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ABSTRACT

Blind Source Recovery: Theoretical Formulations, Implementations

and Application to CDMA Communication Systems

By

Khurram Waheed

Blind Source Recovery (BSR) is an autonomous (or unsupervised) stochastic adaptation

approach that denotes recovering signals from measurements in environments that may

include convolution, transients, and even possible nonlinearity. The primary goal of BSR

is to recover original source signals, as best as possible, even in the absence of precise

environment identifiability. A discrete-time optimization framework for BSR has been

adopted based on minimization of the Kullback-Lieblar Divergence, subject to the

constraints of a state-space representation, using the Riemannian contra-variant gradient

adaptation.

The modeling of the environment and its representation is vital in the proposed

framework. The adoption of the state space framework allows for the derivation of more

general update laws capable of catering to most known filtering paradigms. For the

interesting case of multi-variable linear time-invariant dynamic BSR, parametric update

laws for discrete—time canonical feedforward and feedback state space configurations

have been derived. Higher Order Statistics have been explored to obtain adaptation

algorithms that are purely blind of actual source distributions. The BSR cases of

undercomplete and overcomplete mixtures have also been investigated. A new two-stage

BSR algebraic algorithm for sparse static overcomplete mixtures has been developed.
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Further, the BSR framework has been successfully formulated for multi-user detection in

modern CDMA wireless communication networks. Promising new results clearly

demonstrate the effectiveness and practicality of the formulated approach.

Computer Simulations have been widely conducted during the course of this

research to evaluate the performance of all the developed algorithms for a variety of

scenarios. In most cases, the performance verification has been done using actual speech

and communication data in the presence of noise. In summary the main contributions of

this thesis are

Info-theoretic update laws for a multi-variable dynamic state space network were

investigated. Natural gradient based BSR update laws for the cases of minimum

phase and non-minimum phase mixing environments as well as both feedforward and

feedback canonical state space configurations were developed and implemented.

An exploration and extension of parametric source distribution models and derivation

of adaptive score-functions (or non-linearities) for the BSR of sources with multiple

source distributions.

The development of the Algebraic ICA (AICA) Algorithm, which is a new ICA

algorithm for blind, sparse, static mixing matrix recovery. It enables the BSR from

overcomplete mixtures of speech and other sparse distributions using a combination

ofAICA and interior point linear programming (IP-LP) techniques.

Development and simulation of new Blind Multi-user Detection algorithms for DS-

CDMA and WCDMA wireless communication networks based on the BSR

framework.
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Chapter 1 '

INTRODUCTION

Blind Source Recovery (BSR) is an unsupervised adaptation technique to stochastically

recover independent original source signals from corrupted measurements caused by

source propagation through a noisy, linear or nonlinear, dynamic mixing and filtering

environment. The measurements from this environment are the only inputs to an adaptive

info-theoretic BSR network, which seeks to counteract, to the extent possible, the effects

of the environment [34, 64, 139, 140]. Eventually, the purpose of BSR is to develop an

optimal autonomous blind estimate of original signals [8, 9, 53, 110].

Blind Source Recovery (BSR) is a challenging signal processing formulation that

in the linear case includes the well-known adaptive filtering sub-problems of blind source

separation and blind source deconvolution. Blind Source Separation (B88) is the process

of recovering a number of original stochastically independent sources/signals when only

their linear static mixtures are available. Blind Source Deconvolution (BSD) deals with

deconvolving the effects of a temporal or a spatial mixing linear filter on signals without

a priori information about the filtering medium/network or the original sources/signals

[33, 54]. This dissertation presents a generalized framework based on the multi-variable

l
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canonical state space representation of both the mixing environment and the demixing

system. Various filtering paradigms have been consequently derived as special cases

from the proposed framework. Simulation results verifying the theoretical developments

have also been included in this work [109, 110, 126].

For this unsupervised adaptive filtering task, only the property of signal

independence is assumed. No additional a priori knowledge of the original

signals/sources is assumed. BSR requires few assumptions and possesses the self-

learning capability, which render such networks attractive from the viewpoint of real

world applications where on-line training is often desired.

The challenges for the BSR reside in the development of sound mathematical

analyses and a framework capable of handling a variety of diverse problems. While other

approaches to BSR have used more conventional signal processing structures [33, 60,

77], we propose a comprehensive BSR framework based on multi-variable state-space

representations, optimization theory, the calculus of variations and higher order statistics.

The framework is utilized to develop natural gradient adaptation algorithms for both

minimum phase and non-minimum phase environments [110, 112, 126, 129, 135, 139].

Separate update laws for the feedforward and feedback recovering (i.e., both demixing

and deconvolving) network parameters have been derived and verified by simulations

[112, 140]. Further, algorithms have been extended using adaptive score functions

derived from comprehensive source distribution models for unmitigated recovery from

mixtures of multiple source distributions [127, 130, 136, 138]. The problems of

undercomplete and overcomplete BSR have also been extensively studied. A new

solution, called Algebraic Independent Component Analysis (AICA) for the case of
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static, overcomplete mixtures of sparse sources has been proposed [132-134, 137]. The

proposed adaptive BSR framework is also applied to the modern CDMA wireless

communication networks (such as DS-CDMA, WCDMA etc.) to efficiently address the

problem of multi-user detection in downlink channel with favorable results compared to

conventional techniques [ 122-1 25].

1.1 Background

Interest in the field of blind source separation and deconvolution has grown dramatically

during recent years, motivated to a large extent by its similarity to the mixed signal

separation capability of the human brain. The brain makes use of unknown nonlinear

parallel and complex dynamic signal processing with auto-leaming and self-organization

ability to perform such tasks. The peripheral nervous system integrates complex external

stimuli and endogenous information into packets, which are transformed, filtered and

transmitted in a manner that is yet to be completely understood. This complex mixture of

information is received by the central nervous system (brain), split again into original

information, and relevant information relayed to various sections of cerebral cortex for

further processing and action [89].

BSR is valuable in numerous applications that include telecommunication

systems, sonar, acoustics and radar systems, mining and oil drilling systems, image

enhancement, feature extraction and biomedical signal processing. Consider, for

example, the audio and sonar applications where the original signals are sounds, and the

mixed signals are the output of several microphones or sensors placed at different

vantage points. A network would receive, via each sensor, a mixture of original sounds

that usually undergo multi-path delays. The network’s role in this scenario will be to
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dynamically reproduce, as closely as possible, the original signals. These separated

signals can subsequently be channeled for firrther processing or transmission. Similar

application scenarios can be described in situations involving measurement of neural,

cardiac or other vital biological parameters, communication in noisy environments,

engine or plant diagnostics, and cellular mobile communications.

1.2 Importance of Modeling

Development of adequate models of the environment that include time delays or filtering,

multi-path effects, time-varying parameters or sensor dynamics is important in desired

practical applications. The choice of inadequate models of the environment may result in

highly sensitive and un-robust processing by a network. Indeed, in order to render the

network operable in real world scenarios, robust operations must account for parameter

variations, dynamic influences and signal delays that often result in asynchronous signal

propagation. The environment needs to be modeled as an appropriate dynamic linear (or

even nonlinear) system [53, 86, 151].

1.3 The State Space Framework

The state space formulation provides a general framework capable of dealing with a

variety of situations. The multi-variable state space provides a compact and

computationally attractive representation of multi-input multi-output (MIMO) filters.

This state space representation allows for the derivation of generalized iterative update

laws for the BSR. The state notion abridges weighted past as well as filtered versions of

input signals and can be easily extended to include non-linear networks [17, 103]. There

are several reasons for choosing this framework.
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Transfer function models, although equivalent to the state space models when initial

conditions are zero, do not exploit any common features that may be present in the

real dynamic systems.

State space models give an efficient internal description of a system. Further, this

choice allows various equivalent state space realizations for a system, more important

being the canonical observable and controllable forms.

The inverse for a state space representation is easily derived subject to the

invertibility of the instantaneous relational mixing matrix between input-output — in

case this matrix is not square; the condition reduces to the existence of the pseudo-

inverse of this matrix. This feature ensures recoverability of original sources provided

the environment model is invertible.

Parameterization methods are well known for specific classes of models. In

particular, the state space model enables much more general description than standard

fmite/infinite impulse response (FIR/11R) convolutive filtering.

All conventional (dynamic) filtering models, like AR, MA, ARMA, ARMAX and

Gamma filters, can be considered as special cases of flexible state space models.

The linear state space formulation of a problem is conveniently extendable to include

non-linear and time-varying models. The state space models are ideal candidates for

generalized non-linear model representations that include, e.g., neural networks.
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1.4 Problem Definition: Adaptive Framework for Blind

Source Recovery

In the most general setting, the mixing/convolving environment may be represented by an

unknown dynamic process H with inputs being the n-d independent sources ,2 and the

outputs being the m-d measurements Ln_. In this extreme case, no structure is assumed

about the model of the environment.

The environment may be also modeled as a dynamic system with fixed but

unknown parameters. The processing network H must be constructed with the capability

to compute the “inverse” (or the “closest to an inverse”) of the environment model

without assuming any knowledge of the mixing environment or the distribution structure

of the unknown sources.
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Figure 1.1. General framework for Blind Source Recovery
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It is possible that an augmented network be constructed so that the inverse of the

environment is merely a subsystem of the network with learning. In this case, even if the

environment is unstable (e. g., due to existence of non-minimum phase zeros in a linear

state space model), the overall augmented network may represent a nonlinear adaptive

dynamic system, which may converge towards the desired parameters as a stable

equilibrium point or set. Thus achieving the global task of blind identification [126, 156].

For the linear filtering environments, this problem may be presented as

_X=H*m=H*H*§=P*D*§ (1.1)

where

P — is a generalized permutation matrix

D — is a diagonal matrix of filters with each diagonal filter having only one non-zero tap.

* - represents ordinary matrix multiplication for the static mixing case, while it

represents polynomial matrix multiplication for the multi-tap deconvolution problems.

4 Possible differences in the dimensions of the signal, mixture and output vector

stem from the blindness of the problem. However, in most cases it is very difficult if not

impossible to determine the number of unknown sources directly from the observed

mixtures [4,6]. This results in three types of BSR problems, i.e.

o For m = n , the problem is referred to as simply BSR.

o For m > n , the problem is termed as undercomplete BSR, due to higher

dimensionality of the projected mixture space

0 For m < n , the problem is called overcomplete BSR, due to scarcity of dimension

in the mixtures space.
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For notational and mathematical convenience, in Chapter 3 we will derive all

BSR algorithms for the case where n = m = M, unless otherwise specified. This

convenient choice allows for unambiguous mathematical manipulations in the derivation

for all the algorithms. The under-complete mixture case of BSR, where m > n, can be

easily reduced to the fore mentioned case by appropriately discarding some

measurements using pre-processors, e.g., Principal Component Analysis (PCA), eigen

decomposition etc. [33, 52, 53, 60]. On the other hand, the over-complete mixture case

for m < n, in general, is not tractable and cannot be handled by the existing BSR

algorithms in any straightforward fashion. A solution for a special case of overcomplete

BSR, where the underlying source distributions are sparse, is discussed in chapter 5.

1.4.1 Blind Source Separation: An Example

In this example, we mix three signals using an arbitrarily chosen normalized mixing

matrix . The original sources are

0.1sin(400t)cos(30t)

s(t) = 0.08.sign(sin(500t + 9 cos(40t)))

noise; unifome distributed

The nonlinearity used in this case is based on Edgeworth expansion [8, 47]. The

simulation results are presented below
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Figure 1.2. Blind Source Separation (a) Original Sources (b) Observed Mixtures

(b)
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Figure 1.3. Bhnd Source Separation (a) Separated Signals (b) Global Transfer Function
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1.5 Organization of the dissertation

This dissertation is divided into seven chapters and five indices. Some basic introduction,

motivating applications and the definition of the problem are presented in Chapter 1. An

overview of the current literature on the problems of B88 and BSD is presented in

Chapter 2. This is followed by a concise discussion on the natural gradient learning

approach and its application to blind source recovery networks. In chapter 3, we start

with a discussion on the multivariable optimization framework for the blind source

recovery problem. We initially present BSR update laws previously derived in a more

general nonlinear mixing setting, the framework is then specialized to the linear

dynamical state space representation. The natural gradient based update laws are derived

for more efficient estimation of the recovery network parameters. Separate update laws

are derived for the minimum and non-minimum phase environments. Further

classification is done on the basis of the BSR network structure, which can be either in a

feedforward or a feedback formulation. Simulation results and a comparison of the

performance for all the proposed BSR structures make up the rest of the chapter. Chapter

4 discusses the issue of score function adaptation for all the update laws proposed in

chapter 3. Two separate adaptive score functions are proposed for BSR based on the

Generalized Gaussian distribution model and the proposed Hyperbolic distribution

models, respectively. A discussion on adaptive estimation of the batch output kurtosis,

parameter regulation for the proposed score functions and their effectiveness for various

source distributions is included, The simulation results using the proposed score functions

are also presented. In chapter 5, we discuss the recovery issues related to undercomplete

and overcomplete mixtures, which may arise due to excess and deficiency of dimension
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in mixture space with respect to the original source space. For the case of overcomplete

sparse distributions, a new ICA algorithm called Algebraic Independent Component

Analysis (AICA) is presented and related implementation issues are discussed.

Simulation examples using both independent identical distribution (iid) data and speech

are included as a demonstration of the AICA recovery performance. Chapter 6 is devoted

to the application of BSR approaches to the CDMA wireless communication networks.

The focus is primarily placed on the forward link (or downlink) for both a generic DS-

CDMA implementation, and a UMTS FDD (or WCDMA) wireless network.

Comprehensive signal models are initially developed and then cast into convolutive

equivalents. Three adaptive BSR algorithms for a user’s signal detection are subsequently

derived. These proposed detection schemes are then compared to conventional detection

schemes for CDMA using extensive simulation results that outline the effectiveness of

the proposed approaches. Chapter 7 summarizes the developments made in this work and

also suggests various possible future extensions possible to the work being presented in

this dissertation.

Several appendices have been included to supplement the main text of this

dissertation. Appendix A enlists the various abbreviations and acronyms used throughout

this work. In appendix B, we present the Kullback-Lieblar divergence [72] or the relative

entropy measure, which is used as the objective performance functional to be minimized

in the BSR optimization framework. Appendix C presents specific implementation

simplifications in the state space BSR framework for the cases of finite impulse response

(FIR) and infinite impulse response (IIR) filters. Various performance benchmarks for

BSR are presented in Appendix D. Two of these benchmarks namely the Quadratic

12
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Information Measure (QIM) and the Algebraic Matrix distance Index (AMDI) have been

developed during the course of this work. Lastly appendix E presents a transformation

technique to transform a generic MIMO filtering structure to a canonical state space

formulation.
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Chapter 2 '

REVIEW OF LITERATURE

Blind Source Separation (BSS) by Independent Component Analysis (ICA) using the

information theoretic approaches has been a hot research topic because of its potential

applications in signal processing such as in speech recognition systems,

telecommunications, time series analysis and medical signal processing. The goal of ICA

is to recover independent sources given only sensor observations that are unknown linear

mixtures of the unobserved independent source signals. In contrast to the correlation-

based transformations such as Principal Component Analysis (PCA), ICA not only

decorrelates the signals (2nd order statistics) but also reduces higher-order statistical

dependencies, attempting to make the signals as independent as possible [53].

Two different research communities have considered the analysis of independent

components. On one hand, the study of separating mixed sources observed in an array of

sensors has been a classical and difficult signal processing problem. The seminal work on

blind source separation was by Herault and Jutten [56] where they introduced an adaptive

algorithm in a simple feedback architecture that was able to separate several unknown

independent sources. Their approach was further developed by Jutten and Herault [63];

14



Karhunen and Joutsensalo [65]; Cichocki, Unbehauen and Rummert [36]; Comon [37]

elaborated the concept of independent component analysis and proposed cost functions

related to the approximate minimization of mutual information between the sensors.

In parallel to blind source separation studies, unsupervised learning rules based on

information theory were proposed by Linsker [83]. The goal was to maximize the mutual

information between the inputs and outputs of a neural network. This approach is related

to the principle of redundancy reduction suggested by Barlow [20] as a coding strategy in

neurons. Each neuron should encode features that are as statistically independent as

possible from other neurons over a natural ensemble of inputs; decorrelation as a strategy

for visual processing was explored by Atick [19]. Salam, et. al., [45, 106] first proposed

the use of linear state space models for B88 and derived a novel adaptive algorithm based

on multivariable optimization theory. Nadal and Parga [88] showed that in the low-noise

case, the maximum of the mutual information between the input and output of a neural

network implied that the output distribution was factorial; that is, the multivariate

probability density function (pdt) can be factorized as a product of marginal pdfs. Roth

and Baram [102] and Bell and Sejnowski [21] independently derived stochastic gradient

learning rules for this maximization and applied them, respectively, to forecasting, time

series analysis, and the blind separation of sources. Bell and Sejnowski [21] put the blind

source separation problem into an information-theoretic framework and demonstrated the

separation and deconvolution of mixed sources. Their adaptive methods are more

plausible from a neural processing perspective than the cumulant-based cost functions

proposed by Comon [37]. A similar adaptive method for source separation was proposed

by Cardoso and Laheld [29].
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Other algorithms for performing ICA have been proposed from different

viewpoints. Maximum Likelihood Estimation (MLE) approaches to ICA were first

proposed by Gaeta and Lacoume [43] and elaborated by Pearhnutter and Parra [94].

Girolami and Fyfe [51], motivated by information-theoretic indices for Exploratory

Projection Pursuit (EPP) used marginal negentropy as a projection index and showed that

kurtosis-seeking projection pursuit will extract one of the underlying sources from a

linear mixture. A multiple output EPP network was eventually developed to allow full

separation of all the underlying sources [50]. Bell and Sejnowski [21] have pointed out a

similarity between their infomax algorithm and the Bussgang algorithm in signal

processing. Torkkola [118] and Girolami [48] also made theoretical and implementation

developments using infomax algorithm. Lambert [73, 74] proposed extensions in BSS

algorithms using frequency domain polynomial matrix algebra, further he also elucidated

the connection between three different Bussgang cost functions. Amari [7, 8] proposed

the natural gradient based learning rules based on information geometry while Amari,

Cichocki and Yang [13] proposed implementations based on use of higher order statistics

and source pdf approximations using Gram Charlier and Edgeworth series expansions

[30]. Gharbi and Salam [45, 47] extended their state space algorithms dervived using

higher order statistics. Girolami and Fyfe [51] chose negentropy as a projection pursuit

index, developing a learning rule that is able to blindly separate mixed sub— and super-

Gaussian. Lee, Girolami, Bell and Sejnowski [76, 77, 79] have shown the

interconnection of all the above mentioned approaches, unifying them under the banner

of extended infomax algorithm. Amari, Douglas, Cichocki and Yang [14] proposed a

comprehensive algorithm using the natural gradient for the multichannel blind source
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separation problems. Constraining both the mixing and demixing environment to be

represented by FIR filters. Several research groups have further worked to optimize these

algorithms for various domains of applications especially for mixtures of speech and

equalization of communication channels.

It has been proved that the algorithms for the Blind Source separation and Blind

Source deconvolution give superior performance when optimized using the Riemannian

contra-variant or the natural gradient [6, 9, 16], or equivalently the relative gradient [29].

The use of state space for BSS was first proposed by Salam [106]. Gharbi and Salam [45,

47, 11]] extended their algorithms for continuous time static and dynamic environments

using multivariable optimization theory and the natural gradient. Zhang, Cichocki et. al.

[153, 155, 156] followed suit with several research papers, focused on derivation of state

space algorithms based on Lie Group structures. They have also advocated use of Kalman

filters for state estimation [157]. Salam and Erten. [109] proposed a general framework

for the state space blind source recovery. More recently, Waheed and Salam [110, 112,

126, 129] have proposed extended discrete time state space algorithms, for static and

dynamic environments, both in feedforward and feedback configurations for Blind

Source Recovery (BSR). They have demonstrated the application of algorithms for both

minimum and non-minimum phase systems, and also for a variety of unknown source

distributions using adaptive non-linearities.

Our current research proposes extended discrete-time natural (or the Riemannian

contravariant) gradient algorithms for the Blind Source recovery (BSR) or multichannel

blind deconvolution (MCBD) problems fused with the use the state-space formulation,

and the optimization theory. BSS in this approach can be viewed as a trivial static case.

17



Before providing details of the conducted research, the notion of the natural gradient and

its application to the problems ofBSS and BSD has been concisely discussed.

The choice of the natural gradient, for the problems of Blind Source Recovery (BSR)

or Multichannel Blind Deconvolution (MCBD) has been made due its superior and

equivariant performance, which is preserved in the state-space formulation for this

research

2.1 The Natural Gradient Framework

For any general nonlinear optimization framework, the stochastic gradient method [5,

104, 119, 147] is a popular learning method. However, in many cases the parameter space

is not Euclidean but has a Riemannian metric structure. In these cases, the ordinary

gradient does not give the steepest direction of a target function; rather, the steepest

direction is given by the natural (or the contravariant) gradient. The Riemannian metric

structures were introduced by means of information geometry [6-9, 16]. The natural

gradient is discussed explicitly in the space of matrices for blind source separation (BSS),

and the space of linear dynamical systems for the blind source deconvolution (BSD)

problem.

A performance comparison between the ordinary stochastic gradient and the

natural gradient has been presented in [9]. The reference studies the asymptotic behavior

of online natural gradient learning. For online adaptation, the training examples can be

used only once as they appear during the learning/adaptation phase. Therefore, the

asymptotic performance of online learning/adaptation cannot be better than the optimal

batch procedure where all the examples can be reused again and again. This has been

proved that natural gradient online learning gives the Fisher-efficient estimator in the

18
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sense of asymptotic statistics when the loss function is differentiable, so that it is

asymptotically equivalent to the optimal batch procedure, see [7, 91]. However, when the

loss function is non-differentiable, the accuracy of asymmotic online learning is worse

than batch learning by a factor of 2, for example see [25]. In this section, what is meant

by the natural gradient is briefly outlined, and its relationship to the ordinary stochastic

gradient is established.

2.1.1 Definition of the Natural Gradient

Let S = {w e R" } be a parameter space on which a function L(w) is defined. When S is a

Euclidean space with an orthonormal coordinate system w, the squared length of a small

incremental vector connecting w and w + dw is given by

2 " 2

10111 =Z(dw1-) (2.1)

i=1

where dwi are the components of dw. However, when the coordinate system is non-

orthonormal, the squared length is given by the quadratic form

1W12 = 28:; (W)dwidwj (2.2)

i,j

When S is a curved manifold, there are no orthonormal linear coordinates, and the

length of dw is always written as in equation (2.2). Such a space is a Riemannian space.

The nx n matrix G =(gij)is called the Riemannian metric tensor, and it depends in

general on w.

It reduces to

1, -=-

gg-(w)=6.-j=1 '. J. (2.3)
O,1¢j

l9
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in the Euclidean orthonormal case, so that G is the unit matrix I in this case.

The steepest descent direction of a function L(w) at w is defined by the vector dw

that minimizes L(w+dw) where ldwl has a fixed length, that is, under the constraint

ldle = .92 (2.4)

for a sufficiently small constant a , see [7, 9, 16].

2.1.2 Theorem 2.1

The steepest descent direction ofL(w) in a Riemannian space is given by

—€7L(w) = —G" (w)VL(w) (2.5)

where G‘1 = (gij) is the inverse of the metric G = (gij) and VL is the conventional

gradient,

6 6

VL(w)—(5—w1-L(w),...., 6w

n

 

L(w))T

the superscript T denoting the transposition.

Where

€7L(w) = G“VL(w) (2.6)

is defined to be the natural gradient of L in the Riemannian space.

Thus, -§L represents the steepest descent direction of L. Using the tensorial

notation, this is nothing but the contravariant form of-VL . Observe that when the space

is Euclidean and the coordinate system is orthonormal, this reduces to BL = VL
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The natural gradient learning has been briefly outlined and its use for the

problems of BSS and BSR (or MCBD) is shown below. For complete proofs of the

presented theorems, please see [9, 16].

2.1.3 The Natural Gradient Learning

Let us consider an information source that generates a sequence of independent random

variables sl,sz,...,s,,...,subject to the same probability distribution q(s). The random

signals 3, are processed by an adaptive processor (e.g., a neural network) that has a set of

adjustable parameters w. Let I(s,w) be a loss function when signal s is processed by the

processor whose parameter is w. Then the risk function or the average loss is

L(w) = E[I(s, w)] (2.7)

where E denotes the expectation with respect to 3.

