45]- [47] , [49]- [50] .

1.4 Motivation for the Current Research

The development of algorithms for recursively identifying the parameters of a

time-invariant dynamic system is widely studied in the literature using two ap-

proaches, the deterministic and the stochastic approach. In deterministic settings,

signals may be defined as those that can be described by a mathematical expression

or that can be reproduced repeatedly [1]. On the other hand, stochastic signals are

defined as representation of random processes that are not repeatable in a predictable

manner and which are identified by the statistical properties of such random processes.

In many real-time DSP applications the signals to be modelled are approximated as

the output from a linear shift-invariant filter whose inputs are stochastic signals such

as stationary white noise. Therefore, there is a need for deriving the stochastic con-



vergence analysis of an algorithm used in any system parameter identification or

estimation to ensure its proper performance.

In this research we analyze the convergence properties of the QOBE algorithm

in a stochastic framework and provide some insights into its operation in practical

applications. For stochastic analysis, y", u,,, and c,, are modelled as random vari-

ables defined on a probability space. Complete analysis and details of the stochastic

convergence for the QOBE algorithm are introduced in the following chapter.



Chapter 2

Stochastic Convergence Analysis of

QOBE Algorithm

2. 1 Introduction

Many researchers, especially the group of Nagaraj, Gallamudi, Huang, Kapoor

and Deller [39]-[41],[45]-[46],[48]-[49], have focused on the development of the QOBE

algorithm, an algorithm that uses a weighting strategy similar to the SM-WRLS [9]-

[12] but optimizes over the scalar A2,, as in the DH/OBE algorithm [4]. These groups

have proved in a deterministic setting that the parameter estimator asymptotically

converges to the “true” parameter vector under certain persistency of excitation (PE)

conditions of the observation sequence {xn}:‘;1 and under infinite visitation (IV) con-

ditions of the true disturbance sequence {5;}:1 of any arbitrary small neighborhood

of its true bounds [51]. The purpose of the present work is to analyze the conver-

gence properties of the QOBE algorithm in a stochastic framework and to provide

some insights into its operation in practical applications.

QOBE features include highly-selective updating, linear complexity in the num-

ber of parameters, and its excellent tracking ability in time-varying environments.

10



Further, since QOBE does not explicitly depend upon the bounding ellipsoid, the

need to assure that 6. remains inside the ellipsoid, which is critical in OBE pro—

cessing, is not important in QOBE. This is another important feature of QOBE for

tracking performance. Finally, the ellipsoidal set associated with QOBE has inter-

esting convergence behavior in practice, which, while seemingly undesirable from a

theoretical point of view, may also benefit tracking behavior.

Deterministic approaches to convergence analysis assume signals to be predictable.

However, for stochastic analysis, yn, u,,, and 5,, are modelled as random variables

defined on a probability space (S, 8‘, P) where S is a sample space, 8‘ is a Borel

o—algebra of subsets of S, and P is a probability measure on 8‘. In an ARX model,

the observation sequence is of the form {:z:,,} (1;: {yn_1, ,y,,_,,,u,,, ,u,,_q}.

For analytical purposes, we will assume that the model is stable, and, if we let

3,, = o (em,u,,,+1, m S n), then (c,, is 8,,_1 measurable.

Recent results for more conventional OBE algorithms in stochastic settings [13,

14] provide us with guiding principles for our present work on analyzing the stochastic

convergence of the QOBE algorithm. They also suggest that the analysis of the QOBE

algorithm in a stochastic framework is feasible following similar lines.

2.2 Definitions

In this section we will introduce definitions that will facilitate the statement and

analysis of new theorems. Most of these definitions are cited from the literature.

Definition 2.1 [2] An estimator 0”, of 0..., is called p. convergent (convergent in

probability) if for all e > 0

lim P (||6,, — 6,“ > 6) = 0 (2.1)

where [M] denotes any norm.

11



It is be noted that convergence in probability implies weak convergence (convergence

in distribution).

Definition 2.2 [2] An estimator 6,,, of 6,, is called as. convergent (almost surely

convergent) if

P( lim 6,, = 6...) = 1 (2.2)

Equation (2.2) is equivalent to

P(||6,,—6,..|| >6 i.o.)=0 Vc>0 (2.3)

where i.o. denotes infinitely often with respect to n.

From Definition 2.2 it can be seen that as convergence implies p. convergence.

Although s. convergence (sure convergence), defined as lim,,_.co 6,, = 6... [52], is theo-

retically stronger than as convergence, the latter is regarded as the strongest type

of convergence employed in practice and in most of the literature [13].

Definition 2.3 A random sequence {5;} is said to be asymptotically independent if

lim |P ((5: e:- A) n (53,, e B)) — P (a: e A) P (52;, e B)| = 0
n—ooo

Vi and VA,B 68‘ (2.4)

Recall from (1.2) that in SM algorithms, in general, it is assumed that the noise

sequence{e;} has a pointwise energy bound that is known a priori. Therefore, for

convenience, we will denote c—neighborhoods of the noise bounds as

D? = [7,,—em]

D: : [_'.Yna _7n+€]

Definition 2.4 [29] A random sequence {5;} is said to be almost surely uniformly

12



conditionally heavy tailed (a.s. UCHT) if there exits 01 > 02 > 0 and an infinite

subsequence {n,-} C {n} C N such that, with any sufi‘iciently small 6 > 0

(3'1ch(5:6(03UD:)|8‘,,_1)£C'26 Vn€{n,-} (2.5)

Definition 2.5 A random sequence {5;} is said to be almost surely uniformly condi-

tionally tailed (a.s. UCT) if given 6 > 0 there exits a (5 > 0 and an infinite subsequence

{n,-} C {n} C N , such that

P (a; e (D: U D;) 13H) > 5 v n e {71,-} (2.6)

Definition 2.6 A random sequence {5;} is said to be almost surely uniformly tailed

(a.s. UT) if given 6 > 0 , there exits a 6 > 0 and an infinite subsequence {n,-} C

{n} C N such that

P(e; E (DJUD:)) >6 Vne {71,-} (2.7)

It is be noted that UT and UCT conditions are less restrictive than the UCHT

condition.

Definition 2.7 A random sequence {5;} is asymmetrically bounded with as. UCT

condition if given 6 > 0 , there exits a 6 > 0 such that

P (8:6D2|8n_1)26 andP (5:, ED;|3,,_1) =0 Vn

07'

P(8;ED:|S‘,,_1)=O andP(€;ED; [8,,_1)26 Vn

Definition 2.8 A random sequence {5;} is symmetrically bounded with as. UCT

condition if given 6 > 0 , there exits a 6 > 0 such that

P (€f,€Dj|S‘,,_1) 251 andP (e;€0:|3n_1)262 Vn

13



Definition 2.9 The term infinite visitation (IV) refers to the condition in which

the true disturbance sequence {5;} visits arbitrarily small neighborhoods of its bounds

infinitely often (i.o.). That is, IV occurs iffor any 6 > 0 [8;] > 7,, — e i.o.

Definition 2.10 The term infinite updating (1U) refers to the condition in which the

QOBE algorithm does not cease updating in finite time.

Definition 2.11 The term infinite nulling (IN) refers to the condition in which any

infinite subsequence say {5:2,}211 of the true disturbance sequence {5;},311 satisfies

< e i.o.
  

the condition that for any e > 0 ,
n:

5n),

2.3 Persistency of Excitation Condition

A key requirement for the convergence of any recursive estimator is that the

inputs be sufficiently uncorrelated or persistently exciting (PE) so as to make the

parameters in (1.1) uniquely identifiable. The following definitions of PE appear in

the literature:

Definition 2.12 [29/ A sequence of random vectors, {x,,}, is called persistently ex-

citing (PE’), or omni-directional, almost surely (as) if for any nonsingular cone

K: {xzxzale1+ +amem , det(el, , em)7é0 , a,- >0Vi}

there exits p1 and p2 such that

"lingo ian (23,, E K I 3,,_2) _>_ p1 > 0 (2.8)

and

E (lenll | 371—2) _>_ {)2 > 0 V 71 (2-9)

14



Condition (2.8) means that the orientation of x,, is sufficiently varied in a con-

ditional probability sense, while (2.9) means that the magnitude of 23,, cannot be too

small on the average.

Definition 2.13 [2.9] A sequence of random vectors, {xn}, is called PE as. if there

exits p1 and p2 such that

lim infE ($an | SW) 2 p11 > 0 (2.10)

and

EUI$nII I 371—2) 2 P2 > 0 V n (2-11)

The fact that E (E (:1:an I 3,,_2)) = E (xan) leads to an equivalent definition

of PE:

Definition 2.14 [29] A sequence of random vectors, {xn}, is called PE as if there

exits p1 and p2 such that

lim infE (xan) 2 p11 > 0 (2.12)

and

E(Il$nll I SIii—.2) 2 P2 > 0 V n (213)

Definition 2.15 [26] A WSS sequence of random vectors, {xn}, is called PE as. if

there exists p1 and p2 such that

E (xan) 2 p1I > 0 V n (2.14)

and

EUIIUnll I 871—2) 2 P2 > 0 V Tl (2-15)

15



It is to be noted that similar definitions exist in the literature for deterministic

analysis [2, 18, 26].

2.4 Lemmas

The following lemmas are useful in a convergence proof to follow.

Lemma 2.1 [15] Let x,y be random variables. If x is continuously distributed, then

x + y is continuously distributed. If in addition y at 0, then xy is continuously

distributed.

