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ABSTRACT

FUSION-BASED VIDEO SEGMENTATION AND SUMMARIZATION

By

John K. Dixon

This thesis examines the problem of video segmentation and summarization from a

results fusion perspective. Many techniques have been developed for the segmentation

and summarization of digital video. The variety of methods is partially due to the fact

that different methods work better on different classes of content. Global histogram-

based segmentation works best on color video with clean cuts and global intensity

changes; local histogram-based segmentation is less sensitive to region changes in the

video and therefore works better when scenes consisting of similar content are shot

from different angles; DOT-based segmentation algorithms attempt are less sensitive

to abrupt intensity changes due to lighting effects such as camera flashes; edge-based

segmentation algorithms work well when high quality edge information can be ex-

tracted from the video sequence, motion-based summarization works best on video

with moving cameras and a minimum of disjoint motion. Results fusion combines

the properties of these varying algorithms into a common framework that can benefit

from the advantages of each disparate approach. Recognizing that there is no single

best solution for each of these problems has led to this work in integrating the variety

of existing algorithms using results fusion methods.

The work is divided into four parts. The thesis begins with an in—depth study of

the various video segmentation methods. This chapter categorizes the existing shot

segmentation and summarization methods, noting their strengths and weaknesses.

Next, results fusion based algorithms and implementations from a variety of fields are

reviewed and studied so as to understand the methods that can be applied to video

segmentation and summarization. This chapter examines results fusion research from

the document retrieval and biometric communities and with an eye towards applica-

tion to the video domain. The third part of this work presents the results of applying

results fusion for video segmentation. This section compares and contrasts individual



algorithms with the results fusion implementations. Finally, it is demonstrated that

the results fusion methodology used for video segmentation can be extended to video

summarization. .

Thesis Supervisor: Dr. Charles B. Owen Professor, Michigan State University

This research was supported in part by The MITRE Corporation.
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Chapter 1

Introduction

Locating content in digital video continues to be a significant problem as massive

quantities of digital video accumulate in corporate libraries, public archives, and

home collections. A key element of any method that attempts to index digital video

is effective shot segmentation and summarization of the video. Shot-based segmen-

tation is the first step in determining the structure of the video by breaking it into

the components that were originally edited together to form the final product. Sum-

marization presents a pictorial summary of an underlying video sequence in a more

compact form, eliminating the massive inter-frame redundancy present in digital video

and film. Some researchers combine summarization and an additional process called

abstraction into one process. Abstraction is the process of creating a series of still

or moving images that is Shorter in length than the original video and preserves the

essential meaning of the video [88]. This thesis considers summarization and abstrac-

tion to be separate and unique operations and defines abstraction as the process of

reducing the redundancy created in the summarization process due to repeated scenes

or Shots, maintaining the original structure of the video.

Most video content does not consist of a single continuous recording or filming,

but rather a set of discrete recordings that have been edited together. Shot-based

segmentation seeks to decompose this edited structure into the components used to

construct the video. Shot boundaries can be created by various methods. The most

elementary shot boundary is the hard cut. Other methods consist of production edits



such as fades, cross-fades, dissolves, and wipes. Some shot boundaries occur between

two frames of video, while others occur between multiple frames. In order for a Shot

boundary detection method to be effective, it must be [as accurate as possible, with

few false positives (incorrectly identified shot boundaries) and false negatives (missed

shot boundaries).

Indexing methods require minimization of redundancy for effective performance.

Were a complete video sequence added on a frame-by-frame basis to an image

database, the search mechanism would be forced to contend with hundreds of se-

quential frames with nearly identical content, making differentiation of results very

difficult. Ideally, an indexing method would be operating on a compact summariza-

tion of the content with only salient elements subject to analysis. Additionally, given

the limited performance of indexing methods and the questionable ability of humans

to pose exact queries, it is essential that results be presented in a way that allows for

very fast browsing by the user with a minimum of redundant results presented.

Great progress has been made on shot segmentation and summarization of digital

video. However, it is common for much of this research to focus on Specific classes

of video or limited content corpuses. Major projects have analyzed news broadcasts,

music videos, and late night comedians. Additionally, much of this work tends to focus

on small sets of video content and has not been tested on a large video test suite.

The current research has answered many questions about how to analyze video where

the structure is known in advance. However, any general solution must work for a

wide variety of content without the input of manually collected structural knowledge.

This fact has been well known in the mature document analysis and the biometric

communities for many years [5, 61, 48, 67, 70, 117, 139, 146].

1.1 Questions addressed by this thesis

This thesis examines the problem of creating new algorithms for Shot segmentation

and video summarization that improve on the performance of existing methods. The

specific approach we apply is to examine the wide range of existing segmentation



and summarization methods and blend representative algorithms into a composite

system using results fusion. The primary goal is to build a system that can utilize

the strengths of the various algorithms, where appropriate to the underlying content,

while avoiding the weaknesses when the method is inappropriate to the content.

1.1.1 Shot Segmentation

There has been considerable research on video segmentation techniques [10, 28, 47, 74,

86, 95, 157, 155]. Each of these segmentation techniques is successful at determining

shot boundaries for specific classes of video. Color histogram-based algorithms build

models of the dynamic change in color distribution between successive frames and

are successful when applied to video sequences where the color distribution changes

abruptly between shots [47, 95, 102, 157, 156]. Model-based algorithms use learning

algorithms to construct models of the temporal nature of transitions and are effective

when a set of transitions is known and expected in the content [11, 115]. Motion-

based algorithms attempt to track content motion through image sequences and are

effective when object or camera locations change Significantly between shots [95, 144].

The wide variety of techniques forms a toolbox for the system designer from which

an appropriate segmentation algorithm can be chosen for a given class of video. When

the type of video is known a priori, any type of technique can be employed with

relative success. However, if the type of video is unknown before analysis, certain

assumptions cannot be made about the video and the best choice of algorithms cannot

be predetermined, nor can the appropriate parameterization of the algorithms be

made (setting thresholds and intervals for example). Research efforts, to date, have

predominately focused on the independent implementation of individual segmentation

algorithms [105, 106, 155, 157]. Limited research has attempted to combine shot

boundary detection algorithms into a composite system [15, 119, 151, 158].

What constitutes good shot segmentation? In developing novel methods for

video shot segmentation it is imperative to know what characteristics comprise good

shot segmentation. Within a Shot, a frame may differ from its neighboring frames

by either camera and object movement, focal length changes, or lighting changes

3



[110]. A good shot segmentation algorithm Should disregard frame changes within a

shot. In addition, accuracy is an important factor in any shot segmentation method.

The algorithm should attempt to maximize correct detections and minimize false and

missed detections. In our view, missed detections are more costly than false detec-

tions. Missed shot boundaries can never be recovered, however false detections can

be corrected during the summarization and abstraction process, which can eliminate

the possible redundancy.

This thesis addresses the question about the degree to which the various segmenta-

tion algorithms can be integrated to create a composite technique. The new composite

technique should be sensitive to the characteristics of the video under analysis and,

therefore, applicable to a larger set of content without Specific per-video tuning. This

research necessarily began with a study of the effectiveness of the various segmen-

tation algorithms on a wide variety of video. The classes of video that will be used

for our study are commercial films, home video, news broadcasts, raw news footage,

surveillance video, and Unmanned Aerial Vehicle (UAV) military video. The video

includes both edited and unedited footage. The results of our algorithm analysis

provide important information as to the characteristics that each segmentation tech-

nique exhibits for a given type of video. These characteristics are then utilized when

developing a novel adaptive shot-based segmentation algorithm.

Our approach to tackling the problem of Shot segmentation for a wide variety

of video classes adopts results fusion techniques from the document retrieval and

biometric community. Results fusion can be thought of as a decision function that

has multiple inputs and produces an output that is based on the characteristics of the

inputs. This thesis has developed a fusion-based Shot segmentation algorithm that

fuses together several key features of digital video and performs Shot segmentation

based on the characteristics of those features. The features were chosen based on

their ability to capture important information contained in the video sequence. The

key features that are used to characterize a video segment are color, texture, motion,

and compressed image characteristics. In our approach, shot segmentation is treated

as a binary classification problem in which each frame in a video sequence is or is



not considered as a shot boundary. Results fusion strategies using Support Vector

Machines (SVMS), Decision Trees, Rulesets, and Neural Networks are used to fuse the

multiple features to determine a higher-quality, more accurate, segmentation. Prior

research has proven that these methods produce good performance for solving binary

classification problems [19, 39, 75, 108, 111, 139, 149].

1.1.2 Summarization

This thesis also demonstrates that results fusion and adaptation techniques can be

applied to video summarization. One of the critical tools of any indexing and browsing

environment is effective summarization. Video to be indexed must be presented to

an indexing system with a minimum of redundancy so as to avoid redundant retrieval

results and to maximize the disparity in the indexing space. Likewise, search results

must be presented to human users as compact summaries that allow users to quickly

browse through the candidate choices and choose the correct result or adapt the search

as quickly as possible. Again, many different approaches for video summarization

exist. This toolbox of approaches is utilized as the basis for an adaptive solution

for video summarization that draws on the strengths of the different approaches in

different application classes.

Video abstraction is the mapping of an entire video segment into a smaller number

of representative images [157]. It has been recognized that representing a complete

video shot with a single image is an important step towards representing video in

a compact meaningful form [131]. These images may be extracted frames from the

actual video sequence or composite images constructed from the sequence using salient

stills [134] methods or image mosaics [63, 97, 96]. Although these images are single

frames, they do not represent one discrete moment in time. Moreover, these images

represent the aggregation of temporal changes that occur within a moving image

sequence with the salient features preserved [16]. This abstraction has traditionally

been done manually in film and video libraries. The huge volumes of video data

accumulating today require fully automated techniques to reduce the role of human

involvement as much as possible. However, in some instances this representation

5



may not be enough to capture the dynamic action in complex shots. As a result,

researchers have experimented with developing moving image abstracts of shots.

There has been a considerable amount of research on automated video abstraction

techniques [23, 24, 25, 55, 73, 85, 97, 96, 112, 126, 127]. Summarization involves

reducing the redundancy created in the abstraction process due to repeated scenes

or Shots, maintaining the original structure of the video. Many techniques exist

for developing video summaries. These techniques include moving images abstracts,

video skims, and keyframe extraction.

What constitutes good summarization? Good summarization should seek

to eliminate redundancy and present the video in a compact form that allows for

maximum user retention and comprehension. It should briefly and concisely present

the contents of the original video [118]. Its length should be shorter than the original

video sequence, but how much shorter? It should only focus on the content that is

important to the user, but what is important? One of the main problems with any

summarization technique is that the answers to the previous questions vary from user

to user. In some cases, users may need to view a few still images of the video sequence,

and in others, users may need to view a short clip segment extracted from the longer

video. There exists no optimal summary form. Additionally, it is difficult to measure

the performance of any summarization technique in terms of a quantifiable result.

The best we can do is to compare the summary to what a human user would consider

optimal.

This thesis examines the integration of various summarization techniques to de-

velop an effective composite method that, again, is generally applicable to a wide class

of content. Determining the most effective summarization technique for a given video

source is a difficult research problem. The summarization method Should present the

user with the most effective means of organizing the data for maximum understanding

and saliency. Understanding the summarization output is not a well-defined concept

and is likely a user-dependent concept. Additionally, the summarization method

must be able to adapt to the underlying video content, presenting the user with the

most effective interface for viewing the content. Moreover, a summarization method
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Figure 1.1: Proposed Results Fusion System

should present a concise summary that provides an overview of the video, reducing

redundant information created by repeated scenes or alternating shots.

1.1.3 - Results Fusion

This thesis focuses on the composition of existing algorithms into a single composite

algorithm with considerably improved performance and greater general applicability.

The approach that has been chosen is to combine the feature output of multiple

algorithms using results fusion. Results fusion (also referred to as sensor fusion in

the robotics community, classifier fusion in information retrieval, and multimodality

fusion in biometrics) is the process of combining multiple evidence or sensors to

improve the performance and reliability over utilizing a single evidence or sensor.

The performance of any system is predicated upon the reliability of the sensor that is

used. If a single sensor is used, it may be subject to errors or unpredictable behavior

in certain environments. The result of such a sensor could be unreliable. Results

fusion attempts to address this problem by utilizing multiple sensors that capture

different aspects of the data under analysis. Each sensor itself may not provide superb

performance, however the appropriate combination of these sensors may produce a



reliable and quality result.

An important feature of results fusion methods is the ability of the results fu-

sion engine to generalize or adapt to novel patterns or input data [133]. In order

to obtain a system that generalizes well, researchers have experimented with using

multiple classifiers with each classifier generalizing differently, utilizing separate fea-

tures, modalities, or representations. In order to use all the information available,

the results or features of the multiple classifiers must be combined to make a final

decision.

Several methods exist for results fusion. As an example, considerable research on

results fusion has come from the area of document retrieval [6, 44, 61, 81, 82, 83, 94,

123]. In this area, researchers attempt to combine multiple representations of queries

and documents or multiple retrieval techniques. Research in this field has shown that

significant improvements can be achieved by combining multiple evidence [6, 83]. Re-

sults fusion has also become popular for personal identification and authentification,

where different methods (fingerprints, retinal scans, and other biometric measures)

have limited individual reliability, but allow for greater reliability when used in con-

junction, reducing the false acceptance of imposter cases [9, 48, 117, 139]. Research

in handwriting and character recognition attempts to combine multiple line segments

via results fusion to identify handwritten numerals [80, 145]. Additionally, research

in the sensor fusion community has indicated receiving improved performance and

reliability over using a single sensor. Researchers in this community attempt to fuse

information retrieved from metal detectors, ground penetrating radar, and thermal

infrared imagers for the detection of land mines [27, 121].

There are important similarities between the composition of multiple methods in

the document filtering community and in creating a fusion-based video segmentation

technique. Just as some document filtering algorithms require different document

representations [70] to improve retrieval performance, the various video segmentation

algorithms utilize different abstract video representations (motion maps, histograms,

etc.). Additionally, just as some document filtering algorithms fuse results from

previous algorithms to improve performance, the results of various video segmentation



algorithms can be fused to create an improved, unified result.

In general, there is no guarantee that the fusion of multiple strategies will improve

performance over individual methods. For example, if an accurate sensor is fused

with one that generates random results, then no improvement is realized. However,

empirical evidence from the document analysis and biometric community indicate that

fusion is beneficial and improves performance. For example, if the optimal strategy

is unknown, the fusion of multiple methods can be advantageous even if the fusion

results are worse than the best individual strategy.

1.1.3.1 Document Analysis

Some document analysis researchers attempt to combine multiple representations

of queries and documents or multiple retrieval techniques. An example application

that incorporates results from multiple input sources is the metasearch engine. A

metasearch engine is a system that provides access to multiple existing search engines.

Its primary goal is to collect and reorganize the results of user queries by multiple

search engines. There has been considerable research regarding the effectiveness and

performance of metasearch engines [8, 21, 34, 49, 52, 60, 79, 99]. The result merging

step of a metasearch engine combines the query results of several search engines into

a single result. A metasearch engine usually associates a weight or similarity measure

to each of the retrieved documents and returns a ranked list of documents based on

this value [99]. These weights can be derived from an adjustment of the document

rank value of the local search engines or by defining a global value based on all of the

retrieved documents. This approach only focuses on the results of multiple searches

and not a combination of the multiple search engines functionalities. Metasearch

engine research is complicated by the fact that differing search engines produce rank

results that are heterogeneous and not easily compared.

Document retrieval methods have also shown increased performance when com-

bining results from various document representations. Katzer, et a1. [70] compared

text document retrieval performance using different document representation meth-

ods. Their results demonstrated that the different document representations retrieved



different sets of relevant documents and that performing information retrieval with

multiple document representations improved retrieval performance over using a single

method. Additionally, Bartell, et at. [6] and Shaw, et al. [123] combined multiple re-

trieval algorithms and obtained better performance than using a single method. Hull,

et a1 [61] combined probability estimates of multiple classifiers to improve document

filtering performance.

As the document retrieval methods rely on various document representations, the

various video segmentation algorithms rely on different characteristics of the underly-

ing video as abstracted into some intermediate representation, such as a feature vector

or representative image. Color-based methods create histograms of the frame content

color distribution and compute distance metrics between these histograms to search

for shot boundaries [47, 86, 95, 102, 156, 157]. Model-based methods create Hidden

Markov Models (HMM) of each possible state and transition in a video sequence that

are used to locate transitions as temporal events [11, 115]. Edge-based methods utilize

derived edge maps of the frame content to search for Shot segmentation boundaries

[86, 152]. Motion-based methods rely on derived velocity and displacement vectors to

compute the amount of motion between video frames to determine shot boundaries

[31].

1. 1.3.2 Biometrics

Many researchers have focused on the fusion of face and voice data to improve per-

sonal identity verification [9, 17, 67, 117, 146]. Several studies have shown that using

a multi-modality biometric system can improve on the incompleteness of any Single

model biometric system [117]. Yacoub [9, 146] uses multi-modal biometric features to

fuse face and voice information together via a supervising expert. Person identifica-

tion is treated as a binary classification problem, with each user either belonging to

the imposter class or the client class. Given the scores from the face and voice iden-

tification modules, the supervising expert finds the optimal function that separates

the two classes to make verification decisions.

Genoud, et a1. [48] combined several Speaker verification methods to improve per-
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formance. The decision functions of each verification method are weighted with a con-

fidence measure. The average confidence measure is tested against a global threshold

to determine speaker authentication. Their research concluded that increased perfor-

mance can be achieved by combining multiple methods.

Ross, et al. [117] fused the results from face, fingerprint, and hand geometry

analysis to increase the performance of a biometric system. In their research, the

decision function of multiple biometric systems is consolidated via a summation rule,

which takes a weighted average of the individual scores. From their research it was

concluded that increased performance could be obtained by using multiple modalities.

The results of this research suggest that increased shot segmentation and sum-

marization performance can be achieved by fusing multiple algorithms over using a

single method.

1.2 Contributions of this thesis

This thesis contributes to the overall research in digital video in seven distinct ways.

Results obtained by the document analysis and biometric communities using fusion of

multiple methods to increase performance suggest that an improvement of shot seg-

mentation and summarization could be achieved by fusing together multiple methods.

To achieve this goal, we select appropriate shot segmentation algorithms and exam-

ine a variety of fusion-based techniques, constructing a composite method for shot

segmentation.

We then extend the general ideas and results developed in this work to sum-

marization. The goal has been not only to develop an improved method for video

summarization, but also to demonstrate the extensibility of the general concept of

results fusion.

Some of the techniques that we have used to extract the features and determine

Shot boundary detection are not necessarily new, however our implementation of them

is. Additionally, we test our newly developed algorithms on a wide variety of different

video classes. To date, much of the research in the field of digital video has been done
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using small test samples of structured content. Few researchers have attempted to

test algorithms on large video suites that encompass the complexity and variety of

different classes of content. The classes of video that were used for our study include

commercial films, home video, news broadcasts, raw news footage, surveillance video,

and Unmanned Aerial Vehicle (UAV) military video.

To summarize, the contributions in this thesis are:

e A Decision Tree and Ruleset based results fusion engine for shot segmentation

and summarization that improves performance over using a single algorithm.

0 Neural Network results fusion for shot segmentation and summarization that

improves performance over using a single algorithm.

0 Support Vector Machine—based results fusion for Shot and video summarization

that fuses key features from video and determines a best segmentation with

extensions to summarization that improves performance over using a single

algorithm.

0 Feature extraction and analysis for results fusion.

0 Experimental validation on a large and varied video test suite.

0 Adaptability to detect Shot boundaries when receiving unreliable data from one

or more modalities.

e A novel keyframe-based video summarization technique based on camera mo—

tion.

When video enters the proposed system, it is analyzed by each feature module.

The feature extraction modules are used to extract low-level image features. These

feature modules extract the necessary features and output a measure for each video

frame representing the difference metric between successive frames. The outputs of

the features modules are combined using a results fusion engine. The output of the

results fusion engine is a decision as to whether the current frame under analysis is a

Shot boundary. Figure 1.1 shows a graphical representation of the proposed system.
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1.3 Definitions

This section describes some of the terms and symbols that appear throughout this

thesis. Images in this thesis are presented in color.

0 out: An abrupt boundary that occurs where there is a change of shots between

two consecutive frames. Figure 1.2 shows a graphical representation of a cut

between pairs of frames in a music video sequence.

0 dissolve: The simultaneous occurrence of a fade-in and fade-out, with both

effects superimposed over a Span of frames [28]. Figure 1.3 depicts a dissolve

video edit.

0 fade: A gradual transition of video content to or from black (or some other

fixed color frame). A fade-out occurs when there is a gradual change fade to a

black screen, while a fade-in occurs when there is a gradual fade from a black

screen. Figure 1.4 is a graphical representation of a fade-in video effect.

0 keyframe: A still image that best represents the content of a video sequence in

an abstract manner [157]. There is no clear criterion for selecting keyframes and

systems vary considerably on what is considered the best choice for keyframe

selection or construction.

0 scene: A logical grouping of shots focusing on certain objects of interest [109].

0 shot: A sequence of frames captured as a single continuous action in time and

Space [109].

e wipe: A transition from one shot to another by selectively uncovering a con-

tiguous region of the image, often rectangular. The effect is often like a virtual

line passing across the image, clearing one picture while it brings in another

occurring over a Span of frames. Figure 1.5 Shows a graphical representation of

a wipe video effect.
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Cut Frame

Figure 1.2: Cut Between Successive Frames



 
Figure 1.3: Dissolve Video Edit



 
Figure 1.4: Fade In Video Effect
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Figure 1.5: Wipe Video Edit



1.4 Stucture of this thesis

The remainder of the thesis is organized as follows. Chapter 2 reviews existing shot

segmentation, summarization, and results fusion methods, noting strengths and weak-

nesses. Chapter 3 examines the shot detection methods implemented in this thesis.

Chapter 4 examines result fusion-based algorithms and implementations for video

segmentation. Experimental evaluation and testing is detailed in Chapter 5. Chap-

ter 6 discusses how our novel results fusion-based shot segmentation methods can be

extended for video summarization. A summary and proposed future work is detailed

in Chapter 7.
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Chapter 2

Related Work

The widespread distribution and storage of digital video has presented many chal-

lenges. The challenges arise because of the nature and characteristics of digital video.

It is an inherently voluminous and redundant medium. In order to effectively utilize

this medium it must be transformed into a form that is searchable, manageable, and

structured. Temporal video shot segmentation is the first step towards achieving this

goal. Any method that attempts to index, browse, retrieve, or parse digital video

must be segmented. The goal of video Shot segmentation is to present a longer video

sequence as a set of smaller more manageable segments called Shots. A shot can be

characterized as a sequence of frames captured as a single continuous action in time

and space [109]. Each shot is then mapped into a smaller number of representative

images via an abstraction process. The abstraction process creates a series of still or

moving images that is shorter in length than the original video and preserves the es-

sential meaning of the video [88]. Summarization attempts to reduce the redundancy

created in the abstraction process due to repeated scenes or shots, maintaining the

original structure of the video.

