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ABSTRACT
FuUsION-BASED VIDEO SEGMENTATION AND SUMMARIZATION
By
John K. Dixon

This thesis examines the problem of video segmentation and summarization from a
results fusion perspective. Many techniques have been developed for the segmentation
and summarization of digital video. The variety of methods is partially due to the fact
that different methods work better on different classes of content. Global histogram-
based segmentation works best on color video with clean cuts and global intensity
changes; local histogram-based segmentation is less sensitive to region changes in the
video and therefore works better when scenes consisting of similar content are shot
from different angles; DCT-based segmentation algorithms attempt are less sensitive
to abrupt intensity changes due to lighting effects such as camera flashes; edge-based
segmentation algorithms work well when high quality edge information can be ex-
tracted from the video sequence, motion-based summarization works best on video
with moving cameras and a minimum of disjoint motion. Results fusion combines
the properties of these varying algorithms into a common framework that can benefit
from the advantages of each disparate approach. Recognizing that there is no single
best solution for each of these problems has led to this work in integrating the variety
of existing algorithms using results fusion methods.

The work is divided into four parts. The thesis begins with an in-depth study of
the various video segmentation methods. This chapter categorizes the existing shot
segmentation and summarization methods, noting their strengths and weaknesses.
Next, results fusion based algorithms and implementations from a variety of fields are
reviewed and studied so as to understand the methods that can be applied to video
segmentation and summarization. This chapter examines results fusion research from
the document retrieval and biometric communities and with an eye towards applica-
tion to the video domain. The third part of this work presents the results of applying

results fusion for video segmentation. This section compares and contrasts individual



algorithms with the results fusion implementations. Finally, it is demonstrated that
the results fusion methodology used for video segmentation can be extended to video
summarization. ‘

Thesis Supervisor: Dr. Charles B. Owen Professor, Michigan State University

This research was supported in part by The MITRE Corporation.



To my mother Faye M. Dixon and brother Ian J. Dixon

iv



ACKNOWLEDGMENTS

To my mother, Faye M. Dixon, thank you for all the support and love that you have
shown me throughout my life. You have been a blessingv and an angel from heaven. I
could not have completed this thesis without you. There have not been words created

to express the love and appreciation I have for you.

To my aunt, Dr. Brenda McClain, thank you for all the encouragement and financial
support throughout my life. When I thought there was no way, you always provided
one. You always have been an inspiration. I could not have finished this thesis

without your love and generosity.

To my advisor, Dr. Charles Owen, thank you for being the best advisor a student
could possibly have. You are the consummate professional and mentor. Thank you
for your untiring support and encouragement in getting this thesis completed. I look

forward to continuing to work with you in the future.



TABLE OF CONTENTS

LIST OF FIGURES

1 Introduction

1.1 Questions addressed by thisthesis. . . . . . .. .. ... ... ......
1.1.1 Shot Segmentation . . . . ... .. ... ... ... ... ... ...
1.1.2 Summarization . . . . . . . . ... ..
113 ResultsFusion . ... ... ... . ... . ... . .. .. e
1.2 Contributionsof thisthesis . . . .. ... ... ... ...........
1.3 Definitions . . . . . . . . . ... e e e e
14 Stuctureof thisthesis . ... ... ... ... ... .. .. ........

2 Related Work

2.1 VideoSystems . . ... .. ... ... . ... ... e
2.2 Segmentation . . . . . . ... ... ... e e
2.2.1 Uncompressed domain techniques . . . . . . ... ... .........
2.2.2 Compressed Techniques . . ... ... ... ... ............
2.3 Summarization . . . .. .. ... .. e
2.3.1 Still-Image Representation . . . . . ... ... ..............
2.3.2 Moving Image Representation . . . . . .. ... ... ... .......
24 Other Techniques . . . . . . . . . . .. . . .. ... .. uuiee...
25 ResultsFusion . ... ... ... ... ... . ... .. ... ... ...
251 SumRule . ... ... ...
2.5.2 Voting Strategies . . . . . . . . . . ... e
2.5.3 Probabilistic Strategies . . . . . .. ... ... ... ..
2.5.4 Machine Learning and Data Mining . . . . . . .. ... .........
26 Summary . . . . . . .. .. e e e

3 Shot Detection Methods

3.0.1 Gradual Shot Boundary Detection Issues . . . . . .. ... ... ....
3.1 ShotBoundaries . ... ....... ... ... .. ... . ... ...,
3.1.1 Global Color Histogram . . . . ... .. .................
3.1.2 Region-based or Local Histograms . . . ... ... ...........
313 EdgeFeatures. . .. ... ... ... .. .. .. ... ...
3.14 DCT Coefficients . . . . . ... .. ... ... . . ... .. ......
3.2 Summary . ... . ...

4 Results Fusion

41 Levelsof Results Fusion . . ... ... ... ... ... ... .......
4.1.1 Abstract Level Fusion . . ... .. ... ... .. ... .. ... ...
4.1.2 Measurement Level Fusion . . . . . . . .. ... ... ... .......

vi



4.1.3 Feature Extraction Level Fusion . . . . . . . . .. . .. ... .. .... 67

414 OutputLevel Fusion . . . .. ... ... ... .............. 73
4.1.5 Fusion Level Comparisons . . . . .. ... ... ... .......... 76
4.2 Results Fusion for Video Shot Segmentation . . ... ........... 77
4.2.1 Support Vector Machines . . .. ... ... ... ............ 77
422 Decision Trees . . . . . . . . . . . e 82
423 Rulesets . . . . . . . .. e 83
424 Neural Networks . . . .. ... .. ... ... ... ... ... ..... 84
43 Features . . . . . . . . . .. e 86
4.4 Results Fusion Shot Segmentation . . . . . . ... ... .......... 87
4.5 Baseline Testing Methods . . . . ... ... ... ............. 90
451 BooleanlLogic. .. .. .. ... ... ... ... .. e 90
4.5.2 Majority Voting . . . . . .. ... ... e 92
4.6 Cross Validation . .. ... ... ... ... .. ... .. .. ...... 92
4.7 Summary . . . . . . .. e e e e e e 93
5 Experimental Evaluation 94
51 VideoCorpus . . . . . . . . . . . . . . . e 94
5.2 Performance measures . . . . ... ... .. .. ... ... 97
53 TrainingData . . . . . ... ... ... ... .. ... ..., 100
54 Filtering . . . . . . . . e 101
5.5 Existing Method Results . . . . . . ... ... ... ... ... ..... 102
5.5.1 Single Threshold . . . ... ... ... ... . ... ... ........ 102
5.5.2 Adaptive Threshold . . .. ... ... ... ... . ... ... .... 103
5.5.3 Majority Voting Method . . . . . . . ... ... .. ... ... ... 112
554 BooleanLogic. . ... ... ... ... ... .. ... 114
5.6 Results Fusion Engine Results . . . . . . . ... ... ........... 120
5.6.1 Decision Treesand Rulesets . . . . . ... .. ... ........... 120
5.6.2 Feed-Forward Neural Network . . . . . ... ... ... ......... 121
56.3 SVM . . . . . .. e 125
5.6.4 Results Fusion Method Comparison . . . . .. .. ... ......... 129
5.7 Tuning . . . . . . . . e e e 133
58 Conclusion. . . . . . . . .. ... 137
6 Extensions to Summarization 139
6.1 Unstructured Video. . . . . . . . . ... ... ... .. ... .... 141
6.2 Features . . . . . . . . . . ... 142
6.3 CameraMotion . . . . . . . .. .. ... 143
6.4 Motion-based keyframe extraction . . . . . ... ... ... ... ..... 145
6.5 ResultsFusion . ... ... ... ... .. .. ... ... .. .. .... 151
6.6 Summary . ... ... ... 154
7 Summary 155
71 Future Work . . . . .. . . . . ... 158

vii



APPENDICES 159

A Appendix A 160
A.1 Television Programs . . . ... ... ... .. ... ... ......... 160
A2 Movies . . . . . . . e e e e 161
A3 Cartoons. . . . . . . . .. e e e 161
A4 MusicVideos . . . . . . . . . . ... 163

viii



1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
24

3.1
3.2
3.3

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

LisT oF FIGURES

Proposed Results Fusion System . . . . ... ... .. ... ........ 7
Cut Between Successive Frames . . . . . . ... ... ........... 14
Dissolve Video Edit . . . . . . .. . ... ... ... ... ... .. ... 15
Fade In Video Effect . . . . . ... ... ... ... .. .......... 16
Wipe VideoEdit . . .. .. .. ... ... .. 17
Typical Video Structure . . . .. .. .. ... ... ... ......... 21
Uncompressed Shot Segmentation Techniques . . . . ... .. ... ... 23
Typical Video Structure . . . ... ... ... ... ............ 35
Full Image (352x240) and its DC image (44x30) . . .. ... ... .. .. 37
Still Frame Segmented into Regions . . . . . . . ... ... ........ 55
Still Frame and Edge Image . . . . . ... ... ... ........... 57
Stiland DCT Image . . . . ... ... ... .. .. ... ... ...... 58
Browne Boolean Logic Method . . . . ... ... ... ... ....... 66
Zhong Multi-stage Shot Detection . . . . . . . ... ... ... ...... 69
Multiple Separating Hyperplanes in 2D space . . ... ... ... .. .. 78

The decision boundary and optimal hyperplane in 2D space [78]. The
support vectors in red denote the margin of the largest separation

between the twoclasses. . . . ... ................... 79
SVM Theory with slack variables & and &; [78] . ... ... ....... 81
SVM Transformation [78] . .. .. .. ... . ... ... ......... 81
Two-Layer Neural Network Architecture . . . . ... ... ........ 84
Neural Network Transfer Functions . . . . . . ... ... ... ...... 85
Results Fusion Video Segmentation Methods . . . . . . ... ... .... 88
Partial Decision Tree Output of C5.0 . . . . . . . ... ... ... .... 89
Partial Ruleset Output of C5.0 . . . .. .. ... ... .......... 89
Neural Network Implementation . . . . . ... ... ............ 90
Boolean Logic Method . . . . . . ... ... . ... ............ 91
Majority Voting Method . . . . . . ... ... ... .. ... ..., 92
VideoCorpus . . . . . . . . . . . e 95
Video Scripting Tool . . . . . . .. ... ... ... ... ... .. ... . 96
Confusion Matrix . . . . . . . ... . ... ... .. ... 98
Color Histogram Precision vs. Recall Graph . . . . .. .. .. ... ... 104
Local Histogram Precision vs. Recall Graph . . . . ... ... ... ... 105
DCT Precision vs. Recall Graph . . . . . . ... ... ... ........ 106
Single Threshold Precision and Recall Table . . . . . ... ... ... .. 107
Single Threshold Precision Recall Graph . . . . . ... ... ... .... 108
Single Thresholds used for each method . . . ... ... ......... 109
RKelly A Music Video Sequence . . . . . .. ... ... ... ....... 109

ix



5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

5.23
5.24
5.25

5.26
5.27
5.28

5.29
5.30

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Al
A2
A3
A4
A5

Adaptive Threshold Precision vs. Recall Table . . . . . . ... ... ... 111

Adaptive Threshold Precision vs. Recall Graph . . . . . . ... ... .. 113
Majority Voting Precision vs. Recall Table . . . . .. . .. ... ... .. 114
Majority Voting vs. Adaptive Local Histogram Precision vs. Recall Table 115
Majority Voting Precision vs. Recall Graph . . . . . .. ... ... .... 116
Boolean Logic Precision vs. Recall Table . . . . . .. ... ........ 117
Boolean Logic vs. Adaptive Local Histogram Precision vs. Recall Table . 118
Boolean Logic Precision vs. Recall Graph . . . . . .. ... ... ..... 119
Decision Tree and Ruleset Precision vs. Recall Table . ... ... .. .. 121
Decision Tree, Ruleset, and Single Modality Decision Tree/Ruleset Table 122
Decision Tree, Ruleset, and Adaptive Local Histogram Table . . . . . . . 123
Decision Tree and Ruleset vs. Adaptive Local Histogram Precision vs.

RecallGraph . . . . . . . . . . e e 124
Results Fusion Neural Network and Single Modality Neural Netowrk Table 126
Results Fusion Neural Network and Adaptive Local Histogram Table . . 127
Results Fusion Neural Network vs. Adaptive Local Histogram Precision

vs. RecallGraph . . . . . . . . ... ... ... o 128
Results Fusion SVM and Single Modality SVM Table . . . . . .. .. .. 130
Results Fusion SVM and Adaptive Local Histogram Table . . ... ... 131
Results Fusion SVM vs. Adaptive Local Histogram Precision vs. Recall

Graph . . . . . . . e 132
Results Fusion Methods Table . . . . . .. ... ... ........... 134
Results Fusion Methods Precision vs. Recall Graph . . . ... ... ... 135
Video System Components . . . . . . . ... ... ... .......... 140
UAV Video Sequence . . . . . . . . . . . . . ... . ... 142
Results Fusion for Video Summarization . . ... ... ... ....... 144
Motion Vectors from a Panning Video Sequence . . . . . ... ... ... 146
Camera motion over a scene . . . . . . . . . . . . ... e e .. 146
Possible keyframe overlap. . . . . . . ... .. ... .. ... .. ... .. 147
Example of polygonoverlap . . . ... ... ... ... .. ... ..... 150
Motion-based keyframe extraction interface . . ... ... ... ... .. 152
24:12am to lam local shot effect . . . . . . .. .. ... ... ....... 161
Blade 2 action sequence . . . . . . . . . ... ..o 162
The Royal Tenenbaums shot sequence . . . . . . . . ... ... ...... 162
The Family Guy: Da Boom explosion sequence . . . . . . ... ...... 163
R Kelly: If gradual transition sequence . . . . . .. ... ......... 164



Chapter 1

Introduction

Locating content in digital video continues to be a significant problem as massive
quantities of digital video accumulate in corporate libraries, public archives, and
home collections. A key element of any method that attempts to index digital video
is effective shot segmentation and summarization of the video. Shot-based segmen-
tation is the first step in determining the structure of the video by breaking it into
the components that were originally edited together to form the final product. Sum-
marization presents a pictorial summary of an underlying video sequence in a more
compact form, eliminating the massive inter-frame redundancy present in digital video
and film. Some researchers combine summarization and an additional process called
abstraction into one process. Abstraction is the process of creating a series of still
or moving images that is shorter in length than the original video and preserves the
essential meaning of the video [88]. This thesis considers summarization and abstrac-
tion to be separate and unique operations and defines abstraction as the process of
reducing the redundancy created in the summarization process due to repeated scenes
or shots, maintaining the original structure of the video.

Most video content does not consist of a single continuous recording or filming,
but rather a set of discrete recordings that have been edited together. Shot-based
segmentation seeks to decompose this edited structure into the components used to
construct the video. Shot boundaries can be created by various methods. The most

elementary shot boundary is the hard cut. Other methods consist of production edits



such as fades, cross-fades, dissolves, and wipes. Some shot boundaries occur between
two frames of video, while others occur between multiple frames. In order for a shot
boundary detection method to be effective, it must be as accurate as possible, with
few false positives (incorrectly identified shot boundaries) and false negatives (missed
shot boundaries).

Indexing methods require minimization of redundancy for effective performance.
Were a complete video sequence added on a frame-by-frame basis to an image
database, the search mechanism would be forced to contend with hundreds of se-
quential frames with nearly identical content, making differentiation of results very
difficult. Ideally, an indexing method would be operating on a compact summariza-
tion of the content with only salient elements subject to analysis. Additionally, given
the limited performance of indexing methods and the questionable ability of humans
to pose exact queries, it is essential that results be presented in a way that allows for
very fast browsing by the user with a minimum of redundant results presented.

Great progress has been made on shot segmentation and summarization of digital
video. However, it is common for much of this research to focus on specific classes
of video or limited content corpuses. Major projects have analyzed news broadcasts,
music videos, and late night comedians. Additionally, much of this work tends to focus
on small sets of video content and has not been tested on a large video test suite.
The current research has answered many questions about how to analyze video where
the structure is known in advance. However, any general solution must work for a
wide variety of content without the input of manually collected structural knowledge.
This fact has been well known in the mature document analysis and the biometric

communities for many years [5, 61, 48, 67, 70, 117, 139, 146).

1.1 Questions addressed by this thesis

This thesis examines the problem of creating new algorithms for shot segmentation
and video summarization that improve on the performance of existing methods. The

specific approach we apply is to examine the wide range of existing segmentation



and summarization methods and blend representative algorithms into a composite
system using results fusion. The primary goal is to build a system that can utilize
the strengths of the various algorithms, where appropriate to the underlying content,

while avoiding the weaknesses when the method is inappropriate to the content.

1.1.1 Shot Segmentation

There has been considerable research on video segmentation techniques [10, 28, 47, 74,
86, 95, 157, 155]. Each of these segmentation techniques is successful at determining
shot boundaries for specific classes of video. Color histogram-based algorithms build
models of the dynamic change in color distribution between successive frames and
are successful when applied to video sequences where the color distribution changes
abruptly between shots [47, 95, 102, 157, 156]. Model-based algorithms use learning
algorithms to construct models of the temporal nature of transitions and are effective
when a set of transitions is known and expected in the content [11, 115]. Motion-
based algorithms attempt to track content motion through image sequences and are
effective when object or camera locations change significantly between shots [95, 144].

The wide variety of techniques forms a toolboz for the system designer from which
an appropriate segmentation algorithm can be chosen for a given class of video. When
the type of video is known a priori, any type of technique can be employed with
relative success. However, if the type of video is unknown before analysis, certain
assumptions cannot be made about the video and the best choice of algorithms cannot
be predetermined, nor can the appropriate parameterization of the algorithms be
made (setting thresholds and intervals for example). Research efforts, to date, have
predominately focused on the independent implementation of individual segmentation
algorithms [105, 106, 155, 157]. Limited research has attempted to combine shot
boundary detection algorithms into a composite system [15, 119, 151, 158].

What constitutes good shot segmentation? In developing novel methods for
video shot segmentation it is imperative to know what characteristics comprise good
shot segmentation. Within a shot, a frame may differ from its neighboring frames

by either camera and object movement, focal length changes, or lighting changes
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(110]. A good shot segmentation algorithm should disregard frame changes within a
shot. In addition, accuracy is an important factor in any shot segmentation method.
The algorithm should attempt to maximize correct detections and minimize false and
missed detections. In our view, missed detections are more costly than false detec-
tions. Missed shot boundaries can never be recovered, however false detections can
be corrected during the summarization and abstraction process, which can eliminate
the possible redundancy.

This thesis addresses the question about the degree to which the various segmenta-
tion algorithms can be integrated to create a composite technique. The new composite
technique should be sensitive to the characteristics of the video under analysis and,
therefore, applicable to a larger set of content without specific per-video tuning. This
research necessarily began with a study of the effectiveness of the various segmen-
tation algorithms on a wide variety of video. The classes of video that will be used
for our study are commercial films, home video, news broadcasts, raw news footage,
surveillance video, and Unmanned Aerial Vehicle (UAV) military video. The video
includes both edited and unedited footage. The results of our algorithm analysis
provide important information as to the characteristics that each segmentation tech-
nique exhibits for a given type of video. These characteristics are then utilized when
developing a novel adaptive shot-based segmentation algorithm.

Our approach to tackling the problem of shot segmentation for a wide variety
of video classes adopts results fusion techniques from the document retrieval and
biometric community. Results fusion can be thought of as a decision function that
has multiple inputs and produces an output that is based on the characteristics of the
inputs. This thesis has developed a fusion-based shot segmentation algorithm that
fuses together several key features of digital video and performs shot segmentation
based on the characteristics of those features. The features were chosen based on
their ability to capture important information contained in the video sequence. The
key features that are used to characterize a video segment are color, texture, motion,
and compressed image characteristics. In our approach, shot segmentation is treated

as a binary classification problem in which each frame in a video sequence is or is



not considered as a shot boundary. Results fusion strategies using Support Vector
Machines (SVMs), Decision Trees, Rulesets, and Neural Networks are used to fuse the
multiple features to determine a higher-quality, more accurate, segmentation. Prior
research has proven that these methods produce good performance for solving binary

classification problems [19, 39, 75, 108, 111, 139, 149].

1.1.2 Summarization

This thesis also demonstrates that results fusion and adaptation techniques can be
applied to video summarization. One of the critical tools of any indexing and browsing
environment is effective summarization. Video to be indexed must be presented to
an indexing system with a minimum of redundancy so as to avoid redundant retrieval
results and to maximize the disparity in the indexing space. Likewise, search results
must be presented to human users as compact summaries that allow users to quickly
browse through the candidate choices and choose the correct result or adapt the search
as quickly as possible. Again, many different approaches for video summarization
exist. This toolbox of approaches is utilized as the basis for an adaptive solution
for video summarization that draws on the strengths of the different approaches in
different application classes.

Video abstraction is the mapping of an entire video segment into a smaller number
of representative images [157]. It has been recognized that representing a complete
video shot with a single image is an important step towards representing video in
a compact meaningful form [131]. These images may be extracted frames from the
actual video sequence or composite images constructed from the sequence using salient
stills [134] methods or image mosaics [63, 97, 96]. Although these images are single
frames, they do not represent one discrete moment in time. Moreover, these images
represent the aggregation of temporal changes that occur within a moving image
sequence with the salient features preserved [16]. This abstraction has traditionally
been done manually in film and video libraries. The huge volumes of video data
accumulating today require fully automated techniques to reduce the role of human

involvement as much as possible. However, in some instances this representation
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may not be enough to capture the dynamic action in complex shots. As a result,
researchers have experimented with developing moving image abstracts of shots.

There has been a considerable amount of research on automated video abstraction
techniques [23, 24, 25, 55, 73, 85, 97, 96, 112, 126, 127]. Summarization involves
reducing the redundancy created in the abstraction process due to repeated scenes
or shots, maintaining the original structure of the video. Many techniques exist
for developing video summaries. These techniques include moving images abstracts,
video skims, and keyframe extraction.

What constitutes good summarization? Good summarization should seek
to eliminate redundancy and present the video in a compact form that allows for
maximum user retention and comprehension. It should briefly and concisely present
the contents of the original video [118]. Its length should be shorter than the original
video sequence, but how much shorter? It should only focus on the content that is
important to the user, but what is important? One of the main problems with any
summarization technique is that the answers to the previous questions vary from user
to user. In some cases, users may need to view a few still images of the video sequence,
and in others, users may need to view a short clip segment extracted from the longer
video. There exists no optimal summary form. Additionally, it is difficult to measure
the performance of any summarization technique in terms of a quantifiable result.
The best we can do is to compare the summary to what a human user would consider
optimal.

This thesis examines the integration of various summarization techniques to de-
velop an effective composite method that, again, is generally applicable to a wide class
of content. Determining the most effective summarization technique for a given video
source is a difficult research problem. The summarization method should present the
user with the most effective means of organizing the data for maximum understanding
and saliency. Understanding the summarization output is not a well-defined concept
and is likely a user-dependent concept. Additionally, the summarization method
must be able to adapt to the underlying video content, presenting the user with the

most effective interface for viewing the content. Moreover, a summarization method
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Figure 1.1: Proposed Results Fusion System

should present a concise summary that provides an overview of the video, reducing

redundant information created by repeated scenes or alternating shots.

1.1.3 Results Fusion

This thesis focuses on the composition of existing algorithms into a single composite
algorithm with considerably improved performance and greater general applicability.
The approach that has been chosen is to combine the feature output of multiple
algorithms using results fusion. Results fusion (also referred to as sensor fusion in
the robotics community, classifier fusion in information retrieval, and multimodality
fusion in biometrics) is the process of combining multiple evidence or sensors to
improve the performance and reliability over utilizing a single evidence or sensor.
The performance of any system is predicated upon the reliability of the sensor that is
used. If a single sensor is used, it may be subject to errors or unpredictable behavior
in certain environments. The result of such a sensor could be unreliable. Results
fusion attempts to address this problem by utilizing multiple sensors that capture
different aspects of the data under analysis. Each sensor itself may not provide superb

performance, however the appropriate combination of these sensors may produce a



reliable and quality result.

An important feature of results fusion methods is the ability of the results fu-
sion engine to generalize or adapt to novel patterns or input data [133]. In order
to obtain a system that generalizes well, researchers have experimented with using
multiple classifiers with each classifier generalizing differently, utilizing separate fea-
tures, modalities, or representations. In order to use all the information available,
the results or features of the multiple classifiers must be combined to make a final
decision.

Several methods exist for results fusion. As an example, considerable research on
results fusion has come from the area of document retrieval [6, 44, 61, 81, 82, 83, 94,
123]. In this area, researchers attempt to combine multiple representations of queries
and documents or multiple retrieval techniques. Research in this field has shown that
significant improvements can be achieved by combining multiple evidence [6, 83]. Re-
sults fusion has also become popular for personal identification and authentification,
where different methods (fingerprints, retinal scans, and other biometric measures)
have limited individual reliability, but allow for greater reliability when used in con-
junction, reducing the false acceptance of imposter cases [9, 48, 117, 139]. Research
in handwriting and character recognition attempts to combine multiple line segments
via results fusion to identify handwritten numerals [80, 145]. Additionally, research
in the sensor fusion community has indicated receiving improved performance and
reliability over using a single sensor. Researchers in this community attempt to fuse
information retrieved from metal detectors, ground penetrating radar, and thermal
infrared imagers for the detection of land mines [27, 121].