Lemma 2.2 [13] Assume the model (1.1) is a stable ARX model and {u,,} and {5;}

are bounded. If both {u,,} and {5;} are asymptotically independent sequences, and

{u,,} is independent of {5;} , then y,, converges to a continuous random variable as

Tl'—*OO.

It is to be noted that if {u,,} or {5;} or both are continuously distributed, then

the assumptions that {u,,} and {5;} are asymptotically independent sequences and

the independence between {u,,} and {5;} are not required in Lemma 2.2.

Lemma 2.3 [13] Assume that model (1.1) is a stable ARX model, and {u,,} and

{8;} are bounded. If PE holds, both {u,,} and {5;} are asymptotically independent

sequences, {u,,} is independent of {5;}, and the noise bounds are overestimated for

QOBE algorithms, i.e., if there exists an 61 > 0 and an N E N such that V n > N,

7,2, — 5:2 > 61 , then the expected updating interval of the estimator 6,, approaches

infinity as n approaches infinity.

It is to be noted that if {u,,} or {5;} or both are continuously distributed, then

the assumptions that {u,,} and {5;} are asymptotically independent sequences and

the independence between {u,,} and {5;} are not required in Lemma 2.3.
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2.5 Almost Sure Stochastic Convergence of QOBE

White noise has been commonly studied in the analysis of many system iden-

tification and parameter estimation algorithms as well as model structures. In the

following work, we consider cases in which {5;} is white noise, i.e., E (5;) = 0 and

E (5:5?) = 026 (s —— t) where 6 is the Kronecker sequence.

The theorems of as. convergence of QOBE algorithm are introduced and proven

when both the input sequence {u,,} and the noise sequence {5;} are assumed station-

ary and {u,,} is assumed independent of {5;}. For p. convergence, {u,,} and {5;} are

 

not required to be stationary. Furthermore, if {u,,}, {5;}, or both are continuously

distributed, then the conditions for as. and p. convergence can be relaxed.

In [53], it is shown through an illustrative example, how different cross-sequence

dependencies can affect the convergence behavior of QOBE. Fortunately, the depen-

dencies needed for “good behavior” can be easily described in a stochastic framework.

This will be illustrated in the next theorems of as. convergence.

2.6 Convergence of the Central Estimator (Inde-

pendent Noise Case)

Theorem 2.1 Assume that the stationary sequences {u,,} and {5;} are independent.

If PE (2.8) holds, UCT holds, and {u,,} and {5;} are asymptotically independent and

ergodic, then the central estimator of the QOBE algorithm is as convergent.

Proof: Since PE (2.8) and UCT (2.6) hold, then there exits aninfinite subsequence

{n,} E Z such that for all n E {n,}, (2.6) and

P (an K|8n_2) 2p,1 >0 a.s.

hold, where K is defined in Definition 2.12 and p] = p1 - c, for some 6 > 0. For

17



convenience we let n replace n, throughout the proof.

Let {5; : n E Z} denote the noise sequence and {u,, : n E Z} denote the input

sequence of model (1.1). Thus we can rewrite (1.1) as

p q

y,, - Z a,y,,_,- = Z b,u,,_,- + 5; (216)

j=l '=o

Let

1 r q

w,, (é Z bjun_j (2.17)

:0

and v,, = w,, + 5;. Then (2.16) becomes

yn = Zhn—jvj (2.18)

where h,, is the infinite impulse response, y,,, if v,, is set to a Kronecker delta function.

By Lemma A.1 {w,,} is stationary and ergodic. Also, by Lemma A.2 {u,,} is stationary

and ergodic.

Let {1),} be a sequence of time intervals of length 1V1 over which the algorithm does

not update its estimator. This willbe helpful in asserting a contradiction later on.

Therefore, for each k = 1,2, - - - ,K

0 “=e‘ [6(1) 6(2) 6(m)]

is a constant vector for all n in each 1),. From (1.7) we have

5,, = y,, — 6,1113,

: yn — 20(ilyn-i

i=1

5,, = — Z6(i)y,,_,- , where 6(0) déf —1 (2.19)

i=0

18



From (2.18) and (2.19) we have

m n—i

5,, = — Z Z 6(i)h,,-,-_,~v,-

i=0 j=—oo

Changing the order of summation, we get V n > m

“—2 ’Uj 112.1ann—,‘_J'— E ’Uj 20(i)hn—i—j

j:—n——-m+1 i=0 j=—oo i=0

Let p = n —j, then

p 00 m

5,, = — n: v,,__,, :0(6(i ,—2 v,,_,, 2 6(i)hp_,

p=CIl i: p=m i=0

5n = —Z—:lvn—1291" gvn-pg2

p20

where g1 and 92 are mapping functions independent of n, hence,

5.71 = .9 (via a vn—I a ”rt—2 a ' ' ) (220)

where g : Rk —> IR is measurable and independent of n. Thus, by Lemma A.1 {5,,} is

stationary and ergodic as M —) 00.

For each I: = 1, 2, - -- ,K, it follows from (1.12)

c,,=7,2,—5,2, >0VnEI;c

and from (1.7)

T

= y" _- 671—13371

Since

T
€2=yn—6$n

*
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then we get by letting and—3} 6., — 6,,

NT

5,, - 62‘. —0.._1 xn

and thus

~71"

5,, = 52+ 6,,_1 x,, (2.21)

Let A; be the event that 5:, E D; and 5:, x,, 2 0.

Let A; be the event that 5;“, E D:and 5:, x,, < 0.

Let A,, = A; U A; . Note that 5:, x,, is 83-1 measurable.

Also, let 3;, denote the event that A,, occurs at least once in 1),. Then for all n 6 [HI

we have 8;, 6 83-2. Thus since

P (513,, 5 K | 8,,_2) 2 p’, > o as.

then

NT ,

P (971—1 x,, Z 0 I Bk) 2 p1 > p > 0 (2.22)

and

~T ,

P (911—1 113,, < 0 | Bk) 2 p2 > p > 0 (2.23)

I

~T

where p2 2 p2 — 5 for some 5 > 0. Since B), E 8,,_2 C 3%, and 0,,_1 x,, is 3,,_1

measurable, it follows from (2.6) that

~T 6

P (51,6 (DjUD;)I0,,_,a:,,20,Bk) 261>P>0 (2.24)

and

~T

P (5:15 (DjUDg) |6,,_1 x,,<O,B;,) 262>g>0 (2.25)

Since A; and A; are mutually exclusive for sufficiently small 5 , it follows from (2.22)

20
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- (2.25) and the definition of symmetrically bounded sequence with UCT in Defintion

2.7, we have that

P(AnIBk) = P (A;|B;.)+P (AllBk)

NT NT

= P(5;€D;|6n_1x,,20,8k)P (6,,_1x,,20|Bk)

~T ~T

+P (5:, E D: | 6n_1x,, < 0,81,) P (911—1 x,, < 0 [81,)

Thus,

~T

P (A,,IBk) > P (e;eD;|9,,_,x,20,B.)p

~T

+P (5:, E D: I 6,,_1x,, < 0,Bk) p

> 6 > 0 (2.26)

Fr0m (2.26) and the definition of A,, , we have

P (I5,,I>7,,—5IB;,.)_>_P (A,,IBk)>6>O (2.27)

Thus by Theorem Al and (2.27) we have

P (I5,,| > 7,, - 5 to I Bk) =1 as NI —-> oo (2.28)

Therefore, {5"} exhibits IV and thus from (2.21) we have

  

~T

5:,+ 6,,_1x,, > 7,, — 5

and so we get

~T

Igfil + 611—1 $11 > 711 'T 6
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Since {x,,} is PE, we consider the following two cases:

NT

6,,_1 x,, < 5 for all

 

1. If lim,,_.00 6,, = 6* , then there exists some Ke such that

 

k 2 K, for arbitrary 5 > 0. Therefore I5;I > 7,, — 5 for all I: 2 K5 and {5;}

exhibits IV

2. If limnnoo 6,, 7é 6* then from (2.21) and the PE condition

~T

  

= I5,, — 5:;I > 77 i.o. for some 77 > 0

If we define 6,, = I5,,I — 7,, and 6;“, = 7,, — I5:,| so that 6,, + 6; = I5,,I — I5;I and if

I6;| < 321 i.o., then 5:,I > 7,, — 321 i.o. and {5;} exhibits IV. Thus contradiction occurs

and the assumption here is not true. From this argument and from (2.28) and (2.2)

we conclude a.s. convergence of the QOBE estimator. 0

Theorem 2.2 Assume that the stationary sequences {u,,} and {5;} are indepen-

dent. If {u,,}, or {5;}, or both, are continuously distributed random sequences, and

if PE (2.8) holds, UCT holds, and {u,,} and {5;} are ergodic, then the estimator of

the QOBE algorithm is as. convergent.

Proof: Continuously distributed {u,,} or {5;} or both implies that Lemmas 2.2 and

2.3 hold without the assumption that {u,,} and {5;} are asymptotically independent

sequences. The theorem can therefore be proved following the same steps as in the

proof of Theorem 2.1. 0

Corollary 2.1 Assume that the stationary sequences {u,,} and {5;} are independent.

If PE (2.8) holds, UT holds, {u,,} is asymptotically independent and {5;} is i.i.d.,

then the estimator of the QOBE algorithm is as convergent.

Proof: Since UT and UCT imply each other with the i.i.d. assumption, and i.i.d.

implies asymptotic independence, then as. convergence follows immediately from

Theorem 2.1. O
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Corollary 2.2 Assume that the stationary sequences {u,,} and {5;} are indepen-

dent. If {u,,}, or {5;}, or both, are continuously distributed random sequences, and

if PE (2.8) holds, UT holds, {u,,} is ergodic and {5;} is i.i.d., then the estimator of

QOBE algorithm is as. convergent.