Learning is a procedure to search for the optimal w*that minimizes L(w). The

stochastic gradient descent learning method can be formulated in general as

w,” = w, — n,C(w,)VI(s,, w,) (2.8)

where n, is a learning rate that may depend on t and C(w) is a suitably chosen positive

definite matrix [5]. In the natural gradient online learning method, it is proposed to put

C(w) equal to G_1(w) when the Riemannian structure is defined as (2.6).

This suggests the natural gradient descent algorithm of the form

Wt+l = Wt -m\7L(w,). (2.9)

where n, is the learning rate that determines the step size.
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Two illustrative examples for the natural gradient learning are presented that

include Blind Source Separation (BSS) and Blind Source Deconvolution (BSD). A brief

introduction to the setup of each problem is followed by the derivation of update laws

based on the natural gradient, this approach will serve to outline both problems and also

present the motivation in the use of natural gradient while searching for an adaptive

solution.

2.2 Blind Source Separation.

Let us consider n signal sources that produce n independent signals si(t) , i = l,..., n, at

discrete times t =1, 2, Assuming that si(t) are independent at different times and that

the expectations ofs,- are 0. Let r(s) be the joint probability density function of s. Then it

is written in the product form

n .

"(S)=I_Iri(si)
(2.10)

i=1

Consider the case where there exists no direct access to the source signals s(t) but

only their n instantaneous mixtures m(t) can be observed,

m(t) = Hs(t), or

mi(t)=ZHy-sj(t)
(2-11)

i=1

where H = (Hij) is an nx n nonsingular mixing matrix that does not depend on t, and

m = (m1,..., mn)T is the observed mixtures.
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Blind source separation is the problem of recovering the original signals s(t), t =

l, 2, ..., from the observed signals m(t), t = 1, 2, ..., [63]. If H is known, this is trivial,

because s(t) = H'1m(t)

The “blind” implies that neither the mixing matrix H nor the probability distribution

densities r,-(s,-) are known.

A typical algorithm to solve the problem is to transform m(t) into

yo) = W. m(t) (2.12)

where W, is an estimate ofH'1, and is modified by the following update equation of the

form (2.9). The specific form of the update law for BSS can be derived using the

following theorem by Amari [9].

2.2.1 Theorem 2.2

The natural gradient in the matrix space is given by

61 = (V1)WTW (2.13)

therefore, the natural gradient update equationfor BSS is

%=m(1-¢(y)yT)W (2.14)

where (p(y) is the column vector

My) =[¢1(y1).....¢m(ym)]T

( ) d1 f ( ) (2'15)
. . =—_O . 1.

$1 y] 6? g I y

The efficiency of this equation is studied from the statistical and information geometrical

point ofview [11, 15].
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2.3 Blind Source Deconvolution.

When the original signals s(t) are mixed not only instantaneously but also with past

signals as well, the problem is called blind source deconvolution or equalization. By

introducing the time delay operator 2’1 ,

z‘lso) = s(t —1) (2.16)

The mixing matrix filter H is denoted by

H(z) = i sz‘k (2.17)

k=0

where A). are mxm matrices. The observed mixtures are

m(t) = H(z)s(t) = ZHksa — k) (2.18)

It

To recover the original independent sources, using the finite impulse response model

d

W(z) = Z sz-k (2.19)

k=0

of degree d. The original signals are recovered by

y(t) = W.(2)m(t) (2.20)

where W, is adaptively modified by

111.1(2)=W2)—n.171{m..m._1...JV.} (2.21)

where the natural gradient in this case is given by the following theorem [9].

2.3.1 Theorem 2.3

The natural gradient ofthe manifold ofsystems is given by

in = Vl(z)WT(z_1)W(z), (2.22)
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where operator z‘l should be operated adequately.

2.4 Equivariant Performance of the Natural Gradient

An algorithm for source separation of instantaneous additive mixtures is defined to have

equivariant performance if its behavior does not depend explicitly on the form of the

mixing matrix H [29]. This definition can be extended for the case of source

deconvolution [13] by stating that a deconvolution algorithm is equivariant if its behavior

only depends on the combined filter G(z,k)

Using (2.21), the update algorithm can be expressed in the form

61(2)
AW(Z,k) : —77t6l{mt,mt_1,...,m} = _"t aX(Z)

 W(z,k) (2.23)

where dX(z) = dW(Z){W(Z)}_1

Post multiplying both sides of (2.23) by H(z), the relation is given by

61(2)

A603,") = _77! 6X(Z)

 G(z, k) (2.24)

where G(z,k) = W(z,k) *H(z) ,

Note, that both (2.24) and the definition of gradient can be expressed in a form

that is independent of H(z), which proves the equivariant property of the natural gradient

algorithms.
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Chapter 3 ‘

BLIND SOURCE RECOVERY: A

FRAMEWORK IN THE STATE SPACE

Blind Source Recovery (BSR) denotes recovery of original sources/signals from

environments that may include convolution, temporal variation, and even nonlinearity. It

also infers the recovery of sources even in the absence of precise environment

identifiability. This chapter describes a generalized BSR formulation, see Salem, et. al.

[109, 110], achieved by the application of stochastic optimization principles to the

Kullback-Lieblar divergence as a performance functional subject to the constraints of the

general (i.e., nonlinear and time-varying) state space representation. This technique was

used to derive update laws for nonlinear time-varying dynamical systems, which are

subsequently specialized to canonical neural and time-invariant linear systems. Some of

this work has also been implemented in dedicated hardware/software platforms [40-42,

46].

The state space feedforward and feedback demixing network structures have been

exploited to develop natural gradient based learning rules. These adaptation algorithms
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are capable of handling most filtering paradigms and which can be conveniently extended

to nonlinear models. In the special cases, distinct linear state-space algorithms are

presented for the minimum phase and non-minimum phase mixing environment models.

Conventional (FIR/IIR) filtering models can be subsequently derived from this general

structure (see, Appendix C). Illustrative simulation examples are presented to

demonstrate the online adaptation capabilities of the developed BSR algorithms.

3.1 Formulation of the Optimization Structure

This section formally describes the state space BSR optimization framework, see [109,

112] for more details. In this section, the BSR stochastic gradient update laws are derived

via the proposed constrained multivariable optimization framework [109, 110] using

Kullback-Lieblar divergence as the performance ftmctional (see, Appendix B). This

performance ftmctional is a well known information-theoretic ‘g‘distance” measure,

appropriate for quantifying the mutual dependence of signals in a mixture. Using the

calculus of variations and the optimization theory, the update laws are initially derived

for a more general non-linear dynamic structure. Subsequently, the update algorithm is

specialized to the case of a linear dynamical state space model.

For the case of discrete-time, independent, wide sense stationary output vector

y(k) , the Kullback Lieblar divergence (or the relative entropy) is given by

n

L(y(k))=—H(y(k))+ZIHi(y,(k)) (3.1)
1:

where, H(y(k)): represents the entropy of the signal vector y(k), given by
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r- j' py(y)1n|Py(y)1dy Continuous Case

= _ = er

H(y) E[lnlpy(y)l] 1 —Z py(y)ln|py(y)l Discrete Case

, er ' 

and H,- (y,(k)) : represents the marginal entropy of a component signal y,(k)

3.1.1 Algorithms for the Nonlinear Dynamic Case

Assume that the environment can be modeled as the following nonlinear discrete-time

dynamic forward model

Xe (k +1) = fetXe(k).s(k).h1) (3.2)

m(k) =ge(Xe(k)aS(k)ah2) (3.3)

where

s(k) : n-d vector of original source signals

m(k): m-d vector of measurements

Xe(k) : Me -d state vector for the environment

hl: constant parameter vector (or matrix) of dynamic state equation

h2: constant parameter vector (or matrix) of output equation

fe(.) and ge(.): differentiable nonlinear functions [86] that specify the structure of the

environment.

Further it is assumed that existence and uniqueness of solutions are satisfied for any

given initial conditions Xe(t0) and sources s(k) thus a Lipschitz condition on fe(.) is

satisfied [71].
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The processing demixing network model may be represented by a dynamic

feedforward or feedback network. Focusing on a feedforward network model, assume the

network to be represented by

X(k+1) =f(X(k).M(k),W1) (3-4)

y(k) = g(X(k),m(k), W2) (35)

where

m(k): m-d vector of measurements

y(k): N—d vector of network output

X(k) : M-d state vector for the processing network

wl : parameters of the network state equation

w2: parameters of the network output equation

f(.) and g(.): differentiable nonlinear functions defining the structure of the demixing

network

The assumption of existence and uniqueness of solutions of the nonlinear difference

equations is also assumed for the network model for any given initial conditions X(to)

and measurement vector m(k).

In order to derive the update law, the notation is abused for the sake of convenience

so that y(k) in (3.1) is represented as yk and L(y(k)) is generalized to Lk (yk) so that the

functional may also be a function of the time index k. Thus, the following constrained

optimization problem can be formulated [109, 112] to be

Minimize
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k1

Jo(W1aW2) = Z L"(yk) (3.6)

k=ko

subject to

Xk+1=fk(XkamkaW1) (3.7)

yk =g"(Xr,mr.W2) (3.8)

with the initial condition Xk0 , where [k0,k1) is the discrete-time frame used for the

computation of the cost functional. Thus, the augmented cost functional to be optimized

becomes

k1

J(W1,Wz)= Z Lk(yk)+41rT+1(fk(X/rrmkrW1)—Xk+1) (3-9)

k=ko

where 4k is the Langrange variable [81]. Define the Hamiltonian as

H" = thyk1+dlnfk<Xnmkmn ' (3.10)

Consequently, the necessary conditions for optimality are

 

aHk k

Xk+l= =f (Xk.mk.w1) (3.11)

541m

611" k T ad‘
[I = , = ,1 +___

3.12

and the change in “weight” parameters become

A --n 951—27 (fk)T/1 (313)W1 Ira k W1 k+1 -

aH" aL"
A =— —=— — 3.14W2 77k 6 2 77k 6 2 ( )

where
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k

a O O I O O C

k é 1— : re resents the arttal derivative w.r.t the arameter a, 1n the limit.
a do P P P

77k: represents a positive time-adaptive learning rate.

3.1.2 Algorithm for Nonlinear Dynamic Canonical Neural Structure

Most of the real life problems cannot be adequately modeled using linear representations.

There is a requirement for rich non-linear demixing network models [151] that have the

capacity to undo effects of an intrinsically non-linear environment. The non-linearities in

these real-life environments can take a variety of forms. The nonlinear dynamic structure

[109, 110] presented above can be specialized to a hierarchical dynamic feedforward

neural structure. This neural structure has the capacity to deal with several practical

scenarios. Since the canonical structure is more amenable to practical implementations, a

derivation for such a neural structure is presented below

We assume the demixing network to be represented by the structure

X1(k+1) = f1(X1(k).m(k),W1)

thk +1) = f2(X1(k).X2(k).m(k), W2)

5 (3.15)

X, (k +1) = f,,(X1 (k), . ..,X,, (k), m(k), w”)

y(k) = g(X1(k).- ...X..(k),m(k). wy)

where

m(k) - represents an m dimensional measurement vector

y(k) - represents an N dimensional output vector

X,- (k) - represents m x m dimensional 11" network state vector

w,- - represents parameters of the ith network state equation, i = 1,2, ..., n.
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wy - represents parameters of the network output equation

f,-(.) and g(.) -represent differentiable non-linear functions.

Further it is assumed that existence and uniqueness of the solutions of the

differential equations are satisfied for any given initial conditions X,(to),i =1, 2,---,n

and measurement vector m(k) [71].

In order to derive the update laws for this non-linear case of blind source

recovery, we set up the following optimization problem using the Kullback-Liebler

divergence [72] as the performance functional. Please note the convenient change in

symbolic notation used for the derivation.

Minimize

k1 k

J(wl,...,wn,wy)= Z L (yk) (3.16)

k=ko

subject to

X1“ =f1"(Xr",mr.u1>

X§+1=f2"(X1‘.X§.mk.W2)

= (3.17)

X,’,‘+1 =f2k(X1k,...,X,’f,mk,wn)

yk =g(X1k,...,X,lf,mk,wy)

and the initial conditions XI"0 , Xg0 ,. . . , X50

The augmented cost functional to be minimized becomes
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Ill/(+1

k1 k 15H

J(wl,...,w,,,wy)= Z L (yk)+ ,

k=k0 :

   hl'f'i'l

—

Define the Hamiltonian as

F k+1q

’11

   h -

f1k(X1kamk,"1)

k+l k k k
Hk =Lk(yk)+ 12: f2(X1.X:2,mk.MQ)

k+l k k k

1,, Lfn(X1,...,Xn,mk,wn)d

f1k(Xlk,mk’W1)’Xlk+l

f2k(X{‘,X§,mk,w2)-X§+1

k k k k+1

_fn(X1,...,Xn,mk,wn)—X,, -

 

Consequently the necessary conditions for optimality are

or!"
 

Xik+1 =

 .1,

6X," — 6X? ' ex,"

and the change in weighting parameters become

   

(— k —7‘

5ft O k 1
+

arr" 61'" 1".
AWi——7]k-5;".———77k . I

' k k+l

5f" O 371

5W1
K- .1

Aw —_ git—...,] 2.11.:

y 77k awy k awy

.1 -611" _ aft-"0 ,...,” ,am)$1.34 .

=fik(X1k’”°’Xikamk’wl)’i= 1,2,.”,n

,1=1,2,...,n

0X,"

 

(3.18)

 

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

In this proposed neural structure the update of the states takes the structural lower

triangular form, while the update of co-states and the weighting parameters assumes

upper triangular structures.
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3.2 Algorithms for the Linear Dynamic Case

In the linear dynamic case, the environment model is assumed to be in the state space

 

 

  

   

   

   

         

 

   

form

Xe (k +1) = AeXe (k) + Bes(k) (3.24)

m(k) = CeXe(k) + Des(k) (3.25)

DO

39:) B. X.(k+1) 1 z" I X.(k) C. m k)

A0

     
 

Figure 3.1. State Space Mixing Environment

In this case the feedforward separating network will attain the state space form

X(k +1) = A X(k) + B m(k) (3.26)

y(k) = C X(k) + D m(k) (3.27)

The existence of an explicit solution in this case has been shown by [106, 107]. This

existence of solution ensures that the network has the capacity to compensate for the

environment and consequently recover the original signals, see Figures 3.1 and 3.2.

Specializing the general BSR algorithm to the linear network case, one forms the

(Kullback-Lieblar divergence) performance (“distance”) measure, see (3.6) as
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D
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f

mgk) B X(k+1) 24' X(k) C y(k)

/ g /

A

/    
Figure 3.2. State Space Demixing Network

k1

J.(A.B.C.D)= 2 Hot) (328)
k=ko

subject to (3.26) and (3.27) with the initial conditions Xk0

The augmented cost functional to be optimized becomes

k1

J(A,B.C.D)= Z Horn/113nm X1. +3 m. —Xk+1) (3.29)

k=k0

Again, define the Hamiltonian as

Hk _ Lk T

— (yk)+ 21.104 Xk + B ml.) (3.30)

For the linear time-invariant case the ordinary stochastic gradient update laws are

given by [109, 110].

 

k

Xk+l = 6H =AXk+Bmk (3.31)

k+l

k k

2k =91: Af2k+1+ckT§IL (3.32)

an ayk

35



 

 

provid 
matric

guaran

Where

P113») :

136].



aH"
AA = — —— = — 2 XT 3.3377k 6A 77k k+l k ( )

aHk r .

AB = -77k—= -'7k/1k+1mk (3.34)
BB

611" en" T
AC=- —=— —=— X 3.3577k 6C 77]: aC 77k¢(y) ( )

on 61" —T T

77k 6D 77k 6D Wk“ 1 (001)"? ) ( )

The above derived update laws form a comprehensive theoretical algorithm and

provides the update laws for the states Xk , the co-states 3k and all the parametric

matrices in the state space. The invertibility of the state space as discussed in [45, 106] is

guaranteed if the matrix D is invertible. In the above derived laws

77k: positive learning rate of the algorithm, which may be adaptive

[D]—.T : represents the transpose of the inverse of the matrix D if it is a square matrix or

the transpose of its pseudo-inverse in case D is not a square matrix.

(0(y) : represents a vector of the usual nonlinearity or score function [67, 127, 136, 138],

which acts individually on each component of the output vector y, with each component,

say m(yi) , is given as

5P(yi)

¢(yj)=_alogp(yi)='— A)? (3.37)

5% PO’i)

where

p(y,-): is the (estimate) of the probability density function of each source [127, 130,

136].
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The update law in (3.35) and (3.36) is similar to the standard gradient descent

results [12, 13, 155], indicating its optimality for the Euclidean parametric structure. The

update law provided above although non-causal for the update of parametric matrices A

and B, can be easily implemented using frame-buffering and memory storage [52, 54].

An inherent delay or latency in the recovered signal are related to the length of the buffer

and the dimension of the state space.

3.2.1 Extensions to the Natural Gradient

In this section, the linear state space algorithms for the problem of Blind Source

Recovery (BSR) derived in the previous section are extended using the natural gradient

[6, 7, 9, 14, 16]. Specialized algorithms for the class of minimum phase mixing

environments are presented both in feedforward and feedback state space configuration

[110, 112, 126]. For the non-minimum phase mixing environment, the requisite demixing

system becomes unstable due to the presence of poles outside the unit circle. These

unstable poles are required to cancel out the non-minimum phase transmission zeros of

the environment. In order to avoid instability due to the existence of these poles outside

the unit circle, the natural gradient algorithm may be derived with the constraint that the

demixing system is a double sided FIR filter, i.e., instead of trying to determine the HR

inverse of the environment, the inverse is approximated using an all zero non-causal filter

[11, 129]. The double-sided filters have been proven to adequately approximate IIR

filters at least in the magnitude terms with a certain associated delay [22].

The minimum phase algorithms have lesser computational requirements and

exhibit asymptotically better convergence characteristics, compared to the algorithm for

the non-minimum phase mixing environments, when applied to the same class of
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minimum phase systems. The minimum phase algorithm also exhibits more robust

performance with respect to the choice of the order of demixing/deconvolving filter per

channel, and the multi-source distribution composition of mixtures that may include at

most one pure gaussian source [33]. The non-minimum phase algorithm gives good

performance for the non-gaussian mixtures and/or the non-gaussian contents of a

complex multi-source distribution mixture. The gaussian source although separated from

other sources may still be auto-convolved (Note that the sum of co-centric copies of a

gaussian distributions is also gaussian). Also notice that the presented algorithms in this

chapter focus primarily on adaptive determination of zeros. The poles are kept fixed

either at zero or at randomly selected stable locations. Otherwise, they are assumed

known using other methods, e.g., adaptive state estimation techniques such as the

recursive least squares (RLS), kalman filter [155, 157] etc.

3.3 Blind Source Recovery Algorithms for Minimum Phase

Environments

3.3.1 Theorem 3.1: Feedforward Minimum Phase Demixing Network

Assume the (mixing) environment is modeled by a multiple-input, multiple-output

(MMO) minimum phase transfer function. Then, the update laws for the zeros of the

feedforward state space demixing network using the natural gradient are given by

AC(k) = n((IN — ¢(y(k»yT(k»C(k> — ca<y<k>>XT(k)) (3.38)

AD(k) = 77(1N - ¢(y(k))yT(k))D(k) (339)

where (o(y) is a nonlinear scorefunction given by (3.37)
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3.3.1.1 Derivation of Update Laws for Feedforward BSR

For the feedforward demixing network, its linear state space representation is assumed to

be as in (3.26)-(3.27). A formal formulation has been developed for deriving the

feedforward update laws for the problem using the output equation (3.27) and the natural

gradient learning. This leads to modified update laws for the matrices C and D using the

Riemmanian manifold. Further, these new update laws based on the natural gradient have

better convergence performance compared to those based on the stochastic gradient

(3.35) and (3.36). Note that in the following derivation, instantaneous time index k has

been dropped for convenience

Defining augmented vectors )7 and f , and the matrix W as

"— y ”— m W— D C 340

y_1X1 x_1X1 _ 0 ’(L—lim (' )

so the augmented output equation becomes

y=Wr can

The update law for this augmented parameter matrix W is similar in form to (3.36) or

the stochastic gradient law for the static mixing case. Thus the update is

AW = apt/“T — (0(9))?T 1 (3.42)

1177— DT 0

— CT 1(L-l)m

Consequently for the general case where D may not be square, its inverse (assuming the

where

pseudo-inverse for D to exist) is given by
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W‘T 13(DTD)‘l 0

—CTD(DTD)’1 1(L_,),,,

Factoring out the augmented weight term W'T , (3.42) can be written as

AW = 7711 — n(mTWT1W-T (3.43)

Post-multiplying by the matrix WTW , the update law becomes

AW = ”[1 — n(mTWT 1W (3.44)

Using (3.41), the above update rule can be written as

AW=n[I—¢(91}T]W (3.45)

Writing in terms of the original state space variables the update law (3.45) is given by

D C y T T D C
A ___ 1- X 3.46

[0 I(L—l)m1 ”1 ¢1X1[y 1110 [“4”] . ( )

Considering the update laws for matrices C and D only, the relation is

_ T T D C "

[AD AC1-77lD Cl-U[¢(y)y ¢(y)X 110 1(L—1)m1

Therefore the final instantaneous update laws for the matrices C and D are

461k) = 221th —¢(y(k»yT(k»C(k)—<o(y<k»XT(k)) (3.47)

AD(k)=77(IN-¢(y(k))yT(k))D(k) (3.48)

The resulting update laws for the natural gradient update derived in [155] are in

exact agreement with the update laws derived above [110, 112]. The update law in (3.47)

and (3.48) is related to the earlier derived update law (3.35) and (3.36) by the relation.
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- 11371) DTC 1 11) C 110 C 1
VI = V] = V] (3.49)

CTD I(L_l)m+CTC 0 I(L—l)m O I(L—l)m

where

an" 23L"

V1=135 52:] (3.50)

denotes the update according to the ordinary stochastic gradient, the conditioning matrix

in (3.49) is symmetric and positive definite.

3.3.1.2 Auxiliary Conditions for Convergence

Examining the update of the remaining terms in equation (3.46),

0=¢1X1yTD => «200% =0 (3.51)

Also

A1(L—l)m = 0 = 1(L—1)m - (P(X)yTC - ¢(X)XT

By a rearrangement of terms, the condition is

10(40er + ¢(X)XT = I(L—1)m

Using the relation (3.51), the condition reduces to

¢(X)XT = 1(1—1)». (3.52)

3.3.1.2.] Remark 3.1:

The resulting update laws for the natural gradient update derived in [155] are in exact

agreement with the update laws (3.47)-(3.48), also see [107, 110]. However, the

derivation approaches and methodologies are different.
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3.3. 1.2.2 Remark 3. 2:

The new auxiliary relations (3.51) and (3.52) define supplementary stochastic conditions

on the nonlinear “correlation” between the outputs and the states of the demixing

network. In this feedforward minimum phase structure case, these relations do not

explicitly appear in the update laws and thus can not be used directly to simplify the

update laws (3.47)-(3.48). (In contrast, similar auxiliary conditions derived for the

feedback structure do simplify the resulting update laws, see proof of Theorem 3.2.)

However, for effective convergence of the algorithm, these conditions need to be satisfied

(in a stochastic sense), i.e.,

E (BOYD/T] = O(L-1)me , and

 E ¢(X)XT1= 1(L-1)m

The first equality signifies that the output and the states of the network are “uncorrelated”

as defined. This condition supplements the condition E[¢(y)XT] —> 0(L-1)mxN , which

must be satisfied in (3.47) at convergence. Viewing the states as prior signal information,

the causal algorithm necessarily includes only causal correlation while the auxiliary

condition (3.51) signifies the noncausal correlation. The second condition signifies that

the states of the demixing network need to be a white process. It is noted that, in the

special case of FIR filtering where the states are basically delayed versions of previous

measurements, i.e., X,- (k) = mk_,- , the second condition (3.52) implies that whitening the

measurement signals prior to applying the algorithm would enhance the convergence of

the update law. These conditions are in addition to the stability conditions for the

algorithm [11, 27, 109].
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3.3.2 Theorem 3.2: Feedback Minimum Phase Demixing
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Figure 3.3. State Space Feedback Demixing Structure

Assume the MMO (mixing) environment modeled by a minimum phase linear oynamic

system or transferfunction. Then the update lawsfor the zeros ofthefeedback state space

demixing network using the natural gradient are given by

AD = n[(I~ + D)((0()’)yT —I~)] (3.53)

AC=n[(1N +D)co(y)XT] (3.54)

where ¢(y) is the appropriate scorefunction by (3.37)

3.3.2.1 Derivation of Update Laws for Feedback BSR

An alternate BSR structure was presented in [112], where the demixing network

comprises of a feedback transfer function, see Figure 3.3. This feedback path is

composed of tunable poles and zeros while the feedforward path is assumed to have fixed

parameters. Using only the update laws for adaptively determining the zeros of this

feedback path can potentially alter the poles of the overall demixing structure.

