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ABSTRACT

INTERMEDIATE DOMAINS BETWEEN A LOCAL RING AND ITS

COMPLETION: CONDITIONS FOR NORMALITY AND FACTORIALITY

By

Sarah Elizabeth Sword

The study of intersection rings between an excellent local noetherian ring (R, m) and

its m-adic completion R has provided a rich ground for constructing examples of

“bad” noetherian local domains. The general strategy is to look at a noetherian local

domain R that is essentially finitely generated over a field It. We let J be an ideal in

R so that the associated primes of J are in the generic formal fiber of R. We can then

embed R H R/J so that regular elements of R map to regular elements of RR/J.

The intermediate ring of interest is Q(R) II (R/J), where Q(R) is the field of fractions

of R. We look at two such constructions and determine conditions for normality and

factoriality of the constructed intermediate rings.
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1 Introduction

The study of intermediate rings between an excellent, local noetherian ring (R, m)

and its m-adic completion R has provided a rich ground for constructing examples

of “bad” noetherian local domains. The general principle is to look at a noetherian

local domain R that is essentially finitely generated over a field k. We let J be an

ideal in R so that the associated primes of J are in the generic formal fiber of R;

that is, so that Q (T R = (0) for every associated prime ideal of R/J. Then we have

an embedding R H R/J in which non-zerodivisors of R map to non-zerodivisors of

R/J . The intermediate ring of interest is:

B 2: Q(R) n (ii/J)

where Q(R) is the field of fractions of the domain R.

B is a local ring birationally dominating R. In many circumstances, B is noetherian

with completion equal to R/J. Furthermore, B can often be realized as a direct limit

of essentially finitely generated extensions of R, greatly assisting the study of the

structure of B.

The construction of these “insider” rings was pioneered by Akizuki in the 19305 [1].

He used insider rings to construct a local noetherian domain C whose normalization

is not a finite C—module. In the 19508, Nagata used similar techniques to construct

noetherian rings with “bad” completions. For example, he constructed a local noethe-

rian normal domain (R, m) whose completion is not reduced [14], [15]. The examples

Rotthaus constructed using this method include a normal local domain which is Na-

gata but not excellent [23]. Ogoma modified the construction to find an example of a

normal non-catenary domain [18]. These techniques have also been used by Brodman-

Rotthaus [2], [3], Heitmann [11], Weston [25] and others. Heinzer-Rotthaus-Weigand

continue to create variations of this construction to create examples of noetherian

and non-noetherian as well as excellent and non-excellent rings (see, for example, [7],

[8], [9]» [10])-



A local noetherian ring is called excellent if it is universally catenary and has geo—

metrically regular formal fibers [5]. The class of excellent rings is closed under 10-

calization, passing to quotients, and finitely generated extensions. Rotthaus showed

that the class of excellent local rings is also closed under ideal-adic completions [21].

Matsumura writes that “practically all noetherian rings in applications” are excel-

lent [13], p. 260. In general, the intermediate rings we consider are not excellent,

which is one reason they are such a good source of examples: the formal fibers of our

constructed rings are not geometrically regular. In general, these rings are neither

analytically normal nor analytically unramified.

In his preprint, A Few Examples of Local Rings, I [16], Jun-Ichi Nishimura compiles

some of the work done by the aforementioned authors. He proves the following:

Theorem ([16], Theorem 1.4) Let K be a purely transcendental extension field of

countable degree over a countable field K0. Take polynomials in m variables over K0

without constant term:

F1(Z), . . . , Fr(Z) E K0[Zl, . . . , Zm].

Then, for any n > m, there exists a local domain B which satisfies the following:

‘ KIICIt”'9Cnll/(F1(C)7”'aFT'(C)) gfi/(flv-wfr) all?

e p: (C1,...,Cm)B is aprime ideal of B and 1508 = (0).

o B/p is essentially of finite type over K for any non-zero prime ideal

p E Spec(B).

The first part of our paper is a detailed examination of the construction of this

domain B, which we call “The Nishimura Construction”. We explore in particular

Nishimura’s use of a theorem of Heitmann [11]. In this construction, we choose R to

be a. localized polynomial ring over a field, and let I C R be an ideal of R. We will

2



need to put a certain condition on the associated primes of the extended ideal IR.

One important feature of Nishimura’s work is the construction of an automorphism

to of R, which maps the ideal IR to an ideal J C R. Our condition on IR will yield

the condition that if Q E Ass(R/J), then Q Fl R = (0). Thus we have an embedding

R H R/J in which non-zerodivisors of R map to non-zerodivisors of R/J.

In this construction, B = Q(R) O R/J. The constructed ring B is a local noetherian

domain birationally dominating R with completion equal to R/J. Furthermore, B is

noetherian and realizable as a nested union of essentially finitely generated algebraic

extensions of R. The choice of our automorphism 4p of R allows us to identify a

prime ideal R in the generic formal fiber of the constructed ring B. We use the

prime ideal R, corresponding to p in Nishimura’s theorem, to facilitate our goal: to

study conditions for normality and factoriality of B. With certain restrictions, we

find necessary and sufficient conditions for B to be normal. We also find sufficient

conditions for B to be factorial.

The very automorphism of R that makes this construction so powerful also makes

finding necessary conditions for the factoriality of B extremely difficult. Ogoma [18]

and Weston [25] made substantial modifications to the Nishimura construction in

order to construct local factorial domains with non-factorial completions. In this

paper, we are able to construct such domains using the Nishimura construction, but

our constructed domains must be complete intersections.

Our results culminate in straightforward “recipes” for constructing normal rings with

non-normal completions and factorial rings with non-factorial completions. Using our

machinery to construct examples of bad local domains is very simple, as we see in

the following two motivating examples:

Example: A noetherian normal local domain whose completion is not normal.

We begin with a localized polynomial ring in three variables over a field K; i.e.,

R = K[zl, .22, z3]( ). Let I = (2122). Neither the ring R/I nor its completion
21,22,Z3

is normal. We can use the Nishimura construction together with our recipe to see



that the constructed ring B is a noetherian, local, normal domain with completion

isomorphic to the non-normal ring R/IR

Example: A local factorial complete intersection whose completion is not factorial.

We choose R to be a localized polynomial ring in five variables over a field K; i.e., R =

K[z1, .22, 23, 24,25](zl, 32,23,24,25). Let I = (2123 — z224). Neither the ring R/I

nor its completion is factorial, however, we can again use the Nishimura construction

together with our techniques to see that the constructed ring B yields the desired

example.

In the second part of the paper, we look at a similar construction, which we will

call the “HRW Construction”. Heinzer, Rotthaus and Wiegand have generalized a

construction due to Akizuki in a series of papers on intermediate rings, including [7],

[8], [9], [10]. In [10], the authors begin with a local noetherian domain R that is

essentially finitely generated over a field It and with fraction field L. In this paper,

they are interested in identifying ideals I for which intersection domains of the form

L O (R/I ) are noetherian. To do this, they restrict to the completion R* of R with

respect to a non-zero non-unit x of R. They assume that I is an ideal of R* such that

p O R = (0) for all associated primes p of R*/I . Hence we have again an injection

R =—+ R* /I so that non-zerodivisors of R map to non-zerodivisors of R*/I. They

show:

Theorem ([10], Theorem 3.2) Let R be a noetherian integral domain with fraction

field L. Let x be a non-zero non-unit of R and let R* denote the (x)-adic completion

of R. Suppose I is an ideal of R* with the property that p O R = (0) for each

1) E Ass(R*/I). Then R ——+ (R*/I)g; is flat if and only ifA := L O (R*/I) is

noetherian and Ax is realizable as a subring of R1: = R[1/x].

In this construction, A is approached with a sequence of finitely generated birational

extensions of R, all of which are contained in the fraction field of R.

We again determine conditions for the normality and factoriality of the intermediate



ring A. We make use of the theorem quoted above to assume that our intersection

rings are noetherian. We then use our conditions to generate more examples of bad

local noetherian rings.

In the work that follows, all rings are assumed to be commutative with identity.



2 The Nishimura Construction

We begin with a detailed examination of the construction found in Nishimura’s paper

[14]. For any unexplained terminology, the reader can refer to [13].

Let K be a field, and R a localized polynomial ring over the field in n variables, i.e.,

R = K[2:1, . . . , an( ). We denote by R the completion of R with respect to
21, . . . , Zn

the maximal ideal (21, . . . , zn)R; so then R = K[[z1, . . . , 271]].

If I is an ideal of R, we want to construct a local noetherian domain B birationally

dominating R so that

II
?

B

E
l

:
0
)

where B is the completion of B with respect to the maximal ideal of B.

We construct an automorphism go of R taking the ideal IR to an ideal J = 99(1R)

satisfying the condition that if Q E Ass(R/J), then Q n R = 0. Our ring of interest

is the ring:
A

R
A=Q(R)fl-J-

In order to do this, we put a condition on the field K, namely, that K is a purely

transcendental, countable extension of a countably infinite field. To achieve the con-

dition on the associated primes of J, we put a condition on the ideal I involving the

associated primes of IR. To facilitate our study of this intersection ring, we look at a

set of finitely generated R-algebras inside A and show that the nested union of these

R-algebras is actually equal to A.

