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ABSTRACT

INTERMEDIATE DOMAINS BETWEEN A LOCAL RING AND ITS
COMPLETION: CONDITIONS FOR NORMALITY AND FACTORIALITY
By
Sarah Elizabeth Sword

The study of intersection rings between an excellent local noetherian ring (R, m) and
its m-adic completion R has provided a rich ground for constructing examples of
“bad” noetherian local domains. The general strategy is to look at a noetherian local
domain R that is essentially finitely generated over a field k. We let J be an ideal in
R so that the associated primes of J are in the generic formal fiber of R. We can then
embed R — ﬁ/ J so that regular elements of R map to regular elements of Rﬁ/ J.
The intermediate ring of interest is Q(R) N (ﬁ/ J), where Q(R) is the field of fractions
of R. We look at two such constructions and determine conditions for normality and

factoriality of the constructed intermediate rings.
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1 Introduction

The study of intermediate rings between an excellent, local noetherian ring (R, m)
and its m-adic completion R has provided a rich ground for constructing examples
of “bad” noetherian local domains. The general principle is to look at a noetherian
local domain R that is essentially finitely generated over a field k. We let J be an
ideal in R so that the associated primes of J are in the generic formal fiber of R;
that is, so that @ N R = (0) for every associated prime ideal of ﬁ/ J. Then we have
an embedding R — ﬁ/ J in which non-zerodivisors of R map to non-zerodivisors of

ﬁ/ J. The intermediate ring of interest is:
B:=Q(R)N (R/J)

where Q(R) is the field of fractions of the domain R.

B is a local ring birationally dominating R. In many circumstances, B is noetherian
with completion equal to ﬁ/ J. Furthermore, B can often be realized as a direct limit
of essentially finitely generated extensions of R, greatly assisting the study of the
structure of B.

The construction of these “insider” rings was pioneered by Akizuki in the 1930s [1].
He used insider rings to construct a local noetherian domain C' whose normalization
is not a finite C-module. In the 1950s, Nagata used similar techniques to construct
noetherian rings with “bad” completions. For example, he constructed a local noethe-
rian normal domain (R, m) whose completion is not reduced [14], [15]. The examples
Rotthaus constructed using this method include a normal local domain which is Na-
gata but not excellent [23]. Ogoma modified the construction to find an example of a
normal non-catenary domain [18]. These techniques have also been used by Brodman-
Rotthaus [2], [3], Heitmann [11], Weston [25] and others. Heinzer-Rotthaus-Weigand
continue to create variations of this construction to create examples of noetherian

and non-noetherian as well as excellent and non-excellent rings (see, for example, [7],

(8], [9). [10)).



A local noetherian ring is called ezcellent if it is universally catenary and has geo-
metrically regular formal fibers [5]. The class of excellent rings is closed under lo-
calization, passing to quotients, and finitely generated extensions. Rotthaus showed
that the class of excellent local rings is also closed under ideal-adic completions [21].
Matsumura writes that “practically all noetherian rings in applications” are excel-
lent [13], p. 260. In general, the intermediate rings we consider are not excellent,
which is one reason they are such a good source of examples: the formal fibers of our
constructed rings are not geometrically regular. In general, these rings are neither

analytically normal nor analytically unramified.

In his preprint, A Few Ezamples of Local Rings, I [16], Jun-Ichi Nishimura compiles
some of the work done by the aforementioned authors. He proves the following;:

Theorem ([16], Theorem 1.4) Let K be a purely transcendental extension field of
countable degree over a countable field K(y. Take polynomials in m variables over K

without constant term:
Fi(2),....,Fr(Z) € KO[ZI’ ooy Zm).

Then, for any n > m, there exists a local domain B which satisfies the following:

o K[[C1,-- all/(F1(C),s -, Fr(C)) = R/(f1,.... fr) = B.
®p= ((1,...,Cm)§ is a prime ideal of B and pN B = (0).

e B/p is essentially of finite type over K for any non-zero prime ideal

p € Spec(B).

The first part of our paper is a detailed examination of the construction of this
domain B, which we call “The Nishimura Construction”. We explore in particular
Nishimura’s use of a theorem of Heitmann [11]. In this construction, we choose R to

be a localized polynomial ring over a field, and let I C R be an ideal of R. We will
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need to put a certain condition on the associated primes of the extended ideal I R.
One important feature of Nishimura’s work is the construction of an automorphism
¢ of ﬁ, which maps the ideal I R to an ideal J C R. Our condition on I R will yield
the condition that if @ € Ass(ﬁ/ J), then @ N R = (0). Thus we have an embedding
R — R/J in which non-zerodivisors of R map to non-zerodivisors of ﬁ/ J.

In this construction, B = Q(R) N ﬁ/ J. The constructed ring B is a local noetherian
domain birationally dominating R with completion equal to ﬁ/ J. Furthermore, B is
noetherian and realizable as a nested union of essentially finitely generated algebraic
extensions of R. The choice of our automorphism ¢ of R allows us to identify a
prime ideal P in the generic formal fiber of the constructed ring B. We use the
prime ideal ﬁ, corresponding to p in Nishimura’s theorem, to facilitate our goal: to
study conditions for normality and factoriality of B. With certain restrictions, we
find necessary and sufficient conditions for B to be normal. We also find sufficient
conditions for B to be factorial.

The very automorphism of R that makes this construction so powerful also makes
finding necessary conditions for the factoriality of B extremely difficult. Ogoma. [18]
and Weston [25] made substantial modifications to the Nishimura construction in
order to construct local factorial domains with non-factorial completions. In this
paper, we are able to construct such domains using the Nishimura construction, but
our constructed domains must be complete intersections.

Our results culminate in straightforward “recipes” for constructing normal rings with
non-normal completions and factorial rings with non-factorial completions. Using our
machinery to construct examples of bad local domains is very simple, as we see in
the following two motivating examples:

Example: A noetherian normal local domain whose completion is not normal.

We begin with a localized polynomial ring in three variables over a field K; i.e.,

R = K|zq, 29, 23] ( ) Let I = (2729). Neither the ring R/I nor its completion

21,29, 23
is normal. We can use the Nishimura construction together with our recipe to see



that the constructed ring B is a noetherian, local, normal domain with completion
isomorphic to the non-normal ring ﬁ/ IR.

Example: A local factorial complete intersection whose completion is not factorial.
We choose R to be a localized polynomial ring in five variables over a field K; i.e., R =
K[zl,z2,z3,z4,z5](21’22,z3’z4,z5). Let I = (2723 — 292z4). Neither the ring R/I
nor its completion is factorial, however, we can again use the Nishimura construction
together with our techniques to see that the constructed ring B yields the desired

example.

In the second part of the paper, we look at a similar construction, which we will
call the “HRW Construction”. Heinzer, Rotthaus and Wiegand have generalized a
construction due to Akizuki in a series of papers on intermediate rings, including [7],
[8], [9], [10]. In [10], the authors begin with a local noetherian domain R that is
essentially finitely generated over a field k and with fraction field L. In this paper,
they are interested in identifying ideals I for which intersection domains of the form
LN (ﬁ/ I) are noetherian. To do this, they restrict to the completion R* of R with
respect to a non-zero non-unit z of R. They assume that I is an ideal of R* such that
pN R = (0) for all associated primes p of R*/I. Hence we have again an injection
R — R*/I so that non-zerodivisors of R map to non-zerodivisors of R*/I. They
show:

Theorem ([10], Theorem 3.2) Let R be a noetherian integral domain with fraction
field L. Let = be a non-zero non-unit of R and let R* denote the (z)-adic completion
of R. Suppose I is an ideal of R* with the property that pN R = (0) for each
p € Ass(R*/I). Then R — (R*/I)z is flat if and only if A := LN (R*/I) is
noetherian and Az is realizable as a subring of Ry = R[1/z].

In this construction, A is approached with a sequence of finitely generated birational
extensions of R, all of which are contained in the fraction field of R.

We again determine conditions for the normality and factoriality of the intermediate



ring A. We make use of the theorem quoted above to assume that our intersection

rings are noetherian. We then use our conditions to generate more examples of bad

local noetherian rings.

In the work that follows, all rings are assumed to be commutative with identity.



2 The Nishimura Construction

We begin with a detailed examination of the construction found in Nishimura’s paper
[14]. For any unexplained terminology, the reader can refer to [13].
Let K be a field, and R a localized polynomial ring over the field in n variables, i.e.,

R=Klz,..., Zn](z 1 . We denote by R the completion of R with respect to

ey Zn)
the maximal ideal (27, ..., 2n)R; so then R= K([z1,...,2n]]
If I is an ideal of R, we want to construct a local noetherian domain B birationally

dominating R so that

1%

B

SNES

where B is the completion of B with respect to the maximal ideal of B.
We construct an automorphism ¢ of R taking the ideal IR to an ideal J = oI ﬁ)
satisfying the condition that if Q) € Ass(ﬁ/ J), then @ N R = 0. Our ring of interest

is the ring:

~

R
A=QR)NS

In order to do this, we put a condition on the field K, namely, that K is a purely
transcendental, countable extension of a countably infinite field. To achieve the con-
dition on the associated primes of J, we put a condition on the ideal I involving the
associated primes of I R. To facilitate our study of this intersection ring, we look at a
sct of finitely generated R-algebras inside A and show that the nested union of these

R-algebras is actually equal to A.