The network equations for the feedback path are (see Figure 3.3)
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z(k) = C X(k) + D y(k) (3.55)

Defining

e(k) = m(k) — z(k) ' (3.56)

the output of the feedback structure is given by

y(k) = Hn ”“600

For simplicity, assume Hn = I , so

y(k) = 1 *(M(k) - 206)) = m(k) - 2(k) (357)

rearranging terms, the output equation becomes

(1N + D) y(k) + C X(k) = m(k) (3.58)

In matrix form, (3.58) can be written as

1’”JD 1.311812

--1

y - IN+D C m

1X11 0 ’(L—11m1 1X1 (359)

Defining the augmented vectors 3? and T’ , and the matrix W as

~ m ~ y ~ IN+D C

X: ,Y= ,andW=

X X 0 I(L—l)m

(3.59) can be expressed in the compact form

01'

Y=W X=P71T where 71?:W (3.60)

Using the natural gradient, the update law for 7V is
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z z-T ~ ~T sz

AW=n[W —(0(Y)X 1W W,or

2: ~ ~TzT 2: ,

AW=n IM+N—(p(Y)X W W (3.61)

Differentiating WW 2 I

z/~ z~/

W W+WW =0

and by rearranging terms

z/ z~ ~—1 ~—1~/~—1

W =—WWW =—W WW (3.62)

Using lSt order Euler approximation for the derivatives in (3.62), the variation in W can

be expressed as

AW = —W'1(AW)W" (3.63)

Also note that from (3.60)

~ ~ zT

YT = XTW (3.64)

Using (3.62) and (3.64), the update law in (3.61) becomes

—W_1(AW)W_1 = n[l —¢(T’)T’T]W , or

-1?an = 271! - «xi/WT]

since WW = I .

Arranging terms

~ ~ ~ ~T ~ ~ ~r
AW=—nW [1—¢(Y)Y ]=nW [p(Y)Y —1] (3.65)

Inserting the definition of W and 1" , (3.65) becomes

45



 

 

Therefo

rows blt

3.3.2.2

By equa‘

11221

Observe

Slippleme

Case, hm

netWork

feedback

signify ,1,

deconelatt



11N+D C 1_ [1N+D C 1x ¢(Y)yT-1N (0(Y)XT

0 1(L—11m 0 1(L—11m (0(X)yT ¢(X)XT - I(H)»,

Therefore the update laws for the matrices C and D are extracted by equating the first

rows block wise to get

41111 + D) = AD = 22101, + moon" —IN > + CromyT] (3.66)

AC=ni<IN +D)¢(y)XT wept/oxT -1(L—1)m)] (3.67)

3.3.2.2 Auxiliary Conditions for Convergence

By equating the second row block wise, one gets

T

0(L-1)me = ¢(X)(L—1)mx1y lxN (3-63)

A1(L-1)m = 0 = ¢(X)XT — I(L—l)ma 0r

com/YT = 1(L-1)m I (3.69)

3.3.2.2.] Remark 3.3:

Observe that (3.68) and (3.69) are identical to (3.51) and (3.52). These relations form

supplementary conditions for the convergence of the proposed feedback algorithm. In this

case, however, the states of the feedback structure are a “function” of the previous

network outputs, i.e., X,(k) =g(yk_,-). Therefore, the auxiliary conditions in the

feedback case define nonlinear correlation conditions on the demixing outputs that

signify that the expectation of the demixing network outputs will be (nonlinearly)

decorrelated leading to the components being stochastically independent.
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Unlike the feedforward update laws, however, these conditions appear explicitly

in the derived update laws(3.66) and (3.67). Therefore, enforcing the derived auxiliary

conditions in the update laws (3.66) and (3.67) not only simplifies them computationally,

but also improves the convergence dynamic properties of the proposed algorithm. The

final update law for the feedback structure is given by

AD=n[<IN+D>(¢(y)yT—I~ )1 (3.70)

AC=nt<IN +D)¢<y)XT1 (3.71)

The above natural gradient update laws for feedback BSR are different from

earlier proposed feedback (or recurrent) update laws in [3 5, 75]. The algorithm (3.70) and

(3.71) exhibits better stability and faster convergence. See [123] for a comparison.

3.4 Blind Source Recovery Algorithms for Non-minimum

Phase Environments

3.4.1 Theorem 3.3: Feedforward Non-minimum Phase Demixing

Assume the MMO (mixing) environment modeled by a non-minimum phase transfer

function. Then, the update law for the zeros of the state space FIR demixing network

using the natural gradient is given by

AC,- = n(k)[c,- -—¢(y(k))u(k -i)T],i = 1, 2,- ~,L —1 (3.72)

AD=n<k>[D-¢<y(k»u(k)T] (3.73)

where the state space matrix C is defined as

C=[C1 C2 CL-l] (3.74)
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C,- - being the MMO FIRfilter coefficients corresponding to delay z—i

u(k) — represents an information back—propagationfilter, given as

L-l T T

u(k) = 2 C,- y(k +i)+ D y(k)

i=1

or equivalently in the adjoint state space as

2(k — 1) = AT/t(k) + CTy(k)

u(k) = BTMk) + DTy(k)

where T represents the matrix Hermitian operator, (p(y) is the appropriate scorefunction

given by (3.37) and A and B are given by (43), with A1j = 0.

3.4.1.1 Derivation of Update Laws for Feedforward Non-minimum Phase BSR

On the outset, please note that the algorithm requires a frame of 3L-2 samples of the

input signal to initiate the computations of the update of the parameter matrices in (3.72)-

(3.73). Note also that the time index of the parameter update (3.72)-(3.73) is not

necessarily the same time index of the signals. In practice, it may be chosen so that the

time index of the parameters is a delayed version of the signal time index so that no

issues of non-causality would arise. Also in practice, see Simulation H1 in section 4.2, the

initialization of the update law (3.72)-(3.73) uses an identity (or a nonsingular matrix) for

the center tap matrix (specifically, j =1_(L —1)/2_|) and small random or zero values for

the remaining tap matrices.

Let the mixing environment to assume the same state space representation as in

(3.24)-(3.25), while the demixing network assumes the state space representation (3.26)-

(3.27), repeated below for convenience

48



networ

intend:

andB

freun

Where

1T1,-

i" filt

mam(



X(k+l) = A X(k)+B m(k)

y(k) = C X(k)+ D m(k)

As mentioned before, for the non-minimum phase mixing case, the demixing

network is constrained to be a double-sided FIR filter [22, 156] so as to approximate the

intended unstable IIR inverse. Using the MIMO controller canonical form, the matrices A

    

and B take the form

Pom 0m 0m 0m - — 1m -

A: 0m 1m 0m 0m ,B= 0m

__0m 0m 1m 0m_ _0m_

where

1",: Identity matrix of dimension m x m

0", : Zero matrix of dimension m x m

For compactness, we can represent (3.26)-(3.27) using the compact (mixed time-

frequency) transfer function notation of the MIMO FIR filter as

yr = [W(2)] ml. (3.75)

where, W(z) is the transfer function of the demixing MIMO FIR filter of the form,

W(z) = W0 + le“ + . . . + WHZ‘L+1 (3.76)

Further we can define a matrix W , comprised of the coefficients of the filter

W(z). Note that each constituent sub-matrix W,- contains co-efficients pertaining to the

i’h filter lag acting on the time instant k-i. This matrix W is related to the state space

matrices C and D as given below.
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147211410 W1 WL—11=[D c]

where the state space matrices C and D in terms of the sub-matrices W,- are represented

as

D=W0

(3.77)

C=[W1 W2 WL—11

For the MIMO transfer function W(z) , the conjugate (or Hermitian) transpose of the

transfer function can be defined in a fashion similar to the one proposed by Lambert [73],

i.e.,

_ T _ _ T

[W(z)] = [W0 + W12 1+...+ WL_lz “1]

= W0T + Wszl + . . . + W[_,.zL‘1 (3.78)

= 117th“)

where, T is the Hermitian transpose operator. Notice that again we can define a matrix of

coefficients WT comprised of the transpose of the constituent sub—matrices acting in a

time reversed fashion, i.e., the 14" lag of this time reversed filter acts on the future (non-

causal) time instant k+i, i.e.,

WTé[WOT W,T WL_1T] (3.79)

Using the definition of W , we can express the network output equation (3.75) in the time

domain as

_ L—l

yk -_- ka a Dmk + Z cimk_,. (3.80)

i=1

where ’l’k represents an Lm x 1 matrix of observations at the k’h iteration, which includes

the k’h and previous L-l m-d measurement (or observation) vectors, i.e.,
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T
A T T T

’l7k =[mk mk—l mk—LH]

. k’h . .

yk . represents the output vector at the iteration

For the derivation of the update laws, we minimize the Kullback-Liebler

divergence with the constraints of an FIR representation as described above. Using the

maximization of entropy approach, the Hamiltonian can be defined [9, 47, 105, 109] as

Hk = —log dethjl—Zlog(q,- (y,,W(z))) (3.81)

where q,- ( yi,W(2)) is the online estimated marginal distribution of yi(k) and

j e [0, L - 1] .

Using the ordinary stochastic gradient update laws (3.35) and (3.36), also see [9,

47, 105], the update law for the sub-matrices W,- is given by

k
6H _ T ,

AW: = -m. _aW. = 77k [1W1- 1) 5,.- -¢(yk)m£_,-1 (3.82)

l

where 51-,- equals 1 only when i= j , and j e[0,L—l].

It should be noted that Wj is required here to be nonsingular. For the non-

minirnum phase case, j is appropriately chosen to be an intermediate tap, e.g.

j = L(L -1)/2_1 , in order to render an appropriate double-sided FIR filter. In any event, it

will be seen below that using the natural gradient, the resulting parameter update laws

(3.91) or (3.92) do not depend on the explicit nonsingularity of the j -th tap matrix and

will include all tap matrices. The Stochastic Gradient (SG) law for the complete MIMO

filter matrix is given by
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__ L—l _ T L—l ,

[nu/(2)156 = Z AWrz" = 721.11%“) 6,.- — Z e(yr)m,f_,z" (3.83)

i=0 i=0

Using the definition of the natural gradient in the systems space [9], we can

modify (3.83) to have the update of the demixing filter parameters according to the

Riemannian contra-variant gradient as

AW(z) = [AW/(2)150 WT(z“)W(z)

T L—l _ __ _

=41. (W?) 6,-1— g.)e(yk)ml..-z“1WT(z“)W(z) (3.84)

T _ __ L-l , _ _

= 41. (W?) aerTe‘UWtz) — 2;.) etyomi..z"WT(z“)W(z>
 

where, the first term on the right hand side can be simplified as

(W1711T 6jiWT(z-1)W(z) =1W1711T (o‘jiWT(z))W(z)

T (3.85)

=(Wj'1) WITH—”(2) = [Tn-«2) = "7(2)

while the second term can be simplified as

L" r —'-T —1 - If] - T - —'
Z ¢(J’k )mr_.-z 'W (2 >W<z> = «204)Z ([W(Z)]mk—i) W(z>z '

i=0 i=0

L-l r __ _

= (DOME J’k—iW(z)Z_'

:3 T (3.86)

= ¢(yk)Z([WT(2‘l)1yk_r1 z-i
i=0

L—l .

= ¢(y/r)z “Li Z”
'=0

where, we used equality (3.75) and u; is the transpose of the non-causal back-

propagation filter output, defined as
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L—l

“k % [WT(2"‘>]yk a DTyk + 2 CM..- (3.87)
i=1

Let yk represent an NL x 1 matrix of outputs at the k’h iteration, which includes

the k’h and the future L-l N-d output vectors, i.e.,

T
A T T T

Xk =[yk Yk+l .Vk+L—l:|

then the back-propagation filter can also be expressed in the compact form

_ “T
u(k) — W _}_’k (3.88)

Using (3.85) and (3.86) in (3.84), we get the following update laws for the MIMO FIR

transfer Function

L—l ,

417(2) = 221. W12) - Z (PUkW/i—izfl (3.89)

i=0

The update law (3.89) is non-causal as computation of u£_,-;i =0, 1, 2,...,L—l

requires up to L —1 future outputs to be available. Practically the update law can be

implemented (or made causal) by introducing a delay of L —1 iterations between the

update of the parameters and the computation of the output at the k’" iteration (this in fact

amount of using a frame-buffering in order to initialize the update law as is used in

practice). Thus, a causal version of (3.89) becomes

L—l ,

[AW(Z)]C = 77k [W(Z) - Z ¢()’k—L+1)ui—L-i+12_' (3-90)

i=0

Writing down the update laws in the time domain for the 1‘” component coefficient matrix

W,- , we have
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[Ni/11C = 7711””: - (0(yk-L+1)ui—L—i+11 (3°91)

Defining the new time index k = k — L +1, we have

[An-lo=nklm-81y11711u’1i-ill we

where the computation of the network output y(k) and the back-propagation filter

output u (k) is computed as in the following expressions

L—l

y(k)§y(k—L+l)=ka_L+l = ZCim(k—L+l—i)+Dm(k—L+1) (3.93)

i=1

L-l

u(k)éu(k—L+l)=WTy_k_L+1 -_- ZCiTy(k-L+1+i)+DTy(k-L+l) (3.94)

i=1

Therefore the explicit causal update laws for the state space matrices C and D,

using the time index k are

AC,- = 77,, 1C,- —¢(y(k))u(k—i)T],i=1,2,-~,L—1 (3.95)

AD=nk [D-wtytk'11utif] (3.96)

In the state space regime, the information back-propagation filter assumes the form

20? -— 1) = AUG?) + C50?) (3.97)

u(k) = 37.10?) + DTy(k) (3.98)

The non-minimum natural gradient algorithms [14, 126, 129, 130, 154-156]

require both forward and backward in time propagation by the adaptive MIMO FIR filter.

One would require a buffer of 3L-2 input samples to initiate the adaptation according to

the update laws.
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The non-minimum phase state space BSR update laws, being more general, also

encompass the domain of the minimum phase mixing network case. This can be verified

conveniently by using definition (3.87) in the update law for the matrix D. Note, without

any loss of generality, the delay introduced in the update law (3.96) to make it causal has

been ignored for clarity.

no = 77,. :D — (0(y(k))u(k)T]
p

L—l T

= 77k D - e(y(k))[DTy(k) + Z CrTyUc + 0]

i=1

1— H (3.99)

= 77k D - ¢(y(k))[y(k)TD + 2 WC NYC/1'11

i=1

 
' L—l

= 77k (1 - (/?(y(k))y(k)T ) D - (001(k))Z y(k + 0" Ci]

_ i=1

where the first term on the right hand side of equation (3.99) comprises the instantaneous

minimum phase update of the matrix D (see equation (3.48)), while the second term

constitutes the “non-causal” update term corresponding to the back-propagating

processing required for the double sided FIR demixing filter in the case of non-minimum

phase environments. Similarly, the update law (3.95) can be expanded using (3.80)-(3.87)

to show the explicit relationship to the minimum phase feedforward update law (3.47).

3.4.1.1.] Remark 3.4:

It should be noted that Equation (3.84) holds for the doubly infinite filter space. For an

FIR Space domain, it does not satisfy a Lie group in the sense of the formulation in [154].

In that event, the matrix product in (3.84) is defined differently and consequently a

similar, but different, update law results.
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3.5 Simulation Results

MATLAB simulation results for the three linear BSR algorithms are being presented. In

all three cases the environment comprises of a 3 x 3 IIR mixing convolving filter with the

following model [110, 112, 155].

m—l n-l

Z A,m(k — i) = Z B,s(k — i) + v(k) (3.100)

j=0 i=0

where

h

A,-,B,- - are the co-efficient matrices for the 1‘ tap of the autoregressive and moving

average sections of the filter respectively, and

v(k) - is the additive gaussian measurement noise.

m, n -— are the lengths of the auto-regressive and moving average lags in the filter.

The demixing network for each simulation can be initialized in a number of ways,

depending on the available environment information, which may be collected via

auxiliary means [155, 157]. This may include complete, partial, or no knowledge of the

poles of the mixing environment [126, 135, 139]. The primary advantage of incorporating

knowledge of poles in a BSR algorithm is to obtain a more compact demixing network

representation. All the three cases have been verified via simulation and the algorithms

were able to converge satisfactorily using online update algorithms. However, to make

efficient use of space only typical results are being presented here, see [110, 112, 128-

130, 135, 139, 140]. Unless otherwise specified, the original sources had sub-gaussian,

gaussian and super-gaussian densities respectively.

The convergence performance of the BSR algorithms, for the linear and

convolutive mixing, is measured using the multi-channel intersymbol interference (MISI)
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benchmark. MISI is a measure of the global transfer function diagonalization and

permutation as achieved by the demixing network and is defined as

N ZZlerl“maxp./' 1012171

  
_ 2161”]1"“pr 1619171

I p 7

  

. N

MISIk=Z ’ p . +2 . (3.101)

i=1 mxm 1sz7 j=1 maxp.ileij

G(z) = H(2) * 17(2) - Global Transfer Function,

H(z) = [A9, Be, Ce, De] —Transfer Function of Environment,

H(z) = [A, B, C, D]—Transfer Function of Network.

As earlier discussed, the optimal score function for the derived update laws

depend on the density function of the sources to be separated, which upon successful

convergence of the algorithm is similar to the density of the separated outputs. For

simulations, a hyperbolic score function [126, 127, 130, 136] has been used, which relies

on the batch kurtosis of the output of the demixing system. This score ftmction given by

(3.102) converges to the optimal non-linearity for the demixing system as the network’s

outputs approach stochastic independence.

y-atanhwy) K402) S. -r

(0(y)= y for |K4(y)|<r (3.102)

a tanhwy) 1640') 2 r

where

K4 (y): represents batch kurtosis of the output signals.

y: represents a positive density classification threshold.
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3.5.1 BSR Simulations — Minimum Phase Mixing Environments.

In this section, the BSR results for a minimum phase IIR mixing model of the form

(3.100) are presented, where m = n = 3 and

—

 

1 1 —1 0.5 0.8 —0.7 0.06 0.4 —0.5

A0: 1 —1 1 ,A,= 0.8 0.3 —0.2 ,A2= 0.16 —0.1 —0.4

11 -1 1 —0.1 -0.5 0.4 —0.3 —0.06 0.3

'1 0.6 0.8 0.5 0.5 0.6 .125 0.06 0.2

BO: 0.3 1 0.1 ,B1= -0.3 0.2 —0.3 ,Bz= —0.1 0 0.4

_0.6 —0.8 1 -0.2 -0.43 0.6 0.08 —0.13 0.3

In the transfer function domain, this MIMO transfer function will constitute a 3 x

3 matrix with each element being an order 18 [IR filter (provided each element has been

scaled to account for all the environment transmission poles). The transmission pole-zero

map, the impulse response of the environment transfer function, the theoretical

environment inverse, the corresponding typical demixing network estimate, and the

overall global transfer function using minimum phase BSR algorithms are respectively

shown in Figure 3.4, 3.5 and 3.6.
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(b)

Figure 3.4. Minimum Phase Mixing Environment (a) Environment Transmission Zeros

and Poles, (B) Impulse Response of the Environment Model
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Figure 3.5. Minimum Phase Mixing Environment, Impulse Response of (a) Theoretical

Environment Inverse, (b) Estimated Demixing Network
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Figure 3.6. Minimum Phase Mixing Environment, Final Global Transfer Function

3.5.1.1 Simulation 1: Feedforward Recovery of Minimum Phase Mixing

Using the minimum phase feedforward structure, three different simulation scenarios are

being presented, where the poles of the demixing network have been fixed (a) at the

solution, (b) all set to zero, or (c) set randomly but stable. In all cases, the matrix C is

initialized to have small random elements, the matrix D is initialized to be the identity

matrix, while matrices A and B are correspondingly set to be in Canonical Form 1. The

number of states in the demixing state space network was correspondingly chosen to be

18, 60, and 27. For all three cases, the pole-zero map of the final demixing network and

the online MISI convergence characteristics are being presented in Figures 3.7-3.9 after

30,000 online iterations. It is observed that in all the three cases the global transfer

function is diagonalized, although the demixing network have quite different pole-zero

maps, indicating multiple possible solutions to the same problem. A quantitative

comparative summary of recovered results has been summarized in Table 3.1.
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Pole-Zero Map of the Final Demixing Network
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Figure 3.7. Minimum Phase Feedforward BSR — All poles at the theoretical solution: (a)

Demixing Network Transmission Pole-Zero Map, (b) Convergence ofMISI Index
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Pole-Zero Map of the Final Demixing Network
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(b)

Figure 3.8. Minimum Phase Feedforward BSR - All poles set to zero: (a) Demixing

Network Transmission Pole-Zero Map, (b) Convergence ofMISI Index
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Pole Zero Map of Final Demixing Network
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(a) Demixing Network Transmission Pole-Zero Map, (b) Convergence of MISI Index
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3.5.1.2 Simulation 11: Feedback Recovery of Minimum Phase Mixing

For the minimum phase feedback structure, similar three different simulation scenarios

are being presented, where the demixing network poles have been (a) fixed at the

solution, (b) all set to zero, or (c) set to be random but stable. The state space matrices

and the number of states for the feedback network were chosen similar to the feedforward

case. Note that again three different global diagonalizing demixing network pole-zero

maps are obtained. The qualitative simulation result summary is presented in Figure 3.10-

3.12. See Table 3.1 for a quantitative comparison summary.
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Figure 3.10. Minimum Phase Feedback BSR - All poles at the theoretical solution:

(a) Demixing Network Transmission Pole-Zero Map, (b) Convergence of MISI Index
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Figure 3.11. Minimum Phase Feedback BSR — All poles set at zero: (a) Demixing

Network Transmission Pole-Zero Map, (b) Convergence of MISI Index
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Pole Zero Map of Final Demixing Network
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3.5.1.3 Simulation III: Feedforward Recovery of Non-minimum Phase Mixing

For the case of non-minimum phase, we again choose m = n = 3 for the HR mixing

environment model (3.100). In this case, the coefficient matrices are given by

P

 

1 1 —1 0.5 0.8 -0.7 0.06 0.4 —o.5

A0=l —1 1 ,A1= 0.8 0.3 —o.2 ,A2= 0.16 -o.1 —o.4

_1 —1 1 —0.1 —0.5 0.4 -0.3 —0.06 0.3

'1 0.6 0.8 0.5 0.7 0.16 .425 0.3 0.7

BO: 0.5 1 0.7 ,Bl= 0.7 0.2 —o.3 ,Bz= —o.1 o —o.4

b0.6 0.8 1 —o.2 0.53 0.6 0.08 -o.13 0.3

The theoretical inverse of this environment model will be an unstable IIR filter with

a minimum of 20 states. This instability stems from having two poles of the intended

demixing network to be outside the unit circle. However, the demixing network is setup

to be comprised of a doubly-finite 3 x 3 FIR demixing filter with 31 taps per filter (i.e., a

total of 90 states) and supplied with mixtures of multiple source! distributions. The

polynomial matrix W =[D C] is initialized to be full rank, while A and B are in

Canonical form I. Instantaneous update results afier 40,000 iterations are presented in

Figures 3.13-3.16. A close comparison of the theoretical environment inverse and the

adaptively estimated inverse will reveal that the theoretical results form a part of the

much larger (in taps), estimated inverse.
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Pole Zero map of the Mixing Environment

r
  

x Poms

o Zeros
   

1

I

1

1

I.

1

1

III, I

1

1

l

1

|

I

l

I
m
a
g
A
x
u
s

O

I l l I I I I l l l

,
L
.

l I

o
l

t o I l l

__,__;-"

  

l

I

I

l

l

l

I

l

l

l

l

I

l

I

 

0

Real Axis  
 

(a)

 

   

       

   

        

   

         

Mixing Environment (impulse

1 0.6 0.5

0.4 I
_o.5 N n o l--------

g I g 0.2 g

o — I----—---- o _ ___ 41.5

. , -1 '

'05 o 5 1o 15 '02 o 5 1o 15 o 5 1o 15

0.5 0.5 1

'_ E N o ---———--—— ”0'5

a“ 0 ...,—__ a“ Cu

-0.5 0 PM---

'0‘5 o 5 1o 15 ’1 o 5 1o 15 ‘0'5 o 5 1o 15

0.5 0.5 1

-04 o I.-——------ 05 I

:302 :3 :8

__ 41.5 1 o .--—--—--- 1
o I —--———

02 o 5 1o 15 4 o 5 1o 15 '05 o 5 1o 15

Taps-n Taps-n Taps-n  
 

(b)

Figure 3.13. Non-minimum Phase Mixing Environment (a) Environment Transmission

Zeros and Poles, (b) Impulse Response of the Environment Model
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Figure 3.14. Non-minimum Phase Mixing Environment, Impulse Response of

(a) Theoretical environment Inverse, (b) Estimated Demixing Network.
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Figure 3.15. Non-minimum Phase Mixing Environment, (a) Final Global Transfer

Function, (b) Demixing Network Transmission Zeros and Poles.
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Figure 3.16. Non-minimum Phase Mixing Environment, Convergence of MISI

Performance Index.