2.1 Setting and Notation

To begin, let K0 be a countable field. Let {aij I i = 1,. . .,oo;j = 1,. . . ,m} be a set

of elements which are algebraically independent over K0. In order to use Heitmann’s

lemma, we will need m 2 2. Define a collection of purely transcendental extension



fields over K0 as follows:

K1 := K0(a11,...,a1m)

K2 2: K1(a21,...,a2m)

Kk := Kk_1(ak1,...,akm)

Let K be the union of the fields Kk:

K = UKk

k

Let n > m and let z1,. . . , Zn be variables over K, and define:

50 = K0[zl, ...zn] with prime ideal m0 = (21, ..., 2n)SO

5k = Sk _1[ak1,...,akm] with prime ideal ‘flk = (21, ...,zn)Sk

S = Uk Sk = K0[a2-k][z1, ..., zn] with prime ideal 0‘! = (21, ..., zn)S.

Localizing at the prime ideals 91k and ‘Jl,we get corresponding rings:

R0 = (50)m0 = K0[21""’znl(zl, ..., Zn) With no = (z1,..., anRO

Rk = (IS/am]: = Kklz1"”’zn](21,...,zn) With nk = (21, ..., Zn)Rk

R = (3)91 = K[21, ..., ZnJIZI’ ..., Zn) With n = (21, ..., Zn)R.

Since Ric = Rk _ 1[a1k, . . . ,amk](21, ..., Zn)’ the ring R can be written as a nested

union of localized polynomial rings. Furthermore, R is a localized polynomial ring

in n variables 21, ..., zn over the field K, and hence a. regular local ring. Also notice

that since K is countable, R is countable.

We choose a sequence of elements p1, . . . ,pk, . . . contained in the ideal m = (zl, . . . zn)S

such that:

I. p1=Zl+m+Zn



2. if 0 75 P E Spec(R), then there exists k E N so that pk E P

3. For all he N, Skfl{pz- |i= 1,...,oo} is infinite

4. pkESk_2foreverykZ2

We make the following definitions:

22-0 = Zi for 193m

qk = pln-pk for k 2 1

Zik = zi+ai1q1+~~~+aikqlléj for k 21 and 1 Sigm

Q31: = (21k, ...,zmk)R

The elements 21, . . . , zm form part of a system of parameters of R. Further, since

22-h. E Zi + “21(31 + ...+ Zn) mod(n2R) for every i = 1,...m and for all k 2 0,

the elements 21k, . . . ’ka form part of a regular system of parameters of R. Thus

for all k 2 0 the ideal ilk = (2119," .,zmk)R is a prime ideal of height m. We

now introduce a theorem of Heitmann that will continue to be useful throughout the

construction.

2.2 Heitmann’s Numbering Theorem

Theorem 2.2.1. (Heitmann’s Numbering Theorem) [11], Proposition 1. Suppose

that m < n. Then for all integers k 2 0 and all positive integers h S k +1, ph ¢ 2%.

Proof. If we can show that for all It, (2119,. . . , kalsk is a prime ideal of Sk, then

mkflSk—l = (Zlka~-°izmk)RnSk—1

= (21k,...,zmk)RannSk—l

= (31k""’zmkleflSk—1

= (zlki'“’zmk)3knsk — 1



where the last intersection is 0 because the elements a1 k: . . . ,amk are algebraically

independent over 5k _1. Since 0 7e ph 6 Sk _1 for h g k+1, we see that ph ¢ 2%.

The difficulty, then, is to show that for all k, (21k, . . . ,zmk)Sk is a prime ideal of

SI.“ To do this, we first need a lemma.

Lemma 2.2.2. Let A be a noetherian domain, t1,...,tm variables over A, and

w1,. .. ,wm,q a regular sequence in A. Then (qtl — 101,. . .,qtm — wm) is a prime

ideal in A[t1,. . . ,tm].

Proof. We will prove by induction on m:

(1) qtl — w1,. . .,qtm — wm,q is a regular sequence in A[t1,. . . ,tm]

(2) (qtl — w1,. . . ,qtm — wm) is a prime ideal in A[t1,.. . ,tm].

Suppose m = 1. For convenience, write t1 = t and wl = w. Then w, q form a regular

sequence in A. We need to show that the ideal (qt — w) is prime in the ring A[t].

Note that (qt - w) is prime in the ring Aq[t]. Since q is a regular element of A, we

need only show that if f() E A[t] with qrf(t)6€(qt— w) then f(t)E(qt— w). Write:

S

f(t) = Z aiti.

i=0

where qrf (t) E (qt — w). Hence qTaO E wA. Since q, w is a regular sequence of A,

a0 = who for some b0 E A. Define b1 = a1 + qu and bl- = az- for i > 1. Write:

=Zb-tz.

i-— 1

Note that since g(t) — f(t) = qut — a0 = qut — bow = b0(qt — w), f(t) 6 (qt — w) if

and only if g(t) 6 (qt — w). Hence we need only show that g(t) 6 (qt — w). An easy

argument shows that qt — w,t is a regular sequence in the domain A[t]. Thus, with

s—l

h(t) = Z I),-+1tz

i=0



the condition

(17.90) = thhIt) E (at - w)

implies that

(17710) 6 (qt - w)

and we may proceed with the polynomial h(t). Since deg h(t) < deg f (t), it follows

by induction on the degree of f (t) that f (t) E (qt — w).

Now we assume that (qt1—'w1,...,qtm _1— wm _1) is prime in A[t1,. . . ,tm _1]

and that qtl—w1,...,qtm _1—wm _ 1, q is a regular sequence in A[t1,. . . ,tm _1].

Note that:

(qtl—u..I1,...,qtm_1—wm _1,q)A[t1,...tm _1]=

(w1,...,wm _1,q)A[t1,...t.m_1]

and that A[t1,...tm __ 1] is flat over A . The fact that w1,.. .,wm,q is a regular

sequence in A yields that w1,.. . ,wm,q is a regular sequence in A[t1,.. .tm _ 1] .

Moreover, wm is a regular element of

 

A[t1,...tm_1] :

(q, 101,...,wm_ 1)A[t1,...tm_1]

A[t1,...tm_ 1]
 

_(qt1—w1,...,qtm_1 —’wm_1,q)A[t1,...tm_1].

Thus qtl—w1,...,qtm _1—wm _ 1, q, wm is aregular sequence in A[t1,. . . ,tm _1].

By our induction hypothesis, the ring

A[t1,...tm _1]

B:

(qtl —’w1,...,qtm_1—wm__ 1)

 

is a noetherian domain, tm is a variable over B, and q,wm is a regular sequence

in B. It is a well known fact (see, for example, the discussion on page 5 of [4])

that if q,wm is a regular sequence in the domain B, so is wm,q. Hence by our

work in case m = 1, the ideal (qtm -— wm) is prime in B[tm]. In particular, (th —

101,...,qtm _1 — wm_1,qtm — wm) is a prime ideal of A[t1,...,tm], and the

sequence qtl — wl, . . . ,qtm — wm, q is regular in A[tl, . . . ,tm]. CI

10



To prove Heitmann’s theorem, we will show by induction on k:

(1) Zlki . . . , ka’q is a regular sequence in SI."

(2) For all 1 S s S m the ideal (zlk, . . .,zsk) is prime in 5k:

(3) phEmkaI‘hSk-I-l.

The case k = 0 is clear:

(1) The sequence z1,...,zm,z1+...+ Zn is regular in SD.

(2) For all 1 g s g m, the ideal (2:1, . . . , 2m) is prime in SD-

(3) 21+...+zn E (z1,...,zm).

Assume the statement is true for k — 1. This assumption combined with the work

above the statement of the lemma yields that qk = p1p2 . . .pk E ilk _ 1 and so

qk ¢ (2106 _1),.. "Zm(k __1))Sk _1. Thus

Z1(k —1)""’zm(k —1):qk

is a regular sequence in Sk _ 1. Furthermore, for all 1 g s g m, the ideal

(31(k —1)""’zs(k —1))Sk _ 1 is primein Sk _ 1. Hence, Z1(k —1)""’Zm(k _1),qk

and

21(k —1)""’zm(k _1),q,}: are regular sequences in 8k _1.

The ring Sk _ 1 is a noetherian domain, a1k, . . . vamk are variables over Sk _ 1, and

21(12 —1)""’Zm(k _1),ng is a regular sequence in Sk. _1. Writing:

k

Zik = qkaik + Zi(k — 1)

Lemma 2.2.2 yields that the ideal (21k, . . . ,zsk) is prime in Sk' (A similar argument

shows that 21k, . . . , 27,1164]: 1 i, is a regular sequence in 313') Hence ph E ink for all

h S k -+- 1.