2.1 Setting and Notation

To begin, let Ky be a countable field. Let {aij |i=1,...,00;7=1,...,m} be a set
of elements which are algebraically independent over K. In order to use Heitmann's

lemma, we will need m > 2. Define a collection of purely transcendental extension



fields over Kg as follows:

K| = Ko(a11s---5a1m)
K2 = Kl(a21*""a2m)

Kk = Kk— 1(ak1,...,akm)

Let K be the union of the fields K k:

K =| Ky
k
Let n > m and let z1,..., zn be variables over K, and define:
So = Kplz1,---2n] with prime ideal No = (21,---,2n)Sy
Sk =Sk _1lag1 - 2 with prime ideal ~ My = (21, ..., 2n)Sk

S = U Sk = Kplaji)[z1,--»2n]  with prime ideal N = (21,...,2n)S.

Localizing at the prime ideals ;. and N,we get corresponding rings:

Ry = (S())mo = Kglz1, -+ zn](zl’ oy 2n) with ng = (21,..,2n)Ry
Ry = (Sk)’ﬁk = K[z, ...,zn](zl’ ey 2m) with  ng = (z1,...,2n) R}
R= (S)m = K[Zl, ...,zn](zl, " Z’I’l) with n= (Zl, ceey Zn)R

Since Ry, = Ry _ 1la,--- ’amk](zl, e zn)? the ring R can be written as a nested
union of localized polynomial rings. Furthermore, R is a localized polynomial ring
in n variables 21, ..., 2n, over the field K, and hence a regular local ring. Also notice

that since K is countable, R is countable.

We choose a sequence of elements py, ..., P, . .. contained in the ideal M = (z1,...2n)S

such that:

1. pp=21+...+2n



2. if 0 # P € Spec(R), then there exists k € N so that p;. € P
3. Forallke N, Spn{p; |i=1,...,00} is infinite

4. p. € S _ o for every k > 2

We make the following definitions:

zip = % for 1<i<m

q, = py1--pg for k>1

Zip = zi+ai1q1+°--+aikq;§ for k>1 and 1<i<m

Br = (21> 2mp) B
The elements 21,...,2m form part of a system of parameters of R. Further, since
i = 2+ a;1(21 + ...+ 2n) mod(an) for every i = 1,...m and for all k > 0,
the elements 2y, ..., 2z, form part of a regular system of parameters of R. Thus
for all k£ > 0 the ideal B = (21g,---,2pk)R is a prime ideal of height m. We
now introduce a theorem of Heitmann that will continue to be useful throughout the

construction.

2.2 Heitmann’s Numbering Theorem

Theorem 2.2.1. (Heitmann’s Numbering Theorem) [11], Proposition 1. Suppose
that m < n. Then for all integers k > 0 and all positive integers h < k+1, py, ¢ Py

Proof. If we can show that for all k, (214, .., 2zyk)Sk is a prime ideal of Sy, then

Be[1Sk—1 = i 2mp) R[Sk — 1
= (zlk,...,zmk)Rannsk-l
= (zlk,...,zmk)Rank_l
= G 2mi) Sk Sk - 1



where the last intersection is 0 because the elements ajy, ..., a,, are algebraically
independent over Sj. _ 1. Since 0 # pp, € S, _ 1 for h < k+1, we see that pp, ¢ Py.
The difficulty, then, is to show that for all k, (214,...,2,,,)SL is a prime ideal of

S).- To do this, we first need a lemma.

Lemma 2.2.2. Let A be a noetherian domain, ty,...,tm wvariables over A, and
wy,...,wm,q a regular sequence in A. Then (qt] — wq,...,qtm — wm) is a prime

ideal in Alty,. .., tm].

Proof. We will prove by induction on m:

(1) gt] —wy,...,qtm — wm,q is a regular sequence in Aft{,...,tm]
(2) (gt] —wy,...,qtm —wm) is a prime ideal in A[tq, ..., tm)].

Suppose m = 1. For convenience, write t; = ¢ and w; = w. Then w, g form a regular
sequence in A. We need to show that the ideal (¢t — w) is prime in the ring At].
Note that (gt — w) is prime in the ring Ag[t]. Since q is a regular element of A, we

need only show that if f(t) € A[t] with ¢" f(t) € (gt —w) then f(t) € (qt — w). Write:

S

fO =3 ot

i=0
where ¢" f(t) € (gt — w). Hence ¢"ag € wA. Since ¢, w is a regular sequence of A,

ag = wbq for some by € A. Define b1 =aq +bgq and b; = a; for i > 1. Write:

S .
g(t) = Y bit'.

1=1
Note that since g(t) — f(t) = bggt — ag = bggt — bgw = by(qt — w), f(t) € (qt — w) if
and only if g(t) € (¢¢ — w). Hence we need only show that g(t) € (¢t — w). An easy

argument shows that gt — w,t is a regular sequence in the domain A[t]. Thus, with

s—1

ht)= > b4 qtt
i=0

9



the condition

q"g(t) = tq"h(t) € (gt — w)
implies that

q"h(t) € (gt — w)

and we may proceed with the polynomial h(t). Since deg h(t) < deg f(t), it follows
by induction on the degree of f(t) that f(t) € (¢t — w).
Now we assume that (¢gt] —wq,...,qty, — 1 — Wy, — 1) is prime in A[t,... ¢, _ 1]
and that gt —wq,...,qt;, — 1 =Wy, — 1,9 is aregular sequence in Aft{,...,t,, _ 1]

Note that:
(gt —wy,eo gty — 1 — W — 1Al by — 1] =

(wl,...,wm_ l,q)A[tl,...tm_ 1]
and that A[ty,...t,, — 1] is flat over A . The fact that wy,...,wm,q is a regular
sequence in A yields that wy,...,wm,q is a regular sequence in A[ty,...t,, _ 1] .

Moreover, wm is a regular element of

Alty,.. .ty — 1] _
(q,wl,...,wm_ l)A[tl""tm— 1]
Alty,. -ty — 1)

(gt] —wy,.- -, @ty — 1 —wm_l,q)A[tl,...tm_l].

Thus gt] —wy,...,qtym — 1—Wm — 1,9, Wm is aregular sequence in A[t{,...,t,, _ 1]
By our induction hypothesis, the ring

A[tl,...tm_ 1]
(81 —wlse- st —1—wm — 1)

is a noetherian domain, ¢y, is a variable over B, and q,wm is a regular sequence
in B. It is a well known fact (see, for example, the discussion on page 5 of [4])
that if ¢, wm is a regular sequence in the domain B, so is wm,q. Hence by our
work in case m = 1, the ideal (qtm — wm) is prime in Blty). In particular, (gt; —
W],y Qty — 1 — Wy — 1,9tm — wm) is a prime ideal of A[ty,...,tm], and the

sequence qt] — wy,...,qtm — wm, q is regular in A[ty,... tm]. O
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To prove Heitmann’s theorem, we will show by induction on k:

(1) 21fs- -2 Zmks qllg i% is a regular sequence in Sj..

(2) For all 1 < s < m the ideal (zlk, .. .,zsk) is prime in Sj.

(3) pp ¢ Py for A<k + 1L

The case k = 0 is clear:

(1) The sequence 27,...,2m,2] + ...+ 2n is regular in Sy .
(2) Forall 1 < s <m, theideal (z,...,2zm) is prime in S.
(3) 21 +...+2n & (21,---,2m).

Assume the statement is true for ¥k — 1. This assumption combined with the work

above the statement of the lemma yields that ¢ = pipy...pp ¢ B _ 1 and so

qk ¢ (zl(k _ 1),. . .,Zm(k _ l))Sk -1 Thus

Uk —1)*m(k-1)Y%

is a regular sequence in Sj. _ ;. Furthermore, for all 1 < s < m, the ideal

(zl(k 1) Zs(k — 1))Sk _ 1isprimein S} _ ;. Hence, k- 1) *m(k — 1) %
and

(k=1) - 2m(k - 1),q1,§ are regular sequences in Si _ 1.