There are important similarities between the composition of multiple methods in
the document filtering community and in creating a fusion-based video segmentation
technique. Just as some document filtering algorithms require different document
representations [70] to improve retrieval performance, the various video segmentation
algorithms utilize different abstract video representations (motion maps, histograms,
etc.). Additionally, just as some document filtering algorithms fuse results from

previous algorithms to improve performance, the results of various video segmentation



algorithms can be fused to create an improved, unified result.

In general, there is no guarantee that the fusion of multiple strategies will improve
performance over individual methods. For example, if an accurate sensor is fused
with one that generates random results, then no improvement is realized. However,
empirical evidence from the document analysis and biometric community indicate that
fusion is beneficial and improves performance. For example, if the optimal strategy
is unknown, the fusion of multiple methods can be advantageous even if the fusion

results are worse than the best individual strategy.

1.1.3.1 Document Analysis

Some document analysis researchers attempt to combine multiple representations
of queries and documents or multiple retrieval techniques. An example application
that incorporates results from multiple input sources is the metasearch engine. A
metasearch engine is a system that provides access to multiple existing search engines.
Its primary goal is to collect and reorganize the results of user queries by multiple
search engines. There has been considerable research regarding the effectiveness and
performance of metasearch engines [8, 21, 34, 49, 52, 60, 79, 99]. The result merging
step of a metasearch engine combines the query results of several search engines into
a single result. A metasearch engine usually associates a weight or similarity measure
to each of the retrieved documents and returns a ranked list of documents based on
this value [99). These weights can be derived from an adjustment of the document
rank value of the local search engines or by defining a global value based on all of the
retrieved documents. This approach only focuses on the results of multiple searches
and not a combination of the multiple search engines functionalities. Metasearch
engine research is complicated by the fact that differing search engines produce rank
results that are heterogeneous and not easily compared.

Document retrieval methods have also shown increased performance when com-
bining results from various document representations. Katzer, et al. [70] compared
text document retrieval performance using different document representation meth-

ods. Their results demonstrated that the different document representations retrieved



different sets of relevant documents and that performing information retrieval with
multiple document representations improved retrieval performance over using a single
method. Additionally, Bartell, et at. [6] and Shaw, et al. [123] combined multiple re-
trieval algorithms and obtained better performance than using a single method. Hull,
et al [61] combined probability estimates of multiple classifiers to improve document
filtering performance.

As the document retrieval methods rely on various document representations, the
various video segmentation algorithms rely on different characteristics of the underly-
ing video as abstracted into some intermediate representation, such as a feature vector
or representative image. Color-based methods create histograms of the frame content
color distribution and compute distance metrics between these histograms to search
for shot boundaries [47, 86, 95, 102, 156, 157]. Model-based methods create Hidden
Markov Models (HMM) of each possible state and transition in a video sequence that
are used to locate transitions as temporal events [11, 115]. Edge-based methods utilize
derived edge maps of the frame content to search for shot segmentation boundaries
(86, 152]. Motion-based methods rely on derived velocity and displacement vectors to

compute the amount of motion between video frames to determine shot boundaries

[31].

1.1.3.2 Biometrics

Many researchers have focused on the fusion of face and voice data to improve per-
sonal identity verification [9, 17, 67, 117, 146]. Several studies have shown that using
a multi-modality biometric system can improve on the incompleteness of any single
model biometric system [117]. Yacoub [9, 146] uses multi-modal biometric features to
fuse face and voice information together via a supervising expert. Person identifica-
tion is treated as a binary classification problem, with each user either belonging to
the imposter class or the client class. Given the scores from the face and voice iden-
tification modules, the supervising expert finds the optimal function that separates
the two classes to make verification decisions.

Genoud, et al. [48] combined several speaker verification methods to improve per-
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formance. The decision functions of each verification method are weighted with a con-
fidence measure. The average confidence measure is tested against a global threshold
to determine speaker authentication. Their research concluded that increased perfor-
mance can be achieved by combining multiple methods.

Ross, et al. [117] fused the results from face, fingerprint, and hand geometry
analysis to increase the performance of a biometric system. In their research, the
decision function of multiple biometric systems is consolidated via a summation rule,
which takes a weighted average of the individual scores. From their research it was
concluded that increased performance could be obtained by using multiple modalities.

The results of this research suggest that increased shot segmentation and sum-
marization performance can be achieved by fusing multiple algorithms over using a

single method.

1.2 Contributions of this thesis

This thesis contributes to the overall research in digital video in seven distinct ways.
Results obtained by the document analysis and biometric communities using fusion of
multiple methods to increase performance suggest that an improvement of shot seg-
mentation and summarization could be achieved by fusing together multiple methods.
To achieve this goal, we select appropriate shot segmentation algorithms and exam-
ine a variety of fusion-based techniques, constructing a composite method for shot
segmentation.

We then extend the general ideas and results developed in this work to sum-
marization. The goal has been not only to develop an improved method for video
summarization, but also to demonstrate the extensibility of the general concept of
results fusion.

Some of the techniques that we have used to extract the features and determine
shot boundary detection are not necessarily new, however our implementation of them
is. Additionally, we test our newly developed algorithms on a wide variety of different

video classes. To date, much of the research in the field of digital video has been done
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using small test samples of structured content. Few researchers have attempted to
test algorithms on large video suites that encompass the complexity and variety of
different classes of content. The classes of video that were used for our study include
commercial films, home video, news broadcasts, raw news footage, surveillance video,
and Unmanned Aerial Vehicle (UAV) military video.

To summarize, the contributions in this thesis are:

e A Decision Tree and Ruleset based results fusion engine for shot segmentation

and summarization that improves performance over using a single algorithm.

e Neural Network results fusion for shot segmentation and summarization that

improves performance over using a single algorithm.

e Support Vector Machine-based results fusion for shot and video summarization
that fuses key features from video and determines a best segmentation with
extensions to summarization that improves performance over using a single

algorithm.
e Feature extraction and analysis for results fusion.
e Experimental validation on a large and varied video test suite.

e Adaptability to detect shot boundaries when receiving unreliable data from one

or more modalities.

e A novel keyframe-based video summarization technique based on camera mo-

tion.

When video enters the proposed system, it is analyzed by each feature module.
The feature extraction modules are used to extract low-level image features. These
feature modules extract the necessary features and output a measure for each video
frame representing the difference metric between successive frames. The outputs of
the features modules are combined using a results fusion engine. The output of the
results fusion engine is a decision as to whether the current frame under analysis is a

shot boundary. Figure 1.1 shows a graphical representation of the proposed system.
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1.3 Definitions

This section describes some of the terms and symbols that appear throughout this

thesis. Images in this thesis are presented in color.

e cut: An abrupt boundary that occurs where there is a change of shots between
two consecutive frames. Figure 1.2 shows a graphical representation of a cut

between pairs of frames in a music video sequence.

e dissolve: The simultaneous occurrence of a fade-in and fade-out, with both
effects superimposed over a span of frames [28]. Figure 1.3 depicts a dissolve

video edit.

e fade: A gradual transition of video content to or from black (or some other
fixed color frame). A fade-out occurs when there is a gradual change fade to a
black screen, while a fade-in occurs when there is a gradual fade from a black

screen. Figure 1.4 is a graphical representation of a fade-in video effect.

e keyframe: A still image that best represents the content of a video sequence in
an abstract manner [157]. There is no clear criterion for selecting keyframes and
systems vary considerably on what is considered the best choice for keyframe

selection or construction.
e scene: A logical grouping of shots focusing on certain objects of interest [109].

e shot: A sequence of frames captured as a single continuous action in time and

space [109].

e wipe: A transition from one shot to another by selectively uncovering a con-
tiguous region of the image, often rectangular. The effect is often like a virtual
line passing across the image, clearing one picture while it brings in another
occurring over a span of frames. Figure 1.5 shows a graphical representation of

a wipe video effect.
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Cut Frame

Figure 1.2: Cut Between Successive Frames



Figure 1.3: Dissolve Video Edit



Figure 1.4: Fade In Video Effect



Figure 1.5: Wipe Video Edit



1.4 Stucture of this thesis

The remainder of the thesis is organized as follows. Chapter 2 reviews existing shot
segmentation, summarization, and results fusion methods, noting strengths and weak-
nesses. Chapter 3 examines the shot detection methods implemented in this thesis.
Chapter 4 examines result fusion-based algorithms and implementations for video
segmentation. Experimental evaluation and testing is detailed in Chapter 5. Chap-
ter 6 discusses how our novel results fusion-based shot segmentation methods can be
extended for video summarization. A summary and proposed future work is detailed

in Chapter 7.
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Chapter 2

Related Work

The widespread distribution and storage of digital video has presented many chal-
lenges. The challenges arise because of the nature and characteristics of digital video.
It is an inherently voluminous and redundant medium. In order to effectively utilize
this medium it must be transformed into a form that is searchable, manageable, and
structured. Temporal video shot segmentation is the first step towards achieving this
goal. Any method that attempts to index, browse, retrieve, or parse digital video
must be segmented. The goal of video shot segmentation is to present a longer video
sequence as a set of smaller more manageable segments called shots. A shot can be
characterized as a sequence of frames captured as a single continuous action in time
and space [109]. Each shot is then mapped into a smaller number of representative
images via an abstraction process. The abstraction process creates a series of still or
moving images that is shorter in length than the original video and preserves the es-
sential meaning of the video [88]. Summarization attempts to reduce the redundancy
created in the abstraction process due to repeated scenes or shots, maintaining the
original structure of the video.

Results fusion is the process of combining multiple sensors or classifiers. It is
considered a general problem in various application domains such as face recognition,
text categorization, person authentification, and optical character recognition. The
premise behind results fusion techniques is that better accuracy and reliability can

be obtained by fusing multiple evidence or sensors over using a single evidence or
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sensor. If a single sensor is used, it may be subject to errors or unpredictable behavior
in certain environments. The result of such a sensor could be unreliable. Results
fusion attempts to address this problem by utilizing multiple sensors that capture
different aspects of the data under analysis. Each sensor itself may not provide superb
performance, however the appropriate combination of these sensors may produce a
reliable and quality result.

The purpose of this chapter is to give an overview of the existing methods for
video segmentation and summarization. The performance and limitations of each
algorithm are discussed and compared. Additionally, this chapter will discuss the

current research and methods for results fusion.

2.1 Video Systems

There has been much research in the development of composite video systems that
allow users to store, search, and browse digital video [56, 105, 106, 141, 140]. The
Fischlar project at Dublin City University is a visual indexing system that allows users
to store and browse television programs. The Informedia I and II Project at Carnegie
Mellon University utilizes speech information, image analysis, and natural language
processing on over a terabyte of video data to facilitate video search, navigation, and
retrieval [56, 141, 140]. Video segmentation and summarization are important aspects
of these systems. Video segmentation is the first step in any digital video analysis
system. Its goal is to capture the underlying structure of the video sequence and
divide the video stream into logical subunits [156]. Most segmentation algorithms
operate on the shot level; however there has been some research on segmenting video
on the story level. Figure 2.1 illustrates the hierarchy of a typical video. The second
step in any composite digital video system is the summarization of a video sequence.
The goal of summarization is to reduce the redundancy in the segmentation process
caused by repeated scenes or long shots. Both segmentation and summarization work

together as the foundation of any composite video system.
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Shots

Frames

Figure 2.1: Typical Video Structure

2.2 Segmentation

A typical video sequence is composed of scenes, which are composed of shots, which
are composed of frames at the lowest level. Figure 2.1 shows the structure of a
typical video sequence. Most common segmentation algorithms rely on low-level
image features at the shot level to partition the video. Attempting to partition the
video at the scene or story level is difficult; there is no standard or universal definition
of scenes or stories.

A shot is an unbroken sequence of frames taken from one source [74]. There are
two basic types of shot transitions: abrupt and gradual. Abrupt transitions, called
cuts, occur when a frame from a subsequent shot immediately follows a frame from the
previous shot. Gradual transitions consist of slow change between frames from one
shot to frames of a different shot. These types of transitions include cross-dissolves,
fade-ins, fade-outs, and other graphical editing effects such as wipes [47]. A fade-in
is the gradual increase of intensity starting from one frame to the next. A fade-out
is a slow decrease in brightness from one frame to the next. A cross-dissolve is when
one frame is superimposed on another, and while one frame gets dimmer, the other

frame gets brighter. A dissolve can be considered an overlapping of a fade-in and a
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fade-out [28]. Gradual transitions are more difficult to detect because camera and
object motion can inhibit the accurate detection of gradual transitions, causing false
positives.

There have been several research projects comparing and evaluating the perfor-
mance of shot detection techniques. Koprinska, et al. [74] provides a survey of the
existing approaches in the compressed and uncompressed domain. Dailianas [28] com-
pared several segmentation algorithms across different types of video. Lienhart [86]
evaluated the performance of various existing shot detection algorithms on a diverse
set of video sequences with respect to the accuracy of each detection method, and
the recognition of cuts, fades, and dissolves. Lupatini, et al. [95] compared and
evaluated the performance of three classes of shot detection algofithms: histogram-
based, motion-based, and contour-based. Boreczsky and Rowe [10] compared various
compressed and uncompressed video shot detection algorithms. All of these tem-
poral video segmentation algorithms can be categorized as either a compressed or

uncompressed domain technique.

2.2.1 Uncompressed domain techniques

The majority of segmentation algorithms operate in the uncompressed domain. Typi-
cally, a similarity measure between successive frames is defined and compared against
a predetermined threshold. A cut is determined when the distance value between two
images falls below this predetermined threshold. Gradual transitions can be found by
using complex thresholding techniques [156] or using a cumulative difference measure.
Figure 2.2 categorizes the various uncompressed shot segmentation techniques. The

uncompressed algorithms can be organized into the following categories.

2.2.1.1 Pixel Differences

One way to detect the possible changes between successive frames is to compare the
corresponding pixel values between the two frames and count how many pixels have

changed. If the number of changed pixels is above a predetermined threshold, a shot
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is detected. Koprinska [74] calculates the absolute sum of pixel differences between

two successive frames as:

x— Y— R ) —R )
D(,i+1) = z=1 y_1| )((Iil/) +1(z,9)]

(2.1)

where P;(z,y) and P.;(z,y) represent pixel intensity values at coordinates (z,y). A
cut is determined if the difference value D(i,:+ 1) is above a predetermined threshold.
One potential problem with this implementation is extreme sensitivity to camera
motion. If the camera moves a few pixels between successive frames, a large number of
pixels will be counted as being changed. Zhang, et al. attempted to reduce this effect
with the use of a smoothing filter [156]. Before each pixel comparison the candidate
pixel is replaced with the average value of the pixels within a 3z3 neighborhood.

Additionally, this filter reduces noise in the input images.

2.2.1.2 Statistical Differences

Zhang, et al. uses a likelihood ratio to compare successive frames based on the

assumption of uniform second-order statistics over regions in each frame [156]. In

this algorithm each frame is subdivided into k blocks and the corresponding blocks

are compared based on the statistical characteristics of their intensity values. The

likelihood ratio that two blocks come from different scenes can be expressed as [156]:

[S.-+f.~+1 + (m‘-—mﬁ)z]z
Si * Sina

M = (2.2)

where m; and m;,, are the mean intensity values for the two blocks k and S; and
S;+1 are the respective variances in consecutive frames ¢ and 7 + 1. The number of

blocks whose likelihood ratio exceeds a threshold T; is counted as follows:

o 1 if A>T,
D(i,i+ 1,k) = (2.3)
0 otherwise

If the number of changed blocks exceeds a second threshold T3 a cut is declared. One
advantage that this method has over the pixel difference method is that it improves
the tolerance against noise associated with camera and object movement. Addition-

ally, the likelihood ratio has a broader dynamic range than does the percentage used
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with the pixel difference method [156]. This broader dynamic range makes it easier
to choose a threshold ¢ to distinguish between changed and unchanged areas. One
problem with the likelihood ratio algorithm is that it is possible for two different cor-
responding blocks across a shot boundary to have the same density function, causing
no cut to be detected. Another problem with this method is that, compared to the
pixel difference method, its performance is slower as a result of the complexity of the

statistically-based formula.

2.2.1.3 Histograms

The most commonly used structure for color-based segmentation is the histogram.
Ranges of colors are divided into buckets and the number of pixels assigned to each
bucket forms the color histogram of the video frame. Histogram-based algorithm
techniques use a distance metric between histograms as a similarity measure. The
basic assumption is that content does not abruptly change within, but across shots
[86]. Once an image has been represented as a histogram there are various distance

metrics that can be used. Some of the most commonly used distance metrics are:

e Chi-square:

k A2\ _ . 12
Xz — ; (Ht(J)}I”ﬁ;;l(])) (2.4)

e Intersection:

i min(Hi(i), Hita (7))

Intersection(H;, Hi,) =1 — N (2.5)
e Absolute Bin Difference:
ABD(H, Huys) = Y [Hi(i) = Hona(9) (26)

i=1

Zhang et al. [156] concluded that the x2 method of histogram comparison enhances
the difference between two frames across a cut, however it also increases the difference
between frames with small camera and object movements. Additionally, the overall

performance of the x? method is not much better than the absolute bin difference
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method, with x? being more computationally intensive. Zhang et al. [157] computed

the distance between color histograms as:
N N
D(H;, Hix1) =YY ai;(Hi(i) — Hina(2))(Hi(5) — Hinr () (2.7)
i

where the matrix a;; is derived from human perception studies. If the distance metric
exceeds a threshold, a cut is selected. Histograms are attractive because they are
effective at determining abrupt changes between frames. They are also tolerant to
translational and rotational motions about the view axis, and change gradually with
the angle of view, change in scale, or occlusion [157]. However, they completely
ignore the spatial distribution of intensity values between frames. Consecutive frames
that have different spatial distribution, but have similar histograms, are considered
similar. Zhang et al. [156], and Nagaska and Tanaka [102] are examples of color-based
histogram implementations.

One solution to the problems associated with global histograms is to create local
histograms. Local histograms segment a frame into blocks and compute histograms
for each block. This method is tolerant to local changes in motion, however it is still
sensitive to changes in luminance over and entire frame [95]. Nagaska and Tanaka
[102] split each frame into 16 blocks of equal size and evaluate the difference between
histograms of the corresponding blocks. The x? method is used to compute the
distance metric between frames. The largest difference value is discarded in order to
reduce the effects of noise, object and camera movements.

Gargi, et al. [47] experimented with computing histograms for various shot de-
tection methods in different color spaces. The color spaces include RGB, HSV, YIQ,
XYZ, L*a*b*, L*u*v*, Munsell, and Opponent. They concluded that the Munsell
space produced the best performance results. The Munsell space is used because it
is close to the human perception of colors. Additionally, Zhang, et al. [157] used
a dominant color technique only using the most dominant colors corresponding to
the histograms with the most bins. The assumption that is made by the dominant
color technique is that small histogram bins are likely to contain noise, distorting shot

detection results.
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Histogram based methods produce good performance in the presence of abrupt
changes between shots. However, in the presence of gradual transitions, such as dis-
solves, fades, and wipes, the difference between successive frames may be too low to
be detected. In order to detect gradual transitions, Zhang, et al. [156] imposed a two
threshold technique, consisting of an upper and lower bound. The upper threshold is
used to detect abrupt cuts, while the lower threshold is used to detect gradual transi-
tions. Whenever the frame difference exceeds the upper threshold, a cut is detected.
If the histogram difference falls between the two thresholds, it was marked as the
possible beginning of a gradual transition. The subsequent frames are then compared
against the candidate frame to detect the remaining frames in the transition sequence.
If the successive differences exceeded the upper threshold before the difference falls
below the lower threshold, the sequence is considered a gradual transition.

Lupatini, et al. [95] compared the performance of twelve shot detection methods
based on histograms, motion, and contours. They concluded that the best perfor-
mance was achieved with histogram-based algorithms. Boreczky, et al. [10] compared
the performance and evaluation of three histogram-based algorithms, a motion-based
algorithm, and an algorithm based on the DCT coefficients. They concluded that
the histogram-based algorithms performed better in general than the motion-based
and DCT-based algorithms. Zhang, et al. [156] compared pixel differences, statisti-
cal differences, and histogram-based methods, and concluded that histogram-based

methods offer a good trade-off between accuracy and speed.

2.2.1.4 Clustering

Tekalp, et al. [53] introduced a temporal video segmentation technique based on
2-class clustering to eliminate the subjective nature of selecting thresholds. Video
segmentation is treated as a 2-class clustering problem, where the two classes are
"scene change” and "no scene change”. The K-means clustering algorithm [66] is
used to cluster the frames. The x? method and the histogram difference method are
used to compute the similarity metric in the RGB and YUV color spaces. From their

experiments, the x2 method in the YUV color space detected the larger number of
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correct transitions, however when the complexity of the distance metric is factored
in, the histogram difference method in the YUV color space was the best in terms of
overall performance. One major advantage of this technique is that it eliminates the
need to select a predetermined threshold. Additionally, multiple features can be used
to improve performance of the algorithm. In subsequent research, Ferman and Tekalp
[43] utilize two features, histograms and pixel differences for video segmentation via

clustering.

2.2.1.5 Edge differences

Zabith, et al. [152] detect cuts, fades, dissolves, and wipes based on the appearance of
intensity edges that are distant from edges in the previous frame. A summarization of
the edge pixels that appear far from an existing pixel (entering edge pixels) and edge
pixels that disappear far from an existing pixel (exiting edge pixels), are used to detect
cuts, fades, and dissolves. The method is further improved to tolerate camera motion
by applying motion compensation. The global motion between frames is calculated
and used to align frames before detecting the entering and exiting edge pixels. One
disadvantage of this technique is that it is not able to handle independently moving
objects [74]. Another disadvantage of this method is an increase in false positives due
to the limitations of the edge detection method. Changes in image brightness, or low
quality frames, where edges are harder to detect, may cause false positives. Lienhart
[86] experimented with the edge-based segmentation algorithm by Zabith, et al. [152]
and concluded that false positives can arrive from abrupt entering and exiting lines of
text. In order to reduce the false positive, the classification of hard cuts was extended.
Additionally, Lienhart [86] found that hard cuts from monochrome images were being

classified as fades. The algorithm was modified to eliminate this misclassification.

2.2.1.6 Model-based

Boreczky and Wilcox [11] used hidden Markov Models (HMMs) to segment video
(115]. The features used for segmentation are the distance between gray-level his-

tograms, an audio distance based on the acoustic difference in intervals just before
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and just after the frames, and an estimate of the object motion between frames. Sep-
arate states in the HMM are used to model fades, dissolves, cuts, pans, and zooms.
The arcs between states model the allowable progression of states. From a shot state
it is allowable to go to any of the transition states, however from any transition state
it is only possible to go back to a shot state. Additionally, since pans and zooms
are considered a subset of a shot, they can only be reached from a shot state. The
arc from a state to itself models the duration of the state. The transition probabili-
ties and the means and variances of the Gaussian distribution are learned during the
training phase based on the Baum-Welch algorithm [115]. Training data consists of
features (histograms, audio distance, and object motion) from a collection of video
with the data classified as a shot, cut, fade, dissolve, pan, or zoom. After the model is
trained, segmenting the video into its shots and camera motions is performed via the
Viterbi algorithm [115]. One advantage of this technique is that thresholds are not
subjectively determined; they are learned automatically based on the training data.
Another advantage of this technique is that it allows for the inclusion of multiple

features in the training data.

2.2.1.7 Other Techniques

Vasconcelos and Lippman [138] developed a Bayesian framework for shot segmenta-
tion by modeling the shot duration and shot activity. The premise of their research
is that the probability that a new shot boundary occurs is highly dependent on how
much time has elapsed from the previous one. Gong and Liu [50] created a novel tech-
nique for shot segmentation based on Singular Value Decomposition (SVD). Given an
input video sequence, SVD is performed on feature vectors derived from each input
frame. Silva, et al. [125] devised a video segmentation technique based on volumetric
processing of the video sequence. Each video sequence is represented as a volumet-
ric video object. Geometric functions are used to classify shot boundaries. Lei, et
al. [84] developed a statistical hypothesis testing framework based on the Hotelling
T? test to detect shot segmentations. Brunno and Pellerin [18] utilized optical flow

measurements based on a global wavelet-based parametric model to determine shot
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boundaries. Shot boundaries are detected by locating and analyzing the temporal

trajectories of the linear prediction errors of the wavelet coefficients.

2.2.1.8 Gradual Shot Boundary Detection

Hard cuts (abrupt transitions) account for 90% of all transitions between shots [87].
The majority of the research in shot boundary detection has focused on detecting
hard cuts because this boundary type can be characterized by a single measure be-
tween consecutive frames. The difference between successive frames across a hard cut
boundary generally produces a high difference value between the two frames, which
can be detected by a variety of algorithms that employ a single threshold.