CI

11



Recall the general assumption that m < 17.. Consider the following elements of R =

K[[zl,.:.zn]]:

Zi'l‘ Z ailq] if lgigm

C2“ 2: l=1 ‘

2,- if m<i§n

We define an automorphism to : R —-> R as follows:

For 1 S i g m, we have:

Ci E z,- + ailql mod(z1, . . . 2n,)2R

:- z,- + ai1(zl + . . . + zn) mod(zl, . . . zn)2R

so the elements (1, . . . , Cm, 3m + 1, . . . zn form a regular system of parameters of R.

Hence, 99 is an automorphism of R. Moreover, the elements (1, . . . ,Cm generate a

prime ideal of height m. We will now use Heitmann’s Numbering Theorem to show

that P := (C1, . . .,Cm) O R = 0.

Lemma 2.2.3. Let P := ((1, . . -,Cm). Then 13 n R = 0,

Proof. Suppose P n R # 0. Then by our choice of the sequence {pi}, there exists

h. e N so that 1)}, e 13 n R. Recall that for 1 g i g m:

°° l
(i=zz-+ Zailql

l=1

Thus, ph, E PO R implies that Zi(h _1) E Pm R for 1313 m; i.e., that

‘Bh_1=(21(h_1).....zm(,,_1))anR.

A quick examination of the heights:

A

m=ht(q3h_l)§ht(PflR)§m

yields that ‘13,, _ 1 = PflR. By Heitmann’s lemma, ph, E ‘13,, _ 1. Hence, ph E PflR,

a contradiction. CI

12



Let I be an ideal of R. Recall that our goal for the construction is to find a local

noetherian domain B birationally dominating R so that

B E R/IR.

To do this, we need a condition on the ideal I . In particular, let

I := (F1(zl,...,zn),...,F7~(21,...,zn,)) C R

be an ideal satisfying the following condition:

For every associated prime ideal Q in R/IR we have Q Q (zl, . . . zm)R

Under the automorphism to : R —-> R, we map the ideal IR into an ideal J g R:

J == an?) = <so<F1>.....to<Fr)>.

Furthermore,

¢((zl,...,zm)R = (C1,...,Cm) = P.

The condition on the associated primes of I yields the following condition on the ideal

J:

For every associated prime ideal Q of R/J we have Q g P := (C1, . . . , Cm)R.

From Lemma 2.2.3 we know that P O R = 0. Thus the condition gives us that the

associated primes of J are in the generic formal fiber of R; i.e.,

For every associated prime ideal Q of R/J we have Qfl R = 0.

Thus the composition

6:R—+R—>R/J

is an embedding. Moreover, if 0 75 r E R, 6 (r) is a nonzero divisor of R/ J.

We summarize this in a corollary:

Corollary 2.2.4. IfQ e Ass(R/J), then a? n R = 0. In particular, J n R = 0.

In other words, all the associated primes of R/J are in the generic formal fiber of R,

and we have an embedding 6 : R HR/J. Moreover, if 0 7e 7' E R, 6(r) is a nonzero
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divisor of R/ J. We can then define an intermediate ring A between R and R/J :

A = Q(R) n R/J

We will show that A is indeed a local noetherian ring with completion R/J. In order

to do this, we construct a subring B of A as a nested union of local K-algebras with

Q(A) = Q(B). The main objective will be to show that B is a local noetherian ring,

which will give us that A = B.

2.3 Construction of the ring B

Recall the following definitions:

zikzzi+ai1q1+~-+aikq[§ for kZI

7- if m<iSn

and

,0 : R —~> R

with:

M2,) — (Z- for i =1, ,n

Now define:

ThenJ= (f1,...,f7~) Q K[[zl,...,zn]] =R.



WedefineforlSerandel:

1

ij = —kF-(zlk,...,zmk,zm+1,...,zn) E Q(R)

qk

Lemma 2.3.1. Forl S j S r andk 21,0137c _—. T1kaj(k+1)+r2ki where T119372}:

are in R.

Proof. By definition,

1

O‘jk = —ZA-Fj(z1k,...,zmk,zm+1,... ,Zn)

qk

We write:

a- = 1 F'(z z z )
J(k+1) q75+1J 1(k+1)’-~’ m(k+1)’ m+1v~wzn

k+1

1 ., k+1 7 k+1

+

Hence, using Taylor’s formula:

ql]:+1

_ +1 .

ark k [ai(k+1) "Lu/cl
qk

qk+1

where SLIP—1%; E R. El

k

Lemma 2.3.2. For everyj E {1,...r} and k 2 1, the elements 03']: are in A =

(marrow).

Proof. Since every “fit is an element of the quotient field of R, we need only show

that “fit E R/J. As

ajk =$Fj(z1k,...,znk),

we have that

k
Fj(z1k,...,znk) = ajqu.

15



Then by Taylor’s formula:

FiIC1,. .. .Cn) - 03:51]]: = F441. - - - ,Cn) - Fz'IZ1k, . . . , an)

That is, 03']: E R/J. Cl

A

We use the elements a,-j to define a sequence of subrings of A. Recall that g is

R—torsion free; that is, for all Q E Ass(§), the contraction Qfl R = 0. Using this,

we can extend the canonical injection:

R<—>

K
i
l
t
m

to a. commutative diagram:

R <—> R/J

I I r

Q(R) A (fa/J) a. Q(R)

where r and /\ are injective. We restrict )t to get injective morphisms:

Wk 2 R[alk” .. ’a'i'kl H R/J

for all k E N.

For all k E N, define

where m Q R/J is the maximal ideal, and

Bk 2: R[alk, . . . ’arklmk'

16



Because of the recursion formulas

ql: + 1

_ + 1

013']: - Tl,“[aj(k +1) + Sjkl

we get local inclusions Bl: _C_ Bk + 1 for all k E N . We define the nested union ring:

B: U B =li B-

Proposition 2.3.3. B is a local noetherian ring. Furthermore, for any prime ideal

0 # q E Spec(B), the ring B/q is a K-algebra of essentially finite type.

Proof. That B is quasi—local follows immediately from the definition of B. To show

that B is noetherian, by a theorem of Cohen (Matsumura 3.4), it is enough to show

that every prime ideal of B is finitely generated. Let 0 75 q E Spec(B). Then

qfl R 79 0, and there exists an l E N so that pl E q.

We claim that there exists a surjection R —-> B/ (ptB).

To prove the claim, let x E B = UBk- Then there exists k E N so that x E Bk 2

R[alk, . . . *arklmk° We may assume that k 2 I. Write:

_ h(alk,...,ark)

g(alk‘l ' ' ' aark)

where h, g E R[X1,...,X1~] are polynomials in r variables over R and g(alk, . . . ’arkl

 

is a unit in R/J. Note that this implies that the constant term go of g is a unit in

R/J and hence in R. Denote by ho the constant term of h and by 90 the constant

term of g. .

Recall that:

(12k + 1

__ -l- 1

ajk "" Tlafik +1) + Sjklt

qk

Using this formula, we can write

x = ho + pm

90 + P17

where p and 7' are elements of Bk + 1. Thus:

h

x E -—0 (modplB)

90

17



where ho, 90 E R and 90 is a unit in R. Thus 17% is a homomorphic image of R, so

q is finitely generated. In particular, B/q is a homomorphic image of an algebra that

is essentially of finite type over K. E]

Proposition 2.3.4. B = R/J.

Proof. Consider the sequence of injections:

R
R B —-<—> H J

These induce morphisms on the completions:

Iii—SBA

k
l
t
a

We know that R ——+ 17363 is surjective for any 8 E N, so R ——+ B is surjective. We

need to show that:

ker(i) = J

Clearly ker(i) C J. We now show J C ker(i). By definition of ajk:

k
Fj(zlk, . . . , an) = ajqu

Hence:

_ k+1 ,

— qk+1nflc

for some Iijk E R. Hence L(Fj) E q}:B for all k E N; that is, the generators of the

ideal J are contained in the kernel of the map L. Thus J g ker(i), so J = ker(i).

Cl

Proposition 2.3.5. The ideal P = ((1, . . . , Cm) C B = R/J is in the generic formal

fiber of B; i.e.

P H B = 0.

Proof. Since Q(R) = Q(B), if PH B 7é 0, then PD R 76 0, a contradiction to Lemma

3. D
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Finally, we note that A = B. This is clear because B Q A is a noetherian domain

with Q(B) = Q(A). The flatness of B —-+ B yields B = A.

In summary, we have the following Theorem:

Theorem 2.3.6. Let K be a field of countably infinite transcendence degree over a

countably infinite field k. Let R = K[21, . . . ,zn]( be a localized polynomial
21, . . . , Zn)

ring in n variables over K. Let m be a positive integer so that m < n. If I is an

ideal ofR so that for every Q E ASS(I—RR)’ Q Q (21, . . . ,zm)R, we can find a local

noetherian domain B which birationally dominates R and satisfies:

1?
—X

[R

II
Z

.237

o For every 0 # q E Spec(B), there is a natural surjection R —> E
q

o The prime ideal P = (C1, . . . ,(m) is in the generic formal fiber of B.