Results fusion is the process of combining multiple sensors or classifiers. It is

considered a general problem in various application domains such as face recognition,

text categorization, person authentification, and optical character recognition. The

premise behind results fusion techniques is that better accuracy and reliability can

be obtained by fusing multiple evidence or sensors over using a Single evidence or
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sensor. If a single sensor is used, it may be subject to errors or unpredictable behavior

in certain environments. The result of such a sensor could be unreliable. Results

fusion attempts to address this problem by utilizing multiple sensors that capture

different aspects of the data under analysis. Each sensor itself may not provide superb

performance, however the appropriate combination of these sensors may produce a

reliable and quality result.

The purpose of this chapter is to give an overview of the existing methods for

video segmentation and summarization. The performance and limitations of each

algorithm are discussed and compared. Additionally, this chapter will discuss the

current research and methods for results fusion.

2.1 Video Systems

There has been much research in the development of composite video systems that

allow users to store, search, and browse digital video [56, 105, 106, 141, 140]. The

Fischlar project at Dublin City University is a visual indexing system that allows users

to store and browse television programs. The Informedia I and II Project at Carnegie

Mellon University utilizes Speech information, image analysis, and natural language

processing on over a terabyte of video data to facilitate video search, navigation, and

retrieval [56, 141, 140]. Video segmentation and summarization are important aspects

of these systems. Video segmentation is the first step in any digital video analysis

system. Its goal is to capture the underlying structure of the video sequence and

divide the video stream into logical subunits [156]. Most segmentation algorithms

operate on the shot level; however there has been some research on segmenting video

on the story level. Figure 2.1 illustrates the hierarchy of a typical video. The second

step in any composite digital video system is the summarization of a video sequence.

The goal of summarization is to reduce the redundancy in the segmentation process

caused by repeated scenes or long shots. Both segmentation and summarization work

together as the foundation of any composite video system.
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Figure 2.1: Typical Video Structure

2.2 Segmentation

A typical video sequence is composed of scenes, which are composed of shots, which

are composed of frames at the lowest level. Figure 2.1 shows the structure of a

typical video sequence. Most common segmentation algorithms rely on low-level

image features at the shot level to partition the video. Attempting to partition the

video at the scene or story level is difficult; there is no standard or universal definition

of scenes or stories.

A shot is an unbroken sequence of frames taken from one source [74]. There are

two basic types of shot transitions: abrupt and gradual. Abrupt transitions, called

cuts, occur when a frame from a subsequent shot immediately follows a frame from the

previous shot. Gradual transitions consist of slow change between frames from one

shot to frames of a different shot. These types of transitions include cross-dissolves,

fade-ins, fade-outs, and other graphical editing effects such as wipes [47]. A fade-in

is the gradual increase of intensity starting from one frame to the next. A fade-out

is a slow decrease in brightness from one frame to the next. A cross-dissolve is when

one frame is superimposed on another, and while one frame gets dimmer, the other

frame gets brighter. A dissolve can be considered an overlapping of a fade-in and a
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fade-out [28]. Gradual transitions are more difficult to detect because camera and

object motion can inhibit the accurate detection of gradual transitions, causing false

positives.

There have been several research projects comparing and evaluating the perfor-

mance of Shot detection techniques. Koprinska, et a1. [74] provides a survey of the

existing approaches in the compressed and uncompressed domain. Dailianas [28] com-

pared several segmentation algorithms across different types of video. Lienhart [86]

evaluated the performance of various existing shot detection algorithms on a diverse

set of video sequences with respect to the accuracy of each detection method, and

the recognition of cuts, fades, and dissolves. Lupatini, et al. [95] compared and

evaluated the performance of three classes of shot detection algorithms: histogram-

based, motion-based, and contour-based. Boreczsky and Rowe [10] compared various

compressed and uncompressed video shot detection algorithms. All of these tem-

poral video segmentation algorithms can be categorized as either a compressed or

uncompressed domain technique.

2.2.1 Uncompressed domain techniques

The majority of segmentation algorithms operate in the uncompressed domain. Typi-

cally, a similarity measure between successive frames is defined and compared against

a predetermined threshold. A cut is determined when the distance value between two

images falls below this predetermined threshold. Gradual transitions can be found by

using complex thresholding techniques [156] or using a cumulative difference measure.

Figure 2.2 categorizes the various uncompressed Shot segmentation techniques. The

uncompressed algorithms can be organized into the following categories.

2.2.1 . 1 Pixel Differences

One way to detect the possible changes between successive frames is to compare the

corresponding pixel values between the two frames and count how many pixels have

changed. If the number of changed pixels is above a predetermined threshold, a shot
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is detected. Koprinska [74] calculates the absolute sum of pixel differences between

two successive frames as:

i=1 2le Iii-(1,31) -P.-+1(x. y)|

X - Y

 D(i,i + 1) = (2.1)

where Pi(:r:, y) and P,+1(:c, y) represent pixel intensity values at coordinates (x, y). A

cut is determined if the difference value D(i, i+ 1) is above a predetermined threshold.

One potential problem with this implementation is extreme sensitivity to camera

motion. If the camera moves a few pixels between successive frames, a large number of

pixels will be counted as being changed. Zhang, et al. attempted to reduce this effect

with the use of a smoothing filter [156]. Before each pixel comparison the candidate

pixel is replaced with the average value of the pixels within a 32:3 neighborhood.

Additionally, this filter reduces noise in the input images.

2.2.1.2 Statistical Differences

Zhang, et al. uses a likelihood ratio to compare successive frames based on the

assumption of uniform second-order statistics over regions in each frame [156]. In

this algorithm each frame is subdivided into I: blocks and the corresponding blocks

are compared based on the statistical characteristics of their intensity values. The

likelihood ratio that two blocks come from different scenes can be expressed as [156]:

_ [§%‘— +(WW
,\ _

k Si * Si+l

 (2.2)

where m,- and mi“ are the mean intensity values for the two blocks 1: and S,- and

SH.) are the respective variances in consecutive frames i and i + 1. The number of

blocks whose likelihood ratio exceeds a threshold T1 is counted as follows:

. . 1 If A]; > T1

D(i, i + 1, k) = (2.3)

0 otherwise

If the number of changed blocks exceeds a second threshold T2 a cut is declared. One

advantage that this method has over the pixel difference method is that it improves

the tolerance against noise associated with camera and object movement. Addition-

ally, the likelihood ratio has a broader dynamic range than does the percentage used
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with the pixel difference method [156]. This broader dynamic range makes it easier

to choose a threshold t to distinguish between changed and unchanged areas. One

problem with the likelihood ratio algorithm is that it is possible for two different cor-

responding blocks across a shot boundary to have the same density function, causing

no out to be detected. Another problem with this method is that, compared to the

pixel difference method, its performance is slower as a result of the complexity of the

statistically-based formula.

2.2.1.3 Histograms

The most commonly used structure for color-based segmentation is the histogram.

Ranges of colors are divided into buckets and the number of pixels assigned to each

bucket forms the color histogram of the video frame. Histogram-based algorithm

techniques use a distance metric between histograms as a similarity measure. The

basic assumption is that content does not abruptly change within, but across shots

[86]. Once an image has been represented as a histogram there are various distance

metrics that can be used. Some of the most commonly used distance metrics are:

e Chi-square: k .

X2 = f; (Hi(])]{:+f[;1(3)) (2.4)

e Intersection:

2i min(Hi(i)a Hi+l (2))
 Intersection(H,-,H,-+1) = 1 — N (2.5)

0 Absolute Bin Difference:

ABD<H., H...) = 2: 1mm - Hi+1(i)l (2.6)
i=1

Zhang et al. [156] concluded that the x2 method of histogram comparison enhances

the difference between two frames across a out, however it also increases the difference

between frames with small camera and object movements. Additionally, the overall

performance of the x2 method is not much better than the absolute bin difference
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method, with X2 being more computationally intensive. Zhang et al. [157] computed

the distance between color histograms as:

N N .

D(H,, Hm) = Z . aij(Hi(i) — Hi+1(i))(H,-(j) — Hi+1(j)) (2-7)

1 .7

where the matrix aij is derived from human perception studies. If the distance metric

exceeds a threshold, a cut is selected. Histograms are attractive because they are

effective at determining abrupt changes between frames. They are also tolerant to

translational and rotational motions about the view axis, and change gradually with

the angle of view, change in scale, or occlusion [157]. However, they completely

ignore the spatial distribution of intensity values between frames. Consecutive frames

that have different spatial distribution, but have similar histograms, are considered

similar. Zhang et al. [156], and Nagaska and Tanaka [102] are examples of color-based

histogram implementations.

One solution to the problems associated with global histograms is to create local

histograms. Local histograms segment a frame into blocks and compute histograms

for each block. This method is tolerant to local changes in motion, however it is still

sensitive to changes in luminance over and entire frame [95]. Nagaska and Tanaka

[102] Split each frame into 16 blocks of equal size and evaluate the difference between

histograms of the corresponding blocks. The x2 method is used to compute the

distance metric between frames. The largest difference value is discarded in order to

reduce the effects of noise, object and camera movements.

Gargi, et al. [47] experimented with computing histograms for various shot de-

tection methods in different color spaces. The color Spaces include RGB, HSV, YIQ,

XYZ, L*a*b*, L*u*v*, Munsell, and Opponent. They concluded that the Munsell

space produced the best performance results. The Munsell space is used because it

is close to the human perception of colors. Additionally, Zhang, et al. [157] used

a dominant color technique only using the most dominant colors corresponding to

the histograms with the most bins. The assumption that is made by the dominant

color technique is that small histogram bins are likely to contain noise, distorting shot

detection results.
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Histogram based methods produce good performance in the presence of abrupt

changes between shots. However, in the presence of gradual transitions, such as dis-

solves, fades, and wipes, the difference between successive frames may be too low to

be detected. In order to detect gradual transitions, Zhang, et al. [156] imposed a two

threshold technique, consisting of an upper and lower bound. The upper threshold is

used to detect abrupt cuts, while the lower threshold is used to detect gradual transi-

tions. Whenever the frame difference exceeds the upper threshold, a cut is detected.

If the histogram difference falls between the two thresholds, it was marked as the

possible beginning of a gradual transition. The subsequent frames are then compared

against the candidate frame to detect the remaining frames in the transition sequence.

If the successive differences exceeded the upper threshold before the difference falls

below the lower threshold, the sequence is considered a gradual transition.

Lupatini, et al. [95] compared the performance of twelve shot detection methods

based on histograms, motion, and contours. They concluded that the best perfor-

mance was achieved with histogram-based algorithms. Boreczky, et al. [10] compared

the performance and evaluation of three histogram-based algorithms, a motion-based

algorithm, and an algorithm based on the DCT coefficients. They concluded that

the histogram-based algorithms performed better in general than the motion-based

and DCT-based algorithms. Zhang, et al. [156] compared pixel differences, statisti-

cal differences, and histogram-based methods, and concluded that histogram-based

methods offer a good trade—off between accuracy and Speed.

2.2.1.4 Clustering

Tekalp, et al. [53] introduced a temporal video segmentation technique based on

2-class clustering to eliminate the subjective nature of selecting thresholds. Video

segmentation is treated as a 2-class clustering problem, where the two classes are

”scene change” and ”no scene change”. The K-means clustering algorithm [66] is

used to cluster the frames. The X2 method and the histogram difference method are

used to compute the similarity metric in the RGB and YUV color spaces. From their

experiments, the X2 method in the YUV color space detected the larger number of
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correct transitions, however when the complexity of the distance metric is factored

in, the histogram difference method in the YUV color space was the best in terms of

overall performance. One major advantage of this technique is that it eliminates the

need to select a predetermined threshold. Additionally, multiple features can be used

to improve performance of the algorithm. In subsequent research, Ferman and Tekalp

[43] utilize two features, histograms and pixel differences for video segmentation via

clustering.

2.2.1.5 Edge differences

Zabith, et al. [152] detect cuts, fades, dissolves, and wipes based on the appearance of

intensity edges that are distant from edges in the previous frame. A summarization of

the edge pixels that appear far from an existing pixel (entering edge pixels) and edge

pixels that disappear far from an existing pixel (exiting edge pixels), are used to detect

cuts, fades, and dissolves. The method is further improved to tolerate camera motion

by applying motion compensation. The global motion between frames is calculated

and used to align frames before detecting the entering and exiting edge pixels. One

disadvantage of this technique is that it is not able to handle independently moving

objects [74]. Another disadvantage of this method is an increase in false positives due

to the limitations of the edge detection method. Changes in image brightness, or low

quality frames, where edges are harder to detect, may cause false positives. Lienhart

[86] experimented with the edge-based segmentation algorithm by Zabith, et al. [152]

and concluded that false positives can arrive from abrupt entering and exiting lines of

text. In order to reduce the false positive, the classification of hard cuts was extended.

Additionally, Lienhart [86] found that hard cuts from monochrome images were being

classified as fades. The algorithm was modified to eliminate this misclassification.

2.2.1.6 Model-based

Boreczky and Wilcox [11] used hidden Markov Models (HMMS) to segment video

[115]. The features used for segmentation are the distance between gray-level his-

tograms, an audio distance based on the acoustic difference in intervals just before
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and just after the frames, and an estimate of the object motion between frames. Sep-

arate states in the HMM are used to model fades, dissolves, cuts, pans, and zooms.

The arcs between states model the allowable progression of states. From a Shot state

it is allowable to go to any of the transition states, however from any transition state

it is only possible to go back to a shot state. Additionally, since pans and zooms

are considered a subset of a shot, they can only be reached from a shot state. The

arc from a state to itself models the duration of the state. The transition probabili-

ties and the means and variances of the Gaussian distribution are learned during the

training phase based on the Baum-Welch algorithm [115]. Training data consists of

features (histograms, audio distance, and object motion) from a collection of video

with the data classified as a shot, out, fade, dissolve, pan, or zoom. After the model is

trained, segmenting the video into its shots and camera motions is performed via the

Viterbi algorithm [115]. One advantage of this technique is that thresholds are not

subjectively determined; they are learned automatically based on the training data.

Another advantage of this technique is that it allows for the inclusion of multiple

features in the training data.

2.2.1.7 Other Techniques

Vasconcelos and Lippman [138] developed a Bayesian framework for shot segmenta-

tion by modeling the shot duration and Shot activity. The premise of their research

is that the probability that a new shot boundary occurs is highly dependent on how

much time has elapsed from the previous one. Gong and Liu [50] created a novel tech-

nique for shot segmentation based on Singular Value Decomposition (SVD). Given an

input video sequence, SVD is performed on feature vectors derived from each input

frame. Silva, et al. [125] devised a video segmentation technique based on volumetric

processing of the video sequence. Each video sequence is represented as a volumet-

ric video object. Geometric functions are used to classify shot boundaries. Lei, et

al. [84] developed a statistical hypothesis testing framework based on the Hotelling

T2 test to detect shot segmentations. Brunno and Pellerin [18] utilized optical flow

measurements based on a global wavelet-based parametric model to determine Shot
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boundaries. Shot boundaries are detected by locating and analyzing the temporal

trajectories of the linear prediction errors of the wavelet coefficients.

2.2.1.8 Gradual Shot Boundary Detection

Hard cuts (abrupt transitions) account for 90% of all transitions between shots [87].

The majority of the research in shot boundary detection has focused on detecting

hard cuts because this boundary type can be characterized by a single measure be-

tween consecutive frames. The difference between successive frames across a hard out

boundary generally produces a high difference value between the two frames, which

can be detected by a variety of algorithms that employ a single threshold.

Gradual transitions such as dissolves, fades, and wipes are more difficult to de-

tect in video sequences. Gradual transitions account for the remaining 10% of shot

transitions [87] in commercial video. These transitions occur across a series of frames

rather than just a single frame as with hard cuts. Additionally, the difference between

successive frames during these types of transitions is relatively small due to the spe-

cial effects commonly used during a gradual transition. Lowering the threshold does

not solve this problem because the differences between successive frames in a gradual

transition may be smaller than the difference between frames in a shot, resulting in

numerous false detections. Moreover, gradual transitions must be differentiated from

camera and object movements that display temporal changes and variances similar

to gradual transitions that may also cause false positives.

Fades and wipes are generally easier to detect than dissolves. During a fade-in or

fade-out, the video signal is scaled by some mathematically well-defined and simple

function. Additionally, during wipes, the two video sequences under analysis are well

separable at any time [87]. During a dissolve, the two video sequences under analysis

are mixed together temporally and Spatially, which makes the problem of detecting

dissolves very difficult.

There has been considerable research on the detection of gradual transitions in

digital video [69, 87, 98, 104, 156]. The twin comparison method of Zhang et al. [156]

was the earliest method that attempted to detect gradual transitions. Zhang et. a1,
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surmised that a single threshold could not detect all segmentation boundaries. The

twin comparison method utilizes two thresholds, one high Th and one low T). The

high threshold T), is used to detect hard cuts and the low threshold T) is used to detect

gradual transitions. The process begins by comparing frames based on a difference

metric. If the value of the metric exceeds threshold Th a hard cut reported as detected.

If the difference metric is below threshold T), and above the lower threshold T; the

frame is marked as the potential start of a gradual transition F3. An accumulated

comparison is then performed on the frame F, and the subsequent frames. This

value usually increases during a gradual transition. The end frame Fe is determined

when the difference between successive frames drops below T) and the accumulated

difference value exceeds Th. If the consecutive difference value drops below T) before

the accumulated difference value exceeds T), the potential start position F, is dropped

and the process restarts. There are some gradual transitions that exhibit difference

metric behavior where the metric temporarily drops below the low threshold T). In

order to combat this problem a tolerance value can be set that allows a certain number

of frames to drop below T) before eliminating Fs as a potential candidate for the start

of a gradual transition.

Meng, et al. [98] detected dissolve transition effects in MPEG compressed video by

tracking the temporal characteristics of the frame variance 02 of DCT DC coefficients

of I and P frames. They Specifically watch for parabolic shapes in this value over

time. Assuming 2 video sequences f1(t) and f2(t) with intensity variances of(t) and

a§(t), gradual transitions can be expressed as a linear combination of the two video

sequences. The dissolve region is characterized as:

f(t) = f1(t)[1 - 0(0] + f2(t)a(t) (2-8)

where a(t) is a linear parameter that increases linearly from 0.0 to 1.0 over the

range of the dissolve. The parabolic variance curve is described as:

02(t) = (012 + o§)a(t) — 2012cx(t) + 012 (2.9)

The criteria that is used to detect dissolves based on the parabolic curve is that (1)

the depth of the variance valley must be large enough, and (2) the duration of the
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suspected dissolve region must be long enough. This algorithm produces good results

and the processing speed is very fast [69]. However, false alarms can arise due to fast

camera or object motion and some dissolves do not satisfy the second criteria.

Jun, et al. [69] detects dissolve transitions based on the Spatio-temporal distri-

bution of macro blocks in partially decoded MPEG video sequences. This algorithm

analyses B frames adjacent to anchor frames in order to determine potential candi-

dates for dissolve transition. A forward macro block ratio (FMBR) is computed for

all B frames adjacent to anchor frames. The FMBR is defined as [69]:

Mfwd/(Mfwd + Mbwd) if Mfwd + Mbwd 3‘5 0

N/A otherwise

FMBR = (2.10)

where Mfwd and Mbwd represent the number of forward and backward type mac-

roblocks respectively. In a dissolve sequence the FMBR changes either from a high

value to a low value or vice versa. The temporal distribution of macro block types

is determined by prediction state sequences of B frames adjacent to anchor frames.

The prediction states are based on the value of the FMBR. Candidates for dissolve

transitions are also determined by the spatial distribution of forWard and backward

predicted macro blocks. Of course, any method that relies on MPEG macroblock

distributions is necessarily dependent on the characteristics of the MPEG encoder

utilized to produce the video under analysis.

Drew, et al. [35] detects horizontal wipe video effects by using a comparison

of successive frames based on chromaticity histograms. The histograms are created

by using only the DC values in the columns of each frame. First, a 2D intensity

normalized spatio—temporal image is created as follows: r = R/(R -l- G + B), 9 =

G/(R + G + B). Then a 2D chromaticity histogram is created for each column. The

histogram intersection is used to determine differences between consecutive frames.

During a wipe, when the wipe reaches each column, an abrupt change produces a

histogram intersection equal to zero. Dissolves are detected by creating 2D color

histograms in the Cb—Cr color using only the DC values in the columns of each frame.

The algorithm looks for constant behavior in the difference values between histograms.

Lienhart [87] developed a dissolve detection system comprised of a transition de-
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tection training system and a multi-resolution transition detection system. The de—

tection system is able to identify fixed-size (16 frames) and fixed-scale dissolves. The

training system is able to create infinite dissolve sequences from video databases. It

is used to create a video corpus of dissolves. Lienhart notes that during a dissolve the

image contrast decreases toward the center of a dissolve and increases toward the end.

As a result, the average contrast measure of each frame is used to detect dissolves

along with a YUV histogram. A feed-forward neural network is used to train and

classify the system to detect dissolves. Lienhart reports receiving favorable results

using this technique.

2.2.2 Compressed Techniques

Due to the massive size of uncompressed video content, most video is stored in a

compressed format, such as MPEG. As a result, there has been considerable research

into performing video segmentation directly on the coded MPEG compressed video [1,

92, 93, 154, 148]. An advantage to performing video segmentation in the compressed

domain is not enduring the increased computational complexity of decoding the video

before analysis. Additionally, as a result of the lower data rate of compressed video,

algorithm operations are often faster [74]. Also, the encoded video inherently contains

computed features such as motion vectors and block averages that can be utilized.

However, the speed and efficiency of algorithms in the compressed domain comes at

the cost of increased implementation complexity.

2.2.2.1 Brief Overview of MPEG Video

An MPEG video stream is composed of three types of interleaved frames: Intracoded

(I), Bidirectional (B), and Predicted (P). These frames are combined in a repetitive

pattern, with the frames between two I frames labeled as a grovp-of-pictures (GOP).

Intracoded (I) frames provide a random access point into the compressed data and

are encoded by using lossy DCT, Quantization, Run Length Encoding (RLE), and

Huffman entropy coding. An MPEG intra—coded frame is very Similar in structure to
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a JPEG compressed image. Predicted (P) frames are motion compensated in the for-

ward direction, using the nearest previously reconstructed I or P frame. Bi-directional

(B) frames are motion compensated in both directions from I and P frames. Motion

compensation is performed on macroblocks, which are a 163516 block of pixels. For

each macroblock in the current flame the encoder computes a motion vector based on

the best matching macroblock in the reference frames, and Discrete Cosine Tfansform

(DCT) encodes the residual error. If the best matching macroblock in the reference

flame occupies the same position in the current flame, a zero prediction vector is ob-

tained. If the residual error after motion compensation for a particular macroblock in

a B or P flame is too high, meaning that the current flame does not have much in com-

mon with the reference flame, the encoder can choose to intracode that macroblock.