The ring Sj, _ 1 is a noetherian domain, @1k - --»amk are variables over Sy _ 1> and

Ak —1) Zm(k — 1),q’]§ is a regular sequence in Sj _ 1. Writing:

k
Zik = 9%k + %k — 1)

Lemma 2.2.2 yields that the ideal (27, ...,24) is prime in S. (A similar argument
shows that z14,..., 2k ql]: I %, is a regular sequence in S.) Hence py, ¢ By, for all
h<k+1.

a

11



Recall the general assumption that m < n. Consider the following elements of R=

I\’[[Zl, AN Zn]]

00

z; + Zailqg if 1<i<m
=1 '
2; if m<i<n

G

We define an automorphism ¢ : R — R as follows:

For 1 <i < m, we have:
G = z+a;1q mod(zl,...zn)Qﬁ
= zj+a;1(21+...+2p) mod(zy,... zn)2§
so the elements (7,...,(m, 2m 4+ 1-- - 2n form a regular system of parameters of R.
Hence, ¢ is an automorphism of R. Moreover, the elements (1,...,(m generate a

prime ideal of height m. We will now use Heitmann’s Numbering Theorem to show

that P := ¢1s---»¢m)NR=0.

Lemma 2.2.3. Let P:= (({,...,¢m). Then PN R =0.

Proof. Suppose PNR # 0. Then by our choice of the sequence {p;}, there exists
h € N so that pj, € PN R. Recall that for 1 <i<m:

oo

!

Gi=z+ D ayq)
I=1

Thus, pp, € PNR implies that %i(h - 1) € PNRforl < i< m;i.e., that

‘Bh_l=(21(h_1),...,zm(h_1))gﬁﬂR.

A quick examination of the heights:

m=ht(‘$h_l)5ht(f’nR)gm

yiclds that By, _ 1 = PNR. By Heitmann’s lemma, py, ¢ By, _ 1- Hence, p, ¢ PNR,

a contradiction. a

12



Let I be an ideal of R. Recall that our goal for the construction is to find a local

noetherian domain B birationally dominating R so that
B =~ R/IR.
To do this, we need a condition on the ideal I. In particular, let
I:=(Fy(21,.--,2n),---, Fr(z1,....2n)) C R

be an ideal satisfying the following condition:
For every associated prime ideal Q in ﬁ/I R we have QC(21,---2m

)R
Under the automorphism ¢ : R — R, we map the ideal R into an ideal J C R:

J = o(IR) = (p(F1), ..., (Fr)).

Furthermore,

@((21,-- - 2m)R=(C1,---,Cm) = P.
The condition on the associated primes of I yields the following condition on the ideal
J:

For every associated prime ideal @ of E/J we have Z) C pP:= (ST (m)ﬁ.
From Lemma 2.2.3 we know that PN R = 0. Thus the condition gives us that the
associated primes of J are in the generic formal fiber of R; i.e.,

For every associated prime ideal Z) of ﬁ/ J we have Z;)ﬂ R=0.

Thus the composition
§:R— R— R/J
is an embedding. Moreover, if 0 # r € R, J(r) is a nonzero divisor of ﬁ/ J.

We summarize this in a corollary:
Corollary 2.2.4. If@ € Ass(ﬁ/J), then Q N R = 0. In particular, JN R = 0.

In other words, all the associated primes of ﬁ/ J are in the generic formal fiber of R,

and we have an embedding 4 : R Hﬁ/ J. Moreover, if 0 # r € R, é(r) is a nonzero

13



divisor of R/J. We can then define an intermediate ring A between R and R/J :

A=Q(R)NR/J

We will show that A is indeed a local noetherian ring with completion ﬁ/ J. In order
to do this, we construct a subring B of A as a nested union of local K-algebras with
Q(A) = Q(B). The main objective will be to show that B is a local noetherian ring,

which will give us that A = B.

2.3 Construction of the ring B

Recall the following definitions:

zikzzi+ai1ql+...+aikqllg for k>1

2 if m<i<n

and

with:

Now define:

Then J = (f1,..., fr) € K[[z1,--.,2n]] = R.



We define for 1 < j<randk>1:

1
ajp = FF-(zlk,...,zmk,zm_*_ 1>---»2n) € Q(R)
k
Lemma 2.3.1. For1 < j<randk>1, ajp =rypa;p 1) + 7ok, where Ty, Tok

are in R.

Proof. By definition,

1
a]k = —Z:-Fj(ZIk,...,zmk,Zm.*.1)"'$zn)

9
We write:
UGk+1) T gllg‘lﬂ‘Fj(zl(kH v Zm(k 4 1) #m 4 1o -5 2n)

;}Lﬁ"lfpj(zlk T a1k + l)qllgi%""’zmk Tk + 1)(11’:::%, »2n)
Hence, using Taylor’s formula:
% i1
Uk ==k @k +1) + S5kl
%
k+1

where Sk QLQ_]E_l € R. a

Lemma 2.3.2. For every j € {1,...7} and k > 1, the elements ;. are in A =
(R/DHNQ(R).

Proof. Since every ik is an element of the quotient field of R, we need only show
that ok € ﬁ/J . As

1
Fj(zlk’ cen ’znk)'

g = —
L

we have that

k
Fj(zlk" . .,an) = Ot]-qu.
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Then by Taylor’s formula:

Fi(C1o o Gn) = agpaf = Fi(C1o- - Cn) = Fy(a1pe-- - 2ng)
k+1_

U + 155k

for some Kjk € R. Since F;(C1y---,¢n) € J,

]Igi%ﬂ ', (mod J)

k _
Tk =1 J

That is, a ;) € R/J. a

~

We use the elements a; j to define a sequence of subrings of A. Recall that g is
R-torsion free; that is, for all Q € Ass(%), the contraction @R = 0. Using this,

we can extend the canonical injection:

R —

<l

to a commutative diagram:

R < R/J
! I
QR) & (R/J)®rQ(R)

where 7 and X are injective. We restrict A to get injective morphisms:
M Rlogg, - app] = R/J

for all k € N.
For all k € N, define

where m C ﬁ/ J is the maximal ideal, and

Bk = R[alk, e ’aTk]mk'
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Because of the recursion formulas
%11
_ +
kTR [k + 1) + 5]

we get local inclusions By, C By, | 1 for all k € N. We define the nested union ring:

B= U B =1mB,

Proposition 2.3.3. B s a local noetherian ring. Furthermore, for any prime ideal

0 # q € Spec(B), the ring B/q is a K-algebra of essentially finite type.

Proof. That B is quasi-local follows immediately from the definition of B. To show
that B is noetherian, by a theorem of Cohen (Matsumura 3.4), it is enough to show
that every prime ideal of B is finitely generated. Let 0 # g € Spec(B). Then
¢ R # 0, and there exists an | € N so that p; € q.
We claim that there exists a surjection R — B/(pB).
To prove the claim, let £ € B = |J By. Then there exists k € N so that z € B} =
Rlaqg. ... ,ark]mk. We may assume that k > . Write:

_ h(aggs -« Qpk)

gy k)

where h, g € R[X}, ..., Xr] are polynomials in r variables over R and g(a1fr - app)

is a unit in ﬁ/ J. Note that this implies that the constant term g of g is a unit in

ﬁ/ J and hence in R. Denote by h( the constant term of h and by gq the constant

term of g. .
Recall that:
q;k +11
_ +
Uk = e %k +1) Skl
U
Using this formula, we can write
e ho +p1p
g0 +p|T

where p and 7 are elements of By, +1- Thus:

h
r=-0 (modp; B)
90
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where h(),gg € R and g is a unit in R. Thus % is a homomorphic image of R, so
q is finitely generated. In particular, B/q is a homomorphic image of an algebra that

is essentially of finite type over K. O
Proposition 2.3.4. B = R/J.

Proof. Consider the sequence of injections:

R

R— B— —
— B — 7

These induce morphisms on the completions:

RS B—

<l

We know that R — p_SBB is surjective for any s € N, so R— Bis surjective. We
need to show that:

ker(t) = J

Clearly ker(:) C J. We now show J C ker(¢). By definition of %

k
Fj(zlk’ ceey znk) = ajqu
Hence:
Fi(C1o-rCn) = afaj = Fj(CrrCn) = Fj(21pr- -2 2ng)
_ k+1,_.
= U + 175k
for some Kik € R. Hence W F j) € qllgé for all £ € N; that is, the generators of the

ideal J are contained in the kernel of the map ¢. Thus J C ker(t), so J = ker(¢).
a

Proposition 2.3.5. The ideal P= (¢15---+¢m) C B= ﬁ/J is in the generic formal
fiber of B; i.e.

~

PNB=0.

Proof. Since Q(R) = Q(B), if PNB # 0, then PNR # 0, a contradiction to Lemma
3. O

18



Finally, we note that A = B. This is clear because B C A is a noetherian domain
with Q(B) = Q(A). The flatness of B — B yields B = A.

In summary, we have the following Theorem:

Theorem 2.3.6. Let K be a field of countably infinite transcendence degree over a

countably infinite field k. Let R = K|zq,... ,zn]( n) be a localized polynomial

215
ring in n variables over K. Let m be a positive integer so that m < n. IfI is an

ideal of R so that for every Q € ASS(TRé)’ Q C(27,... ,zm)ﬁ, we can find a local
noetherian domain B which birationally dominates R and satisfies:
R

_x

IR

R

e B

e For every 0 # q € Spec(B), there is a natural surjection R — %

e The prime ideal P= (¢1+---+¢m) is in the generic formal fiber of B.
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3 Conditions for the Normality and Factoriality of
B

In this section, look at conditions under which the constructed ring B is normal and
factorial. We then find "recipes” for constructing normal domains with non-normal

completions and factorial rings with non-factorial completions.