19



3 Conditions for the Normality and Factoriality of

B

In this section, look at conditions under which the constructed ring B is normal and

factorial. We then find ”recipes” for constructing normal domains with non-normal

completions and factorial rings with non-factorial completions.

3.1 Conditions for Normality

This section contains a result giving a necessary and sufficient condition for B to be

a normal domain. The ring R is excellent, so R/I is. If R/I is normal, then R71 E’ B

is normal. Then B is normal. On the other hand, if R/I is not normal, we consider

the nonnormal locus of R/J and use the defining ideals of this non-normal locus to

describe a criterion for the normality of B. We start with some well known results

from Matsumura.

Theorem 3.1.1. Let (A, m, k) and (B, n, k’) be local Noetherian rings and

A : A —> B

a faithfully fiat map. Then:

0 If B is a regular local ring, so is A

o If A and EBB are regular local rings, then B is a regular local ring.

Next we recall the Serre Conditions on a Noetherian ring A. These are used as in the

subsequent theorem to give equivalent conditions for a noetherian ring to be reduced

or normal.

(Ri) AP is regular for all P E SpecA with ht(P) g 2';

(Si) depth Ap 2 min(htP, 2') for all P e Spec/l

20



Theorem 3.1.2. (Serre) Let A be a noetherian ring. A is reduced if and only if the

Serre conditions (R0) and (81) are satisfied. A is normal if and only if the Serre

conditions (R1) and (82) are satisfied.

One of the most important features of the ring R/I is that it is an excellent ring. We

recall the definition and some well-known facts about excellent rings:

Definition 3.1.3. A noetherian local ring A is said to be excellent if A satisfies the

following two conditions:

(i) A is universally catenary

(ii) The formal fibers of A are geometrically regular.

Note that if a noetherian local ring A is excellent, then a localization, finitely gener-

ated extension, or quotient ring of A is also excellent. In particular, our ring R/I is

an excellent ring, since R is essentially finite over a field.

Theorem 3.1.4. If (A, m, k) is a local noetherian ring and A is the completion ofA

with respect to the maximal ideal m, then:

(1) A is regular if and only ifA is.

(.1) A is Cohen-Macaulay if and only if A is.

If we assume in addition that A is excellent, then:

(3’) A satisfies the Serre condition (Si) if and only ifA does.

(4) A satisfies the Serre condition (Bi) if and only ifA does.

As a result of (3) and (4), ifA is excellent, we also have:

(5) A is normal if and only ifA is.

(6) A is reduced if and only ifA is.
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It is well known that the normal locus of an excellent, local, Noetherian ring is open.

In fact, we propose the following lemma:

Lemma 3.1.5. Let A be a reduced, excellent, Noetherian local ring satisfying the

Serre condition (SQ). The non-normal locus of A can be described as follows:

NNor(A) = V(Q1 fl . . . 0 Q5)

where the ideals Q1, . . . , Q3 are height one primes of A. We call the ideals Q1, . . . ,Qs

the defining ideals of the non-normal locus of A.

Proof. The excellence of A implies that the non-normal locus of A is closed. In

particular, there exists a reduced ideal I] of A with:

NNor(A) = V(3).

Since 3 is reduced, write 3 = Q1 0. . .0 Q3, where the ideals Q1, . . . , Q; are minimal

primes over 3. Then:

NNor(A) = V(3) = V(Q1fl...fl Q3) = V(Q1) U... U V(Qs).

Consider Q,- E {Q1, . . . ,QS}. Clearly Qz- is in the singular locus of A. Note that A

is reduced, so A satisfies the Serre condition (R0). Thus, Qt has height greater than

zero.

Suppose the height of Qz- is greater than 1. Then AQi is a non-normal ring satisfying

the Serre condition (52). In other words, AQi does not satisfy the Serre condition

(R1). Thus there is a height one prime Q of A with Q C Qi so that AQ is not regular.

Then Q E NNor(A) = V(3), contradicting the minimality of Qi over 3. Thus Qi is a

height one prime ideal of A for i = 1, . . . ,s. C]

In order to make use of this lemma, later in this section we will assume that R/I is a

reduced ring satisfying the Serre condition (32). Many of the rings we encounter will

also be excellent; for example, the complete local noetherian ring R/J is excellent.
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In general, our constructed ring B is not excellent, so it will be useful to work with

an ideal-adic completion of B that is excellent.

For some h E N, consider the element ph of R. Let R* denote the (ph)-adic comple-

tion of R and let 8* denote the (ph)-adic completionof B. By results of Rotthaus

[20], [21], the ring R* is excellent. We can use this fact to prove the following lemma:

Lemma 3.1.6. B* is excellent.

Proof. Recall the definition of the ideal J E R:

J=(F1(Clawm°a€n)rrFT(C1ar470)

For 1 Sj S r, we write:

Fj((1,...,Cn) = Fj(zl(h—1)+Clh""’Zm(h—1)+th’zm+ 1,...,Zn)

where Cih E R* for 1 g i _<_ m. From this, we can see that the ideal J of R is

extended from the ring R*. Echoing the proof of Propostion 2.3.4, we can see that

R*

JnR*

 8*2

Thus 3* is excellent.

CI

Note: In the proof of Proposition 2.3.3 we found a surjection R —> B/phB. As a

homomorphic image of R, the ring B/phB is excellent as well.

In order to examine conditions for the normality of B, we prove one more lemma.

For this lemma, we need neither assume that R/I is reduced nor that R/I satisfies

the Serre condition (32).

Lemma 3.1.7. Let R, I, and B be as in the previous section. If Q is a non-zero

prime ideal in the regular locus of B, and W 9 B is a prime ideal of B lying over Q,

then BW is regular.
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Proof. Suppose Q is a non-zero prime ideal in the regular locus of B. Then QflR # 0,

so there exists some element ph E Q. Let 8* denote the (ph)-adic completion of B

and R* denote the (ph)-adic completion of R. The extension Q* := QB* is a prime

ideal of B*. We have a faithfully flat homomorphism:

BQ —* 8* * .

1|:

Q

excellent regular ring. Let W be a prime ideal of B lying over Q. Since [2,, E Q* and

The ring BQ is regular, and so is the field B5,. /QB* *. Hence the ring B * is an

since every ideal of B* which contains ph is extended from B, the prime ideal W also

lies over Q* C_: B*. Recall from the proof of Lemma 3.1.6 that B* is excellent, and

thus has regular formal fibers. Hence, the homomorphism:

85* _* 3W

is faithfully flat and regular. Hence BW is regular. [:1

We are now ready to prove the main theorem of the section. Here R/I and B are as

described in the previous section.

Theorem 3.1.8. Suppose I; is a reduced ring satisfying the Serre condition (52).

Let {Q1, . . . ,Qs} be the height one defining prime ideals of the non-normal locus of

R/]. Then B is normal if and only if Qi D B = 0 for all 1 g i g s.

Proof. First we assume B is normal. Suppose that Q = Qz- H B 7Q O for some

i E {1, . . . ,3}. Since B is a domain, Q is a height one prime of B. The normality of

B yields that BQ is a regular local ring. Then by Lemma 3.1.7, Q,- must be in the

regular locus of B = R/J, a contradiction.

Now we assume that Q, (1 B = O for all 1 _<_ i S s. We will use the Serre criterion to

show that B is normal. Since R/I is an excellent ring satisfying (SQ), by Theorem

3.1.4, the ring B ’5 R/IR satisfies (32). Hence B does.
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To see that B satisfies (R1), let ’3 be a height one prime ideal of B. We need to

show that Bq3 is a regular local ring. Since B —> B is faithfully flat, there exists a

height one prime P Q B so that m = P 0 B. By assumption that Qi 0 B = O for

all 1 S 2' g s, it is clear that P ¢ {Q1, . . . ,Qs}. Moreover, since P has height one,

P g! V(Q1 fl . . . 0 Q3). Hence, P is in the normal locus of B. In particular, Brp is a

regular local ring. Since the map:

8‘13 —> Brp

is faithfully fiat, Bq3 is regular. Hence B is normal. D

3.2 Illustrating the Normality of B: Examples

In Theorem 3.1.8, if R/I is not reduced, we can find examples in which the other

conditions of the theorem are met, but the conclusion does not hold.

Example 3.2.1.

Let R = K[z1,22]( ), let I = (3‘12), and let m = 1. Then
21,22

A A

B = Ire/(<12).

The defining ideal of the non-normal locus of B is the prime ideal (C1) = B. In

otherwords, the defining ideal of the non-normal locus of B is in the generic formal

fiber of B.

Claim. B is not normal.

Suppose B were normal. Then B would be a one—dimensional normal noetherian local

domain; i.e., B would be a DVR. Hence, by Theorem 14, B would be a DVR, and so

would R/I, a contradiction.

More generally, if B is a one-dimensional normal domain, then it is regular. By
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Theorem 14,

B is regular (E) B is regular

4:) B/IB is regular

4:) 12/] is regular.

Thus, in order to use the theorem to produce interesting examples, we must consider

cases where the Krull dimension of R/I is at least two. We now look at some examples

that use the theorem.

Example 3.2.2. A noetherian, normal local domain with non-normal completion.