A macroblock in a B frame can be intracoded, forward predicted, with the prediction

vector pointing to a macroblock in a past frame, backward predicted, with the pre-

diction vector pointing to a future flame, or interpolated, where the best matching

source macroblocks in the previous and next frame are averaged. A macroblock in

a P frame can either be intracoded, or forward predicted, with the prediction vector

pointing to a macroblock in a past frame. DCT coding is performed via 8238 pixel

blocks, creating 64 DCT coefficients per block and 4 blocks per macroblock. Fig-

ure 2.3 depicts a typical MPEG data hierarchy. A more detailed description of the

MPEG standard can be found at [64].

Algorithms in the compressed domain can be grouped into the following categories:

Discrete Cosine Transformation (DCT) coefficients, DC terms, and Hypothesis Test-

ing.

2.2.2.2 Discrete Cosine Transformation (DCT) coefficients

The Discrete Cosine Transform (DCT) is the process used in MPEG compression

(and many other standards including JPEG) for separating an image into spectral

sub—bands with respect to the images visual quality. It transforms an image from

its spatial domain to the frequency domain. The first step in DCT coding is the

separation of I frames into 8:138 or 162316 sized blocks. The choice of block size is de-
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Figure 2.3: Typical Video Structure

termined by a trade-off between compression efficiency and computational complexity.

A larger block size produces greater compression efliciency; however it increases the

computational complexity of the coding. The DCT converts a block of pixels into a

block of transform coefficients. The coefficients represent the spatial frequency com-

ponents that comprise the block of pixels. Each coefficient can be thought of as a

weight that is applied to a basis function. Most blocks will have DCT coefficients

of zero because for most images, much of the signal energy lies at low flequencies.

Researchers have attempted to use the characteristics of the DCT coefficients to de-

termine shot boundaries. The basic idea is that the DCT coefficients across a shot

boundary exhibit significant change in relevant blocks.

Arman, et al. [1] developed a video segmentation algorithm to detect cuts in

motion JPEG compressed video data. For each frame, a feature vector is created

flom a subset of the DCT coefficients. A cut is detected by analyzing the normalized

inner product of the vectors of two successive frames. The normalized inner product
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is represented as [74]:

.. Vr'V}
DP(2,Z +90) = l-V'_[|V'—:£[ (2.11)

z 1 cp

If 1 - |DP(i,i + cp)| > T1 , where T1 is a predetermined threshold, a cut is detected.

A second threshold T2 is used to reduce the effects of camera and object motion. If

T1 < 1 — |DP(i, i+<p)| < T2, the frames are decompressed and a histogram comparison

is performed for the respective images.

Zhang, et al. [154] extended the work of Arman et al. [1]. In their work, shot

boundaries are detected using a pair-wise comparison technique of the DCT coef-

ficients of I flames in the compressed video. A pixel comparison distance metric

is compared to a predetermined threshold. The numbers of blocks that exceed the

threshold is counted, and if the sum exceeds another predetermined threshold, a cut

is determined. The distance metric is defined as [74]:

. . 1 64 [Czkfil ‘Czk(i+90)l
DP , ,l = -— ’ , ’ , T .

(z z + ‘p ) 64 k; maitlczrh), 61.1:(1 + <P)l > I (2 12)

 

Cu: is the DCT coefficient of block I in frame i, with l depending on the size of the

flame. If the distance metric is larger than a predetermined threshold T1, the block

I is counted as being changed. If the number of changed blocks exceeds a second

predetermined threshold, a cut is detected. Since the algorithm only processes I

flames, processing time is reduced, however temporal resolution is also decreased.

Gradual transitions are not detected by either of the techniques, and they are subject

to produce false positives as a result of camera and object motion. The pair-wise

comparison technique is less computationally intensive than the technique proposed

by Arman et al. [1].

2.2.2.3 DC Terms

The first DCT coefficient is referred to as the DC term, where DC is derived from

direct current, an electronics term. The DC term is the average of all pixel values

in the block and represents a sub—sampling of the block. Since the DC terms can be

considered a reduced-resolution image, segmentation algorithms have been developed

that analyze this image in order to detect cuts. Figure 2.4 depicts a full resolution
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Figure 2.4: Full Image (352x240) and its DC image (44x30)

image along with its corresponding (tiny) DC image. The DC terms are treated

specially in most compression algorithms including MPEG due to their significance

as a reduced resolution image and, therefore, are easy to extract.

Yeo and Liu [148] have developed a method for detecting cuts in the compressed

domain based on DC frame differences. An image is divided in N.I'N pixel blocks,

with the (i, j ) pixel of the DC image corresponding to the average value of the (i. j )

block of the original image. The DC terms of l—frames are available from the MPEG

stream, while DC terms of P and B frames are re-constructed using motion vectors

and DCT coefficients of previous I frames. The reconstruction of the DC terms of P

and B frames is a computationally expensive process relative to the I frames, but is

still more efficient than reconstructing the entire image. The DC terms of the I, P,

and B frames are used to construct a DC flame sequence, which are a sequence of

DC images.

Three detection algorithms are applied to a DC sequence. One extracts abrupt

changes, another detects plateaus in the flame differences, and another detects flash-

light changes. Both the abrupt change detection and plateau detection are combined

to give the locations of changes and the beginning of gradual transitions. The distance

metric used between successive DC images are simple pixel differences and color his-

tograms. Similar to the uncompressed pixel difference approach. the similarity metric
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is based on the sum of the absolute pixel differences of two successive DC images.

This similarity metric can be expressed as:

Zf=125=1 |B(x7 y) ‘7 Pi+1($a 9)]

X - Y

 ow + 1) = (2.13)

where i and i+ 1 are two successive DC images and PAT, y) and P,~+1(:I:, y) represent

the pixel intensity values. Smoothing can also be used on the DC images to increase

the tolerance to small camera and object motions.

A color histogram is created flom the first few significant bits of each R,G,B

intensity value in the DC images. The RGB color histogram metric is defined as:

n

DRGB(H.-,H.-+1) = X; IHIU) - Hf+1(i)l + U130) - H5110)! + le’U) - Hf+1(i)| (2.14)
.=

where HI, Hf, and H? denote the color histograms of the R,G, and B components

respectively for successive images H,- and Hi“.

Yeo and Liu select their cut detection thresholds based on local activity in the

candidate images in the temporal domain. A sliding-window is used to examine m

successive flame differences. A out between two successive flames is detected if two

conditions are satisfied: 1) the difference is the maximum within a symmetric sliding

window of size 2m — 1 and 2) D(i, i + 1) is also n times the second largest maximum

in the Sliding window. The second condition is to reduce the effects of fast panning or

zooming scenes and camera flashes to be declared as changes. The parameter m is set

to be smaller than the minimum duration between two scenes. Gradual transitions

are detected by comparing every flame with the following kth frame, where k is larger

than the time allowed for a gradual transition.

2.2.2.4 Other Techniques

Patel and Sethi [110] classify shot transitions in the MPEG compressed domain using

statistical hypothesis testing. The first step in the algorithm is to extract I frames

from the encoded video sequence. The second step involves creating histograms for

each 818 DCT encoded block within an I frame by using the first coefficient of each

block. This value represents the average gray level value of the block of pixels. The
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final step in the algorithm involves a comparison of successive I frames based on

either the Yakimovsky Likelihood ratio test, the Chi-square test, or the Kolmogorov-

Smirnov Test [110]. Their study concluded that the Chi-square test gives the best

performance. In their later work, Patel and Sethi [111] extended their algorithm to

include row and column histograms in addition to the global histograms computed

flom I flames and the three decisions are fused into a single decision through Boolean

logic. Additionally, motion vector analysis is used to characterize shots originating

flom camera and object motion.

Meng, et al. [98] detected shot boundaries in MPEG compressed video by using the

frame variance 02 of DCT DC coefficients of I and P flames. Gradual transitions are

detected by looking for parabolic shapes in a curve that is derived flom the variance

of DC term sequence of I and P frames. Hard cuts are detected by an analysis of

motion vectors.

Zhang, et al. [153] uses a two-pass technique to detect Shot boundaries. The

first step involves extracting I frames and performing a pair-wise comparison of DCT

coefficients of the extracted I frames. The second step involves verifying the results

obtained in the first step. The motion vectors for selected areas are checked to

determine the exact cut locations. Further analysis of motion vectors is able to

distinguish camera motion flom gradual transitions. The twin-comparison technique

is used on the DCT differences of I flames to determine gradual transitions.

Koprinska and Carroto [75] developed a hybrid two-pass approach to shot detec-

tion in the compressed domain using a rule-based and neural network system. The

first pass locates possible shot boundaries and the second pass confirms the potential

boundaries. During the first pass the algorithm looks for peaks in intracoded macro

blocks of P frames. Peaks indicate an abrupt change in either the P flame with the

peak or in one of the two B flames before it. Gradual transitions are detected by

locating patterns in the intracoded macro blocks. The second pass of the algorithm is

used to confirm the potential candidates of the first pass. Cuts are detected by using

rules that check the forward and backward macro blocks of 2 B frames that are near

potential transitions. Gradual transitions are detected with a neural network trained
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on the motion vector patterns. The neural network is also used to distinguish camera

and object motion from dissolves.

2.3 Summarization

Video summarization attempts to present a pictorial summary of an underlying video

sequence in a more compact form, limiting or eliminating redundancy. Video sum-

marization focuses on finding a smaller set of images to represent the visual content,

and presenting these keyframes to the user. Most summarization research involves

extracting keyframes and developing a browser-based interface that best represents

the original video. Video abstraction refers to the short summary of the content of a

longer video document [85]. It is the process of mapping an entire segment of video

into a small number of representative images [157]. A video abstract is a sequence

of still or moving images that represent the content of the video in such a way that

the original meaning of the video is well preserved. There are two types of video

abstracts, still and moving abstracts. The still-image abstract, also known as the

static storyboard, is a collection of salient still images generated from the underlying

video. The moving abstract, also known as moving storyboard or video skim, is a

collection of short image sequences or video clips that are considerably shorter in

length than the underlying video source. Additionally, moving storyboards usually

have information in the audio track associated with the video sequence.

Li et al. [85] describes three advantages of a still-image Representation: 1) A

still-image abstract can be created much faster than a moving image abstract, since

no manipulation of the audio or text information is necessary. As a result, there are

no synchronization or timing issues that need to be addressed. 2) The temporal order

of the representative frames can be displayed so that users can grasp the concept of

the video more quickly. 3) Additionally, all extracted still images are available for

printing, if desired.

Li et al. [85] also describes three advantages of video Skims: 1) The audio track

may contain valuable information that is lost in the still-image representation. 2) It

40



is more natural and interesting for users to view a short trailer, than a Sliding window

of pictures. 3) The motion in the video sequence conveys information that is lost in

the still-image representation.

2.3.1 Still-Image Representation

2.3.1.1 Keyframe Extraction

Keyflames are still images that best represent the content of the video sequence in an

abstracted manner [157]. The goal of extracting keyflames from a video segment is

to retain the important content of the video while removing redundancy. There have

been numerous research efforts with respect to keyframe extraction [157].

2.3.1.2 Shot-Based keyframe extraction

In some commercial products and modeled systems the first and last frame of each

shot are selected to represent shot content [40, 122, 136, 157]. This procedure is

often referred to as temporal keyframe extraction. Although this may reduce the total

number of keyframes and provide information about the total number of keyframes

a priori, this method is not an accurate and sufficient representation of the shot

content. It does not characterize or capture dynamic action or motion within a shot,

therefore keyframes Should be extracted based on the underlying semantic content.

Semantic analysis of a video is a difficult research problem. As a result, most keyframe

extraction techniques rely on low-level image features, such as color and motion.

2.3.1.3 Color-Based Keyframe Extraction

Zhang et al. [157] extracts keyframes based on their color content. Keyframes are

extracted in a sequential manner. The density of the keyframe selection process

can be adjusted; however the default is that the first and last flames of each shot

are considered keyframes. Once a keyframe has been selected, a color histogram

comparison method is employed on subsequent frames and on the previous keyframe.

If the distance metric exceeds a predetermined threshold, a keyframe is selected. The
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Munsell space was chosen to define keyframes, because of its closeness to human

perception [157]. The color Space is quantized into 64 ”super-cells” using a standard

minimum of squares clustering algorithm. A 64 bin histogram is calculated for each

keyframe, with each bin having the normalized count of the number of pixels that

fall in the corresponding supercell. The distance metric between two histograms is

defined as follows:

D(Hi, Han) = Xian-(Him — Hi+l(z))(Hi(.7) — Hi+l(j)) (215)

where the matrix a,,- is derived flom human perception studies.

2.3.1.4 Clustering-Based Keyframe Extraction

Ferman and Tekalp [42] propose a keyframe extraction method based on the clustering

of flames within a shot. Frames within a shot are clustered into a certain number

of groups based on a color histogram similarity measure. The frame closest to the

center of the largest cluster is selected as the keyframe for the shot.

Zhuang et al. [159] proposed a method for keyflame extraction based on unsuper-

vised clustering. The color histogram is used to represent the visual content within

the frame. A 16x82D HS histogram is used in the HSV color space. The similarity

metric between successive flames i and j is defined as follows:

16 3

ZZ min(H,-(h, 3): H101, 5)) (2.16)

h=1 s=1

A keyframe is only selected from clusters that are bigger than N/M, the average size

of clusters, where N is the total number of frames in a shot, and M is the number of

clusters. For each cluster, the frame that is closest to the centroid is selected as the

keyframe.

2.3.1.5 Motion-Based Keyframe Extraction

Wolf proposes a motion based keyframe selection algorithm based on optical flow

[144]. The algorithm computes the flow field for each frame based on the Horn and
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Schunk optical flow algorithm [4]. The sum of the magnitudes of the optical flow

components are used as the motion metric. The keyframe selection process selects

keyframes that are at the local minima of motion between two local maximas.

2.3.2 Moving Image Representation

2.3.2.1 Video Skims

Video Skims are short video clips consisting of a collection of image sequences and

the corresponding audio, extracted flom the original longer video sequence. Video

Skims represent a temporal multimedia abstraction that is played rather than viewed

statically. They are comprised of the most relevant phrases, sentences, and image

sequences. The goal of video Skims is to present the original video sequence in an

order of magnitude less time [140].

There are two basic types of video Skims: summary sequences and highlights

[85]. Summary sequences are used to provide a user with an impression of the video

sequence, while a highlight video skim contains only the most interesting parts of a

video sequence.

Omoigui, et al. [107] develops summary video Skims by increasing the speed of

playback of the original video. Speeding up the playback allows the entire video to be

displayed in a shorter amount of time. Summary video Skims have the advantage of

allowing the user to view an entire segment of video in less time, however they only

allow for a maximum time compression of 1.5 to 2.5 depending on the speech Speed

[85].

The MoCA project [88] developed automated techniques to extract highlight video

Skims to produce movie trailers. Scenes containing important objects, events, and

people are used to develop the video Skims. Selecting highlights from a video sequence

is a subjective process; as a result most existing video-skimming work focuses on the

generation of summary sequences [85].

The Informedia I & II Project at Carnegie Mellon University [140, 24] utilizes

speech, closed caption text, speech processing, and scene detection to automatically
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segment news and documentary video. They have created a digital library with

over a terabyte of video data. One aspect of the summarization method of the

Informedia Digital Video Library System is partitioning the video into shots and

keyflames. Multi-level video summarization is facilitated through visual icons, which

are keyflames with a relevance measure in the form of a thermometer, one-line head-

lines, static filmstrip views, utilizing one flame per scene change, active video skims,

and the transcript of an audio track. Text keywords are extracted from the transcript

and closed captioning text by using a Term Ffequency/Inverse Document Ffequency

(TF-IDF) technique. Audio data is extracted flom the segments corresponding to the

selected keywords and its neighboring areas to improve audio comprehension. Image

extraction is facilitated by selecting flames with faces and text, flames following cam-

era motion, flames with camera motion and faces or text and flames at the beginning

of a video sequence. Video Skimming is created by the confluence of extracted au-

dio and image extraction. Experiments using this skimming approach have shown

impressive results on limited types of documentary video that have explicit Speech

or text content [85]. It remains unclear whether this technique may produce similar

results with video containing more complex audio content.

2.4 Other Techniques

Bagga, et al. [3] developed a novel video summarization technique that uses image

analysis, closed caption text, and hierarchical scene clustering. First, shot segmen-

tation is performed via a statistical analysis method and then each of the potential

scene boundaries are clustered via a hierarchical clustering method. The midpoint

between two consecutive scene changes is chosen as the keyflame for the scene. The

dominant color in the L * a at: b color space is then used to describe each keyframe.

The difference between dominant color components is used as the distance metric

between keyframes. A second distance metric is also computed for the closed caption

text of each scene. The two distance metrics are then combined to form a matrix D

and hierarchical clustering is performed on this new matrix. A recursive clustering
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process is performed to merge similar clusters until a predefined cluster distance is

met. This method has the advantage of utilizing text and image data simultaneously

to cluster the video data.

Dementhon, et al. [29] represents a video sequence as a polygonal trajectory curve

in a high dimensional feature space. This curve is created by mapping each flame

to a time dependent feature vector and representing these feature vectors as points.

The curve is segmented into regions of linearity or low dimensionality via binary

curve splitting and the flames that appear at boundaries between curve segments can

be used as keyflames to summarize the video sequence. Additionally, the algorithm

builds a binary tree of the video sequence under analysis, where the branches represent

a more detailed representation of the video sequence. This representation allows users

to view a video sequence at varying levels of granularity. The authors claim that this

method is less sensitive to differences in pair-wise frames as with other traditional

approaches that utilize flame-to—flame distance measures. Stefanidis, et al. [128]

also used trajectories to develop meaningful video summaries. Their research focused

on locating objects within a video sequence and creating object trajectories. These

trajectories were further analyzed for critical points that describe the motion of an

object over time.

Dixon and Owen [31] developed a novel video summarization technique based

on the amount of camera motion for raw unedited video sequences in bandwidth-

constrained client-server environments. This method was primarily developed to sup-

port summarization of content flom Unmanned Aerial Vehicles (UAV). The algorithm

selects keyframes that exhibit significant camera motion between frames. An affine

motion model is used to characterize the camera motion. Once keyframes are selected

they are placed in a keyflame pool. Keyframes are transmitted from the keyframe

pool based on the amount of available transmission bandwidth.

Doulamis, et al. [32] devised a summarization algorithm based on a fuzzy rep-

resentation of a video sequence. Each frame is segmented and Size, location, color,

and motion are used to form feature vectors for each segment. The feature vector

is made up of the horizontal and vertical locations of the center of the segment,
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the average values of the three color components, and the average motion vector of

the motion segment. Color and motion properties are classified into predetermined

classes with a value representing the degree to which the feature vectors belong to

each class. This value forms the fuzzy membership and is assigned to each class. A

multi-dimensional fuzzy histogram is computed for each segment in a flame. The

histogram represents the degree to which an entire flame belongs to a specific class.

Keyflames are selected via a method that minimizes the cross-correlation criteria. In

subsequent research Doulamis, et. al [33] developed a video summarization technique

that estimats points of a feature vector trajectory curve. The feature vector is built

of both global and object features. The global features include color, texture, and

global motion. The object features are extracted Similar to how the segments were

extracted in this first research effort [32]. The plot of all the feature vectors forms a

trajectory. Keyframes are selected by selecting appropriate junction points along this

trajectory. Interpolation theory is used to select optimal points along this curve.

Farin, et a1. [41] utilizes two-stage clustering and user specified domain knowledge

to summarize a video sequence. The first step involves the creation of a feature vector

based on luminance histograms for each frame. The second step organizes the feature

vectors in temporal segments. These segments are user defined (4 sec.) and are gen-

erally smaller than the length of a shot. The purpose of segmenting the video into

segments is to eliminate the possibility of gradual transitions appearing in the sum-

maries. When two subsequent shots are clustered together having gradual transitions,

the clustering algorithm generally selects the transition flame as the cluster center.

A time-constrained clustering approach is used as a first pass clustering technique

to detect possible shot boundaries. Keyframes are selected via a second clustering

algorithm based on k-means clustering. Users can also exclude certain scenes deemed

as irrelevant or unimportant by feeding information about these scenes into the al-

gorithm. Feature vectors are computed for the unwanted scenes and the second pass

clustering algorithm is augmented to remove the unwanted clusters. One advantage

of this technique is that it does not rely on accurate cut detection. Additionally,

the use of domain knowledge by the user over automated pre—filtering techniques is a
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desirable feature.

Fujimura, et al. [46] developed a summarization algorithm based on color and

closed caption information. The first step involves detecting shot boundaries via

a Shot probability model. In the second step, a color histogram is used to detect

unchanged scenes and a multiplexing technique based on color histograms is used

to extract important features flom each scene. The third step involves developing

rules to extract important closed caption text from each scene. The properties of

the unchanged analysis, multiplexing, and closed caption rules are used to create

summaries of the video sequence. This system is highly rule based and the authors

claim to achieve good performance in terms of time compression for some movie

sequences.

Gong and Liu [51] developed a moving image summarization algorithm that is

aimed at reducing the visual redundancy in a video summary. This approach differs

flom previous approaches that attempt to develop moving summaries in that its goal

is not to select the most important scenes to add to the summary, but to minimize

duplicated and redundant content. They have developed a redundancy metric based

on the entropy metric from information theory. The first step of the algorithm seg-

ments the video into shots via local color histograms and singular value decomposition

(SVD). The second step clusters the shots based on their visual Similarity. The shot

with the longest length is selected as the cluster center. Shots are discarded if their

length is less than 1.5 seconds. The final video summary is created by concatenating

a condensed version of each cluster center in temporal order. In experimentation,

each cluster center was condensed to 1.5 seconds before concatenation. The authors

concluded that their redundancy metric produced good results with videos containing

many long static shots or visually similar Shots and produced poor results when the

video contained short shot and diverse sequences.

Sugano, et al. [129] developed a video summarization algorithm that operates

in the MPEG compressed domain using MPEG-7 video sequences. Their research

creates digests as well as highlight video summaries. Digest summaries are based

on the analysis of audio level and visual information. Highlight summaries of Sports
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broadcasts are developed by analyzing the audio class and audio level.

Uchihashi and Foote [135] developed a video summarization algorithm based on a

shot importance measures. This measure is developed through hierarchical clustering.

A Shot is deemed important if it is considered long and rare. A keyframe is selected

for each cluster, and a keyframe packing algorithm is used to display the flames, with

the size of the frame corresponding to its importance.

2.5 Results Fusion

Researchers in various disciplines have attempted to use results fusion to improve

performance and reliability for their applications [6, 48, 61, 70, 117, 9, 146]. They

attempt to fuse together relevant evidence or sensors that when used alone are con-

sidered unreliable in certain instances. Results fusion is a general problem that is

interesting in many domains. Research from the document retrieval and biometric

community has shown that success and reliability can be improved from using results

fusion. Recently, the digital video community has recognized the need to incorporate

multiple evidence to improve performance. The types of results fusion strategies and

methodologies used depend on the amount of knowledge known at fusion time.

In general, there are a variety of methods that can be employed for results fu-

sion. In the document retrieval community, some methods that have been used are

simple unweighted Boolean retrieval, Bayesian inference networks, and logistic re-

gression. Additionally, weighting strategies in which weights are determined based

on experimental or test searches have been used.