Proof: Since UT and UCT imply each other with the i.i.d. assumption, and i.i.d.

implies ergodic, then as. convergence follows immediately from Theorem 2.2. O 3

The following corollary asserts a.s. convergence when the probability distribution I

of the noise sequence {5;} is known.

 
Corollary 2.3 Assume that the stationary sequences {u,,} and {5;} are mutuallty

independent. If PE (2.8) holds, {u,,} is ergodic and {5;} is i.i.d. with uniform

distribution then the estimator of the QOBE algorithm is as convergent.

Proof: For a uniform distribution,

. + - _f_P(5,, e (D, UD.)) 2 2% > 0

Thus UT holds. By Corollary 2.3, the estimator of the QOBE algorithm is as.

convergent. 0

Corollary 2.4 Assume that the sequences {u,,} and {5;} are stationary and {u,,} is

independent. If PE (2.8) holds, UCT holds, {u,,} is asymptotically independent and

{5;} exhibits IV, then the estimator of QOBE algorithm is as. convergent.

Proof: The statement falls immediately from the proof of Theorem 2.1. 0

Definition 2.16 Let (S, 8, P) be a probability space as previously defined. Let T :

(5,8) —+ (S, 3) be a measurable transformation on (S, 8‘, P), then T is said to be a

“measure preserving” if and only if P(T’1A) = P(A) for all A E 8‘
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We will define the measure preserving transformation (m.p.t.) to be “one-sided

shifter”

T(vo, v1, . - . ) = (v1, v2, - - - ) where v,- , for all i, is an event defined on the sample space

31 = (a, b) for some real numbers a and b .

P(T‘IA) = P(A) implies that P(T’kA) = P(A) for k = 1,2, - ~-

Thus with S = S? we have

P{('U0,’U1, "' avn—I) 6 Ian} = P{(Uk,vk+1, '°' 1vn+k-l) E 7871}

for all n and k and n—dimensional Borel sets 6,.

Definition 2.17 Let T be measure preserving on (S, 8‘, P). T is said to be indepen-

dent iffor all A, B 6 3‘, P (A H T"’°B) = P(A)P(B) for all k E N. T is said to be

“mixing” iffor all A, B 6 8‘, lim;H00 P (A Fl T‘kB) = P(A)P(B).

From Definition 2.14 and since E(x,,xg) is positive definite, an upper bound is

guaranteed on E(:17an) by the stability assumption of the model in (1.1). Also we

note that if {x,,} is mixing then all subsequences of {x,,} are also mixing. Thus if

E(x,,x3:) is bounded below at the points where the updates take place then the PE

condition (2.10) with x,, replaced by x,,k is satisfied.

A key point in the convergence proof is the independence between {5;} and

{51, x,,}. In order to extend the convergence property from independence to mixing

condition we need to modify the definition of x,, in the ARX model since x,, contains

y,,-l, the output at time n — 1. Thus, independency of {5;} is required to remove the

dependency of 5:, and 5:, x,, . Otherwise, x,, can remain unchanged unless an update

takes place and therefore we can apply the mixing condition to show convergence,

provided that for large n the time difference between two updates is large. We proved

convergence before in case of {5;} is independent. We will now prove convergence for

the mixing condition case. So we will use a modified model (1.1) with
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1B,, :- [yti-‘l ' ' ' ytt‘P utu‘ ° ° ° uti—QI (229)

where {y,,} and {u,,} are the same as in (1.1) , and {t,} is a subsequence such that

c,,. < 0 and t,- g n < t,+1.

2.7 Convergence of the Central Estimator (Mixing

Case)

Theorem 2.3 Assume {x,,} is either ergodic or mixing. Let {5,‘.‘,} be a noise sequence

and let T be mixing on {S, S}, P}. If the modified model of (1.1) with (2.29) is em-

ployed, PE (2.8) condition holds, UCT condition holds, then the central estimator of

the QOBE algorithm is as convergent.

Proof: Since PE and UCT conditions hold, then there exists an infinite subsequence

{t,} E Z such that for all n E {t,} (2.6) and P(xn E K I 83,4) 2 pl > 0 as. hold,

where K is defined in Definition 2.12.

Following the same argument as in Theorem 2.1, we conclude that {5"} is sta-

tionary and ergodic as M —+ 00, where M is defined in the theorem statement. For

convenience we will replace {t,} with {n} throughout the proof.

Let {1),} be the sequence of time intervals of length M > N over which the

QOBE algorithm does not update its estimator. This willbe helpful in asserting a

contradiction later on.

From (2.21) we have

NT

€;+ 671—1 $1; = 5n

~T

Let A; be the event that 5:, E D; and 6,,_, x,, Z 0

~T

Let A; be the event that 5;“, E D: and 0,,__, x,, < 0

Let A,, “é" A; u A:
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Note that 911—1 3,, is 83,4 measurable.

Let Bk denote the event that A,, occurs at least once in Ik. Then V n E Ik+1,

Bk 6 831-2.

Since

P(Ltn 6 K. | 371—2) 2 p,l > O as.

then

P<5._1 x. 2 o 13,.) 2 p1 > p > o (2.30)

and

Pd.-. 113,, < 0 I81.) 2 p; > p > 0 (2.31)

Since Bk 6 83,4 C 83.1 and 6:_1 x,, is 8,,_1 measurable, it follows from (2.6) that

~ T 6

P(E;E(D:UD:)|6n_l$nZO,Bk)261>E>0 (2.32)

and

J 5

P(e;e(D;UDj)l 6,,_1:cn<0,Bk)262>;>0 (2.33)

Since A: and A; are mutually exclusive events for sufficiently small 6, it follows

from (2.30)- (2.33) and asymmetrical bounded condition with UCT that

P(AnlBk) = PAM lBkl+P(A+lBk-)

= P(€;€ D—l 6:_1$nZO,Bk)

P (671—1 $71 2 O I Bk)

~T

+P (E; E Djl 671—1 xn < 0 33k)

~T

P (em 33,, < 0 | 3,.) (2.34)
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Let k,- = t,- — ti_1 (recall the replacement of t,- by n previously) and define

def
~T

WtH = {9t,—1$t.- 2 0} and Vt, (g {82; E Dg'}

Then Vt, and Wt“, E ‘3 and P(Vti) = 6

By the definition of mixing in Definition 2.17,

lim P (Vt, fl Wig—k

lei—.00

) = P(Vtt) klim P(Wt,_k.) (2.35)

Suppose P (Wu—k.) 75 0, then (2.35) can be written as

 

~ P(‘ftinWti—ki) _ ~

iii“... P(Wt.—k.) ‘ 1.313.“... P (V‘i'W‘i‘k‘)

= P (Va)

Let 0 < 6 < 6 and there exits an N such that

P(Vt.) - 6 < 1’04. | Wz.-~) < P(Vz.) + 5 (2-36)

This inequality holds if no updates take place on the interval [t,~ — N, t,].
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Now replace {ti} again with {n}, from (2.34) we have

~T ~T

P(AnlBk) = P(E;ED:I 6n_1$n20,Bk)P(0n_1$n20 lBk)

NT ~T

+P (5:; E D:- I 9n_11L‘n < 0 ,Bk) P (0n_1 {En < 0 lBk)

I
V

~T

NT

[P(e; e D; ,3.) — §]P(9n_1:r,, 2 0 13,.)

+[P(5; E D2330 —€]P(6n_1113n <0 lBk)

I
V

I
V

[P(é‘ZEDS UDf,Bk)-€lp

(2.)...p

From the definition of A,,

I
V

P(|€n| >%-6 | Bk)ZP(An | Bk)>5-€P>0

Thus by Theorem A.1 we have

P(Ien|>’yn—ei.o. |Bk)=1aslM—->oo

Thus lenl exhibits IV, and thus from (2.21) we have

 

 

NT

and so we get

~T
*

lenl + 9,14% > 7,, — e

  

Since {x,,} is PE, we consider the following two cases:

1. If limnnoo 6,, = 6... , then there exists some K6 such that

 

[P(s;eD; ,Bk)-€]p+ [P(s;eD:,B,,)—g]p

~T

6n_1 32,. < e for all

 

k _>_ K6 for arbitrary e > 0. Therefore lam > 7,, — e for all k 2 K5 and {513,}

exhibits IV
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2. If limn...oo 6,, ¢ 0... then from (2.21) and the PE condition

~T

612—1 x"

 

= [5,, — 5;| > 77 i.o. for some 77 > 0

 

Ifwe define 6n = lenI—vn and 6; = 7n— IEZI so that 6n+6,‘; = lenl — [5;] , and [6,“ < 321

i.o. then IEZI > 7,, — g i.o. and {5;} exhibits IV. Therefore we have a contradiction,

and the assumption here is not true. From this argument and from (2.28) and (2.2)

we conclude a.s. convergence of the QOBE central estimator. O

2.8 Convergence Analysis of the Membership Set

In optimizing the parameter an, QOBE does not place formal emphasis on the

contraction of the hyperellipsoidal membership set, Q", in the selection and weighting

of data. As a consequence of minimizing h,,, the volume is automatically decreased

at each update, but generally not optimally, unlike OBE algorithm, which optimizes

over the volume of 9,, and under proper data conditions, 6,, —-> 0... asymptotically as

the set 52,, converges to a point. In QOBE, therefore, n" parameterizes the ellipsoid

and has no clear connection to the ellipsoid center 6,,. However, QOBE provides

excellent parameter convergence and faster tracking accompanied by larger ellipsoid

volumes than its OBE counterpart. This is again due to the fact that QOBE becomes

extremely selective of data as its estimator approaches the true parameter vector.