LetR=Kz ,2 ,z ,letI=(z z ),andletm=2. Then:
12 3( ) 12

21, 22, Z3

3 = KllCL C2, Z3ll/(C1C2)

The defining ideal of the non-normal locus of B is ((1, (2). Since ((1, (2) (1 B = 0,

the ring B is normal.

Example 3.2.3. Another noetherian normal domain with non-normal completion.

Let R = K[z1, 22,23]( , m = 2, and I = (z? — 2.3). Then:
zl,z2,23)

B = Mk]. (2, ail/(c? — <3)

Again, the defining ideal of the non-normal locus of B is ((1, (2). Since ((1, (2) DB 2

0, the ring B is normal.

Example 3.2.4. Another normal noetherian domain with non~normal completion.

Let R = K[zl, 2:2, 23]( ), let I = (2% — 2:15 — 2%) and let m = 2. Then:

21,22,33

g = KllClaC2,23lll.

(<3 — cf’ - c?)

 

The non-normal locus of B is defined by the ideal B = ((1, (2), so B is normal.
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Remark 3.2.5. A “recipe” for constructing B so that B is normal.

Throughout the previous examples, we relied heavily on the fact that the prime ideal

B = (C1, . . . ,(m) is in the generic formal fiber of B; i.e., BUB = 0. Determining the

normality of B is often a matter of checking if the defining ideals of the non-normal

locus of B are contained in the ideal B. In particular, we get the following “recipe”

for constructing examples:

Suppose R/I is a non-normal ring satisfying the Serre condition (5'2). Then the

non-normal locus of R/I can be described as follows:

NNOR(R/I) = V(Q1n...n Q7")

where each Q,- is a height one prime ideal of the excellent ring R/I . The extension

Qi B/IB is reduced in B/IB and we can write:

Qi§=Wiln...flWz-li

where the ideals VII};- are height one prime ideals in B/IB. Let

5:

11?

——>

‘(
Sl

K
l
?
»

be the isomorphism induced by the automorphism cp on B.

Proposition 3.2.6. Suppose that for alli and j, the ideals 1472/] are contained in the

ideal (21, . . . ,zm)B/IB. Then:

~

(a) NNOR(B/J) = V(W11n°--an’l fl. . .flerfl. . “errl where Wij = PU/Vijl

1

((#301773') = Wij g ¢((z1,. . . ,zm)§5(§/II§) = (C1, . . . ,Cm)¢(§/J). Hence Wij Fl

B = (0) for alli and j. Thus B is normal.

Example 3.2.7. In which we use the proposition to check that B is normal.
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Let R = k[zl7 32’ Z3l(z1, 22, 33)’

I = (2% —- z¥(z§ —- 21))

and let m = 2. Then:

kll€1a C2, 23]]

(<3 - <§<z§ — <1»

The defining ideal of the non-normal locus of R/I is the ideal (z1,z2). This extends

 E:

to the prime ideal (21, 22)B/IB By Proposition 3.2.6, B is normal.

We look at another application of the Proposition:

Example 3.2.8. In which we use the proposition to check that B is normal.

Let R = kt[a, b, c, d, e, f](a, b, c, d, e, f)’ where k is a field of characteristic # 2, 3. Let:

I = (b2 — a2(c2 — a),e2 — d2(f2 — d))

and let P = (a, b, c, d, 6). Then I is a prime ideal of height 2. We use the Jacobian

criterion to determine the defining ideals of the non-normal locus of the excellent

domain R/I . First, we find the Jacobian matrix of I:

  

( —2ac2 + 3a2 0 \

2b 0

—2a2c 0
J =

0 —2df2 + 3a2

0 2e

\ 0 —2d2f }

Let m be the ideal of 2 x 2 minors of J; i.e.,

M = (4a02df2 — 6df2a2 — (3ac2d2 + 9a2d2, -4ac26 + 68a2, 4ac2d2f — 6a2d2f,

4bdf2 + 6bd2, 4be, —4bd2f, 4a2dcf2 — 6a2d2c, —4a2ce, —4a2cd2f).

Let N = I + M.
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Claim 3 = (ad, be, ae, bd, ()2 —— a2(02 - a), e2 — (12(f2 — d)) ; fiv‘.

Clearly be, b2 — a2(c2 — a), 82 — d2(f2 — d) E W. since

be, b2 — a2(c2 — a), and e2 —— d2(f2 —- d) are all elements of N. To see that bd E W:

412de + 6bd2

4bd2f2 + 6bd3

4bd2f2 + f(—4bd2f) + 6bd3

6bd3

butt
i
l
l

m
m
m
m
m

Q
2
2
2
2

To see that ae E W:

4acze + 6ea2

4a2c2e + (Sea3

4a2c2e + c(—4a2ce) + 6ea3

66a3

l
l
l
l

Q
2
2
2
2

80.

To see that ad 6 W:
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4%?de — 6df2a2 — 6ac2d2 + 9a2d2

4a202d2f2 - 6d2f2a3 — 6a2c2d3 + 9a3d3

4a2c2d2f2 — 4a2c2d2f2 -— 6d2f2a3 — 6a2c2d3 + 9a3d3

-—6d2f2a3 — 6a2c2d3 + 9a3d3

—6d2f2a3 — fa(4a02d2f — 6a2d2f) — 6a2c2d3 + 9a3d3

—4a2c2d2f2 — 6a202d3 + 9a3d3

—4a2c2d2f2 - (cf(—4a2cd2f) - 6a2c2d3 + 9a3d3

—6a2c2d3 + 9a3d3

—6a2c2d3 — cd(4a2dcf2 — 6a2d2c) + 9a3d3

-4a2d2c2f2 + 9a3d3

—4a2d202f2 + 4a2c2d2f2 + 9a3d3

9a3d3

adl
t
i
l
l

l
H
i
l
l

l
t
i
l
l

m
m
m
m
m
m
m
m
m
m
m
m
m

Q
2
2
2
2
2
2
2
2
2
2
2
2

So (ad, be, ac, bd, b2 — a2(c2 — a), e2 — d2(f2 — d)) 9 W.

It is easy to see that W = \/j and that the associated primes of W = x/j are

(a, b, e2 — d2(f2 - d)) and (d,e,b2 — a2(c2 - a)). Since these two ideals are both

contained in P = (a, b, c, d, e), by the previous proposition, our ring B is normal.

In general, B is not normal, even if R/I is reduced. We can use Theorem 3.1.8 to

construct an example.

Example 3.2.9. In which B is not normal.

Let R = K[21, 22, 23, 24, 25]( , let I = (232% — 2221:13— 222%), and let
21,22,23,24,25)

m = 2. The ring R/I is a non-normal domain satisfying the Serre condition (SQ).

After the automorphism of R, we have:

A

R

1? = .

<%£—fié-&é>

 

30



The height one prime ideal (23, 24) is in the non-normal locus of B, and (23, 24) 0B 75

0. Thus, B is not normal.

A noetherian local ring (A, m) is Cohen-Macaulay if and only if the m-adic completion

A is Cohen-Macaulay. If A is excellent then for any i E N, A satisfies the Serre

Condition (Si) if and only if A satisfies (Si): Moreover, if A is a quotient of a Cohen-

Macaulay ring, A satisfies the Serre Condition (Si) if and only if A satisfies (Si)-

This is exercise 23.2 in [13], but the proof is very short and we include it here. First

we show that a Cohen-Macaulay ring has Cohen-Macaulay formal fibers. Let S be a

local Cohen-Macaulay ring and let S be the completion of S. Let p E Spec(S) be a

prime ideal of height j and let p be a prime idea in Spec(S) so that 15 0 S = p. Then

Sp -—-—-> S15 is a local flat homomorphism, so by [13], Corollary to Theorem 23.3,

depth(Afi) = depth(Sp) + depth(Sfi/pSfi).

Furthermore,

dim(SI3) = dlm(Sp) + dim(SI3/pSI3).

Since Sp and S15 are Cohen-Macaulay, the depth of these two rings is equal to the

respective dimensions. Thus:

depth(Sfi/p§fi) = dim(SI3/pSI3)

and the formal fiber is Cohen-Macaualy. Now let T = S/I for some ideal I of S.

Suppose T satisfies the Serre Condition (8,). To show that T satisfies (5,), we need

to show that the fiber ring T (2% .R(p) over every prime ideal p in Spec(T) satisfies

(Sil- Let p E Spec(T) and let p E Spec(S) so that 13/1 2 p. Then:

ra 3(1)) = ra CNN]? = 59‘ es (S/Plp = § 23 so)

Since S has Cohen-Macauay formal fibers, S 69S R(p) satisfies (Sil- Hence the fiber

ring T ®T fi(p) over every prime ideal p in Spec(T) satisfies (Si)- By a similar

argument, T satisfies (Si):
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However, in certain circumstances, we can obtain a normal ring B even in case R/I

does not satisfy (32). In this case, B will satisfy (SQ) but B will not. We propose

the following:

Proposition 3.2.10. Let R = k[21, . . . ’an(21 ... Zn) and I be an ideal ofR so that

R/I is a reduced ring of depth at least 2 and dimension d. Let P = (21, . . . ,2” __ 1),

and suppose the non-normal locus of R/IR is equal to V(PR/IR) Then B is normal.