2.5.1 Sum Rule

The sum rule is the simplest form of fusion. Let i denote the number of methods, wm

represent the number of possible m classes, and 2:,- denote the measurement vector of

method i. An input is assigned to class 10,- if:

N N

P(wj|a:,-) = marLl Z P(wk|:c,-) (2.17)

' i=1i=1
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where N is the number of methods. Ross, et al. [117] fused the results from face,

fingerprint, and hand geometry analysis to increase the performance of a biometric

system. In their research, the decision function was based on the sum rule. From

their research, it was concluded that increased performance could be obtained by

using multiple modalities.

2.5.2 Voting Strategies

Various voting strategies have flequently been utilized to fuse multiple results [7].

The most common voting technique used by researchers is majority voting. Let Am,-

represent the decision for each class wm by the ith method. An input is assigned to

class 20,- if:

29;, A,-,- = masts],=1 2,”; A)“, where

_ 1 if P(wk|a:,-) = max§=1P(wJ-[:r.-) (2.18)

h — 0 otherwise

where l is the number of classes. In this method, each sensor is given equal weight

to make decisions to determine the outcome. The problem with this strategy is that

all the Sensors are given equal weight in all conditions. A better implementation

would be to give more weight to the sensors that are more reliable. Hull, et al. [62]

developed 11 classifiers based on template matching and probabilistic strategies. The

final decision was made if 6 out of the 11 sensors made the same decision. Xu, et

al. [145] experimented with combining methods for handwriting recognition based on

various voting strategies.

2.5.3 Probabilistic Strategies

Kittler, et al. [72] have developed a theoretical flamework based on Bayesian theory

for combining classifiers that use different representations. Let 2:,- denote the feature

vector that the ith classifier observes where i E 1,. . . ,k and where there are m

possible classes w1,. . . ,wm. The class 10,- is selected with the maximum posterior

probability P(w,~|:1:1, . . . ,xk. According to Bayes theorem, the posterior probability
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can be expressed as:

P(w,-)P(:c1,...,:1:k]wj)

P($1,. .. ,Ilik)

 P(wj|:c1, . . . ,xk) = (2.19)

If the feature vectors extracted from each sensor are conditionally independent then

the decision rule is defined as:

k m k

P(wj)1—I P(a:,-|wJ-) = max P(w)) H P(:r:,-|w)) (2.20)

i=1 ‘ i=1

The decision rule in Equation 2.20 in terms of the posterior probabilities is defined as

the product rule, because the final decision is based on the product of the probability

of all the classifiers. The feature vectors (1:1, . . . ,xk) are assigned to class to, if:

k m k

Pl—k(wj) II P(wj|:1:,-) = Infix P1"k(w1) H P(w1|:r:,-) (2.21)

If equal prior probabilities are assumed for each of the classifiers, then Equation 2.21

is reduced to: k k

H P(wj|a:,) = Inger H P(w)|:r:,-) (2.22)

i=1 .i=1

Hull, et al. [61] combined probability estimates of multiple classifiers to improve

document filtering performance. Multiple statistical classifiers were fused by a meta-

classifier to accept or reject retrieved documents based on their similarity to previous

or subsequently retrieved documents.

2.5.4 Machine Learning and Data Mining

The main advantage of the sum rule, voting strategies, and probabilistic methods are

that they do not require any training. However, researchers have also experimented

with various machine learning and data mining techniques for results fusion. Some

of these methods include utilizing neural networks, decision trees, rulesets, and Sup-

port Vector Machines (SVMS) (see Section 4.2.4, Section 4.2.2, Section 4.2.3, and

Section 4.2.1 for a detailed descriptions of these methods). The strengths of these

methods are based on their discriminative ability to learn and represent the underly-

ing patterns of the input data.
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Cho [22] experimented with neural networks to recognize patterns in handwritten

numerals. Several independent neural-networks were used to classify input patterns of

handwritten numeral features and the final fusion decision was made via the majority

voting method. Lin and Hauptmann [91] experimented with SVMs for news video

classification. In this research, multiple SVM classifiers were fused via a metaclassifier

also based on SVMS. Their strategy fused text and image features to classify news

segments as either weather or non-weather scenes.

2.6 Summary

This chapter has presented a broad view of the current research related to shot seg-

mentation, summarization, and results fusion. Most video segmentation and sum-

marization research focuses on the creation of algorithms for specific classes of con-

tent. When the type of video is known a priori, any number of algorithms can be

chosen with relative success. Color histogram-based algorithms are successful when

applied to video sequences where the distribution of color changes between shots

[47, 95, 102, 157, 156]. Model-based algorithms are effective when a set of transitions

is known and expected in the content [11, 115]. Motion-based algorithms are effective

when object or camera locations change significantly between shots [95]. However,

when the type of video is unknown, an adaptive method is needed to adjust to the

type of content for the best possible segmentation and summarization result.

There is a variety of methods available for results fusion. The choice of method

usually depends on how much information is available at fusion time. Probabilistic

strategies, data mining and machine learning strategies, and Boolean strategies have

all been successfully used to fuse multiple modalities.
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Chapter 3

Shot Detection Methods

Video shot detection is the automatic determination of the boundaries between video

shots, segments of video captured as a continuous sequence. Shot detection segments

the video into sequences delineated by the shot boundaries. Section 2.2 described a

wide variety of methods to perform segmentation using video shot detection with a

description of the relative strengths and weaknesses of each algorithm. Different al-

gorithms have been designed and presented that perform differently‘on varying types

of shot transitions. As the goal of this research is to construct a fusion-based shot

detection method that incorporates the strengths of difl'erent algorithms simultane-

ously, four diverse and representative shot boundary detection methods were selected

for detailed study. Three algorithms were chosen from the uncompressed video do-

main and one algorithm was chosen from the MPEG compressed video domain. This

chapter describes each of these methods in detail.

3.0.1 Gradual Shot Boundary Detection Issues

Reliable gradual transition detection is a difficult research problem. As discussed,

there are several different highly-optimized techniques for detecting various types

of gradual transitions. Each algorithm attempts to solve the problem in a totally

different manner. One algorithm utilizes multiple thresholds, another utilizes I and

B frames in compressed MPEG video sequences, and another uses machine learning.
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To date, there had not been a systematic approach to detecting gradual transitions.

Our research does not focus on detecting gradual transitions. In order to reliably and

accurately detect gradual transitions, we would have to characterize every type of

gradual effect for training and testing. That is beyond the scope of this work. Since

gradual transitions make up about 10% of all shot boundaries our research focuses

primarily on hard cut shot transitions.

3.1 Shot Boundaries

The four shot boundary detection methods that are used in our study are (a) global

color histograms, (b) local color histograms, (c) edge features, and (d) DCT coeffi-

cients. It is important to note that researchers have experimented with various fla-

vors of each of the implemented algorithms. Some researchers have reported receiving

better performance for each individual algorithm based on using different algorithm

parameters, thresholds, and color Spaces. The goal of this research is not to opti-

mally improve the shot detection of each individual algorithm, but rather to fuse the

algorithms to determine a best segmentation. Clearly the component algorithms can

be further tuned to produce better individual results.

3.1.1 Global Color Histogram

The global color histogram shot detection algorithm works by searching for peaks

in the flame difference values, which represent cuts. The most common video shot

boundary detection techniques utilize color histograms of each flame to segment the

video. Color histograms are described in detail in Section 2.2.1.3. The idea supporting

global color histograms as a shot detection method is that successive flames within

a shot will have highly correlated color distributions due to the Similar color content

in the temporally adjacent frames. Color histogram-based algorithms provide a good

tradeoff between performance and complexity [10]. Color histograms are attractive

because they are invariant to scaling and rotation of the content of video frames.

Consequently, they are invariant to most common camera motion. Additionally, the
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representation is compact in size with respect to the size of its respective video flame.

Once a flame has been represented via a histogram a number of distance metrics can

be employed to detect dissimilarity between frames [156].

The work in this thesis is based on an implementation of a 64 bin RGB histogram

over the entire frame. The histogram is created by using the top 2 bits of each color

value. Thus, each color component (R, G, B) is discretized to 4 values. Euclidean

distance is used as the dissimilarity metric used between consecutive flames. The

diflerence metric between two histograms H.- and H,“ is defined as follows, where N

is the number of histogram bins:

 

N

D(HiiHm) = ZULU) — H,+1(j))2 (3-1)
j=0

A shot boundary is detected if the dissimilarity metric between consecutive frames

exceeds a threshold.

3.1.2 Region-based or Local Histograms

Global histograms are tolerant of object and camera motion, however they ignore the

Spatial information between flames and thus two frames with different Spatial distri-

butions can have Similar color histograms. Two shots having the color distribution is

particularly a problem when Shots represent the same content flom different angles,

as is common in motion pictures (as in establishing Shots, masters, and close-ups).

Local histograms attempt to solve the problems associated with global histograms.

Local histograms were described in Section 2.2.1.3. Local histograms segment a flame

into smaller blocks and compute histograms for each region. This method is tolerant

to local changes in motion, however it still sensitive to changes in luminance over

the entire frame [95]. The research presented in this thesis utilizes a region-based his-

togram technique wherein each frame is divided into 12 blocks in a 4:133 pattern. A

64 bin RGB histogram is computed for each block. A distance metric is computed

for each block between successive frames. The sum of the 12 dissimilarity metrics is

used as the distance metric to determine Shot boundaries. Figure 3.1 depicts a video
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Figure 3.1: Still Frame Segmented into Regions

flame divided into the 12 regions.

3.1.3 Edge Features

Zabith, et al. [152] detects cuts, fades, dissolves, and wipes based on an edge ratio

that is computed from the appearance and disappearance of intensity edges between

subsequent flames. We have implemented an edge-based shot boundary detection

algorithm based on Zabith et al. [152]. This algorithm was described in Section 2.2.1.5.

Given two input image frames, both images are re—scaled to 88 by 60 and a robust

statistical edge detection algorithm adapted flom Kundu [77] is used to compute the

edge maps of both flames. Re—scaling the images decreases the execution time of the

algorithm; however it also lowers the accuracy of results. From experimentation we

have achieved favorable performance using 88 by 60 scaled images. Figure 3.2 depicts

a video flame along with its edge image. Each edge image is then dilated with a

diamond shaped kernel of size 7 by 7 to allow for movement that may occur between

flames. Motion compensation based on pyramidal Lucas and Kanade optical flow [4]

is used to register the two images. The edge change ratio is defined as follows: Let

E and E, represent the dilated current and next edgemaps of the current and next

frames. Additionally, let E, be the motion compensated next flame that is aligned
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with the previous frame. The exiting edge ratio pout is defined as:

p 2 21,3, E [93. ylflx. yl

“‘ 2..., E[96, 21]

If a pixel is found in the first frame E[x, y] and a corresponding pixel is found in

 (3.2)

Elks, y] then this indicates that no changes has occurred. However, if a pixel is found

in the first frame E[:1:, y] and a corresponding pixel is not found in the second image

E123, y] then this indicates that a pixel has exited the first flame. Similarly, the

entering edge ratio pin is defined as:

E[23 ylzxyElx y]
in: 3:3

p 2...,13 [w ill ( )

The edge change ratio is defined as the maximum of pout and pin.

 

maa:(pou,, pin) (3.4)

3.1.4 - DCT Coefficients

Zhang et al. [154] perform video shot detection using the DCT coefficients of candidate

blocks of I frames in compressed video. DCT-based algorithms were discussed in

Section 2.2.2.2. Figure 3.3 depicts a video flame along with its DCT image. We have

implemented a DCT based shot detection technique based on Zhang et al. [154]. A

pair-wise flame comparison between corresponding 16x16 DCT blocks is computed

as follows:

_ [0311(2)‘ Cmy(f+1)l
D(i, i +1)_ 2 Z madam“)CMH» > T1 (3.5) 

m=1y=l

where M and N represent the number of rows and columns of blocks respectively, and

c,,y(i) and cx,y(i + 1) represent the DCT coefficients of block :13, y in flames i and i+1

respectively. The sum of all the MTN blocks is used as the distance metric between

flames. If this total is larger than a predetermined threshold, a shot boundary is

detected.
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3.2 Summary

We have chosen to implement global histograms, local histograms, edge features,

and DCT coefficients to extract features for video segmentation of hard cuts. These

algorithms have been chosen as a set because they are good general examples of

the common classes of shot detection algorithms in the literature and have unique

characteristics. The global histogram algorithm is chosen because it produces good

performance in the presence of abrupt changes between shots and is very commonly

used in practice. Many researchers have received good performance using global

histograms [10, 47, 95, 156]. Local histograms are the most common approach to

combating the problems exhibited by global histograms, particularly when the shots

are of the same scene flom differing angles. This method takes into account the

Spatial distribution of pixels in a frame and is tolerant to local changes in camera

and objects motion. The algorithm based on intensity edges was used in order to

provide a non-color technique that was based on features and texture, rather than

global flame characteristics. Although the assumption that flames within a shot will

have Similar color content is a widely held and valid assumption, Sometimes flames

across a shot exhibit similar color properties. For example, if a grayscale video is

under analysis, color histogram-based methods will not be as effective. The edge

change ratio algorithm combats this problem. Additionally, the edge ratio algorithm

claims to detect hard cuts as well as some gradual transitions; however we did not

receive good performance detecting gradual transitions. DCT coefficients are used to

provide a fast and efficient algorithm in the compressed domain.

Gradual transition detection is a difficult research problem and in our research

we do not specifically attempt to detect them. They make up about 10% of all

shot boundary transitions. Many researchers have attempted different techniques

with differing results; however there has not been a systematic approach to gradual

transition detection to date. Most of the gradual transition algorithms can be adapted

to a fusion method as described in this thesis.
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Chapter 4

Results Fusion

An old maxim states that “two heads are better than one.” It seems logical that this

maxim can be extended to the concept of fusing results of algorithms such that the

strengths of different algorithms can be of advantage in appropriate circumstances;

hence, the idea of results fusion, the combination of multiple algorithms together to

produce a new, composite, algorithm that is better than any of its parts.

Results fusion is the process of utilizing multiple classifiers or representations to

improve performance and reliability over using a Single classifier or representation.

Many researchers have recognized the need to improve individual results by utilizing

multiple classifiers. Several methods exist for results fusion (also referred to as clas-

sifier fusion or sensor fusion in the robotics community). Research in the document

retrieval community has shown improved performance using results fusion for docu-

ment retrieval [8, 21, 34, 49, 52, 60, 79, 99]. Additionally, research in the biometrics

community has Shown improved performance utilizing results fusion to improve per-

son identification and authentication [9, 17, 67, 117, 146]. The results of this research

suggest that increased performance (better shot boundary retrieval results and accu-

racy) can be achieved for shot-based segmentation by fusing multiple classifiers into

a Single composite solution and that the resulting algorithm will perform better any

of its constituent parts.

Video shot segmentation algorithms use a variety of features to determine shot

boundaries. These features include histograms, edge images, motion vectors, DCT
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coefficients, and DC Terms. Traditional Shot segmentation methods have extracted

and analyzed the temporal characteristics of a single feature to determine shot seg-

mentation boundaries. The reliability and performance of these various algorithms is

based on the ability to extract the meaningful and important features flom a video

sequence. If the video sequence under analysis does not lend itself well to extraction

of the selected features or the features convey limited information, the results of the

segmentation method may not be reliable. For example, if a video sequence consists

of content with no clear edges or edges that are difficult to extract, any method based

on the comparison of edgemaps between sequential flames would not be reliable. To

combat this problem, research in the video shot segmentation community have at-

tempted to improve performance and reliability by combining multiple algorithms

[43, 103, 132, 53, 151].

Section 4.1 presents the levels of results fusion and known work in fusion-based

shot detection. Section 4.2 describes the novel results fusion shot-based segmentation

algorithms designed and implemented. Section 4.3 describes the features utilized

by the results fusion shot segmentation methods. Section 4.5 describes our baseline

testing methods to determine the performance of our fusion-based methods.

4.1 Levels of Results Fusion

The purpose of results fusion is to fuse together multiple evidences into a combined

flamework to improve performance and reliability. The classifier can employ various

methods of fusion based on the type of information available. Research in sensor

fusion, information retrieval, and biometrics have generally classified results fusion

into three categories depending upon the amount of information they attempt to

combine [145].

1. Abstract or Decision Level: each classifier outputs a result that is a unique label

or decision.

2. Ranked Level: each classifier outputs a queue of all the available labels sorted
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by decreasing confidence order and the queues of all the classifiers are combined.

3. Measurement Level: each classifier outputs a unique label or result along with

a score or confidence value.

Ross and Jain [117] added another level of results fusion, the feature extraction

level, where features extracted flom multiple algorithms are concatenated to form a

new synthesized higher-dimensional feature vector.

Since the result of a video segmentation algorithm is ultimately a flame denoting

the end of one shot and the beginning of another, some researchers have developed

algorithms based on fusing the output flames of various segmentation algorithms.

These algorithms utilize clustering or merging methods to group similar shots together

while preserving temporal order to determine a best segmentation. This type of fusion

can be labeled output level fusion [43, 103, 53].

As discussed, the types of fusion available are abstract, ranked, measurement,

feature extraction, and output level fusion. In order of complexity, abstract level

fusion provides the least amount of information to determine classification. This level

of fusion is one of the most basic levels of fusion where usually the accept/reject result

decisions of multiple classifiers are combined via the meta-classifier. Only the outputs

of the classifiers are used to fuse the results, regardless of the type of inputs. As a

result of the lack of information being available at this level, the classifier usually

employs simple majority voting or linear combination [151, 160]. Output level fusion

also provides a minimal amount of information to determine classification. This level

of fusion attempts to fuse the output results of the multiple evidences. At this level,

the classifier utilizes merging and clustering techniques of output frames [43, 100,

103, 53]. Feature extraction level fusion involves creating new feature vectors in a

higher dimensional space to determine classification. The goal is that the new feature

vector will create a more discriminatory feature upon which a classification decision

can be made. Neural networks, support vector machines, decision trees, generalized

trace, and Bayesian methods have been used by meta-classifiers to facilitate fusion

on this level [119, 132, 158]. Measurement level fusion involves the fusion of scores
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or confidence values flom the multiple classifiers. This level involves associating

probabilities, weights, or scores to the output of each classifier and fusing together

these scores. Meta-classifiers at this level use Boolean logic and summing or averaging

probabilities to facilitate fusion on this level [15]. Ranked level fusion involves each

evidence outputting all possible decision labels in a queue in decreasing confidence

order. Bartell, et al. [6] developed a multiple expert system using multiple ranked

retrieval systems. The method uses the results of past queries to learn an optimized

combination strategy to rank relevant documents. This level of fusion is commonly

used for problems with several classes of outputs [59]. This type of fusion does

not apply to shot-based segmentation which only utilizes two distinct classes: scene

change and no scene change.

4.1.1 Abstract Level Fusion

Abstract or decision-level fusion involves each classifier outputting a label or decision

value based on the input data. A final decision is made by the combination of the

decision values of the multiple classifiers. Combining multiple outputs on the abstract

level usually involves majority voting methods, linear combination, nearest neighbors,

or winner-take-all methods [30].

Yusoff, et al. [151] developed a cut detection technique that combines multiple

experts using a voting scheme. The five algorithms used for their research are (a)

average intensity measurement, (b) Euclidean distance, (c) global histogram com-

parison, (d) likelihood ratio, and (e) motion estimation/prediction error. A receiver

operating characteristics (ROC) curve is created for each method, by setting thresh-

olds for each individual method. Calculating the percentage of undetected true shot

boundaries, against the percentage of incorrectly detected shot boundaries creates

the ROC curve [151].

s. _ S,
pu — Eipf '_ $0, (4.1)

Su is the number of missed shots, Sf is the number of false positives, and So is the

number total number of Shot boundaries. The fusion system is designed by setting
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the operating points of the different algorithms at different levels.

An operating point is described as the (pu, pf) values for each algorithm. The

threshold for each individual algorithm is calculated by T(pfi,, p}) for each expert i.

For each pair-wise comparison, each expert computes the flame distance metric S,-

and determines shot boundaries based on the following:

out if Si 2 T(pf,,p})

no out otherwise

The fusion system determines if there is a cut as follows:

out if n6 2 nu

D = (4.3)

no out otherwise

where n is the number of experts, n6 is the number of experts that detect a shot

boundary, and nu is the complement nn = n — nc. In order to determine the optimal

values for (pu, pf), the thresholds for each individual algorithm are selected from five

points on the ROC curve. n experts and N possible thresholds per expert generates

N” possible threshold combinations. The fusion engine determines a shot boundary

when at least three experts identify a shot boundary. Yusoff, et al. concluded that

their method can significantly improve shot boundary detection results.

This algorithm performs abstract or decision level fusion. The outputs of multiple

algorithms are fused together via a majority voting scheme. Majority voting schemes

have proven to operate well in some instances of information fusion [160]. The idea

behind this algorithm is that if the majority of the implemented algorithms determine

that a shot boundary exists, there is a high probability that an actual shot boundary

exists. One problem with the Yusoff implementation is that each expert is given equal

weight in determining a shot boundary. The shot boundaries are detected if any three

experts signal a Shot boundary and do not take into account which algorithm or expert

may be more appropriate for a given video class. Another problem with this method

is that each expert utilizes static thresholds in determining local shot boundaries. In

developing a solution that can be utilized on a wide variety of content it is important

that the algorithm adapt to the different types of video under analysis. AS a result,
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a dynamic threshold scheme would be more appropriate. Additionally, the coarse

manner in which thresholds were chosen needs to be refined in order to be effective

on different classes of video.

4.1.2 Measurement Level Fusion

Measurement or confidence level fusion involves each classifier producing a vector

with a confidence score denoting the degree to which the classifier believes that input

data belongs to a specific class. A decision is then made based on the combination of

these scores. An important aspect of measurement level integration is normalization

[17]. The responses flom the different classifiers usually have varying scales and

offsets. Normalization must be implemented to map the scores flom the multiple

domains into a common domain before combining them. The tanh-estimators have

been used for normalization. Given a list of scores S,,- where j denotes classifier j

and i represents a feature, the scores can be normalized as follows [17]:

Sij — Htanh

0 ) + 1] 6 (0,1) ‘ (4.4)

tanh

Sij = %[tanh(.01

where man), and Utanh are the average and standard deviation estimates of the scores

Si,- where i = 1,. . . ,I with I representing the number of features. Some combination

strategies that have been used at the measurement level are the geometric average

[17], the sum rule, decision trees, and linear discriminant analysis [117].

Browne, et al. [15] experimented with combining three shot boundary algorithms.

The shot detection algorithms used for their research are color histograms, edge de-

tections, and encoded macro blocks. It was concluded flom their experiments that

a dynamic threshold implementation of each algorithm improved shot boundary de-

tection performance, though this is an individual algorithm improvement (tuning)

rather than a fusion result. Weighted Boolean logic was used to combine the three

shot boundary detection algorithms. Figure 4.1 illustrates the functionality of this

method. The three shot detection algorithms are executed in parallel using dynamic

thresholds for each algorithm. A shot is determined in a hierarchical manner. The

algorithm works as follows:
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e If the color histogram algorithm is above its adaptive threshold T1, a shot

boundary is detected.