Gradual transitions such as dissolves, fades, and wipes are more difficult to de-
tect in video sequences. Gradual transitions account for the remaining 10% of shot
transitions [87] in commercial video. These transitions occur across a series of frames
rather than just a single frame as with hard cuts. Additionally, the difference between
successive frames during these types of transitions is relatively small due to the spe-
cial effects commonly used during a gradual transition. Lowering the threshold does
not solve this problem because the differences between successive frames in a gradual
transition may be smaller than the difference between frames in a shot, resulting in
numerous false detections. Moreover, gradual transitions must be differentiated from
camera and object movements that display temporal changes and variances similar
to gradual transitions that may also cause false positives.

Fades and wipes are generally easier to detect than dissolves. During a fade-in or
fade-out, the video signal is scaled by some mathematically well-defined and simple
function. Additionally, during wipes, the two video sequences under analysis are well
separable at any time [87]. During a dissolve, the two video sequences under analysis
are mixed together temporally and spatially, which makes the problem of detecting
dissolves very difficult.

There has been considerable research on the detection of gradual transitions in
digital video [69, 87, 98, 104, 156]. The twin comparison method of Zhang et al. [156]

was the earliest method that attempted to detect gradual transitions. Zhang et. al,
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surmised that a single threshold could not detect all segmentation boundaries. The
twin comparison method utilizes two thresholds, one high T, and one low 7;. The
high threshold T} is used to detect hard cuts and the low threshold 7 is used to detect
gradual transitions. The process begins by comparing frames based on a difference
metric. If the value of the metric exceeds threshold T}, a hard cut reported as detected.
If the difference metric is below threshold 7}, and above the lower threshold 7; the
frame is marked as the potential start of a gradual transition F,. An accumulated
comparison is then performed on the frame F, and the subsequent frames. This
value usually increases during a gradual transition. The end frame F, is determined
when the difference between successive frames drops below 7T; and the accumulated
difference value exceeds T},. If the consecutive difference value drops below T; before
the accumulated difference value exceeds T}, the potential start position Fj is dropped
and the process restarts. There are some gradual transitions that exhibit difference
metric behavior where the metric temporarily drops below the low threshold 7;. In
order to combat this problem a tolerance value can be set that allows a certain number
of frames to drop below T} before eliminating F as a potential candidate for the start
of a gradual transition.

Meng, et al. [98] detected dissolve transition effects in MPEG compressed video by
tracking the temporal characteristics of the frame variance 6% of DCT DC coefficients
of I and P frames. They specifically watch for parabolic shapes in this value over
time. Assuming 2 video sequences f;(t) and f»(t) with intensity variances o?(t) and
o2(t), gradual transitions can be expressed as a linear combination of the two video

sequences. The dissolve region is characterized as:

f(&) = L)1 — a(t)] + f2()a(t) (2.8)

where a(t) is a linear parameter that increases linearly from 0.0 to 1.0 over the

range of the dissolve. The parabolic variance curve is described as:
o’(t) = (o + 02)a(t) — 202a(t) + o2 (2.9)

The criteria that is used to detect dissolves based on the parabolic curve is that (1)

the depth of the variance valley must be large enough, and (2) the duration of the
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suspected dissolve region must be long enough. This algorithm produces good results
and the processing speed is very fast [69]. However, false alarms can arise due to fast
camera or object motion and some dissolves do not satisfy the second criteria.

Jun, et al. [69] detects dissolve transitions based on the spatio-temporal distri-
bution of macro blocks in partially decoded MPEG video sequences. This algorithm
analyses B frames adjacent to anchor frames in order to determine potential candi-
dates for dissolve transition. A forward macro block ratio (FMBR) is computed for

all B frames adjacent to anchor frames. The FMBR is defined as [69]:

Myya/(Mswd + Mowa) if Mpwg + Miwg # 0
N/A otherwise

FMBR = (2.10)

where Mj,q and My, represent the number of forward and backward type mac-
roblocks respectively. In a dissolve sequence the FMBR changes either from a high
value to a low value or vice versa. The temporal distribution of macro block types
is determined by prediction state sequences of B frames adjacent to anchor frames.
The prediction states are based on the value of the FMBR. Candidates for dissolve
transitions are also determined by the spatial distribution of forward and backward
predicted macro blocks. Of course, any method that relies on MPEG macroblock
distributions is necessarily dependent on the characteristics of the MPEG encoder
utilized to produce the video under analysis.

Drew, et al. [35] detects horizontal wipe video effects by using a comparison
of successive frames based on chromaticity histograms. The histograms are created
by using only the DC values in the columns of each frame. First, a 2D intensity
normalized spatio-temporal image is created as follows: r = R/(R+ G + B), g =
G/(R+ G + B). Then a 2D chromaticity histogram is created for each column. The
histogram intersection is used to determine differences between consecutive frames.
During a wipe, when the wipe reaches each column, an abrupt change produces a
histogram intersection equal to zero. Dissolves are detected by creating 2D color
histograms in the Cb-Cr color using only the DC values in the columns of each frame.
The algorithm looks for constant behavior in the difference values between histograms.

Lienhart [87] developed a dissolve detection system comprised of a transition de-
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tection training system and a multi-resolution transition detection system. The de-
tection system is able to identify fixed-size (16 frames) and fixed-scale dissolves. The
training system is able to create infinite dissolve sequences from video databases. It
is used to create a video corpus of dissolves. Lienhart notes that during a dissolve the
image contrast decreases toward the center of a dissolve and increases toward the end.
As a result, the average contrast measure of each frame is used to detect dissolves
along with a YUV histogram. A feed-forward neural network is used to train and
classify the system to detect dissolves. Lienhart reports receiving favorable results

using this technique.

2.2.2 Compressed Techniques

Due to the massive size of uncompressed video content, most video is stored in a
compressed format, such as MPEG. As a result, there has been considerable research
into performing video segmentation directly on the coded MPEG compressed video [1,
92, 93, 154, 148]. An advantage to performing video segmentation in the compressed
domain is not enduring the increased computational complexity of decoding the video
before analysis. Additionally, as a result of the lower data rate of compressed video,
algorithm operations are often faster [74]. Also, the encoded video inherently contains
computed features such as motion vectors and block averages that can be utilized.
However, the speed and efficiency of algorithms in the compressed domain comes at

the cost of increased implementation complexity.

2.2.2.1 Brief Overview of MPEG Video

An MPEG video stream is composed of three types of interleaved frames: Intracoded
(I), Bidirectional (B), and Predicted (P). These frames are combined in a repetitive
pattern, with the frames between two I frames labeled as a group-of-pictures (GOP).
Intracoded (I) frames provide a random access point into the compressed data and
are encoded by using lossy DCT, Quantization, Run Length Encoding (RLE), and

Huffman entropy coding. An MPEG intra-coded frame is very similar in structure to
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a JPEG compressed image. Predicted (P) frames are motion compensated in the for-
ward direction, using the nearest previously reconstructed I or P frame. Bi-directional
(B) frames are motion compensated in both directions from I and P frames. Motion
compensation is performed on macroblocks, which are a 16216 block of pixels. For
each macroblock in the current frame the encoder computes a motion vector based on
the best matching macroblock in the reference frames, and Discrete Cosine Transform
(DCT) encodes the residual error. If the best matching macroblock in the reference
frame occupies the same position in the current frame, a zero prediction vector is ob-
tained. If the residual error after motion compensation for a particular macroblock in
a B or P frame is too high, meaning that the current frame does not have much in com-
mon with the reference frame, the encoder can choose to intracode that macroblock.
A macroblock in a B frame can be intracoded, forward predicted, with the prediction
vector pointing to a macroblock in a past frame, backward predicted, with the pre-
diction vector pointing to a future frame, or interpolated, where the best matching
source macroblocks in the previous and next frame are averaged. A macroblock in
a P frame can either be intracoded, or forward predicted, with the prediction vector
pointing to a macroblock in a past frame. DCT coding is performed via 8z8 pixel
blocks, creating 64 DCT coefficients per block and 4 blocks per macroblock. Fig-
ure 2.3 depicts a typical MPEG data hierarchy. A more detailed description of the
MPEG standard can be found at [64].

Algorithms in the compressed domain can be grouped into the following categories:
Discrete Cosine Transformation (DCT) coefficients, DC terms, and Hypothesis Test-

ing.

2.2.2.2 Discrete Cosine Transformation (DCT) coefficients

The Discrete Cosine Transform (DCT) is the process used in MPEG compression
(and many other standards including JPEG) for separating an image into spectral
sub-bands with respect to the images visual quality. It transforms an image from
its spatial domain to the frequency domain. The first step in DCT coding is the

separation of I frames into 828 or 16x16 sized blocks. The choice of block size is de-
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Figure 2.3: Typical Video Structure

termined by a trade-off between compression efficiency and computational complexity.
A larger block size produces greater compression efficiency; however it increases the
computational complexity of the coding. The DCT converts a block of pixels into a
block of transform coefficients. The coefficients represent the spatial frequency com-
ponents that comprise the block of pixels. Each coefficient can be thought of as a
weight that is applied to a basis function. Most blocks will have DCT coefficients
of zero because for most images, much of the signal energy lies at low frequencies.
Researchers have attempted to use the characteristics of the DCT coefficients to de-
termine shot boundaries. The basic idea is that the DCT coefficients across a shot
boundary exhibit significant change in relevant blocks.

Arman, et al. [1] developed a video segmentation algorithm to detect cuts in
motion JPEG compressed video data. For each frame, a feature vector is created
from a subset of the DCT coefficients. A cut is detected by analyzing the normalized

inner product of the vectors of two successive frames. The normalized inner product
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is represented as [74]:
Vi ) Vi+qp

Vil |[Vitol
If 1 - |DP(i,i + ¢)| > T) , where T; is a predetermined threshold, a cut is detected.

DP(i,i+ ¢) = (2.11)

A second threshold T3 is used to reduce the effects of camera and object motion. If
Ty < 1-|DP(i,i+¢)| < Ty, the frames are decompressed and a histogram comparison
is performed for the respective images.

Zhang, et al. [154] extended the work of Arman et al. [1]. In their work, shot
boundaries are detected using a pair-wise comparison technique of the DCT coef-
ficients of I frames in the compressed video. A pixel comparison distance metric
is compared to a predetermined threshold. The numbers of blocks that exceed the
threshold is counted, and if the sum exceeds another predetermined threshold, a cut

is determined. The distance metric is defined as [74):

64 N )
DP(i,i+ ¢,l) = 1 Z lcz,k(l) cl_k(z+<p)| ST,

" 64 & mazfeik(i), k(i + )] (212)

ik is the DCT coefficient of block ! in frame ¢, with ! depending on the size of the
frame. If the distance metric is larger than a predetermined threshold T3, the block
[ is counted as being changed. If the number of changed blocks exceeds a second
predetermined threshold, a cut is detected. Since the algorithm only processes I
frames, processing time is reduced, however temporal resolution is also decreased.
Gradual transitions are not detected by either of the techniques, and they are subject
to produce false positives as a result of camera and object motion. The pair-wise
comparison technique is less computationally intensive than the technique proposed

by Arman et al. [1].

2.2.2.3 DC Terms

The first DCT coefficient is referred to as the DC term, where DC is derived from
direct current, an electronics term. The DC term is the average of all pixel values
in the block and represents a sub-sampling of the block. Since the DC terms can be
considered a reduced-resolution image, segmentation algorithms have been developed

that analyze this image in order to detect cuts. Figure 2.4 depicts a full resolution
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Figure 2.4: Full Image (352x240) and its DC image (44x30)

image along with its corresponding (tiny) DC image. The DC terms are treated
specially in most compression algorithms including MPEG due to their significance
as a reduced resolution image and, therefore, are easy to extract.

Yeo and Liu [148] have developed a method for detecting cuts in the compressed
domain based on DC frame differences. An image is divided in Nz N pixel blocks,
with the (7, j) pixel of the DC image corresponding to the average value of the (i, j)
block of the original image. The DC terms of I-frames are available from the MPEG
stream, while DC terms of P and B frames are re-constructed using motion vectors
and DCT coefficients of previous I frames. The reconstruction of the DC terms of P
and B frames is a computationally expensive process relative to the I frames, but is
still more efficient than reconstructing the entire image. The DC terms of the I, P,
and B frames are used to construct a DC frame sequence, which are a sequence of
DC images.

Three detection algorithms are applied to a DC sequence. One extracts abrupt
changes, another detects plateaus in the frame differences, and another detects flash-
light changes. Both the abrupt change detection and plateau detection are combined
to give the locations of changes and the beginning of gradual transitions. The distance
metric used between successive DC images are simple pixel differences and color his-

tograms. Similar to the uncompressed pixel difference approach, the similarity metric
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is based on the sum of the absolute pixel differences of two successive DC images.

This similarity metric can be expressed as:

a1 Ty [Pz, y) = Pun(z,y)l
XY

D(i,i+1) = (2.13)

where i and ¢ + 1 are two successive DC images and P;(z,y) and P;4,(z,y) represent
the pixel intensity values. Smoothing can also be used on the DC images to increase
the tolerance to small camera and object motions.

A color histogram is created from the first few significant bits of each R,G,B
intensity value in the DC images. The RGB color histogram metric is defined as:

n
Dpgp(Hi, Hit1) = Z; |H () — Hi, ()] + | HY () — Ha (9)] + [ HP(6) — By, (3)] (214)
i=
where H!, Hf, and H? denote the color histograms of the R,G, and B components
respectively for successive images H; and H;,,.

Yeo and Liu select their cut detection thresholds based on local activity in the
candidate images in the temporal domain. A sliding-window is used to examine m
successive frame differences. A cut between two successive frames is detected if two
conditions are satisfied: 1) the difference is the maximum within a symmetric sliding
window of size 2m — 1 and 2) D(i,i + 1) is also n times the second largest maximum
in the sliding window. The second condition is to reduce the effects of fast panning or
zooming scenes and camera flashes to be declared as changes. The parameter m is set
to be smaller than the minimum duration between two scenes. Gradual transitions

are detected by comparing every frame with the following kth frame, where k is larger

than the time allowed for a gradual transition.

2.2.2.4 Other Techniques

Patel and Sethi [110] classify shot transitions in the MPEG compressed domain using
statistical hypothesis testing. The first step in the algorithm is to extract I frames
from the encoded video sequence. The second step involves creating histograms for
each 828 DCT encoded block within an I frame by using the first coefficient of each
block. This value represents the average gray level value of the block of pixels. The
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final step in the algorithm involves a comparison of successive I frames based on
either the Yakimovsky Likelihood ratio test, the Chi-square test, or the Kolmogorov-
Smirnov Test [110]. Their study concluded that the Chi-square test gives the best
performance. In their later work, Patel and Sethi [111] extended their algorithm to
include row and column histograms in addition to the global histograms computed
from I frames and the three decisions are fused into a single decision through Boolean
logic. Additionally, motion vector analysis is used to characterize shots originating
from camera and object motion.

Meng, et al. [98] detected shot boundaries in MPEG compressed video by using the
frame variance 02 of DCT DC coefficients of I and P frames. Gradual transitions are
detected by looking for parabolic shapes in a curve that is derived from the variance
of DC term sequence of I and P frames. Hard cuts are detected by an analysis of
motion vectors.

Zhang, et al. [153] uses a two-pass technique to detect shot boundaries. The
first step involves extracting I frames and performing a pair-wise comparison of DCT
coefficients of the extracted I frames. The second step involves verifying the results
obtained in the first step. The motion vectors for selected areas are checked to
determine the exact cut locations. Further analysis of motion vectors is able to
distinguish camera motion from gradual transitions. The twin-comparison technique
is used on the DCT differences of I frames to determine gradual transitions.

Koprinska and Carroto [75] developed a hybrid two-pass approach to shot detec-
tion in the compressed domain using a rule-based and neural network system. The
first pass locates possible shot boundaries and the second pass confirms the potential
boundaries. During the first pass the algorithm looks for peaks in intracoded macro
blocks of P frames. Peaks indicate an abrupt change in either the P frame with the
peak or in one of the two B frames before it. Gradual transitions are detected by
locating patterns in the intracoded macro blocks. The second pass of the algorithm is
used to confirm the potential candidates of the first pass. Cuts are detected by using
rules that check the forward and backward macro blocks of 2 B frames that are near

potential transitions. Gradual transitions are detected with a neural network trained
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on the motion vector patterns. The neural network is also used to distinguish camera

and object motion from dissolves.

2.3 Summarization

Video summarization attempts to present a pictorial summary of an underlying video
sequence in a more compact form, limiting or eliminating redundancy. Video sum-
marization focuses on finding a smaller set of images to represent the visual content,
and presenting these keyframes to the user. Most summarization research involves
extracting keyframes and developing a browser-based interface that best represents
the original video. Video abstraction refers to the short summary of the content of a
longer video document [85]. It is the process of mapping an entire segment of video
into a small number of representative images [157]. A video abstract is a sequence
of still or moving images that represent the content of the video in such a way that
the original meaning of the video is well preserved. There are two types of video
abstracts, still and moving abstracts. The still-image abstract, also known as the
static storyboard, is a collection of salient still images generated from the underlying
video. The moving abstract, also known as moving storyboard or video skim, is a
collection of short image sequences or video clips that are considerably shorter in
length than the underlying video source. Additionally, moving storyboards usually
have information in the audio track associated with the video sequence.

Li et al. [85] describes three advantages of a still-image Representation: 1) A
still-image abstract can be created much faster than a moving image abstract, since
no manipulation of the audio or text information is necessary. As a result, there are
no synchronization or timing issues that need to be addressed. 2) The temporal order
of the representative frames can be displayed so that users can grasp the concept of
the video more quickly. 3) Additionally, all extracted still images are available for
printing, if desired.

Li et al. [85] also describes three advantages of video Skims: 1) The audio track

may contain valuable information that is lost in the still-image representation. 2) It
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is more natural and interesting for users to view a short trailer, than a sliding window
of pictures. 3) The motion in the video sequence conveys information that is lost in

the still-image representation.

2.3.1 Still-Image Representation
2.3.1.1 Keyframe Extraction

Keyframes are still images that best represent the content of the video sequence in an
abstracted manner [157]. The goal of extracting keyframes from a video segment is
to retain the important content of the video while removing redundancy. There have

been numerous research efforts with respect to keyframe extraction [157)].

2.3.1.2 Shot-Based keyframe extraction

In some commercial products and modeled systems the first and last frame of each
shot are selected to represent shot content [40, 122, 136, 157]. This procedure is
often referred to as temporal keyframe extraction. Although this may reduce the total
number of keyframes and provide information about the total number of keyframes
a priori, this method is not an accurate and sufficient representation of the shot
content. It does not characterize or capture dynamic action or motion within a shot,
therefore keyframes should be extracted based on the underlying semantic content.
Semantic analysis of a video is a difficult research problem. As a result, most keyframe

extraction techniques rely on low-level image features, such as color and motion.

2.3.1.3 Color-Based Keyframe Extraction

Zhang et al. [157] extracts keyframes based on their color content. Keyframes are
extracted in a sequential manner. The density of the keyframe selection process
can be adjusted; however the default is that the first and last frames of each shot
are considered keyframes. Once a keyframe has been selected, a color histogram
comparison method is employed on subsequent frames and on the previous keyframe.

If the distance metric exceeds a predetermined threshold, a keyframe is selected. The
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Munsell space was chosen to define keyframes, because of its closeness to human
perception [157]. The color space is quantized into 64 ”super-cells” using a standard
minimum of squares clustering algorithm. A 64 bin histogram is calculated for each
keyframe, with each bin having the normalized count of the number of pixels that
fall in the corresponding supercell. The distance metric between two histograms is

defined as follows:

N N
D(H;, Hiph) =) . aij(Hi(?) — Hit1(3))(Hi(j) — Hiy1(5)) (2.15)

i

where the matrix a;; is derived from human perception studies.

2.3.1.4 Clustering-Based Keyframe Extraction

Ferman and Tekalp [42] propose a keyframe extraction method based on the clustering
of frames within a shot. Frames within a shot are clustered into a certain number
of groups based on a color histogram similarity measure. The frame closest to the
center of the largest cluster is selected as the keyframe for the shot.

Zhuang et al. [159] proposed a method for keyframe extraction based on unsuper-
vised clustering. The color histogram is used to represent the visual content within
the frame. A 16282D HS histogram is used in the HSV color space. The similarity
metric between successive frames ¢ and j is defined as follows:

16 8

>SN " min(Hi(h, s), Hj(h, s)) (2.16)

h=1s=1
A keyframe is only selected from clusters that are bigger than N/M, the average size
of clusters, where N is the total number of frames in a shot, and M is the number of
clusters. For each cluster, the frame that is closest to the centroid is selected as the

keyframe.

2.3.1.5 Motion-Based Keyframe Extraction

Wolf proposes a motion based keyframe selection algorithm based on optical flow

[144]. The algorithm computes the flow field for each frame based on the Horn and
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Schunk optical flow algorithm [4]. The sum of the magnitudes of the optical flow
components are used as the motion metric. The keyframe selection process selects

keyframes that are at the local minima of motion between two local maximas.

2.3.2 Moving Image Representation
2.3.2.1 Video Skims

Video Skims are short video clips consisting of a collection of image sequences and
the corresponding audio, extracted from the original longer video sequence. Video
skims represent a temporal multimedia abstraction that is played rather than viewed
statically. They are comprised of the most relevant phrases, sentences, and image
sequences. The goal of video skims is to present the original video sequence in an
order of magnitude less time [140].

There are two basic types of video skims: summary sequences and highlights
[85]. Summary sequences are used to provide a user with an impression of the video
sequence, while a highlight video skim contains only the most interesting parts of a
video sequence.

Omoigui, et al. [107] develops summary video skims by increasing the speed of
playback of the original video. Speeding up the playback allows the entire video to be
displayed in a shorter amount of time. Summary video skims have the advantage of
allowing the user to view an entire segment of video in less time, however they only
allow for a maximum time compression of 1.5 to 2.5 depending on the speech speed
(85).

The MoCA project [88] developed automated techniques to extract highlight video
skims to produce movie trailers. Scenes containing important objects, events, and
people are used to develop the video skims. Selecting highlights from a video sequence
is a subjective process; as a result most existing video-skimming work focuses on the
generation of summary sequences [85).

The Informedia I & II Project at Carnegie Mellon University [140, 24] utilizes

speech, closed caption text, speech processing, and scene detection to automatically
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segment news and documentary video. They have created a digital library with
over a terabyte of video data. One aspect of the summarization method of the
Informedia Digital Video Library System is partitioning the video into shots and
keyframes. Multi-level video summarization is facilitated through visual icons, which
are keyframes with a relevance measure in the form of a thermometer, one-line head-
lines, static filmstrip views, utilizing one frame per scene change, active video skims,
and the transcript of an audio track. Text keywords are extracted from the transcript
and closed captioning text by using a Term Frequency/Inverse Document Frequency
(TF-IDF) technique. Audio data is extracted from the segments corresponding to the
selected keywords and its neighboring areas to improve audio comprehension. Image
extraction is facilitated by selecting frames with faces and text, frames following cam-
era motion, frames with camera motion and faces or text and frames at the beginning
of a video sequence. Video Skimming is created by the confluence of extracted au-
dio and image extraction. Experiments using this skimming approach have shown
impressive results on limited types of documentary video that have explicit speech
or text content [85]. It remains unclear whether this technique may produce similar

results with video containing more complex audio content.

2.4 Other Techniques

Bagga, et al. [3] developed a novel video summarization technique that uses image
analysis, closed caption text, and hierarchical scene clustering. First, shot segmen-
tation is performed via a statistical analysis method and then each of the potential
scene boundaries are clustered via a hierarchical clustering method. The midpoint
between two consecutive scene changes is chosen as the keyframe for the scene. The
dominant color in the L * a * b color space is then used to describe each keyframe.
The difference between dominant color components is used as the distance metric
between keyframes. A second distance metric is also computed for the closed caption
text of each scene. The two distance metrics are then combined to form a matrix D

and hierarchical clustering is performed on this new matrix. A recursive clustering
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process is performed to merge similar clusters until a predefined cluster distance is
met. This method has the advantage of utilizing text and image data simultaneously
to cluster the video data.

Dementhon, et al. [29] represents a video sequence as a polygonal trajectory curve
in a high dimensional feature space. This curve is created by mapping each frame
to a time dependent feature vector and representing these feature vectors as points.
The curve is segmented into regions of linearity or low dimensionality via binary
curve splitting and the frames that appear at boundaries between curve segments can
be used as keyframes to summarize the video sequence. Additionally, the algorithm
builds a binary tree of the video sequence under analysis, where the branches represent
a more detailed representation of the video sequence. This representation allows users
to view a video sequence at varying levels of granularity. The authors claim that this
method is less sensitive to differences in pair-wise frames as with other traditional
approaches that utilize frame-to-frame distance measures. Stefanidis, et al. [128]
also used trajectories to develop meaningful video summaries. Their research focused
on locating objects within a video sequence and creating object trajectories. These
trajectories were further analyzed for critical points that describe the motion of an
object over time.