Proof. The ring R/I has depth 2 and satisfies (R0) and (SI), hence B does. In order

to check the Serre condition (S2), we let Q be a prime ideal of B. We need to show:

depth(BQ) 2 min(ht(Q), 2).

We look at three cases.

Case 1. The prime ideal Q has height d.

In this case, Q is the maximal ideal of B, so

depth(BQ) = depth(B) = 2.

Case 2. The prime ideal Q has height d — 1.

Let Q be a height d — 1 prime ideal of B so that Q 0 B = Q. The ideal Q is not in

the generic formal fiber of B, so Q # P = ((1,...,2n _ 1). Thus Q is in the (S2)

locus of B and in particular:

depth(BQ) = depth(BQ) Z min(ht(Q), 2) = min(ht(Q), 2).

Case 3. The prime ideal Q has height h < d — 1.

Let Q be a prime ideal of B so that Q n B = Q and the height of Q is the same as

that of Q. Then P is not contained in Q, so again,

depth(BQ) = depth(BQ) 2 min(ht(Q), 2) = min(ht(Q), 2).

Thus B satisfies the Serre condition (SQ).
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To see that B satisfies (R1), notice that the non-normal locus of R/IR contains the

non-(R1) locus. If ht(PR/IR) > 1, then B satisfies (R1). Thus B satisfies (R1).

Since R/I is reduced, we know that ht(PR/IR) > 0. If ht(PR/IR) = 1, then by the

previous proposition, B is normal. El

Although the conditions of the proposition may seem technical, in practice they are

easy to check.

We can generalize the previous proposition without major changes to the proof.

Proposition 3.2.11. Let R = k[21,...,2n](21 .. 7 ) and I be an ideal ofR so
o,~‘

that R/I is a reduced ring of depth at leastri and dimension d, where d > i. Let

P = (e1,...,z,, _1), and let the non-(Si) locus of 13/12 be equal to NPR/IR).

Then B satisfies (Sil'

3.3 The Factoriality of B

We first recall some useful theorems:

Theorem 3.3.1. (Mori’s Theorem [6]. Corollary 6.12) Let (A,m) be a noetherian

local ring and A its m-adic completion. Then if A is normal, then A is normal and

there is a monomorphism of groups:

Cl(A) _. 01(2).

In particular, if A is factorial, then A is factorial.

Proof. See Fossum [6], 6.12. [3

Note that if A is factorial, A is not factorial in general, even when A is an excellent

ring. See Fossum [6] Example 19.6 and Example 19.9.

Theorem 3.3.2. [13], Theorem 20.1. Let (A,m) be a local noetherian domain. If

every height one prime ideal of A is principal, then A is factorial.
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we also recall the following fact about flat extensions from Matsumura:

Proposition 3.3.3. [13], page 63. Let A be a local noetherian ring and A its corn-

pletion. If a C A is an ideal such that 0A is principal, then a is principal.

We now demonstrate a condition for the factoriality of the constructed ring B. where

R and I are as in the previous sections.

Theorem 3.3.4. If g is factorial, then B is factorial.

Proof. Let q be a height one prime ideal of B. Then q n R 7Q 0, so there exists some

1)}, E q. As before, we denote the (ph)-adic completion of R by R* and the (ph)—adic

completion of B by B*.

As in the proof of Theorem 2.3.4, we know:

3* = __R*__

JnR*

Since ph E q, the ideal qB* is a height one prime ideal of B*. We need only show

that qB* is a principal ideal, and then by Proposition 3.3.2, q is principal.

Consider the maps:

*

R*i’Jr}iR* LB]:

Let Q = 7r’1(qB*) E Spec(R*). Then ph E Q and J n R* C Q.

 

We define an automorphism of R by:

’7 : R —+ R

Z7; |—> Zih if I S i S m

22- :—> 22- if m < i S n

Note that this is an automorphism because 21h, . . 'izmh’Zm +1,...,2n forms a

regular system of parameters of R.

Let

Jh. := "/(I) = (F1(21h,...,2mh,2m+1...,2”),...,F7~(21h,...,2mh,2m+1...,2n)).
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Then:

i

J

”
25.

1

D
"

R
By assum tion, is factorial, so R is also factorial. Furthermore:

p T 3h

2 * _ * 2 *

(JmthlR — (JflR vth l

and:

R* R* R

(JnR*,p,2,R*) (JhR*,p%,R*) (Jh.p,2,R)

  

Since ph E Q, the ideal Q C_: R* is extended from R. Let 6 E Q 0 R be such that

 

one _ g5

Jh " Jh'

Then:

Q = (Q n R)R* = (Jean?) = (Jo 1mm.

If a: E Q,

:1: = ph(phr1) + 5T2 + (5

where r1, r2 6 R* and 6 E J H R*. That is,

Q = PhQ + (J 0 3*,BR*)

By Nakayama’s Lemma,

Q = (J0 R*,6R*)

Hence the prime ideal qB* = Fig-R; is principal, and so q E Spec1(B) is principal.

Thus B is factorial. E]

3.4 Constructing Examples in which B is Factorial

A local noetherian ring (A, m) is regular if and only if the m — adic completion A is

regular. Thus our constructed ring B is regular if and only if R/I is regular. However,
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we can find circumstances in which R/I has a singular locus containing more than

one prime ideal but B has an isolated singularity. This is a useful environment for

constructing examples in which B is factorial with a non-factorial completion, and

we give conditions for creating such an environment in the next theorem.

Theorem 3.4.1. Let R = I('[21,...,2n](z1 ’n)’ and let I be an ideal of R
,0 O O , ~

satisfying the condition:

Q E Ass(R/I), then Q Q (21, . . .,2n _1) := P.

We assume additionally that

SingUi/I) = V(P);

that is, ifQ E Spec(R/I) and (R/I)Q is not regular, then P g Q. In this case, the

constructed ring B has an isolated singularity.

Proof. Suppose R/I has Krull dimension d. Then P has height d — 1. Note that:

Sing(R/IR) = V(PR/IR)

and

Sings?) = W?) = (c1. . . ..cn _ 1)

Let g be a non-maximal prime ideal of B, and let Ej be a prime ideal of B lying over

q so that height(g‘) = height(q).

If q has height less than d — 1, then B6 is regular, so Bq is regular. Similarly, if

ht(q) = d — 1, then {1‘75 B, because P is in the generic formal fiber of B. Thus B has

an isolated singularity. Cl

We can use this theorem in conjunction with the the following theorem due to

Grothendieck and Samuel [6], Proposition 18.15, to find examples in which R/I is not

factorial, but B is. Recall that a noetherian local ring A is a complete intersection

if the completion A is the factor of a regular local ring by an ideal generated by a

regular sequence.
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Theorem 3.4.2. (Grothendieck-Samuel, [6] Proposition 18.15.) Let A be a complete

intersection. If Ap is factorial for all p with ht(p) S 3, then A is factorial.

From this, we get an immediate corollary:

Corollary 3.4.3. Let R, I and P be as in Theorem 3.4.1. Assume additionally that

R/I is a complete intersection of dimension at least 4. Then B is factorial.

Proof In this case, B is a complete intersection, and by Theorem 3.4.1, B has an

isolated singularity. In particular, Bq is factorial for all prime ideals of height less

than or equal to 3. Thus by Grothendieck-Samuel, B is factorial. C]

Using this theorem, we can present a very simple example of a factorial ring with

non-factorial completion.

Example 3.4.4. A four dimensional local factorial complete intersection with non-

factorial completion.

Let R = K[21, . . . , 251(31v ). Let I = (2123—2224), and let P = (21,22,273, 24).
. . , 25

A simple application of the Jacobian Criterion shows that the P is the defining ideal

of the singular locus of the complete intersection R/I. Furthermore, Q = (21, 22)

is a non-principal height one ideal of R/I, so R/I is not factorial. Thus R/IR and

B are not factorial. However, B is a four dimensional complete intersection with an

isolated singularity, so B is factorial.
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4 The Heinzer-Rotthaus-Wiegand Construction

In this section, we examine another construction of intermediate domains between

a local noetherian ring and its completion. This construction has been explored by

Heinzer, Rotthaus, and Wiegand, and we will refer to it as the “HRW” construction.

Let (R, m) be an excellent, noetherian, local domain with field of fractions K. As in

the previous section, we denote by R the m—adic completion of R.

We will look at intermediate domains between the ring (R, m) and the completion

with respect to a principal ideal. Let :c be a non-zero non-unit of R and let R* denote

the (3)-adic completion of R. Choosing r1, . . . ,T3 to be certain elements of rR*, we

will consider the subring

C:= K(7'1,...,7’3)flR*

of R*. The ring C serves as a “reference” ring for the ring we want to consider. This

is a good choice because often we can easily determine whether or not C is noetherian.

Furthermore, in many cases, C is excellent.