0 If the edge detection algorithm is above its adaptive threshold T3 and the color

histogram algorithm is above an alternative, minimum, threshold T2, then a

shot boundary is detected.

0 If the encoded macro block algorithm is above its threshold T4 and the color

histogram algorithm is above its minimum threshold T2, a shot boundary is

detected.

This algorithm performs fusion at the measurement level. The multiple scores from

each algorithm are fused together using Boolean logic in a hierarchical manner. The

reasoning behind this implementation is that color histograms offer the best per-

formance in terms of speed and computational complexity. As a result, the color

histogram method takes precedence in the hierarchy. It is not clear why the re-

searchers chose to have the edge-based algorithm operate at the second level of the

hierarchy, with the encoded macro block algorithm functioning at [the bottom level.

The video corpus used for testing was broadcast TV video. Their tests showed mixed

results when compared to single method implementations. One problem with this

algorithm is that the histogram method is always given the highest weight to deter-

mine shot boundaries. During some shot transitions and gradual effects, the color

histogram may produce unreliable results. One of the main reasons why researchers

have implemented algorithms that utilize multiple methods is to compensate for the

unreliability of a single method. Since this algorithm relies on the performance of

the color histogram algorithm, when this algorithm produces unreliable and incorrect

results, the errors are incorporated into the decisions of the other algorithms.

4.1.3 Feature Extraction Level Fusion

Feature extraction level fusion involves using the data flom each classifier to form

a new, composite, feature vector. Since the features extracted from each classifier
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are independent, these values are concatenated to form a new feature vector in a

higher dimensional Space. Methods such as neural networks, decision trees, SVMs,

and Bayesian models can be used to classify the new vector.

Taskiran, et al. [132] developed a shot detection algorithm in the compressed

domain-based on luminance histograms and the standard deviation differences flom

the luminance component of DC images which are subsampled images available from

MPEG and motion-JPEG video sequences. DC images are eflectively images con-

structed by averaging the pixel values in each block. A generalized trace or feature

vector is extracted flom each frame. The generalized sequence trace is defined as

[132]:

di = H gr — EH1 ”2 (4.5)

where 3;,- is a feature vector computed flom 2 extracted features. The features

that are used in the generalized trace are the histogram intersection of DC images

and the standard deviation differences between successive flames.

DC images are computed from the I, B, and P flames of the video sequence. The

histogram intersection is defined as follows:

2177137“th Hi+l(i))

D(HiiHi+l)=1_ N (4.6) 

where H.(i) and Hi+1(i) are the luminance histograms for flames f,- and f,“ respec-

tively.

The standard deviation differences between frames i and i + 1 is computed as

D(i,i + 1) = [oi — 0,-+1| where 0,2 is defined as:

0-=——-Z:Z(Y.(i,j)- (4-7)

a is the mean value of the luminance image, and T is the number of pixels.

Shot detection is performed by locating observed edges in the generalized sequence

trace. The edges in the generalized sequence trace are found using the morphological

Laplacian. If the number of edges exceeds a predefined threshold, a shot boundary is

declared.
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Figure 4.2: Zhong Multi-stage Shot Detection

The fusion method of Taskiran, et al. is preformed at the feature extraction level.

A feature vector is extracted flom each flame based on the luminance histograms and

the standard deviation differences from the luminance component of dc—images. The

feature vector is further processed by analyzing the edges in the generalized sequence

trace. The reasoning behind this approach is that it is able to utilize multiple features

and its performance is fast as a result of operating in the compressed domain.

Zhong, et al. [158] experimented with various heuristics utilizing multiple features

to detect shot boundaries in the compressed domain. The multi-stage algorithm

combines motion, color, and edge information. Figure 4.2 depicts the heuristic multi-

stage method.
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The frame-to—flame color difference between two I or P flames is defined in the

YUV color Space. The difference metric between two flames i and j is defined as

[158]:

D(i,i) = [Vi—"17:14"[0f‘0f|+w*(|Ui-Ujl+lab—0f}|+|l7i*l7jl+lair—Girl) (4-8)

where 17,0, 17 are the mean YUV values flom the dc-images, and 0y, (m, 0V are the

standard deviations of the YUV components.

The long-term color difference metric between the current I flame and its kth

previous P or I flame is defined as [158]:

D,mg_...m(i) = D(i,i — (M + 1) a: k) (4.9)

where M is the number of B flames between a pair of successive I or P flames.

Motion statistics are computed from the P and B frames. In P flames, a motion

measure is determined from the ratio of intra—coded blocks to forward motion vectors.

In B frames two motion statistics are extracted, the ratio of backward to forward

motion vectors, and the ratio of forward to backward motion vectors.

Flashlight detection involves detecting abrupt changes in brightness patterns that

are not at shot boundaries. To detect flashes the authors use the ratio of flame-to-

frame color differences to the long-term color difference. The ratio for a current flame

i is defined as [158]:

Fr(i) = D(i,i—1)/D(i+ 6,i — 1) (4.10)

where (5 is the average length of the aperture change of the video. A flashlight is

detected if Fr(i) is greater than a predetermined threshold.

Shot detection is performed by identifying maximas from a temporal window in the

color and motion feature difference values. A peak-to-average ratio (PA) is computed

for each feature within the temporal window. In order to determine the optimal way

to combine PA ratios consisting of many thresholds and possible combinations, a

decision tree-based learning algorithm is computed for I, P, and B frames separately.

The Oblique Classifier OCl [101] is used to build the decision tree. Separate decision
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trees are created for each type of frame because the different frames have different

characteristics and features.

Gradual scene change detection is computed using the twin—comparison method

described in 2.2.1.3. For long sequences, the beginning and ending edges of gradual

transitions are found using a heuristic based on the induction results flom the decision

tree learning.

A multi-level thresholding scheme is used to reduce the problems occurring flom

false positives and false negatives. Instead of using one optimized threshold, mul-

tiple thresholds are used in a hierarchical manner. The process terminates when a

cut is detected or the number of levels has been traversed. In order to obtain in-

creased detection accuracy, camera motion detection and aperture change detection

are implemented. The authors indicate receiving favorable results on various types

of videos.

This algorithm utilizes fusion at the feature extraction level. Shot boundaries are

determined via decision trees, which utilize a combination of multiple thresholds and

multiple decision ratios. The reasoning behind this algorithm is that it utilizes a

machine learning algorithm to fuse multiple features. It allows decision trees to de-

termine scene boundaries. The problem with this algorithm is that it is very heuristic

in nature. Additionally, it utilizes many thresholds that have to be predetermined

through alternate testing outside of the system.

Sabata et al. [119] utilized a Bayesian flamework to fuse multiple segmentation

algorithms to improve shot detection performance. This algorithm utilizes color his-

tograms, texture features using Gabor filters, and motion features extracted from

spatiotemporal volumes.

The color histogram is computed for a candidate frame b over temporal intervals

[b — e, b] and [b, b + e]. The color histogram is then weighted using a Gaussian mask.

The weighted histogram is defined as follows [119]:

hltmelm = 2: wt ° ht“) (4-11)

t€[t,,te]
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where wt is the weight computed from the Gaussian function G(:r:) = e373? The

distance measure for the Gaussian weighted histograms is defined as follows [119]:

 

h: (i) - ’l[r1(i))2
Dw’or s,t) = ( [l , , 4.12

( 2.: (hmfl) + h[r)(2))2 ( )

where [l] = [t - e(s),t] represents the previous frames in the interval and [r] =

[t,t + 6(3)] represents the remaining frames in the interval.

Texture features are used in the form of texture energy to compute segmentation

boundaries. Gabor filters are used to determine the texture energy for each flame.

The Gabor filter is defined as follows [119]:

G(a:,y) = e‘ bx 2:é -Y sin(27r(x COS 6A- ysrn 6) + (b) (4.13) 

where A is the wavelength, 0 is the orientation, 4) the phase shift, and a the

standard deviation of the Gaussian windowed sinusoidal waveform. Twelve filters

are generated by quantizing 0 into four values and z\ into three values. The distance

metric for texture energy is calculated over a temporal window using a scaled Gaussian

window.

Motion features are also utilized to detect shot boundaries. The motion algorithm

selects features to track based on the research of Shi, et al. [124]. A score is assigned

to the tracked features based on the contribution of each feature that is tracked from

the previous flame. The weight for a feature i is defined as:

w,=1- e21 (4.14)

where p,- is the number of previous frames that the ith feature was tracked and k

is a constant that determines how sensitive the weight is to the number of previous

flames. The distance is computed from the average of the tracked scores in a temporal

window and a fraction of the missed tracked features.

Edges in the spatiotemporal volume are used to detect shot boundaries by pro-

jecting the video data along the :r: - t and y - t planes. The result of the projection

is an image that can be analyzed to detect shot boundaries. Segment boundaries

are determined by the number of horizontal edge pixels, perpendicular to the t axis,
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in the spatiotemporal volume. A probability measure is calculated by averaging the

number of horizontal edges across many sections.

A Bayesian framework [57 , 58] is utilized for information fusion. The Bayesian

classifier is defined as follows:

”93” Pr(Outcome = 0|a1,. . . , an) (4.15)

where the variable Outcome can take the value from the set 0,1,2 where the set

values indicate a regular flame, a shot boundary, or a flash. Naive and TAN Bayesian

classifiers [45] were used for fusing the multiple features.

This algorithm performs fusion on the feature extraction level. The multiple

features are fused using a Bayesian network. The problem with this implementation

is that this algorithm was only tested on a limited set of videos (broadcast news).

Additionally, the researchers focused their research efforts trying to eliminate false

positives instead of also looking to increase accuracy.

4.1.4 Output Level Fusion

Output level fusion involves merging the output results of each of the individual clas-

sifiers. Output level fusion attempts to fuse shot boundaries based on the similarity

among the output flames. Shot boundaries that are considered similar and are tem-

porally close to one another are grouped together and the unified result of the merging

should represent all the shot boundaries.

Ferman, et al. [43, 53] utilize two features, histograms and pixel differences for

video segmentation via 2-class clustering. Video segmentation is treated as a 2-

class clustering problem, where the two classes are ”scene change” and ”no scene

change”. The K—means clustering algorithm [66] is used on the similarity measure

of color histograms between successive flames. Additionally, the sensitivity of the

pixel difference method to object and camera motion caused the authors to filter the

features before clustering. The authors concluded that the use of multiple features

Simultaneously can improve the shot detection performance.
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Naphade, et al. [103] also utilizes a K-means clustering algorithm [66] on multiple

features to detect shot boundaries. The algorithm utilizes histogram differences and

a Spatial difference metric. The spatial difference operator is defined as:

1 if [Ii,'(fk)-Ii,'(f )l >0
duffk» fk+l) = J J k“ (4.16)

0 otherwise

where 1.0-(fie) and I,,j(fk+1) denote the intensity of pixels at location (i, j) in flames

fk and ka. The spatial difference metric D, is defined as:

M N

0.0., r...) = figgd-thfa.) (4.17)

An unsupervised 2-class clustering algorithm based on K-means clustering is used to

classify shots.

The clustering algorithms of Ferman, et al. and Naphade, et al. both utilize out-

put level fusion. The output frames of multiple algorithms are fused via K-means

clustering. The cluster centers are used as the Shot detection boundaries. The rea-

soning behind using clustering methods for shot segmentation is two-fold. First, they

alleviate the need to develop pre—determined thresholds. Determining the proper al-

gorithm thresholds to use is not a straightforward task. Moreover, this process is

highly dependent upon the type of video under analysis. For example, the optimal

set of thresholds for one video sequence may be suboptimal for another. Eliminating

this procedure of selecting thresholds was a key factor in developing clustering-based

methods. Secondly, they allow for the inclusion of multiple features to determine a

best segmentation. Researchers have long recognized the need to use multiple features

to increase reliability and Shot segmentation performance. The negative aspects of

clustering-based algorithms are that false positives can result in missed Shot bound-

aries. Frames from scenes that cause numerous false positive detections will appear

more in clusters and could eliminate true cut frames from being selected as the clus-

ter center. This phenomenon can lead to misdetections during the clustering process

which often leads to missed shot detection boundaries. Additionally, the clustering

algorithm all require the entire video to be processed before segmentation which can

be problematic for long video sequences. To combat this problem, Ferman, et al. has

74



developed an ad hoc method for computing clustering on the fly by processing the

video in temporal blocks and performing clustering on those blocks.

Miene et al. [100] combined a flequency-domain approach based on FFT features,

gray-level histograms, and a technique based on the changes in luminance values to

detect shot boundaries. Each video flame is converted into a gray-scale image and

is transformed using an FFT. The sum of the absolute differences of the real and

imaginary parts for consecutive flames n and n — 1 is calculated as follows:

FTota)(n,n — 1) = [R5um(n) — RSum(n —1)|+|15um(n)— Igum(n — 1)] (4.18)

where RSum is calculated by adding the lower frequencies of the real part and Igum

is calculated as the values of the imaginary-part.

Miene also uses the difference of luminance values between consecutive flames

to determine Shot boundaries. Each frame in converted to YUV 1:1:1 format. The

absolute differences of luminance (Y) values of consecutive flames are calculated as

follows:

Ypiff(n,n — 1) = [YSum(n) — Ysum(n — 1)] . (4.19)

where YSum is calculated by summing all the luminance values of each frame:

w—l h-l

YSum = Z Z: Y(I,y) (4'20)

:1:=0 y=0

w and h and the width and height of the input flame.

Gray-level histogram differences are also used to detect shot boundaries. The

difference between consecutive histograms is calculated as follows:

255 (H0000) — Hg(‘n — ”(0)2

HGD‘ff(n’n _1) = 1:20 MarHG(n)(i), Ham — 1)le

(4.21) 

where HG is the gray-level histogram, i is the histogram index, and n is the frame

number.

This implementation illustrates output level fusion. Each algorithm detects shot

boundaries individually and boundaries within a pre—determined temporal threshold

are merged. Each algorithm creates a boundary list consisting of all the merged shots.

The three boundary lists are merged into a Single shot boundary list by merging the
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overlapping boundaries. All detected boundaries within a predetermined threshold

are reduced to one boundary. One problem with this implementation is the errors that

arise due to camera motion. There is no inherent algorithm to handle shot boundaries

that arise flom camera motion. Another problem with this implementation is that

each algorithm is given equal weight which does not take into account that fact that

different algorithms perform better for various classes of content. Additionally, the

authors provide a predetermined threshold to determine the length of a shot. This

manual threshold could conflict with the actual Shot boundaries and could eliminate

shots flom analysis.

4.1.5 Fusion Level Comparisons

When developing our solution for a fusion—based shot detection algorithm we analyzed

the various fusion levels in digital video and concluded that the best levels to achieve

effective shot segmentation performance was at the measurement and feature extrac-

tion levels. The reasoning behind this decision was that abstract and output level

fusionoffer very little information with respect to the decision making process. With

only the output decisions or the output frames from the classifiers available there are

only a limited amount of fusion strategies that one can apply and determining a false

positive or negative for a presented algorithm results is problematic. These imple-

mentations can be considered ad-hoc, because they lack underlying theory, and the

relative importance of each classifier is ignored or arbitrarily assigned [90]. Addition-

ally, the fusion strategies that are available at these levels do not differ by a significant

amount. Fusion at the measurement and feature extraction levels provide the most

information available to make decisions regarding a best segmentation. These levels

attempt fusing algorithm thresholds, scores, and confidence measures and offer a wide

variety of combination methods.
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4.2 Results Fusion for Video Shot Segmentation

This research models shot-based video segmentation as a binary classification prob-

lem. Binary classification problems classify data into two distinct groups, usually

accept or reject. In the digital video domain the two distinct classes would be Shot

change and no shot change. There has been a lot of research with respect to solving

binary classification problems in the machine learning community [117, 9, 146]. Some

methods that have been used to solve binary classification problems in the biomet-

ric community are support vector machines, Bayesian classifiers, linear discriminate

analysis, decision trees, and neural networks. Researchers in the biometric commu-

nity have reported receiving optimal performance using support vector machines for

binary classification [9, 146]. AS a result, one of the results fusion engines designed is

based on SVMS. SVMS fuse multiple classifiers at the feature extraction level, with the

outputs of the multiple classifiers synthesized in a vector in a high dimensional space.

This new vector is then analyzed by the SVM to make a judgment as to its class. We

extract key features flom a video sequence and utilize SVMS for classification.

4.2.1 Support Vector Machines

Support Vector Machines (SVM) are used to solve binary classification problems by

mapping the training data onto a higher dimensional space and then determining the

optimal separating hyperplane within that space by solving a Quadratic Programming

(QP) problem [137]. SVMS are based on the principle of Structural Risk Minimiza-

tion (SRM), which differs flom classical statistical learning approaches. Classical

statistical learning approaches are designed to minimize the empirical risk, by re-

ducing the misclassification errors on the training set. The principal of SRM states

that better generalization capabilities are achievable through a minimization of the

bound on the generalization error. Thus, they attempt to minimize the probability

of misclassifying a previously unseen data point drawn randomly from a fixed but

unknown probability distribution. They provide an upper bound for the probability

of misclassification of the test set for any possible probability distributions of the
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Figure 4.3: Multiple Separating Hyperplanes in 2D space

data points [113]. SVMS have exhibited good generalization performance for face

recognition [108], text categorization [39], multi-modal person authentication [139],

and optical character recognition [19].

Given a data set D which consists of m points in an n-dimensional space belonging

to two different classes +1 and -1, D is defined as:

o = {(x,,y,-)|i e {1 . ..m},x.- e 31",y,- e (+1, —1}} (4.22)

A binary classifier finds a function f : 3?" —+ {+1, —1} that maps points flom their

domain to their label space. Although there exists an infinite number of hyperplanes

that could partition the data into two states (see Figure 4.3), the principle of SRM

states that there will be one hyperplane with the maximal margin, with the margin

being defined as the sum of the distances from the hyperplane to the closest points

of the two classes. In order to detect the optimal hyperplane only a small amount of

training data is needed. This data is in the form of support vectors that determine the

margin. Figure 4.4 depicts the support vectors and the optimal hyperplane between

two classes, squares and circles in 2 dimensions. A set of training patterns is said to

be linearly separable if there exists a vector w and a scalar b such that

W'Xi'l'b 21 If yi=1

(4.23)

w-xi-l-b < —1 if y,=—l
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Figure 4.4: The decision boundary and optimal hyperplane in 2D space [78]. The

support vectors in red denote the margin of the largest separation between the two

classes.

are valid for all elements of the training set [26]. The distance between hyperplane

w - x.- + b 2 1 and hyperplane w - x, + b S —1 is 2/||w||, where “w” is the Euclidean

norm of w. 2/||w|| represents the minimum distance between points of different

classes. Equation 4.23 can be rewritten as:

y,(w-x,~+b)21,z‘e{1...m} (4.24)

By minimizing -.‘1,-||w||2 subject to the constraints of Equation 4.24 we obtain two

hyperplanes with the maximum margin. The optimal hyperplane is defined as [26]:

W0 ' X + be = 0 (4.25)

The optimization problem of minimizing éllw“2 can be solved via quadratic program-

ming, which is guaranteed to find the global maximum.

The dual form of Equation 4.24 can be written as:

m 1 m

maximize l’V(a) = 20, — —2- i;10,crjy,yj(x, -x,) (4.26)

where a,- 2 0 and 2,7110% = 0. Classifying a new data set 2 with 3 data points is

defined as follows:

w-z+b=:ajyj(xj-z)+b (4.27)

j=1
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where z is defined as class 1 if the sum is positive and class 2 otherwise.

If the dataset is linearly non-separable we can allow for error in the classification

(see Figure 4.5). 5 represents the slack variables in optimization theory such that

Equation 4.23 can be rewritten as [26]:

w-x,+b 2 1-5, if y,=1

(4.28)

W'Xi'l'b S —1+£i1fyi= —1

where 6. _>_ 0. Equation 4.24 can be rewritten as:

yifw'xi+b)21—€t,i€{1...m} (4.29)

Now the optimization problem becomes $||w||2 + C ELI E,- where C is a tradeoff pa-

rameter between the error and the margin, subject to the constraints of Equation 4.29

[26]. The dual form of Equation 4.29 can be written as [26]:

maximize W(a) = ,M=l a,- — i—ngzl aiajy,yj(x,- - xj),where 0 _<_ a,- _<_ C (4-30)

The only difference between the linearly separable case in Equation 4.26 and the

linearly non-separable case in Equation 4.30 is the upper bound C on ai. Just as in

the linear case a quadratic problem solver can be used to solve for a,- [78].

Thus far, we have described SVMS in terms of linear separable decision surfaces

in the input space, however their generality allows for more diverse decision surfaces.

The key is to map the original input patterns in x,- into a higher dimensional features

space ¢(x,~). To develop a hyperplane in feature Space one has to transform the M

dimensional input vector x into an m dimensional vector through an M dimensional

vector function (f) : if?” —> if?“ [120]. The reasoning behind this transformation is that

linear operations in the feature space are equivalent to non-linear operations in the

input space (see Figure 4.6) [78]. Maximizing Equation 4.26 in feature Space requires

the computation of dot products: ¢(x,-) -(b(xj) in a high dimensional Space [120]. This

computation can be done via kernel functions such that:

K(X,Y) = (MK), (PM) (431)

The kernel function K(x,y) denotes a prior knowledge about the similarity between

data x and y. Some kernel functions that are used are [9]:
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0 K(x, y) = x‘y Linear Kernel

O K(x,y) = (x‘y + 1)p p E N Polynomial Kernel

0 K(x,y) = tanh(ax‘y + b) with (a, b) E F2 Muli-Layer Perceptron Classifier

0 K(x, y) = e’“""’“2/2"2 Radial Basis Function Classifier

In Equation 4.27 new data was classified in the input space. Classifying new data set

2 with 3 data points in the feature space using a kernel function is defined as:

f = (w, gb(z)) + b = :ajyjK(Xj, z) + b (4.32)

J:

where the new data 2 is classified as class 1 if f 2 0 and class 2 if f < 0.

Using SVMS involves a user specifying the type of kernel and the parameters asso-

ciated with that kernel type which is a major advantage because no special knowledge

or expensive tests are needed to set the values of the parameters. Additionally, the

complexity of the SVM during training is not dependent on the dimensionality, but on

the number of data points. The number of computation steps required for SVMS are

0(n3) where n is the number of data points [9]. During execution the classification of

the data points in just a weighted sum (see Equation 4.32). Additionally, during the

training phase only the relevant information is needed in the form of support vectors.

By only utilizing the important points, in the form of support vectors, this reduces

the size of the training set. Also, this provides for an efficient means of classification.

4.2.2 Decision Trees

Decision trees are a statistical machine learning approach that creates a series of if-

then-else rules in the form of a tree-like structure flom the training data set in order

to make decisions regarding class labels. It uses a top-down induction strategy flom a

training set of data to construct the tree structure. Decision trees do this by analyzing

the attributes or features to determine values that maximize the information gain at

a particular node [117]. The information gain is usually the decrease in entropy as a

result of making a decision as to which attribute to use and at what level in the tree.