A quantitative performance comparison of the blindly recovered communication signals

using the presented BSR algorithms is provided in Table 3.1.

 

 

 

 

 

 

        

Minimum Phase Feedforward Minimum Phase Feedback Non-

Demixing Demixing minimum

Poles Poles Random, Poles Poles Random, D5331:

known fixed at stable known fixed at stable 3

zero fixed zero fixed

poles poles

AM -22.55 -21.77 -26.02 -27.67 -l6.47 -23.42 -17.67

Signal

151 PSK -26.66 -l8.48 -23.52 -23.52 -l8.85 -24.85 -11.43

Signal

(1“ dB) White -2109 -21.85 -2157 ~26.03 -18.36 -23.96 -11.39

Noise

 

Table 3.1. Quantitative Signal Recovery Comparison of the BSR algorithms
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3.6 Remarks

This chapter presents a generalized Blind Source Recovery (BSR) framework based on

the theory of optimization under constraints of a state space representation with the

Kullback-Lieblar divergence as the performance functional. The framework is then

specialized to the state space blind source recovery for both static and dynamic

environments, which may possess either a minimum phase or a non-minimum phase

structure. For the case of minimum phase environments, two possible state-space

demixing networks in feedforward and feedback configuration are proposed. For non-

minimum phase (convolutive) mixing, to avoid any instability, the demixing network is

set as a non-causal all-zero feedforward state space network. The update laws for all the

cases have been derived using the natural (or the Riemannian contra-variant) gradient.

The algorithms have been extensively simulated for both synthetic and physical

data. The simulation results for all the cases have been provided using mixtures of

multiple source densities, including one gaussian source. The algorithms exhibit success

in recovery of sources in all cases. Furthermore, for the case of minimum phase

environments, various possible initial conditions have been explored. A comparative

table for a set of communication signals has also been provided as a guideline to the

achievable separation/recovery results using the proposed online adaptive algorithms.
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Chapter 4

BLIND SOURCE RECOVERY USING

ADAPTIVE SCORE FUNCTIONS

The chapter discusses Blind Source Recovery (BSR) of minimum phase and non-

minimum phase mixtures of multiple source distributions using adaptive score functions.

For the linear static and the dynamic convolutive mixtures, the ability to adaptively

determine discerning nonlinear score functions allows for recovery of original sources

independent from (and even in the absence of) precise environment identifiability.

The performance of BSR algorithms strongly depends on the choice of an

appropriate score function which appears as an element wise acting non-linearity on the

output signals [1, 3, 14, 22, 24, 29, 30]. For a particular problem, the optimal score

function depends on the distribution of the original source signals which are unknown in

a blind scenario. In such cases, unless some assumptions about the distribution of the

sources are made, any BSR algorithm will potentially be unable to deliver the desired

performance. Therefore, adaptive estimation of appropriate score functions is very

attractive fiom a practical implementation viewpoint. The proposed score functions have

75



been applied to BSR for both the cases of minimum phase and non-minimum phase

mixing environment models [4, 10, 11, 16]. Several closed form entropy expansion based

deterministic expressions for adaptive score functions have been earlier proposed, but

they are typically suited for a limited range of distributions and converge to the true

estimating score function for static mixtures only [2, 5, 6, 21].

Most of the mixtures encountered in practical BSR problems are from sources

with a variety of non-gaussian distributions, e.g., speech and acoustics, communication

signals, intemet data, interstellar signals, bio-medical signals etc. On the other hand, most

noise phenomena or unidentified sources are assumed to possess gaussian distributions.

This results in practical situations, where one has to cope with multiple source

distribution mixtures including gaussian distributions. This chapter describes the use of

the proposed adaptive score functions for the linear convolutive class of BSR.

Two adaptive score functions are presented in this chapter. The first score

function is derived from the generalized gaussian distribution model [7, 12, 26]. The

second score function is based on proposed new hyperbolic source models, which extend

current Pearson and Hyper-Cauchy distribution models [12]. The proposed score

fimctions can be tuned online by certain control parameters. An adaptive algorithm to

estimate these control parameters for the proposed tuning of score functions using the

batch kurtosis of BSR output is also presented. The primary advantage of the proposed

online parameter estimation is that it renders the adaptive estimation of the demixing

network to be completely blind. No a priori information about the distribution structure of

the original sources is required. Simulation examples verifying the proposed BSR
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formulation (inclusive of the proposed score function estimation technique) are included

as an illustration of the proposed framework.

4.1 Generalized Gaussian Distribution Model

The generalized gaussian distribution class was proposed by Miller et. al. [17] and used

in the detection theory as a model for non-gaussian noise. This class has a symmetric

unimodal density characteristic. Various classes of densities are generated by a

parameterization of the exponential decay of this density function. The Generalized

Gaussian Family has the following density relation

 f(xi,a,-,a,-) = “ifli(°'i’ai) exp{-(fi,(a,-,a,-)|x,.|)ai} (4.1)

211%.)

where

ai >0, is a positive parameter that controls the distribution’s exponential rate of decay

03-2 is the variance of the distribution

F(.) is the gamma function, given by

(I)

run = Ira-16"Tdr (4.2)

0

,Bi(0',-,a,-) is a scaling function of a,- and a,- , defined as

1 151%

11%.)

This generalized gaussian family can encompass a wide variety of distributions,

 

161(0'13611)é 0i— (4.3)

e.g., for a,- = 1, the model reduces to the laplacian probability density function
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meta.) =I‘L‘2"flexp{—(fl.(m,l)lxil)} (4.4)

For 01,- = 2, the end results is the gaussian probability density function

i i,1 2

f(xi1210'i) =%JCXP{—(fli(0112)lxil) } (4-5)
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Figure 4.1. Some members of Generalized Gaussian Distribution Family

As a,- tends to infinity, the distribution approaches the uniform density function

f(xi,w,ai):m;i<x. (i (4.6)_ , _

7- fli .31

While as a,- tends to zero, the distribution converges to an impulse probability function

As a function of a,- and for 03:1, some members of the family are presented in

Figure 4.1.
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Based on the generalized gaussian density model in (4.1), the kth absolute moment

can be characterized as

Eiixiik} =fli(0'i1ai)kr[ (4-7)

 

4.1.1 Generalized Kurtosis Measures

The generalized kurtosis is a statistical measure to describe the “tail weight” for a

distribution, it does so by estimating the deformation of the distribution from normality.

Kurtotic measures have been extensively used in signal processing for classification of

data distributions, and as a distance measure from gaussianity. In order to avoid any

ambiguity, it is important to clarify that there are two types of kurtosis measures.

Pearson Kurtosis [19] is based on the mean statistics [12, 19] and in its

generalized form it is defined as

KP(g,x,-)=E{|xilzg} 1 (4.8)
2

E {'11 Fl

Fisher Kurtosis [12, 13] is based on the k-statistics [13] and is correspondingly

defined to be the ratio of cumulants, i.e.,

KF . : K21; (xi) 4.9

(Sax!) flea”) ( )

Typically the above-mentioned kurtosis measures are used for g = 2 , referred to

as the standard kurtosis. For this standard case, the above two kurtosis measures are

related by
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Kf(x,)=Kf(x,.)—3 (4.10)

where Kit (x,) = Ki(2,117,) represents the computed kurtosis for the standard case of 4' = 2

The primary advantage in using the Fisher Kurtosis is that a perfect gaussian

source will have zero fisher kurtosis. A leptokurtic distribution (Fisher kurtosis > 0)

represents the super-gaussian family of distributions, while a platykurtic (Fisher kurtosis

< 0) distribution represents the family of sub-gaussian distributions [12, 13].

For the generalized gaussian family, the generalized Pearson kurtosis can be

simplified to

riml‘lii
KP(;,x,-)= a‘ a’ (4.11)

 

Therefore, the standard Fisher kurtosis can be written as a function of the shaping

parameter a,- only, i.e,

Kf(,i,___r(%,-)F(%.)_,

PM)

Note that for the parameter ai = 2 , the distribution reduces to the true gaussian

 (4.12)

with zero kurtosis. The complete kurtosis characteristics of the generalized gaussian

family are given in Figure 4.2. As generalized gaussian family can only represent

unimodal distributions. The Fisher kurtosis approaches approximately —1.2 as a,-

approaches infinity (i.e., the Fisher Kurtosis for a flat or uniform distribution).
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Figure 4.2. Fisher kurtosis Characteristics for the Generalized Gaussian Family

4.1.2 Relationship between Bi (oi ,ai ) and ai

Imposing the statistical constraint of distribution integral on the generalized Gaussian

distribution family, i.e.,

(I)

If(xiaai’ai)dxi =1 (4.13)

_w

where, the relation between 6,-(0', ,a,) and a,- can be estimated to be

510711011 Ya" = aiE{|xilai} (4.14)

This relationship is helpful in the determining the final form of the generalized

gaussian score function.
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4.1.3 Derivation of Generalized Gaussian Adaptive Score Function

(GGASF)

Due to the very parameterized nature of the generalized gaussian family and its ability to

model a variety of unimodal source densities of interest to blind source recovery, a

parametric score function (nonlinearity) can be derived based on this family. This

comprehensive score function inherits a nice parametric structure from its parameterized

parent density. In an adaptive setting, the regulation parameter a,- can be adapted during

the adaptation for the source recovery algorithm.

The element-wise nonlinear score function required for the BSR problem has the

definition [1, 3, 22, 24, 29, 30]

¢<y>=-91’%f5¥l=[n(yi) 42622) 14.6.)? (4.15)

For the 1"" output with an exponential density function, the equation can be

simplified to

5P1()’%y

(0i(}’i) = ———-—' (4.16)

P101)

where

y,- : represents the i’h output of the network

p,- (y,-) : represents the statistical probability density of the i’h output

Using the generalized gaussian family as the candidate density in relation (4.16)

for the score function
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(0101): '-

_6_ aifli(0'iaai)

...,. 2M.)
“1131(011‘11)
 

211%.)

CXP{—(fli(01aai)|xil)ai}

by simple calculus, the relation reduces to

(0101-) = «xi/31101.04)” 181
a;
—16

a—ylflyil

exp{_(fli(ai1ai)|xi|)ai}

(4.17)

(4.18)
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Using (4.14) and the definition |yi| = yisign(y,-) , the score function is given by

la"
1 .

_ lyi SlgnO’i)

" 5W}

where an appropriate choice of ai makes the proposed score function (or nonlinearity)

 

(xi-(yr) (4.19)

suitable to a particular source distribution. This characterization of the source distribution

can be done adaptively using the Fisher kurtosis estimate for the batch-output of the BSR

network. Figure 4.3 shows some members of the generalized gaussian score function

family as a function of 51,-.

4.2 Hyperbolic Source Density Models

In this section, first new probability density models are proposed and their relationship to

existing well-known density models is established. Consequently, a score function for

each of the proposed density models is derived. A combination of these two score

functions results in the proposed Hyperbolic adaptive score function [30]. Interestingly

the proposed score function is quite similar to our earlier proposed adaptive score

function based on heuristic justifications, see Waheed, et al. [28].

4.2.1 Background

4.2.1.1 Pearson Distribution Model

A simple mixture of two gaussian densities gives the Pearson density model [18, 19], i.e.,

f(xifli) = (1 - ai)fl(xi) + aif2(xi) (4-20)

where
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— .— o 2

1 exp (x1 1“!)

2

27:0",-2 201'

 

fi(xi) = represents a gaussian pdf.

For the symmetric case of the Pearson model, i.e.. ai=12, |,u1|=|,u2|=|,u| and

0'12 = 0% = 0'; the Pearson model possesses two distinct modes for ,u > 0. However, for

p = O the density reduces to the regular gaussian density. This model can effectively

model gaussian and sub-gaussian densities including bimodal (binary) densities. For the

symmetric Pearson density, the model can be expressed as

 

 

 

 

2 2
1 . x- -x-

f(xi) = exp ——’u’—2- exp -—'2 cosh _y,2' (4.21)
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Figure 4.4. Fisher Kurtosis Characteristics for the symmetric Pearson Model as

a function of ,u

85



The Fisher kurtosis [12, 13] for the symmetric Pearson distribution model is given by

4

K:(#,02)=__‘_2£__2 (4.22)

#2 +02)

It is evident that for ,u > O , the kurtosis of the distribution is strictly negative; see

Figure 4.4, making it a suitable model for sub-gaussian to gaussian distributions only.

4.2.1.2 Generalized Cauchy Distribution

The symmetric super-gaussian density models are best represented by the Generalized

Cauchy density. The generalized standard Cauchy density is given by [12, 18]

k-

f(xi)=——’—2—m—, (4.23)

(1 +x ) 1

where

mi: represents the order of the Cauchy model (i.e., determines the kurtosis of the

distribution)

ki : represents a scaling parameter to satisfy the constraints of a pdf, e.g., for m,- =1,

k,-=%[.

The Cauchy distribution is a symmetric distribution with heavy tails and a single

peak at the center of the distribution. Due to the heavier tail, the kurtosis is much larger

than that for a normal distribution. In short, the kurtosis for a generalized Cauchy model

(mi > 0) is strictly positive and has an infinite range.
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4.2.2 Proposed Hyperbolic Distribution Models

4.2.2.1 Hyperbolic Sub-Gaussian Model

An alternate model is proposed based on the simplified Pearson model in (4.21). Not only

can this model represent all the kurtosis range of the original Pearson model; but also due

to an increased degree of freedom in the hyperbolic component, it can model additional

range of bimodal densities, which the original Pearson model cannot. The proposed

model is given by

fsubo.)=N(y..a?)cosh(4<xi44))" (4.24)

where

1,,k : represent positive shaping parameters

N(#13012) : represents a gaussian pdf [32] with mean p,- and variance 03-2. p,- is the mean

for the symmetric distribution. Without loss of any generality, assume p,- = 0.

Just like the Pearson Model, this model is capable of representing density models

from the gaussian down to the sub-gaussian bimodal densities. The family of density

curves generated by this probability model for A,- = 1 is shown in Figure 4.5.a. For k = 0,

this model represents the gaussian density with a Fisher kurtosis equal to zero.
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Proposed Symmetric Sub-gaussian Density Model, (b) Fisher Kurtosis

range of the proposed model; forO S k S 3 and xi,- = l .
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The Fisher kurtosis [12, 18, 32] of this proposed model for the range 0 S k S 3 and

A,- =1 is presented in Figure 4.5.b. Note that unlike the original Pearson model, this new

representation is capable of representing the bimodal distributions with a Fisher kurtosis

< -2. In fact, the model can model bimodal distributions with a Fisher kurtosis value of

down to -3.

4.2.2.2 Hyperbolic Super-Gaussian Model

Similar to the above approach, the product of a gaussian and a hyperbolic function can be

used to approximate the generalized Cauchy density model, i.e.,

" k

fsup(xi) = N(0,a.-2)sech(/1,-x,-) (4.25)

where

’11 ,k : represent positive shaping parameters

The proposed model can effectively model all possible generalized standard

Cauchy densities. In addition, for k = O, the proposed model reduces to the gaussian

density. Figure 4.6.a presents some members of this family for ,1,- = land 0 S k S 3.

As expected the normalized kurtosis for this family can range from zero to

infinitely large positive values. For the range 0 s k S 3and ,1?- =1 , the Fisher kurtosis for

the family is shown in Figure 4.6.b.
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Figure 4.6. (a) Proposed Symmetric Super-gaussian Density Model, (b) Fisher Kurtosis

range of the proposed model; for 0 S k S 3; xi, =1.
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4.2.3 Derivation of Hyperbolic Adaptive Score Function (HASF)

The two proposed density models can represent a wide range of sources which are of

particular interest to the source separation models. This representation covers the

complete range from the binary distributed sources in communications to the very sparse

distributions obtained during stellar and biological measurements. The score functions

are initially derived for each individual proposed density model. Later both of these score

functions are merged to formulate the proposed adaptive hyperbolic score function.

For the proposed sub-gaussian distribution model (4.24), the BSR score function

can be computed as

apiU’y

«no» = ————a¥i = lg—A-ki m(liyi) (4.26)
pi(yi) 0"

The sub-gaussian family of score functions generated in the range 0 S k S 3 , 0,2 =1 and

31‘ =1 is shown in Figure 4.7.a.

While for the proposed super-gaussian distribution model (4.25), the BSR score

function is given by

5P10’V

mm = -——9yi = Jig—+4114- tanh(4.y.-) (4.27)
pi(yi) 0',’

The super-gaussian family of score functions generated in the range 0 S k S 3, 0,2 =1

and 21.,- = 1 is shown in Figure 4.7.b.
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Figure 4.7. Score Functions based on the proposed: (a) hyperbolic sub-gaussian model,

(b) hyperbolic super-gaussian model; for O S k S 3; xii =1.
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Comparing (4.26) and (4.27), it is evident that both score functions have a similar

structure but differ by the sign of the hyperbolic tangent term only. The appropriate sign

of this term depends on whether the BSR output distribution is sub-gaussian or super-

gaussian. This hyperbolic term, however, should disappear for the gaussian constituents

in a BSR problem. A good adaptive estimate of the Fisher (or normalized) kurtosis of the

BSR network output can provide us with this discrimination. In an adaptive sense, the

switch between these different possible score functions can be made based on the

estimate of output kurtosis. Both fore-mentioned score functions can be thus combined

into an adaptive hyperbolic score function given as:

(0101') = Uiyi + Si19"(K: (Yi ))ai tanh (fliYi) (4-23)

where

u,- : is a scaling parameter for the linear term. 0, is inversely proportional to the variance

of the reference gaussian (or the resulting non-gaussian) distribution. Hence, for the

distributions with large variance, this term will approach zero.

ai,,6,-: are two scaling parameters of the hyperbolic term which control the magnitude

and the slope of the score function near the origin. or, is directly proportional to the

shaping parameter k in the proposed distribution models. For the gaussian model, k = 0

and therefore a,- = Oand the hyperbolic term should vanish. Some possible score

functions are presented in Figure 4.8.
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Some possible Hyperbolic Adaptive Score Functions

. 5 -  
~10

      

  

II... 1 17., 1%
Q 5 ---~/""/‘ Q . ///

T... 0. / W... o J/

./-10 4 -5 .
-5 0 5 -5 0 5

N. 10 \

.
1 b

5
3
.
:

5
4
:

K
\

    

I

('
11

o

=
1
a
= I

1
b

0

  

  

      

3" _10 ’ 1 S“ _4 1

-5 0 5 -5 0 5

-~ ll”.

Q. 0.5 . Q.

N 6

ll _. 0 > II ~ 0

U G

6 -O.5 i
N:

g_
g...

-1 -5

-5 0 5 -5 0 5

y, yr   
Figure 4.8. Proposed Adaptive Hyperbolic Score Function: some possible combinations.

4.3 Adaptive Estimation of the Fisher (or normalized)

Kurtosis

In order to perform an efficient adaptive estimate of the Fisher (or the normalized)

kurtosis [12, 32] of the BSR output, a batch update algorithm is employed. Practically,

one efficient simple formulation to adaptively estimate the output Fisher kurtosis is using

a forgetting factor as follows:

K.(n+1)= y.K.-(n>+(1—r,-)Kf(y,-(n» (4.29)

where
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K,(n) : represents the adaptively determined Fisher kurtosis for the 1"” output at the n’h

iteration

7,: represents the forgetting factor for adaptive kurtosis determination of the i’h output;

KI (yi(n)) : represents the normalized or Fisher kurtosis estimate for the rim batch of the

i’h output, which is computed as

_ _. 4

Kf(y.-(n» =M-3 (4.30)
0i

where

E: represents a batch of length N for the 1"” BSR network output

12,-,6} : represent the mean and the variance of the batch of the 1"” BSR network output,

respectively.

4.4 Parameter Regulation for the Proposed Adaptive Score

Functions

Using the estimated output Fischer kurtosis (4.29), discrimination can be done between

the three possible cases of gaussian, sub-gaussian or super-gaussian distributions. This is

done by appropriate selection of the score function shaping parameters for both the

proposed adaptive score fimctions. This can be effectively done for the case of source

recovery from linear convolutive mixtures, where only a discriminating score function is

adequate to separate sources with different distributions [8, 15, 26, 28, 30, 31, 33]. On the

other hand, for nonlinear BSR, a good match between the true source distribution and the
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chosen score function is required for estimation of the correct separating network [7, 9,

24].

4.4.1 Choice of parameters for Generalized Gaussian Adaptive Score

Function

In order to employ the proposed adaptive generalized gaussian score function for the

linear convolutive BSR, one needs to primarily focus on only three cases of

parameter a,- such that a classification between super-gaussian, sub- gaussian and

gaussian distribution families can be made. Practically, a choice of a, for the

computation of the score function, see (4.19), is made using the adapted value of kurtosis;

see (4.29), by the following simple scheme.

0 if K,(.) _>_ V , 1 S 0:,- <1.5 ; where l]! > O is a constant threshold (for super-gaussian

source distributions)

0 elseif Ki(.)S—§ , 611-23; where 5 >0 a constant threshold (for sub-gaussian

source distributions)

0 else a1: 2 (for gaussian distribution)

Typical values chosen for or, in the super-gaussian case is l, and for the sub-

gaussian case is 3.

4.4.2 Choice of parameters for Hyperbolic Adaptive Score Function

In order to employ the proposed hyperbolic adaptive score function for the linear

convolutive BSR, the estimated normalized batch kurtosis of the BSR network output is

used to discriminate between the three possible cases of gaussian, sub-gaussian or super-
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gaussian distributions. This is done by appropriate selection of the score function shaping

parameters 1),- , a,- and ,Bi. Outlined below is an algorithm to choose the salient feature of

the proposed score function

0 if Ki(.)2u/, 0S1),- S 1; 61,21 and ,8,- 21 where u/ >0 is a constant threshold

(for super-gaussian source distributions)

- elseif K,(.) S —§ , u,- 21 ; a,- 21 and ,6, 21 where 6 > 0 a constant threshold (for

sub-gaussian source distributions)

0 else a; = 0 (for gaussian distribution)

Note that for the case of sub-gaussian and super-gaussian distributions, er, and fl,-

can be fine tuned to match the dynamic range and also further improve the signal to noise

ratio (SNR) and intersymbol interference (ISI) of the recovered BSR sources.

4.5 Simulation Results

Simulation results using a 3 x 3 HR mixing environment are being presented. The

demixing system is formulated as a state-space network [20, 22, 29, 33]. For both

simulations involving feedforward and feedback networks respectively, the structure for

matrices A and B is kept fixed [23], whereas elements of matrices C and D are adapted.

For an in depth discussion on the BSR algorithms see [22, 23, 25, 27-29]. In all presented

simulations, the source signals are chosen to possess different distributions, i.e., super-

gaussian, gaussian and sub-gaussian respectively; the score function is adapted online

along with the BSR algorithm.

The convergence performance of the algorithm is measured using the multi-

channel intersymbol interference (MISI) benchmark. MISI is a measure of the global
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transfer function diagonalization and permutation as achieved by the demixing network,

see Appendix D for details.