3.1 Conditions for Normality

This section contains a result giving a necessary and sufficient condition for B to be
a normal domain. The ring R is excellent, so R/I is. If R/I is normal, then E/\I ~ B
is normal. Then B is normal. On the other hand, if R/I is not normal, we consider
the nonnormal locus of }AZ/ J and use the defining ideals of this non-normal locus to
describe a criterion for the normality of B. We start with some well known results

from Matsumura.
Theorem 3.1.1. Let (A, m, k) and (B,n, k') be local Noetherian rings and
AMA—-B
a faithfully flat map. Then:
e If B is a regular local ming, so is A
e If A and % are regqular local rings, then B is a regular local ring.

Next we recall the Serre Conditions on a Noetherian ring A. These are used as in the
subsequent theorem to give equivalent conditions for a noetherian ring to be reduced

or normal.
(R;) Ap is regular for all P € SpecA with ht(P) < i;
(S;) depth Ap > min(htP,7) for all P € SpecA
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Theorem 3.1.2. (Serre) Let A be a noetherian ring. A is reduced if and only if the
Serre conditions (Rgy) and (S1) are satisfied. A is normal if and only if the Serre
conditions (Ry) and (So) are satisfied.

One of the most important features of the ring R/I is that it is an excellent ring. We

recall the definition and some well-known facts about excellent rings:

Definition 3.1.3. A noetherian local ming A is said to be excellent if A satisfies the

following two conditions:
(i) A is universally catenary
(ii) The formal fibers of A are geometrically regular.

Note that if a noetherian local ring A is excellent, then a localization, finitely gener-
ated extension, or quotient ring of A is also excellent. In particular, our ring R/I is

an excellent ring, since R is essentially finite over a field.

Theorem 3.1.4. If (A,m, k) is a local noetherian ring and A is the completion of A

with respect to the maximal ideal m, then:
(1) A is regular if and only z'fg is.
(2) A is Cohen-Macaulay if and only if A is.
If we assume in addition that A is excellent, then:
(3) A satisfies the Serre condition (S;) if and only if A does.
(4) A satisfies the Serre condition (R;) if and only ifg does.
As a result of (3) and (4), if A is excellent, we also have:
(5) A is normal if and only ifg is.

(6) A is reduced if and only z'f/i is.
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It is well known that the normal locus of an excellent, local, Noetherian ring is open.

In fact, we propose the following lemma:

Lemma 3.1.5. Let A be a reduced, excellent, Noetherian local ring satisfying the

Serre condition (S9). The non-normal locus of A can be described as follows:
NNor(A) =V(Q1N...NQs)

where the ideals Q1, ..., Qs are height one primes of A. We call the ideals Q1,...,Qs

the defining ideals of the non-normal locus of A.

Proof. The excellence of A implies that the non-normal locus of A is closed. In

particular, there exists a reduced ideal J of A with:
NNor(A) = V(3J).

Since J is reduced, write J = Q1 N...NQgs, where the ideals Q1q,...,Qs are minimal

primes over J. Then:
NNor(A) =V =V(Q1N...NQRs) =V(Q1)U...UV(Qs).

Consider Q; € {Q1,...,Qs}. Clearly Q; is in the singular locus of A. Note that A
is reduced, so A satisfies the Serre condition (Rg). Thus, Q; has height greater than
Zero.

Suppose the height of ); is greater than 1. Then AQi is a non-normal ring satisfying
the Serre condition (Sg). In other words, AQz’ does not satisfy the Serre condition
(R1). Thus there is a height one prime @ of A with Q C Q; so that AQ is not regular.
Then Q € NNor(A) = V/(J), contradicting the minimality of Q; over 3. Thus Qi is a

height one prime ideal of A fori=1,...,s. a

In order to make use of this lemma, later in this section we will assume that R/I is a
reduced ring satisfying the Serre condition (S9). Many of the rings we encounter will

also be excellent; for example, the complete local noetherian ring 1:?/ J is excellent.
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In general, our constructed ring B is not excellent, so it will be useful to work with
an ideal-adic completion of B that is excellent.

For some h € N, consider the element pp, of R. Let R* denote the (pj,)-adic comple-
tion of R and let B* denote the (pp,)-adic completion.of B. By results of Rotthaus

[20], [21], the ring R* is excellent. We can use this fact to prove the following lemma:
Lemma 3.1.6. B* is excellent.

Proof. Recall the definition of the ideal J C R:

J= (FI(CL,Cn)vaFT(Cl»,Cn))

For 1 < j <r, we write:

Fj(Clv--’Cn) = Fj(zl(h— 1) +clh""’zm(h— 1) + b Fm + 1,...,Zn)

where c;p, € R* for 1 < i < m. From this, we can see that the ideal J of R is

extended from the ring R*. Echoing the proof of Propostion 2.3.4, we can see that
R*

JNR*

B* ~

Thus B* is excellent.

a

Note: In the proof of Proposition 2.3.3 we found a surjection R — B/ppB. As a

homomorphic image of R, the ring B/py, B is excellent as well.

In order to examine conditions for the normality of B, we prove one more lemma.
For this lemma, we need neither assume that R/ is reduced nor that R/I satisfies

the Serre condition (Sp).

Lemma 3.1.7. Let R, I, and B be as in the previous section. If QQ is a non-zero
prime ideal in the regular locus of B, and W C Bisa prime tideal of B lying over Q,

then EW is reqular.
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Proof. Suppose @ is a non-zero prime ideal in the regular locus of B. Then QN R # 0,
so there exists some element py, € Q. Let B* denote the (pp)-adic completion of B
and R* denote the (pp,)-adic completion of R. The extension Q* := QB* is a prime

ideal of B*. We have a faithfully flat homomorphism:
*

The ring BQ is regular, and so is the field Ba* /QB% .. Hence the ring Ba* is an
excellent regular ring. Let W be a prime ideal of B lying over Q. Since pj, € Q* and
since every ideal of B* which contains pp, is extended from B, the prime ideal W also
lies over Q* C B*. Recall from the proof of Lemma 3.1.6 that B* is excellent, and

thus has regular formal fibers. Hence, the homomorphism:
Ba* — §W
is faithfully flat and regular. Hence EW is regular. a

We are now ready to prove the main theorem of the section. Here R/I and B are as

described in the previous section.

Theorem 3.1.8. Suppose ? is a reduced ring satisfying the Serre condition (Sg).
Let {Qq,...,Qs} be the height one defining prime ideals of the non-normal locus of
1A?/J. Then B is normal if and only if Q; N B =0 for all1 <i < s.

Proof. First we assume B is normal. Suppose that Q = Q, N B # 0 for some
i € {1,...,s}. Since B is a domain, Q is a height one prime of B. The normality of
B yields that BQ is a regular local ring. Then by Lemma 3.1.7, Q); must be in the

regular locus of B= ﬁ/ J, a contradiction.

Now we assume that Q;, N B =0 for all 1 <4 < s. We will use the Serre criterion to
show that B is normal. Since R/I is an excellent ring satisfying (Sp), by Theorem

3.1.4, the ring B & ﬁ/lﬁ satisfies (Sp). Hence B does.
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To see that B satisfies (Rj), let B be a height one prime ideal of B. We need to
show that Bm is a regular local ring. Since B — Bis faithfully flat, there exists a
height one prime P C B so that ‘8 = PN B. By assumption that Q; N B = 0 for
all 1 <14 < s, it is clear that P ¢ {Q1,...,Qs}. Moreover, since P has height one,
P¢V(Q1N...NQs). Hence, P is in the normal locus of B. In particular, Erp is a

regular local ring. Since the map:
Bm — B’P

is faithfully flat, Bcp is regular. Hence B is normal. a

3.2 Illustrating the Normality of B: Examples

In Theorem 3.1.8, if R/I is not reduced, we can find examples in which the other

conditions of the theorem are met, but the conclusion does not hold.
Example 3.2.1.

Let R = K|z1, 2 et T = (22), and let m = 1. Then
122)(z), 29) i

21,2

B=R/(().

The defining ideal of the non-normal locus of B is the prime ideal ¢1) = P. In
otherwords, the defining ideal of the non-normal locus of B is in the generic formal
fiber of B.

Claim. B is not normal.

Suppose B were normal. Then B would be a one-dimensional normal noetherian local
domain; i.e., B would be a DVR. Hence, by Theorem 14, B would be a DVR, and so

would R/I, a contradiction.

More generally, if B is a one-dimensional normal domain, then it is regular. By
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Theorem 14,

B isregular «<— B is regular
= ﬁ/[ﬁ is regular

<= R/I isregular.