2.9 Convergence Analysis of the Membership Set

(Mixing Case)

Theorem 2.4 Even under the conditions of Theorem 2.3 (leading to the central es-

timator convergence), the volume of the ellipsoid of the QOBE algorithm does not
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converge to zero (or in other words the sequence of hyperellipsoidal membership sets

associated with QOBE cannot converge to a point set) in probability.

Proof: Let N’ déf {n E N : cn > 0} so to consider only n E N’ that implies no update

takes place (i.e. 7,2, — 5?, > 0 over a sequence of infinite number of intervals of length

M)

(7n — l5nl) (7n +l51zll> 0

Let us define the sequence {a}:1 to be the sequence over which no update takes

place. This willbe helpful in asserting a contradiction later on.

~T

Since et, = 52+ 9t,—1 23., we have

712-— 5:2.- “ (7t.- + IQ.” (’Yt. — IQ!)

= (71; + Igtil) (Vii -

* ~T

at; + gig—1 mti

 

)>o

> O (2.37)

 

Therefore

  

52+ 6t-—l (131'.
I.

7‘1 .—

Thus

72. — 83', > O for all {t.,-} if and only if

~T

52+ ati—l 17“. < flit.‘ (2.38)

  

Let us assume that the volume of the ellipsoid of QOBE does not converge to zero

and try to assert that this assumption is true. If the volume of the ellipsoid does not

converge to zero then condition (2.38) must hold. For convenience, we will denote
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e’— neighborhoods of noise bounds as

D: 2 [771—6] 3771]

D; = l—Vna —7n+€’l

At no update we have

< 7,, (2.39)

  

NT

If 6n_1 x,, 2 0 and a; e D; , i.e. (—7,, < e; < —*y,, + 6’) then since 5; is uniformly

distributed, we have

711—6, < [52' <77:

~T

lehl + 011—1 3311 < 7n +

  

 

NT

52+ 6n_1 1‘71 < 711

  

Same as defined in (2.39), therefore 5; 6 D67. Similar analysis can be repeated to

NT

Show that e; E D: when 0n_1 x,, < 0.

Given 6’, assume {5;} is symmetrically bounded with UCT, which means there exists

6‘, > 0, pt, > 0 such that for all t,

P(E; E D: l 8n_1) > 6t./pt,- and

P(e:i E D; |3n_1)>6t,/p,, as. (2.40)
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Let there exists M > N, and let {Iki} be the sequence of infinite number of intervals

[n — 1, n — M] such that no updates take place.

Let A; be the event that 5;", E D; and 5:4 It, 2 0

Let A: be the event that at: E D: and 5:_1 mt, < 0

Let A,,. 92‘ A: u A;

NT

Note that 6,?1 rat, is 83,4 measurable.

Since A: and A; are mutually exclusive events for a sufficiently small 6’, then

P(At.) = PW.) +P(A;t)

~T ~T

P(A..) -—— P(eieD; I ewx..20)P(o.._.x..2o)

NT NT

+P (5;, E D: l 6t.—1 1'“ < O)P(9t'_1 23;, < 0)

NT

Let k, = t,- —— t,_1 and define WtH déf {gm-.1 at... Z 0} and Vt, = {a}; 6 D57}

Then Vt, and I’ve--1 E 3 and P (Va) = 6t,” By the definition of the mixing condition

in Definition 2.17

lim P(l/tiflW,,_,)=P(Vt,)klim P(W,,_k,) (2.41)
ki-ooo i

Suppose P (Wu—k.) is not zero. Then (2.41) can be written as

. P(‘fti n Wti—ki) __ .

klgnoo P(Wti“ki) — kEEnm P(W‘ I Wti—ki)

= P(Vt.)

 

Let 0 < {ti < 6t, and there exists an N such that

lPU/t.‘ l Wti“ki) — P(l/tzll < {ti
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Therefore

P(Vtzl - {ti < P(W: l ”fir-N) < P(l/t.) +£t.‘ (242)

Note that the inequality of (2.42) holds only if no updates take place on the interval

[t1 — N, t,].

Recall the definition of A,,, and thus we can write

NT ~T

PM...) = P (a; e D; I 61.1 as. _>_ 0) P (9H x 2 0)

NT ~T

+P (a; E D; | Htr1 :13), < 0) P (911—1 3t.- < 0)

From (2.42) and recalling the definition of Vt, and IV,,-N , we get

P(At'.) Z [P (5;, E D; ) — fig] P(5:_1 113:, Z 0)

NT

+ [P (a; e 13:; ) — £1,]P(9,i_1xt, < 0)

me PE condition and from (2.30) and (2.31)

~T

P (Oh—1 1‘". _>_ O) 2 pt.‘ > 0

and

NT

P(61,—133t1 < 0) 2 pt,- > 0

Also, from (2.32) and (2.33) we have

~T

P(e:..e(D.7UD:) I on..20)261./p..>0

and

~T

P (E; E (D; U D?) I 6t,—1$¢1 < 0) Z (Sn/Pt, > O
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Therefore, we have

and

P(Atz‘) Z [P (5:.- E D67 ) ‘5t1-I Pt.- ‘I' IP (5:.- E D; l — 5a] Pt.-

2 [P (52'. E (D; U 03)) - 511-] pt.-

2 (5t1/Pt1 — 5t.) Pt.-

2 5t.- — 5t1-Pt.

> 0

P(Ati IAti-N) I
V

_ ~T

P 5:: E D; I {Oh—1 (Ett. 2 0} fl flu—N]

: ~T

P {01.4 113:,- Z 0} I I‘M—N]

~T

+ P [5; E D: I {Qty-1:13“ < 0} nAtl_N]

~T

P [{gti—l {Eti < 0} IAti-N]
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I
V

’ NT

P e; E D; | {91i-1$z, Z 0} I Aa—NI

 

-~T ~T

P 6t1—1 min" 2 OI PI{9ti—1$t1 Z 0} I Ati—NI

b ~T

+ P [5; E D: {gig-11"“ < 0} I At‘_NI

~T ~T

P Ian—1 xt.‘ < 0] P [{dt,_1 xii < 0} I Ati—N]

~T 2

[P (8;; E D67 ) — gti] {P [an—1 3t, 2 0]}

2

+ [P (ex; 6 D: ) - 4...] {10 I5.-. < OI}

6‘1 _ gtipti

I
V

I
V

> 0

Thus,

P(AtinAti-N) = P(Ati I Ate—N)P(Ati-N)

2 (5t. " Eupt.) (5t.+N " €t.+N.0t.+N)

> 0

P (An 0 Air-1 (1 ..... r) Ati—N) Z P (An. (7 Ati—N)

_>_ (5;,- "" felon) (5t1+N — €t,+NPt,-+N)

0 (2.43)V
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1‘1ng P (Ati+kN fl At.-+kN—1 fl ..... n A“) 2 lim P (At.-+kN fl At;+(k—1)N n ..... n A“)

k—->oo

k

2 [311130 (5t.~+uv — €t¢+leti+lN)

1:1

> 0

In probability, this asserts our assumption that the volume of the ellipsoid does not

converge to zero. Therefore, the sequence of hyperellipsoidal membership sets asso-

ciated with QOBE cannot converge to a point set. 0

Although IU condition is a necessary and sufficient condition for the convergence

of the central estimator in the i.i.d. case, it has not been explicitly proven in the

mixing case. The following theorem is an alternative theorem to Theorem 2.4 asserting

that even if IU is appended as an explicit condition, the volume of the ellipsoid of the

QOBE algorithm does not converge to zero.

Theorem 2.5 With the explicit condition that there exists a sequence {tflf’zl such

that IEtkI > 7% for some positive sequence {Va} appended to those of Theorem 2.4,

the volume of the ellipsoid of the QOBE algorithm does not converge to zero.

Proof: Let N’ d—i-f {n E N : cn < O} and consider only n E N’ that implies that an

update will take place; '73 — 5,2; < 0. Let us define {tfliil to be the sequence over

which IU (infinite update) take place. This will be helpful in asserting a contradiction

later on.

~T

Since et‘. = 52+ 9ti_1 33¢.» we have

’73 _ sf.- : (711‘ + IEtiI) (7h — IEtiI)

= m + Ian) (7:. —
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Thus

~T

7t, — 52+ 6,i_1 :1?“ < 0 (2.44)

  

Therefore

7:. — 6:. < 0 for all {t,} if and only if

~T

e,*'.+ 6&4 :ct, > 7;, + e for sufficiently small 6 > 0 (2.45)

 

 

Let us assume that the volume of the ellipsoid of QOBE converges to zero and try

to Show that this assumption is not true. If the volume of the ellipsoid of QOBE

converges to zero then condition (2.44) must hold. For convenience, we will denote

e’— neighborhoods of noise bounds as

D: = [—’y,, — e' < e; < 47"]

D; = [7,, < e; < 7,. + 6’]

At IU we have

53, > 73, (2.46)

> 7,, + 6' for small 6'

 

* ~T

511+ gn—l x"

 

NT

If 6,,_1 x,, 2 0 and e; 6 D67 , i.e. (-'y,, — e’ < e; < —'y,,) then since 5:, is uniformly

distributed, we have

7n+6’<I€;|<7n

NT~T

Ishl + 6n—1 1'" > 7n + 6, + 671—11."

   

~T

5;+0,,_1 £13,, > 7n+e’
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Same as defined in (2.46) , therefore 5:, E 057- Similar analysis can be repeated to

~T

show that e; E B; when 6,,_1 x,, < 0.