Dixon and Owen [31] developed a novel video summarization technique based
on the amount of camera motion for raw unedited video sequences in bandwidth-
constrained client-server environments. This method was primarily developed to sup-
port summarization of content from Unmanned Aerial Vehicles (UAV). The algorithm
selects keyframes that exhibit significant camera motion between frames. An affine
motion model is used to characterize the camera motion. Once keyframes are selected
they are placed in a keyframe pool. Keyframes are transmitted from the keyframe
pool based on the amount of available transmission bandwidth.

Doulamis, et al. [32] devised a summarization algorithm based on a fuzzy rep-
resentation of a video sequence. Each frame is segmented and size, location, color,
and motion are used to form feature vectors for each segment. The feature vector

is made up of the horizontal and vertical locations of the center of the segment,
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the average values of the three color components, and the average motion vector of
the motion segment. Color and motion properties are classified into predetermined
classes with a value representing the degree to which the feature vectors belong to
each class. This value forms the fuzzy membership and is assigned to each class. A
multi-dimensional fuzzy histogram is computed for each segment in a frame. The
histogram represents the degree to which an entire frame belongs to a specific class.
Keyframes are selected via a method that minimizes the cross-correlation criteria. In
subsequent research Doulamis, et. al [33] developed a video summarization technique
that estimats points of a feature vector trajectory curve. The feature vector is built
of both global and object features. The global features include color, texture, and
global motion. The object features are extracted similar to how the segments were
extracted in this first research effort[32]. The plot of all the feature vectors forms a
trajectory. Keyframes are selected by selecting appropriate junction points along this
trajectory. Interpolation theory is used to select optimal points along this curve.
Farin, et al. [41] utilizes two-stage clustering and user specified domain knowledge
to summarize a video sequence. The first step involves the creation of a feature vector
based on luminance histograms for each frame. The second step organizes the feature
vectors in temporal segments. These segments are user defined (4 sec.) and are gen-
erally smaller than the length of a shot. The purpose of segmenting the video into
segments is to eliminate the possibility of gradual transitions appearing in the sum-
maries. When two subsequent shots are clustered together having gradual transitions,
the clustering algorithm generally selects the transition frame as the cluster center.
A time-constrained clustering approach is used as a first pass clustering technique
to detect possible shot boundaries. Keyframes are selected via a second clustering
algorithm based on k-means clustering. Users can also exclude certain scenes deemed
as irrelevant or unimportant by feeding information about these scenes into the al-
gorithm. Feature vectors are computed for the unwanted scenes and the second pass
clustering algorithm is augmented to remove the unwanted clusters. One advantage
of this technique is that it does not rely on accurate cut detection. Additionally,

the use of domain knowledge by the user over automated pre-filtering techniques is a
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desirable feature.

Fujimura, et al. [46] developed a summarization algorithm based on color and
closed caption information. The first step involves detecting shot boundaries via
a shot probability model. In the second step, a color histogram is used to detect
unchanged scenes and a multiplexing technique based on color histograms is used
to extract important features from each scene. The third step involves developing
rules to extract important closed caption text from each scene. The properties of
the unchanged analysis, multiplexing, and closed caption rules are used to create
summaries of the video sequence. This system is highly rule based and the authors
claim to achieve good performance in terms of time compression for some movie
sequences.

Gong and Liu [51] developed a moving image summarization algorithm that is
aimed at reducing the visual redundancy in a video summary. This approach differs
from previous approaches that attempt to develop moving summaries in that its goal
is not to select the most important scenes to add to the summary, but to minimize
duplicated and redundant content. They have developed a redundancy metric based
on the entropy metric from information theory. The first step of the algorithm seg-
ments the video into shots via local color histograms and singular value decomposition
(SVD). The second step clusters the shots based on their visual similarity. The shot
with the longest length is selected as the cluster center. Shots are discarded if their
length is less than 1.5 seconds. The final video summary is created by concatenating
a condensed version of each cluster center in temporal order. In experimentation,
each cluster center was condensed to 1.5 seconds before concatenation. The authors
concluded that their redundancy metric produced good results with videos containing
many long static shots or visually similar shots and produced poor results when the
video contained short shot and diverse sequences.

Sugano, et al. [129] developed a video summarization algorithm that operates
in the MPEG compressed domain using MPEG-7 video sequences. Their research
creates digests as well as highlight video summaries. Digest summaries are based

on the analysis of audio level and visual information. Highlight summaries of sports
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broadcasts are developed by analyzing the audio class and audio level.

Uchihashi and Foote [135] developed a video summarization algorithm based on a
shot importance measures. This measure is developed through hierarchical clustering.
A shot is deemed important if it is considered long and rare. A keyframe is selected
for each cluster, and a keyframe packing algorithm is used to display the frames, with

the size of the frame corresponding to its importance.

2.5 Results Fusion

Researchers in various disciplines have attempted to use results fusion to improve
performance and reliability for their applications [6, 48, 61, 70, 117, 9, 146]. They
attempt to fuse together relevant evidence or sensors that when used alone are con-
sidered unreliable in certain instances. Results fusion is a general problem that is
interesting in many domains. Research from the document retrieval and biometric
community has shown that success and reliability can be improved from using results
fusion. Recently, the digital video community has recognized the need to incorporate
multiple evidence to improve performance. The types of results fusion strategies and
methodologies used depend on the amount of knowledge known at fusion time.

In general, there are a variety of methods that can be employed for results fu-
sion. In the document retrieval community, some methods that have been used are
simple unweighted Boolean retrieval, Bayesian inference networks, and logistic re-
gression. Additionally, weighting strategies in which weights are determined based

on experimental or test searches have been used.

2.5.1 Sum Rule

The sum rule is the simplest form of fusion. Let ¢ denote the number of methods, w,,
represent the number of possible m classes, and z; denote the measurement vector of
method 7. An input is assigned to class wj if:

i P(wj|z;) = mazy., f: P(wg|z;) (2.17)

i=1 =1
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where N is the number of methods. Ross, et al. [117] fused the results from face,
fingerprint, and hand geometry analysis to increase the performance of a biometric
system. In their research, the decision function was based on the sum rule. From
their research, it was concluded that increased performance could be obtained by

using multiple modalities.

2.5.2 Voting Strategies

Various voting strategies have frequently been utilized to fuse multiple results [7].
The most common voting technique used by researchers is majority voting. Let A,,;
represent the decision for each class w,, by the ith method. An input is assigned to
class wj if:
YN Aji = mazk_, TN, A, where
_ ) 1 if P(wk|z;) = mazj_, P(w;]|z;) (2.18)
"o 0 otherwise

where [ is the number of classes. In this method, each sensor is given equal weight
to make decisions to determine the outcome. The problem with this strategy is that
all the sensors are given equal weight in all conditions. A better implementation
would be to give more weight to the sensors that are more reliable. Hull, et al. [62]
developed 11 classifiers based on template matching and probabilistic strategies. The
final decision was made if 6 out of the 11 sensors made the same decision. Xu, et

al. [145] experimented with combining methods for handwriting recognition based on

various voting strategies.

2.5.3 Probabilistic Strategies

Kittler, et al. [72] have developed a theoretical framework based on Bayesian theory
for combining classifiers that use different representations. Let z; denote the feature
vector that the ith classifier observes where i € 1,...,k and where there are m
possible classes w,,...,wy,. The class w; is selected with the maximum posterior

probability P(wj|z,,...,zs. According to Bayes theorem, the posterior probability
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can be expressed as:

P(wj)P(zy,...,zk|w;)
P(zy,...,xx)

P(wjlzy,...,zx) = (2.19)

If the feature vectors extracted from each sensor are conditionally independent then
the decision rule is defined as:
k m k
P(w)) [] P(zilw;) = max P(w) [ P(zi|lw) (2.20)
=1 - =1
The decision rule in Equation 2.20 in terms of the posterior probabilities is defined as

the product rule, because the final decision is based on the product of the probability

of all the classifiers. The feature vectors (z,,...,Zx) are assigned to class wj if:
k o k
Pk (w;) T] P(wjlz;) = max P (wy) [ P(wilz:) (2.21)

i=1 i=1
If equal prior probabilities are assumed for each of the classifiers, then Equation 2.21

is reduced to: . .
i=1

i=1

Hull, et al. [61] combined probability estimates of multiple classifiers to improve
document filtering performance. Multiple statistical classifiers were fused by a meta-
classifier to accept or reject retrieved documents based on their similarity to previous

or subsequently retrieved documents.

2.5.4 Machine Learning and Data Mining

The main advantage of the sum rule, voting strategies, and probabilistic methods are
that they do not require any training. However, researchers have also experimented
with various machine learning and data mining techniques for results fusion. Some
of these methods include utilizing neural networks, decision trees, rulesets, and Sup-
port Vector Machines (SVMs) (see Section 4.2.4, Section 4.2.2, Section 4.2.3, and
Section 4.2.1 for a detailed descriptions of these methods). The strengths of these
methods are based on their discriminative ability to learn and represent the underly-

ing patterns of the input data.
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Cho [22] experimented with neural networks to recognize patterns in handwritten
numerals. Several independent neural-networks were used to classify input patterns of
handwritten numeral features and the final fusion decision was made via the majority
voting method. Lin and Hauptmann [91] experimented with SVMs for news video
classification. In this research, multiple SVM classifiers were fused via a metaclassifier
also based on SVMs. Their strategy fused text and image features to classify news

segments as either weather or non-weather scenes.

2.6 Summary

This chapter has presented a broad view of the current research related to shot seg-
mentation, summarization, and results fusion. Most video segmentation and sum-
marization research focuses on the creation of algorithms for specific classes of con-
tent. When the type of video is known a priori, any number of algorithms can be
chosen with relative success. Color histogram-based algorithms are successful when
applied to video sequences where the distribution of color changes between shots
(47, 95, 102, 157, 156]. Model-based algorithms are effective when a set of transitions
is known and expected in the content [11, 115]. Motion-based algorithms are effective
when object or camera locations change significantly between shots [95]. However,
when the type of video is unknown, an adaptive method is needed to adjust to the
type of content for the best possible segmentation and summarization result.

There is a variety of methods available for results fusion. The choice of method
usually depends on how much information is available at fusion time. Probabilistic
strategies, data mining and machine learning strategies, and Boolean strategies have

all been successfully used to fuse multiple modalities.
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Chapter 3

Shot Detection Methods

Video shot detection is the automatic determination of the boundaries between video
shots, segments of video captured as a continuous sequence. Shot detection segments
the video into sequences delineated by the shot boundaries. Section 2.2 described a
wide variety of methods to perform segmentation using video shot detection with a
description of the relative strengths and weaknesses of each algorithm. Different al-
gorithms have been designed and presented that perform differently on varying types
of shot transitions. As the goal of this research is to construct a fusion-based shot
detection method that incorporates the strengths of different algorithms simultane-
ously, four diverse and representative shot boundary detection methods were selected
for detailed study. Three algorithms were chosen from the uncompressed video do-
main and one algorithm was chosen from the MPEG compressed video domain. This

chapter describes each of these methods in detail.

3.0.1 Gradual Shot Boundary Detection Issues

Reliable gradual transition detection is a difficult research problem. As discussed,
there are several different highly-optimized techniques for detecting various types
of gradual transitions. Each algorithm attempts to solve the problem in a totally
different manner. One algorithm utilizes multiple thresholds, another utilizes I and

B frames in compressed MPEG video sequences, and another uses machine learning.
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To date, there had not been a systematic approach to detecting gradual transitions.
Our research does not focus on detecting gradual transitions. In order to reliably and
accurately detect gradual transitions, we would have to characterize every type of
gradual effect for training and testing. That is beyond the scope of this work. Since
gradual transitions make up about 10% of all shot boundaries our research focuses

primarily on hard cut shot transitions.

3.1 Shot Boundaries

The four shot boundary detection methods that are used in our study are (a) global
color histograms, (b) local color histograms, (c) edge features, and (d) DCT coeffi-
cients. It is important to note that researchers have experimented with various fla-
vors of each of the implemented algorithms. Some researchers have reported receiving
better performance for each individual algorithm based on using different algorithm
parameters, thresholds, and color spaces. The goal of this research is not to opti-
mally improve the shot detection of each individual algorithm, but rather to fuse the
algorithms to determine a best segmentation. Clearly the component algorithms can
be further tuned to produce better individual results.

3.1.1 Global Color Histogram

The global color histogram shot detection algorithm works by searching for peaks
in the frame difference values, which represent cuts. The most common video shot
boundary detection techniques utilize color histograms of each frame to segment the
video. Color histograms are described in detail in Section 2.2.1.3. The idea supporting
global color histograms as a shot detection method is that successive frames within
a shot will have highly correlated color distributions due to the similar color content
in the temporally adjacent frames. Color histogram-based algorithms provide a good
tradeoff between performance and complexity [10]. Color histograms are attractive
because they are invariant to scaling and rotation of the content of video frames.

Consequently, they are invariant to most common camera motion. Additionally, the
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representation is compact in size with respect to the size of its respective video frame.
Once a frame has been represented via a histogram a number of distance metrics can
be employed to detect dissimilarity between frames [156).

The work in this thesis is based on an implementation of a 64 bin RGB histogram
over the entire frame. The histogram is created by using the top 2 bits of each color
value. Thus, each color component (R,G, B) is discretized to 4 values. Euclidean
distance is used as the dissimilarity metric used between consecutive frames. The
difference metric between two histograms H; and H;,, is defined as follows, where N

is the number of histogram bins:

N
D(H;, Hip1) = | Y _(Hi(j) — His1(4))? (3.1)

i=0
A shot boundary is detected if the dissimilarity metric between consecutive frames

exceeds a threshold.

3.1.2 Region-based or Local Histograms

Global histograms are tolerant of object and camera motion, however they ignore the
spatial information between frames and thus two frames with different spatial distri-
butions can have similar color histograms. Two shots having the color distribution is
particularly a problem when shots represent the same content from different angles,
as is common in motion pictures (as in establishing shots, masters, and close-ups).
Local histograms attempt to solve the problems associated with global histograms.
Local histograms were described in Section 2.2.1.3. Local histograms segment a frame
into smaller blocks and compute histograms for each region. This method is tolerant
to local changes in motion, however it still sensitive to changes in luminance over
the entire frame[95]. The research presented in this thesis utilizes a region-based his-
togram technique wherein each frame is divided into 12 blocks in a 4x3 pattern. A
64 bin RGB histogram is computed for each block. A distance metric is computed
for each block between successive frames. The sum of the 12 dissimilarity metrics is

used as the distance metric to determine shot boundaries. Figure 3.1 depicts a video
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Figure 3.1: Still Frame Segmented into Regions

frame divided into the 12 regions.

3.1.3 Edge Features

Zabith, et al. [152] detects cuts, fades, dissolves, and wipes based on an edge ratio
that is computed from the appearance and disappearance of intensity edges between
subsequent frames. We have implemented an edge-based shot boundary detection
algorithm based on Zabith et al. [152]. This algorithm was described in Section 2.2.1.5.
Given two input image frames, both images are re-scaled to 88 by 60 and a robust
statistical edge detection algorithm adapted from Kundu [77] is used to compute the
edge maps of both frames. Re-scaling the images decreases the execution time of the
algorithm; however it also lowers the accuracy of results. From experimentation we
have achieved favorable performance using 88 by 60 scaled images. Figure 3.2 depicts
a video frame along with its edge image. Each edge image is then dilated with a
diamond shaped kernel of size 7 by 7 to allow for movement that may occur between
frames. Motion compensation based on pyramidal Lucas and Kanade optical flow [4]
is used to register the two images. The edge change ratio is defined as follows: Let
E and E’' represent the dilated current and next edgemaps of the current and next

frames. Additionally, let E be the motion compensated next frame that is aligned
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with the previous frame. The exiting edge ratio p,; is defined as:

ooy = Sz Bl yIE [z,9]
- zz,y E[I,y]

If a pixel is found in the first frame F[z,y] and a corresponding pixel is found in

(3.2)

E’,[x, y] then this indicates that no changes has occurred. However, if a pixel is found
in the first frame E[z,y] and a corresponding pixel is not found in the second image
F’[x,y] then this indicates that a pixel has exited the first frame. Similarly, the

entering edge ratio p;, is defined as:

Els, y]Zx,,E[x )
in = 33
g Sey E [£,9] ¢

The edge change ratio is defined as the maximum of p,,, and p;,.

maz(pout; pin) (34)

3.1.4 DCT Coefficients

Zhang et al. [154] perform video shot detection using the DCT coefficients of candidate
blocks of I frames in compressed video. DCT-based algorithms were discussed in
Section 2.2.2.2. Figure 3.3 depicts a video frame along with its DCT image. We have
implemented a DCT based shot detection technique based on Zhang et al. [154]. A
pair-wise frame comparison between corresponding 16216 DCT blocks is computed

as follows:

DG, z+1)—22 02, (3) c”(’“)' >T (3.5)

z=1y=1 1 mazczy (1), cry(i + 1))
where M and N represent the number of rows and columns of blocks respectively, and
Cz,y(%) and ¢, (i + 1) represent the DCT coefficients of block z,y in frames i and i + 1
respectively. The sum of all the Mz N blocks is used as the distance metric between
frames. If this total is larger than a predetermined threshold, a shot boundary is

detected.
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Figure 3.2: Still Frame and Edge Image
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3.2 Summary

We have chosen to implement global histograms, local histograms, edge features,
and DCT coefficients to extract features for video segmentation of hard cuts. These
algorithms have been chosen as a set because they are good general examples of
the common classes of shot detection algorithms in the literature and have unique
characteristics. The global histogram algorithm is chosen because it produces good
performance in the presence of abrupt changes between shots and is very commonly
used in practice. Many researchers have received good performance using global
histograms [10, 47, 95, 156]. Local histograms are the most common approach to
combating the problems exhibited by global histograms, particularly when the shots
are of the same scene from differing angles. This method takes into account the
spatial distribution of pixels in a frame and is tolerant to local changes in camera
and objects motion. The algorithm based on intensity edges was used in order to
provide a non-color technique that was based on features and texture, rather than
global frame characteristics. Although the assumption that frames within a shot will
have similar color content is a widely held and valid assumption, sometimes frames
across a shot exhibit similar color properties. For example, if a grayscale video is
under analysis, color histogram-based methods will not be as effective. The edge
change ratio algorithm combats this problem. Additionally, the edge ratio algorithm
claims to detect hard cuts as well as some gradual transitions; however we did not
receive good performance detecting gradual transitions. DCT coefficients are used to
provide a fast and efficient algorithm in the compressed domain.

Gradual transition detection is a difficult research problem and in our research
we do not specifically attempt to detect them. They make up about 10% of all
shot boundary transitions. Many researchers have attempted different techniques
with differing results; however there has not been a systematic approach to gradual
transition detection to date. Most of the gradual transition algorithms can be adapted

to a fusion method as described in this thesis.
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Chapter 4

Results Fusion

An old maxim states that “two heads are better than one.” It seems logical that this
maxim can be extended to the concept of fusing results of algorithms such that the
strengths of different algorithms can be of advantage in appropriate circumstances;
hence, the idea of results fusion, the combination of multiple algorithms together to
produce a new, composite, algorithm that is better than any of its parts.

Results fusion is the process of utilizing multiple classifiers or representations to
improve performance and reliability over using a single classifier or representation.
Many researchers have recognized the need to improve individual results by utilizing
multiple classifiers. Several methods exist for results fusion (also referred to as clas-
sifier fusion or sensor fusion in the robotics community). Research in the document
retrieval community has shown improved performance using results fusion for docu-
ment retrieval 8, 21, 34, 49, 52, 60, 79, 99]. Additionally, research in the biometrics
community has shown improved performance utilizing results fusion to improve per-
son identification and authentication [9, 17, 67, 117, 146]. The results of this research
suggest that increased performance (better shot boundary retrieval results and accu-
racy) can be achieved for shot-based segmentation by fusing multiple classifiers into
a single composite solution and that the resulting algorithm will perform better any
of its constituent parts.

Video shot segmentation algorithms use a variety of features to determine shot

boundaries. These features include histograms, edge images, motion vectors, DCT
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coefficients, and DC Terms. Traditional shot segmentation methods have extracted
and analyzed the temporal characteristics of a single feature to determine shot seg-
mentation boundaries. The reliability and performance of these various algorithms is
based on the ability to extract the meaningful and important features from a video
sequence. If the video sequence under analysis does not lend itself well to extraction
of the selected features or the features convey limited information, the results of the
segmentation method may not be reliable. For example, if a video sequence consists
of content with no clear edges or edges that are difficult to extract, any method based
on the comparison of edgemaps between sequential frames would not be reliable. To
combat this problem, research in the video shot segmentation community have at-
tempted to improve performance and reliability by combining multiple algorithms
[43, 103, 132, 53, 151].

Section 4.1 presents the levels of results fusion and known work in fusion-based
shot detection. Section 4.2 describes the novel results fusion shot-based segmentation
algorithms designed and implemented. Section 4.3 describes the features utilized
by the results fusion shot segmentation methods. Section 4.5 describes our baseline

testing methods to determine the performance of our fusion-based methods.

4.1 Levels of Results Fusion

The purpose of results fusion is to fuse together multiple evidences into a combined
framework to improve performance and reliability. The classifier can employ various
methods of fusion based on the type of information available. Research in sensor
fusion, information retrieval, and biometrics have generally classified results fusion
into three categories depending upon the amount of information they attempt to

combine [145].

1. Abstract or Decision Level: each classifier outputs a result that is a unique label

or decision.

2. Ranked Level: each classifier outputs a queue of all the available labels sorted
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by decreasing confidence order and the queues of all the classifiers are combined.

3. Measurement Level: each classifier outputs a unique label or result along with

a score or confidence value.

Ross and Jain [117] added another level of results fusion, the feature extraction
level, where features extracted from multiple algorithms are concatenated to form a
new synthesized higher-dimensional feature vector.

Since the result of a video segmentation algorithm is ultimately a frame denoting
the end of one shot and the beginning of another, some researchers have developed
algorithms based on fusing the output frames of various segmentation algorithms.
These algorithms utilize clustering or merging methods to group similar shots together
while preserving temporal order to determine a best segmentation. This type of fusion
can be labeled output level fusion [43, 103, 53].

As discussed, the types of fusion available are abstract, ranked, measurement,
feature extraction, and output level fusion. In order of complexity, abstract level
fusion provides the least amount of information to determine classification. This level
of fusion is one of the most basic levels of fusion where usually the accept/reject result
decisions of multiple classifiers are combined via the meta-classifier. Only the outputs
of the classifiers are used to fuse the results, regardless of the type of inputs. As a
result of the lack of information being available at this level, the classifier usually
employs simple majority voting or linear combination {151, 160]. Output level fusion
also provides a minimal amount of information to determine classification. This level
of fusion attempts to fuse the output results of the multiple evidences. At this level,
the classifier utilizes merging and clustering techniques of output frames [43, 100,
103, 53]. Feature extraction level fusion involves creating new feature vectors in a
higher dimensional space to determine classification. The goal is that the new feature
vector will create a more discriminatory feature upon which a classification decision
can be made. Neural networks, support vector machines, decision trees, generalized
trace, and Bayesian methods have been used by meta-classifiers to facilitate fusion

on this level {119, 132, 158]. Measurement level fusion involves the fusion of scores
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or confidence values from the multiple classifiers. This level involves associating
probabilities, weights, or scores to the output of each classifier and fusing together
these scores. Meta-classifiers at this level use Boolean logic and summing or averaging
probabilities to facilitate fusion on this level [15]. Ranked level fusion involves each
evidence outputting all possible decision labels in a queue in decreasing confidence
order. Bartell, et al. [6] developed a multiple expert system using multiple ranked
retrieval systems. The method uses the results of past queries to learn an optimized
combination strategy to rank relevant documents. This level of fusion is commonly
used for problems with several classes of outputs [59]. This type of fusion does
not apply to shot-based segmentation which only utilizes two distinct classes: scene

change and no scene change.

4.1.1 Abstract Level Fusion

Abstract or decision-level fusion involves each classifier outputting a label or decision
value based on the input data. A final decision is made by the combination of the
decision values of the multiple classifiers. Combining multiple outputs on the abstract
level usually involves majority voting methods, linear combination, nearest neighbors,
or winner-take-all methods [30].

Yusoff, et al. [151] developed a cut detection technique that combines multiple
experts using a voting scheme. The five algorithms used for their research are (a)
average intensity measurement, (b) Euclidean distance, (c) global histogram com-
parison, (d) likelihood ratio, and (e) motion estimation/prediction error. A receiver
operating characteristics (ROC) curve is created for each method, by setting thresh-
olds for each individual method. Calculating the percentage of undetected true shot
boundaries, against the percentage of incorrectly detected shot boundaries creates
the ROC curve [151].

Du = %E,Pf = %, (4.1)

a

Sy is the number of missed shots, Sy is the number of false positives, and S, is the

number total number of shot boundaries. The fusion system is designed by setting
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the operating points of the different algorithms at different levels.