82



Decision trees are designed for problems whose instances are represented in key-

value pairs. Given a set of examples, the decision tree assigns classification to each

example. Although decision trees were primarily designed for discrete valued data,

they have been extended to incorporate real-valued floating-point data. At each

internal node of the tree, a binary decision is made based on a threshold value. The

threshold is chosen that best yields the greatest information gained by partitioning

the set into two subsets based on the threshold.

A decision tree is constructed flom the root node. From the root, a decision tree

grows by splitting the data at each level based on maximizing a cost function to

form new nodes. This cost function usually measures the impurity or variance of the

example data sets. After choosing on a split, the subsamples are then mapped to

the two children nodes. This procedure is then recursively applied to each child node

until a stopping criteria is met. The nodes are connected by branches with leafs being

the nodes at the end of the branches. Each internal node of the decision tree is a

classifier, with the classification determined at each leaf node. The nodes in the tree

contain information about the number of instances and the distribution of dependent

variables at that node. The root node contains all the instances of the training set.

Once constructed, a tree predicts a new case by starting at the root and following

a path until a leaf node is reached. The outputs of the internal nodes determine a

unique path from the root to the leaf of the decision tree. The path is determined by

the splitting rules on the values of the independent variables in the new instance.

4.2.3 Rulesets

Rulesets are an unordered collection of if-then-else rules generated from decision trees.

They are designed to help make a decision tree more readable and understandable.

The set of rules generated flom decision trees consists of at least one default rule,

which is used to classify unseen instances when no other rules apply. Generally,

a ruleset will have fewer rules than a decision tree has leaf nodes, which aides in

its understandability. Additionally, rulesets are often more accurate predictors than

decision trees. Each generated rule consists of an attribute value pair, the resulting
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Figure 4.7: Two-Layer Neural Network Architecture

classification, the number of instances that the rule covers, followed by a percentage

that represents the confidence measure for that rule.

4.2.4 Neural Networks

Neural networks have flequently been used for the recognition and estimation of input

patterns. The strength of neural networks is based on its discriminative ability to

learn and represent the underlying patterns of the input data. Neural networks can

utilize numerous learning algorithms with a seemingly infinite amount of network

architectures. Figure 4.7 illustrates a two-layer neural network architecture.

This network can be thought of as a non-linear decision making process. Let X

denote the input pattern (11:1,. . . ,a:,) and W denote the set of outputs (w1,.. . ,w,-).

The output y,- determined flom the output nodes as follows [22]:

y.- = f {; wikf(z wkj-le} (433)

where um, and mkj denote the weights between kth hidden node to the ith class output

and the weight between the jth input node to the kth hidden node respectively.

The function f is the transfer function such as the log-sigmoid function, tan-sigmoid

function, or a pure linear transfer functions. The transfer function forms the decision

boundary between the classes. The node with the maximum value is selected as the

class node. Figure 4.8 illustrates the log-sigmoid, tan-sigmoid, and linear transfer

functions.
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Training of a neural network can be facilitated through supervised learning. Su-

pervised learning involves the use of known input patterns and classes. The weights

and biases of the network are chosen to minimize a squared-error cost function. This

cost function can be defined as:

Eight-(X) - 6102] (4.34)

where E is the expected value operator, y)(X) are the actual outputs of the

network and d,- are the desired outputs of the network. It has been shown that

the outputs of the neural network can be estimates of Baysian posterior probabilities

if configured correctly[116]. Thus Equation 4.34 can be generalized to the form [22]:

k k

[Sigh/AX) — Eldilel2l + Big; vaTldilel (435)

where E[dilX] and var[d,-|X] are the conditional probability and conditional variance

of the desired output d,-. The second term in Equation 4.35 is not dependent on the

network outputs, the minimization of the cost function can be described in terms of

the the mean-squared error (MSE) between the network outputs and the conditional

expectation of the desired outputs [22]. Thus, the desired output d,- is assigned to

class w,- by the following Bayesian probabilities [22]:

E[d,-|X] = [k d:P(wJ-|X) = P(w.-|X) (4.36)
1—1
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4.3 Features

The features used for results fusion can come in very diverse forms. Some of these

forms include continuous values, such as with numerical data, binary values, dis-

crete labels, timestamps or dates. In Section 3.1 we discussed the implemented shot

boundary detection algorithms: global histograms, local histograms, edge features,

and DCT coefficients. As a result of the implemented algorithms we obtain the follow-

ing features between pair-wise flames, global histograms differences, local histogram

differences, the edge change ratio, and DCT coefficient differences. Each one of these

values represents continuous data. It has been Shown that when developing shot seg-

mentation strategies that utilize multiple features, improved results can be obtained

when features are chosen that complement one another [53]. Thus, in a situation in

which extracting one feature may be difficult or unreliable, extracting another feature

may be more appropriate. The features that are computed for our shot segmentation

algorithm are based on their overall performance exhibited by a history of research in

the video shot segmentation community. Additionally, the chosen features are based

on how the strengths and weaknesses of each algorithm complement one another.

Global histograms are the most common feature used for color-based video shot

segmentation (see Section 2.2.1.3). One of the strengths of this method is that it

does a good job of detecting abrupt changes between shots. Additionally, histograms

are easy to implement and computationally fast. One of the weaknesses of global

histogram methods is that they ignore spatial content within the video frame. (In-

deed, two images that are very dissimilar can have identical global color histograms.)

Thus, consecutive frames that have different spatial distributions, but have similar

histograms, are considered similar. Another weakness is that global histograms are

not tolerant of local changes within a video frame.

Local histograms combat the weaknesses of global histograms. Methods based

on local histograms are tolerant of local changes, however they are still sensitive to

changes in luminance over the entire frame [95]. Additionally, both histogram-based

methods do not inherently detect gradual transitions.
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When color information cannot be easily extracted from a video frame, edge fea-

tures can be used to determine shot boundaries. Zabith, et al. [152] detect cuts, fades,

dissolves, and wipes based on the appearance of intensity edges that are distant flom

edges in the previous flame. One advantage of this feature is that it detects abrupt, as

well as gradual, transitions. One disadvantage of this feature is that it is less reliable

in the presence of multiple independently moving objects [74] because multiple mov-

ing objects cause the global motion compensation aspect of this method to produce

errors during registration and prevent any registration method flom allowing edges to

correspond (see Section 2.2.1.5). Another disadvantage of this method is an increase

in false positives. Changes in image brightness or low quality flames, where edges are

harder to detect or appear and disappear due to noise, may cause false positives.

DCT coefficients represent the spatial flequency components that comprise the

block of pixels in a video frame (see Section 2.2.2.2). One advantage of using DCT

coefficients is that they are often available as a byproduct of the MPEG compressed

video stream. Hence, their extraction is computationally fast. One disadvantage of

this method is that since the algorithm only processes I frames, temporal resolution is

decreased, though this can be alleviated using partial decompression in the analysis.

4.4 Results Fusion Shot Segmentation

We have implemented results fusion shot segmentation strategies based on support

vector machines (SVM), Decision 'Ifees, Rulesets, and Neural Networks. The result

of each individual feature extraction module is used to form a feature vector, and

the new feature vector is fed to the results fusion engine to make a final decision as

illustrated in Figure 4.9.

Each feature module extracts pair-wise frame differences and these metrics are

used to form a new feature vector. The new feature vector consists of global histogram

differences, local histogram differences, the edge change ratio, and DCT coefficient

differences. The goal of the results fusion engine is to classify each feature vector into

one of two classes: shot boundary or no Shot boundary.
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Figure 4.9: Results Fusion Video Segmentation Methods

The SVM results fusion implementation is based on the libsvm software [20]. We

used the C—SVM implementation of SVM [137]. C-SVM solves the following quadratic

programming problem:

ming,“ §w - w -l- C [i=1 5.-

yt(W ° ¢(X:) + b) 2 1 - 54. (4-37)

fr 20,i= 1,...,l.

It has been shown that the linear kernel is a Special case of the Radial Basis Function

(RBF) kernel and the polynomial kernel has some numerical difficulties. As a result,

the REF kernel was used because it is the most appropriate kernel to use for a wide

variety of data sets [89].

The decision tree results fusion method is based on the C50 data mining software

[114]. Figure 4.10 illustrates a sample partial output of the decision tree created by

C50 on a training data set. The training data consisted of actual shot boundaries

and regular flames. The ruleset-based results fusion method is also based on the

C50 data mining software [114]. Figure 4.11 depicts a partial sample of the rules

generated by C50 on a sample data set. The ruleset output displays the number

of testing and training instances that each rule covers, the if-then-else rule, and a

confidence measure.

The neural network results fusion method is based on the feed-forward neural

network. The Matlab Neural Network Toolbox was used to design the network ar-

chitecture. The network architecture consisted of 10 neurons in the hidden layer and

1 neuron in the output layer. The hidden layer uses the log sigmoid transfer func-
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Figure 4.10: Partial Decision Tree Output of 05.0
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Figure 4.11: Partial Ruleset Output of C50
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Figure 4.12: Neural Network Implementation

tion and the output layer uses a linear transfer function. The Levenberg-Marquardt

algorithm [54] was used as the training function. As a result of its optimization

techniques, the Levenberg—Marquardt algorithm appears to be the fastest method for

training feed-forward neural networks [147]. Training was stopped when the training

error went below .0001 or after 400 learning epochs. Figure 4.12 illustrates our neural

network with 4 input nodes, 1 hidden layer with 10 neurons, and 1 output layer.

4.5 Baseline Testing Methods

Our results fusion-based segmentation strategies were baseline tested against a static

and dynamic implementation of each individual shot detection method. Additionally,

each one of our results fusion strategies was tested against a unimodal version of its

implementation. The purpose of implementing a unimodal decision tree, ruleset, neu-

ral network, and SVM classifier was to determine how much or if fusion was actually

being applied. Lastly, we implemented two well-known combination strategies in the

video domain based on Boolean logic and majority voting.

4.5.1 Boolean Logic

Our Boolean logic method was based on the hierarchical method of Browne, et a1.

[15]. If the color histogram feature module is above its high threshold T1, a shot

boundary is detected. If the local histogram feature module is above its threshold
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T3 and the color histogram feature module is above a minimum threshold T2, then

a shot boundary is detected. If the edge feature module is above its threshold T4

and the color histogram feature module is above a minimum threshold T2, then a

shot boundary is detected. Lastly, if the DCT feature module is above its threshold

T5 and the color histogram algorithm is above its minimum threshold T2, a shot

boundary is detected.
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4.5.2 .Majority Voting

We have also implemented a majority voting algorithm similar to the research of Yu-

soff, et al. [151]. Each feature detection module Outputs a decision value to determine

if the current video frame under analysis is a shot boundary. If at least three of the

four feature detection modules indicate a shot boundary then the fusion system de-

termines that a shot boundary is present. This method is illustrated in Figure 4.14.

4.6 Cross Validation

Cross validation allows one to get a more reliable estimate of the predictive accuracy

of the classifier. We performed ten-fold cross validation with the SVM, decision trees,

rulesets, and neural network implementations. Ten-fold cross validation has been

statistically proven to be good enough in evaluating the robustness and performance of
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classifiers [130, 143]. The training data is decomposed into 10 equally sized randomly

generated subsets. The classes are distributed evenly among the 10 subsets. Nine of

the subsets are used to train the learner and the tenth hold-out subset is used for

testing. This procedure is repeated ten times, with a different randomly generated

subset used for testing each repetition.

4.7 Summary

This section described the levels of results fusion noting each levels strengths and

weaknesses. As a result, this research focused on developing methods for results

fusion-based on the measurement and feature extraction levels. These levels offer the

most flexibility in developing a composite system. It then described some current

attempts at developing results fusion techniques for digital video. Each of the de-

scribed techniques was ad hoc and not practical on a large test suite of video. This

chapter then described the novel results fusion-based methods developed for shot seg-

mentation. Each one of the strategies has been used in information and biometric

retrieval systems. This research has adapted their approaches to the video domain.

Additionally this chapter described a new classification method in the area of pat-

tern classification, support vector machines. This method has been receiving a lot of

attention in solving binary classification problems and is used as one of our results

fusion shot segmentation methods.
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Chapter 5

Experimental Evaluation

Key to any new development in digital video segmentation is the validation of the

performance of the proposed method on a collection of content. For this reason,

the research presented in this thesis includes the construction of a video corpus with

associated ground-truth segmentation data. This chapter describes the video corpus

and the method for experimental evaluation of fusion-based segmentation algorithms.

Images in this thesis are presented in color.

5.1 Video Corpus

A video corpus consisting of various classes of video content has been collected for

this experimental evaluation and ground truth data manually generated. The classes

of video include motion pictures, TV sitcoms, cartoons, Unmanned Aerial Vehicle

(UAV) footage and music videos. The collection consists of over 8 hours of video.

Figure 5.1 describes some characteristics of the video corpus including the type,

title, duration, and frame-to—shot ratio. All videos were digitized at a size of 352 by

240 at a frame rate of 30fps. The videos were decoded for analysis using the CODEC

supplied with Microsoft DirectShow. Some characteristics of the video corpus are as

follows:

1. Television Programs: This class of videos included 2 one hour episodes of the

television program 24. This test class includes over 84 minutes of video.
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2. Movies: This class of videos included the movie Blade 2 and the first 50 minutes
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of The Royal Tenenbaums. This test class includes over 160 minutes video.

3. Cartoons: This class of videos included 5 episodes of The Family Guy. Over

110 minutes of the video are included in this test class of video.

4. Music Videos: This class of music videos includes content by Destinys Child,

Jay Z, Mya, Michael and Janet Jackson, and R. Kelly. This test class included

over 30 minutes of video.

The ground-truth data has been collected using a custom video file scripting tool

that enables a user to manually select and annotate shot boundaries in video se-

quences. The focus of any shot-boundary detection method is the determination of

boundaries between camera sequences, something that, while difficult for computers

to currently determine, is easy for humans to assess. Figure 5.2 shows the interface

for the video file scripting tool. The ground truth data was collected by a student

assistant in the lab.
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Figure 5.2: Video Scripting Tool
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5.2 Performance measures

During experimentation, we wanted to develop a statistically acceptable framework

to assess the performance of each algorithm. Researchers. have used various methods

to compare performance between algorithms using the confusion matrix. Figure 5.3

illustrates the confusion matrix with TP indicating the true positives, FP indicating

the false positives, TN indicating the true negatives, and FN indicating the false

negatives. Some researchers have classified performance in terms of two statistics,

precision and recall [47, 100, 109]. Precision and recall are expressed as:

Precison =% (5-1)

Recall = TPl-l—EFN (5-2)

Other researchers compare competing algorithms in terms of the three basic met-

rics: correct detections (true positives), false detections (false positives), and missed

detections (false negatives) [18]. However, it should be noted that these are often com-

peting metrics. Many algorithms based on a thresholding mechanism can be adjusted

to increase the number of true positives at the expense of increased false positives

or adjusted to decrease false positives at the expense of false negatives. This same

observation applies to precision and recall, though this is typically accommodated by

stating precision and recall together in a precision/recall graph (also called a receiver

operating curve or ROC).

Research in the biometric community utilizes the false acceptance rate (FAR) and

the false rejection rate (FRR) to compare performance between biometric systems.

These statistics are defined as follows:

_ FP
FAR -m (53)

__ FN

FRR - FNTTP (5 4)
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Figure 5.3: Confusion Matrix

FAR is defined as the ratio of the total number of false acceptances to the total

number of imposter accesses and FRR is defined as the ratio of the number of false

rejections and the total number of client accesses.

Lienhart [86] classifies shot detection performance in terms of the hit rate, miss

rate, and false hits. The hit rate h is the ratio of correctly detected shots to the

actual number of shots. This measure is the same as recall. The miss rate is defined

as 1 — h. False hits are defined as the ratio of falsely detected shot boundaries to the

actual number of shots.

Some researchers have also attempted to compare competing algorithms in terms

of a single statistic: accuracy. In terms of the confusion matrix (see Figure 5.3),

accuracy is defined as:

TN+TP

TN+TP+FN+FP

 Accuracy = (5.5)

Accuracy is the measurement of correctly classified instances. This measure has

been shown to be insufficient to evaluate the performance of different algorithms

[130]. For example, if a data set consists of 95 TN5 and 5 TPs, classifying all 100

instances into the negative class (95 TNs and 5 FN3) would achieve a 95% accuracy

measure. However, the ability of the system to predict the positive class would

be 0%. Although the accuracy measure is an apparently high 95%, the classifier
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cannot discriminate between the two classes. This is particularly a problem in video

shot detection, where the vast majority of frames boundaries do not represent shot

boundaries. As an example, Blade 2 has 197, 549 frame boundaries and 2,300 shot

boundaries (a frame boundary is a pair of frames that represent a transition in time;

a shot boundary is a frame boundary where the two frames are from different shots).

Failing to detect any cuts in this entire sequence would still yield an accuracy measure

of 98.8%.

We have chosen to base our performance in terms of precision and recall values.

Theoretically, we strive to achieve perfect precision and recall, however in practice

there is a tradeoff. Increasing the precision measure past a certain point usually

results in lowering the recall and vice versa. We seek to obtain results that provide

a balance, maximizing both precision and recall simultaneously. Additionally, we

determine the overall performance of an algorithm with respect to the video corpus

in terms of composite precision and recall. Composite precision and recall for the set

N of videos in the corpus is defined as:

Recall - = _w;.’:fl’-__ (5 6)Composite 2‘ (TPj-f-FNg) .

P .
. _- ZN TPi

TBCZSOTZComposne _m

(57)

In evaluating the performance of any algorithm based on precision and recall

statistics, it is important to know what level of information one wants to obtain from

the data [10]. If the intent of the video is to be further observed by a human ana-

lyst, then a high recall value is important. Humans are good at recognizing errors in

the shot boundary detection and can disregard the redundant information relatively

quickly. A system that is fully automated places more emphasis on precision. De—

pending on the goal of the segmentation, a trade-off must be made between precision

and recall. It may or may not be acceptable to retrieve a few extra shot boundaries

that would otherwise be missed at the expense of retrieving an enormous amount of

incorrectly identified shot boundaries [10]. This research only considers the thresholds
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that produced results of at least 50% recall.

5.3 Training Data

The division of the training data plays a critical role in determining the performance

of supervised learning-based algorithms. However, in the video domain, the ratio of

shot to non-shot boundaries does not lend itself well to developing a balanced training

set. For example, in Figure 5.1 the Royal Tenenbaums video has a frame—to-shot ratio

of 190 : 1 in 91290 frames. It has been shown that balancing the number of classes in

the training data leads to a more robust classifier [130]. Additionally, the classifiers

generated from equally balanced data sets consider all the discriminating attributes

that separate the two classes. Unbalanced data sets can lead to overfitting problems

and poor cross validation. The total number of shots in this video sequence totals 479,

but sampling only a balanced 479 negative samples in this video does not adequately

characterize the negative cases.

Theoretically, in order to train a robust classifier it must be trained on every

possible type of input. Utilizing all the available data to train a machine learning

system is impractical. In practice, one must attempt to train the classifier with

a set of data that can characterize all possible input patterns or at least all the

extremas. Initially we trained the various results fusion engines with a balanced data

set. The positive examples in the set were chosen from all the manually collected

shot boundaries for each video sequence. An algorithmic and a random solution

were then utilized to sample the possible negative cases. The results of training with

balanced data led to poor classification for all the implemented methods for both

the random and algorithmic solutions. As a result, we incorporated more negative

examples into the training set. For every shot in the training data, we randomly

sampled 30 negatives cases. This approach proved to lead to a more robust classifier.

Leave out one testing was performed for each video under analysis, where all the

training data from the video corpus was used to train each method, except the video

that will be used for testing.
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Normalization is an important aspect of results fusion [17]. The variety of videos

contained in the video corpus exhibit varying characteristics. Moreover, the imple-

mented algorithms exhibit different behaviors at shot boundaries. All of the imple-

mented methods attempt to look for peaks in the inter-frame comparison method

distributions. As an example, a simple shot boundary detection method might seek

to find peaks in the comparison between the color histograms of two adjacent frames.

However, these measures vary depending on the underlying content and one video’s

peak can be drastically different from another’s. As a result, each of the video fea-

tures was locally normalized with respect to the information contained in its own

sequence. Specifically, each video’s pair—wise frame difference metric was normalized

by the maximum difference metric observed in the entire video sequence, mapping

the measures into a common [0, 1] interval.

5.4 Filtering

Initial tests of the implemented algorithms showed that many shot transitions resulted

in high false positive measurements. One of the reasons for this occurrence is that

during a shot transition that occurs over a series of frames (gradual transitions), the

threshold would be crossed several times. Our research does not focus on detecting

gradual transitions. In order to reliably and accurately detect gradual transitions,

we would have to characterize every type of gradual effect for training and testing.

That is beyond the scope of this work. Researchers have experimented with various

smoothing methods to reduce the effects of gradual shot transitions [28, 86]. Zabith, et

al. [152] and Lienhart [86] used a gliding mean value to smooth the results of the edge

change ratio method. Any dissimilarity metric value greater than a predetermined

threshold was smoothed, any other dissimilarity metric value was set to zero.

Our research uses a filtering strategy based on the research of Dailianas, et al.

[28]. This algorithm works by processing the sequence of dissimilarity metrics between

successive frames and computing a new sequence that is analyzed for shot transitions.

Given a candidate frame, the previous and next 1: frames in the video sequence are
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analyzed. If any of the 2k dissimilarity metrics is greater than the candidate frame’s

dissimilarity metric, the candidates dissimilarity metric is replaced with the last local

minimum detected in the sequence. From experimentation It was set to 6 in this

research.

5.5 Existing Method Results

In order to properly assess the performance of the proposed results-fusion segmenta—

tion algorithms, it was necessary to compare to baseline implementations of common

existing algorithms including both single method and fusion approaches. We have im-

plemented and analyzed several existing methods as described in this section. These

methods include the four basic single method approaches (global histograms, local

histograms, DCT, and edge change ratio) with single thresholds and adaptive thresh-

olds, as well as the existing majority voting method and Boolean logic method for

results fusion.

5.5.1 ‘ Single Threshold

It is a difficult task to determine a single best threshold to use for a diverse set

of video sequences. Theoretically, utilizing an optimal threshold would be ideal for

each video sequence; however this is functionally not possible, as it would require an

oracle to supply the threshold value. There is no single ideal threshold that can be

used for a variety of video classes. Moreover, not only do different classes of video

have different characteristics, but different videos within the same classes do not

always exhibit the same properties. A threshold that may be optimal for one video

sequence will probably not be optimal for another. As a result, a compromise must

be made in determining a single threshold. This compromise sacrifices performance

and reliability for each video sequence under analysis. In our testing, to determine

a single threshold, we averaged the best performing thresholds in terms of precision

and recall values for each individual algorithm. Figure 5.4, Figure 5.5, and Figure 5.6

illustrate the precision vs. recall graphs of the global histogram, local histogram, and
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DCT coefficient algorithms respectively. The precision vs. recall graph was not shown

for the edge change ratio because this method maps all the ratios into the interval

[0, 1]. All the peaks in the algorithm denote cuts, and all _the other edge change ratios

are close to zero. Deciding on a single threshold involves maximizing the precision

and recall. Figure 5.9 displays the single thresholds used for each algorithm based

on the precision and recall curves. As a result of using a single threshold for a wide

variety of content, the single threshold method for each individual algorithm shows

a mixed bag of results. Figure 5.7 shows the graph of precision and recall values for

the single threshold implementation.