Given 6’, assume {5;} is symmetrically bounded with UCT, where there exists (it, > 0,

pt, > 0 such that for all t,-

P(€; E D: l Sin—1) > (Sh/pt; and (2.47)

P(EZ E D; l3n_1) > 6(i/p“ CLS.

NT

Let A; be the event that e; 6 D57 and 9t.-—1 27;, 2 0

Let A: be the event that e; E D: and 5:4 3:“. < 0

Let A,,. “3 A: u A;

Now let us define A,, to be the event that (2.44) holds at time t,-, then

P (An) = P (At-1.) + P (AZ), since A: and A; are mutually exclusive events for a

sufficiently small 6’

3

~T ~T

P(At.) = P (E; E D; I 6t‘_1 It“. 2 0) P (Big—l 1'“ Z O)

~T ~T

+P (5;; E D: I git—1 xii < 0) P (ah—1 I“. < 0)

NT

Let k,- = t,- — t,_1 and define WtH déf {0W1 x,, 2 0} and Vt, = {e't'i 6 DE}

Then Vt, and WtH E 8‘ and P (Va) = 6,,. By the definition of the mixing condition

in Definition (2.17)

lim P(V,,nw,,_,) =P(V,,) lim P(W,,_,.,) (2.48)
ki—voo lei—+00
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Suppose P (Wu—In) is not zero. Then (2.48) can be written as

,. P(Vt. rim—k.)
1m

lei—’00 P (Wti-ki)

 

= ,hm Pm. I WM.)

= P(Vt.)

Let 0 < %} < 6;, such that

IPO/ti I Wti-ki) — P(Wi)l < gti/pti

Therefore

5— < PM I WM.) < P(Vc.) + i (249)P (mi) _

pti pti

The inequality of (2.49) holds for IU condition.

Therefore we can write

NT NT

P(At.) = P (er. 6 D; I 0 x,,. 2 0) P (a.-. x... 2 0)

NT NT

+p (5;; e D; I a,,_, x,,. < o) p (9,4 x < 0)

From (2.49) and recalling the definition of Vt, and Wt,—k,- , we get

NT

P(A,,) _>_ [P (a; e D; ) — EL] P(Ht,_1$t.- 2 0)

ti

a: + {ti ~T

ti

From PE condition and from (2.30) and (2.31)

~T

P(01i_1 ft,‘ 2 0) Z pig > 0
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and

~T

P (6231-1 1'". < 0) 2 pt." > 0

Also, from (2.32) and (2.33) we have

~T

P (5:,- E (D; UDj) I 6tg—1 xii Z 0) Z (SQ/pt,- > 0

and

~T

P (52:, 6 (D67 U D?) I Oti—l (rt,- < 0) 2 6(i/p“. > 0

Therefore, we have

 

P(At,) _ P(e; E D; ) - :—:I pt, + IP (5;; E D; ) — i—I pt,

l

2 P (a; e (D; u 03)) — %I pt.-

L ti

2 (an/Pt. — £3I") Pt.

pti

2 5t.- “— t),

> 0

Let there exists M > N and M —+ 00 and {In} be the infinite sequence of intervals,

each of length M over which IU occur. Then

' NT

P(Ati I At‘._N) Z P E; E D; I {gig—15E“ 2 0} flAt,_NI

:{6:1$t> 0} I Alt—N]

~T

+P I5} E D?!- I {Bu-133% < 0} nAti‘N]

{0,_1:I:t. <0} IA,,_NI

P

 

P
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Thus,

I
V

I
V

I
V

’ ~71"

P a; E D; I {6ti_1$t, Z 0} I flu—N]

 

F~T ~T

P Oti-l {L‘ti Z O] P [{otr—l xti 2 O} l Att”~]

~T

+P [5; 6 D2; I {0ti_1$t, < 0} IAtg—N]

~T ~T

P [BM—1 3:“. < 0] P [{gti_1 mt, < 0} IAti—N]

6 ~T 2
[P (5:.- E D; ) _ A] {P[6ti-1$ti Z 0]}

Pt,

6.. ~T 2
+ [P (a; e D: ) — Fl {P [9t.-—1 x,,. < 0]}

ti

(Std _ gig

0

P(AtiflAti—N) : P(AtilAti—N)P(Ati—N)

_>- (6ti _ 6h) (6ti+N " Etg+N)

> 0

P(At, fl Ati—l fl ..... fl Ati—N) Z P(At'. fl Ati—N)

2 (6h _ éti) (6ti+N _ €ti+N)

> 0 (2.50)
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llm P (Ali-l-kN fl Ati+kN—1 fl ..... F) A“) 2 lim P (Ati-HcN fl At;+(k‘-—1)N fl ..... n A“)

k—¢oo k—voo

k

2 lim ((3.-+12»! — €t,+lN) = 0
k—voo

(=1

In probability, this is contrary to our assumption that the volume of the ellipsoid

converges to zero. Therefore, the volume of the ellipsoid of QOBE does not converge

to zero under IU condition. 0
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Chapter 3

Simulation Results

3. 1 Introduction

Simulation studies provide a visual perspective of any mathematical analysis.

In working with adaptive filtering techniques, the algorithm that models the filter’s

performance can be better understood and evaluated through experimenting with

data and simulating the results on a digital computer. For example, simulations can

illustrate improvements in the speed of convergence of the algorithm, represent the

effect of different factors on the filter’s estimated parameters, Show efficient use of

innovation in the data, and indicate order of computations.

A process 93,, is said to be deterministic if it can be predicted without error in

terms of a linear combination of its previous values. However, in many signal process-

ing applications where linear shift-invariant filters are used, the inputs to these filters

are random processes. In the simulation studies in this chapter we will investigate the

performance of the QOBE algorithm in a stochastic setting and verify its behavior

indicted by theorems that have been proven in the previous chapter. Different types

of noise sequences will be used.
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3.2 Types of Noise Sequences

In this section and its subsections we will illustrate the behavior and performance

of the QOBE algorithm in iid and colored noise cases and when the noise bounds are

either symmetrical or asymmetrical. For our purposes of simulation, we will use an

AR(3) model of the form:

yn : 0,1,, yn—l + 012* 3171—2 + 03* yn—3 + 5:; (31)

where a1... = 2, a2, = —1.48, (13... = 0.34 are unknown parameters to be identified.

Some other model forms will also be used.

3.2.1 IID Noise Sequence

In most of the simulations presented in this section and others to follow, we will

show the performance and characteristics of the QOBE algorithm in identification

problem by way of comparison with those of the OBE algorithm under the same

system settings. Since the performance of the OBE algorithm has been investigated

with respect to other identification methods [7],[9],and [44] in the literature, such as

recursive least squares (RLS) and least squares (LS), we will restrict our comparison

to OBE in order to show the difference in behavior between the minimization criteria

used in OBE and QOBE. We have used the set membership stochastic approximation

(SMSA) version of OBE for it is used in the literature when stochastic settings are

under investigation.

In Cases 1 to 3, we will consider an AR(3) model as in (3.1) where the noise

sequences {5;} used to generate the observable output sequence {y,,} are specified

within.

Case 1: 8:, ~ U(—1, 1) is an i.i.d. sequence with zero mean and is uniformly dis-

tributed on [-1,1].
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Figure 3.1: Case 1: Estimators of al.,-— 2.0 convergence using QOBE and OBE

algorithms for identification of model (3. 1) with 7,, = O.96, where 146 points and 223

points were used, respectively, from a total of 3000 points.
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Figure 3.2: Case 1: Estimators of a2... = -1.48 convergence using QOBE and OBE

algorithms for identification of model (3.1) with 7,, = 0.96, where 146 points and 223

points were used, respectively, from a total of 3000 points.
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Figure 3.3: Case 1: Estimators of a3... = 0.34 convergence using QOBE and OBE

algorithms for identification of model (3.1) with 7,, = 0.96, where 146 points and 223

points were used, respectively, from a total of 3000 points.
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Figure 3.4: Case 1: Volume of the ellipsoids in QOBE and OBE algorithms for

identification of model (3.1) with 7,. = 0.96, where 146 points and 223 points were

used, respectively, from a total of 3000 points.
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The simulation results of QOBE under the specified conditions and 7,, = 0.96

are shown in Figures 3.1 - 3.4 with relative comparison to results obtained from OBE

identification. Ftom the figures it is noticed that the estimators of al., (12..., and (13...

are converging to the true parameters in both algorithms with QOBE using fewer

data points as expected. This supports the assertions in Theorems 2.1 and 2.2 in

Chapter 2. The volume of the ellipsoid in QOBE, Figure 3.4, is obvious to be larger

than that of OBE, however, it is converging to a certain size.

Case 2: This is a case of symmetrical noise bounds where 5; ~ B(—1, 1) is an i.i.d.

Bernoulli sequence with zero mean and a binary distribution specified as

5* =2 1 with probability 0.7 (3.2)

5* = —1 with probability 0.3

The simulation results of both QOBE and OBE under the specified conditions

are shown in Figures 3.5 - 3.8 with 7,, = 1.04 . It is seen that the QOBE algorithm

has a faster convergence rate for the estimated parameters to their true counterparts

although the speed of both algorithms are not very much affected by the 6 - tail

probability, 6, defined in UCT (2.6) or UT (2.7) conditions.