An operating point is described as the (p,,ps) values for each algorithm. The
threshold for each individual algorithm is calculated by T(p},p}) for each expert i.
For each pair-wise comparison, each expert computes the frame distance metric S;

and determines shot boundaries based on the following:

cut  if S; > T(pL,ph)

no cut otherwise
The fusion system determines if there is a cut as follows:
cut ifn.>n
D= e= (4.3)

no cut otherwise

where n is the number of experts, n. is the number of experts that detect a shot
boundary, and n, is the complement n,, = n — n.. In order to determine the optimal
values for (py,ps), the thresholds for each individual algorithm are selected from five
points on the ROC curve. n experts and N possible thresholds per expert generates
N™ possible threshold combinations. The fusion engine determines a shot boundary
when at least three experts identify a shot boundary. Yusoff, et al. concluded that
their method can significantly improve shot boundary detection results.

This algorithm performs abstract or decision level fusion. The outputs of multiple
algorithms are fused together via a majority voting scheme. Majority voting schemes
have proven to operate well in some instances of information fusion [160]. The idea
behind this algorithm is that if the majority of the implemented algorithms determine
that a shot boundary exists, there is a high probability that an actual shot boundary
exists. One problem with the Yusoff implementation is that each expert is given equal
weight in determining a shot boundary. The shot boundaries are detected if any three
experts signal a shot boundary and do not take into account which algorithm or expert
may be more appropriate for a given video class. Another problem with this method
is that each expert utilizes static thresholds in determining local shot boundaries. In
developing a solution that can be utilized on a wide variety of content it is important

that the algorithm adapt to the different types of video under analysis. As a result,
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a dynamic threshold scheme would be more appropriate. Additionally, the coarse
manner in which thresholds were chosen needs to be refined in order to be effective

on different classes of video.

4.1.2 Measurement Level Fusion

Measurement or confidence level fusion involves each classifier producing a vector
with a confidence score denoting the degree to which the classifier believes that input
data belongs to a specific class. A decision is then made based on the combination of
these scores. An important aspect of measurement level integration is normalization
[17). The responses from the different classifiers usually have varying scales and
offsets. Normalization must be implemented to map the scores from the multiple
domains into a common domain before combining them. The tanh-estimators have
been used for normalization. Given a list of scores S;; where j denotes classifier j
and 7 represents a feature, the scores can be normalized as follows [17]:

Sij = —l-[tanh(.OIM) +1] € (0,1) (4.4)
2 otanh

where Lann and 0y, are the average and standard deviation estimates of the scores
Sij where i = 1,...,I with I representing the number of features. Some combination
strategies that have been used at the measurement level are the geometric average
[17], the sum rule, decision trees, and linear discriminant analysis [117].

Browne, et al. [15] experimented with combining three shot boundary algorithms.
The shot detection algorithms used for their research are color histograms, edge de-
tections, and encoded macro blocks. It was concluded from their experiments that
a dynamic threshold implementation of each algorithm improved shot boundary de-
tection performance, though this is an individual algorithm improvement (tuning)
rather than a fusion result. Weighted Boolean logic was used to combine the three
shot boundary detection algorithms. Figure 4.1 illustrates the functionality of this
method. The three shot detection algorithms are executed in parallel using dynamic
thresholds for each algorithm. A shot is determined in a hierarchical manner. The

algorithm works as follows:
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e If the color histogram algorithm is above its adaptive threshold T'1, a shot

boundary is detected.

e If the edge detection algorithm is above its adaptive threshold 7°3 and the color
histogram algorithm is above an alternative, minimum, threshold T2, then a

shot boundary is detected.

e If the encoded macro block algorithm is above its threshold 74 and the color
histogram algorithm is above its minimum threshold 72, a shot boundary is

detected.

This algorithm performs fusion at the measurement level. The multiple scores from
each algorithm are fused together using Boolean logic in a hierarchical manner. The
reasoning behind this implementation is that color histograms offer the best per-
formance in terms of speed and computational complexity. As a result, the color
histogram method takes precedence in the hierarchy. It is not clear why the re-
searchers chose to have the edge-based algorithm operate at the second level of the
hierarchy, with the encoded macro block algorithm functioning at the bottom level.
The video corpus used for testing was broadcast TV video. Their tests showed mixed
results when compared to single method implementations. One problem with this
algorithm is that the histogram method is always given the highest weight to deter-
mine shot boundaries. During some shot transitions and gradual effects, the color
histogram may produce unreliable results. One of the main reasons why researchers
have implemented algorithms that utilize multiple methods is to compensate for the
unreliability of a single method. Since this algorithm relies on the performance of
the color histogram algorithm, when this algorithm produces unreliable and incorrect

results, the errors are incorporated into the decisions of the other algorithms.

4.1.3 Feature Extraction Level Fusion

Feature extraction level fusion involves using the data from each classifier to form

a new, composite, feature vector. Since the features extracted from each classifier
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are independent, these values are concatenated to form a new feature vector in a
higher dimensional space. Methods such as neural networks, decision trees, SVMs,
and Bayesian models can be used to classify the new vector.

Taskiran, et al. [132] developed a shot detection algorithm in the compressed
domain-based on luminance histograms and the standard deviation differences from
the luminance component of DC images which are subsampled images available from
MPEG and motion-JPEG video sequences. DC images are effectively images con-
structed by averaging the pixel values in each block. A generalized trace or feature
vector is extracted from each frame. The generalized sequence trace is defined as
[132):

di=|Ti — Tis1 |2 (4.5)

where z; is a feature vector computed from 2 extracted features. The features
that are used in the generalized trace are the histogram intersection of DC images
and the standard deviation differences between successive frames.

DC images are computed from the I, B, and P frames of the video sequence. The
histogram intersection is defined as follows:

Y min(H;(4), Hita (7))

D(HivHH—l) =1- N

(4.6)

where H;(i) and H;;(7) are the luminance histograms for frames f; and f;,, respec-
tively.
The standard deviation differences between frames ¢ and ¢ + 1 is computed as

D(i,i + 1) = |o; — 0i41| where 02 is defined as:
1 ..
0.2 = T-1 Z 2 :(Yi(l,J) - ﬂ)2 (4.7)
i J

1 is the mean value of the luminance image, and T is the number of pixels.

Shot detection is performed by locating observed edges in the generalized sequence
trace. The edges in the generalized sequence trace are found using the morphological
Laplacian. If the number of edges exceeds a predefined threshold, a shot boundary is

declared.
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The fusion method of Taskiran, et al. is preformed at the feature extraction level.
A feature vector is extracted from each frame based on the luminance histograms and
the standard deviation differences from the luminance component of dc-images. The
feature vector is further processed by analyzing the edges in the generalized sequence
trace. The reasoning behind this approach is that it is able to utilize multiple features
and its performance is fast as a result of operating in the compressed domain.

Zhong, et al. [158] experimented with various heuristics utilizing multiple features
to detect shot boundaries in the compressed domain. The multi-stage algorithm

combines motion, color, and edge information. Figure 4.2 depicts the heuristic multi-



The frame-to-frame color difference between two I or P frames is defined in the
YUV color space. The difference metric between two frames ¢ and j is defined as

(158):
D(i,j) = |Yi = Yj|+loy — o} | +w* (Ui = Uj| + oy — o | + |[Vi= V; | + oy — oY) (4.8)

where Y, U,V are the mean YUV values from the dc-images, and oy, oy, oy are the
standard deviations of the YUV components.
The long-term color difference metric between the current I frame and its kth

previous P or I frame is defined as [158]:

Diong—term(i) = D(i,i — (M +1) % k) (4.9)

where M is the number of B frames between a pair of successive I or P frames.

Motion statistics are computed from the P and B frames. In P frames, a motion
measure is determined from the ratio of intra-coded blocks to forward motion vectors.
In B frames two motion statistics are extracted, the ratio of backward to forward
motion vectors, and the ratio of forward to backward motion vectors.

Flashlight detection involves detecting abrupt changes in brightness patterns that
are not at shot boundaries. To detect flashes the authors use the ratio of frame-to-
frame color differences to the long-term color difference. The ratio for a current frame
i is defined as [158]:

Fr(i) = D(i,i —1)/D(i+6,i — 1) (4.10)

where § is the average length of the aperture change of the video. A flashlight is
detected if Fr(7) is greater than a predetermined threshold.

Shot detection is performed by identifying maximas from a temporal window in the
color and motion feature difference values. A peak-to-average ratio (PA) is computed
for each feature within the temporal window. In order to determine the optimal way
to combine PA ratios consisting of many thresholds and possible combinations, a
decision tree-based learning algorithm is computed for I, P, and B frames separately.

The Oblique Classifier OC1 [101] is used to build the decision tree. Separate decision
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trees are created for each type of frame because the different frames have different
characteristics and features.

Gradual scene change detection is computed using the twin-comparison method
described in 2.2.1.3. For long sequences, the beginning and ending edges of gradual
transitions are found using a heuristic based on the induction results from the decision
tree learning.

A multi-level thresholding scheme is used to reduce the problems occurring from
false positives and false negatives. Instead of using one optimized threshold, mul-
tiple thresholds are used in a hierarchical manner. The process terminates when a
cut is detected or the number of levels has been traversed. In order to obtain in-
creased detection accuracy, camera motion detection and aperture change detection
are implemented. The authors indicate receiving favorable results on various types
of videos.

This algorithm utilizes fusion at the feature extraction level. Shot boundaries are
determined via decision trees, which utilize a combination of multiple thresholds and
multiple decision ratios. The reasoning behind this algorithm is that it utilizes a
machine learning algorithm to fuse multiple features. It allows decision trees to de-
termine scene boundaries. The problem with this algorithm is that it is very heuristic
in nature. Additionally, it utilizes many thresholds that have to be predetermined
through alternate testing outside of the system.

Sabata et al. [119] utilized a Bayesian framework to fuse multiple segmentation
algorithms to improve shot detection performance. This algorithm utilizes color his-
tograms, texture features using Gabor filters, and motion features extracted from
spatiotemporal volumes.

The color histogram is computed for a candidate frame b over temporal intervals
[b—€,b] and [b,b + €]. The color histogram is then weighted using a Gaussian mask.

The weighted histogram is defined as follows [119]:

hioe () = 3 we - he(i) (4.11)

te [ts yttl
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where w; is the weight computed from the Gaussian function G(z) = e zx? The

distance measure for the Gaussian weighted histograms is defined as follows [119]:

color _ (h[l] (2) - h[T](z))2
D0 = 2 (@) ¥ )2 (412)

i

where [[] = [t — €(s),t] represents the previous frames in the interval and [r] =
[t,t + €(s)] represents the remaining frames in the interval.

Texture features are used in the form of texture energy to compute segmentation
boundaries. Gabor filters are used to determine the texture energy for each frame.
The Gabor filter is defined as follows [119]:

e X)2 4 (y— Y2 i
G(x,y)=e-‘—x’z—.§"—y)—sin(2”(zc°si ysinb) ) (4.13)

where \ is the wavelength, 6 is the orientation, ¢ the phase shift, and o the
standard deviation of the Gaussian windowed sinusoidal waveform. Twelve filters
are generated by quantizing 6 into four values and A into three values. The distance
metric for texture energy is calculated over a temporal window using a scaled Gaussian
window.

Motion features are also utilized to detect shot boundaries. The motion algorithm
selects features to track based on the research of Shi, et al. [124]. A score is assigned
to the tracked features based on the contribution of each feature that is tracked from

the previous frame. The weight for a feature i is defined as:

wi=1-e% (4.14)

where p; is the number of previous frames that the ith feature was tracked and k

is a constant that determines how sensitive the weight is to the number of previous

frames. The distance is computed from the average of the tracked scores in a temporal
window and a fraction of the missed tracked features.

Edges in the spatiotemporal volume are used to detect shot boundaries by pro-

jecting the video data along the £ — ¢t and y — ¢t planes. The result of the projection

is an image that can be analyzed to detect shot boundaries. Segment boundaries

are determined by the number of horizontal edge pixels, perpendicular to the ¢ axis,
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in the spatiotemporal volume. A probability measure is calculated by averaging the
number of horizontal edges across many sections.
A Bayesian framework [57, 58| is utilized for information fusion. The Bayesian

classifier is defined as follows:

argénu Pr(Outcome = Olay,...,a,) (4.15)
where the variable Qutcome can take the value from the set 0,1,2 where the set
values indicate a regular frame, a shot boundary, or a flash. Naive and TAN Bayesian
classifiers [45] were used for fusing the multiple features.

This algorithm performs fusion on the feature extraction level. The multiple
features are fused using a Bayesian network. The problem with this implementation
is that this algorithm was only tested on a limited set of videos (broadcast news).
Additionally, the researchers focused their research efforts trying to eliminate false

positives instead of also looking to increase accuracy.

4.1.4 Output Level Fusion

Output level fusion involves merging the output results of each of the individual clas-
sifiers. Output level fusion attempts to fuse shot boundaries based on the similarity
among the output frames. Shot boundaries that are considered similar and are tem-
porally close to one another are grouped together and the unified result of the merging
should represent all the shot boundaries.

Ferman, et al. [43, 53] utilize two features, histograms and pixel differences for
video segmentation via 2-class clustering. Video segmentation is treated as a 2-
class clustering problem, where the two classes are ”scene change” and "no scene
change”. The K-means clustering algorithm [66] is used on the similarity measure
of color histograms between successive frames. Additionally, the sensitivity of the
pixel difference method to object and camera motion caused the authors to filter the
features before clustering. The authors concluded that the use of multiple features

simultaneously can improve the shot detection performance.
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Naphade, et al. [103] also utilizes a K-means clustering algorithm [66] on multiple
features to detect shot boundaries. The algorithm utilizes histogram differences and

a spatial difference metric. The spatial difference operator is defined as:

1 if |5 (fk) = L;(f >0
di j(fe, fer1) = | J(.k) i)l (4.16)
0 otherwise

where I, j(fx) and I; j(fi+1) denote the intensity of pixels at location (¢, j) in frames
fi and fi41. The spatial difference metric D, is defined as:
1 MN
Dy(fk, fr+1) = ngd}k(fk:fk+l) (4.17)
An unsupervised 2-class clustering algorithm based on K-means clustering is used to
classify shots.

The clustering algorithms of Ferman, et al. and Naphade, et al. both utilize out-
put level fusion. The output frames of multiple algorithms are fused via K-means
clustering. The cluster centers are used as the shot detection boundaries. The rea-
soning behind using clustering methods for shot segmentation is two-fold. First, they
alleviate the need to develop pre-determined thresholds. Determining the proper al-
gorithm thresholds to use is not a straightforward task. Moreover, this process is
highly dependent upon the type of video under analysis. For example, the optimal
set of thresholds for one video sequence may be suboptimal for another. Eliminating
this procedure of selecting thresholds was a key factor in developing clustering-based
methods. Secondly, they allow for the inclusion of multiple features to determine a
best segmentation. Researchers have long recognized the need to use multiple features
to increase reliability and shot segmentation performance. The negative aspects of
clustering-based algorithms are that false positives can result in missed shot bound-
aries. Frames from scenes that cause numerous false positive detections will appear
more in clusters and could eliminate true cut frames from being selected as the clus-
ter center. This phenomenon can lead to misdetections during the clustering process
which often leads to missed shot detection boundaries. Additionally, the clustering
algorithm all require the entire video to be processed before segmentation which can

be problematic for long video sequences. To combat this problem, Ferman, et al. has
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developed an ad hoc method for computing clustering on the fly by processing the
video in temporal blocks and performing clustering on those blocks.

Miene et al. [100] combined a frequency-domain approach based on FFT features,
gray-level histograms, and a technique based on the changes in luminance values to
detect shot boundaries. Each video frame is converted into a gray-scale image and
is transformed using an FFT. The sum of the absolute differences of the real and

imaginary parts for consecutive frames n and n — 1 is calculated as follows:
FTota,(n,n - l) = |R3um(n) - Rsum(n — l)l + |Is,m.(n) — Is,,m(n - l)l (418)

where Rg,m is calculated by adding the lower frequencies of the real part and Isy,m,
is calculated as the values of the imaginary-part.

Miene also uses the difference of luminance values between consecutive frames
to determine shot boundaries. Each frame in converted to YUV 1:1:1 format. The
absolute differences of luminance (Y) values of consecutive frames are calculated as

follows:
YDiff(nan - 1) = IYSum(n) - YSum(n - l)l (4.19)

where Ys,m is calculated by summing all the luminance values of each frame:

w—1h-1

Ysum = Y Y. Y(z,y) (4.20)

z=0 y=0
w and h and the width and height of the input frame.
Gray-level histogram differences are also used to detect shot boundaries. The

difference between consecutive histograms is calculated as follows:

3% (Hg(n)(i) — Ho(n — 1)(1))?
Hepipg(n,n —1) = Z M;;HG(n)(i), Hg(n —1)(4)

i=0

(4.21)

where Hg is the gray-level histogram, ¢ is the histogram index, and n is the frame
number.

This implementation illustrates output level fusion. Each algorithm detects shot
boundaries individually and boundaries within a pre-determined temporal threshold
are merged. Each algorithm creates a boundary list consisting of all the merged shots.

The three boundary lists are merged into a single shot boundary list by merging the
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overlapping boundaries. All detected boundaries within a pre-determined threshold
are reduced to one boundary. One problem with this implementation is the errors that
arise due to camera motion. There is no inherent algorithm to handle shot boundaries
that arise from camera motion. Another problem with this implementation is that
each algorithm is given equal weight which does not take into account that fact that
different algorithms perform better for various classes of content. Additionally, the
authors provide a pre-determined threshold to determine the length of a shot. This
manual threshold could conflict with the actual shot boundaries and could eliminate

shots from analysis.

4.1.5 Fusion Level Comparisons

When developing our solution for a fusion-based shot detection algorithm we analyzed
the various fusion levels in digital video and concluded that the best levels to achieve
effective shot segmentation performance was at the measurement and feature ertrac-
tion levels. The reasoning behind this decision was that abstract and output level
fusion offer very little information with respect to the decision making process. With
only the output decisions or the output frames from the classifiers available there are
only a limited amount of fusion strategies that one can apply and determining a false
positive or negative for a presented algorithm results is problematic. These imple-
mentations can be considered ad-hoc, because they lack underlying theory, and the
relative importance of each classifier is ignored or arbitrarily assigned [90]. Addition-
ally, the fusion strategies that are available at these levels do not differ by a significant
amount. Fusion at the measurement and feature extraction levels provide the most
information available to make decisions regarding a best segmentation. These levels
attempt fusing algorithm thresholds, scores, and confidence measures and offer a wide

variety of combination methods.
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4.2 Results Fusion for Video Shot Segmentation

This research models shot-based video segmentation as a binary classification prob-
lem. Binary classification problems classify data into two distinct groups, usually
accept or reject. In the digital video domain the two distinct classes would be shot
change and no shot change. There has been a lot of research with respect to solving
binary classification problems in the machine learning community [117, 9, 146]. Some
methods that have been used to solve binary classification problems in the biomet-
ric community are support vector machines, Bayesian classifiers, linear discriminate
analysis, decision trees, and neural networks. Researchers in the biometric commu-
nity have reported receiving optimal performance using support vector machines for
binary classification [9, 146]. As a result, one of the results fusion engines designed is
based on SVMs. SVMs fuse multiple classifiers at the feature extraction level, with the
outputs of the multiple classifiers synthesized in a vector in a high dimensional space.
This new vector is then analyzed by the SVM to make a judgment as to its class. We

extract key features from a video sequence and utilize SVMs for classification.

4.2.1 Support Vector Machines

Support Vector Machines (SVM) are used to solve binary classification problems by
mapping the training data onto a higher dimensional space and then determining the
optimal separating hyperplane within that space by solving a Quadratic Programming
(QP) problem [137]. SVMs are based on the principle of Structural Risk Minimiza-
tion (SRM), which differs from classical statistical learning approaches. Classical
statistical learning approaches are designed to minimize the empirical risk, by re-
ducing the misclassification errors on the training set. The principal of SRM states
that better generalization capabilities are achievable through a minimization of the
bound on the generalization error. Thus, they attempt to minimize the probability
of misclassifying a previously unseen data point drawn randomly from a fixed but
unknown probability distribution. They provide an upper bound for the probability

of misclassification of the test set for any possible probability distributions of the
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Figure 4.3: Multiple Separating Hyperplanes in 2D space

data points [113]. SVMs have exhibited good generalization performance for face
recognition [108], text categorization [39], multi-modal person authentication [139),
and optical character recognition [19].

Given a data set D which consists of m points in an n-dimensional space belonging

to two different classes +1 and —1, D is defined as:

D={(x;,y:)li € {1...m},x; € R",y; € {+1,-1}} (4.22)

A binary classifier finds a function f : 8* — {+1, —1} that maps points from their
domain to their label space. Although there exists an infinite number of hyperplanes
that could partition the data into two states (see Figure 4.3), the principle of SRM
states that there will be one hyperplane with the maximal margin, with the margin
being defined as the sum of the distances from the hyperplane to the closest points
of the two classes. In order to detect the optimal hyperplane only a small amount of
training data is needed. This data is in the form of support vectors that determine the
margin. Figure 4.4 depicts the support vectors and the optimal hyperplane between
two classes, squares and circles in 2 dimensions. A set of training patterns is said to

be linearly separable if there exists a vector w and a scalar b such that

wexi+b > 1 if y=1
v (4.23)

w-x;+b < -1 if yy=-1
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/ hyperplane
’

Figure 4.4: The decision boundary and optimal hyperplane in 2D space [78]. The
support vectors in red denote the margin of the largest separation between the two
classes.

are valid for all elements of the training set [26]. The distance between hyperplane
w - X; + b > 1 and hyperplane w - x; + b < —1 is 2/||w||, where ||w|| is the Euclidean
norm of w. 2/||lw| represents the minimum distance between points of different

classes. Equation 4.23 can be rewritten as:
y(w-x;+b)>1i€{l...m} (4.24)

By minimizing }||w||* subject to the constraints of Equation 4.24 we obtain two

hyperplanes with the maximum margin. The optimal hyperplane is defined as [26]:
Wo:-X+byp=0 (4.25)

The optimization problem of minimizing %||w||2 can be solved via quadratic program-
ming, which is guaranteed to find the global maximum.
The dual form of Equation 4.24 can be written as:
m 1 m
maximize W(a) = .z—;ai -3 ijz_:laiajy,-yj(x,- “ Xj) (4.26)
where a; > 0 and 37, a,;y; = 0. Classifying a new data set z with s data points is

defined as follows:

w-z+b=Zajyj(xj-z)+b (4.27)
j=1
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where z is defined as class 1 if the sum is positive and class 2 otherwise.
If the dataset is linearly non-separable we can allow for error in the classification
(see Figure 4.5). & represents the slack variables in optimization theory such that

Equation 4.23 can be rewritten as [26]:

w-x;+b > 1-§ if yi=1

(4.28)
w-x;+b < —-14+¢& if y;=-1
where & > 0. Equation 4.24 can be rewritten as:
yilw-x; +b)>1-&,i€ {1...m} (4.29)

Now the optimization problem becomes 3||w||* + C 1, & where C is a tradeoff pa-
rameter between the error and the margin, subject to the constraints of Equation 4.29

[26]. The dual form of Equation 4.29 can be written as [26]:
maximize W(a) = ¥M a; - %E%:l o;a;yiy;(Xi - X;),where 0 < o; < C  (4.30)

The only difference between the linearly separable case in Equation 4.26 and the
linearly non-separable case in Equation 4.30 is the upper bound C on ¢;. Just as in
the linear case a quadratic problem solver can be used to solve for a; [78].

Thus far, we have described SVMs in terms of linear separable decision surfaces
in the input space, however their generality allows for more diverse decision surfaces.
The key is to map the original input patterns in Xx; into a higher dimensional features
space ¢(x;). To develop a hyperplane in feature space one has to transform the M
dimensional input vector x into an m dimensional vector through an M dimensional
vector function ¢ : ®™ — RM [120]. The reasoning behind this transformation is that
linear operations in the feature space are equivalent to non-linear operations in the
input space (see Figure 4.6) [78]. Maximizing Equation 4.26 in feature space requires
the computation of dot products: @(x;)-#(x;) in a high dimensional space [120]. This

computation can be done via kernel functions such that:

K(x,y) = (¢(x), 8(y)) (4.31)

The kernel function K(x,y) denotes a prior knowledge about the similarity between

data x and y. Some kernel functions that are used are [9]:
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Figure 4.5: SVM Theory with slack variables £; and &; [78]
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Figure 4.6: SVM Transformation [78]

81



e K(x,y)=x'y Linear Kernel

e K(x,y)=(x'y+1)? p€ N Polynomial Kernel

® K(x,y) = tanh(ax'y +b) with (a,b) € R? Muli-Layer Perceptron Classifier
e K(x,y) = e Ix-¥I?/20* Radial Basis Function Classifier

In Equation 4.27 new data was classified in the input space. Classifying new data set
z with s data points in the feature space using a kernel function is defined as:
f=(w,¢(z)) +b= Z’;ajyjK(xj, z)+b (4.32)
j=
where the new data z is classified as class 1 if f > 0 and class 2 if f < 0.