An analysis of the precision and recall table in Figure 5.7 shows that the music

video RKelly A performs poorly for all the implemented algorithms. This is a direct

result of the numerous editing effects used throughout the video that could not be

removed by the pre-filtering technique. In this research, gradual transitions are not

detected, therefore videos having numerous editing effects and gradual transitions

can lead to erroneous results. Figure 5.10 shows some frames from the RKelly A

music video sequence. Additionally, the Blade2 A and Blade2 B videos exhibit poor

performance as well. The Blade2 A and Blade2 B videos consists of dark scenes and

manually edited lighting effects. The global and local histogram methods achieved

the best performance using a single threshold in terms of maximizing the precision

and recall. The highlighted cell values in the table show the method that produced

the best performance in terms of increasing precision and recall. These results are

consistent with what other researchers have concluded when using histogram-based

algorithms along with other methods [10, 95, 156].

5.5.2 Adaptive Threshold

OToole et al. [109] concluded that fixed thresholds are inadequate to deal with a

variety of different types of video content. Additionally, researchers have reported

receiving better performance using adaptive threshholding methods [15, 100, 150].

As a result, we have implemented 3 adaptive shot boundary techniques based on the

research of Yusoff, et al [150]. The three adaptive shot detection methods are the
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Figure 5.9: Single Thresholds used for each method

 
Figure 5.10: RKelly A Music Video Sequence
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constant variance model, proportional variance model, and the Dugad model [38].

The constant variance model sets a threshold at some fixed distance away from the

average of the metric values within a sliding window. The constant variance model

can be expressed as:

where the value Tc defines a constant, and my reflects the average of the samples

within the window N.

The proportional variance model sets a local threshold at some multiple of the

average of the frames within the sliding window. The proportional variance model

can be expressed as:

777T = HNTp (5.9)

where the value of Tp is determined from experimentation.

The Dugad model sets a local threshold at some multiple of the standard deviation

and the average of the samples within the window. The Dugad model can be expressed

as:

mT = MN '1' Td‘/0N ' (5.10)

where T; is calculated from experimentation.

Various window sizes and parameters were used to determine the best performing

dynamic method based on the total error rate. The total error rate is defined as:

FP + FN

Em” ‘ FP+FN+TP+TN (5'11)

The global histogram method produced the best results using the proportional vari-

 

ance model with 11 as the window size and 6 as the constant. The local histogram

method produced the best results using the proportional variance model with 21 as

the window size and 6.5 as the constant. The DCT method produced the best results

with the Dugad model with 11 as the window size and 2.5 as the constant. The Edge

Change Ratio method produced the best results with the proportional variance model

with 29 as the window size and 2.5 as the constant.

Experiments with adaptive thresholds indicate that adaptive thresholds improve

algorithm performance over static thresholding methods. These results are consistent
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with other shot segmentation research using adaptive thresholds [15, 38, 109, 150].

Figure 5.11 and Figure 5.12 display the precision vs. recall table and graph for the

adaptive threshold implementation. The highlighted cell values in the table show

the method that produced the best performance in terms of increasing precision and

recall. From a comparison of Figure 5.8 and Figure 5.12 one can see that the overall

precision and recall statistics for all the implemented methods has increased due to

the use of dynamic thresholds.

The dynamic local histogram method produced the best results in terms of max-

imizing the precision and recall values for all the dynamic methods. It produced the

maximum precision and recall values for 8 of 18 videos. As a result, this algorithm

implementation will be used to baseline test the fusion-based methods.

5.5.3 Majority Voting Method

The majority voting method of Yusoff, et al. [151] was implemented with adaptive

and static thresholds (see Section 4.5.2). Figure 5.13 displays the precision vs. recall

table of this method. The highlighted cell values in the table show'the method that

produced the best performance in terms of increasing precision and recall.

The method yielded the intuitively expected results. The algorithm produces a

high precision for low recall values. If a majority of the algorithms determine that a

cut exists, there is a high probability that a cut does exist. As a result, the majority

voting method produces relatively high precision values for each algorithm. One

major problem with this implementation is that since all the algorithms are given

equal weight to determine the outcome, unreliable algorithms can lead to numerous

missed detections.

Yusoff, et al. [151] claims to receive good performance using this algorithm; how-

ever this implementation was only tested on two video sequences. Additionally, the

descriptions and characteristics of the two video sequences that were used in their

study were not given. This thesis provides a more thorough analysis of this imple-

mentation. Figure 5.14 shows a comparison table of the voting methods and the

adaptive local histogram method. Additionally, the composite performance of the
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Figure 5.13: Majority Voting Precision vs. Recall Table

adaptive local histogram method and the voting methods is displayed. Overall, the

voting methods increase precision. The static voting method increases precision 21%

and the dynamic voting method increases precision 50%. However, this increased

precision is at the great expense of recall. The static voting method reduces recall

by 44% and the dynamic voting method decreases recall 30%. From the analysis of

Figure 5.15 it is shown that this combination method does not perform better than

the adaptive local histogram algorithm. The old maxim states, “A chain is only as

strong as its weakest link.” This algorithm suffers when unreliable estimates are fed

into the system by a poorly performing algorithm, causing the system to produce

numerous missed detections resulting in decreased recall.

5.5.4 Boolean Logic

The Boolean logic combination algorithm of Browne, et al. [15] has been implemented

using static and dynamic thresholds (see Section 4.5.1). Figure 5.16 displays the pre-

cision vs. recall data table of the Boolean logic static and dynamic method. The
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Figure 5.16: Boolean Logic Precision vs. Recall Table

highlighted cell values in the table show the method that produced the best per-

formance in terms of increasing precision and recall. The dynamic method of this

algorithm performs better than the static method on 11 of the 18 videos tested. Fig—

ure 5.17 shows a comparison table of the Boolean logic method and the adaptive local

histogram method. The adaptive local histogram method produces a higher precision

and recall value for 8 of the 18 videos. Additionally, the composite performance of

the Boolean logic methods and the adaptive local histogram method is displayed. In

comparison with the adaptive local histogram method, both the adaptive and static

Boolean logic methods decrease precision 9%. The Boolean logic static method also

decreases recall 1% and the dynamic Boolean logic method increases performance 1%.

From the analysis of Figure 5.18 it is shown that this combination method does not

perform much better than the adaptive local histogram algorithm.

The majority voting and Boolean logic methods did not significantly improve

performance over the adaptive local histogram implementation. When the type of

vi deo is known in advance, these algorithms can be tuned to achieve good performance
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on a limited video class. The majority voting algorithms suffer from the fact that each

method is given equal weight in making shot boundary decisions. Perhaps a weighted

voting strategy would be more appropriate. The Boolean logic method is an ad hoc

attempt at combining results. The color histogram method is given the most weight

in all decisions to make shot boundaries. When the color histogram method produces

unreliable results, the algorithm will produce poor performance.

5.6 Results Fusion Engine Results

This thesis develops result fusion strategies based on decision trees, rulesets, neural

networks, and support vector machines. This section describes the performance of

each of these methods.

5.6.1 Decision Trees and Rulesets

The decision tree and ruleset results fusion methods are based on the 050 data

mining software [114]. The results of the decision tree and ruleset implementations

(see Section 4.2.2 and Section 4.2.3) are presented in Figure 5.19. The highlighted

cell values in the table show the method that produced the best performance in terms

of increasing precision and recall. Since rulesets are generated from decision trees,

their performance is similar. However, the ruleset fusion method performed better

on 11 out of the 18 test video sequences.

The results fusion decision tree and ruleset methods were baseline tested against

the single modality global histogram, local histogram, edge ratio, and DCT decision

tree and ruleset methods. The single modality decision tree and ruleset methods

produced the exact same results. Figure 5.20 shows a table of the precision and recall

values of the results fusion decision tree, results fusion ruleset, and single modality

methods. The results fusion methods outperform the single modality methods in 13

out of the 18 test video sequences.

Figure 5.21 shows a comparison table of the decision tree and ruleset methods

and the adaptive local histogram method. The decision tree and ruleset methods
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Figure 5.19: Decision Tree and Ruleset Precision vs. Recall Table

produce the highest precision and recall values for 14 of the 18 test video sequences.

Additionally, the composite performance of the decision tree, ruleset, and adaptive

local histogram methods are illustrated. The decision tree method increased precision

2% and recall 11% when compared with the adaptive local histogram method. The

ruleset method increased precision 4% and recall 11% when compared with the adap-

tive local histogram method. From the analysis of Figure 5.22 it is shown that these

combination methods do perform better than the adaptive local histogram algorithm.

5.6.2 Feed-Forward Neural Network

The Matlab Neural Network Toolbox was used to design a results fusion shot segmen-

tation algorithm based on a feed-forward neural network. The network architecture

consisted of 10 neurons in the hidden layer and 1 neuron in the output layer. The

hidden layer uses the log sigmoid transfer function and the output layer uses a linear

transfer function. The Levenberg—Marquardt algorithm [54] was used as the training
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function. The results fusion neural network was baseline tested against the single

modality global histogram, local histogram, edge ratio, and DCT neural network-

based methods. Figure 5.23 shows a table of the precision and recall values of the

results fusion neural network and single modality methods. The results fusion method

outperforms the single modality methods in 13 out of the 18 test video sequences.

Figure 5.24 shows a comparison table of the fusion neural network and the adaptive

local histogram method. The results fusion method outperforms the adaptive local

histogram threshold method in 13 out of the 18 test video sequences. Additionally,

the composite performance of the fusion-based neural network and the adaptive local

histogram method is displayed. In comparison with the adaptive local histogram

method, the results fusion neural network increased precision 4% and increased recall

12%. Figure 5.25 illustrates that the fusion-based neural network outperforms the

adaptive local histogram method. The results fusion neural network produces the

highest recall values for all the methods except for the video 24 A. In general, the

adaptive local histogram method produces a slightly higher precision at the expense

of recall. The strength in the results fusion-based neural network method is in its

generalizability. In developing a composite method that can be utilized for a wide

variety of content, achieving the optimal performance result for every individual video

is not possible; however, this method is able to perform well for many different types

of video. The results fusion-based neural network is able to achieve near optimal

performance for this data set even when one of the modalities used for fusion is

unreliable. The edge change ratio algorithm is exhibiting poor performance for almost

all the video sequences. Given this fact, the results fusion engine is still able to remain

robust.

5.6.3 SVM

This thesis has implemented a results fusion method based on the support vector

machine (see Section 4.2.1). The SVM results fusion implementation is based on the

libsvm software [20]. We used the C—SVM implementation of SVM [137]. As with the

Other fusion methods, the SVM results fusion method was baseline tested against the
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Figure 5.24: Results Fusion Neural Network and Adaptive Local Histogram Table
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single modality global histogram, local histogram, edge ratio, and DCT SVM-based

methods. Figure 5.26 shows the results of the results fusion SVM and single modality

methods. The results fusion SVM method performs the best on 10 of 18 test videos

sequences. The results of the results fusion SVM method and the single modality

SVM methods clearly show that fusion is taking place. As is the case with the other

fusion methods, the results fusion SVM method produces high recall values for almost

all the video sequences. Although some of the single modality algorithms produce

higher precision than the results fusion SVM, it is at the expense of recall.

Figure 5.27 displays a comparison table of precision and recall values of the results

fusion SVM and the adaptive local histogram method. The SVM method outperforms

the adaptive threshold method in 13 of the 18 video test sequences. Additionally,

the composite performance of the results fusion-based SVM method and the adaptive

local histogram method is displayed. In comparison with the adaptive local histogram

method, the results fusion SVM method increases precision and recall 8%. The results

are consistent with how the other results fusion strategies compared to the adaptive

local histogram technique. Figure 5.28 illustrates that the SVM results fusion method

produces high recall values for almost all of the video sequences. Although some of

the adaptive local histogram tests produce higher precision than the results fusion

SVM, it is at the expense of recall. These results show that the SVM provides more

generality and better overall performance than the adaptive local histogram and the

single modality SVM methods.

5.6.4 Results Fusion Method Comparison

Figure 5.29 shows the performance of each of the individual results fusion methods

with the video test suite. The highlighted cells in the table indicate the method that

performed the best for a specific video based on maximizing the precision and recall.

The SVM results fusion engine performed the best on the most video sequences. It

performed the best on 8 out of the 18 video sequences.

Each fusion method compared similarly against the adaptive local histogram

method. Each method was able to significantly increase recall on most of the video
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sequences. Although in some cases, the baseline testing algorithms may produce

higher precision values, it is usually at the expense of low recall. Also, the results

fusion strategies did not always show the best precision and recall values for every

video sequence. However, results fusion did produced the best overall composite

performance.

Figure 5.30 displays a graph of the precison vs. recall values of the results fusion

strategies. It is important to note that most of the methods perform similarly on the

same video sequences. This phenomenon is a result of each method attempting to

partition the same vector in a high dimensional space. The differences arise because

the decision tree and ruleset methods both output absolute decision values. Any

vector is absolutely in one class or another. The neural network and SVM methods

output sigmoid and radial basis function outputs respectively. These values vary

within a given interval.

5.7 Tuning

In our approach, we recognize that each individual method could be further tuned

to slightly increase performance. However, the goal of this research was not to op-

timally improve each individual method, but to determine an improved composite

segmentation method. This section highlights some of the issues related to increasing

performance through tuning.

Decision trees and rulesets can be further tuned to increase performance using

boosting techniques. Boosting generates several decision trees or rulesets for a given

dataset and each classifier votes on the predicted class. A majority voting method is

used to determine the final decision. It is important to note that boosting does not

always increase discriminatory results.

The feed-forward neural network design was not carefully optimized for compar-

ison with the other methods. The reported results were solely intended as proof of

concept rather than to show optimal performance. In order to fully experiment and

test with neural networks one could use more complex network architectures using
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several hidden layers and shared weights. Additionally, the training procedure could

be optimized by using different transfer functions and training algorithms. Regular-

ization and early stopping methods could be employed for improving network gener-

alization. Weight decaying and pruning could also be used to deal with overtraining

the neural network [120]. Our observation of the test error and the learning epochs

allowed us to ascertain that the networks were not overtrained. Also, we noticed that

decreasing the number of nodes in the hidden layer decreased performance.

SVMS can also be tuned for the purpose of handling unbalanced data sets. Two

parameters, 0+ and C. can be used to trade-off generalization ability and misclassi-

fication error for the data set. Thus, Equation 4.37 can be extended to include the

tuning parameters as follows:

minw’b,£ é-W ' W ‘1’“ 0+ Eizl £1 + C_ Zi=_l £1

y.-(w - ¢(x.-) +b) 2 1 — 5,, (5.12)

6.- 2 0,i=1,...,l.

The dual form of Figure 5.12 is:

maximize W(a) = £1 a.- — %Zx=1 aiajyiyj(xi '39“)

030i S C+,Ifyi = 1

OSQ,‘ SC_,lfyi = —1

(5.13)

y-a=0.

Classifying a new data set is the same as in Equation 4.27. The ratio of C+ to C.

determines the penalty parameters for each class. As the ratio of 0+ to C. increases,

the rate at which the classifier predicts class 1:,- = 1 also increases. As the ratio of

0+ to C- decreases, the rate at which the classifier predicts class 1:,- = -1 increases.

Drish [36] uses the F1 value to determine the best possible C+ value for a fixed 0..

The F1 value is used to determine the maximum balance between precision and recall.

The F1 statistic is defined as:

F1 = 2/((1/precision) + (1/recall)) (5.14)

Additionally different kernels and parameters could be used to train and test the
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network. This research did not attempt to find the optimal performance for each

dataset.

5.8 Conclusion

This research approached the problem of shot based segmentation as a binary classi-

fication problem. As a result, we utilized well known strategies from the information

retrieval and biometric community and adapted them to the video domain. Deci-

sion Tfees, rulesets, neural networks, and support vector machines were all used to

show that results fusion-based shot segmentation could improve shot detection per-

formance. Results fusion was applied on the measurement and feature extraction

level because these levels offer the most flexibility in determining the results fusion

strategies to employ. In this research, key low-level image features were used to

provide input to the results fusion methods. Global histograms, local histograms,

DCT coefficients, and edge features were extracted from the video frames. These

features were chosen because they have historically been known to accurately predict

shot boundaries in certain conditions. Additionally, their features complement each

other’s strengths and weaknesses. The distance metric delta 6 between successive

frame pairs was used as input to the results fusion methods. Leave out one testing

was performed on a video corpus of over 8 hours in length from a wide variety of

sources. The results of this research shows that results fusion can be realized in the

video domain to improve performance. We have developed over 24 baseline testing

methods to assess performance of our results fusion algorithms. Within this baseline

set two known combination strategies in the video community, majority voting and

Boolean logic were implemented and both strategies did not improve performance

over using a single method. The results in this research also show the ability of our

results fusion engine to detect shot boundaries when receiving unreliable data. The

edge change ratio algorithm performed poorly for almost all the methods; however

its inclusion in our results fusion strategy did not reduce performance.

In comparing the results fusion strategies to one another the SVM method per-

137



formed the best on 8 out of 18 videos. This result is not surprising. Research in the

information retrieval and biometric communities have reported receiving favorable

performance using this classification method [149, 9].

The results fusion approach in this thesis can be extended to include other features

or attributes, such as text and speech processing metrics. The power of using SVM

is that its computational complexity is not dependent on how many attributes are

used, but how many data points are in the training set.

Another key aSpect of this research is performance. Supervised learning algorithms

take time to learn patterns in the dataset. Decision Bees and Rulesets are fast at

developing rules from the training data. No test took longer than a few seconds

to train the classifier on the training data and evaluate the test data. The neural

network took about 10 minutes to train the videos on the training data and after the

model was trained all tests ran in seconds. The SVM results fusion strategies took

the longest to train. SVM training time depends on the type of kernel that is used

and how many data points are in the training data. We used the REF kernel and

training took about 15 minutes per video. Again, once the model [was created the

tests ran in seconds. The importance of a generalizable shot-detection method is that

training need only be performed once when the system is built using a large training

corpus. Henceforth, the system will only be used in the classification mode, which is

very fast for all of the results-fusion methods presented.

The promising results contained in our experiments show that results fusion strate—

gies from the sensor fusion, biometric, and information retrieval communities can be

adapted to the video domain.
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Chapter 6

Extensions to Summarization

One of the critical tools in any indexing and browsing environment is effective sum-

marization. Figure 6.1 illustrates the basic components for a typical digital video

analysis system. The video to be indexed must be presented to an indexing system

with a minimum of redundancy to avoid redundant retrieval results and to maximize

the disparity in the indexing space. Likewise, search results must be presented to

human users as compact summaries that allow users to quickly browse through the

candidate choices and choose the correct result or adapt the search as quickly as

possible. After shot segmentation, summarization attempts to eliminate or limit the

redundancy in the video while preserving the most important aspects of the video.

This process leads to developing a pictorial summary of an underlying video se-

quence that represents the original video in a more compact form. This summary

usually consists of utilizing a smaller set of images to represent the visual content,

and presenting these keyframes to the user. Most summarization research focuses on

keyframe extraction. Section 2.3 described numerous methods for summarization and

keyframe extraction. Researchers have achieved great progress in developing summa-

rization techniques for digital video. However, it is common for much of this research

to focus on specific classes of video or limited content corpuses. Major projects have

analyzed news broadcasts, television programs, and commercials where the video

structure is known in advance. There has been limited research on developing com-

posite techniques that can be used on a wide variety of video classes. One of the
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Figure 6.1: Video System Components

strengths of any summarization method should be its generalizability, or its ability

to adapt to the video under analysis.

Another key aspect of summarization is performance evaluation. Evaluation is a

difficult task because there is no standard way to determine the performance of any

summarization method. The video summarization community has agreed that any

summarization method should seek to eliminate redundancy and present the video

in a compact form that allows for maximum user retention and comprehension. Ad-

ditionally, it should briefly and concisely present the contents of the original video

[118]. However, these criteria are subjective and user-dependent. Gong and Liu

[51] have defined summarization performance in terms of a redundancy metric. The

performance of the summarization is characterized by the amount of redundant in-

formation produced in the summary. This method provides a novel first approach

in developing a performance evaluation criterion for summarization however; it only

focuses on the outputs of the summarization and not on attempting to determine the

important information in the video sequence.

Our results fusion research for shot segmentation shows that improved perfor-

mance can be achieved by utilizing results fusion, utilizing multiple classifiers or

representations to improve performance and reliability over using a single classifier
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or representation. Chapter 4 describes our method for shot segmentation based on

results fusion and Chapter 5 illustrates the performance of the various implemented

results fusion strategies. Our suggested method for video summarization is an exten-

sion of the results fusion based approaches used for shot (segmentation. As with the

results fusion segmentation methods, this solution can be generalized to work for a

wide variety of content without the input of manually collected structural knowledge.

6.1 Unstructured Video

Commercial video sequences are characterized as having manual shot transitions and

editing effects. Some of these effects include straight cuts, fades, dissolves, wipes, and

dissolves. Most segmentation and summarization methods rely on these manually

edited effects to cue their algorithms. These methods make assumptions about the

structure of the video and exploit them in their classification. However, raw and

unstructured video sequences have few, if any, manual edit effects. These videos are

characterized as having long continuous sequences with no structure or meta-data to

facilitate access [65]. A

Fundamentally, the input to any summarization algorithm is unstructured video.

As illustrated in Figure 6.1, summarization follows segmentation and is assumed to

be working on continuous shots, be they short intervals between rapid cuts or long

sequences of raw camera footage. A third operation, abstraction is often applied

to the output of summarization to further group content across shot boundaries so

as to further reduce redundancy. This chapter, however, is concerned only with

summarization.

Access to this type of video has been usually facilitated by linear navigation

through the entire video sequence. This type of access is suitable for viewing, how-

ever it is cumbersome for retrieval or for quick browsing of the content. Beyond the

cuts that make up commercial video content, this type of video also includes docu-

mentary films, home video, surveillance video, and unmanned aerial vehicle (UAV)

video. Figure 6.2 shows a typical UAV video sequence. Summarizing this type of
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Figure 6.2: UAV Video Sequence

video involves developing structure where no structure is present in the underlying

video sequence. Once structure has been determined, it can be processed via a myr—

iad of summarization techniques. Our novel results fusion summarization strategy

incorporates structured and unstructured video.

6.2 Features

As shot segmentation depends on the extraction of key features from the video se—

quence to determine possible shot boundaries, summarization also involves extracting

important features from within each shot. After a video has been segmented into

shots, it is assumed that the each shot is characterized by similar content. However,

temporally long and complex shots have important information that must be cap-

tured. Additionally, unstructured video can be thought of as one long continuous

shot, and the important information contained in these sequences must be captured.