Case 3: This is a case of asymmetrical noise bounds where 5;“, ~ B(—0.5, 1) is an

i.i.d. Bernoulli sequence with non-zero mean and is asymmetrically bounded with

binary distribution specified as

5" = 1 with probability 0.7 (3.3)

5* = —0.5 with probability 0.3

The simulation results for both QOBE and OBE under the specified conditions

and with 7,, = 1.04 are shown in Figures 3.9 - 3.12. It is evident that the OBE

algorithm is affected by the asymmetrical noise bounds as defined in Definition 2.7
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Figure 3.5: Case 2: Estimators of a1... = 2.0 convergence using QOBE and OBE

algorithms for identification of model (3.1), 7,, = 1.04, where 24 points and 916

points were used, respectively, from a total of 3000 points.
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Figure 3.6: Case 2: Estimators of 612... = -1.48 convergence using QOBE and OBE

algorithms for identification of model (3.1), 7,, = 1.04, where 24 points and 916 points

Were used, respectively, from a total of 3000 points.

48



QOBE

I
 

 

  
 

 

 

 

   
 

2 I I I f T T

1 1— . . ...... n ............................................................................... _,

0W 3 ................... g............................................................ _

_1 l. . .. . .. ..

_2 1 1 1 L 1 1 1 1 1

0 50 100 150 200 250 800 350 400 450 500

OBE

2 I I I I I I I I

1 1.. ............................................. ........................................... _.

_2 L 1 1 1 1 1 1 1 1

O 50 100 150 200 250 300 350 400 450 500

Time (11)

Figure 3.7: Case 2: Estimators of a3... = 0.34 convergence using QOBE and OBE

algorithms for identification of model (3.1), 7,, = 1.04, where 24 points and 916

points were used, respectively, from a total of 3000 points.
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Figure 3.8: Case 2: Volume of the ellipsoids in QOBE and OBE algorithms for

identification of model (3.1) with 7,, = 1.04, where 24 points and 916 points were

used, respectively, from a total of 3000 points.
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Figure 3.9: Case 3: Estimators of a1. = 2.0 convergence using QOBE and OBE

algorithms for identification of model (3.1), 7,, = 1.04, where 27 points and 374

points were used, respectively, from a total of 3000 points.
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while QOBE converges consistently and complies with Theorems 2.1 and 2.2.

Case 4: We will use an AR(2) model of the form

yn : _01 3111—1 + 056 yn-2 + 5:, (3.4)

with a; as in Case 1, in order to illustrate the trajectory of the estimates and the

final ellipsoid of the QOBE algorithm.

The simulations were performed for identification of an AR(2) model and are

shown in Figures 3.13 - 3.15. The estimators of a1... and a2... are converging to the true

parameters and the volume is decreasing but to a certain size that is not as small

(or to a point) as it would be in OBE. This is also clear from the trajectory of the

estimators in Figure 3.15 which conforms to the positiveness of Pu and Km under the

PE assumptions.

3.2.2 Colored Noise Sequence

In this section we will consider the AR(3) model as in (3.1) in Cases 5 and 6

where the types of colored noise sequences used are described within. We will also

compare the performance of QOBE and OBE when the noise is colored with both

symmetrical and asymmetrical bounds.

Case 5: This is a case of symmetrical noise bounds where a; is a colored non-zero

mean noise sequence that is related to a colored sequence {w,,} by:

5* = 1, if can > —1 (3.5)

5 = —1, otherwise

where the colored sequence {w,,} is generated by a uniformly distributed i.i.d. white
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total of 3000 points.
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noise sequence 2,, ~ U(—-1, 1) as

w,, = —0.8w,,_1 + zn

The simulation results of QOBE under the specified conditions and 7,, = 1.04 are

shown in Figures 3.16 - 3.19 with relative comparison to results obtained from OBE

identification. From the figures it is noticed that the estimators of 0.1,, (1,2,.., and (13,.

are converging to the true parameters in both algorithms with neither of them being

affected by the color of 5;. This supports the assertions in Theorem 2.3 and others

in Chapter 2.

Case 6: This is a case of asymmetrical noise bounds where a; is a colored non-zero

mean noise sequence with asymmetrical bounds generated by colored sequence {w,,}

as follows:

5* = 1, if w,, > —0.5 (3.6)

5 = -—O.5, otherwise

and where the colored sequence {w,,} is generated as in Case 4.

The simulation results of both QOBE and OBE under the specified conditions

are shown in Figures 3.20 - 3.23 with 7,, = 1.04. It is seen from these figures that OBE

suffers from the condition of asymmetrical bounds of noise while QOBE converges

rather consistently and faster as well to the true parameters. Again the volume of

the ellipsoid in QOBE is obvious to be larger than that of OBE, however, it reaches

its limited size faster than OBE.

Case 7: In this case we will use the same noise sequence as in Case 5 while we

increase the order of the system to 12. Therefore, the stable AR(12) model

yn = alt yn—l + 02,. yn—2 + ° ' ' + 0'12: yn—l2 + 5:1 (3.7)
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Figure 3.16: Case 5: Estimators of al., = 2.0 convergence using QOBE and OBE

algorithms for identification of model (3.1), 7,, = 1.04, where 26 points and 845

points were used, respectively, from a total of 3000 points.
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Figure 3.17: Case 5: Estimators of a2. = -1.48 convergence using QOBE and OBE

algorithms for identification of model (3.1), 7,. = 1.04, where 26 points and 845 points

were used, respectively, from a total of 3000 points.
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Figure 3.18: Case 5: Estimators of 03.. = 0.34 convergence using QOBE and OBE

algorithms for identification of model (3.1), 7,, = 1.04, where 26 points and 845 points

were used, respectively, from a total of 3000 points.
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Figure 3.19: Case 5: Volume of the ellipsoids in QOBE and OBE algorithms for
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used, respectively, from a total of 3000 points.
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Figure 3.20: Case 6: Estimators of a1... = 2.0 convergence using QOBE and OBE

algorithms for identification of model (3.1), 7,, = 1.04, where 26 points and 207
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Figure 3.21: Case 6: Estimators of a2... = -1.48 convergence using QOBE and OBE

algorithms for identification of model (3.1), 7,, = 1.04, where 26 points and 207 points

were used,
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Figure 3.22: Case 6: Estimators of a3... = 0.34 convergence using QOBE and OBE

algorithms for identification of model (3.1), 7,, = 1.04, where 26 points and 207 points

were used, respectively, from a total of 3000 points.
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Figure 3.23: Case 6: Volume of the ellipsoids in QOBE and OBE algorithms for

identification of model (3.1) with 7,, = 1.04, where 26 points and 207 points were

used, respectively, from a total of 3000 points.
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is used, where al.,. 2 - 0.1, a2. = 0.9175, 0.3.. = - 0.191, (14.. = - 0.2253, 05,. = 0.2601,

a6. = 0.0046, 07... = - 0.0367, as. = - 0.0209, 09.. = - 0.0082, 010. = 0.0095, all, z -

0.0052, 0.12. = - 0.0041 are unknown parameters to be identified.

The simulations were performed for identification of an AR(12) model and are

shown in Figures 3.24 - 3.25. The estimators of al., , a2. and as. are shown as an

example of the performance of the QOBE algorithm for all the other estimators as

well. It is seen that the estimators are converging to the true parameters with a

colored noise sequence and the volume of the ellipsoid is decreasing in size. These

simulations show that the performance of the QOBE algorithm is not affected by a

change in the model order.

Case 8: We will use the same AR(2) model as in Case 4 while employing the noise

sequence in Case 5.

The simulations were performed for identification of an AR(2) model and are

sh0wn in Figures 3.26 - 3.28. The estimators of al., and 02,. are converging to the true

parameters and the volume is decreasing but to a certain size that is not as small

(or to a point) as it would be in OBE. This is also clear from the trajectory of the

estimators in Figure 3.28 which conforms to the positiveness of Pa and ten under the

PE assumptions.

In all of the above simulations it is shown that the number of usable data points

are much less in the QOBE algorithms than in OBE and thus the number of updates

for the estimators in QOBE is smaller than its counterpart in OBE. This leads to the

fact that the QOBE algorithm has an improved computational efficiency due to its

simple check test and its focus on minimizing the scalar x,, rather than minimizing the

volume as is the case in OBE algorithm. Therefore we can summarize the performance

of the QOBE algorithm so far in that it retains a large volume, uses fewer points,

exhibits faster parameter estimator convergence to the true parameter, is robust to

additive noise, and its performance in colored noise is improved.
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Figure 3.24: Case 7: Estimators of al., = -0.1 and 02... = 0.9175 and a5. = 0.2601

convergence using QOBE for identification of model (3.7) with 7,, = 1.04, where 115

points were used from a total of 3000 points.
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Figure 3.25: Case 7: Volume of the ellipsoid in QOBE algorithm for identification of

model (3.7) with 7,, = 1.04, where 115 points were used from a total of 3000 points.
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Figure 3.27: Case 8: Volume of the ellipsoid in QOBE algorithm for identification of

model (3.4) with 7,. = 0.96, where 974 points were used from a total of 3000 points.
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QOBE with unsatisfied PE condltlon
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Figure 3.29: Estimators of 01... = 2.0, 02,, = -1.48 and a3... = 0.34 using QOBE for

identification of model (3.1) when the PE condition is not satisfied.

3.3 Effect of Unsatisfied Conditions

In this section we want to Show the effect of missing conditions or unsatisfied

constraints from Theorems 2.1 - 2.3 on the performance of QOBE. This will enhance

the illustration of the validity of the proof of these theorems. It should be noted

that in all of the following simulations, the same results would be obtained even we

increased the number of points higher than 3000 points indefinitely.

Figure 3.29 shows the effect of losing the PE condition on the performance of

QOBE. It is seen that when the observation sequence is correlated then the algorithm

will tend to converge to away from the true parameters.