Thus, in order to use the theorem to produce interesting examples, we must consider
cases where the Krull dimension of R/I is at least two. We now look at some examples

that use the theorem.
Example 3.2.2. A noetherian, normal local domain with non-normal completion.

Let R = K[z, 29, z3]( ) let I = (2129), and let m = 2. Then:

21, 29,23
B = K[[¢1,¢2, 23]1/(¢1€0)

The defining ideal of the non-normal locus of B is (¢1.¢2). Since (¢1,¢2) N B = 0,

the ring B is normal.

Example 3.2.3. Another noetherian normal domain with non-normal completion.

Let R = K|z1, 22,23](21, m=2,and I = (z% - zg) Then:

22,23)’

B = K[[¢1. o 23l/(¢2 - ¢)

Again, the defining ideal of the non-normal locus of B is (¢1,¢2)- Since (¢1,(9)NB =

0, the ring B is normal.
Example 3.2.4. Another normal noetherian domain with non-normal completion.

Let R = K|z1,29,2 yet I = 22 — 23 — 22) and let m = 2. Then:
1,22, 23( 277174

21, 29,23)

5_ Klc1.¢. 23
-3 -¢cd

The non-normal locus of B is defined by the ideal P = (¢1,¢2), so B is normal.
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Remark 3.2.5. A “recipe” for constructing B so that B is normal.

Throughout the previous examples, we relied heavily on the fact that the prime ideal
P= (¢1y---,¢m) is in the generic formal fiber of B; i.e., PnB=0. Determining the
normality of B is often a matter of checking if the defining ideals of the non-normal
locus of B are contained in the ideal P. In particular, we get the following “recipe”

for constructing examples:

Suppose R/I is a non-normal ring satisfying the Serre condition (Sg). Then the

non-normal locus of R/I can be described as follows:
NNOR(R/I) =V(Q1N...NQr)

where each Qz is a height one prime ideal of the excellent ring R/I. The extension

Qzﬁ/ IR is reduced in R/IR and we can write:

QiR=Wiln---ﬂWz‘li

where the ideals % are height one prime ideals in E’/ IR. Let

Gl

SR
<[ )

be the isomorphism induced by the automorphism ¢ on R.

" Proposition 3.2.6. Suppose that for all i and j, the ideals VV; are contained in the
ideal (27, ... ,zm)R/IR. Then:

—_——

(a) NNOR(ﬁ/J) = V(W n..0W; N...nWn.. .ﬂW'TlT) where Wij = '&(W'i]-).

1

(b) a(v?;j) = W;; C&((21,.- -, 2m)B(R/IR) = (C1.....Cm)B(R/J). Hence W0

B = (0) for alli and j. Thus B is normal.

Example 3.2.7. In which we use the proposition to check that B is normal.
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Let R = k[zl,ZQ, 23](21’ 29, 23)’

and let m = 2. Then:
5 _ _ K61, 6, 23])
B= o a2
(Cz S| (23 - (1))
The defining ideal of the non-normal locus of R/I is the ideal (21, 29). This extends

to the prime ideal (zq, z2)§/ IR. By Proposition 3.2.6, B is normal.

We lpok at another application of the Proposition:

Example 3.2.8. In which we use the proposition to check that B is normal.

Let R = k[a, b, ¢, d, e, f](a, be,de, f)° where k is a field of characteristic # 2,3. Let:
I= (b2 -a%(c? —a),e? - d%(f2 - d))

and let P = (a,b,c,d,e). Then I is a prime ideal of height 2. We use the Jacobian
criterion to determine the defining ideals of the non-normal locus of the excellent

domain R/I. First, we find the Jacobian matrix of I:

( —-2ac2 + 3a2 0 \
2% 0
—2a2c 0
J=
0 —2df2 + 342
0 2e
\ 0 ~2d%f )

Let m be the ideal of 2 x 2 minors of J; i.e.,
M = (4(102df2 - 6df2a2 — 6ac2d? + 9a2d2, —4ace + 6602, 4ac2d2f - 6a2d2f,

4bdf2 + 6bd2, abe, —4bd? f, 4a%dcf? — 6a%d2c, —4a2ce, —4acd? f).

Let N =1+ M.
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Claim 3 = (ad, be, ae, bd, b2 — a2(c? — a),e2 — d2(f2 — d)) C V/N.
Clearly be, b2 — a,2(c2 - a), e? — d2(f2 - d) € V'N. since
be, b2 — a2(c2 —a), and 2 — d2(f2 — d) are all elements of N. To see that bd € v/N:

4bdf? + 6bd?
4bd? f2 + 6bd>
4bd2f2 + f(—4bd2f) + 6bd3
6bd3
bd

I

M M M M M
3z =2 2 =

To see that ae € V'N:

4ac2e + 6ea2
4a2cze + Gea3
4a2c%e + f —4a2ce) + 6ead

Gea3

M M M M M

[
3z =z 2z =

ea

To see that ad € \/N :
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dac?df? — 6df2a? — 6ac’d? + 9a2d? € N
= 4a2c2d2f2 — 642 £243 — 6a2¢2d3 + 92343 € N
== 4a202d2f2 - 40262d2f2 - 6d2f2a3 —6a2c2d3 + 94343 € N
— —6d2£2a3 — 6a2c2d3 + 94343 € N
— —6d2f2a3 — fa(4ac®d?f — 6a2d2f) — 6a2c2d3 + 92343 € N
== — 402242 f2 — 6a2c2d3 + 9a343 € N
—  —4a2c2d2f2 — (cf(—4a%cd?f) — 6a%c2d3 + 92343 € N
— —6a2c2d3 + 94343 € N
— —6a2c2d3 — cd(4a?dcf? — 6a2d2c) + 9a3d3 € N
= —4a2d2c2 f2 + 9a3d3 € N
= —4a2d2¢2 f2 + 4a2c242 f2 + 9a3d3 € N
= 9a3d3 € N
= ad e VN

So (ad, be, ae, bd, b2 — c12(c2 —a), e2 d2(f2 -d)) C V'N.

It is easy to see that v/N = v/J and that the associated primes of VN = /J are
(a,b, e2 — d2(f2 —d)) and (d, e, b% — a2(c2 — a)). Since these two ideals are both

contained in P = (a, b, ¢, d, e), by the previous proposition, our ring B is normal.

In general, B is not normal, even if R/I is reduced. We can use Theorem 3.1.8 to

construct an example.
Example 3.2.9. In which B s not normal.

Let R = K21, 29, 23, z4,z5]( ) let I = (z%z% - 22:13 — z4z1) and let

211 %2, %324, %5
m = 2. The ring R/I is a non-normal domain satisfying the Serre condition (S5).

After the automorphism of ﬁ, we have:

~

R

B= .
(3¢5 — 23¢3 - 23¢d)
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The height one prime ideal (z3, 24) is in the non-normal locus of B, and (23,24)NB #
0. Thus, B is not normal.

A noetherian local ring (A, m) is Cohen-Macaulay if and only if the m-adic completion
Ais Cohen-Macaulay. If A is excellent then for any ¢ € N, A satisfies the Serre
Condition (S;) if and only if A satisfies (S;). Moreover, if A is a quotient of a Cohen-
Macaulay ring, A satisfies the Serre Condition (S;) if and only if A satisfies (S;)-
This is exercise 23.2 in [13], but the proof is very short and we include it here. First
we show that a Cohen-Macaulay ring has Cohen-Macaulay formal fibers. Let S be a
local Cohen-Macaulay ring and let S be the completion of S. Let p € Spec(S) be a

prime ideal of height j and let p be a prime idea in Spec(S) so that NS = p. Then
Sp — :S} is a local flat homomorphism, so by [13], Corollary to Theorem 23.3,

depth(§ﬁ) = depth(Sp) + depth(S;/pS;).

Furthermore,

dlm(§p) = dim(Sp) + d1m(§1~)/p§13)
Since Sp and §I3 are Cohen-Macaulay, the depth of these two rings is equal to the

respective dimensions. Thus:
depth(§ﬁ/p§ﬁ) = dim(§ﬁ/p§ﬁ)

and the formal fiber is Cohen-Macaualy. Now let T = S/I for some ideal I of S.
Suppose T satisfies the Serre Condition (S;). To show that T satisfies (S;), we need
to show that the fiber ring T ®r A(p) over every prime ideal p in Spec(T’) satisfies
(S;). Let p € Spec(T) and let p € Spec(S) so that p/I = p. Then:

Tor&p) =T &r (T/p)p=S5®5(S/p)p = S ®5 Alp)

Since S has Cohen-Macauay formal fibers, S ® s A(p) satisfies (S;). Hence the fiber
ring T ®r R(p) over every prime ideal p in Spec(T) satisfies (S;). By a similar

argument, T satisfies (S;)-
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However, in certain circumstances, we can obtain a normal ring B even in case R/I
does not satisfy (Sg). In this case, B will satisfy (Sp) but B will not. We propose

the following:

Proposition 3.2.10. Let R = k[zl, e ,zn](zl e zn) and I be an ideal of R so that
R/I is a reduced ring of depth at least 2 and dimension d. Let P = (z1,...,2, _ 1),
and suppose the non-normal locus of ﬁ/lfl is equal to V(Pﬁ/]ﬁ). Then B is normal.