4.5.1 Environment Model

This environment model is assumed to be a 3 x 3 HR filter

m—l n-l

Z A,m(k — i) = Z B,s(k — i) + v(k) (4.31)

j=0 i=0

where

'1 1 -1 0.5 0.8 —0.7 0.06 0.4 —0.5

Ao=l —1 1 ,A1= 0.8 0.3 —0.2 ,A2= 0.16 -0.1 -0.4

_1 —1 1 —o.1 —o.5 0.4 -o.3 —0.06 0.3

’1 0.6 0.8 0.5 0.5 0.6 .125 0.06 0.2

BO: 0.3 1 0.1 ,131 = -o.3 0.2 -0.3 .32: —o.1 o 0.4

 _0.6 —0.8 1 —0.2 —0.43 0.6 0.08 —O.13 0.3

and v(k) - represents additive gaussian noise

4.5.2 Demixing Network Structure

The theoretical inverse of this IIR mixing environment will be a 3 x 3 HR matrix filter

with each individual element being an IIR (or ARMA) filter of order 18. For both the

feedforward and the feedback demixing cases, matrix C can be initialized with very small

random numbers or all zero elements, while the matrix D is chosen to be an identity

matrix. The number of taps per filter was chosen to be 21. Note for these equivariant

minimum phase setups, any over-determination in the number of taps does not affect the

performance of the algorithm.
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Figure 4.9. (a) Mixing Environment Transfer Function, (b) Theoretical Environment

Inverse
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Figure 4.10. Feedforward BSR using Adaptive Score Functions: (a) Estimated Demixing

Network Transfer Function, (b) Convergence ofMISI Index
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Figure 4.11. Feedforward BSR using Adaptive Score Functions: (b) Convergence of

Batch Kurtosis, (c) Final Global Transfer Function
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Figure 4.12. Feedback BSR using Adaptive Score Functions: (a) Convergence of MISI

Index, (b) Convergence of Batch Kurtosis
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Figure 4.13. Feedback BSR using Adaptive Score Functions: Final Global

Transfer Function

4.6 Remarks

In this chapter, two separate adaptive score functions for blind source recovery

algorithms have been proposed. One of the score functions is based on the generalized

gaussian density model, while the other is derived using proposed hyperbolic extensions

to the Pearson and hyper-Cauchy models. Further we presented a method for online

adaptation of the parameters for these score functions. This online adaptation scheme has

been extensively tested for both minimum phase and non-minimum phase, instantaneous

as well as convolutive mixing. For linear convolutive mixing, the results using both the

proposed score functions are comparable. For simulations using bimodal distributions

only, the latter score function outperforms the former that is best suited for unimodal
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distributions. For nonlinear BSR, however, the slightly different kurtosis characteristics

of the two proposed distribution models may be better exploited to estimate the correct

demixing network. A couple of simulation examples using two different demixing

architectures have also been presented. It is observed that the proposed adaptive

framework can recover sources from a complex convolutive mixture efficiently even

when all the sources have different probability density structure.
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Chapter 5

BLIND SOURCE RECOVERY OF

UNDERCOMPLETE AND

OVERCOMPLETE MIXTURES

Blind Source Recovery is a framework for the estimation of unlmown original source

signals. Most of the existing BSR literature as well as most theoretical developments in

this dissertation have been done under the assumption that the number of observed

mixtures is equal to the number of original sources. In essence, this implies that the

dimension of original sources to be estimated is known a priori and thus sufficient

dimension in mixtures is recorded. In such a quadratic dimensional scenario, the

recoverability of the sources is guaranteed provided the environment is invertible [13,

14]. In case the environment is linear in nature, this theoretical demixing network is

unique and BSR adaptation results approach a permuted and scaled version of this
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solution. However, in practical settings, the number of mixtures may or may not exactly

equal the number of original sources. In case the dimension of observed mixture space

exceeds the dimension of the original sources, the BSR problem is termed as

Undercomplete BSR. Contrarily, if the dimension of the mixture space is smaller than

the signal space, the recovery problem is called Overcomplete BSR [1, 4, 8, 27].

This variation in dimension may arise due to a number of reasons. Firstly, in a

blind setting, the number of original stochastically independent sources may not be

exactly known, e.g., consider stellar measurements, cocktail party problem, financial

markets etc. Secondly, the dimension of the mixture or observation space may be

determined by the structure of the problem [6, 18, 19], e.g., communication networks,

number of installed recording devices etc. Thirdly, the additive noise in an environment

may be dynamic and originate from a spurious number of sources causing the number of

actual sources to vary over time, e.g., number of users in a wireless communication

system, channel additive sources and multi-path effects in multiple access

communication systems or in fact any measurements in dynamic noisy environments [5,

8, 11]. Due to these practical issues and difficulties in BSR problems, it is imperative to

consider the cases of undercomplete and overcomplete BSR.

In this chapter, assuming the mixing to be linear in nature, a methodology is

presented to use the BSR algorithms presented earlier in this work for the case of

undercomplete mixtures. The case of overcomplete BSR is intractable in general.

However, only possible solutions exist for sparse sources and are discussed in subsequent

sections [1, 4, 10, 16, 24, 25, 27].
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5.1 BSR of Undercomplete Mixtures

Undercomplete BSR is a more commonly encountered problem especially in the realm of

communication systems, radar and sonar measurements or any other noisy BSR

formulations, where adequate sensors are employed to collect the mixed signals and/or

corrupted sources. For the case of undercomplete mixtures, the original sources occupy

only a subspace of the mixture dimensions. In noisy undercomplete BSR, the update laws

presented in earlier chapters can be used as is on the mixture dimensions to recover an

equal number of sources. However, in such a recovered set of estimated signals, some of

the sources may be recovered with multiple permutations and deflationary approaches

may be needed to efficiently estimate the actual estimated sources [1, 5].

Altemately undercomplete BSR problem can be converted to the standard BSR

problem by efficiently discarding some of the mixture data. This can be achieved by

using signal pre-processors [4, 5, 7], such as PCA, projection pursuitietc. Efficient data

reduction is useful in several ways; firstly, it reduces the dimension of the BSR problems

and therefore results in a reduction of computational requirements. Secondly, data

reduction techniques such as PCA based pre-whitening may also result in reduction of

additive noise in the mixture space simplifying the BSR problem at hand. However, the

performance of the data reduction stage is critical, as any data discarded at this stage is

not used by the BSR stage and thus in-efficient data reduction may limit the performance

of the overall recovery setup [5, 8]. See chapter 6, for the performance ofBSR algorithms

with a data-reducing pre-processor.
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5.1.1 Efficient reduction of Mixture Dimensions

In undercomplete mixtures, efficient estimation of the desired signal subspace results in

both reduction of overall computational load as well as it may serve as a pre—processor to

reduce the additive measurement noise in the mixture space. Two best candidates for

such reduction of data dimensions are basis pursuit and pre-whitening using principal

component analysis (PCA). Under good implementation both techniques lead to similar

performance [4, 5, 7], therefore only PCA is discussed in this work. PCA may be

implemented either using algebraic or adaptive techniques.

5.1.1.1 Algebraic Principal Component Analysis

In algebraic PCA, an auto-correlation matrix of the received mixture data is computed or

estimated online as [6].

R(m) = ar(m)rH (m) + (1 —a)R(m -1) ‘ (5.1)

An efficient data reducing pre-whitening matrix in this case is then constructed as

follows:

W ___ D;%VSH
(5.2)

where 15$ and 173 are the estimates of the n dominant eigen-values and eigen-vectors of

the auto-correlation matrix R. These eigen values and vectors can also be computed

adaptively, see [8, 9].
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5.1.1.2 Adaptive Principal Component Analysis

Instead of trying to estimate the auto-correlation of the mixture data or its eigen

decomposition, the pre-whitening matrix may be directly adapted from the mixture data

[6, 7] by the following simple update law

W(k +1) -_- W(k) + n(k)[1 —x(k)xH (10] W(k) (5.3)

or its averaged version

AW(k) = 77(10[1 — <x(k)xH (10)] W(k) (5.4)

where x(k) = W(k)m(k) and (.z) represents statistical averaging.

In case, m(k) is noisy such that m(k) = 151(k) + v(k) , and 151(k) is the

corresponding noiseless mixture estimate. Let f(k) = W(k)ri1(k) be the corresponding

noiseless whitened estimate. The additive noise v(k) within m(k) introduces a bias in

the estimated pre-whitening matrix W. Computing the covariance matrix for the

whitened data as

Rn = <x(10x” (10) = WR,;,,;,WH + WRWWH (5.5)

where R,;,,;, =<15‘1(k)1izH(k)> and RW =<v(k)vH (10).

Assuming the covariance matrix of the noise to be either known or estimated

online [5-8], an unbiased PCA estimate can be determined by

W(k +1) = W(k) + 77(10[1 — x(k)xH (10+ 03W(10W”(10]W(10 (5.6)

where, it is assumed that RW = 031 . For more details, see [5].
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5.2 BSR of Overcomplete Mixtures

The overcomplete BSR poses an intractable problem withno straightforward theoretical

solution. In fact, even with the precise knowledge of the mixing structure for a simple

static case, source estimation is not possible using any simple linear algebraic

manipulation. A possible solution for the case of sparsely distributed (super-gaussian)

statically mixed sources is inspired from basis pursuit [4], where the overcomplete

mixtures is decomposed using a combination of adaptation for the mixing matrix and

source inference using an interior point linear programming minimization of an L1 norm

based performance functional. Therefore, the discussion on overcomplete BSR will be

restricted to the static case of ICA only.

Several possible solutions to the separation of independent components from their

overcomplete mixtures have been proposed for super-gaussian sources [1, 2, 4, 10, 27,

28], but either the algorithms are computationally very demanding or the achieved

separation quality is not very good. Recently published results have proposed efficient

two stage approach to the recovery of sparse overcomplete mixtures [3, 16, 24]. This

approach results in remarkably reduced computational requirements as well relevantly

improved quality of received sources.

5.2.1 Two Stage Approach to Overcomplete ICA

In two stage overcomplete recovery approach, the overall computational burden of the

adaptation is reduced by decoupling the two sub-problems of mixing matrix estimation

and original source recovery. Data space projection methods [15, 22] are employed to

first blindly estimate the underlying mixing matrix, this is called Blind Mixing Matrix
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Recovery (BMMR). In the second Overcomplete Source Estimation (OSE) stage, source

data is estimated directly from the mixture data minimizing an L1 norm objective

distance functional for interior point linear programming [4, 10]. As the two steps are

carried out independently of each other, rather than recursively [1, 10, 27], the

computational burden is greatly reduced.

Another technique for OSE using the shortest path approximation is explained in

[3, 17]. This technique requires less computation than the aforementioned technique.

However, in our experience the quality of sources recovered using the IP-LP approach is

better than the latter approach, especially when the mixture space has a larger dimension.

In our work, the overcomplete ICA is solved in two stages, our porposed

Algebraic Independent Conponent Analysis (AICA) Algorithm is used to estimate the

rectangular mixing matrix, followed by optimal source inferencing using L1 norm based

interior point linear programming technique.

The proposed algebraic ICA algorithm is meant for the blind estimation of the

mixing matrix and provides promising results for all cases of ICA. Under the assumption

of sparse sources, AICA provides a blind estimate of the mixing matrix, termed as Blind

Mixing Matrix Recovery (BMMR) [16]. BMMR directly constitutes a solution for

quadratic ICA (and undercomplete ICA after discarding the appropriate undesired

subspace), while for the case of overcomplete ICA, it is followed by a stage for the

recovery of more sources than observations based on the already estimated mixing matrix

[4, 10, 16, 25].

In the following sections first Algebraic ICA algorithm is presented followed by a

permutation invariant algebraic performance benchmark for the evaluation of ICA
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algorithms. The source recovery step has been summarized for the convenience of the

reader. Further, a heuristic technique is discussed to enhance the algebraic resolution of

the AICA solution for cases where some of the columns of the mixing matrix are

algebraically “close” to each other. This is followed by simulation examples and a

discussion on the algorithm itself.

5.3 Algebraic Independent Component Analysis

Independent Component Analysis can be best visualized as a projection method where

the observed mixture data is projected onto a new basis, which minimizes the statistical

dependence among the various data components. Such a representation is very appealing

in a number of domains including statistics, signal processing, bio-medical, molecular,

communications, audio, speech, sonar, astro-physics, textual-topics etc. The best-known

application of ICA is termed as blind source separation (BSS). BSS provides the

framework for the estimation of the original source signals directly from their measured

static mixture with the only underlying assumption of mutual independence of the actual

source signals. Blind Source Separation (BSS) is a special case of Blind Source Recovery

(BSR), where the mixing is assumed to be static.

Algebraic Independent Component Analysis (AICA) is a new ICA algorithm that

exploits algebraic operations and vector-distance measures to estimate the unknown

mixing matrix in a scaled algebraic domain. AICA possesses stability and convergence

properties similar to earlier proposed geometic ICA (gee-ICA) algorithms, however, the

choice of the proposed algebraic measures in AICA has several advantages. Firstly, it

leads to considerable reduction in the computational complexity of the AICA algorithm

as compared to similar algorithms relying on geometric measures making AICA more
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suitable for online implementations. Secondly, algebraic operations exhibit robustness

against the inherent permutation and scaling issues in ICA, which simplifies the

performance evaluation of the ICA algorithms using algebraic measures. Thirdly, the

algebraic framework is directly extendable to any dimension of ICA problems exhibiting

only a linear increase in the computational cost as a function of the mixing matrix

dimension. The algorithm has been extensively tested for over-complete, under-complete

and quadratic ICA using unimodal super-gaussian distributions. For other less peaked

distributions, the algorithm can be applied either using a neighbourhood function,

averaging of data [7].

The Algebraic ICA (AICA) algorithm is based on the linear algebraic notion of

dot-product between two n-d data vectors as a distance measure. The dot product between

two vectors 5 and b in the same basis ‘1’ e R" is defined as

_ - A _T" _ _ — I

ab — a b —|a||blcosl90b (5.7)

where Bab is the n-d angle between the vectors 5' and b .

In case, the two vectors have been projected onto a unit hyper-sphere ‘1’1 e R" , then

IE] = W =1 , and the dot product simply becomes a measure of the n-d. angle or difference

in directions of the two vectors.

If the two vectors are co-incident (i.e., lie along the same n-d direction), the

absolute value of the cosine of the n-d angle 00b is maximum (i.e., one), while if they are

orthogonal to each other, the cosine of the angle 1901, becomes zero. Therefore, after

projection onto a unit hyper-sphere, the notion of minimum distance is equivalent to the

notion of maximizing the absolute dot-product between the projected vectors. Using the
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absolute value of the dot product produces a sign ambiguity, which is inherent in any ICA

algorithm. This results in considerable computational savings during the implementation

of the proposed algorithm, i.e.,

[7.17] = |a.17| where a = —a (5.8)

Another useful property for the dot-product is its insensitivity to the order of the product,

i.e., (73:17.5

In order to satisfy the stability and convergence requirements of AICA, the

original source distributions should be unimodal, super-gaussian and preferably

symmetric [3, 15, 23].

Consider the case where there are 11 original independent Lebesgue-continuous

sources sk e R";k =1,2...n

. . . . T .

s(t) =[sl(1) 32(1) sn(1)] ;1=1,2,...,N (5.9)

that are mixed by a mixing matrix H e Rmx" , where m may or may not be equal to n,

i.e.,

H=[hl 112 hn];hkeRm;k=l,2...n (5.10)

where each column maps the k’h source signal sk to the mixture space mk eR'",

i.e., m = HS .

Without any loss of generality, it is assumed that the columns of the mixing

matrix reside on the m-d unit hyper-sphere. In case the columns of H do not satisfy this

constraint, they can be projected onto this hyper-sphere by

1:71:93, 52 13,] (5.11)
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where

~ h
h = k ;k=1,2... 5.12

k 47k“ n - ( )

This assumption is equivalent to having a scaling ambiguity in the mixing matrix

estimates by the algorithm, which is again inherent in any ICA formulation.

In the mixture basis m e Rm , the k’h source data is clustered along the m-d hyper-

direction formed by the intersection of bk and 411‘. The AICA algorithm therefore tries

to estimate these hyper-directions (and hence the mixing matrix) using algebraic

operations on the available mixture data.

 

Scatter Data with centroids along the directions oi the Mixing Matrix

I I I I r I

?h,/nh,u . ‘ r f

 

    

0.4.3..

0.2 r

  
 

-1.5 -1 —O.5 0 0.5 1 1.5  
 

Figure 5.1. A scatter plot example of the projection of two sources onto the

2 x 2 mixture space.
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For clarity of illustration, consider the case for m = n = 2 as shown in Figure 5.1. The

columns of the mixing matrix [1 have been normalized so that they are projected onto

the unit circle. In order to clearly indicate the direction of the plotted mixing matrix, lines

are drawn between h,/||h,.|| and -11,- /||h,-||. The mixture data has also been scaled to fit

within the unit circle. The dashed lines indicate the basins of attraction for each of these

directions.

5.3.1 The Algebraic ICA Algorithm

Assuming that the n-d mixture data has been accumulated over some period of time and

there are N samples available that in essence can capture the distribution of the original

sources and are also adequate for the algorithm to converge. Furthermore, the dimension

mxn of the desired weight network is known. The algorithm can be implemented as

follows:

1. Pick an n number of m-d starting elements for the weight matrix

W0 = [W1 wz wn] on the unit hyper-sphere. These initial starting points can be

chosen in a number of ways, e.g., they can be either chosen randomly or evenly

distributed around the unit hyper-sphere.

2. Choose an m-d mixture sample vector m,- taken at the 14” sampling instant, such that

m,- ¢O,i=1,2...N

3. Project this sample mixture vector onto the m-d unit hyper-sphere by

Mi=fl i=1,2...N (5.13)
2

"mill

116



. Find the dot-product of this projected mixture vector M,- with the current i’h estimates

ofthe weight matrix Wi;i = 0,1...N—1

. Determine the closest weight direction (i.e., the winner column) by

w; =argmax|M,-T*wj|;j=1,2,...n, i=1,2,...N (5.14)

“’1

. Update only the winning weight direction by the following algorithm

, W(wj(k)*+n(0sgn(M, -wj(10")), if M} *w; >0

wj(k+l) = . * (5.15)

i/I(wj(k)*+77(t)sgn(—M,~—wj(k) )), if Mfr-w]. <0

where, n(t) - represents a small time adaptive learning rate. Often the learning rate is

chosen to be an exponentially decreasing function with a decay rate that depends on

the characteristics of the source distributions to be estimated.

w(.): is a nonlinear function that projects the updated weight vector again onto the

unit hyper-sphere, i.e., w(.) = —(l-

"01

. Determine the change in weight space

AWi=Wi-W,-_1;i=1,2,...N (5.16)

. If IAW1|< a where e>0 is a small positive valued stopping criterion; the algorithm

has converged to its final state.

. Otherwise, update the iteration counter i: i+1, and repeat steps 2 to 9 till the

algorithm converges.

For the proposed algorithm, the update is according to the rule: one winner takes all.

The algorithm reaches a fixed-point (or settles down to a solution), when

117



E(sign(M,--wj(k)*))=0. The AICA algorithm at this stage has converged to the

median of the distribution, which for a symmetric distribution also matches with the

mean of the distribution. At convergence, there is no change in the weights and

E(Wk+1)=E(Wk). In [3, 15, 16] similar conditions have been derived for gee-ICA,

termed as Geometric Convergence Condition (GCC), but these conditions are in general

satisfied by all self-organizing algorithms (SOM). Both AICA and geo-ICA algorithms,

resemble the Kohonen’s algorithm for self-organizing maps (SOM) with a trivial zero-

neighborhood [7]. In a 2-sources 2-mixtures case, the algorithm possesses only two fixed

points [15],

W(oo) = (5-17)

where, X is a generalized permutation matrix.

The convergence of the algorithm to the true solution is therefore a function of

initialization and distribution of the sources to be estimated. In case of super-gaussian

sources, however, only the true solution is the stable fixed point. Another observation for

lower dimension problems is that a weight vector may get trapped between two data

clusters and may require re-initialization especially if the two directions are very close to

each other. However, for larger dimension problems, the probability of this occurrence is

negligible.

The proposed algorithm framework has similarities to the Geometric ICA

algorithm [3, 12, 15, 17] but requires significantly less computation due to the choice of a

different distance measure and a reduced number of parameters to update. The use of a

neighborhood function in the proposed algorithm is currently being investigated for
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source distributions other than the super-gaussian. There is interest in the ability to handle

signals with multiple source distributions [20].

Figure 5.2 presents the results after convergence of[the proposed algorithm for the

2x2 case with initialization as presented in Figure 5.1. The initial estimates of the weight

vector were chosen randomly. It is evident from Figure 5.2 that the algorithm caused the

initialized weights to converge to the nearest desired direction.

 

Directions of Initial 81 Final Mixing Matrix Estimates

 

0.8-4

0.64

0.2L

   
   
 

Figure 5.2. Convergence of the weights in the 2 x 2 mixture space; wi(0) denotes the

initial weight locations while wi(oo) denotes the final weight location.
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5.3.2 Algebraic Matrix-Distance Index (AMDI)

Algebraic Matrix Distance Index (AMDI) is primarily a scaling, sign and permutation

invariant symmetric numerical index to estimate the “similarity” between the column-

bases of two “normalized matrices” with conformal dimensions. Unlike the Multichannel

Intersymbol Intereference (MISI) measure (also called Amari Index by some) used in

ICA to measure the diagonalization of the global transfer function, AMDI is a measure of

similarity between two column-normalized matrices with similar dimensions.

These attributes also make AMDI suitable for comparison of results for

algorithms such as AICA and geo-ICA especially for overcomplete ICA where

computation of MISI is not possible. In order to compute this metric, the columns of the

matrices are normalized by projecting them onto the conformal unit hyper-sphere by

dividing all the elements of each column by the norm of the corresponding column. The

  

AMDI is given by

n-ZmaxdW'*H|) n-Zmax(|W'*H|)

AM)I(W, H) = '0“ + 00’s (5.18)

n n

where

W, H— are two column-normalized matrices of similar dimensions.

The Algebraic Matrix Distance Index (AMDI) has the following properties:

0 0 S AA/HDI(W,H) S 2; AAfl)1(W,H) = 2 only if both matrices are orthogonal to

each other in the n-d space, also

. AMDI(W,H) = AA/fl)1(H,W)
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5.3.3 Resolution of AICA Local Minima and Ambiguities

Algebraic ICA is a member of a class of data-dependant self-organizing algorithms. The

performance of the algorithm is a function of the choice of the initial weights, learning

rate and most importantly characteristics of the data. While AICA weight columns

converge to the directions (or columns) of the actual mixing matrix in the limit, provided

the data is unimodal with a high value of kurtosis, and the mixing matrix directions are

sparse [3, 16, 22]. For data that does not meet these requirements either due to lower

kurtosis, or due to the actual mixing matrix directions being “close” to each other

(especially for the overcomplete cases), the algorithm does not give the desired estimate

performance. For such cases, a better estimate of the mixing matrix may be derived using

more than one trials of the algorithm. This technique is also useful for the cases where the

available data is inadequate for the AICA algorithm to estimate the mixing matrix. A

heuristic stepwise approach for such ambiguous cases can be followed as:

l. Initialize all the columns of the estimator matrix at the same location. For each

successive trial, choose a different initial location, e.g., one way to do so is to

initialize the weights at possible m-d binary combinations of 1’s and zeros. For m

mixtures there are possible 2’"-1 such initializations possible, i.e. leaving aside the

trivial combination of all zeros.

2. Execute the AICA algorithm for each initial condition. For a sparse mixing

matrix, the algorithm converges independent of the initialization provided adequate

data is available [17, 24]. In most cases, the algorithm will converge during one of the

trials.
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3. In case, the algorithm fails to converge for any choice of initialization. Note, in a

blind scenario this condition cannot be verified and multiple trials serve as a mean of

estimating the mixing matrix with a higher confidence level. The AICA estimate for

all cases can be post-processed to determine the high confidence candidate weight

columns, see steps 4 to 10.

Determine the list of “close” columns in all trials. This can be algebraically

realized by choosing the corresponding columns with dot product values above a

certain threshold or. This threshold a can be chosen as a function of data sparseness

and the desired resolution of the AICA algorithm.

Concatenate the column pairs with dot products better than a higher threshold ,6,

where ,6 2 a and a common column.

Repeat Step 5 till all possible concatenations are made (this may take 77 -l

iterations for 17 trials, if 1 combination is made each time).

Determine the independent 2 columns as the mixing matrix candidate columns.

The concatenated column cases are given a relatively higher rank. The candidate

columns are arranged as a function of their dot-products values. At this instant, one

option is to choose the Mhighest ranked columns as the final mixing matrix candidate

columns.

In case the final column candidates making the out are smaller than M,

deflationary approaches can be used after estimation of the output using the mixing

matrix estimate. The remaining columns can now be determined in a consecutive

stage.
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10. Altemately when the candidate number of columns is larger than M, instead of

choosing the columns via ranking, all the columns may be used for the source

recovery stage, then the selection of appropriate outputs is made by measuring the

independence of recovered outputs, e.g., such an estimate can be made using

Quadratic Information Measure [21].

Using the above-mentioned technique, for a 3-d mixture space, the mixing matrix

with a resolution of better than a 15° (approx. 0.25 rad) hyper-cone in the weight space

has been successfully estimated. See simulation III for some more details.

5.3.4 Inferring Sources from Overcomplete Mixtures

Once the mixing matrix has been estimated by the AICA algorithm, the original sources

can be estimated. For quadratic ICA, the sources can be estimated by computing the

inverse of the estimated mixing matrix W, i.e.