Figure 3.30 shows the effect of missing the UCT condition on the performance

of QOBE. In this case the noise or error sequence will not be uniformly conditionally

tailed around the neighborhood of the bounds and this effect is seen the algorithm

drifting away from the true parameters.

Figure 3.31 shows the performance of QOBE when both the PE and the UCT are

not satisfied. We notice that the algorithm in this case will not converge properly and
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Figure 3.30: Estimators of 01... = 2.0, 02,. = -1.48 and 03.. = 0.34 using QOBE for

identification of model (3.1) when the UCT condition is not satisfied.
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Figure 3.31: Estimators of a1. = 2.0, 02... = -1.48 and 03.. = 0.34 using QOBE for

identification of model (3.1) when both the PE and the UCT conditions are not

satisfied.
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it will bounce in an undefined manner due to uncorrectly meeting the noise bounds

and also having a correlation factor in the observation sequence.

Figures 3.29, 3.30 and 3.31 all show that meeting the constraints of Theorems

2.1 to 2.3 are required to ensure the convergence of the QOBE central estimator.

3.4 Tracking Performance of QOBE

In this section we will illustrate the performance of the QOBE algorithm by

studying two time varying cases where the system exhibits time varying parameters.

This will help show the efficiency of the tracking performance of the algorithm to time

varying settings. We will consider an AR(2) model with time varying parameters that

is constructed as follows:

yn = a1... y(n - 1) + £121 1101 - 2) + 63; (3-8)

in which 0.1.. and a2... will have the following different variations:

Case 9: AR(2) as in (3.8) where 5:, ~ U(—1, 1) is an i.i.d. sequence with zero mean

and is uniformly distributed on [—1,1], (11., is a slow square wave that varies between

1.6 and -1.6 every 1000 points and a2... = 0.68.

Case 10: AR(2) as in (3.8) where 5; ~ U(—1, 1) is an i.i.d. sequence with zero mean

and is uniformly distributed on [—1,1], a1. is a fast square wave that varies between

1.6 and -1.6 every 500 points and a2. = 0.68.

Figures 3.32 - 3.33 illustrate the simulations for Case 9 and they show the good

tracking capability of QOBE over OBE in slowly time varying systems where the

time variation is abrupt. However, for Case 10, and from Figures 3.34 - 3.35, it is

seen that OBE loses tracking capability while QOBE performs quite well in a system

where the abrupt variation has doubled.

Case 11: AR(2) as in (3.8) where 5; ~ U(—1, 1) is an i.i.d. sequence with zero
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Figure 3.34: Case 10: Estimators of al., (time-varying parameter with fast

abrupt change) convergence using QOBE and OBE algorithms for identification of

model (3.8), 7,. = 1.1.
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Figure 3.35: Case 10: Volume of the ellipsoids in QOBE and OBE algorithms for

identification of model (3.8), 7,, = 1.1, and a1... is time-varying parameter with fast

abrupt change.
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mean and is uniformly distributed on [-1,1], (11,. is a slow sinusoidal wave that varies

between 1.6 and -1.6, specifically, al.,. = 1.6sin(27rn/1000), and 02... = 0.68.

Case 12: AR(2) as in (3.8) where 5;“, ~ U(—1, 1) is an i.i.d. sequence with zero mean

and is uniformly distributed on [-l,1], a1. is a fast sinusoidal wave that varies between

1.6 and -l.6, specifically, a1... = 1.6sin(27m/500), and 02... = 0.68.

Figures 3.36 - 3.39 represent the performance of the QOBE algorithm with re-

spect to the OBE algorithm in a system where the time variation is gradually chang-

ing. It is seen that in slow changing variation QOBE performs better than OBE that

loses track of the parameter estimate. When the time variation of the parameter al.,

increases by the double, QOBE still can keep track of the parameter estimate while

OBE can not. It is to be noted that in all of these simulations the QOBE algorithm

has been very efficient in the the use of number of updates which was much less than

that of the OBE case.

Cases 9 through 12 show the feasibility of using the QOBE algorithm in a time

varying system and indicates it superior performance over the conventional OBE

algorithm. With its less number of computations, its minimization criteria that is

independent of the volume size, and its robustness to time variations, QOBE proves

to be a well behaved class of the set membership algorithms.
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Figure 3.36: Case 11: Estimators of al., (time-varying parameter with slow grad-

ual change) convergence using QOBE and OBE algorithms for identification of

model (3.8), 7,, = 1.1.
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Figure 3.37: Case 11: Volume of the ellipsoids in QOBE and OBE algorithms for

identification of model (3.8), 7,, = 1.1, and al., is time-varying parameter with slow

gradual change.
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Figure 3.38: Case 12: Estimators of 01,. (time-varying parameter with fast grad-

ual change) convergence using QOBE and OBE algorithms for identification of

model (3.8), 7,, = 1.1.
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Figure 3.39: Case 12: Volume of the ellipsoids in QOBE and OBE algorithms for

identification of model (3.8), 7,, = 1.1, and al.,. is time-varying parameter with fast

gradual change.
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Chapter 4

Application of QOBE in

Classification

4. 1 Introduction

Classification is a classic problem where the criterion is to associate each of a

set of events with one of a finite number of classes [16]. An event is associated with

the class to which it is “closest” according to a measure upon which each event-class

pair is evaluated [54]. In this chapter we investigate the performance of the QOBE

algorithm in classification problems to illustrate its application potential. This will

also relate to our convergence analysis in Chapter 2 by implementing classification

problems where parametric models, such as AR models, are used.

4.2 Classification Using QOBE Algorithms

Let us consider an n class problem in which class c corresponds to a model

of form (1.1) with parameters 06,, , so that class c is effectively represented by a

point in R”. The classification problem will naturally employ a metric, say (1, over

Rm, so that 6c... is a point in metric space (Rm, d). Suppose that the true, but
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unknown, class is represented by vector 6., [or some mapping, F(6,.)]. Suppose that a

QOBE algorithm is used to classify a signal frame over some time frame ending at t.

The analysis produces the hyperellipsoidal set 0; including, in particular, the central

estimate 6%. For reference, let us assume that we have the conventional unweighed

least-square error (LSE) estimate of 19..., say HMSE. Regardless, of the estimator (or

set of estimators), the assignment rule for the current signal frame is typically of the

form

Choose class c,, , where c,, = arg min 6 (6t , 66...) (4.1)

c€[1,n]

and where 6: is the estimator derived for the frame (91153, 1%, or (2;) and 6 is a

measure of distance. To illustrate the use of these constructions, we develop the

following example where we seek to classify the output of the two AR(2) systems of

the form (1.1) with

61,. = [—1.38, —0.64]T (4.2)

02,. = [0.1, —0.56]T (4.3)

A sequence of length 3000 from each system is generated and the resulting signals

are segmented into 10 frames of 300 points each. Each of the 20 frames is classified

three times, once using 9"],33, 0:, or (2;. The classification rule is of form (4.1) with 6

(henceforth “d” in this example) indicating the Euclidean distance between the class

parameters and relevant estimate. The criteria of d(Qt, 06...) is such that at each t,

50 quasi-random estimates are chosen from Qt by selecting random directions from

the center of the ellipsoid (each angle being uniformly distributed over the interval

[0 , 271']) and random magnitudes in the chosen direction (the length being uniformly

distributed between 0 and the maximum length in that direction). If the 50 selected
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points comprise the set 9: = {Qtd 2' = 1, 2, - -- ,50} C 9;, then

d ((2., 0....) “‘2 min d (01,.» 9...). (4.4)
i€[l,50]

In other words, (1 (Q, 66...) implies a nearest-neighbor rule in the sense of Euclidean

distance between 6c... and St. The estimator so chosen is called simply the “other”

estimate in the following. The three scatter plots, one for each estimate are shown

in Figures 4.1 - 4.3. The system identity for a given point is indicated by the symbol

used for plotting. Each point in each diagram is classified according to the relevant

distance metric. We notice the lessened variance associated with the clusters resulting

from the “other ” estimator. Of course, this effect would be entirely expected since an

exhausted search of Q, were performed for the minimum distance classifier. Although

this could be an ad hoc approach, it shows evidence of significant improvement in

classification.

An important feature of QOBE is that it does not explicitly depend upon the

bounding ellipsoid, therefore the need to assure that 0.. remains inside the ellipsoid,

which is critical in OBE processing, is not important in QOBE. Also, the ellipsoidal

set associated with QOBE has interesting convergence behavior which are depicted

in Figures 4.1 - 4.3 and can benefit QOBE tracking behavior.

One way to validate the usage of “other” estimates, can be by illustrating their effect

on the magnitude spectrum of those estimates along the major and minor axes of the

final ellipsoid with comparison to that of the true parameter. Figure 4.4 shows that

those estimates along the minor axis corresponding to data points in the direction

of error have a comparable energy to the true parameter than those along the major

axis where the data points were not in the direction of error and therefore did not

contribute much information to the algorithm update. Therefore, the potential of

using these “other” estimates is promising for application in many signal processing
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Figure 4 1: QOBE central estimator 0, of 01,. and 02. of two AR(2) systems represented

by+’ and’0’ ,respectively.
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Figure 4.2: 0,,LSE estimator of 01. and 02,. of two AR(2) systems represented by ’+’

and ’0’, respectively.
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Figure 4.3: QOBE other estimators Q, of 61... and 62. of two AR(2) systems represented

by ’+’ and ’0’, respectively.

realm. _ _

To show the potential of QOBE in classification problem with higher model order, we

develop the following example where we seek to classify the output of the two AR(14)

systems of the form (1.1) with

91.. = [1.0574, — 0.9442, 1.4281, — 1.5123, 0.5309, — 0.8630, 0.6631,

0.1423, - 0.2438, — 0.0809, — 0.2310, 0.1333, 0.0272, 0.0214]T (4.5)

62... = [0.1578, — 1.3503, 1.4395, — 0.2691, 1.8091, — 0.0284, — 0.0307,

—0.3629, — 1.0732, 0.1254, —0.5244, 0.4307, —0.1156, 0.1906]T (4.6)

In this context we will apply also the nearest-neighbor rule in which (1 (9;, 06.)

implies a minimum Euclidean distance between 6c... and St. The estimator so chosen

will be again called the “other” estimate in the following. Figures 4.5 - 4.7 show the

three scatter plots for the first two parameters of the AR(14) model, one for each
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AR(2) System 1: True.—,Other1.o.Oth912.+,Other<3,s.Other4.:
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Figure 4.4: The direct 256 points FFT spectrum of the impulse response for AR(2).