Proof. The ring R/I has depth 2 and satisfies (Rg) and (S7), hence B does. In order

to check the Serre condition (Sp), we let @ be a prime ideal of B. We need to show:
depth(BQ) > min(ht(Q), 2).

We look at three cases.
Case 1. The prime ideal @ has height d.

In this case, @ is the maximal ideal of B, so
depth(BQ) = depth(B) = 2.

Case 2. The prime ideal Q) has height d — 1.
Let Q be a height d — 1 prime ideal of B so that Q N B = Q. The ideal @ is not in
the generic formal fiber of B, so Q # P= (¢1++--+2p —1)- Thus Q is in the (S9)

locus of B and in particular:

depth(Bg)) = depth(éé) > min(ht(Q), 2) = min(ht(Q), 2).

Case 3. The prime ideal @ has height h < d — 1.
Let Q be a prime ideal of B so that Q N B = Q and the height of Q is the same as

that of Q. Then P is not contained in @, so again,
depth(Bg) = depth(ﬁé) > min(ht(Q), 2) = min(ht(Q), 2).

Thus B satisfies the Serre condition (Sg).
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To see that B satisfies (Ry), notice that the non-normal locus of ﬁ/ IR contains the
non-(Ry) locus. If ht(Pﬁ/Iﬁ) > 1, then B satisfies (R1). Thus B satisfies (Ry).
Since R/I is reduced, we know that ht(Pﬁ/Iﬁ) > 0. If ht.(Pﬁ/Iﬁ) =1, then by the

previous proposition, B is normal. O

Although the conditions of the proposition may seem technical, in practice they are

easy to check.

We can generalize the previous proposition without major changes to the proof.

Proposition 3.2.11. Let R = k[zl,...,zn]( n) and I be an ideal of R so

21y
that R/I is a reduced ring of depth at leastr i and dimension d, where d > i. Let

P = (21,...,2p — 1), and let the non-(S;) locus of ﬁ/[ﬁ be equal to V(Pﬁ/[fi’.).
Then B satisfies (S;).

3.3 The Factoriality of B

We first recall some useful theorems:

Theorem 3.3.1. (Mori’s Theorem [6]. Corollary 6.12) Let (A,m) be a noetherian
local ring and A its m-adic completion. Then if A is normal, then A is normal and

there is a monomorphism of groups:
Cl(A) — CIl(A).
In particular, if A is factorial, then A is factorial.
Proof. See Fossum [6], 6.12. O

Note that if A is factorial, A is not factorial in general, even when A is an excellent

ring. See Fossum [6] Example 19.6 and Example 19.9.

Theorem 3.3.2. [13/, Theorem 20.1. Let (A,m) be a local noetherian domain. If

every height one prime ideal of A is principal, then A is factorial.
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We also recall the following fact about flat extensions from Matsumura:

Proposition 3.3.3. [13], page 63. Let A be a local noctherian ring and A its com-

pletion. If a C A is an ideal such that aA is principal, then a is principal.

We now demonstrate a condition for the factoriality of the constructed ring B, where

R and I are as in the previous sections.
Theorem 3.3.4. If & is factorial, then B is factorial,

Proof. Let q be a height one prime ideal of B. Then ¢ N R # 0, so there exists some
Pp € q. As before, we denote the (py)-adic completion of R by R* and the (py)-adic
completion of B by B*.

As in the proof of Theorem 2.3.4, we know:

B* = _i
JNR*
Since pp, € g, the ideal gB* is a height one prime ideal of B*. We need only show
that gB* is a principal ideal, and then by Proposition 3.3.2, ¢ is principal.
Consider the maps:
R* =, g*
JnNR*

Let Q = 7~ 1(¢B*) € Spec(R*). Then pp€Qand JNR* C Q.

R* 5

We define an automorphism of R by:

v: R — R
zj &>z if 1<i<m
zp &z if m<i<n
Note that this is an automorphism because zyp,-..,2;p 2m + 1+ --» 2n forms a

regular system of parameters of R.

Let
Jp =) = (F1(z21h - 2mhr Zm 4 1--22n)s - Fr(z1pe oo Zmpr 2m 4+ 1-- -2 2n))-
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Then:
R
J

IR

~| =
>

v . R. : R . .
By assumption, is factorial, so is also factorial. Furthermore:
p T Jh,
2 x x 2 %
(J’hth)R _(']nR ’th )
and:

R* B R* R
(JOR*pIR*) (J,R*,p2R*) (Jp.piR)

Since p, € Q, the ideal Q C R* is extended from R. Let 3 € Q N R be such that

QNR _fR
Jn I
Then:
Q = (QNR)R* = (Jn, B,p2) = (J N R* p2, B).
Ifreq@,

z =pp(ppr1) +Org + 90

where 71,79 € R* and § € J N R*. That is,
Q =ppQ+ (JNR*,BR")

By Nakayama’s Lemma,
Q = (JN R*,BR*)

Hence the prime ideal ¢B* = J—HOT; is principal, and so q € Specl(B) is principal.

Thus B is factorial. g

3.4 Constructing Examples in which B is Factorial

A local noetherian ring (A, m) is regular if and only if the m — adic completion A is

regular. Thus our constructed ring B is regular if and only if R/I is regular. However,
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we can find circumstances in which R/I has a singular locus containing more than
one prime ideal but B has an isolated singularity. This is a useful environment for
constructing examples in which B is factorial with a non-factorial completion, and

we give conditions for creating such an environment in the next theorem.

Theorem 3.4.1. Let R = K[zl,...,zn](zl ) and let I be an ideal of R

satisfying the condition:
Q € Ass(R/I), then QC(z1,...,2p—1):=P.
We assume additionally that
Sing(R/I) = V(P);

that 1s, if Q € Spec(R/I) and (R/I)Q is not reqular, then P C Q. In this case, the

constructed ring B has an isolated singularity.

Proof. Suppose R/I has Krull dimension d. Then P has height d — 1. Note that:
Sing(R/IR) = V(PR/IR)

and

Sing(B) = V(P) = (1, ¢ — 1)
Let q be a non-maximal prime ideal of B, and let § be a prime ideal of B lying over
q so that height(q) = height(q).
If ¢ has height less than d — 1, then §(7 is regular, so By is regular. Similarly, if
ht(qg) = d — 1, then § # P, because P is in the generic formal fiber of B. Thus B has

an isolated singularity. O

We can use this theorem in conjunction with the the following theorem due to
Grothendieck and Samuel [6], Proposition 18.15, to find examples in which R/I is not
factorial, but B is. Recall that a noetherian local ring A is a complete intersection
if the completion A is the factor of a regular local ring by an ideal generated by a

regular sequence.
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Theorem 3.4.2. (Grothendieck-Samuel, /6] Proposition 18.15.) Let A be a complete
intersection. If Ap is factorial for all p with ht(p) < 3, then A is factorial.

From this, we get an immediate corollary:

Corollary 3.4.3. Let R, I and P be as in Theorem 3.4.1. Assume additionally that

R/I is a complete intersection of dimension at least 4. Then B 1is factorial.

Proof. In this case, B is a complete intersection, and by Theorem 3.4.1, B has an
isolated singularity. In particular, By is factorial for all prime ideals of height less

than or equal to 3. Thus by Grothendieck-Samuel, B is factorial. d

Using this theorem, we can present a very simple example of a factorial ring with

non-factorial completion.

Example 3.4.4. A four dimensional local factorial complete intersection with non-

factorial completion.

Let R = K[zq,.. .,25](21, ey 2m) Let I = (2123—2924), and let P = (21, 29, 23, 24).

.25
A simple application of the Jacobian Criterion shows that the P is the defining ideal
of the singular locus of the complete intersection R/I. Furthermore, @ = (21, 29)
is a non-principal height one ideal of R/I, so R/I is not factorial. Thus ﬁ/ IR and

B are not factorial. However, B is a four dimensional complete intersection with an

isolated singularity, so B is factorial.
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4 The Heinzer-Rotthaus-Wiegand Construction

In this section, we examine another construction of intermediate domains between
a local noetherian ring and its completion. This construction has been explored by
Heinzer, Rotthaus, and Wiegand, and we will refer to it as the “HRW” construction.
Let (R, m) be an excellent, noetherian, local domain with field of fractions K. As in
the previous section, we denote by R the m-adic completion of R.