For our ring of interest, we will choose an ideal I of R* that is extended from C. We

will look at the ring:

 

C

B:=—— K.

mom

The extension

B ——»( C >
“7 100:”

is essentially of finite type and carries much information about B.

Heinzer, Rotthaus, and Wiegand have found this ring to be a rich source of examples

of excellent and non-excellent, noetherian and non-noetherian rings.

Our goal is to look at conditions under which these rings are normal and factorial.

We will then use our conditions to generate examples.
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4.1 Setting and Notation of the HRW Construction: A

“Reference Ring”

Let (R, m) be an excellent, noetherian, local domain with field of fractions K. Let a:

be a non—zero non-unit of R. Let R* denote the (cc)-adic completion of R. Choose

T1, . . . ,r3 6 :rR* to be algebraically independent over K. Write:

m .

7'2: = 2 built]

2': 1

where bij E R. For each i E {1, . . . ,s} and each n E N, we define the nth endpiece

of r,- with respect to 1::

 

00 . _ n 00 bijilij

Tm == X be“ = Z en -
j = n + 1 j = n + 1

For each i E {1, . . . , s} and each n E N, we have the following relationship between

71m and T24,” +1):

Furthermore, for each i E {1, . . . , s} and each n E N:

Tin E K(T1,...,T3) flR*.

We need to define two subrings of K(r1, . . . ,T3) (1 R*:

Ur := R[T1T,. . .,r37~]

and:

Tr I: (1 + CL‘UT)—1Ur.

Because Tm = binzr + Ti(n + ”1:, we get:

and:



We then define the nested union rings:

‘ 00

U2: U Ur

r=1

and:

00

T: U Tr.

r=1

A useful proposition from[10] gives the following:

Proposition 4.1.1. Let U* denote the (:r)-adic completion of U. Then:

(1) For all k e N, we have: rkU = #6}? n U.

 

(2) U* = R*, so 12/212 = U/xU.

Remark. The definitions U and T are independent of the representations of T1, . . . ,rs

as power series in a: with coefficients in R.

Proof. (of the Remark) To see that the definition of U is independent of the represen-

tations of T1, . . . , r3 as power series, we will imitate proofs found in several papers of

Heinzer, Rotthaus, and Weigand; see, for example, [10]. The corresponding statement

for T follows immediately.

For each i E {1, . . . , s}, suppose r,- and pi = 7',- have representations:

w o

Ti = Z bijfrj

j = 1

and

m -

p.= 2: Cum]'=1

where bij and c2-j are elements of R. Using the nth endpieces Tin and pm, we have:

m u n o w - n .

T,- = Z bum] = E be“ + e717,” = Z (6111:] l = Z 07:ij + inn-n = a
j = 1 j = 1 j = 1 j = 1
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Hence for each i E {1, . . . ,s} and each n E N:

 

 

X (be “ Cu)“:

1 = 1

Tin - pin = as"

where

n o

E (btj - GUNS] E IEnR* n U = LEnU.

j = 1 '7

Thus Tin — pm 6 U and U is independent of the power series representations of [-

Tl, . . . , T3 . [:I

We define another subring of R*: i

C := K(7'1,...,7'3) flR*.

In this setting, we can use Theorem 2.12 of Heinzer-Rotthaus-Wiegand [8].

Theorem 4.1.2. Let (R, m) be a semilocal noetherian domain. Let 7'1, . . . ,r3 6 23R*

be as in the previous discussion. Then the extension:

16 Z R[T1,...,T3] ‘—> R;

is flat if and only if T is noetherian. If this holds, we also have C = T.

In light of this theorem, we will assume that the extension R[rl, . . . ,rs] =—> R; is

flat in order to ensure that C is a noetherian domain equal to T. We also know [8],

Proposition 2.2, that the (r)-adic completion C* = R*, and the quotient field of C

is K(T1,...,T3).

4.2 Construction of the Intermediate Ring B

In this section we look at an insider ring that generalizes the setting of the previous

section. Again, let (R,m) be an excellent, noetherian, local domain with field of

fractions K. Let x be a non-zero non-unit of R. Let R* denote the (a:)-adic completion
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of R. Let 7'1, . . . ,7'3 6 .rR* be algebraically independent over K as in the previous

sections, and C := K(r1, . . . ,rs) 0 R* be as before, assuming that:

w : R[r1,...,rs] ‘—> R;

is flat so that C is noetherian and computable as a nested union of localized polyno-

mial rings of R.

We choose elements f1, . . . fr of R[rl, . . . , rs], considered as polynomials in 7'1, . . . , 73

with coefficients in R. Suppose f1, . . . , fr are algebraically independent over K.

Let I := (fl, . . .,f7~) be an ideal of R* such that:

For all P E Ass(R*/I), we have PF‘I R = 0.

Note that f1, . . . , fr 6 C, so the ideal I is extended from C. In a slight abuse of

notation, we will denote I H C and I 0 R[r1,.. . , 7'3] by I as well.

We define a ring:

A := g n Q(R).

Again, we want conditions under which A is realizable as a nested union of localized

polynomial rings over R. To that end, we will define the tth frontpieces of the

polynomials f1, . . . , fr. First, recall for 1 S i S s and n E N:

_ n . .

Ti — 3’3 7'zn + “in

for some am 6 R. For each f 6 {f1, . . . , fr}, we use Taylor series to get:

f(T1,...,T3) f(alt+7‘1t:13t,...,(18t+xt7'8t)

0° 1 n , 6f J

= ZO[;;(klet,akt) f(01t~---iast)}

f(alt, . . . ,ast) + 513“]!

 

for some h E R*.

We know f(T1,.. . ,7'3) 6 IR*, so

f(ozlt, . . . ,ast) E :rth (mod (IR*)).
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Thus it makes sense to define the tth frontpieces of fj as:

fj(a1t, . . . ,ast)

t . fjt I: m

For t E N, define:

Bt :2 R[flt’ ' ' ' a f'rtl(m, f1t" . . , frt).

We have a recursion formula for the elements fij:

fij = ”to + 1) + dij

where dij E R.

As a result of this recursion formula, we again have a sequence:

Blngg...ang...

and we can define a nested union ring:

00

B:= U B,

t=1

Note that B Q Q(R).

An additional result in [10] yields conditions under which the two rings A and B are

equal and noetherian. Assume that the ring T is noetherian. Note that:

 

R[r1,... ,T3])z.

tre=( 1

If the map

 

(p:R——) (R[T1,...,T3])

I T

is flat, then A = B and B is noetherian.

R*

.._,( >112* x

is flat if and only if B is noetherian. On the other hand, (,0 being flat is a sufficient but

It is worth noting that the map

 

not necessary condition for B to be noetherian. The advantage of using the condition
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 on (p is that R and (R[Tl’ I ' ’T‘Sl) are both essentially finitely generated over a

:c

field, so the non-flat locus of (o is closed, by [13], Theorem 24.3, and has defining ideal

.I I: fliQ E Spec (R[Tl’ I ' ’TS])$ : R —> ((R[T1’IH'TS])$)Qis not flat}.  

We denote the ((2)-adic completion of B by 8*.

Remark: Note the following useful facts:

(1) For each positive integer n, the ideals of R containing at" are in one-to—one cor-

respondence with the ideals of R* containing :13”. in particular,

(I,:z:)R* = (d11,...,d7.1,a:)R*

and

(I,r)R* n R = ((d11,. ..,d,.1,:z:)R* n R = ((111,. .. ,d,1,e)R

where d11,...,dr1 are the constant terms of f1, . . . ,fr.

(2) Under the identification of R as a subring of R* /I , the ideal (c111, . . . ,dr1,r)R

is also equal to :r(R*/I) (1 R.

We quote a theorem of Heinzer-Rotthaus-Wiegand to better understand the struc-

ture of B (Proposition 2.4 [10]):

Proposition 4.2.1. In this setting, we have:

(1) :1:(R*/I) (‘1 B 2 2B.

(2) B/rnB = R*/((:rn) + I), and B* = C*/I = R*/I.

Furthermore, the completions of these rings at their respective maximal ideals are

equal; i.e.:

13?:

N
l
Q
)

5
|

:
0
)

We can now look at conditions for the normality and factoriality of these intermediate

rings.
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4.3 Conditions for Normality and Factoriality

As in the Nishimura construction, we rely heavily on the excellence of R to identify

conditions under which B is normal. Since R (and thus R*/I [21]) is excellent, the

normal locus of R* /I is open. Using Lemma 15 of the Nishimura Construction, we

write:

NNor(R*/I) = V(Q]< 0 ~ - on Q?)

where each Q; is a height one prime ideal of R* /I . As in the Nishimura construction,

we call Q’f . . . Q: the defining ideals of the non-normal locus of R* /I. We can use

these ideals to identify the ideals of B which need to be “checked” in order to ensure

the normality of B.

Throughout this section, we will assume that R*/I satisfies the Serre condition (52).

Proposition 4.3.1. Assume the setting of the previous section, and let Q’f . . . Q: be

the defining ideals of the non-normal locus of R*/I. Let qz- = Q] (1 B for 1 g i S t.