The upper graph for Systeml. The lower graph for System2. In each graph: the

true parameters (-); estimators along the minor axis Otherl (o) and Other2 (+); and

estimators along the major axis Other3 (El) and Other4 (..)

estimation method: the QOBE central estimator, the LS estimator and the “other”

estimator, respectively. Although this may be a crude way of plotting, however, it can

give a sense of how the estimators are behaving in a higher order model. The system

identity for a given point is indicated by the symbol used for plotting. Each point

in each diagram is classified according to the relevant distance metric. We notice

again the lessened variance associated with the clusters resulting from the “other”

estimator.

Suppose a class C is to be classified with either members of System 1 or System 2,

where class C, for example, is on the form

class C = [0.6076, — 1.1473, 1.4338, — 0.8907, 1.17, — 0.4457, 0.3162,

—0.1103, — 0.6585, 0.0223, — 0.3777, 0.282, 0.0442, 0.1060]T
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Figure 4.5: QOBE central estimator 9, of 01... and 62.. of two AR( 14) systems repre-

sented by ’+’ and ’0’, respectively.
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Figure 4.6: 6M3}; estimator of 61... and 02., of two AR(14) systems represented by ’+’

and ’0’, respectively.
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Figure 4.7: QOBE other estimators Qt of 01,. and 62... of two AR(14) systems repre-

sented by ’+’ and ’0’, respectively.

For experimental analysis, the class was chosen such that it is more emphasized to-

wards System 2. Figure 4.8 shows a sketch of how the classification works. We

trimmed the dimensions of the ellipsoid by throwing away those eigen vectors of the

covariance matrix that do not contribute useful information to the updates and cal-

culate the minimum distance between the class and the particular estimator through

the Euclidean distance measure explained previously. The minimum distance between

the class and the central estimator for both systems, “other” estimates on the minor

axes (representing the maximum eigen value of the ellipsoid matrix) for both systems,

and “other” estimates on the major axes (representing the minimum eigen value of

the ellipsoid matrix) for both systems are calculated and tabulated in Tables 4.1 - 4.4.

Table 4.1 shows the minimum distances when using the central estimators and

the “other” estimates on the minor axis for both systems. It can be seen that both the

central estimator and the “other” estimator for System 2 are having small distances,

with the “other” estimator of System 2 giving the minimum distance of all. Class
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dmin (Owntedysteml) 0.0057

dmin (Gothagysteml) 0.0052

dmin (gwnmr,sy3tem2) 7.6904 x 10"4

dmin (gather-,5ystem2) 7.0183 X 10-4  
 

Table 4.1: The minimum distance between class C and estimates of System 1 and

System 2 along the minor axis

 

 

 

 

 

dmin (ankrfiystml) 0.0019

dmin (gather,Systeml) 3.5095 X 10-3

dmin (awnterfiystmg) 3.007 X 10-

dmin (gather,System2) 0.085 X 10"5  
 

Table 4.2: The minimum distance between class C and estimates of System 1 and

System 2 along the major axis

 

 

 

 

  

dmin (Qumrfiyuml) 4.49 x 10‘5

dmin (gatherflysteml) 29 X 10-5

dmin (omnter,3y3¢em2) 1.21 x 10‘5

dmin (gatherflystem’z) 1.4199 X 10—7  
 

Table 4.3: The minimum distance between class C and estimates of System 1 and

System 2 after rotating the major axis of System 2 by 90 degrees
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dmin (Banter-Systeml) 0.0025

dmin (Homer’systeml) 5.32 x 10’5

dmin (acenter,System2) 0-0016

dmin (gather,System2) 0-0012

 

 

 

    

Table 4.4: The minimum distance between class C and estimates of System 1 and

System 2 after rotating the major axis of System 1 by 90 degrees

C will be correctly classified to System 2 and this can be attributed to the “other”

estimate since it is on the minor axis where the data is mostly contributing information

to update the system parameters.

Table 4.2 shows the minimum distances when using the central estimators and

the “other” estimates on the major axis for both systems. It can be seen that the

central estimators of both systems having small distances, with the central estimator

of System 1 giving the minimum distance of all. This renders faulty classification of

class C to System 1 and this is because the “other” estimates are on the major axis

where the data does not give either enough or any information useful to update the

system parameters.

Table 4.3 shows the minimum distances when using the central estimators and

the “other” estimates after rotating the major axis of System 2 by 90 degrees. It

can be seen that the “other” estimator of System 2 gives the minimum distance of

all. This renders correct classification of class C to System 2 and indicates that the

“other” estimates in this situation was much more helpful that the central estimator

of the same System 2 in correctly classifying the class C.

Table 4.4 shows the minimum distances when using the central estimators and

the “other” estimates after rotating the major axis of System 1 by 90 degrees. Here

the “other” estimator of System 1 gives the minimum distance of all. Again this is

attributed that the “other” estimator of System 2 was on the major axis and therefore

did not contribute correct information. Therefore classification of class C will be to

System 1, giving incorrect result. The above experiment illustrates that the “other”
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estimates contribute a lot of useful information to the final classification result as long

as their selection or location inside the ellipsoid is chosen carefully.
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Chapter 5

Conclusion and Future Work

5. 1 Conclusions

The research in this dissertation has been concerned with a specific class of SM

algorithms known as the quasi optimal bounding ellipsoid (QOBE) algorithm. QOBE

algorithm is based on a different minimization criteria than other OBE algorithms.

QOBE algorithm’s convergence properties have been analyzed and proven in a deter-

ministic framework in the literature. In this work we have analyzed the convergence

properties of the QOBE algorithm in a stochastic framework. This is an important

issue since it will provide an understanding of the algorithm’s performance and its

implementation in many of practical real world applications. We have provided the

conditions and constraints required to implement the algorithm in any stochastic set-

tings through proven theorems and their supporting corollaries and lemmas. Through

many simulations in Chapter 3 and 4 we have showed the performance of the algo—

rithm in different noise conditions ranging from i.i.d. uniformly distributed noise

to asymmetrical and colored noise sequences as well. The QOBE central estimator

converges in all cases under the right conditions given in the supportive theorems

in Chapter 2. However, we have shown that the membership set of the QOBE al-
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gorithm can not converge to a point estimate and the results although expected are

now proven. Finally we have introduced the potential of using the QOBE algorithm

in classification problems. The “other” non-central estimators were shown to have

promising use in such classification applications.

5.2 Contributions and Future Work

The major contributions of this research are summarized as follows. This research

has:

1. Introduced the importance of researching the stochastic analysis of the QOBE

algorithm.

2. Proved the as. convergence and p. convergence of the QOBE algorithm central

estimator in i.i.d., mixing, ergodic, and non-stationary noise cases by applying

necessary analytical techniques and methods from probability and measure the-

ory. Theorems in Chapter 2 provide the necessary theoretical foundation for

the analysis and application of the QOBE algorithm in stochastic settings.

3. Proved that the membership set of the QOBE ellipsoid can not converge to a

point estimate.

4. Provided extensive simulations that show the behavior and characteristics of

the QOBE algorithms in the different noise cases and show its performance in

this conditions.

5. Provided several simulations to show the feasibility of using other non-central

estimators within the QOBE ellipsoid for classification problems.

Many interesting points of research can be followed in the footsteps of this work such

as:
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1. Exploring the effect of unsatisfied UCT (2.6) and UT (2.7) conditions on the

performance of the QOBE algorithm.

2. Investigating the application of the QOBE algorithm in digital communication

problems such as inter-symbol interference where output noise will be added to

the system.

3. Exploring the potential use of the other non-central estimators in other digital

signal processing applications with more emphasis on the conditions for selecting

those estimates .
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Appendix

Lemma A.1 [13] If {23k : k 6 IC} is an ergodic stationary sequence, and g : R“ ——+ IR

is measurable then {yk : g (rk,a:k_1, ---) : k 6 IC} is also stationary and ergodic.

Lemma A.2 [13] If both {zk : k 6 IC} and {ylc : k 6 IC} are ergodic, stationary se-

quences and {ask : k 6 IC} is independent of (y;c : k 6 1C}, then {2;c = xk + yk : k 6 1C}

is also stationary and ergodic.

Theorem A.1 [13] Let T : $2 ——> Q be a measure preserving transformation (m.p.t)

andA E 8. DefinerA = inf{n Z 1 : T"(w) E A} wherew ={ ,w-.1,w0,w1, ~--} 6

9. Then

1. TA < 00 as. on A, i.e., P(w E A: TA(’I.U) = 00) = 0

2. A C {11} : T"(w) E A i.o.}

3. IfT is ergodic and P(A) > 0 then P(w : T"(w) E A i.0.) = l
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