We will look at intermediate domains between the ring (R, m) and the completion
with respect to a principal ideal. Let z be a non-zero non-unit of R and let R* denote
the (z)-adic completion of R. Choosing 71,...,7s to be certain elements of TR*, we
will consider the subring

C:= K(Tl,...,rs)ﬂR*

of R*. The ring C serves as a “reference” ring for the ring we want to consider. This
is a good choice because often we can easily determine whether or not C is noetherian.
Furthermore, in many cases, C is excellent.

For our ring of interest, we will choose an ideal I of R* that is extended from C. We

will look at the ring:

C
Bi=rngl ¥
The extension
By — (+2)
T inc’®

is essentially of finite type and carries much information about B.

Heinzer, Rotthaus, and Wiegand have found this ring to be a rich source of examples

of excellent and non-excellent, noetherian and non-noetherian rings.

Our goal is to look at conditions under which these rings are normal and factorial.

We will then use our conditions to generate examples.
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4.1 Setting and Notation of the HRW Construction: A

“Reference Ring”

Let (R, m) be an excellent, noetherian, local domain with field of fractions K. Let z
be a non-zero non-unit of R. Let R* denote the (r)-adic completion of R. Choose
T{,...,Ts € ZR* to be algebraically independent over K. Write:
w .
= 3 byl
J=1
where bij € R. For each i € {1,...,s} and each n € N, we define the nth endpiece

of 7; with respect to r:

00 o 0 bl]:l‘]
= Y, byl T= 3 =
For each i € {1,...,s} and each n € N, we have the following relationship between

Tin and Tiln + 1)
Tin = binT + Ti(n + 1)

Furthermore, for each 7 € {1,...,s} and each n € N:
Tin € K(11,...,7s) N R*.
We need to define two subrings of K(ry,...,7s) N R*:
Ur := R[Tp, ..., Tsr|

and:

T'r = (1 +IL’U7')_1U7~.

Because 7, = b;,T + Ti(n + 1)% We get:

and:



We then define the nested union rings:

) (oo}
U2= U U'r
r=1

and:

00
T=J Tr
r=1
A useful proposition from[10] gives the following:

Proposition 4.1.1. Let U* denote the (z)-adic completion of U. Then:
(1) For all k € N, we have: kU =2k R* nU.
(2) U* = R*, so R/zR =U/zU.

Remark. The definitions U and T are independent of the representations of 77,...,7s

as power series in x with coefficients in R.

Proof. (of the Remark) To see that the definition of U is independent of the represen-
tations of 7q,...,Ts as power series, we will imitate proofs found in several papers of
Heinzer, Rotthaus, and Weigand; see, for example, [10]. The corresponding statement

for T follows immediately.

For each i € {1,..., s}, suppose 7; and p; = 7; have representations:
w .
T’i = Z b,LJIE]
J=1
and
w .
=3 e
j=1
where bij and c; j are elements of R. Using the nth endpieces 7;,, and p;,,, we have:
00 ' n ) 00 ' n ,
n
ri= ) byal = Y bl +any = Y (eial) = D el + 2o, = p;
j=1 j=1 = j=1
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Hence for each i € {1,...,s} and each n € N:

n
> (bij = cij)e
j=1
Tin — Pin = D
where
n .
Z (bi P — Ci]')l‘] € z"R*NU = z"U.
=1

Thus 7;, — p;, € U and U is independent of the power series representations of

Tl,...,Ts. D

We define another subring of R*:
C:=K(11,...,Ts) N R*.
In this setting, we can use Theorem 2.12 of Heinzer-Rotthaus-Wiegand [8].

Theorem 4.1.2. Let (R, m) be a semilocal noetherian domain. Let Tq,...,7s € tR*

be as in the previous discussion. Then the extension:
¥ : R[ry,...,7s] — Ry
s flat if and only if T is noetherian. If this holds, we also have C =T.

In light of this theorem, we will assume that the extension R[r},...,7s] — Ry} is
flat in order to ensure that C is a noetherian domain equal to T. We also know (8],
Proposition 2.2, that the (r)-adic completion C* = R*, and the quotient field of C

is K(71,...,Ts).

4.2 Construction of the Intermediate Ring B

In this section we look at an insider ring that generalizes the setting of the previous
section. Again, let (R,m) be an excellent, noetherian, local domain with field of

fractions K. Let z be a non-zero non-unit of R. Let R* denote the (x)-adic completion
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of R. Let 7q,...,7s € TR* be algebraically independent over K as in the previous

sections, and C := K(7q....,7s) N R* be as before, assuming that:
¥: R[ry,...,7s] = R}

is flat so that C is noetherian and computable as a nested union of localized polyno-
mial rings of R.
We choose elements f1, ... fr of R[q,...,Ts], considered as polynomials in 77,.. ., Ts
with coefficients in R. Suppose f1,..., fr are algebraically independent over K.
Let I :=(f],..., fr) be an ideal of R* such that:

For all P € Ass(R*/I), we have PN R = 0.
Note that f1,...,fr € C, so the ideal I is extended from C. In a slight abuse of
notation, we will denote I N C and I N R[ry,...,7s] by I as well.
We define a ring:

A= % N Q(R).

Again, we want conditions under which A is realizable as a nested union of localized

polynomial rings over R. To that end, we will define the tth frontpieces of the
polynomials fq,..., fr. First, recall for 1 <i<sand n € N:
T, =2"'Tip + oy

for some a;,, € R. For each f € {f1,..., fr}, we use Taylor series to get:

f(r1,...,7s) flays + et .. agr + 2h7g)

n

= [1 ETRY,
N .Zo{ﬁ( > “ktg;;,j) f(au----,ast)}

flatg,...,ag) +z*h
for some h € R*.

We know f(7q1,...,7s) € IR*, so

flaqg, ... ag) =xth  (mod (IRY)).
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Thus it makes sense to define the ¢tP frontpieces of f]- as:

filets . as)

z .

fjt = z
For t € N, define:
Bt = R[flt, ceey frt](m, flt’ SN f'rt)'

We have a recursion formula for the elements f; 5t

fij =zfi(j +1) +dij
where dz’j € R.
As a result of this recursion formula, we again have a sequence:

BiCByC...CBpC...

and we can define a nested union ring:

o0
B:= |J B
t=1

Note that B C Q(R).
An additional result in [10] yields conditions under which the two rings A and B are

equal and noetherian. Assume that the ring 7" is noetherian. Note that:

- (M)m'

i R— (R[Tl,...,'rs])
I T

is flat, then A = B and B is noetherian.

R*
"= (1)
IR* ),

is flat if and only if B is noetherian. On the other hand, ¢ being flat is a sufficient but

Tx

If the map

It is worth noting that the map

not necessary condition for B to be noetherian. The advantage of using the condition
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on ¢ is that R and (M) are both essentially finitely generated over a
T
ficld, so the non-flat locus of ¢ is closed, by [13], Theorem 24.3, and has defining ideal

J .= ﬂ{Q € Spec (ﬂml_ﬂ)x ‘R — ((R[Tl"l' - ’TS])x)Qis not flat}.

We denote the (z)-adic completion of B by B*.

Remark: Note the following useful facts:

(1) For each positive integer n, the ideals of R containing z™ are in one-to-one cor-

respondence with the ideals of R* containing z"*

. in particular,
(I,z)R* = (dy1,-..,dr, 2)R*

and
(I,:E)R* NR= ((dll,... ,drl,:E)R* NR= (dll,...,drl,:r)R

where dy1,...,d,] are the constant terms of fy,..., fr.

(2) Under the identification of R as a subring of R*/I, the ideal (dqq,...,dq1,7)R
is also equal to z(R*/I) N R.

We quote a theorem of Heinzer-Rotthaus-Wiegand to better understand the struc-

ture of B (Proposition 2.4 [10]):

Proposition 4.2.1. In this setting, we have:

(1) z(R*/I)N B = zB.

(2) B/z"B = R*/((z") + I), and B* = C*/I = R*/I.

Furthermore, the completions of these rings at their respective maximal ideals are

equal; i.e.:

~|
~| =

B=
We can now look at conditions for the normality and factoriality of these intermediate

rings.
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4.3 Conditions for Normality and Factoriality

As in the Nishimura construction, we rely heavily on the excellence of R to identify
conditions under which B is normal. Since R (and thus R*/I [21]) is excellent, the
normal locus of R*/I is open. Using Lemma 15 of the Nishimura Construction, we
write:

NNor(R*/I) = V(Qin...nQ})

where each Q;‘ is a height one prime ideal of R*/I. As in the Nishimura construction,
we call Q7 ... Q; the defining ideals of the non-normal locus of R*/I. We can use
these ideals to identify the ideals of B which need to be “checked” in order to ensure
the normality of B.

Throughout this section, we will assume that R*/I satisfies the Serre condition (S5).

Proposition 4.3.1. Assume the setting of the previous section, and let Q’{ ... Qf be
the defining ideals of the non-normal locus of R*/I. Let ¢; = Qi N B for1<i<t.
In addition, assume that R*/I satisfies the Serre condition (Sg). Then B is normal

if and only if for all 1 < i <t, the ring qu s a regular local ring.