5 = W‘lm (5.19)

For the case of overcomplete mixtures, the recovery of the sources is in general

not possible. However, for the case of sparse super—gaussian sources, once the mixing

matrix has been estimated, interior point linear programming (IP-LP) techniques [4] can

be used to determine the best possible estimate of M-d sources from m-d mixture where

M > m. The technique uses interior point LP with an L1 norm based performance

functional. Standard interior point L2 norm based LP methods can be used for this

technique according to the following procedure [4, 10]:

minch min "5“1

3.1. 3 st. (5.20)

Ax = b,x _>_ 0 W5 = m
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where

A = [W —W]: W is the estimated mixing matrix of dimension m x M , note by choice M

= n in this case.

x = [u v]T: represents the M—d intermediate recovered sub-signals with the constraints

uZO and v20

c=[l HT: constrains the recovered M—d sub-signals u and v equally, l is an M—d

vector of ones.

b = m: m are the m-d overcomplete mixtures.

The M-d outputs are then determined using the relation

5 = u — v (5.21)

Another technique using the shortest path approximation is explained in [3, 16].

This technique requires less computation than the aforementioned technique. However,

in our experience the quality of sources recovered using the LP approach is better than

the latter approach.

5.3.5 Simulation Examples

Four simulation examples are being presented: the first example demonstrates the issue of

multiple fixed points (or presence of local minima) in the AICA algorithm using

independent identically distributed (IID) data. Then there are two examples using

overcomplete mixtures of 3 and 5 sparse speech segments, respectively. In these sparse

speech samples, words are spoken with certain time intervals to increase the sparseness of

the actual speech signals. The recovery of these speech signals from their 2 and 3 static

mixtures, respectively, is presented. The AICA algorithm is first used to estimate the
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mixing matrix, while the speech sources are inferred using the L. norm interior point

linear programming.

The fourth example discusses BMMR for a 6 x 3 mixture using IID laplacian

sources. The motivation for this example are cases where some of the mixing directions

are “so close” that algebraic ICA algorithm cannot discriminate these algebraically

adjacent columns due to the relatively high overlap of data aligned to them (resolution).

For such cases, the proposed ambiguity resolution technique is applied, which allows for

the exploration of the complete mixture bases in an orderly and organized manner.

5.3.5.1 Simulation 1: 4 x 2 Laplacian Data

In this simulation, a synthetic random matrix mixes 3 independent identically distributed

laplacian sources. For this simulation the mixing matrix is

.._ 0.7231 —0.6121 —0.6587 0.8005

0.6908 0.7908 0.7524 -0.5994

All the weights for the AICA algorithm in this case are initialized along the real

axis. It is observed that the algorithm converges to the undesired fixed point. This is

sensed by AICA observing that only two of the weights are updated, while the other two

are not, see Figure 5.3.a. The algorithm in this case re-initializes the discarded weights

very close to the weights which are currently being updated. This results in the

convergence of the algorithm to the true solution, see Figure 5.3.b. The determined final

weights for this simulation are

_ 0.7265 0.8039 0.6448 0.6075

— 0.6872 -0.5948 0.7644 —0.7943

and the achieved AMDI performance is less than 0.0003.
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Figure 5.3. BMMR for Laplacian Data using AICA: (a) Interim Results,

(b) Final Convergence
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5.3.5.2 Simulation II: Overcomplete Speech Data (3 x 2 Case)

A simulation example for an overcomplete mixture which comprises of three speech

signals mixed by a random mixing matrix into two mixtures is being presented. The

AICA algorithm is first used to estimate the mixing matrix, while the speech sources are

inferred using the L1 norm interior point linear programming.

The AICA estimated mixing matrix was very close to the original mixing matrix

used with a normalized AMDI of 0.001. The recovered sources show a permutation

between the first and third sources. Also notice that the recovered signals from the

overcomplete mixture in Figure 5.5 .a are not without artifacts but very closely resemble

the original sources in Figure 5.4.a.

Observe that the separated quality achieved using separate Blind Mixing Matrix

Recovery (BMMR) and source recovery steps far exceeds other algorithms [1, 4, 10],

provided a good mixing matrix estimate was found.
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5.3.5.3 Simulation III: 5 x 3 Speech Data

For this simulation, the simulation example comprises of an overcomplete speech

mixture. Five utterance are mixed using a 5 x 3 mixing matrix, as given below.

0.4872 —0.9063 0.3285 0.6203 -0.8837

H = 0.2021 -0.0247 0.2714 -0.6752 0.2019

-0.8489 —0.4220 0.9047 0.3990 0.4223

The AICA algorithm is first used to estimate the mixing matrix W, while the speech

sources are inferred using the L1 norm interior point linear programming.

The AICA algorithm converges to the estimate in approximately 25000 iterations

achieving an AMDI of 0.002. The estimated mixing matrix W exhibits a permutation,

where the columns appear in the order 4, 3, 5, l and 2. Also the second and fourth

columns of Whave an inverted sign.

0.6243 —0.3298 —0.8787 —0.4861 09015

W = —0.6724 —0.2773 0.1993 —0.2020 0.0228

0.3949 —0.9157 0.4240 0.8445 0.4160

In Figures 5.6-5.8, the 3 speech mixtures, the original 5 speech utterances and the

5 inferred speech sources are shown. Notice that the recovered signals from the

overcomplete mixture in Figure 5.8 are not without artifacts (introduced primarily by the

source inferring stage) but closely resemble the original speech utterances. A listening

test proves this. The speech simulation data can be downloaded at

http://www.egr.msu.edu/bsr/results.

Observe that the two stage overcomplete mixture recovery approaches [16, 24,

25] are relatively simpler to implement as compared to other complex approaches [1, 4,

10]. Also combined BMMR and source inferencing provide satisfactory results as long as
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the underlying probability distribution is sparse. The performance of the AICA algorithm

depends on the quantity of preamble data available for estimation of the weight matrix.

Although the algorithm may be implemented for any dimensions, the amount of data

required may be immense. This can be dealt with by repeatedly training for weight

estimation on a batch of data, provided the data batch size is adequate to represent the

actual underlying source distributions.
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Figure 5.6. Overcomplete Speech Mixture (5 x 3 Case): 3 Overcomplete Mixtures
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Figure 5.7. Overcomplete Speech Mixture (5 x 3 Case): Original 5 Speech Utterances
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Figure 5.8. Overcomplete Speech Mixture (5 x 3 Case): Recovered 5 Speech Utterances
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5.3.5.4 Simulation IV: Independent Identically Distributed (iid) Laplacian Data

For this simulation, six iid laplacian sources are mixed by a randomly generated matrix of

dimension 6 x 3 into three mixtures. Also presented are some of the results where the

columns of the mixing matrix are close and the matrix is estimated using the ambiguity

resolution scheme is presented in section 1.3.4.

For the mixing matrix below the columns 5 and 6 are within 0.4 rad of each other.

AICA is able to estimate the mixing matrix successfully using the data from 3 trials.

0.0226 -0.4698 0.5311 —0.2640 0.9597 -0.9498

H1: -0.0620 -0.0327 -0.5890 -0.4616 0.0309 0.1029

0.9978 -0.8822 0.6091 -0.8469 0.1793 0.0021

Figure 5.9.a shows the results using the proposed technique. The recovered

weight are shown in red, while the blue dash-dot line shows the actual mixing matrix

locations. In another simulation, the mixing matrix is

0.0839 0.6345 0.6606 0.9997 0.3875 0.3164

H2 = 0.8850 0.6525 0.7506 0.0029 0.1546 -0.0014

-0.4579 0.2144 -0.0149 0.0248 0.8509 0.9486

where columns pairs 2 and 3; 5 and 6 are within 0.35 rad of each other. The AICA can

resolve these columns successfirlly using results from 7 trials. The final result is shown in

Figure 5.9.b.
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The performance of the AICA algorithm depends on the quantity of preamble data

available for estimation of the weight matrix. Although the algorithm may be

implemented for any dimensions, the amount of data required may be immense. In such

cases, the same data batch or a randomly drawn batch may be repeated during the weight

estimation process provided the amount of data in the batch is adequate to represent the

actual source distributions [7]. The convergence of weights certainly depends on the

initialization. Another observation for lower dimension problems is that there are more

chances for a weight vector to be trapped between two algebraically close data clusters.

However, for larger dimension ICA problems, the probability of this occurrence is

minimum.

5.4 Remarks

In this chapter, the adaptation issues for the undercomplete and the. overcomplete BSR

have been discussed. A new Algebraic ICA (AICA) algorithm based dot-product has

been presented. The algorithm estimates the static mixing matrix under the assumption

that the original sources are unimodal and possess positive fisher kurtosis. It is

demonstrated that the proposed AICA algorithm for the case of overcomplete mixing is

used for BMMR. The original sources can then be estimated using interior point L1 norm

based LP technique. Also presented is AMDI, which is a matrix-distance measure to

compare two matrices, which may be both scaled and permuted with respect to each

other. Further, a heuristic technique to determine the BMMR solution when the mixing

matrix columns are close to each other is also discussed. The algorithm has been

successfully applied to the problems where the dimension of mixtures is half the number

of original independent signal sources. Currently algorithm extension using a
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neighborhood function is being investigated for gaussian and sub-gaussian distributed

signals. The speech data for the examples can be accessed at the website

http://www.egr.msu.edu/bsr/res% [26].
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Chapter 6

BLIND SOURCE RECOVERY

APPROACHES FOR WIRELESS

DS-CDMA AND WCDMA DOWNLINK

SYSTEMS

Code Division Multiple Access (CDMA) is based on spread-spectrum technology and is

a dominant air interface for the proposed modern 3G and 4G wireless networks [145].

The transmitted CDMA signals propagate through noisy multipath fading communication

channels before arriving at the receiver of the user equipment (UE). In contrast to

classical single-user detection (SUD) algorithms, which do not provide the requisite

performance for modern high data rate applications, multi-user detection (MUD)

approaches require a lot of a-priori information not available to the UE. In this chapter,
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three promising adaptive natural-gradient based info-theoretic blind user detection

approaches capable of handling the wireless dynamic environments are proposed. The

first approach, Blind Multi User Detection (BMUD), is the. process of simultaneously

estimating multiple symbol sequences associated with all users in the downlink of a Code

Division Multiple Access (CDMA) communication system using only the received

wireless data. This approach is applicable to CDMA systems with short codes but

becomes impractical for systems using long codes. Also proposed are two other adaptive

approaches, namely RAKE-Blind Source Recovery (RAKE-BSR) and RAKE-Principal

Component Analysis (RAKE-PCA) that fuse an info-theoretic stage into a generic RAKE

receiver. This results in robust detection algorithms with performance exceeding the

standard LMMSE detectors for both DS-CDMA and WCDMA systems under conditions

of congestion, imprecise channel estimation and unmodeled multiple access interference

(MAI).

6.1 User Detection in CDMA Systems

The conventional detection schemes for CDMA signals only exploit second order

statistics among user codes. Practically, however, the underlying user data symbol

sequences are in general mutually (near-) “independent”. This is a key assumption, which

propels the application of info-theoretic learning approaches such as information

maximization [21] and minimum mutual information [14] to the realm of CDMA. The

use of these algorithms is justified since a wide sense stationary slowly fading multipath

CDMA environment can be conveniently represented as a linear multi-channel

convolution model (see section 6.3.1) [39, 123]. The received CDMA signal can be

considered as a sum of several non-gaussian random variables generated by the linear
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convolutive transformations of statistically (near-) independent component user variables

[58, 141]. This linear transformation accounts for the user spreading codes, the cell

scrambling codes (in case of a cellular architecture), multiple channel paths and slowly

fading channel effects [141]. Our goal is to estimate a linear transformation to counteract,

as “optimally” as possible, the effects of a first transforrnation-- resulting in the recovery

of the original user signals under the constraint of knowing only the user’s signature code

(and the corresponding cell scrambling code for a two stage implementation) [58, 62,

122,123,141]

For a generic DS-CDMA implementation using only a single stage of user

spreading codes (e.g., using PN codes, gold codes or Walsh Hadamard codes etc.), info-

theoretic blind source recovery techniques [62, 123, 124] can be employed to recover the

user data sequences in the multi user environment. Blind Source Recovery (BSR) is the

process of estimating the original “independent” user-specific symbol sequences

independent of, and even in the absence of, precise system/channel identification [109,

110]. In typical downlink signal processing, where many of the system parameters are

unknown, including the codes for co-existing users at any instant of time, one can use the

blind techniques for better estimate of the user-specific signals [62, 123, 124].

Altemately, Blind Multi-User Detection (BMUD) algorithms based on the Natural

Gradient Blind Source Recovery (BSR) techniques in both feedback and feedforward

structures can be used [109, 110, 135, 139]. The “quasi-orthogonality” of the spreading

codes and the inherent “independence” among the various transmitted user symbol

sequences form the basis of the proposed BMUD methods. The proposed structures and

algorithms demonstrate promising results as compared to the conventional techniques
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comprising, e.g., Match Filter (MF), RAKE and block LMMSE [57, 98, 120, 121]. Our

proposed algorithms can be implemented either using the batch or the more

computationally efficient instantaneous update methods [1.10, 112]. Although batch

implementations exhibit better performance [123], it is however accompanied by longer

latency and more involved implementation structures not suitable for a UE/MS. Focus is

placed on the instantaneous (or on-line) performance of the BSR algorithms only, which

still exceeds the performance of other approaches [122, 124].

This (on-line) detection technique can be easily extended to other CDMA

implementations, using relatively short scrambling codes, but becomes impractical in

WCDMA downlink using long scrambling codes. In spite of the fact that very low bit

error rates (BER) can be achieved with this technique and the detection process does not

even require the knowledge of user’s own signature code, the recovered signal stream is

at the symbol level with no user identification [62, 123]. Further, inherent sign and

permutation ambiguities exist in BSR (scaling is not relevant as the recovered streams are

either BPSK or QPSK etc.); therefore user identification is not possible unless some

preamble or pilot data is transmitted periodically [62, 123]. This periodic requirement

stems from the dynamic nature of the wireless communication scenario where users may

dynamically enter or exit the system. The environment structure also varies widely due to

the mobility ofthe MS/UE [4].

With these practical constraints in mind, new algorithms are proposed by an

infusion of info-theoretic learning algorithms such as static Blind Source Recovery

(BSR) (or Independent Component Analysis, ICA) and Principal Component Analysis

(PCA) in the existing structure of a RAKE receiver [122, 125]. The purpose of this
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additional info-theoretic stage is to counter, as best as possible, the unmodeled multiple

access interference (MAI) and the additive (white gaussian) noise in the channel [122].

Further, use of a simple info-theoretic stage does not make the receiver structure too

complex (in fact, it is simpler than most other proposed adaptive LMMSE

implementations [44, 121]). RAKE-PCA uses up to second order statistics, as compared

to RAKE-BSR, which utilizes higher order statistics. This results in slightly simpler

update structure for the RAKE-PCA, but the performance of the RAKE—BSR is found to

be better than RAKE-PCA. Further, assuming the score-firnction for the ICA update law

to be chosen properly, the resulting equalization matrix in case of RAKE-BSR has

relatively smaller element values (energy) as compared to the corresponding matrix for

RAKE-PCA, which can be translated to the need of fewer memory bits. Lastly, both

RAKE-BSR and RAKE-PCA use all the available user information, so that there are no

issues of user identification and sign ambiguities in this case [122, 125]. The main

advantage of both the RAKE-BSR and RAKE-PCA algorithms is the improved BER

performance for the UE/MS without the need of any additional information than what a

standard RAKE receiver already has. The proposed algorithms can be applied to both

generic DS-CDMA and modern 3G UMTS implementations.

The remaining chapter is organized as follows: the next section discusses the

CDMA forward communication channel (or downlink) and the limitations of the

conventional user detection approaches. In the third section, the signal models are derived

for a generic single stage spreading DS-CDMA and the two stage WCDMA (or 3GPP

UMTS FDD) downlink scenarios [143]. This is followed by a section on detection

algorithms for UE/MS. Initially the structure of the well-known linear detectors such as
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MF, RAKE, LMMSE etc. is briefly described. This is followed by a description of the

proposed info-theoretic structures for DS-CDMA and WCDMA wireless networks. The

fifih section presents simulation results under various test conditions and congestion

levels for the systems. Simulation results using the BER performance as a performance

measure support the superiority of the proposed info-theoretic formulations for various

DS-CDMA and WCDMA situations. In the conclusion section, the findings of the work

are enlisted and summarizing remarks are made on the effectiveness of the proposed

algorithms.

6.2 CDMA Downlink Communication Channel

Code Division Multiple Access (CDMA) uses spread spectrum techniques in which all

the users share the same temporal and spectral resources [58, 98, 121]. In the downlink

signal processing, each user is identified by a unique signature code, which is chosen to

be “orthogonal” (or quasi-orthogonal) to the signature codes allotted to other users in the

system. The Direct-Sequence Code-Division Multiple Access (DS-CDMA) is a

promising data transmission technique capable of high data rates and better immunity to

channel impairments and noise [98]. In DS-CDMA, the signal energy is “spread” over a

wide frequency range, which reduces the effects of fading channels. CDMA systems

utilize the given spectral and temporal resources more effectively as compared to other

multiple access schemes such as FDMA and TDMA [145]. This results in a larger user

capacity per given resources [57, 98, 121], making CDMA systems a cost effective

choice for modern and proposed future wireless networks [1-4]. Other advantageous

features include sofi capacity limit, cell frequency reuse, soft handover of users etc. [57,

98, 121]. Wide bandwidth CDMA will be a dominant technology for third generation
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(3G) and future wireless communication systems and form an integral part of the

CDMA2000, 3rd Generation Partnership Project (3GPP) Universal Mobile

Telecommunication System (UMTS) Frequency Domain Duplex (FDD, also called

WCDMA) and Time Domain Duplex (TDD) standards [1-4, 143]. Note that the UMTS

TDD standard uses multi-carrier CDMA (MC-CDMA) instead of DS-CDMA. While

indoor, personal, ad-hoc and local non-cellular implementations of CDMA use one stage

of signature codes for user identification [27, 149, 152], the modern 2.5G and beyond

wireless voice-data—multimedia networks such as IS-95, CDMA2000, UMTS FDD (or

WCDMA) and beyond use both user-specific spreading codes and cell-specific long

scrambling codes to permit cost-effective cellular implementations [14].

Unlike the uplink communication channel, where all user codes are known and

the base station (BS) possesses superior signal processing capabilities and resources, the

downlink path is constrained by restricted computational resources and limited

knowledge of the user equipment (UE)/mobile station (MS) [3, 121]. In a CDMA system,

the symbol train to a user may be detected using either a single-user or a multi-user

detector. A single-user detector (SUD) such as Matched Filter (MF) detector, Zero

Forcing (ZF) detector [121], RAKE etc., does not model the multiple access interference

(MAI) due to the presence of other users and extraneous signals in its signal path, rather

it treats all interfering users and disturbances as additive noise. This severely limits its

detection performance and it fails to provide the performance levels vital to modern high

data rate applications [4]. In contrast, a multi-user detector (MUD) [58, 120, 121, 146]

includes all the users in the signal model. Significant improvement can be obtained with a

multi-user receiver [121, 146]. However the optimal MUD [120] is computationally
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intensive and requires several dynamic system parameters to be known precisely. Several

linear multi-user detection (MUD) techniques such as Best linear unbiased estimator

(BLUE) [146], linear minimum mean squared error (LMMSE) estimator [44, 59, 146]

have been proposed for the wireless downlink based on the linear convolutive channel

model. In practical situations most of these estimators require extensive knowledge of

channel parameters and massive computations. Even if approximated using block level

implementations, the system performance becomes sub-optimal, which further degrades

quickly if the a-priori channel estimates are far from true system parameters. Adaptive

approximations of these algorithms also require some a-priori information for correct

initialization and may not match the performance of the algebraic counterparts under all

conditions.

For the proposed 3GPP UMTS FDD [2, 3] and future tightly synchronous CDMA

standards, the user specific spreading is done by Orthogonal Variable Spreading Factor

(OVSF) codes, while the cell specific complex scrambling is done using a set of long

gold sequences (and/or Kasami sequences) [66]. Long codes have their own advantages

such as code-hopping which results in similar performance for all users in the system

(i.e., better QoS). In addition long codes also result in improved power control for users

with relatively smaller data rates in the system and better rejection of extra-cellular

interference (i.e., lower effective BER) [58]. Contrarily, the use of long scrambling codes

makes the implementation of the exact linear detection algorithms and BMUD

impractical due to the excessive computational requirements [44, 146]. Further, the actual

MUD model also does not capture effects such as inter-cellular interference of signals

and interference from other services sharing the same temporal and spectral resources.
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Even the performance of block implementations of linear detectors such as block

LMMSE (B-LMMSE) is severely degraded due to imprecise channel estimation (and/or

inaccurate estimate of the phase reference for the principal path), if possible at all [59,

121,122]

The restrictive downlink performance of the conventional detectors in practical

communication systems and the higher performance requirements of the modern

multimedia and other dedicated user services, necessitate better detection schemes for the

downlink CDMA channel.

6.3 Downlink Signal Models for CDMA Systems

In this section, the signal model for a generic lDS-CDMA implementation using one layer

of spreading codes only is first discussed. In the subsequent sub—section, this model is

extended for the modern wireless networks such as IS-95, CDMA2000, UMTS etc. These

modern CDMA implementations utilize another stage of codes for cell-specific

scrambling [1 -4].
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6.3.1 DS-CDMA Signal Model
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Figure 6.1. Signal Generation Model for a QPSK DS-CDMA system

In a typical downlink synchronous DS-CDMA system employed for indoor ATM and

certain ad-hoc wireless networks [149, 152], each user’s data is spread using an

individual signature waveform (or spreading code), then the data for all users is combined

and transmitted by the Base Station (BS). Each User Equipment (UE) or Mobile station

(MS) synchronizes itself with the BS using the broadcast synchronization/pilot channels,

once synchronized the BS and UE/MS can communicate on the traffic channel

(comprising of both data and control streams). Assuming the data transmission to be

QPSK, i.e., comprising of two composite data channels created by a serial-to-parallel

(S/P) stage, which are constellated in quadrature. At the UE/MS receiver, the received

signal is first passed through a chip-matched filter and sampled at chip rate.
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Considering a total of K active users in an L multipath environment and N

transmitted symbols during the observation frame Tp, the received signal is given by [82,

122, 124]

N K L—l

r(t)= Z Z Zt/Ekn(t)bk(n)h1(t)5k(t -"T-Tr) + n(t) (6-1)

n=lk=11=0

where ekn is the energy of the nth symbol for the kth user, bk(n) e {ilzti} is the n'h

complex symbol for the k’h user, 111 and r, are the l‘h path’s gain co-efficients and delay,

respectively. n(t) is the additive noise and sk(t) is the k’h user’s signature code (or

spreading sequence) generated by

G-l

ska) = Z ak(m)p(t—mTc); ak(m) 6 {—1,1}; os m s G—l (6.2)

m=0

ak(m) is a real spreading sequence (i.e., any of the standard CDMA PN codes, such as

the Gold, Walsh-Hadamard, Kasami etc. [66]) sequence for the k"I user containing G

chips per symbol, i.e., G = Tb/Tc . p(t) is a chipping pulse of duration Tc. Tb being the

symbol period.

Under the assumption of time-invariance, the model (6.1) can be more compactly

written in a vector-matrix format as

7 = 1155' + a (6.3)

where, H is a (NG +L—1)xNG multipath propagation co-efficient matrix containing

the channel coefficients. S is a NGxNG block diagonal matrix with the matrix of

spreading codes forming the diagonal elements, 3 is an NG -d vector containing the user

symbols, while '1? is the (NG + L —- 1)-d channel noise vector with covariance matrix Q.

The structure of the above defined matrices and vectors is given by
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” kg 0 0 i

h 0H: L—l

0 ho

_ 0 0 hL—l-  
S=diag[§ S S],§=[sl $2 sk]

__
T

b=[t(nT be)?" b<N>T] wept/able) ifs—23202) fibre)?

The compact linear model (6.3) is useful in deriving the linear detectors such as

matched filter (MP), linear minimum mean squared error (LMMSE) etc. (see, section

6.4.1) for recovery of the transmitted symbol train for a desired user. However, the

primary disadvantage of this model is the prohibitive dimensions of the constituent

matrices, especially with longer frame durations and larger G, the matrices become

excessively large, making this model unsuitable for any real-time implementation at

UE/MS.