Using SVMs involves a user specifying the type of kernel and the parameters asso-
ciated with that kernel type which is a major advantage because no special knowledge
or expensive tests are needed to set the values of the parameters. Additionally, the
complexity of the SVM during training is not dependent on the dimensionality, but on
the number of data points. The number of computation steps required for SVMs are
O(n®) where n is the number of data points [9]. During execution the classification of
the data points in just a weighted sum (see Equation 4.32). Additionally, during the
training phase only the relevant information is needed in the form of support vectors.
By only utilizing the important points, in the form of support vectors, this reduces

the size of the training set. Also, this provides for an efficient means of classification.

4.2.2 Decision Trees

Decision trees are a statistical machine learning approach that creates a series of if-
then-else rules in the form of a tree-like structure from the training data set in order
to make decisions regarding class labels. It uses a top-down induction strategy from a
training set of data to construct the tree structure. Decision trees do this by analyzing
the attributes or features to determine values that maximize the information gain at
a particular node [117]. The information gain is usually the decrease in entropy as a

result of making a decision as to which attribute to use and at what level in the tree.
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Decision trees are designed for problems whose instances are represented in key-
value pairs. Given a set of examples, the decision tree assigns classification to each
example. Although decision trees were primarily designed for discrete valued data,
they have been extended to incorporate real-valued floating-point data. At each
internal node of the tree, a binary decision is made based on a threshold value. The
threshold is chosen that best yields the greatest information gained by partitioning
the set into two subsets based on the threshold.

A decision tree is constructed from the root node. From the root, a decision tree
grows by splitting the data at each level based on maximizing a cost function to
form new nodes. This cost function usually measures the impurity or variance of the
example data sets. After choosing on a split, the subsamples are then mapped to
the two children nodes. This procedure is then recursively applied to each child node
until a stopping criteria is met. The nodes are connected by branches with leafs being
the nodes at the end of the branches. Each internal node of the decision tree is a
classifier, with the classification determined at each leaf node. The nodes in the tree
contain information about the number of instances and the distribution of dependent
variables at that node. The root node contains all the instances of the training set.
Once constructed, a tree predicts a new case by starting at the root and following
a path until a leaf node is reached. The outputs of the internal nodes determine a
unique path from the root to the leaf of the decision tree. The path is determined by

the splitting rules on the values of the independent variables in the new instance.

4.2.3 Rulesets

Rulesets are an unordered collection of if-then-else rules generated from decision trees.
They are designed to help make a decision tree more readable and understandable.
The set of rules generated from decision trees consists of at least one default rule,
which is used to classify unseen instances when no other rules apply. Generally,
a ruleset will have fewer rules than a decision tree has leaf nodes, which aides in
its understandability. Additionally, rulesets are often more accurate predictors than

decision trees. Each generated rule consists of an attribute value pair, the resulting
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Figure 4.7: Two-Layer Neural Network Architecture

classification, the number of instances that the rule covers, followed by a percentage

that represents the confidence measure for that rule.

4.2.4 Neural Networks

Neural networks have frequently been used for the recognition and estimation of input
patterns. The strength of neural networks is based on its discriminative ability to
learn and represent the underlying patterns of the input data. Neural networks can
utilize numerous learning algorithms with a seemingly infinite amoﬁnt of network
architectures. Figure 4.7 illustrates a two-layer neural network architecture.

This network can be thought of as a non-linear decision making process. Let X
denote the input pattern (zy,...,z;) and W denote the set of outputs (w;, ..., w;).

The output y; determined from the output nodes as follows [22]:

vi=f {zk: wikf(z: wkjfcj)} (4.33)

where w;x and wi; denote the weights between kth hidden node to the ith class output
and the weight between the jth input node to the kth hidden node respectively.
The function f is the transfer function such as the log-sigmoid function, tan-sigmoid
function, or a pure linear transfer functions. The transfer function forms the decision
boundary between the classes. The node with the maximum value is selected as the
class node. Figure 4.8 illustrates the log-sigmoid, tan-sigmoid, and linear transfer

functions.
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Figure 4.8: Neural Network Transfer Functions
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Training of a neural network can be facilitated through supervised learning. Su-
pervised learning involves the use of known input patterns and classes. The weights
and biases of the network are chosen to minimize a squared-error cost function. This

cost function can be defined as:

k
E [g(yf(X ) — di)?] (4.34)

where E is the expected value operator, y;(X) are the actual outputs of the
network and d; are the desired outputs of the network. It has been shown that
the outputs of the neural network can be estimates of Baysian posterior probabilities
if configured correctly(116]. Thus Equation 4.34 can be generalized to the form [22]:
k k
E[g(yi(X ) — E[di|X])’] + E [g var|d;| X]] (4.35)
where E[d;| X] and var(d;|X] are the conditional probability and conditional variance
of the desired output d;. The second term in Equation 4.35 is not dependent on the
network outputs, the minimization of the cost function can be described in terms of
the the mean-squared error (MSE) between the network outputs and the conditional
expectation of the desired outputs [22]. Thus, the desired output d; is assigned to
class w; by the following Bayesian probabilities [22]:

Eldi|X] =

5 d,P(w;]X) = P(uilX) (4.36)

i=1
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4.3 Features

The features used for results fusion can come in very diverse forms. Some of these
forms include continuous values, such as with numerical data, binary values, dis-
crete labels, timestamps or dates. In Section 3.1 we discussed the implemented shot
boundary detection algorithms: global histograms, local histograms, edge features,
and DCT coefficients. As a result of the implemented algorithms we obtain the follow-
ing features between pair-wise frames, global histograms differences, local histogram
differences, the edge change ratio, and DCT coefficient differences. Each one of these
values represents continuous data. It has been shown that when developing shot seg-
mentation strategies that utilize multiple features, improved results can be obtained
when features are chosen that complement one another [53]. Thus, in a situation in
which extracting one feature may be difficult or unreliable, extracting another feature
may be more appropriate. The features that are computed for our shot segmentation
algorithm are based on their overall performance exhibited by a history of research in
the video shot segmentation community. Additionally, the chosen features are based
on how the strengths and weaknesses of each algorithm complement one another.

Global histograms are the most common feature used for color-based video shot
segmentation (see Section 2.2.1.3). One of the strengths of this method is that it
does a good job of detecting abrupt changes between shots. Additionally, histograms
are easy to implement and computationally fast. One of the weaknesses of global
histogram methods is that they ignore spatial content within the video frame. (In-
deed, two images that are very dissimilar can have identical global color histograms.)
Thus, consecutive frames that have different spatial distributions, but have similar
histograms, are considered similar. Another weakness is that global histograms are
not tolerant of local changes within a video frame.

Local histograms combat the weaknesses of global histograms. Methods based
on local histograms are tolerant of local changes, however they are still sensitive to
changes in luminance over the entire frame [95]. Additionally, both histogram-based

methods do not inherently detect gradual transitions.
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When color information cannot be easily extracted from a video frame, edge fea-
tures can be used to determine shot boundaries. Zabith, et al. [152] detect cuts, fades,
dissolves, and wipes based on the appearance of intensity edges that are distant from
edges in the previous frame. One advantage of this feature is that it detects abrupt, as
well as gradual, transitions. One disadvantage of this feature is that it is less reliable
in the presence of multiple independently moving objects [74] because multiple mov-
ing objects cause the global motion compensation aspect of this method to produce
errors during registration and prevent any registration method from allowing edges to
correspond (see Section 2.2.1.5). Another disadvantage of this method is an increase
in false positives. Changes in image brightness or low quality frames, where edges are
harder to detect or appear and disappear due to noise, may cause false positives.

DCT coefficients represent the spatial frequency components that comprise the
block of pixels in a video frame (see Section 2.2.2.2). One advantage of using DCT
coefficients is that they are often available as a byproduct of the MPEG compressed
video stream. Hence, their extraction is computationally fast. One disadvantage of
this method is that since the algorithm only processes I frames, temporal resolution is

decreased, though this can be alleviated using partial decompression in the analysis.

4.4 Results Fusion Shot Segmentation

We have implemented results fusion shot segmentation strategies based on support
vector machines (SVM), Decision Trees, Rulesets, and Neural Networks. The result
of each individual feature extraction module is used to form a feature vector, and
the new feature vector is fed to the results fusion engine to make a final decision as
illustrated in Figure 4.9.

Each feature module extracts pair-wise frame differences and these metrics are
used to form a new feature vector. The new feature vector consists of global histogram
differences, local histogram differences, the edge change ratio, and DCT coefficient
differences. The goal of the results fusion engine is to classify each feature vector into

one of two classes: shot boundary or no shot boundary.
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Figure 4.9: Results Fusion Video Segmentation Methods

The SVM results fusion implementation is based on the libsvm software [20]. We
used the C-SVM implementation of SVM [137]. C-SVM solves the following quadratic

programming problem:

minwye 1w-w+CTi, &
Yi(w-d(xi) +b) 21—, (4.37)
£>0i=1,...,1

It has been shown that the linear kernel is a special case of the Radial Basis Function
(RBF) kernel and the polynomial kernel has some numerical difficulties. As a result,
the RBF kernel was used because it is the most appropriate kernel to use for a wide
variety of data sets [89].

The decision tree results fusion method is based on the C5.0 data mining software
[114]. Figure 4.10 illustrates a sample partial output of the decision tree created by
C5.0 on a training data set. The training data consisted of actual shot boundaries
and regular frames. The ruleset-based results fusion method is also based on the
C5.0 data mining software [114]. Figure 4.11 depicts a partial sample of the rules
generated by C5.0 on a sample data set. The ruleset output displays the number
of testing and training instances that each rule covers, the if-then-else rule, and a
confidence measure.

The neural network results fusion method is based on the feed-forward neural
network. The Matlab Neural Network Toolbox was used to design the network ar-
chitecture. The network architecture consisted of 10 neurons in the hidden layer and

1 neuron in the output layer. The hidden layer uses the log sigmoid transfer func-
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Figure 4.10: Partial Decision Tree Output of C5.0

Extracted rules:

Rule 1: (cover 17257)
color-histogram <= 5.79635e-05
-> class -1 [0.994]

Rule 2: (cover 27233)
color-histogram <= 0.00196533

dct <= 0.208771

-> class -1 [0.986]

Rule 3: (cover 27199)
color-histogram <= 0.00253702
edge-ratio <= 0.00964466
local-histogram <= 0.019552

-> class -1 [0.985]

Rule 4: (cover 25957)
color-histogram <= 0.00308802
local-histogram <= 0.0145216

-> class -1 [0.985]

Figure 4.11: Partial Ruleset Output of C5.0
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Figure 4.12: Neural Network Implementation

tion and the output layer uses a linear transfer function. The Levenberg-Marquardt
algorithm [54] was used as the training function. As a result of its optimization
techniques, the Levenberg-Marquardt algorithm appears to be the fastest method for
training feed-forward neural networks [147]. Training was stopped when the training
error went below .0001 or after 400 learning epochs. Figure 4.12 illustrates our neural

network with 4 input nodes, 1 hidden layer with 10 neurons, and 1 output layer.

4.5 Baseline Testing Methods

Our results fusion-based segmentation strategies were baseline tested against a static
and dynamic implementation of each individual shot detection method. Additionally,
each one of our results fusion strategies was tested against a unimodal version of its
implementation. The purpose of implementing a unimodal decision tree, ruleset, neu-
ral network, and SVM classifier was to determine how much or if fusion was actually
being applied. Lastly, we implemented two well-known combination strategies in the

video domain based on Boolean logic and majority voting.

4.5.1 Boolean Logic

Our Boolean logic method was based on the hierarchical method of Browne, et al.
[15]. If the color histogram feature module is above its high threshold T'1, a shot
boundary is detected. If the local histogram feature module is above its threshold
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Figure 4.13: Boolean Logic Method

T3 and the color histogram feature module is above a minimum threshold 72, then
a shot boundary is detected. If the edge feature module is above its threshold T4
and the color histogram feature module is above a minimum threshold 72, then a
shot boundary is detected. Lastly, if the DCT feature module is above its threshold

T5 and the color histogram algorithm is above its minimum threshold T2, a shot

boundary is detected.
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Figure 4.14: Majority Voting Method

4.5.2 Majority Voting

We have also implemented a majority voting algorithm similar to the research of Yu-
soff, et al. [151]. Each feature detection module outputs a decision value to determine
if the current video frame under analysis is a shot boundary. If at least three of the
four feature detection modules indicate a shot boundary then the fusion system de-

termines that a shot boundary is present. This method is illustrated in Figure 4.14.

4.6 Cross Validation

Cross validation allows one to get a more reliable estimate of the predictive accuracy
of the classifier. We performed ten-fold cross validation with the SVM, decision trees,
rulesets, and neural network implementations. Ten-fold cross validation has been

statistically proven to be good enough in evaluating the robustness and performance of
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classifiers [130, 143]. The training data is decomposed into 10 equally sized randomly
generated subsets. The classes are distributed evenly among the 10 subsets. Nine of
the subsets are used to train the learner and the tenth hold-out subset is used for
testing. This procedure is repeated ten times, with a different randomly generated

subset used for testing each repetition.

4.7 Summary

This section described the levels of results fusion noting each levels strengths and
weaknesses. As a result, this research focused on developing methods for results
fusion-based on the measurement and feature extraction levels. These levels offer the
most flexibility in developing a composite system. It then described some current
attempts at developing results fusion techniques for digital video. Each of the de-
scribed techniques was ad hoc and not practical on a large test suite of video. This
chapter then described the novel results fusion-based methods developed for shot seg-
mentation. Each one of the strategies has been used in information and biometric
retrieval systems. This research has adapted their approaches to the video domain.
Additionally this chapter described a new classification method in the area of pat-
tern classification, support vector machines. This method has been receiving a lot of
attention in solving binary classification problems and is used as one of our results

fusion shot segmentation methods.
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Chapter 5

Experimental Evaluation

Key to any new development in digital video segmentation is the validation of the
performance of the proposed method on a collection of content. For this reason,
the research presented in this thesis includes the construction of a video corpus with
associated ground-truth segmentation data. This chapter describes the video corpus
and the method for experimental evaluation of fusion-based segmentation algorithms.

Images in this thesis are presented in color.

5.1 Video Corpus

A video corpus consisting of various classes of video content has been collected for
this experimental evaluation and ground truth data manually generated. The classes
of video include motion pictures, TV sitcoms, cartoons, Unmanned Aerial Vehicle
(UAV) footage and music videos. The collection consists of over 8 hours of video.
Figure 5.1 describes some characteristics of the video corpus including the type,
title, duration, and frame-to-shot ratio. All videos were digitized at a size of 352 by
240 at a frame rate of 30fps. The videos were decoded for analysis using the CODEC
supplied with Microsoft DirectShow. Some characteristics of the video corpus are as

follows:

1. Television Programs: This class of videos included 2 one hour episodes of the

television program 24. This test class includes over 84 minutes of video.
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Video Type Video Title Length | #of Frames | # of Cuts | Ratio
Cartoon The Family Guy A 21:49 39270 261] 150:1
Cartoon The Family Guy B 21:39 38970 326] 119:1
Cartoon The Family Guy C 21:48 39240 246] 159:1
Cartoon The Family Guy D 21:49 39270 260] 151:1
Cartoon The Family Guy E 21:38 38940 310} 125:1
Movie Blade 2 109:45 197550 2301] 85:1
Movie The Royal Tenenbaums 50:43 91290 479] 190:1
Music Video | Destinys Child A 4:.06 7380 233] 31:1
Music Video | Destinys Child B 3:40 6600 239] 271
Music Video | Destinys Child C 3:18 5940 208] 28:1
Music Video | Jay 2 4:23 7890 208] 37:1
Music Video | Michael & Janet Jackson 4:49 8670 250] 34:1
Music Video | Mya 4:00 7200 111] 64:1
Music Video | R Kelly A 4:20 7800 123] 63:1
Music Video | RKelly B 7:20 13200 193] 68:1
TV Drama 24 A 42:32 76560 564] 135:1
TV Drama 24B 42:18 76140 700] 108:1

Figure 5.1: Video Corpus

2. Mouies: This class of videos included the movie Blade 2 and the first 50 minutes

of The Royal Tenenbaums. This test class includes over 160 minutes video.

3. Cartoons: This class of videos included 5 episodes of The Family Guy. Over

110 minutes of the video are included in this test class of video.

4. Music Videos: This class of music videos includes content by Destinys Child,
Jay Z, Mya, Michael and Janet Jackson, and R. Kelly. This test class included

over 30 minutes of video.

The ground-truth data has been collected using a custom video file scripting tool
that enables a user to manually select and annotate shot boundaries in video se-
quences. The focus of any shot-boundary detection method is the determination of
boundaries between camera sequences, something that, while difficult for computers
to currently determine, is easy for humans to assess. Figure 5.2 shows the interface
for the video file scripting tool. The ground truth data was collected by a student

assistant in the lab.
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Figure 5.2: Video Scripting Tool
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5.2 Performance measures

During experimentation, we wanted to develop a statistically acceptable framework
to assess the performance of each algorithm. Researchers have used various methods
to compare performance between algorithms using the confusion matrix. Figure 5.3
illustrates the confusion matrix with TP indicating the true positives, F'P indicating
the false positives, TN indicating the true negatives, and F'N indicating the false
negatives. Some researchers have classified performance in terms of two statistics,

precision and recall {47, 100, 109]. Precision and recall are expressed as:

Precison = TP’I%)FP (5.1)
Recall = ppiten (5.2)

Other researchers compare competing algorithms in terms of the three basic met-
rics: correct detections (true positives), false detections (false positives), and missed
detections (false negatives) [18]. However, it should be noted that these are often com-
peting metrics. Many algorithms based on a thresholding mechanism can be adjusted
to increase the number of true positives at the expense of increased false positives
or adjusted to decrease false positives at the expense of false negatives. This same
observation applies to precision and recall, though this is typically accommodated by
stating precision and recall together in a precision/recall graph (also called a receiver
operating curve or ROC).

Research in the biometric community utilizes the false acceptance rate (FAR) and
the false rejection rate (FRR) to compare performance between biometric systems.

These statistics are defined as follows:

- FP

FAR=pprTN (5:3)
- FN

FRR = pN+TP (54)



Actual Actual
Positive Negative

Predicted|

Positive TP FP
Predicte

Negative FN ™

Figure 5.3: Confusion Matrix

FAR is defined as the ratio of the total number of false acceptances to the total
number of imposter accesses and FRR is defined as the ratio of the number of false
rejections and the total number of client accesses.

Lienhart [86] classifies shot detection performance in terms of the hit rate, miss
rate, and false hits. The hit rate h is the ratio of correctly detected shots to the
actual number of shots. This measure is the same as recall. The miss rate is defined
as 1 — h. False hits are defined as the ratio of falsely detected shot boundaries to the
actual number of shots.

Some researchers have also attempted to compare competing algorithms in terms
of a single statistic: accuracy. In terms of the confusion matrix (see Figure 5.3),

accuracy is defined as:

TN+TP

TN+TP+FN+FP (5.5)

Accuracy =

Accuracy is the measurement of correctly classified instances. This measure has
been shown to be insufficient to evaluate the performance of different algorithms
[130]. For example, if a data set consists of 95 TNs and 5 TPs, classifying all 100
instances into the negative class (95 TNs and 5 FNs) would achieve a 95% accuracy
measure. However, the ability of the system to predict the positive class would

be 0%. Although the accuracy measure is an apparently high 95%, the classifier
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cannot discriminate between the two classes. This is particularly a problem in video
shot detection, where the vast majority of frames boundaries do not represent shot
boundaries. As an example, Blade 2 has 197,549 frame boundaries and 2,300 shot
boundaries (a frame boundary is a pair of frames that represent a transition in time;
a shot boundary is a frame boundary where the two frames are from different shots).
Failing to detect any cuts in this entire sequence would still yield an accuracy measure
of 98.8%.

We have chosen to base our performance in terms of precision and recall values.
Theoretically, we strive to achieve perfect precision and recall, however in practice
there is a tradeoff. Increasing the precision measure past a certain point usually
results in lowering the recall and vice versa. We seek to obtain results that provide
a balance, maximizing both precision and recall simultaneously. Additionally, we
determine the overall performance of an algorithm with respect to the video corpus
in terms of composite precision and recall. Composite precision and recall for the set

N of videos in the corpus is defined as:

Recalloompone = —gimborls 6
E€CALLComposite ’fﬂﬁ‘m‘_) (5 )

P . o EN TP;
TECLSONComposite = m (57)

In evaluating the performance of any algorithm based on precision and recall
statistics, it is important to know what level of information one wants to obtain from
the data [10]. If the intent of the video is to be further observed by a human ana-
lyst, then a high recall value is important. Humans are good at recognizing errors in
the shot boundary detection and can disregard the redundant information relatively
quickly. A system that is fully automated places more emphasis on precision. De-
pending on the goal of the segmentation, a trade-off must be made between precision
and recall. It may or may not be acceptable to retrieve a few extra shot boundaries
that would otherwise be missed at the expense of retrieving an enormous amount of

incorrectly identified shot boundaries [10]. This research only considers the thresholds
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that produced results of at least 50% recall.

5.3 Training Data

The division of the training data plays a critical role in determining the performance
of supervised learning-based algorithms. However, in the video domain, the ratio of
shot to non-shot boundaries does not lend itself well to developing a balanced training
set. For example, in Figure 5.1 the Royal Tenenbaums video has a frame-to-shot ratio
of 190 : 1 in 91290 frames. It has been shown that balancing the number of classes in
the training data leads to a more robust classifier {130]. Additionally, the classifiers
generated from equally balanced data sets consider all the discriminating attributes
that separate the two classes. Unbalanced data sets can lead to overfitting problems
and poor cross validation. The total number of shots in this video sequence totals 479,
but sampling only a balanced 479 negative samples in this video does not adequately
characterize the negative cases.

Theoretically, in order to train a robust classifier it must be trained on every
possible type of input. Utilizing all the available data to train a machine learning
system is impractical. In practice, one must attempt to train the classifier with
a set of data that can characterize all possible input patterns or at least all the
extremas. Initially we trained the various results fusion engines with a balanced data
set. The positive examples in the set were chosen from all the manually collected
shot boundaries for each video sequence. An algorithmic and a random solution
were then utilized to sample the possible negative cases. The results of training with
balanced data led to poor classification for all the implemented methods for both
the random and algorithmic solutions. As a result, we incorporated more negative
examples into the training set. For every shot in the training data, we randomly
sampled 30 negatives cases. This approach proved to lead to a more robust classifier.
Leave out one testing was performed for each video under analysis, where all the
training data from the video corpus was used to train each method, except the video

that will be used for testing.
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Normalization is an important aspect of results fusion [17]. The variety of videos
contained in the video corpus exhibit varying characteristics. Moreover, the imple-
mented algorithms exhibit different behaviors at shot boundaries. All of the imple-
mented methods attempt to look for peaks in the inter-frame comparison method
distributions. As an example, a simple shot boundary detection method might seek
to find peaks in the comparison between the color histograms of two adjacent frames.
However, these measures vary depending on the underlying content and one video’s
peak can be drastically different from another’s. As a result, each of the video fea-
tures was locally normalized with respect to the information contained in its own
sequence. Specifically, each video’s pair-wise frame difference metric was normalized
by the maximum difference metric observed in the entire video sequence, mapping

the measures into a common [0, 1] interval.

5.4 Filtering

Initial tests of the implemented algorithms showed that many shot transitions resulted
in high false positive measurements. One of the reasons for this occurrence is that
during a shot transition that occurs over a se;‘ies of frames (gradual transitions), the
threshold would be crossed several times. Our research does not focus on detecting
gradual transitions. In order to reliably and accurately detect gradual transitions,
we would have to characterize every type of gradual effect for training and testing.
That is beyond the scope of this work. Researchers have experimented with various
smoothing methods to reduce the effects of gradual shot transitions [28, 86]. Zabith, et
al. [152] and Lienhart [86] used a gliding mean value to smooth the results of the edge
change ratio method. Any dissimilarity metric value greater than a predetermined
threshold was smoothed, any other dissimilarity metric value was set to zero.

Our research uses a filtering strategy based on the research of Dailianas, et al.
[28]. This algorithm works by processing the sequence of dissimilarity metrics between
successive frames and computing a new sequence that is analyzed for shot transitions.

Given a candidate frame, the previous and next k frames in the video sequence are
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analyzed. If any of the 2k dissimilarity metrics is greater than the candidate frame’s
dissimilarity metric, the candidates dissimilarity metric is replaced with the last local
minimum detected in the sequence. From experimentation k was set to 6 in this

research.