It has been shown that when developing video shot segmentation strategies that

utilize multiple features, improved results can be obtained when features are cho—

sen that supplement one another [53]. The same criteria can be applied to video

summarization. In a situation in which extracting one feature may be difficult or

unreliable, extracting another feature may be more appropriate. For example, in
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the UAV video sequence shown in Figure 6.2 no color information is available. Any

summarization technique that relies on the color content of the video sequence will

fail. In this situation it would be important for the summarization method to utilize

another feature. ’

Our results fusion summarization strategy uses a global histogram module, local

histogram module, and motion module to select relevant keyframes. The result of

each individual feature extraction module is used to form a feature vector, and the

new feature vector is fed to the results fusion engine to make a final decision as il-

lustrated in Figure 6.3. Global and local histograms were used in our results fusion

shot segmentation method. The importance, strengths, and weaknesses of these fea-

tures were described in Section 4.3. Where global and local histograms are good at

analyzing color sequences in video for summarization and keyframe extraction, they

fail in the presence of camera motion. Global and local histograms can be used to

detect features for summarization when the camera is not moving or has moved very

little. New subjects walking into the camera field of view or an explosion in an image

sequence are examples of situations in which these methods could uncover important

features in the video. Camera motion analysis can be used to extract features when

the camera is constantly moving. Figure 6.2 shows a typical UAV video sequence.

6.3 Camera Motion

Motion is a key aspect in most video shots [14]. Motion in video sequences can be

either characterized as originating from the camera or objects in the shot. Many

researchers have experimented with characterizing motion in video sequences [12,

13, 37, 68, 71, 2, 142, 144, 156]. Camera motion can be characterized as panning,

tilting, zooming, booming, dollying, or tracking [16]. Camera panning refers to the

camera rotating around its vertical axis. Tilting refers to the camera rotating about

its horizontal axis. Zooming refers to a stationary camera adjusting its focal length

either to concentrate on a specific area of interest or to get an overall view of a scene.

Booming refers to the camera moving up and down as if it were on a physical crane.
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Dollying can be characterized as a camera moving in and out of a scene, with the

movement parallel to the camera lens axis. Tracking refers to the camera moving

perpendicular to the camera lens axis. Each one of these motion types allows one to

gain information as to the important aspects of the contents of a shot. Often, camera

motion reflects the intentions of the director which allows one to gain some semantic

understanding of the video sequence.

Local motion within an image sequence can be described using motion vectors. A

motion vector is an indication of where in a frame the content from the frame came

flom in the previous (or earlier) image. As an example, a video sequence consisting

of a stationary camera photographing a train moving to the right would have motion

vectors at each pixel or block that indicate that the content at that location came flom

the left in the previous image (the content moved to the right, so it came from the

left). Each one of the standard camera motions exhibit specific patterns in the motion

vector fields between successive frames in a video sequence. Figure 6.4 illustrates the

motion vectors between successive flames in a panning and tilting video sequence.

The majority of the vectors indicate content came from to the left and down, so it

is moving up and to the right. This indicates the camera is moving to the left and

down. Some motion vectors in this image are missing because there was no underlying

content to perform analysis on (moving fixed colors are not distinguishable). Other

vectors seem to move in unexpected directions. This is due to errors in the motion

analysis process. Motion analysis is a complex topic and subject to local errors.

In order to detect camera motion operations, motion vectors can be extracted

flom frame sequences by various techniques. Many of the techniques rely on the edge

information of flames to locate the best motion vectors in combination with either

block tracking or optical flow-based algorithms.

6.4 Motion-based keyframe extraction

We have developed a novel based video summarization method based on camera

motion. This method is not sufficient for video summarization alone because it is not
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Figure 6.5: Camera motion over a scene

effective in modeling content changes that do not involve camera motion. However,

the principles and features extracted flom this method are utilized in our approach

to results fusion for video summarization.

Our novel motion-based keyframe extraction technique can accurately select

keyflames with significant global motion between flames in raw unstructured video

sequences. Imagine a camera moving over a fixed scene. The camera will take a path

somewhat like that illustrated in Figure 6.5. As the camera moves, the new image

overlaps the previous images by varying amounts. Given a starting reference frame

(keyframe), 1 — overlap represents the amount of de-occlusion; the amount of new

content uncovered by the camera motion. All computations are done on adjacent

pairs of flames. The previous flame and current flame are compared using a block

matching algorithm commonly used for MPEG motion vector computation. However,
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Figure 6.6: Possible keyflame overlap.

motion vectors are not selected arbitrarily. A set of motion vectors is selected based

on presence of edge detail as indicated by a statistical edge detection algorithm.

The result of the block matching algorithm is a set of displacements and their

associated block centers in the current frame. This computation is based on

searching the previous image for matching blocks. The system attempts to deduce

where content in the previous frame moved. These displacements are converted

to (x, y) to (u, v) correspondences and used to compute a least-square estimate of

the affine transformation flom the previous image to the current image. The affine

transformation is then used to warp all recent keyframe locations to correspond with

the current motion. The warped keyframes are tested for percentage overlap with

the current frame. When the overlap drops below a preset threshold, a new keyframe

is selected. Figure 6.6 illustrates the overlap of two possible keyframes. In order

to characterize the background motion we implemented a global two—dimensional

parametric model. The goal of this model is to approximate the motion of the
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camera platform relative to the scene. Several models are possible. An exact

reproduction of reality would require 3D modeling of the image contents, which

is typically not practical and is not likely to be of great benefit in an application

where the camera location is a considerable distance from the image content. In

unstructured video, the background typically approximates a 2D image. Given the

choice of using a two-dimensional transformation, the available options included

afline and projective modeling. The typical camera motions clearly includes rotation,

scaling, and translation, so an afline solution is a minimum parameterization for

this application and an effective approximation of the more complex projective

transformation over limited time sequences. The large distance of the camera flom

the image content and the long focal length of the camera lens also significantly limit

the value of a projective model. The affine model is commonly used to characterize

motion in video sequences [12, 13, 37, 68, 71, 142]. The afline model was considered

because of its resilience to noisy and sparse motion vector conditions [71]. The afline

model is expressed as:

u a2 a3 a: at

= + (6.1)

v as as 3! a4

It is assumed that the affine model is characterizing the underlying motion flow of

the background from one image to the next (or within a sequence of images). In

this equation, [23, y]T denotes pixels in the previous flame and [11, v]T represent po-

sition pixels in the current frame. The motion parameters (a1,a2,a3,a4,a5,a6) can

be estimated by a linear least square estimation. For a set of motion displacements,

Equation 6.1 can be expressed as:

  

[ 1 l l

it] 71.2 ’U. (11 02 a3

11 3 $1 $2 .. CC" (6'2)

’01 ’02 1),, 0.4 as 0'6

291 92 .. ynJ

Equation 6.1 is the homogenous representation of the transformation of a set of

points. For a large set of points, the equation is over determined and cannot be
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directly solved. Instead, we seek a solution that will minimize the least squares

solution to the over determined system of linear equations. The least-square problem

can be expressed as:

main ||b — AX|| (6.3)

Given two input image flames, a robust statistical based edge detection algorithm

adapted from Kundu [77] is used to compute the edge maps of both flames. Motion

vectors are computed flom the edge maps based on a block correspondence algorithm

proposed by Kundu [76]. A block correspondence algorithm was chosen for this

application in order to decrease the computation requirements relative to methods

such as optical flow and because only sections of the image with significant edge

detail will be examined for correspondences. Block correspondence is clearly not a

good choice when a significant rotation component is evident. However, for most

video the rotation rate is physically constrained so that the method remains effective.

The Kundu method computes motion estimation by decomposing the pixels within

each block into three categories, quasi-constant regions, dominant edge regions, and

textured regions. The goal is to match blocks of similar textures. Motion vectors are

obtained by minimizing a cost function measuring the mismatch between a block and

each predictor candidate. This method utilizes a cost function based on perceptual

factors rather than simple squared-error differences. The cost function consists of

two elements D = D; + D2. The two components of a cost function are a contrast

measure of the difference image, D1, and a measure of the edge alignment, 02 1. D1

is defined as:

D1 = ZO.41610g(|1+ al.-l) (6.4)

d,- is the residual when the two blocks are subtracted. The summation is over the

pixel values in the block. This method accounts for the logarithmic nature of the

human visual system. The value has been normalized using the constant 0.416 so

that the measurement for a single pixel will range flom 0 to 1, assuming a pixel range

 

lKundu describes D2 as a “brightness” function and incorporates texture alignment into the

equation. Our solution does not utilize texel alignment due to the wide variety of possible incorrect

alignments.
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of 255.

The second component of the function D2 is set to 1 when the pixels of an edge

do not align between the two images and 0 otherwise. This classification penalizes

the alignment of a detected edge with a location that is not an edge.

In order to increase efficiency and performance, motion vectors are not computed

for each possible block between images, instead they are only for a finite set of loca-

tions where edge content is evident. Figure 6.4 is an example set of computed motion

vectors and illustrates the grouping of vectors where complex content is located.

Based on the computed motion vectors, the affine parameters are estimated

using linear least-square decomposition. The previous keyflame image corner

coordinates are continuously warped using the estimated affine parameters. It

is not necessary to actually warp the previous keyframe or even keep it around.

All that is necessary is a warping of the polygon that the keyframe represents.

As an example, if a keyflame is selected from a 352 by 240 image sequence, the

coordinates of the keyframe corners are (0,240), (352,240), (352,0), (0,0), assuming

a counter—clockwise presentation order. If the affine alignment to the next frame is

computed as (a1,a2,a3,a4,a5,a6)=(—14.05, 1.04, 0.056, 1.74, —0.0093, 0.965), the

keyframe corners would be warped to (—0.758, 233.2), (366.9, 229.9), (353.6, —1.54),

(—14.1, 1.74). The overlap of the keyframe and the current image is simply the

overlap of the two polygons. Figure 6.7 illustrates the overlap of a previous keyframe

and the current frame. A pair-wise comparison of the warped keyframe image

and the current candidate frame based on Sutherland-Hodgeman polygon clipping
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is used to determine if a new keyframe is chosen. The Southerland—Hodgeman

algorithm clips against the four edges of the current candidate frame in succession.

Equation 6.5 is the equation for the area of a 2D polygon after clipping, assuming

N — 1 vertices and (2:1,y1)=(:1:N,yN).

1 N

A = 5 21131241 — $i+1yi (6-5)

i=1

If the amount of overlap is less that a supplied threshold, the current candidate frame

is chosen as the next keyframe. Figure 6.8 depicts the interface to the motion-based

keyframe extraction algorithm. The computed overlap amount of this motion—based

keyframe extraction algorithm is an important feature that is used in our results

fusion approach for video summarization.

6.5 Results Fusion

Section 4.1 detailed the various levels of results fusion. From our analysis, it was

concluded that the best levels to achieve optimal shot segmentation performance was

at the measurement and feature extraction levels. As a result, we extend our ideas

gleaned from the shot segmentation analysis to video summarization and attempt to

achieve maximum video summarization performance at these levels. The abstract and

output levels provide little information with respect to the decision making process.

With only the output decisions or the output frames of the various summarization

methods available, there is only a limited amount of fusion strategies that can be

employed. Fusion at the measurement and feature extraction levels provide the most

information available to make decisions regarding a best summarization. These levels

attempt fusing algorithm thresholds, scores, and confidence measures and offer a wide

variety of combination methods.

Our extension of results fusion for video summarization operates at the feature

extraction level. Feature extraction level fusion concatenates features extracted from

multiple classifiers to form a new synthesized higher-dimensional feature vector. The
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premise behind feature extraction level fusion is that the new synthesized vector will

be more discriminating than each single modality feature. The features extracted

for fusion are global histograms, local histograms, and camera motion or sequence

overlaps and are used to create the new higher-dimensional feature vector. These fea-

tures are not chosen arbitrarily, but are based on their overall performance exhibited

by a history of research in the video shot summarization community. This feature

vector is then submitted to the results fusion engine for classification. The results

fusion engine could be comprised of decision trees, neural networks, or support vector

machines to make the final decision. In Section 5 each of these fusion methods was

shown to significantly increase performance over using a unimodal method.

The fusion-based shot segmentation algorithms fuse together the pair-wise frame

comparisons of global histograms, local histograms, the edge change ratio, and DCT

coefficients. Video summarization does not utilize successive frame comparisons, but

comparisons between the current frame under analysis and the previous extracted

keyframe. Once a keyframe has been extracted, the new keyframe is compared to

subsequent frames until another keyframe has been selected or until the end of the

shot has been reached. To utilize results fusion for video summarization the global

histogram, local histogram, and camera motion or sequence overlap comparison values

between the current frame and the previous keyframe are fed to the results fusion

engine. When a new keyframe has been chosen based on the characteristics of the

features, the new keyframe will be used to make further comparisons. This process

is continued until the end of the shot and is done for all shots in the video sequence.

The video data used to train the results fusion-based summarization algorithms would

consists of numerous sample shot sequences from a wide variety of video classes.

The proposed approach to results fusion for video summarization can be applied

with a variety of features. The approach is highly extensible and can incorporate

features from other areas, such as text and speech processing to improve fusion results.
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6.6 Summary

This chapter demonstrated how results fusion methodologies could be applied to

video summarization. In Chapter 5 we showed that improved performance could be

obtained by combining the strengths of multiple modalities using feature level results

fusion on a wide variety of video classes. Just as the important features for video

segmentation were fused and classified via a results fusion engine, the important fea-

tures used for video summarization can be classified and fused in the same manner.

Global histograms, local histograms, and camera motion are all important features

that can capture information contained in a video shot sequences of various classes

of video. One of the strengths of any summarization method should be its generaliz-

ability, or its ability to adapt to the video under analysis. When these modalities are

used alone, in certain situations their results can be unreliable. However, a results

fusion implementation can create a more reliable and robust technique.
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Chapter 7

Summary

This thesis contributes to the overall research in digital video in seven distinct ways.

The contributions in this thesis are:

0 A Decision Tree and Ruleset based results fusion engine for shot segmentation

and summarization that improves performance over using a single algorithm.

0 Neural Network results fusion for shot segmentation and summarization that

improves performance over using a single algorithm.

0 Support Vector Machine-based results fusion for shot and video summarization

that fuses key features from video and determines a best segmentation with

extensions to summarization that improves performance over using a single

algorithm.

0 Feature extraction and analysis for results fusion.

0 Experimental validation on a large and varied video test suite.

0 Adaptability to detect shot boundaries when receiving unreliable data from one

or more modalities.

o A novel keyframe-based video summarization technique based on camera mo-

tion.
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The strength of the results fusion-based methods are their generalizability. Any

general solution must work for a wide variety of content without the input of man-

ually collected structural knowledge. When the type of video is known a priori, any

category of techniques can be employed with relative success. However, when the

type of video to be analyzed is unknown, certain assumptions cannot be made about

the video and the best choice of algorithms cannot be predetermined, nor can the

appropriate parameterization of the algorithms be made (setting thresholds and in-

tervals for example). Our results fusion-based approaches have shown to be able to

generalize well to include new data. The fusion of multiple methods allows these

strategies to produce good results in spite of receiving unreliable information from

inferior algorithms. This thesis has developed fusion-based shot segmentation algo-

rithms based on decision trees, rulesets, neural networks, and support vector machines

that fuse together several key features and perform shot segmentation based on the

characteristics of those features. These key features include color, texture, motion,

and compressed image features. From experimentation, it was shown that each indi-

vidual method itself may not provide superb performance, however (the fusion of these

methods has produced a reliable and quality result. The novel results fusion-based

approaches were tested on over twenty-four baseline methods. Moreover, the results

from the experimental analysis show that all the fusion-based systems improved per-

formance over the best performing single modality system. When comparing the

composite precision and recall values against the best performing single modality al-

gorithm, the results fusion-based strategies performed as follows: The decision tree

method increased precision 2% and recall 11%, the ruleset method increased precision

4% and recall 11%, the neural network method increased precision 4% and increased

recall 12%, and the SVM method increased precision and recall 8%.

Additionally, our novel results fusion-based methods outperformed two existing

combination strategies in the video shot segmentation community, majority voting

and Boolean logic [15, 151]. When compared to the best performing single modality

algorithm, the majority voting method increases precision 21% and the dynamic

voting method increases precision 50%. However, this increased precision is at the
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expense of recall. The static voting method reduces recall by 44% and the dynamic

voting method decreases recall 30%. Voting methods suffer when unreliable estimates

are fed into the system by low performing algorithms, which causes the system to

produce numerous missed detections resulting in decreased recall.

When compared to the best performing single modality algorithm, both the adap-

tive and static Boolean logic methods decrease precision 9%. The Boolean logic static

method also decreases recall 1% and the dynamic Boolean logic method increases per-

formance 1%. In this algorithm, the color histogram is always given extra weight in

the final shot boundary decision. When the color histogram algorithm is unreliable,

it produces errors throughout the entire system. The results fusion-based methods

developed in this thesis have been shown to overcome errors due to unreliable algo—

rithms.

The results fusion method is extendable and can be applied to video summariza-

tion. After the video is segmented, the extracted shots can be analyzed to eliminate

redundancy and to extract important information from those shots. In Chapter 5 we

showed that improved performance could be obtained by combining the strengths of

multiple modalities using feature level results fusion on a wide variety of video classes.

Just as the important features for video segmentation were fused and classified via

a results fusion engine, the important features used for video summarization can be

classified and fused in the same manner. Key features such as global histograms, local

histograms, and camera and object motion can be fused to increase summarization

performance and accuracy. Additionally, this thesis has presented a novel keyframe

extraction algorithm based on camera motion. Motion is a key aspect in most video

shots [14]. Often, camera motion reflects the intentions of the director, which al-

lows one to gain some semantic understanding of the video sequence. This keyframe

extraction algorithm has been used to summarize structured an unstructured video

sequences. It can be used with any results fusion based summarization technique to

improve summarization reliability and performance.
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7.1 Future Work

In this thesis, we primarily focused on image processing techniques to improve video

shot detection and summarization. As stated above our approach to results fusion

shot segmentation can be extended to include more features from other domains. Text

and speech processing techniques have shown to be able to increase query performance

and reliability in video retrieval systems [141]. Results fusion could be applied to video

retrieval systems and browsing systems to increase performance.

Additionally, confidence measure could be implemented into the results fusion

architecture. If one modality was highly confident that a shot boundary exists, its

confidence measure could influence the outcome of the final decision. Also, if one

modality was confident that a shot boundary did not exist, its confidence measure

could influence the decision as well. Bengio, et a1. experimented with using confi-

dence measures for multi-modal biometric systems using SVMS. The incorporation

of confidence measures into a results fusion shot segmentation method could further

increase performance.

158



APPENDICES

159

 



Appendix A

Appendix A

The purpose of this section is to describe the contents of the video corpus in detail.

We have created a video corpus of a wide variety of content. The classes of video

include motion pictures, TV sitcoms, cartoons, and music videos. The collection

consists of over 8 hours of video.

A. 1 Television Programs

This class of video consists of 2 one hour episodes of the television program 24. The

two episodes that were used in our evaluation and testing are 24: 12am to 1am and

24: 1am to 2am. These videos were labeled 24 A and 24 B respectively. Video 24 A

consisted of 76560 total frames with 564 cuts. Video 24 B consisted of 76140 total

frames with 700 cuts. The majority of the shot transitions in this video class are

hard cuts. False positive detections usually occur due to gradual transitions, object

motions, and lighting effects. Additionally, missed detections occur because of local

shot transitions. Local shot transitions occur when a frame is split into separate

windows with each window representing a different shot. Figure A.1 illustrates a

local shot change effect.
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Figure A.1: 24:12am to 1 am local shot effect

A.2 Movies

This class of videos includes the movie Blade 2 and the first 50 minutes of The Royal

Tenenbaums. Blade 2 consisted of 197550 total frames with 2301 cuts. The Blade

2 video was split into two separate videos, Blade 2 A and Blade 2 B. This movie

can be characterized as having many fast action sequences resulting in quick shot

transitions and camera changes. Additionally, this movie had numerous dark scenes

that can lead to missed detections. Moreover, this movie contains many manually

edited lighting effects that can lead to missed detections. Figure A.2 illustrates a

sample lighting effect in the Blade 2 movie.

The Royal Tenenbaums consists of 91290 total frames with 479 cuts. This video

was shot with a 16 : 9 aspect ratio, but was encoded with a 4 : 3 aspect ratio.

As a result, all of the shot transitions and changes occur with the center region of

each frame. This video has numerous dissolve and fades effects that can lead to

missed detections. Figure A.3 illustrates a sample shot sequences from the The Royal

Tenenbaums movie sequence.

A.3 Cartoons

This class of videos included five episodes of The Family Guy. The five episodes of

The Family Guy that were used are The Family Guy: Brian Does Hollywood, The

Family Guy: Da Boom, The Family Guy: Fifteen Minutes of Shame, The Family

Guy: Lethal Weapons, and The Family Guy: The Thin White Line. These videos

Were labeled The Family Guy A-E, respectively. The Family Guy A consisted of
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Figure A.2: Blade 2 action sequence

 

Figure A.3: The Royal Tenenbaums shot sequence
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Figure A.4: The Family Guy: Da Boom explosion sequence

39270 total frames with 261 cuts. The Family Guy B consisted of 38970 total frames

with 326 cuts. The Family Guy C consisted of 39240 total frames with 246 cuts.

The Family Guy D consisted of 39270 total frames with 260 cuts. The Family Guy

E consisted of 38940 total frames with 310 cuts. These videos can be characterized

as having numerous manually edited transitions effects, such as dissolves and fades.

Additionally, explosions and object motions can lead to false detections. Figure A.4

illustrates and explosion in The Family Guy: Da Boom video sequence.

A.4 Music Videos

This class of videos included eight music videos by artists Destinys Child, Jay Z, Mya,

Michael and Janet Jackson, and R. Kelly. The Destinys Child videos that was used for

testing and evaluation were Destinys Child: Bills, Destinys Child: Bootylicious, and

Destinys Child: Jumpin. These videos are labeled Destinys Child: A-C respectively.

Destinys Child A consisted of 7380 total frames with 233 cuts. Destinys Child B

consisted of 6600 total frames with 239 cuts. Destinys Child C consisted of 5940 total

frames with 208 cuts. The R Kelly videos that were used are R Kelly: Feelin and R

Kelly: If. These videos are labeled R Kelly A and R Kelly B respectively. The Jay Z

video that was used was Jay Z: Love You. This video was labeled Jay Z and consisted
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Figure A.5: R Kelly: If gradual transition sequence

of 7890 total frames with 208 cuts. The Mya video that was used was titled Mya:

Best of Me and consisted of 7200 total frames with 111 cuts. The Michael and Janet

Jackson video evaluated was titled Michael and Janet Jackson: Scream. This video

consisted of 8670 total frames with 250 cuts. These videos can be characterized as

having numerous gradual transitions effects, manually edited effects, and short shot

durations. Short shot durations can lead to missed detections when using adaptive

methods that analyze frames within specific window sizes. If the window size is larger

than the shortest shot length, the shot could be missed. In addition, manually edited

effects can lead to false detections. Figure A.5 illustrates a gradual transition effect

in the R Kelly: If music video sequence.
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