Altemately, the signal model can be represented as a linear convolutive model

[57, 62, 122-124], i.e., during symbol time, the received chip data is constituted of the

chips corresponding to the currently transmitted symbol and its delayed multipath

components as well as delayed chips from some previously transmitted symbols and the

channel added noise. In this formulation, G chips arriving at the UE/MS during the 11'“

symbol time are computed as the sum of the chips from L multipaths of the n“

transmitted symbol and the multipath components of the previous J-l symbols (n-l, ...,

n-J-l), where

J $1.410 (6.4)
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rL being the maximum chip delay in L multipaths. The n’h received symbol can be

expressed as

K L—l

m(t) = z bk(”)\/5kn(t) Z h1(t)Sk(t-nT—Tr)+ "n(t)+

1:0
(6.5)

k=1

J-l K L—l

Z Ebro—111%.-n(t) Zhrmstlt —<n—j)T—m; nTStS(n+1)T

j=1k=l 1:0

Under the assumption L S G , the above model can be expressed just in terms of

the current and the preceding symbol. That is, the multipaths with delay greater than

symbol period either do not exist or are weak enough to be ignored. In this case, the

output samples of the chip-matched filter can be written as:

K L-I L-l

rn = k2 bkndgkn (t) 120 hlfkl + bk,n-l\/£k,n-1(t)lzo [713“ + "n (6-6)

=1 = =

where, ‘2'“ and g, are G-d early and late code vectors, i.e.,

T

3It]: 0 0 Sklll 5110-711 (6.7)
B_W_J

r]

T

§k1= Sk[G-T]+1] Sk[G] 0 0 (6.8)

G—rl

r, is the discretized delay satisfying the constraint 0 S r, S Tb- Imposing time invariant

constraints, the multipath slowly fading environment model (6.6) can be represented in

the form

r" = Hob" + Hlbn—l + 11,, (6.9)
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where b” and b,,_1 are the K—d vectors of current and previous symbol for all the K users.

H0 and H1 are G x K mixing matrices with the structure

Ho =[Ho,o H01 Hort], H1 =[H1,0 H1,1 Hm]

Such that

L—l

H0,k = J};z hlikr (6-10)

1:0

L—l

Hut = JEIZ biz/t1 (611)

1:0

and 50,31 represent the energy of the current and the previous symbol respectively.

6.3.2 WCDMA (UMTS FDD) Signal Model

Consider the forward link (or downlink) for a modern wireless 3G UMTS FDD (best

known as WCDMA) cellular mobile communications network [1-4]. For WCDMA, a

user’s signal stream is first spread by a user-specific OVSF sequence (of length 4-512

chips) followed by a cell-specific scrambling using long gold codes of length 38400 chips

[3]. This arrangement allows for the signal streams to be distinguishable both at the cell

(BS) and the user (UE/MS) level (see Figure 6.2) [3, 4]. Due to the presence of long

scrambling codes used in the WCDMA downlink, the signal model for the mobile unit

differs from the one discussed in the previous section. The intra-cell multiple user signals

sharing the same multipath environment are considered to be the main cause of the

Multiple Access Interference (MAI) in the received signal for a desired user [57, 121].
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Figure 6.2. Signal generation based on the proposed 3GPP UMTS FDD standard

User specific data is delivered to the physical layer in blocks often termed as

Transport Blocks (TB), which include bits for CRC, FEC etc. The transport channel

multiplexer (or a parallel-to-serial converter P/S) converts all the data to a single BPSK

stream. After interleaving and addition of physical channel information for transmission

power control (TPC), pilot, transport format combination indicator (TFCI) etc., the data

stream comprises of two dedicated logical channels, one for data (DPDCH) and one for

corresponding control (DPCCH) information, in multiplexed form they form one user

specific dedicated physical data channel (DPCH) [2]. However, note that in case several

data streams are associated to a single user, they can share the same logical control

channel. Before transmission, the data goes through a serial-to-parallel (S/P) converter

for QPSK modulation. Each user specific stream is first spread using a relatively short

(4-512 chips) OVSF channelization code Cc}, (or real user-specific spreading code, sk(t) ).

The parallel channels are mapped to the I and the Q branches. At this stage the data
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streams for all the users in a cell are summed together. This combined QPSK stream is

subsequently scrambled by the long (38400 chips) scrambling code Cscmmb (or cell-level

complex gold code, e(t) ). The collective data for all users is then modulated and

synchronously transmitted via the transmission medium, which is assumed to be a wide

sense stationary slowly fading multipath frequency selective channel. All physical

channels transmitted from a BS are mutually orthogonal at the time of transmission as the

spreading codes are the OVSF (or Walsh Hadamard codes), which are confined to the

symbol period only. Different users can have different data-rates, which is

accommodated by assigning different length OVSF spreading sequences sk (t) in a global

prefix-free code assignment tree [3]. The complex gold scrambling code e(t) has a

length of 38400 chips, which lasts for a 10 ms frame [3, 66]. The downlink system is

designed to be tightly synchronous at the frame level [2].

The received signal at the mobile receiver within a transmitted frame" of length T;

can be represented by

N K L-l

r(t) = 2 Z Z bk(n)./g,m(t)h1(t)c(t —r1)sk(t—nT—r,) + n(t) (6.12)

n=1k=l 1:0

where c(t) e {11 ii} is the complex cell-specific scrambling sequence. Other variables

are defined in a fashion similar to the model (6.1).

The received signal at UE/MS is passed through a chip-matched filter and sampled at

chip rate. The received vector 7 in this case can be expressed as [122, 125]

7 = HCSb +fi (6.13)

where H, S, b— and H are defined in a fashion similar to (6.3). C is the NGxNG

complex diagonal scrambling matrix with CC” = 2x]NGxNG- N being the number of
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symbols within a frame time TF. C is defined as: C =diag[c1 c2 cNG];

cie{i:1ii}; lSiSNG

Note that in a physical cellular environment, the unmodeled channel noise has a

more intricate structure than simple additive white Gaussian noise. The additive noise

may include inter-cellular signals especially near cell boundaries or in congested

metropolitan areas, and cross-interference with other services sharing the fi'equency

spectrum [57].

The size of the above model is excessively large due to the dimension of the long

scrambling code. Even the convolutive model, in this case, is not practical due to the

large dimension of the underlying code structure. A number of approaches will be

discussed in the subsequent section to recover the desired user’s symbol train at UE/MS

while keeping in mind the constraints ofperformance and ease of implementation.

6.4 CDMA User Detection Structures

In this section, the linear detection schemes such as the matched filter (MF), multipath

matched filter or RAKE receiver and the linear minimum mean squared error (LMMSE)

detector are described. Other linear detector formulations such as the least squares (LS)

or the zero forcing (ZF) detector, best linear unbiased estimator (BLUE) detector are not

discussed as their performance is worse as compared to the LMMSE detector. For more

details on these detectors, please see [57, 84, 121, 146].

6.4.1 Conventional Detection Schemes

In this section, we describe three conventional user detection schemes dominantly used in

CDMA communication systems. These schemes are the matched filter (MF), RAKE
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detector and the linear minimum mean squared error (LMMSE) detector. Also presented

is a practical technique for CDMA channel estimation [57].

6.4.1.1 Matched Filter (MF) Detector

The standard matched filter is a single user detector which just utilizes the user’s own

signature sequence to make the best possible estimate of user’s transmitted sequence

from the raw chip data received at the UE/MS. The detection algorithm completely

ignores the presence of convolutions due to multipaths in the in the receiver environment

as well as the MAI due to additional users sharing the resources. For the DS-CDMA

system (6.3), MF detector for the i“ user becomes

A

.—

bi,” = s,”71' (6.14)

where S, = diag[§',- S,- Si], and S,- = [0 s, 0]. s,- being the i’h user’s

signature code, F is the received chip train as defined in (6.3).

In case of WCDMA system, the user’s symbol undergoes spreading as well as

scrambling, therefore the MF detector becomes

A

3,,m1 = SiHCHF (6.15)

where C=diag[c1 c2 cNG];c,-e{ilii}; lSiSNG is the scrambling code

matrix.

Practically, MF can be implemented as

; _ H~

balm-(n) — Si r(n) (6.16)

where

~( ?((n—1)G+l : nG) for DS-CDMA

r n =

CH (n)7((n -1)G+1:nG) for WCDMA
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and CH(n) = {diag[c(,,_1)c;+1 CnG]}H

6.4.1.2 RAKE Detector

The RAKE detector in CDMA is created using multiple chip-delayed MF detector fingers

in parallel. The RAKE receiver first identifies three or more (depending on the number of

fingers) strongest multipath signals arriving at the receiving antenna using a maximal

ratio path search algorithm [57, 121]. These multipath signals are combined after

adjustment for their corresponding delays (and possibly phase and path attenuation if

channel estimation is available) to produce a relatively stronger received signal chip

stream. In this work, the RAKE receiver is assumed to be implemented with the

knowledge of both channel multipath delays (maximal ratio path search) as well as the

corresponding multipath attenuation co-efficients (channel estimation). The RAKE

detector for the DS-CDMA system therefore can be mathematically expressed as

,RAKE 4,1111”? (6.17)

.
.
.
Q
‘
I
)

where HH is the hermitian of the estimated channel matrix, other variables are as defined

earlier for MF detector. Similarly for the WCDMA system, RAKE detectors is given by

A

b},m=s{’c‘”1‘1”r (6.18)

Similar to (6.16), once the channel estimate is known, RAKE can also be

efficiently implemented as

'b’t,a.irr<n)=si’i(n) (6.19)

where

1:1(n)- HH(n)?((n—1)G+1:nG) for DS-CDMA

c” (1019” (n)?((n—1)G+1 : nG) for WCDMA ’
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CH (n) is as defined above , and H” (n) is the hermitian of the channel estimate MA

filter.

6.4.1.3 Linear Minimum Mean Squared Error (LMMSE) Detector.

The optimal LMMSE detector is considered to be the best linear detector for DS-CDMA

reception. While other linear detectors such as LS, ZF, BLUE etc. do not provide good

performance in the presence of excessive noise (especially colored noise). LMMSE

detectors do a trade-off by not performing perfect orthogonalization of received signal

stream at low SNRs by trying to minimize additive noise variance.

The LMMSE detector for single stage spreading DS-CDMA systems is given by

Sinner =51”H”(ozfifi” +21“? (6.20)

where R = r;[? 7H ] = (0'2HHH + Q) is the auto-correlation matrix for the signal chip

train received at the UE/MS, 0'2 being the average power of transmitted user signals.

For the WCDMA system, the symbol recovery needs to be descrambled before

dispreading, and the LMMSE detector becomes

5:,LMMSE = 51”CHI?”(01231119H + Q47 (621)

There are several difficulties in the implementation of the LMMSE receiver.

Practically, the dimension of H especially in case of WCDMA is impractical. Typically

LMMSE is implemented on mG-sized blocks of received data and is called block

LMMSE (B-LMMSE).

Observe that the terms on the left side of matrix inverse in (6.20) and (6.21) are

similar to (6.17) and (6.18), respectively. Therefore LMMSE detector can typically be

implemented by adding a pre-processing stage before RAKE receiver. The data
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correlation matrix may be adaptively estimated resulting in adaptive LMMSE

implementations [44, 84, 96, 146].

For DS-CDMA systems, since the number of users K is typically smaller than the

spreading gain G, the user data occupies a sub-space only. In such cases, instead of

inverting the autocorrelation matrix R , the data-dimensions may be reduced without any

significant performance degradation [142] using eigen decomposition, i.e.

Farmer =SFCHfiH<I7SD§1VsH>r (6.22)

where [)3 and 173 are the estimates of the K dominant eigen-values and eigen-vectors of

the auto-correlation matrix R. These eigen values and vectors can also be computed

adaptively, see [52, 62].

6.4.1.4 Channel Estimation Using The Common Pilot Channel (CPICH)

The Common Pilot Channel (CPICH) is a fixed rate (30 kbps, G=256) downlink physical

channel that carries a pre-defined bit sequence [1-4]. Each cell has a Primary Common

Pilot Channel (P-CPICH) and possibly one or more Secondary Common Pilot Channels

(S-CPICH). What configuration of these pilot channels is available and whether they can

provide phase reference and possibly channel estimation for the dedicated data channels

DPCH is communicated to the UE/MS by higher-level signaling. It is possible in a

UMTS implementation that neither the P—CPICH nor any S-CPICH is a phase reference

for any downlink DPCH [4].

If applicable, CPICH allows the UE/MS to equalize the channel in order to

achieve a phase reference with the SCH (Synchronization Channel). CPICH also allows

active estimation for power control. Primary CPICH always uses the same channelization

code.
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6. 4.1.4.1 Channel Estimation Procedure

In order to outline a simple and practical channel estimation technique using CPICH [1,

4], we assume that the transmitted pilot comprises of a stream of a single symbol train of

1—1’ , and uses an all ones spreading code (i.e., the first OVSF code)

1. For each independent multipath, multiply the incoming symbol train with the

corresponding delayed scrambling sequence.

2. Remove the modulation form CPICH by simply multiplying the CPICH data by

its conjugate, i.e., 1+i. The resulting channel estimate is noisy because of AWGN

and multiple-access interference.

3. Pass the noisy channel estimate through a smoothing filter to achieve better noise

immunity. This filter can be either a moving average window of length 2M+1, e.g.,

 

. 1 E;

hi = pik (6-23)
2M +1 k=_M ’

Since, a moving UE/MS represents a dynamic channel, the channel estimates may

be processed using a relatively smaller factor M followed by a single-zero

smoothing filter

II,- = (l — p)l-1;- + p11,; where 0 S p S1 (6.24)

4. Decimate or interpolate the filtered channel estimate obtained in step 2 to match

the data rate of the CPICH to the data rate of the DPCCH/DPDCH. This simple

technique works well in most cases because the channel is assumed to be stable for

the symbol duration.
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This simple technique works well in most cases. The channel is typically assumed to be

stable for symbol duration.

6.4.2 Proposed Blind Source Recovery Detection Schemes

In this section, three new MUD detection algorithms using BSR techniques are presented.

6.4.2.1 Natural Gradient Blind Multi-User Detection (BMUD) Algorithms.

Blind Multi-user Detection (BMUD) is the process to blindly estimate all the. user symbol

sequences directly fi'om the received composite CDMA signal using the Blind Source

Recovery (BSR) techniques. BSR framework implies recovery of original signals from

environments that may include transient, convolution and even non-linearity [109, 110,

112, 126]. The linear BSR algorithms [110, 112, 129] have been developed for linear

convolutive mixing environments by the minimization of mutual information (Kullback

Lieblar Divergence) using the natural gradient subject to the structural constraints of a

recovery network. The natural gradient BMUD network can be either in the feedforward

or the feedback configuration [112]. The proposed BMUD algorithm adaptively estimates

a set of matrices to counter the linear convolutive environment model (6.9).

The justification for BMUD algorithms is based on the convenient convolutive

signal model representation of DS-CDMA systems, see (6.9), and the reasonable
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assumption that the various transmitted user symbol sequences are mutually

“independent” as they are generated independently of each other. In this framework, both

the transmitted sequence and the mixing matrices in the model (6.9) are unknown to the

user. The only known entity to the user is the self-identification code. Other available

prior information is the nature of transmitted data, which is assumed to be quaternary

sub-gaussian distribution, e. g., QPSK data distorted by the multipath channel and

additive noise. There exists enough information to apply the info-theoretic natural

gradient Blind Source Recovery (BSR) algorithms for BMUD in this case [55, 62, 101,

123,124]

Further assume that the DS-CDMA channel is not over-saturated and K S G. The

proposed BMUD algorithms do not require any pre—whitening of received data. However,

in most modern WCDMA, G is chosen to be very large and in general K < G. Therefore,

it is computationally advantageous to pre-process the data for dimension reduction to K

which is the actual number of principal independent symbol sequences (or users) in the

received data. The process of pre-whitening will also remove the second order

dependence among the received data samples and some of the additive noise [33, 39, 62,

101, 123-125]. The data pre-whitening can be achieved either online using adaptive

principal component analysis (PCA) algorithms or it may be done algebraically [33, 52,

60,98]

The pre-whitening matrix can be computed as

_. l

W = D, AV,” (6.25)

where D, and V, are as defined in section 6.4.1.3.

The whitened version of (6.9) is given by
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rnw = W(Hobn + Hlbn-l + n") E [701)" + filbn-l (6.26)

where

5;” represents the G-d whitened data received during the n’h symbol time and H0

,H1 represent the equivalent G xK convolutive mixing matrices for the current and the

previous symbol.

BMUD algorithms blindly adapt a set of matrices to estimate the independent user

symbols y" at the n’h instant. This is followed by a decision stage to interpret, as best as

possible, yn and estimate the corresponding user symbol estimates b” also at the n'h

instant.

13.. = My.) (627)

where 111(.) : represents the (nonlinear) decision stage.

The update laws for both feedforward and feedback structures [110, 112] have

been presented. In the next section, the performance of the proposed algorithms is

discussed and compared with conventional user detection algorithms.
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6. 4. 2. I. I FeedforwardBMUD Configuration:
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Figure 6.4. Feedforward Demixing Structure

For the feedforward configuration, the BMUD stage output is computed as

K

y" = Worry + Z Wkrgtk ' (6.28)

k=l

The update laws for this feedforward structure can be easily derived, using the

techniques outlined in Chapter 3. For the feedforward parametric matrices W0 and Wk ,

the update laws are

We m(I—wonbf.’ )Wo (6.29)

and

H

4W1 06 (1 —¢(yn)yrII-I )Wk —¢(yn)(rn”:k) (6.30)

where o(.) is an element—wise acting score function [12, 27, 36, 37, 60, 114, 127, 130,

136], and I is a K-d identity matrix.
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For the initialization of the algorithm, W0 is chosen to be either an identity or a

diagonally dominantly matrix, while all other matrices Wk are initialized to have either

random elements with a very small variance or as a matrix of all zeros [110, 112, 155].

Note that no matrix inversion is required for the feedforward algorithm.

6.4.2. 1.2 Feedback BMUD Configuration I:
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Figure 6.5. Feedback Demixing Structure 1

In the feedback configuration I, the output is estimated by

K

ya = W0“1 [Div — Z WkYn—k] (6-31)

k=l

The update laws for this structure using the natural gradient have been derived in

[112]. The update law for the matrix W0 is given by

H

AW0 °C —Wo (1 -¢(yn)yn ) (6.32)

While for the feedback matrices Wk , the update law is
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H

4W1 DC We [u(ynm—k) (6.33)

The matrices in this case are also initialized in a fashion similar to the feedforward case.

However, note that at least one matrix inversion is required in this formulation.

6. 4. 2. 1.3 Feedback BMUD Configuration II:
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Figure 6.6. Feedforward Demixing Structure 11

An alternate feedback configuration, see Waheed et a1. (Waheed, 2003 #630},

implements the feedback structure without the need for any matrix inversion. For this

feedback configuration 11, the BMUD stage output is computed as

K

ya = WOrriv 11 Z kan—k (6.34)

k=1

The update laws for this feedback structure have been derived in [110, 112, 155]

and are given by
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4% at (I «out»? )Wo (635)

Mt at (I won»? )Wk + <00.)th ’ (6.36)

In case the channel can be estimated [57], the performance of the proposed

BMUD algorithms may be adjudged by the diagonalization of the absolute value of the

global transfer function. The global transfer function presents the combined effect of the

complex mixing and demixing transfer functions. For the two symbol convolutive models

for the case of L S G , the global transfer function for the natural gradient algorithms in

the z-domain are given by [123-125]:

G = GO + (112*1 + 622-2 (6.37)

where, for thefeedforward configuration

Go = Wofio = WOWHO’

G1 = W017] + ME, = WOWHI + WIWHO and , (6.38)

62 1" W1‘71 = WIWHI

while, for thefeedback configuration I

G0 = WO-lfio = WO—IIVI‘Io,

Gl =W0"1(H1—W1)=W0’1(IWI1 —W1) and (6.39)

02 =

and for the for thefeedback configuration 11

GO = WOHO = WOWHO,

G1 = Wofil + W1 = WOWHI + W1 and (6.40)

02 = o

The proposed BMUD algorithms as formulated result in recovery of the user

symbols directly. The algorithms can be conveniently applied to DS-CDMA systems
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using only user-specific spreading sequences. They may also be extended to CDMA

systems using relatively short scrambling codes, though the dimension of matrices may

still become large for DSP implementations in a UE/MS. The WCDMA system uses long

codes in the downlink, making the application of these algorithms impractical because of

the requisite dimension of the demixing network matrices.

6.4.2.2 RAKE-Blind Source Recovery (RAKE-BSR) and RAKE-Principal

Component Analysis (RAKE-PCA) Detectors

RAKE-BSR and RAKE-PCA are two new proposed adaptive detectors [122, 125], which

utilize the same knowledge as a RAKE receiver. An info-theoretic adaptive weighting

matrix of dimension G x6 is introduced into the RAKE structure, which gives a big

performance boost to the RAKE receiver. The performance of RAKE-BSR/RAKE-PCA

exceeds the performance of LMMSE detectors under the conditions of high network

congestion, imprecise channel estimation, and unmodeled inter-cellular interference etc

[57, 122, 125]. The closed form structure of these proposed detectors is given by [122]

3 _ Si”WHH'r' for DS-CDMA Systems (6 41)

"RAKE—ICA / PCA — 51HCHWHHF for WCDMA Systems °

where W = diag[A A A], and A is the G x G matrix that is adaptively estimated

either using static BSR (ICA) or PCA algorithms.

It is proposed to adapt the matrix A using the natural gradient update laws [7, 9,

122]. However, there exist several other methods for ICA/PCA and any other suitable

method may be used for these adaptations [21, 60, 77]. This blind adaptation of the A

matrix has several advantages and improves the performance of the overall equalization

process in several ways. Firstly, it can counter artifacts in the estimated channel co-
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efficients H . Secondly, the channel estimation process (as in RAKE receivers) may be

limited by the structure (such as number of fingers) and may estimate only a few of the

dominant channel parameters. W stage tends to counteract this anomaly, as best as

possible, and provides better performance than LMMSE in such cases [122]. Thirdly, this

adaptive stage minimizes the effect of the additive channel noise, which may have an

unmodeled intricate underlying structure. Lastly, the natural gradient ICA /PCA

algorithms inherently reduce near-far problems by removing any ill conditioning in the

signal space for all the users in the system. This results in all the mobile users in the

system to have a BER performance similar to the average BER performance of the

downlink channel [57, 122]. The matrix A is adaptively estimated using the update laws

A(k +1) = A(k) + ntAA(k) (6.42)

where

H .

AA(k) = {(1 — rp(y(k))y(k) )A(k) for static BSR (or ICA) (6.43)

(1 — y(k)y(k)H )A(k) for PCA

and (0(.) is a nonlinear score function [7, 11, 12, 28, 36, 126, 130, 138] which depends on

the underlying distribution structure of the signals involved. For QPSK signal, a suitable

score-function [136] is

$101) = 0m — “1' 031111031 Re{yi}) + tanh (.31 MM») (6-44)

Of these proposed RAKE-BSR/RAKE-PCA structures, RAKE-BSR exhibits

relatively faster and more stable convergence [110, 155]. However, in CDMA systems

the underlying code structure is chosen to be “orthogonal”, and RAKE-PCA may

converge to a slightly lower BER solution if the channel impairments are linear in nature.

Note that in (6.41), if the channel estimate H [57] is either not available or changes very
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dynamically, the detector can be estimated without using the channel estimate and the

structure reduces to Matched Filter BSR/PCA, i.e.,

8371177 for DS-CDMA Systems
. _ = 6.45
“W BSR/PCA {sfiCHWr for WCDMA Systems ( )

I
)

Q
"

The performance of this structure is better than MF alone, and approaches RAKE

performance as the underlying matrix A converges. However, in this chapter, this

structure will not be discussed any further.

6.5 Simulation Results

To verify the performance of the proposed BSR algorithms, a series of experiments for

both DS-CDMA and WCDMA systems were conducted. Some selected results are being

provided for the purpose of illustration. The proposed algorithms can be easily extended

to multirate CDMA transmission. However, for a clear comparison of the proposed

algorithms with the conventional approaches, the simulations have been restricted to the

case where all the users have the same data rate. Assuming a constant spreading gain, G =

64. The channel is assumed to be a wide sense stationary slowly fading with several

possible multiple paths to the UE/MS. The transmitted signal is also corrupted by

additive white gaussian noise (AWGN) during the transmission. The simulated SNR

range for all simulations is from —10 to 20 dB. The dominant multi-path delays and

attenuation co-efficients for the signal received at the UE/MS are assumed fixed (i.e., the

UE/MS is assumed to be static). Further all the multi-path attenuation co-efficients are

assumed to be complex, i.e., each multipath applies both scaling and rotation to the

propagated signal. For all the included simulations, the received CDMA signal comprises
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of five multipaths with delays of 0, 1, 2, 3, 4 chips. The corresponding channel

attenuation co-efficients are chosen to be.

h=[0.25+0.18i 0.21+0.14i 0.18+0.11i 0.14+0.11i 0.11+0.07i],respectively.

The multipath channel estimate is either estimated online [57] or assumed to be

known unless otherwise specified. The score fimction for both the BMUD and proposed

RAKE-BSR algorithms is chosen to be (12,-(n): yi —(tanh(Re{y,-})+ tanh(1m{y,-})).