In addition, assume that R* /I satisfies the Serre condition (52). Then B is normal

if and only if for all 1 S i S t, the ring qu. is a regular local ring.

Proof. Assume B is normal. The height of each prime ideal qz- is at most one, so the

Serre criterion for normality implies that 3%. is regular.

Assume that 8%. is a regular local ring for all 1 S i g t. Let ‘3 be a height one prime

ideal of B. We need to show that Ben is regular.

Let Q be a height one prime of R*/I so that QflB = ‘D. In case Q E {Q’i< . . . Qfl’ we

have that CD = 92' for some i and Bin is regular by assumption. If Q ¢ {Q’i‘ . . . Q: },

then BE? is a one-dimensional normal ring. Hence B5 is regular. The canonical map:

8:3 ——> 35

is faithfully flat. Hence BB is regular. Thus B satisfies the Serre condition (R1).

Since B* = R* /I satisfies (52), B also satisfies (SQ). Thus B is normal. [:1
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Let (p be the flat map:

 (>(>
Let H be the ideal describing the non-smooth locus of (p; i.e.:

  

H:=]]PESec( ':R_ —i 1snotsmootl

Lemma 4.3.2. Assume the setting and notation of the previous proposition. Assume

additionally that B is normal. With H defined as above, if ht(H) > 1, then C/I is

normal.

Proof. The ring C/I satisfies the Serre condition (SQ) because R*/I does. Thus we

need only verify (R1). To that end, choose a height one prime q E Spec(C/I ). Let

Q E Spec(C*/I) be a height one prime so that Q (1 C/I = q.

Recall:

C*/I = R*/I = B*

Let Q0 = Q 0 R. We look at two cases:

Case 1. Suppose :1: E Q.

In this case, Q is extended from B as well as from R. Hence:

and:

Bo _ BQnB

QB; _ (QnB)BQ 03

Since B is normal , the ring BQ H B is regular. Moreover, Q is extended from B, so

(Q 0 B)B* = QB*. Hence,

  

3g, .. = 35* .

(QoBiBQ QBQ

The latter ring is a field, and in particular, a regular local ring. Thus BE? is a regular

 

local ring. So (C/I)q is a regular local ring.
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Case 2. Suppose :1: ¢ Q.

In this case,

BQHB=RQO

(qu z(R[Tl,1.O,TS])QnR[q,...,73)/1'

Since the height of Q 0 B is at most one, BQ n B is a regular local ring. Hence RQO

and:

 

is a regular local ring of dimension at most one. Since Q E Spec(C* /I) is a height

one prime, Q n R[Tl, . . . , rs] /I also has height one.

Our assumption on H yields that:

R[T1,...,T3])

R —)

Q0 ( I QflR[Tl,...,r3]/I

 

is smooth. Thus:

 

(f): (“”3"“).......,...,..,/1
is regular. Since (R1) and (52) are satisfied, C/I is normal. C]

The intermediate ring B is not excellent in general. However, if C is excellent and

ht(H) > 1, then the normality of B guarantees the normality of B*. The condition

that C is excellent is not too restrictive, particularly when R is a localized polynomial

ring over a field of characteristic 0. We will discuss this in more detail in the next

section.

Proposition 4.3.3. In this setting, assume ht(H) > 1 and C is excellent. Then B

normal implies that B* is normal.

Proof. As a homomorphic image of an excellent ring, C/I is excellent. Since C/I is

normal, B* = (C/I)* is normal. [:1

If we assume that R is a normal domain, we need even fewer height one prime ideals

of B to determine the normality of B.

47



Proposition 4.3.4. Suppose R is an excellent, noetherian normal domain. Let

71, . . . ,TS, C, I, and B be as defined in section 2. Then B is normal if and only

iffor all height one prime ideals q in B with :c E q, the ring Bq is a regular local ring.

Proof. If B is normal, then for every height one prime ideal q in B we know that Bq

is a regular local ring, so “only if” is clear. To see the other direction, assume that

Bq is a regular local ring for every height one prime ideal q of B so that a: e q. Let

Q be a height one prime of B so that :1: ¢ D. Then

38:35:01?-

Then RD ('1 R is regular, because it is a one-dimensional localization of a normal

ring. Thus BQ is regular. By the general assumption that R*/I satisfies the Serre

condition (5'2), the ring B is normal.

we can also find a straightforward condition under which B is factorial.

Proposition 4.3.5. In the setting of the previous proposition, suppose R is factorial

and :1: E B is a prime element. Then B is factorial.

Proof. Since B is noetherian and :1: is a prime element of B, if B3; is factorial, then

B is factorial. [13], Theorem 20.2.

Since 5138 is a prime ideal of B and

3- R*
:cB_ (33,1)

 

we know that (:17, I) is prime in R*. Thus (31:, I ) OR is prime in R. Since R is factorial,

Ra: = Ba:

is factorial. Thus B is factorial. C]

We now look at a more concrete situation in which we can generate examples.
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4.4 A more specific setting

Suppose A: is a field of characteristic 0 and x,y1, . . . ,yn are indeterminates over It.

Let R := k[x,y1, . . be the localized polynomial ring over It. Let-’y"](x,y1,...,yn)

R* denote the (x)-adic completion of R. Let T1, . . . , r3 be elements of xk[[x]] which

are algebraically independent over h(x). In this case:

C := k(x,y1,...,yn,rl,...,7'3) flR*.

and the map R[rl, . . . , rs] —> R; is flat. C is noetherian and computable as a nested

union of polynomial rings. Furthermore, in this case, C is a regular local ring. Since

 k is a field of characteristic 0, the ring C is excellent, by [10], Proposition 4.1.

In this setting, many of the conditions for the propositions in the last section are met, I

so we can use this context to generate examples.

Example 1. An example in which B is normal, but B* is not normal.

Let k be a field of characteristic 0. Let R = k[x,y, 2, w]( ) and R* =
x,y,2,w

k[y, 2, w]( [x]], the x-adic completion of R. Define 71,72,73 E xk[[x]] to be
31, z. w)[

algebraically independent over h(x). Define an ideal I of R* by

I = ((w + r1)(y + 7'2)2 — (2 + 73)”).

A calculation shows that:

NNor(R*/I) = V((y + 7'2, 2 + 73)).

Claim. B is noetherian.

Proof. In order to see that B is noetherian, we need to see that:

R[r,r,r]

e=R-*( 1,2 3h

is flat. First we Show that the map

7:12 __, RlTl»;2a73l
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is flat. We do this via a corollary to Theorem 22.6 in Matsumura. R is noetherian, and

R[rl, 72, T3] is a polynomial ring over R. The ideal of R generated by the coefficients

of T1,T2, and T3 in (w + 7’1)(y + 72)2 — (2 + T3)3 is R. Thusmis flat over

R, and so (W) is flat over R. Thus we see that B is noetherian.

x

Note that:

(w+T1,Z+T3)rle = (w+T1,Z+T3)rlBg; = 0

so

(w+rl,2+r3)flR=0.

Similarly,

(y+72,2+'r3)flR=0.

Hence by Proposition 4.3.1, B is normal. Note that B* is not normal.

Example 4.4.1. An example in which B is not normal.

Let k be a field of characteristic 0. Let R = k[x,y,2,w]( ) and R* =
$,y, 2,11)

kly. 2, w] ( )[[x]], the x-adic completion of R. Define r1,72,r3 E xk[[x]] to be
7.1, Z, w

algebraically independent over k(x).

In this example, our ideal I is “tweaked” from the ideal in the previous example.

Define:

2
I = (x2(y+72) — (2+T3)3).

Then

NNor(R*/I) = V((x, 2 + 7'3) 0 (y + 72, 2 + 73)).

In this case, to see that B is noetherian, we can use the corollary to Theorem 22.6 in

lV'Iatsumura [13]. R is noetherian, and R[rl,72,r3] is a polynomial ring over R. The

ideal of R generated by the coefficients of 7'1,T2, and T3 in x2(y + 72)2 — (2 + T3)3 is

R. Thusmis flat over R, and so (W) is flat over R.

x

In this case, the ideal (x, 2 + T3) is extended from B, so B is not normal.

Example 4.4.2. An example in which B is normal but not factorial.
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Let k be a field of characteristic 0. Let R = k[x,y,2,w]( and R* =

13,31,231”)

My 2, w]( [[33]], the x-adic completion of R. which are algebraically independent
11.2.10)

over K, the quotient field of R.

Let I be the principal ideal of R* so that

I := (x(2 + q) — y(w + r2)).

Again, the method of the previous example will yield that B is noetherian. Also,

R/IR E’ R/(xz — yw)R, which is normal, since R/(xz — yw)R is an excellent normal

ring. The natural map R* /I —> R/IR is faithfully flat, so R*/I is normal. Hence

B is normal. However, R* /I is not factorial because (x, y) is a height one prime of

R*/I which is extended from B and is not principal. Then (x, y)B is a height one

prime ideal of B which is not principal, and B is not factorial.
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