5.5 Existing Method Results

In order to properly assess the performance of the proposed results-fusion segmenta-
tion algorithms, it was necessary to compare to baseline implementations of common
existing algorithms including both single method and fusion approaches. We have im-
plemented and analyzed several existing methods as described in this section. These
methods include the four basic single method approaches (global histograms, local
histograms, DCT, and edge change ratio) with single thresholds and adaptive thresh-
olds, as well as the existing majority voting method and Boolean logic method for

results fusion.

5.5.1 Single Threshold

It is a difficult task to determine a single best threshold to use for a diverse set
of video sequences. Theoretically, utilizing an optimal threshold would be ideal for
each video sequence; however this is functionally not possible, as it would require an
oracle to supply the threshold value. There is no single ideal threshold that can be
used for a variety of video classes. Moreover, not only do different classes of video
have different characteristics, but different videos within the same classes do not
always exhibit the same properties. A threshold that may be optimal for one video
sequence will probably not be optimal for another. As a result, a compromise must
be made in determining a single threshold. This compromise sacrifices performance
and reliability for each video sequence under analysis. In our testing, to determine
a single threshold, we averaged the best performing thresholds in terms of precision
and recall values for each individual algorithm. Figure 5.4, Figure 5.5, and Figure 5.6
illustrate the precision vs. recall graphs of the global histogram, local histogram, and
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DCT coeflicient algorithms respectively. The precision vs. recall graph was not shown
for the edge change ratio because this method maps all the ratios into the interval
[0,1]. All the peaks in the algorithm denote cuts, and all the other edge change ratios
are close to zero. Deciding on a single threshold involves maximizing the precision
and recall. Figure 5.9 displays the single thresholds used for each algorithm based
on the precision and recall curves. As a result of using a single threshold for a wide
variety of content, the single threshold method for each individual algorithm shows
a mixed bag of results. Figure 5.7 shows the graph of precision and recall values for
the single threshold implementation.

An analysis of the precision and recall table in Figure 5.7 shows that the music
video RKelly A performs poorly for all the implemented algorithms. This is a direct
result of the numerous editing effects used throughout the video that could not be
removed by the pre-filtering technique. In this research, gradual transitions are not
detected, therefore videos having numerous editing effects and gradual transitions
can lead to erroneous results. Figure 5.10 shows some frames from the RKelly A
music video sequence. Additionally, the Blade2 A and Blade2 B videos exhibit poor
performance as well. The Blade2 A and Blade2 B videos consists of dark scenes and
manually edited lighting effects. The global and local histogram methods achieved
the best performance using a single threshold in terms of maximizing the precision
and recall. The highlighted cell values in the table show the method that produced
the best performance in terms of increasing precision and recall. These results are
consistent with what other researchers have concluded when using histogram-based

algorithms along with other methods [10, 95, 156].

5.5.2 Adaptive Threshold

OToole et al. [109] concluded that fixed thresholds are inadequate to deal with a
variety of different types of video content. Additionally, researchers have reported
receiving better performance using adaptive threshholding methods [15, 100, 150].
As a result, we have implemented 3 adaptive shot boundary techniques based on the

research of Yusoff, et al [150]. The three adaptive shot detection methods are the
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Figure 5.9: Single Thresholds used for each method

Figure 5.10: RKelly A Music Video Sequence
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constant variance model, proportional variance model, and the Dugad model [38].
The constant variance model sets a threshold at some fixed distance away from the
average of the metric values within a sliding window. The constant variance model
can be expressed as:

mr = pun + T (5.8)

where the value T, defines a constant, and uy reflects the average of the samples
within the window N.

The proportional variance model sets a local threshold at some multiple of the
average of the frames within the sliding window. The proportional variance model

can be expressed as:
mr = unTp (5.9)

where the value of T}, is determined from experimentation.

The Dugad model sets a local threshold at some multiple of the standard deviation
and the average of the samples within the window. The Dugad model can be expressed
as:

mr = uny + Ty /on (5.10)

where Ty is calculated from experimentation.
Various window sizes and parameters were used to determine the best performing
dynamic method based on the total error rate. The total error rate is defined as:

FP + FN
Error = P+ FN+TP+IN (5.11)

The global histogram method produced the best results using the proportional vari-

ance model with 11 as the window size and 6 as the constant. The local histogram
method produced the best results using the proportional variance model with 21 as
the window size and 6.5 as the constant. The DCT method produced the best results
with the Dugad model with 11 as the window size and 2.5 as the constant. The Edge
Change Ratio method produced the best results with the proportional variance model
with 29 as the window size and 2.5 as the constant.

Experiments with adaptive thresholds indicate that adaptive thresholds improve

algorithm performance over static thresholding methods. These results are consistent
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with other shot segmentation research using adaptive thresholds (15, 38, 109, 150].
Figure 5.11 and Figure 5.12 display the precision vs. recall table and graph for the
adaptive threshold implementation. The highlighted cell values in the table show
the method that produced the best performance in terms of increasing precision and
recall. From a comparison of Figure 5.8 and Figure 5.12 one can see that the overall
precision and recall statistics for all the implemented methods has increased due to
the use of dynamic thresholds.

The dynamic local histogram method produced the best results in terms of max-
imizing the precision and recall values for all the dynamic methods. It produced the
maximum precision and recall values for 8 of 18 videos. As a result, this algorithm

implementation will be used to baseline test the fusion-based methods.

5.5.3 Majority Voting Method

The majority voting method of Yusoff, et al. [151] was implemented with adaptive
and static thresholds (see Section 4.5.2). Figure 5.13 displays the precision vs. recall
table of this method. The highlighted cell values in the table show the method that
produced the best performance in terms of increasing precision and recall.

The method yielded the intuitively expected results. The algorithm produces a
high precision for low recall values. If a majority of the algorithms determine that a
cut exists, there is a high probability that a cut does exist. As a result, the majority
voting method produces relatively high precision values for each algorithm. One
major problem with this implementation is that since all the algorithms are given
equal weight to determine the outcome, unreliable algorithms can lead to numerous
missed detections.

Yusoff, et al. [151] claims to receive good performance using this algorithm; how-
ever this implementation was only tested on two video sequences. Additionally, the
descriptions and characteristics of the two video sequences that were used in their
study were not given. This thesis provides a more thorough analysis of this imple-
mentation. Figure 5.14 shows a comparison table of the voting methods and the

adaptive local histogram method. Additionally, the composite performance of the
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Voting Method Static | Voting Method Dynamic |
Precision | Recall | Precision Recall

24 A 90%) 63%|
24 B 77%) 41%
lEade 2A 8% __27%
Blade 2 B 47% 39%|

Destinys Child A 95%) 68%

Destinys Child B 92% 9%
Destinys Child C 75%) 71%)
Jay Z 99%| _ 80%)
Michael & Janet Jackson 91%) 70%)
Mya 84%) 42%
R Kelly A 85%| _ 24%)
R Kelly B 71%] 78%|
mFamilx uy A 4% 72%
The Family Guy B 92%|  67%
The Family Guy C 97%| _ 45%)
The Family Guy D 88%) 32%]
The Family Guy E 99%| __47%)
The Royal Tenenbaums 84%] 18%)

Figure 5.13: Majority Voting Precision vs. Recall Table

adaptive local histogram method and the voting methods is displayed. Overall, the
voting methods increase precision. The static voting method increases precision 21%
and the dynamic voting method increases precision 50%. However, this increased
precision is at the great expense of recall. The static voting method reduces recall
by 44% and the dynamic voting method decreases recall 30%. From the analysis of
Figure 5.15 it is shown that this combination method does not perform better than
the adaptive local histogram algorithm. The old maxim states, “A chain is only as
strong as its weakest link.” This algorithm suffers when unreliable estimates are fed
into the system by a poorly performing algorithm, causing the system to produce

numerous missed detections resulting in decreased recall.

5.5.4 Boolean Logic

The Boolean logic combination algorithm of Browne, et al. [15] has been implemented
using static and dynamic thresholds (see Section 4.5.1). Figure 5.16 displays the pre-

cision vs. recall data table of the Boolean logic static and dynamic method. The
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Boolean Logic Static [ Boolean Logic Dynamic |
Precision Recall Precision Recall
24 A 67%] 82%
24 B 58%] 64%|
ﬁade 2A 36%) 78%
Blade 2 B 37%] 80%
Destinys Child A 84%) 88%
Destinys Child B 91%)| 80%|
Destinys Child C 59% 80%
[Jay Z 95%) 84%)
Michael & Janet Jackson 77% 87%,
IMya 77%) 62%)
R Kelly A 34%) 37%)
R Kelly B 58% 85%|
The Family Guy A 38% 93%]
The Family Guy B 35%) 92%|
The Family Guy C 37%) 90%)|
The Family Guy D 31%] 93%)
The Family Guy E 35% 93%
The Royal Tenenbaums 85% 58%|

Figure 5.16: Boolean Logic Precision vs. Recall Table

highlighted cell values in the table show the method that produced the best per-
formance in terms of increasing precision and recall. The dynamic method of this
algorithm performs better than the static method on 11 of the 18 videos tested. Fig-
ure 5.17 shows a comparison table of the Boolean logic method and the adaptive local
histogram method. The adaptive local histogram method produces a higher precision
and recall value for 8 of the 18 videos. Additionally, the composite performance of
the Boolean logic methods and the adaptive local histogram method is displayed. In
comparison with the adaptive local histogram method, both the adaptive and static
Boolean logic methods decrease precision 9%. The Boolean logic static method also
decreases recall 1% and the dynamic Boolean logic method increases performance 1%.
From the analysis of Figure 5.18 it is shown that this combination method does not
perform much better than the adaptive local histogram algorithm.

The majority voting and Boolean logic methods did not significantly improve
performance over the adaptive local histogram implementation. When the type of

video is known in advance, these algorithms can be tuned to achieve good performance
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on a limited video class. The majority voting algorithms suffer from the fact that each
method is given equal weight in making shot boundary decisions. Perhaps a weighted
voting strategy would be more appropriate. The Boolean logic method is an ad hoc
attempt at combining results. The color histogram method is given the most weight
in all decisions to make shot boundaries. When the color histogram method produces

unreliable results, the algorithm will produce poor performance.

5.6 Results Fusion Engine Results

This thesis develops result fusion strategies based on decision trees, rulesets, neural
networks, and support vector machines. This section describes the performance of

each of these methods.

5.6.1 Decision Trees and Rulesets

The decision tree and ruleset results fusion methods are based on the C5.0 data
mining software [114]. The results of the decision tree and ruleset implementations
(see Section 4.2.2 and Section 4.2.3) are presented in Figure 5.19. The highlighted
cell values in the table show the method that produced the best performance in terms
of increasing precision and recall. Since rulesets are generated from decision trees,
their performance is similar. However, the ruleset fusion method performed better
on 11 out of the 18 test video sequences.

The results fusion decision tree and ruleset methods were baseline tested against
the single modality global histogram, local histogram, edge ratio, and DCT decision
tree and ruleset methods. The single modality decision tree and ruleset methods
produced the exact same results. Figure 5.20 shows a table of the precision and recall
values of the results fusion decision tree, results fusion ruleset, and single modality
methods. The results fusion methods outperform the single modality methods in 13
out of the 18 test video sequences.

Figure 5.21 shows a comparison table of the decision tree and ruleset methods

and the adaptive local histogram method. The decision tree and ruleset methods
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Decision Tree | RuleSet |
Precision | Recall | Precision | Recall
24 A 70%] 92%)
24 B 61%] 83%]
Blade 2 A 58% 33%)|
Blade 2 B 43%) 4%
Destinys Child A 79%) 5%|
Destinys Child B
Destinys Child C 44% 97%)
Jay Z 84% 93%
Michael & Janet Jackson 83%) 95%)|
Mya 68% 74%|
R Kelly A 31%) 54%)
R Kelly B 55% 85%|
The Family Guy A 80% 100%)
The Family Guy B
The Family Guy C 82% 99%)
The Family Guy D 67%) 99%)
The Family Guy E
The Royal Tenenbaums

Figure 5.19: Decision Tree and Ruleset Precision vs. Recall Table

produce the highest precision and recall values for 14 of the 18 test video sequences.
Additionally, the composite performance of the decision tree, ruleset, and adaptive
local histogram methods are illustrated. The decision tree method increased precision
2% and recall 11% when compared with the adaptive local histogram method. The
ruleset method increased precision 4% and recall 11% when compared with the adap-
tive local histogram method. From the analysis of Figure 5.22 it is shown that these
combination methods do perform better than the adaptive local histogram algorithm.

5.6.2 Feed-Forward Neural Network

The Matlab Neural Network Toolbox was used to design a results fusion shot segmen-
tation algorithm based on a feed-forward neural network. The network architecture
consisted of 10 neurons in the hidden layer and 1 neuron in the output layer. The
hidden layer uses the log sigmoid transfer function and the output layer uses a linear

transfer function. The Levenberg-Marquardt algorithm [54] was used as the training
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function. The results fusion neural network was baseline tested against the single
modality global histogram, local histogram, edge ratio, and DCT neural network-
based methods. Figure 5.23 shows a table of the precision and recall values of the
results fusion neural network and single modality methods. The results fusion method
outperforms the single modality methods in 13 out of the 18 test video sequences.
Figure 5.24 shows a comparison table of the fusion neural network and the adaptive
local histogram method. The results fusion method outperforms the adaptive local
histogram threshold method in 13 out of the 18 test video sequences. Additionally,
the composite performance of the fusion-based neural network and the adaptive local
histogram method is displayed. In comparison with the adaptive local histogram
method, the results fusion neural network increased precision 4% and increased recall
12%. Figure 5.25 illustrates that the fusion-based neural network outperforms the
adaptive local histogram method. The results fusion neural network produces the
highest recall values for all the methods except for the video 24 A. In general, the
adaptive local histogram method produces a slightly higher precision at the expense
of recall. The strength in the results fusion-based neural network method is in its
generalizability. In developing a composite method that can be utilized for a wide
variety of content, achieving the optimal performance result for every individual video
is not possible; however, this method is able to perform well for many different types
of video. The results fusion-based neural network is able to achieve near optimal
performance for this data set even when one of the modalities used for fusion is
unreliable. The edge change ratio algorithm is exhibiting poor performance for almost
all the video sequences. Given this fact, the results fusion engine is still able to remain

robust.

5.6.3 SVM

This thesis has implemented a results fusion method based on the support vector
machine (see Section 4.2.1). The SVM results fusion implementation is based on the
libsvm software [20]. We used the C-SVM implementation of SVM [137]. As with the

other fusion methods, the SVM results fusion method was baseline tested against the
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[ [ Dynamic Local Histogram | Neural Network

Precision Recall Precision Recall
24 A 71%) 92%
24 B 57%] 83%
Blade 2 A 74%| 67%|
Blade 2 B 52%) 1%)
Destinys Child A 90%] 80%,
Destinys Child B 94%] 7%
Destinys Child C 54%| 98%|
Jay Z 92% 86%)
Michael & Janet Jackson 90%]| 84%|
Mya 59% 74%|
R Kelly A 28%| 54%)
R Kelly B 54%| 85%|
[The Family Guy A 46% 94%
The Family Guy B 45% 95%|
[The Family Guy C 47%| 97%|
E\FFamily Guy D 38%| 95%|
The Family Guy E 42% 96%|
The Royal Tenenbaums 73%)| 91%)|
Ct if 60%)] 81%) 63% 91%
Comparison 4% 12%

Figure 5.24: Results Fusion Neural Network and Adaptive Local Histogram Table
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single modality global histogram, local histogram, edge ratio, and DCT SVM-based
methods. Figure 5.26 shows the results of the results fusion SVM and single modality
methods. The results fusion SVM method performs the best on 10 of 18 test videos
sequences. The results of the results fusion SVM method and the single modality
SVM methods clearly show that fusion is taking place. As is the case with the other
fusion methods, the results fusion SVM method produces high recall values for almost
all the video sequences. Although some of the single modality algorithms produce
higher precision than the results fusion SVM, it is at the expense of recall.

Figure 5.27 displays a comparison table of precision and recall values of the results
fusion SVM and the adaptive local histogram method. The SVM method outperforms
the adaptive threshold method in 13 of the 18 video test sequences. Additionally,
the composite performance of the results fusion-based SVM method and the adaptive
local histogram method is displayed. In comparison with the adaptive local histogram
method, the results fusion SVM method increases precision and recall 8%. The results
are consistent with how the other results fusion strategies compared to the adaptive
local histogram technique. Figure 5.28 illustrates that the SVM results fusion method
produces high recall values for almost all of the video sequences. Although some of
the adaptive local histogram tests produce higher precision than the results fusion
SVM, it is at the expense of recall. These results show that the SVM provides more
generality and better overall performance than the adaptive local histogram and the
single modality SVM methods.

5.6.4 Results Fusion Method Comparison

Figure 5.29 shows the performance of each of the individual results fusion methods
with the video test suite. The highlighted cells in the table indicate the method that
performed the best for a specific video based on maximizing the precision and recall.
The SVM results fusion engine performed the best on the most video sequences. It
performed the best on 8 out of the 18 video sequences.

Each fusion method compared similarly against the adaptive local histogram

method. Each method was able to significantly increase recall on most of the video
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sequences. Although in some cases, the baseline testing algorithms may produce
higher precision values, it is usually at the expense of low recall. Also, the results
fusion strategies did not always show the best precision and recall values for every
video sequence. However, results fusion did produced the best overall composite
performance.

Figure 5.30 displays a graph of the precison vs. recall values of the results fusion
strategies. It is important to note that most of the methods perform similarly on the
same video sequences. This phenomenon is a result of each method attempting to
partition the same vector in a high dimensional space. The differences arise because
the decision tree and ruleset methods both output absolute decision values. Any
vector is absolutely in one class or another. The neural network and SVM methods
output sigmoid and radial basis function outputs respectively. These values vary

within a given interval.

5.7 Tuning

In our approach, we recognize that each individual method could be further tuned
to slightly increase performance. However, the goal of this research was not to op-
timally improve each individual method, but to determine an improved composite
segmentation method. This section highlights some of the issues related to increasing
performance through tuning.

Decision trees and rulesets can be further tuned to increase performance using
boosting techniques. Boosting generates several decision trees or rulesets for a given
dataset and each classifier votes on the predicted class. A majority voting method is
used to determine the final decision. It is important to note that boosting does not
always increase discriminatory results.

The feed-forward neural network design was not carefully optimized for compar-
ison with the other methods. The reported results were solely intended as proof of
concept rather than to show optimal performance. In order to fully experiment and

test with neural networks one could use more complex network architectures using
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several hidden layers and shared weights. Additionally, the training procedure could
be optimized by using different transfer functions and training algorithms. Regular-
ization and early stopping methods could be employed for improving network gener-
alization. Weight decaying and pruning could also be used to deal with overtraining
the neural network [120]. Our observation of the test error and the learning epochs
allowed us to ascertain that the networks were not overtrained. Also, we noticed that
decreasing the number of nodes in the hidden layer decreased performance.

SVMs can also be tuned for the purpose of handling unbalanced data sets. Two
parameters, C; and C_ can be used to trade-off generalization ability and misclassi-
fication error for the data set. Thus, Equation 4.37 can be extended to include the

tuning parameters as follows:

minwe ;W-w+Cy Y &+CoT &
yi(w-o(x;) +b) >1-¢&, (5.12)
E" ZO,i'—‘- 1,...,[.

The dual form of Figure 5.12 is:

maximize W(a) =X, 0 — 1 TM_, cvajyiy;(xi - x;)
0<a;<C,ify; =1
0<a;<C.ify; = -1

(5.13)

y-a=0.

Classifying a new data set is the same as in Equation 4.27. The ratio of C, to C_
determines the penalty parameters for each class. As the ratio of C to C_ increases,
the rate at which the classifier predicts class z; = 1 also increases. As the ratio of
C, to C_ decreases, the rate at which the classifier predicts class z; = —1 increases.
Drish [36] uses the F1 value to determine the best possible C, value for a fixed C_.
The F1 value is used to determine the maximum balance between precision and recall.

The F1 statistic is defined as:
F1 = 2/((1/precision) + (1/recall)) (5.14)

Additionally different kernels and parameters could be used to train and test the
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network. This research did not attempt to find the optimal performance for each

dataset.

5.8 Conclusion

This research approached the problem of shot based segmentation as a binary classi-
fication problem. As a result, we utilized well known strategies from the information
retrieval and biometric community and adapted them to the video domain. Deci-
sion Trees, rulesets, neural networks, and support vector machines were all used to
show that results fusion-based shot segmentation could improve shot detection per-
formance. Results fusion was applied on the measurement and feature extraction
level because these levels offer the most flexibility in determining the results fusion
strategies to employ. In this research, key low-level image features were used to
provide input to the results fusion methods. Global histograms, local histograms,
DCT coefficients, and edge features were extracted from the video frames. These
features were chosen because they have historically been known to accurately predict
shot boundaries in certain conditions. Additionally, their features complement each
other’s strengths and weaknesses. The distance metric delta § between successive
frame pairs was used as input to the results fusion methods. Leave out one testing
was performed on a video corpus of over 8 hours in length from a wide variety of
sources. The results of this research shows that results fusion can be realized in the
video domain to improve performance. We have developed over 24 baseline testing
methods to assess performance of our results fusion algorithms. Within this baseline
set two known combination strategies in the video community, majority voting and
Boolean logic were implemented and both strategies did not improve performance
over using a single method. The results in this research also show the ability of our
results fusion engine to detect shot boundaries when receiving unreliable data. The
edge change ratio algorithm performed poorly for almost all the methods; however
its inclusion in our results fusion strategy did not reduce performance.

In comparing the results fusion strategies to one another the SVM method per-
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formed the best on 8 out of 18 videos. This result is not surprising. Research in the
information retrieval and biometric communities have reported receiving favorable
performance using this classification method [149, 9].

The results fusion approach in this thesis can be extendéd to include other features
or attributes, such as text and speech processing metrics. The power of using SVM
is that its computational complexity is not dependent on how many attributes are
used, but how many data points are in the training set.

Another key aspect of this research is performance. Supervised learning algorithms
take time to learn patterns in the dataset. Decision Trees and Rulesets are fast at
developing rules from the training data. No test took longer than a few seconds
to train the classifier on the training data and evaluate the test data. The neural
network took about 10 minutes to train the videos on the training data and after the
model was trained all tests ran in seconds. The SVM results fusion strategies took
the longest to train. SVM training time depends on the type of kernel that is used
and how many data points are in the training data. We used the RBF kernel and
training took about 15 minutes per video. Again, once the model was created the
tests ran in seconds. The importance of a generalizable shot-detection method is that
training need only be performed once when the system is built using a large training
corpus. Henceforth, the system will only be used in the classification mode, which is
very fast for all of the results-fusion methods presented.

The promising results contained in our experiments show that results fusion strate-
gies from the sensor fusion, biometric, and information retrieval communities can be

adapted to the video domain.
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Chapter 6

Extensions to Summarization

One of the critical tools in any indexing and browsing environment is effective sum-
marization. Figure 6.1 illustrates the basic components for a typical digital video
analysis system. The video to be indexed must be presented to an indexing system
with a minimum of redundancy to avoid redundant retrieval results and to maximize
the disparity in the indexing space. Likewise, search results must be presented to
human users as compact summaries that allow users to quickly browse through the
candidate choices and choose the correct result or adapt the search as quickly as
possible. After shot segmentation, summarization attempts to eliminate or limit the
redundancy in the video while preserving the most important aspects of the video.
This process leads to developing a pictorial summary of an underlying video se-
quence that represents the original video in a more compact form. This summary
usually consists of utilizing a smaller set of images to represent the visual content,
and presenting these keyframes to the user. Most summarization research focuses on
keyframe extraction. Section 2.3 described numerous methods for summarization and
keyframe extraction. Researchers have achieved great progress in developing summa-
rization techniques for digital video. However, it is common for much of this research
to focus on specific classes of video or limited content corpuses. Major projects have
analyzed news broadcasts, television programs, and commercials where the video
structure is known in advance. There has been limited research on developing com-

posite techniques that can be used on a wide variety of video classes. One of the
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strengths of any summarization method should be its generalizability, or its ability
to adapt to the video under analysis.

Another key aspect of summarization is performance evaluation. Evaluation is a
difficult task because there is no standard way to determine the performance of any
summarization method. The video summarization community has agreed that any
summarization method should seek to eliminate redundancy and present the video
in a compact form that allows for maximum user retention and comprehension. Ad-
ditionally, it should briefly and concisely present the contents of the original video
[118]. However, these criteria are subjective and user-dependent. Gong and Liu
[51] have defined summarization performance in terms of a redundancy metric. The
performance of the summarization is characterized by the amount of redundant in-
formation produced in the summary. This method provides a novel first approach
in developing a performance evaluation criterion for summarization however; it only
focuses on the outputs of the summarization and not on attempting to determine the
important information in the video sequence.

Our results fusion research for shot segmentation shows that improved perfor-
rnance can be achieved by utilizing results fusion, utilizing multiple classifiers or

representations to improve performance and reliability over using a single classifier
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or representation. Chapter 4 describes our method for shot segmentation based on
results fusion and Chapter 5 illustrates the performance of the various implemented
results fusion strategies. Our suggested method for video summarization is an exten-
sion of the results fusion based approaches used for shot.segmentation. As with the
results fusion segmentation methods, this solution can be generalized to work for a

wide variety of content without the input of manually collected structural knowledge.