Proof. Assume B is normal. The height of each prime ideal g; is at most one, so the
Serre criterion for normality implies that qu is regular.

Assume that qu is a regular local ring for all 1 < i < t. Let P be a height one prime
ideal of B. We need to show that B;‘p is regular.

Let Q be a height one prime of R* /I so that QNB = P. In case Q € {Q]---QF}, we
have that P = g; for some ¢ and B;p is regular by assumption. If Q ¢ {Q’i‘ - QF}

then BZ‘Q is a one-dimensional normal ring. Hence BE‘Q is regular. The canonical map:
B B}
B Q

is faithfully flat. Hence B;B is regular. Thus B satisfies the Serre condition (Rp).
Since B* = R*/I satisfies (Sp), B also satisfies (S9). Thus B is normal. a
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Let ¢ be the flat map:

() L (9)

Let H be the ideal describing the non-smooth locus of ¢; i.e.:

. R[my,...,7s] ) R[7y,...,7s] )
H:= ﬂ{P € Spec ( T >a: lep Rap_l(P) — ((_f— N PlS not smooth}

Lemma 4.3.2. Assume the setting and notation of the previous proposition. Assume
additionally that B is normal. With H defined as above, if ht(H) > 1, then C/I s

normal.

Proof. The ring C/I satisfies the Serre condition (So) because R*/I does. Thus we
need only verify (Ry). To that end, choose a height one prime ¢ € Spec(C/I). Let
Q € Spec(C*/I) be a height one prime so that Q NC/I = q.
Recall:
C*/I = R*/I = B*
Let Qg = @ N R. We look at two cases:
Case 1. Suppose T € Q.
In this case, @ is extended from B as well as from R. Hence:

B* B R
Q QNB QnNR

and:
and N

B __ Bgns
QB; @nN B)BQ AN B
Since B is normal , the ring BQ N B is regular. Moreover, @ is extended from B, so

(Q N B)B* = QB*. Hence,

B} _ ng* |
(QﬂB)BQ QBQ

The latter ring is a field, and in particular, a regular local ring. Thus BE‘Q is a regular

local ring. So (C/I)q is a regular local ring.
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Case 2. Suppose = ¢ Q.

In this case,

Bon B = Eq,

(g)q B (M)Qnmq,...,rsw'

Since the height of @ N B is at most one, BQ N B is a regular local ring. Hence RQO

and:

is a regular local ring of dimension at most one. Since Q € Spec(C*/I) is a height
one prime, @ N R[7y,...,7s]/I also has height one.
Our assumption on H yields that:

(R[-rl,...,rs]

RH —>
Qo I )QﬂR[Tl,...,Ts]/I

is smooth. Thus:

(%)q B (M)Q AR[r,... 75/

is regular. Since (R;) and (Sg) are satisfied, C/I is normal. O

The intermediate ring B is not excellent in general. However, if C is excellent and
ht(H) > 1, then the normality of B guarantees the normality of B*. The condition
that C is excellent is not too restrictive, particularly when R is a localized polynomial
ring over a field of characteristic 0. We will discuss this in more detail in the next

section.

Proposition 4.3.3. In this setting, assume ht(H) > 1 and C is ezxcellent. Then B

normal implies that B* is normal.

Proof. As a homomorphic image of an excellent ring, C/I is excellent. Since C/I is

normal, B* = (C/I)* is normal. O

If we assume that R is a normal domain, we need even fewer height one prime ideals

of B to determine the normality of B.
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Proposition 4.3.4. Suppose R is an ezcellent, noetherian normal domain. Let
Tloeens 1s, C, I, and B be as defined in section 2. Then B is normal if and only

if for all height one prime ideals q in B with x € q, the ring By is a regular local ring.

Proof. 1f B is normal, then for every height one prime ideal ¢ in B we know that By
is a regular local ring, so “only if” is clear. To see the other direction, assume that
By is a regular local ring for every height one prime ideal q of B so that z € q. Let

0 be a height one prime of B so that z ¢ . Then

Ba=Ranp

Then Ry g is regular, because it is a one-dimensional localization of a normal
ring. Thus By is regular. By the general assumption that R*/I satisfies the Serre
condition (S9), the ring B is normal.

O

We can also find a straightforward condition under which B is factorial.

Proposition 4.3.5. In the setting of the previous proposition, suppose R is factorial

and x € B is a prime element. Then B is factorial.

Proof. Since B is noetherian and z is a prime element of B, if By is factorial, then
B is factorial. [13], Theorem 20.2.

Since zB is a prime ideal of B and

B _ R
B (z,1)

we know that (z, I) is prime in R*. Thus (z,I)NR is prime in R. Since R is factorial,
Rx = Bl‘
is factorial. Thus B is factorial. a

We now look at a more concrete situation in which we can generate examples.
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4.4 A more specific setting

Suppose k is a field of characteristic 0 and z,yy,...,yn are indeterminates over k.

Let R := k[z,yq,... be the localized polynomial ring over k. Let

’yn](.’E, Y1s--- ,yn)
R* denote the (z)-adic completion of R. Let 7y,...,7s be elements of zk[[z]] which

are algebraically independent over k(z). In this case:
C:=k(z,y1,..-,yn, 71, Ts) N R*.

and the map R([rq,...,Ts] — R’ is flat. C is noetherian and computable as a nested
union of polynomial rings. Furthermore, in this case, C is a regular local ring. Since
k is a field of characteristic 0, the ring C is excellent, by [10], Proposition 4.1.

In this setting, many of the conditions for the propositions in the last section are met,

so we can use this context to generate examples.
Example 1. An ezample in which B is normal, but B* is not normal.

Let k be a field of characteristic 0. Let R = k[z,y, 2, w]( and R* =

z,Y,2,w)

kly, z, w] ( )[[x]], the z-adic completion of R. Define 11,79, 73 € zk[[z]] to be

Y, z,w

algebraically independent over k(z). Define an ideal I of R* by

2 3)

I=((w +711)(y+719)° = (24 73)

A calculation shows that:
NNor(R*/I) = V((y + 9, 2 + 73)).

Claim. B is noetherian.

Proof. In order to see that B is noetherian, we need to see that:

R[r1,79,73]
oo n— (2

is flat. First we show that the map

y: R — BTl
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is flat. We do this via a corollary to Theorem 22.6 in Matsumura. R is noetherian, and

R|[71.79, 3] is a polynomial ring over R. The ideal of R generated by the coefficients
of 71,79, and 73 in (w + Tl)(y+72)2 — (2 +‘r3)3 is R. Thus .R_[T]'77'2i3l is flat over
R, and so (—R[—T]—’;Zid) is flat over R. Thus we see that B is noetherian.

T
Note that:
(w+T,2+73)N Ry =(w+7,2+73)N B =0
SO
(w+7T,2+73)NR=0.
Similarly,

(y+712,2+713)NR=0.

Hence by Proposition 4.3.1, B is normal. Note that B* is not normal.
Example 4.4.1. An example in which B is not normal.

Let k be a field of characteristic 0. Let R = klz, y,z,w](z Y, 2, w) and R* =

kly, 2, w]( )[[a:]], the z-adic completion of R. Define 71,79, 73 € zk{[z]] to be

Y, 2w
algebraically independent over k(z).

In this example, our ideal I is “tweaked” from the ideal in the previous example.
Define:

2

I= (x2(y +719)° — (2 + 1'3)3).

Then
NNor(R*/I) =V((z,z+13) N (y + T3,z + 73)).

In this case, to see that B is noetherian, we can use the corollary to Theorem 22.6 in
Matsumura [13]. R is noetherian, and R[7{,T9, T3] is a polynomial ring over R. The

ideal of R generated by the coefficients of 71, 79, and 73 in 2y + 7'2)2 —(z+ 7'3)3 is

R. Thus R_[TLIIZ’_T_Sl is flat over R, and so (M) is flat over R.

T
In this case, the ideal (z, 2z + 'r3) is extended from B, so B is not normal.

Example 4.4.2. An example in which B is normal but not factorial.
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Let k be a field of characteristic 0. Let R = k[z,y, z,w]( and R* =

T,Y,2,w)
kly, 2, w](y, ;. 4)llz]]; the z-adic completion of R. which are algebraically independent
over K, the quotient field of R.

Let I be the principal ideal of R* so that
I:=(z(z+71) —y(w+ 7m9)).

Again, the method of the previous example will yield that B is noetherian. Also,
R/IR~ R/(zz— yw)ﬁ, which is normal, since R/(zz — yw)R is an excellent normal
ring. The natural map R*/I — R/IR is faithfully flat, so R* /I is normal. Hence
B is normal. However, R*/I is not factorial because (z,y) is a height one prime of
R*/I which is extended from B and is not principal. Then (z,y)B is a height one

prime ideal of B which is not principal, and B is not factorial.
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