6.1 Unstructured Video

Commercial video sequences are characterized as having manual shot transitions and
editing effects. Some of these effects include straight cuts, fades, dissolves, wipes, and
dissolves. Most segmentation and summarization methods rely on these manually
edited effects to cue their algorithms. These methods make assumptions about the
structure of the video and exploit them in their classification. However, raw and
unstructured video sequences have few, if any, manual edit effects. These videos are
characterized as having long continuous sequences with no structure or meta-data to
facilitate access [65].

Fundamentally, the input to any summarization algorithm is unstructured video.
As illustrated in Figure 6.1, summarization follows segmentation and is assumed to
be working on continuous shots, be they short intervals between rapid cuts or long
sequences of raw camera footage. A third operation, abstraction is often applied
to the output of summarization to further group content across shot boundaries so
as to further reduce redundancy. This chapter, however, is concerned only with
summarization.

Access to this type of video has been usually facilitated by linear navigation
through the entire video sequence. This type of access is suitable for viewing, how-
ever it is cumbersome for retrieval or for quick browsing of the content. Beyond the
cuts that make up commercial video content, this type of video also includes docu-
mentary films, home video, surveillance video, and unmanned aerial vehicle (UAV)

video. Figure 6.2 shows a typical UAV video sequence. Summarizing this type of
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Figure 6.2: UAV Video Sequence

video involves developing structure where no structure is present in the underlying
video sequence. Once structure has been determined, it can be processed via a myr-
iad of summarization techniques. Our novel results fusion summarization strategy

incorporates structured and unstructured video.

6.2 Features

As shot segmentation depends on the extraction of key features from the video se-
quence to determine possible shot boundaries, summarization also involves extracting
important features from within each shot. After a video has been segmented into
shots, it is assumed that the each shot is characterized by similar content. However,
temporally long and complex shots have important information that must be cap-
tured. Additionally, unstructured video can be thought of as one long continuous
shot, and the important information contained in these sequences must be captured.

It has been shown that when developing video shot segmentation strategies that
utilize multiple features, improved results can be obtained when features are cho-
sen that supplement one another [53]. The same criteria can be applied to video
summarization. In a situation in which extracting one feature may be difficult or

unreliable, extracting another feature may be more appropriate. For example, in
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the UAV video sequence shown in Figure 6.2 no color information is available. Any
summarization technique that relies on the color content of the video sequence will
fail. In this situation it would be important for the summarization method to utilize
another feature.

Our results fusion summarization strategy uses a global histogram module, local
histogram module, and motion module to select relevant keyframes. The result of
each individual feature extraction module is used to form a feature vector, and the
new feature vector is fed to the results fusion engine to make a final decision as il-
lustrated in Figure 6.3. Global and local histograms were used in our results fusion
shot segmentation method. The importance, strengths, and weaknesses of these fea-
tures were described in Section 4.3. Where global and local histograms are good at
analyzing color sequences in video for summarization and keyframe extraction, they
fail in the presence of camera motion. Global and local histograms can be used to
detect features for summarization when the camera is not moving or has moved very
little. New subjects walking into the camera field of view or an explosion in an image
sequence are examples of situations in which these methods could uncover important
features in the video. Camera motion analysis can be used to extract features when

the camera is constantly moving. Figure 6.2 shows a typical UAV video sequence.

6.3 Camera Motion

Motion is a key aspect in most video shots [14]. Motion in video sequences can be
either characterized as originating from the camera or objects in the shot. Many
researchers have experimented with characterizing motion in video sequences [12,
13, 37, 68, 71, 2, 142, 144, 156]. Camera motion can be characterized as panning,
tilting, zooming, booming, dollying, or tracking [16]. Camera panning refers to the
camera rotating around its vertical axis. Tilting refers to the camera rotating about
its horizontal axis. Zooming refers to a stationary camera adjusting its focal length
either to concentrate on a specific area of interest or to get an overall view of a scene.

Booming refers to the camera moving up and down as if it were on a physical crane.
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Dollying can be characterized as a camera moving in and out of a scene, with the
movement parallel to the camera lens axis. Tracking refers to the camera moving
perpendicular to the camera lens axis. Each one of these motion types allows one to
gain information as to the important aspects of the contehts of a shot. Often, camera
motion reflects the intentions of the director which allows one to gain some semantic
understanding of the video sequence.

Local motion within an image sequence can be described using motion vectors. A
motion vector is an indication of where in a frame the content from the frame came
from in the previous (or earlier) image. As an example, a video sequence consisting
of a stationary camera photographing a train moving to the right would have motion
vectors at each pixel or block that indicate that the content at that location came from
the left in the previous image (the content moved to the right, so it came from the
left). Each one of the standard camera motions exhibit specific patterns in the motion
vector fields between successive frames in a video sequence. Figure 6.4 illustrates the
motion vectors between successive frames in a panning and tilting video sequence.
The majority of the vectors indicate content came from to the left and down, so it
is moving up and to the right. This indicates the camera is moving to the left and
down. Some motion vectors in this image are missing because there was no underlying
content to perform analysis on (moving fixed colors are not distinguishable). Other
vectors seem to move in unexpected directions. This is due to errors in the motion
analysis process. Motion analysis is a complex topic and subject to local errors.

In order to detect camera motion operations, motion vectors can be extracted
from frame sequences by various techniques. Many of the techniques rely on the edge
information of frames to locate the best motion vectors in combination with either

block tracking or optical flow-based algorithms.

6.4 Motion-based keyframe extraction

We have developed a novel based video summarization method based on camera

motion. This method is not sufficient for video summarization alone because it is not
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Figure 6.4: Motion Vectors from a Panning Video Sequence

Figure 6.5: Camera motion over a scene

effective in modeling content changes that do not involve camera motion. However,

the principles and features extracted from this method are utilized in our approach

to results fusion for video summarization.

Our novel motion-based keyframe extraction technique can accurately select
keyframes with significant global motion between frames in raw unstructured video
sequences. Imagine a camera moving over a fixed scene. The camera will take a path
somewhat like that illustrated in Figure 6.5. As the camera moves, the new image
overlaps the previous images by varying amounts. Given a starting reference frame
(keyframe), 1 — overlap represents the amount of de-occlusion; the amount of new
content uncovered by the camera motion. All computations are done on adjacent
pairs of frames. The previous frame and current frame are compared using a block

matching algorithm commonly used for MPEG motion vector computation. However,

146



Overlap Region

Figure 6.6: Possible keyframe overlap.

motion vectors are not selected arbitrarily. A set of motion vectors is selected based
on presence of edge detail as indicated by a statistical edge detection algorithm.
The result of the block matching algorithm is a set of displacements and their
associated block centers in the current frame. This computation is based on
searching the previous image for matching blocks. The system attempts to deduce
where content in the previous frame moved. These displacements are converted
to (z,y) to (u,v) correspondences and used to compute a least-square estimate of
the affine transformation from the previous image to the current image. The affine
transformation is then used to warp all recent keyframe locations to correspond with
the current motion. The warped keyframes are tested for percentage overlap with
the current frame. When the overlap drops below a preset threshold, a new keyframe
is selected. Figure 6.6 illustrates the overlap of two possible keyframes. In order
to characterize the background motion we implemented a global two-dimensional

parametric model. The goal of this model is to approximate the motion of the
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camera platform relative to the scene. Several models are possible. An exact
reproduction of reality would require 3D modeling of the image contents, which
is typically not practical and is not likely to be of great benefit in an application
where the camera location is a considerable distance ﬁom the image content. In
unstructured video, the background typically approximates a 2D image. Given the
choice of using a two-dimensional transformation, the available options included
affine and projective modeling. The typical camera motions clearly includes rotation,
scaling, and translation, so an affine solution is a minimum parameterization for
this application and an effective approximation of the more complex projective
transformation over limited time sequences. The large distance of the camera from
the image content and the long focal length of the camera lens also significantly limit
the value of a projective model. The affine model is commonly used to characterize
motion in video sequences [12, 13, 37, 68, 71, 142]. The affine model was considered
because of its resilience to noisy and sparse motion vector conditions [71]. The affine

model is expressed as:

u a a T a
=" +] (6.1)

v as ae y a4

It is assumed that the affine model is characterizing the underlying motion flow of
the background from one image to the next (or within a sequence of images). In
this equation, [z,y]T denotes pixels in the previous frame and [u,v]T represent po-
sition pixels in the current frame. The motion parameters (a,, a3, as, a4, as,as) can
be estimated by a linear least square estimation. For a set of motion displacements,

Equation 6.1 can be expressed as:
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Equation 6.1 is the homogenous representation of the transformation of a set of

points. For a large set of points, the equation is over determined and cannot be
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directly solved. Instead, we seek a solution that will minimize the least squares
solution to the over determined system of linear equations. The least-square problem

can be expressed as:
min [|b— AX]| (6.3)

Given two input image frames, a robust statistical based edge detection algorithm
adapted from Kundu [77] is used to compute the edge maps of both frames. Motion
vectors are computed from the edge maps based on a block correspondence algorithm
proposed by Kundu [76]. A block correspondence algorithm was chosen for this
application in order to decrease the computation requirements relative to methods
such as optical flow and because only sections of the image with significant edge
detail will be examined for correspondences. Block correspondence is clearly not a
good choice when a significant rotation component is evident. However, for most
video the rotation rate is physically constrained so that the method remains effective.

The Kundu method computes motion estimation by decomposing the pixels within
each block into three categories, quasi-constant regions, dominant edge regions, and
textured regions. The goal is to match blocks of similar textures. Motion vectors are
obtained by minimizing a cost function measuring the mismatch between a block and
each predictor candidate. This method utilizes a cost function based on perceptual
factors rather than simple squared-error differences. The cost function consists of
two elements D = D; + D,. The two components of a cost function are a contrast
measure of the difference image, D;, and a measure of the edge alignment, D, 1. D,

is defined as:
D, = _0.4161log(]1 + d;|) (6.4)

d; is the residual when the two blocks are subtracted. The summation is over the
pixel values in the block. This method accounts for the logarithmic nature of the
human visual system. The value has been normalized using the constant 0.416 so

that the measurement for a single pixel will range from 0 to 1, assuming a pixel range

!Kundu describes D, as a “brightness” function and incorporates texture alignment into the
equation. Our solution does not utilize texel alignment due to the wide variety of possible incorrect
alignments.
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of 255.

The second component of the function D, is set to 1 when the pixels of an edge
do not align between the two images and 0 otherwise. This classification penalizes
the alignment of a detected edge with a location that is not an edge.

In order to increase efficiency and performance, motion vectors are not computed
for each possible block between images, instead they are only for a finite set of loca-
tions where edge content is evident. Figure 6.4 is an example set of computed motion
vectors and illustrates the grouping of vectors where complex content is located.

Based on the computed motion vectors, the affine parameters are estimated
using linear least-square decomposition. The previous keyframe image corner
coordinates are continuously warped using the estimated affine parameters. It
is not necessary to actually warp the previous keyframe or even keep it around.
All that is necessary is a warping of the polygon that the keyframe represents.
As an example, if a keyframe is selected from a 352 by 240 image sequence, the
coordinates of the keyframe corners are (0,240), (352, 240), (352,0), (0,0), assuming
a counter-clockwise presentation order. If the affine alignment to the next frame is
computed as (ay, as, as, as, as, ag)=(—14.05, 1.04, 0.056, 1.74, —0.0093, 0.965), the
keyframe corners would be warped to (—0.758,233.2), (366.9,229.9), (353.6, —1.54),
(—14.1,1.74). The overlap of the keyframe and the current image is simply the
overlap of the two polygons. Figure 6.7 illustrates the overlap of a previous keyframe
and the current frame. A pair-wise comparison of the warped keyframe image

and the current candidate frame based on Sutherland-Hodgeman polygon clipping
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is used to determine if a new keyframe is chosen. The Southerland-Hodgeman
algorithm clips against the four edges of the current candidate frame in succession.
Equation 6.5 is the equation for the area of a 2D polygon after clipping, assuming

N — 1 vertices and (z1,v1) = (zn, yn).
1 N

A= 5 zl’iyiﬂ — Zit1Yi (6-5)
i=1

If the amount of overlap is less that a supplied threshold, the current candidate frame
is chosen as the next keyframe. Figure 6.8 depicts the interface to the motion-based
keyframe extraction algorithm. The computed overlap amount of this motion-based
keyframe extraction algorithm is an important feature that is used in our results

fusion approach for video summarization.

6.5 Results Fusion

Section 4.1 detailed the various levels of results fusion. From our analysis, it was
concluded that the best levels to achieve optimal shot segmentation performance was
at the measurement and feature ertraction levels. As a result, we extend our ideas
gleaned from the shot segmentation analysis to video summarization and attempt to
achieve maximum video summarization performance at these levels. The abstract and
output levels provide little information with respect to the decision making process.
With only the output decisions or the output frames of the various summarization
methods available, there is only a limited amount of fusion strategies that can be
employed. Fusion at the measurement and feature extraction levels provide the most
information available to make decisions regarding a best summarization. These levels
attempt fusing algorithm thresholds, scores, and confidence measures and offer a wide
variety of combination methods.

Our extension of results fusion for video summarization operates at the feature
extraction level. Feature extraction level fusion concatenates features extracted from

multiple classifiers to form a new synthesized higher-dimensional feature vector. The
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premise behind feature extraction level fusion is that the new synthesized vector will
be more discriminating than each single modality feature. The features extracted
for fusion are global histograms, local histograms, and camera motion or sequence
overlaps and are used to create the new higher-dimensional feature vector. These fea-
tures are not chosen arbitrarily, but are based on their overall performance exhibited
by a history of research in the video shot summarization community. This feature
vector is then submitted to the results fusion engine for classification. The results
fusion engine could be comprised of decision trees, neural networks, or support vector
machines to make the final decision. In Section 5 each of these fusion methods was
shown to significantly increase performance over using a unimodal method.

The fusion-based shot segmentation algorithms fuse together the pair-wise frame
comparisons of global histograms, local histograms, the edge change ratio, and DCT
coefficients. Video summarization does not utilize successive frame comparisons, but
comparisons between the current frame under analysis and the previous extracted
keyframe. Once a keyframe has been extracted, the new keyframe is compared to
subsequent frames until another keyframe has been selected or until the end of the
shot has been reached. To utilize results fusion for video summarization the global
histogram, local histogram, and camera motion or sequence overlap comparison values
between the current frame and the previous keyframe are fed to the results fusion
engine. When a new keyframe has been chosen based on the characteristics of the
features, the new keyframe will be used to make further comparisons. This process
is continued until the end of the shot and is done for all shots in the video sequence.
The video data used to train the results fusion-based summarization algorithms would
consists of numerous sample shot sequences from a wide variety of video classes.

The proposed approach to results fusion for video summarization can be applied
with a variety of features. The approach is highly extensible and can incorporate

features from other areas, such as text and speech processing to improve fusion results.
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6.6 Summary

This chapter demonstrated how results fusion methodologies could be applied to
video summarization. In Chapter 5 we showed that improved performance could be
obtained by combining the strengths of multiple modalities using feature level results
fusion on a wide variety of video classes. Just as the important features for video
segmentation were fused and classified via a results fusion engine, the important fea-
tures used for video summarization can be classified and fused in the same manner.
Global histograms, local histograms, and camera motion are all important features
that can capture information contained in a video shot sequences of various classes
of video. One of the strengths of any summarization method should be its generaliz-
ability, or its ability to adapt to the video under analysis. When these modalities are
used alone, in certain situations their results can be unreliable. However, a results

fusion implementation can create a more reliable and robust technique.
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Chapter 7

Summary

This thesis contributes to the overall research in digital video in seven distinct ways.

The contributions in this thesis are:

e A Decision Tree and Ruleset based results fusion engine for shot segmentation

and summarization that improves performance over using a single algorithm.

e Neural Network results fusion for shot segmentation and summarization that

improves performance over using a single algorithm.

e Support Vector Machine-based results fusion for shot and video summarization
that fuses key features from video and determines a best segmentation with
extensions to summarization that improves performance over using a single

algorithm.
e Feature extraction and analysis for results fusion.
e Experimental validation on a large and varied video test suite.

e Adaptability to detect shot boundaries when receiving unreliable data from one

or more modalities.

e A novel keyframe-based video summarization technique based on camera mo-

tion.
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The strength of the results fusion-based methods are their generalizability. Any
general solution must work for a wide variety of content without the input of man-
ually collected structural knowledge. When the type of video is known a priori, any
category of techniques can be employed with relative success. However, when the
type of video to be analyzed is unknown, certain assumptions cannot be made about
the video and the best choice of algorithms cannot be predetermined, nor can the
appropriate parameterization of the algorithms be made (setting thresholds and in-
tervals for example). Our results fusion-based approaches have shown to be able to
generalize well to include new data. The fusion of multiple methods allows these
strategies to produce good results in spite of receiving unreliable information from
inferior algorithms. This thesis has developed fusion-based shot segmentation algo-
rithms based on decision trees, rulesets, neural networks, and support vector machines
that fuse together several key features and perform shot segmentation based on the
characteristics of those features. These key features include color, texture, motion,
and compressed image features. From experimentation, it was shown that each indi-
vidual method itself may not provide superb performance, however the fusion of these
methods has produced a reliable and quality result. The novel results fusion-based
approaches were tested on over twenty-four baseline methods. Moreover, the results
from the experimental analysis show that all the fusion-based systems improved per-
formance over the best performing single modality system. When comparing the
composite precision and recall values against the best performing single modality al-
gorithm, the results fusion-based strategies performed as follows: The decision tree
method increased precision 2% and recall 11%, the ruleset method increased precision
4% and recall 11%, the neural network method increased precision 4% and increased
recall 12%, and the SVM method increased precision and recall 8%.

Additionally, our novel results fusion-based methods outperformed two existing
combination strategies in the video shot segmentation community, majority voting
and Boolean logic [15, 151]. When compared to the best performing single modality
algorithm, the majority voting method increases precision 21% and the dynamic

voting method increases precision 50%. However, this increased precision is at the
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expense of recall. The static voting method reduces recall by 44% and the dynamic
voting method decreases recall 30%. Voting methods suffer when unreliable estimates
are fed into the system by low performing algorithms, which causes the system to
produce numerous missed detections resulting in decreased recall.

When compared to the best performing single modality algorithm, both the adap-
tive and static Boolean logic methods decrease precision 9%. The Boolean logic static
method also decreases recall 1% and the dynamic Boolean logic method increases per-
formance 1%. In this algorithm, the color histogram is always given extra weight in
the final shot boundary decision. When the color histogram algorithm is unreliable,
it produces errors throughout the entire system. The results fusion-based methods
developed in this thesis have been shown to overcome errors due to unreliable algo-
rithms.

The results fusion method is extendable and can be applied to video summariza-
tion. After the video is segmented, the extracted shots can be analyzed to eliminate
redundancy and to extract important information from those shots. In Chapter 5 we
showed that improved performance could be obtained by combining the strengths of
multiple modalities using feature level results fusion on a wide variety of video classes.
Just as the important features for video segmentation were fused and classified via
a results fusion engine, the important features used for video summarization can be
classified and fused in the same manner. Key features such as global histograms, local
histograms, and camera and object motion can be fused to increase summarization
performance and accuracy. Additionally, this thesis has presented a novel keyframe
extraction algorithm based on camera motion. Motion is a key aspect in most video
shots [14]. Often, camera motion reflects the intentions of the director, which al-
lows one to gain some semantic understanding of the video sequence. This keyframe
extraction algorithm has been used to summarize structured an unstructured video
sequences. It can be used with any results fusion based summarization technique to

improve summarization reliability and performance.
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7.1 Future Work

In this thesis, we primarily focused on image processing techniques to improve video
shot detection and summarization. As stated above our approach to results fusion
shot segmentation can be extended to include more features from other domains. Text
and speech processing techniques have shown to be able to increase query performance
and reliability in video retrieval systems [141]. Results fusion could be applied to video
retrieval systems and browsing systems to increase performance.

Additionally, confidence measure could be implemented into the results fusion
architecture. If one modality was highly confident that a shot boundary exists, its
confidence measure could influence the outcome of the final decision. Also, if one
modality was confident that a shot boundary did not exist, its confidence measure
could influence the decision as well. Bengio, et al. experimented with using confi-
dence measures for multi-modal biometric systems using SVMs. The incorporation

of confidence measures into a results fusion shot segmentation method could further

increase performance.
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Appendix A

Appendix A

The purpose of this section is to describe the contents of the video corpus in detail.
We have created a video corpus of a wide variety of content. The classes of video
include motion pictures, TV sitcoms, cartoons, and music videos. The collection

consists of over 8 hours of video.

A.1 Television Programs

This class of video consists of 2 one hour episodes of the television program 24. The
two episodes that were used in our evaluation and testing are 24: 12am to lam and
24: lam to 2am. These videos were labeled 24 A and 24 B respectively. Video 24 A
consisted of 76560 total frames with 564 cuts. Video 24 B consisted of 76140 total
frames with 700 cuts. The majority of the shot transitions in this video class are
hard cuts. False positive detections usually occur due to gradual transitions, object
motions, and lighting effects. Additionally, missed detections occur because of local
shot transitions. Local shot transitions occur when a frame is split into separate
windows with each window representing a different shot. Figure A.1 illustrates a

local shot change effect.
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Figure A.1: 24:12am to 1am local shot effect

A.2 Movies

This class of videos includes the movie Blade 2 and the first 50 minutes of The Royal
Tenenbaums. Blade 2 consisted of 197550 total frames with 2301 cuts. The Blade
2 video was split into two separate videos, Blade 2 A and Blade 2 B. This movie
can be characterized as having many fast action sequences resulting in quick shot
transitions and camera changes. Additionally, this movie had numerous dark scenes
that can lead to missed detections. Moreover, this movie contains many manually
edited lighting effects that can lead to missed detections. Figure A.2 illustrates a
sample lighting effect in the Blade 2 movie.

The Royal Tenenbaums consists of 91290 total frames with 479 cuts. This video
was shot with a 16 : 9 aspect ratio, but was encoded with a 4 : 3 aspect ratio.
As a result, all of the shot transitions and changes occur with the center region of
each frame. This video has numerous dissolve and fades effects that can lead to
missed detections. Figure A.3 illustrates a sample shot sequences from the The Royal

Tenenbaums movie sequence.

A.3 Cartoons

This class of videos included five episodes of The Family Guy. The five episodes of
The Family Guy that were used are The Family Guy: Brian Does Hollywood, The
Family Guy: Da Boom, The Family Guy: Fifteen Minutes of Shame, The Family
Guy: Lethal Weapons, and The Family Guy: The Thin White Line. These videos
were labeled The Family Guy A-E, respectively. The Family Guy A consisted of
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Figure A.2: Blade 2 action sequence

Figure A.3: The Royal Tenenbaums shot sequence
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Figure A.4: The Family Guy: Da Boom explosion sequence

39270 total frames with 261 cuts. The Family Guy B consisted of 38970 total frames
with 326 cuts. The Family Guy C consisted of 39240 total frames with 246 cuts.
The Family Guy D consisted of 39270 total frames with 260 cuts. The Family Guy
E consisted of 38940 total frames with 310 cuts. These videos can be characterized
as having numerous manually edited transitions effects, such as dissolves and fades.
Additionally, explosions and object motions can lead to false detections. Figure A.4

illustrates and explosion in The Family Guy: Da Boom video sequence.

A.4 Music Videos

This class of videos included eight music videos by artists Destinys Child, Jay Z, Mya,
Michael and Janet Jackson, and R. Kelly. The Destinys Child videos that was used for
testing and evaluation were Destinys Child: Bills, Destinys Child: Bootylicious, and
Destinys Child: Jumpin. These videos are labeled Destinys Child: A-C respectively.
Destinys Child A consisted of 7380 total frames with 233 cuts. Destinys Child B
consisted of 6600 total frames with 239 cuts. Destinys Child C consisted of 5940 total
frames with 208 cuts. The R Kelly videos that were used are R Kelly: Feelin and R
Kelly: If. These videos are labeled R Kelly A and R Kelly B respectively. The Jay Z

video that was used was Jay Z: Love You. This video was labeled Jay Z and consisted
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Figure A.5: R Kelly: If gradual transition sequence

of 7890 total frames with 208 cuts. The Mya video that was used was titled Mya:
Best of Me and consisted of 7200 total frames with 111 cuts. The Michael and Janet
Jackson video evaluated was titled Michael and Janet Jackson: Scream. This video
consisted of 8670 total frames with 250 cuts. These videos can be characterized as
having numerous gradual transitions effects, manually edited effects, and short shot
durations. Short shot durations can lead to missed detections when using adaptive
methods that analyze frames within specific window sizes. If the window size is larger
than the shortest shot length, the shot could be missed. In addition, manually edited
effects can lead to false detections. Figure A.5 illustrates a gradual transition effect

in the R Kelly: If music video sequence.
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