The UE/MS and BS are assumed to be in perfect synchronism. A decaying time-adaptive

learning rate is chosen for all the adaptive algorithms. The B-LMMSE algorithm is

applied on a block size of G chips, the auto-correlation matrix (for the B-LMMSE

algorithm) is computed from the whole ensemble of the received data. The conjugate of

the channel filter H, is applied recursively. These steps were done to ensure that the

performance of the simulated B-LMMSE is not restricted due to implementation. In order

to efficiently utilize the space, for each simulation, presentation is restricted to just two

congestion scenarios of 20 users (approx. 30% congestion) and 50 users (approx 80%

congestion).

The final symbol decision stage for all algorithms is given by

y(yn) = sign(Re{yn})+sign(Im{yn})i (6.46)

Any sign ambiguity in the recovered symbols is fixed using the pilot bits in each user’s

dedicated data channel.

6.5.1 Simulation 1: DS-CDMA System

In this simulation, a DS-CDMA systems is simulated and modeled as in (6.9). All the 5

multi-path channel co-efficients and delays are assumed known. The system has been
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simulated using two types of spreading codes, namely gold codes with a spreading gain G

= 63, and OVSF (or Walsh Hadamard) codes with a spreading gain G = 64. The

simulation results are presented below in Fig. 6.6.

It is evident from the presented results that the performance of proposed BMUD

algorithm far exceeds any other user detection method. Under very good SNR conditions,

the BER performance of B-LMMSE using gold codes improves over the proposed

BMUD algorithm. This is because the channel estimate is assumed to be perfectly known

for B-LMMSE and secondly, the BMUD algorithm is applied in instantaneous (on-line)

mode with 5000 iterations only. The performance of the BMUD exceeds B-LMMSE if

the algorithm is allowed to adapt longer.
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Figure 6.7. DS-CDMA downlink performance for K=20, 50 users (3) using Gold Codes

G=63, (b) using OVSF Codes G=64.
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The performance of the proposed RAKE-PCA and RAKE-BSR algorithms is also

better than B-LMMSE at lower SNRs and under congestion of the DS-CDMA system.

However, for lower congestion of the system and high SNR,‘the B-LMMSE performance

supercedes these algorithms if the channel estimate is perfect. In case, the channel

estimate is imprecise [57], the proposed algorithms are always better than B-LMMSE.

6.5.2 Simulation II: WCDMA (UMTS FDD) System

For the WCDMA Downlink simulation, 5 multipaths are assumed to exist similar to the

previous simulation, all the user-specific codes are OVSF with a spreading gain G of 64.

The long scrambling code has the frame-length of 38400 chips (10ms). A performance

comparison of the proposed RAKE-BSR and RAKE-PCA algorithms with conventional

RAKE, B-LMMSE under various network conditions is presented in Figures 6.7 and 6.8.

In the first comparison (Fig. 6.7.a), the channel estimation is done for all the multipaths

in the signal generation model. It is observed that the performance of the proposed

algorithms RAKE-PCA and RAKE-BSR is very similar to B-LMMSE for lower SNR

values. Under good SNR conditions, the performance of the B-LMMSE algorithm is

better than the proposed algorithms.

However, note that for the B-LMMSE the auto-correlation matrix is estimated

using 5000 symbols, while only 1000 instantaneous adaptations (for K = 50) are done for

the proposed algorithms. In case more adaptations are done, the performance of proposed

algorithms will approach the LMMSE limit, but even the performance attained with a

limited number of iterations exhibits their effectiveness.
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Figure 6.8. WCDMA Downlink System for K=20, 50 users (a) Performance Comparison

with Perfect Channel Estimation, (b) Performance Comparison with

Imperfect Channel Estimate
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Figure 6.9. WCDMA Downlink System for K=20, 50 users: Performance

Comparison with Imperfect Channel Estimate and Inter-Cellular Interference

In the second comparison (Figure 6.7.b), the channel estimate is restricted to the

three dominant paths only, which correspond to the choice of delays 0, l and 2 in this

case. In this case it is observed that the detection performance of the proposed RAKE-

BSR and RAKE-PCA algorithms exceeds B-LMMSE at all SNRs. Comparing both

RAKE-PCA and RAKE-BSR, it is observed that the performance of RAKE-PCA is

approximately 1% better than RAKE-BSR. But RAKE-BSR has other advantages (as

discussed in section 6.4.2.2) of stability and smaller energy of the computed filtering

matrix W. Another important observation in this case is that at very low SNRs, RAKE

gives the best performance, but as the SNR improves the proposed algorithms can

achieve very small BER. Therefore, a SNR based switching mechanism can be developed
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to switch between the standard RAKE and the proposed algorithms, which just constitute

an additional adaptive stage in the structure of the RAKE receiver.

In the third scenario (Figure 6.8), both the channel estimate is assumed to imprecise

as in the previous comparison with only three dominant multipaths out of five estimated.

In addition, the received signal is corrupted by extra-cellular signals of the neighboring

cell BS. This is a realistic scenario in busy metropolitan areas, where there exist several

dominant multipaths and the cell size is also kept relatively small to maximize the

number of users per unit area. Inter-cellular interference is also critical when the UE/MS

is on the cell boundary and undergoes a soft (or soft-sofier) hand-over. The intercellular

interference is unmodeled MAI and severely limits the performance of the detection

algorithms. For the purpose of simulation this auxiliary BS interference is assumed to

have half the energy of the primary BS. It is observed that the proposed RAKE-

BSR/RAKE-PCA algorithms exhibit better immunity to this excessive unmodeled MAI

and retain their qualitative performance advantage over the conventional algorithms.

6.6 Remarks

Three adaptive info-theoretic algorithms for CDMA systems have been proposed. Firstly

a purely blind multi-user detection (BMUD) algorithm for the case of DS-CDMA

systems, or WCDMA systems using short codes has been proposed. This algorithm gives

better performance relative to all other user detection algorithms. This performance

advantage further dominates conventional techniques under practical constraints of

accuracy in on—line channel estimation and unmodeled environment MAI effects. Two

other info-theoretic extensions have also been proposed on top of the standard RAKE

detector namely RAKE-Blind Source Recovery (RAKE-BSR) and RAKE-Principal
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Component Analysis (RAKE-PCA). These detection schemes add an adaptive info-

theoretic stage, based on higher-order statistics for RAKE-BSR and second-order

statistics for RAKE-PCA, to the standard RAKE detector. This makes the resultant

hybrid detector more robust to imperfections in channel estimates; unmodeled MAI and

other slowly varying channel effects etc. Of these proposed algorithms, RAKE-BSR is

more immune to synchronization errors between UE/MS and BS, possesses faster

convergence and is better capable to cater for various dynamic and time-varying channel

effects as compared to RAKE-PCA. However, for the presented WCDMA results RAKE-

PCA demonstrates a slight performance advantage. This is due to the fact that the

simulated channel imperfections are only linear, the channel synchronization is perfect

and the underlying code structure is orthogonal.
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Chapter 7

CONCLUSIONS

This dissertation is dedicated to the stochastic blind adaptive nonlinear signal processing

problem of Blind Source Recovery (BSR). Blind Source Recovery represents

unsupervised estimation of original source signals directly from the measurement space,

with or without precise MIMO environment identification. A discussion on the BSR

problem definition, applications, choice of the state space representation and practical

issues is included in Chapter 1. In chapter 2, a focused survey of the major theoretical

development in the field of BSR as related to this work has been provided. The natural

gradient and its application to the static and dynamic BSR adaptation has also been

reviewed.

Chapter 3 is the crux of this work. Using state space as a compact network

representation, the BSR optimization framework has been described for both non-linear

and linear structures. The natural gradient learning has been incorporated to develop

equivariant linear state space update laws for the cases of minimum phase and non-

minimum phase environments. In the case of minimum phase environments, separate

adaptation algorithms have been developed for feedforward and feedback demixing
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networks. It is demonstrated, via simulations, that the derived BSR algorithms exhibit

robust convergence irrespective of the adopted network structure and various parameter

initializations. Further, it is observed that based on the initialization of parameters the

overall network may converge to different but equivalent state space representations.

Since BSR denotes blind recovery, state space BSR algorithms have been extended using

parametric source distributions. A couple of formations are introduced in chapter 4 with

the capability to estimate the types of the underlying source distributions and eventually

control the shape of the nonlinear score function in all the BSR update laws. These

complementary adaptation algorithms add the capability to estimate the underlying

distribution structure of original sources to the BSR framework. This results in extensive

algorithms that can be applied in an autonomous fashion to mixtures of multiple source

distributions. This is an important development as typically the nature of corruption in the

measurement space is unknown. It is demonstrated via simulations that the proposed

adaptive score functions can indeed efficiently capture the stochastic nature of actual

sources and cause proficient convergence ofBSR algorithm for mixtures of several

different types of sources.

Although it is theoretically tractable to have the dimension of mixture space equal

to the number of original sources, but in a blind setting the actual number of sources is

unknown. This deficiency in the a priori knowledge or the structure of a recovery

problem may ensue an undercomplete or an overcompete BSR problem. The

transformation of an undercomplete BSR mixture into a complete BSR mixtures has been

discussed and related issues have been pointed out. For the overcomplete mixtures, there

exists no solution unless the mixture can be projected onto a sparse temporal or spectral
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analysis space. Algebraic ICA algorithm has been proposed to perform static mixing

environment estimation for sources that exhibit sparseness in the time-domain. AICA

approach has been combined with an Ll-norm interior. point linear programming

approach to recover overcomplete mixtures of speech.

Chapter 6 discusses the application of BSR framework to the domain of CDMA

wireless communication networks. An in-depth signal model has been utilized to develop

a good understanding of the basic DS-CDMA implementations and the modem 30

WCDMA or UMTS FDD implementations. Three BSR based solutions are presented for

the critical forward link multi-user detection in these networks. Extensive comparison of

the proposed BSR user detection schemes with conventional downlink user detection

formats indicate their effectiveness and robustness under conditions of congestion,

channel estimation artifacts and unmodeled multiple access interference.

Quadratic Independence Measure (QIM) and Algebraic Matrix Distance Index

(AMDI) are two new BSR performance measures that have been an outcome of this work

and are presented in appendices D2 and D.3.

The major highlights of this work include

0 Using an info-theoretic, parametric, state space BSR optimization framework and

efficient natural gradient learning, robust BSR update laws have been derived for

various state space arrangements.

0 Structural environment configurations such as the minimum phase and the non-

minimum phase have been treated comprehensively. Linear feedforward and

feedback structures for BSR have been proposed and implemented.
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The convergence of the natural gradient BSR algorithms has been investigated, via

extensive simulations, for various demixing network structures and parameter

initializations.

Investigation into efficient parametric modeling of the source distributions, resulting

in two new source density models proposed for sub- and super-gaussian sources,

respectively.

Adaptive estimation of underlying source distributions was achieved for linear

convolutive BSR. This results in completely blind algorithms, which do not even

require the knowledge of the type of underlying source distributions to be estimated.

The comprehensive algorithms are also capable to demix / decorrelate mixtures of

multiple source distributions.

A new data space, cost-effective, algebraic independent component analysis

algorithm, called Algebraic ICA (AICA) has been introduced.

In conjunction with source inferencing algorithms for overcomplete mixtures, AICA

has been applied to the realm of overcomplete blind source separation of speech with

encouraging results.

Three new BSR based multi-user detection algorithms have been proposed to the field

of CDMA wireless communication networks. The proposed algorithms have been

simulated for both generic DS-CDMA and modem 36 WCDMA (and CDMA-2000)

communication standards. The BSR MUD algorithms demonstrate a favorable

performance advantage to conventional user detection schemes for CDMA wireless

communication networks.
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Although, the dissertation concludes here, but there are several, yet to be tackled,

open issues in BSR. Some of the possible extensions of this work are

0 For the case of nonlinear environments, efficient BSR algorithms need to be derived

and their performance needs to be characterized for various different types of

nonlinearities.

- BSR performance evaluation of the Algebraic ICA algorithm needs to be done on

more realistic sparse overcomplete data, e.g., electromedical data (i.e., EEG, MEG to

name a few), astrophysical data etc.

o BSR formulations have been applied to the CDMA downlink wireless communication

networks in this work. Currently the work is being extended to the CDMA uplink

channel. There are several other applications in communication systems, wireless

networks, acoustics, imaging, text, astronomy, finance etc., where application of BSR

techniques can be very useful.
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Appendix A _

List of Abbreviations and Acronyms

3G

3GPP

AICA

AMDI

ARMA

ARMAX

AWGN

BER

BLER

B-LMMSE

BLUE

BMMR

BMUD

BP

BPSK

BS

BSD

BSR

BSS

cdf

CDMA

3rd Generation (wireless networks)

3rd Generation Partnership Project

Algebraic Independent Component Analysis

Algebraic Matrix-Distance Index

Autoregressive filter

Autoregressive Moving Average Filter

Autoregressive Moving Average Filter with Exogenous

Variables

Additive White Gaussian Noise

Bit Error Rate

Blocking Error Rate

Block Linear Minimum Mean Squared Error Detector

Best Linear Unbiased Estimator

Blind Mixing Matrix Recovery

Blind Multi-user Detection

Basis Pursuit

Binary Phase Shift Keying

Base Station

Blind Source Deconvolution

Blind Source Recovery

Blind Source Separation

Cumulative Density Function

Code Division Multiple Access
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CDMA2000

CPICH

CRC

DM

DPCCH

DPCH

DPDCH

DS-CDMA

EPP

FB

FDD

FEC

FF

FIR

GGASF

GICA or geo-ICA

GTF

HASF

ICA

IID or iid

IIR

IP-LP

lS-95

KL

LMMSE

LMMSE

MA

MAI

MCBD

MF

MIMO

MISI

Wireless Standard Name (U.S. equivalent ofWCDMA)

Common Pilot Channel

Cyclic Redundancy Check

Distortion Measure

Dedicated Physical Control Channel

Dedicated Physical Channel

Dedicated Physical Data Channel

Direct Sequence Code Division Multiple Access

Exploratory Projection Pursuit

Feedbaek Network

Frequency Domain Duplex

Forwared Error Correction Codes

Feedforward Network

Finite Impulse Response

Generalized Gaussian Adaptive Score Function

Geometric Independent Component Analysis

Global Transfer Function

Hyperbolic Adaptive Score Function

Independent Component Analysis

Independent Identically Distributed

Infinite Impulse Response

Interior Point Linear Programming

EIA Interim Standard 95 (also called CDMAone)

Kullback Lieblar Divergence

Linear Minimum Mean Squared Error

Linear Minimum Mean Squared Error Detector

Moving Average Filter

Multiple Access Interference

Multichannel Blind Source Deconvolution

Matched Filter

Multiple Input Multiple Output

Multichannel Inter-symbol Interference
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MLE

MS

MSE

MUD

OSE

OVSF

P/S

PCA

pdf

PDF

PN

QIM

QoS

QPSK

RAKE-BSR

RAKE-PCA

S/P

SF

SINRM

SM

SNR

SUD

TB

TDD

TF

TFCI

TPC

UMTS

WCDMA

ZF

Maximum Likelihood Estimation

Mobile Station

Mean Squared Error

Multi-user Detection

Overcomplete Source Estimation

Orthogonal Variable Spreading Factor Codes (Variable Length

Walsh Codes)

Parallel to Serial Converter

Principal Component Analysis

Probability Density Function

Probability Distribution Function

Pseudo-noise

Quadratic Information Measure

Quality of Service

Quaternary Phase Shifi Keying

RAKE with Blind Source Recovery Detector

RAKE with Principle Component Analysis Detector

Serial to Parallel Converter

Spreading Factor

Maximum Signal to Interference plus Noise Ratio

Separation Measure

Signal to Noise Ratio

Single User Detection

Transport Block

Time Domain Duplex

Transfer Function

Transport Format Combination Indicator

Transmit Power Control

User Equipment

Universal Mobile Telecommunication System

Wideband Code Division Multiple Access

Zero Forcing
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Appendix B

Kullback Lieblar Divergence: A

Performance Functional for Blind Source

Recovery

Kullback Lieblar Divergence (or the relative entropy) [3 8, 69, 72, 100] between two

probability laws Q(X = xi) = qi and P(X = x,) = p,- is defined as

KX= jp,m(%)dx (13.47)

xeX

The relative entropic divergence of the mutual probablilty distriburion function

(pdf) of a random output vector y (Kullback-Lieblar divergence) with respect to the

product of marginal distribution functions is a measure of the independence of the

maginal output variables. Kullback—Lieblar divergence is, therefore, an appropriate

performance measure for blind source recovery based on the minimization of mutual

information.
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In the continuous case this relation is given by

 

  

L(y>= pronn ,IW) dy (8.48)

yEY pri(yi)

'=l

where

py (y) is the probability density function of the random output vectory

pYi (Yr) is the probability density function of the ith component of the output vectory

This functional L0») is a “distance” measure with the following properties

i) L(y) 2 0 (13.49)

ii) L(y) = 0 if‘fpyb’) =Hpyi (yi) (B50)

i=1

This measure provides an estimate of the degree of dependence among the various

components of the recovered output signal vector and is appropriate to be used as the

objective functional in the optimization framework ofthe BSR problem.

For the discrete case, the functional becomes

 

L(y)= Z py(y)ln "py(y) (B-51)

yEY pri (yi)

i=1  

The functional can be further simplified assuming the statistical properties of the

output signals to be ergodic.
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k

L(y(k)): Z py(y(k))1n py(y( » (3.52)

”Y Hpy, (yi(k))

i=1   

Further simplification can be achieved using the assumption that as the algorithm

approaches convergence the components of the output vector y(k) will become

statistically less dependent, ultimately approaching independence as close as possible.

Therefore the above functional can be re-written in its simplified mutual information

form using the entropy of signals, namely,

n

L(y(k)) =-H(y(k))+Z;Hi(yi(k)) (3.53)
,=

where

H(y(k)): Entropy of the signal vector y(k), given by

r— I py(y)ln|py(y)|dy Continuous Case

: _ = er .

H(y) E[lnlpy 00'] T - Z Py (Y)ln|Py()’)l Discrete Case (B 54)

L er 

H,- (yi(k)) : Marginal entropy of a component signal yi(k).
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Appendix C ‘

State Space Network: Specialized

Filtering Structures

One of the advantages of using state space model is that most signal processing filter

structures form special cases where the constituent matrices of the dynamic state equation

take specific forms. As an example, implementation for both the Infinite Impulse

Response (IIR) and the Finite Impulse Response (FIR) filters using state space is

discussed in this appendix [109, 110].

CI. IIR Filtering

Consider the case where the matrices A and B are set in the canonical form I (or the

controller form). In this case A and B are conveniently represented as

F1411 A12 ’4qu ‘11

1 0 o 0

A: : z = z : andB= : (c.1)

_ o 0 1 o _ _o_    

where
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A : matrix of dimension Lm x Lm.

A1}- : Block sub-matrix of dimension m x m, may be simplified to a diagonal matrix

I : Identity matrix of dimension m x m

0 : Zero matrix of dimension m x m

B: matrix of dimension Lm x m

  

The state matrix is given by

_ X1001

Xk = X(k) = X73“) ((3.2)

_XL (k)1

where

X(k) : is a Lm x m dimensional state vector for the filter, and each

XJ- (k): is an m x m dimensional component state vector

For this model the state model reduces to the following set of equations

representing an IIR filtering structure.

L

X1(k+l) = z Alej(k)+m(k)

j=l

X2(k+1)=X1(k)

. (C.3)

XL(k+1)=XL—1(k)

L

y(k) = 2 CjX,- (k) + Dm(k)

j=l

For an IIR filter represented in the state space canonical form I, there is no update

law required for B, while for the matrix A, it is needed update only the first block row and
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therefore the state equation update law (see section 2.1.2) reduces to the following block

update rule

arr"
= -77-—- = WU: .)T/1k+1 = “771k+1X,T(k) (C.4)

6A1j 1}

The special structure in matrix A also effects the update law for the co-state

equations (propagating in future time) which reduces to

CT aLk

k= k1 k11()12(+)+C1ay()

CT aLk

12(k) = 13(k+1)+C2zayk--(k)
(C.5)

T aLk

3L0?) = C 6”--(k)

Solving specifically for time k and then using time shift for time k+i, we obtain

the recursive form for the update as

CT aLk

2100:: ayk(lc+j— 1)

L k (06)

11(k+1)= ZCT—61’

j=1 k

—(k+j)

which is structurally similar to the natural gradient algorithm derived for blind source

separation/ deconvolution by [155] and can be implemented in a similar fashion by using

the usual time delayed version of the algorithm implemented by buffer storage memory.

Using (C.6), we can further simplify (C.4) for the update of the block sub-

matrices in A as

L

—an1 C176———-—(k + j)XT (07)
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C.2. FIR Filtering

In this case, the first row of block sub-matrices A1j in (CI) is zero, therefore the above

filtering model (C.3) reduces to the FIR filtering structure. In this case the state space

model reduces to

X1(k+1)=m(k)

X2(k+1)=X1(k)

5 (C8)

XL(k+1)=XL—1(k)

L

y(k) = 2 CjXj (k) + Dm(k)

j=l

where the state dynamic equations reduce merely to the delays of the mixture inputs i.e.

X1(k)=m(k—l)

.Xz(k)=M(k-2) (09)

:XL(k) = 17106 -L)

In this case only matrices C and D need to be updated. Using the MIMO

controller form, both matrices A and B contain only fixed block identity and zero sub-

matrices and are conveniently absorbed in (C9).

In case of non-minimum phase environments, the demixing network is typically

constituted as a double-sided FIR filter [14, 129]. Discrete time finite length double sided

FIR filter can be used to approximate the otherwise unstable theoretical demixing

network due to the presence of poles outside the unit circle [22]. The implementation of

these non-causal double sided filter is handled by using a time delayed version of the

above algorithm with the corresponding increased requirement of buffered storage. The
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primary advantage of these doubly finite filters being their ability to converge at “stable”

solutions even for non-minimum phase environments [14, 129].

One possible method to deal with the problem of the filter approximation length

and resulting delay is in the frequency domain implementations of the algorithm, where

the converged solution represents a 1024 or higher tap double sided FIR filter in

equivalent frequency domain. The result can be converted to the time domain equivalent

by appropriately using the inverse FFT followed by chopping or windowing techniques to

optimally contain maximum possible filter power spectral density (PSD) while

minimizing algorithmic delay and hence the buffering memory requirement [73, 76].

However, recent studies have shown that the frequency domain techniques have an upper

bound on the performance as the filters lengths become large [18, 90].
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Appendix D I

Performance Benchmarks for Blind

Source Recovery

Appendix D.1. Conventional Performance Benchmarks

In this section we will provide an overview of several performance benchmarks that have

been employed by various researchers for the problem of blind source recovery [113,

131].

D.l.l.Signal to Noise Ratio (SNR)

Signal to noise ratio is a well-known communication benchmark, which defines the ratio

between the desired signal and the unwanted noise/distortion powers usually expressed in

st.

P
SNR=1010g %, (D.l.lO)

n

where P, — represents the signal power, and
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P" — represents the noise and/or unwanted signal power

This benchmark is applicable in situations where the desired signal is known and is

therefore not very suitable for BSR problems where no such reference signal exists.

D.l.2. Multichannel Intersymbol Interference (MISI)

MISI is an extension of the communication benchmark inter-symbol interference, which

quantifies the smearing of a communication channel by an adjacent channel due to their

overlapping temporal and/or spectral characteristics [52, 98]. MISI is useful as a

dispersion measure as it is insensitive to the overall gain and mean group delay. In the

case of BSR type problems, MISI is a measure to determine the “distance” between the

global, i.e., the combined mixing and demixing network transfer functions and an identity

impulse transfer function. This is a measure of the global diagonalization and

permutation as achieved by the demixing network [9 and the references therein]

MSIk =  
filzjzplerl-maxpuler-ILfiIZerlGrvl-leGpvll
i=1 maxPJ leij I H max?” lGP'j I

(D. 1 .1 1)

where for a linear case

G(z) = H(z) * 17(2) - represents Global Transfer Function,

H(z) = [A6, Be, Ce, De] — Transfer Function of Environment

H(z) = [A, B, C, D]-— Transfer Function of Network

This is the performance benchmark of choice for most of the research on BSR. However,

the main drawback of this benchmark is that it requires knowledge of the mixing

196



environment, which is available offline only in synthetic simulation environments and

hence cannot be employed in practical blind scenarios.

Another variation of the above performance measure uses a squared version of the

global transfer function matrix GM, i.e., the performance measure relies on L2 norm

instead of the L1 norm used above. This technique has an additional inherent flaw that

small error terms will be de-emphasized.

D.l.3.Maximum signal to interference plus noise ratio (SINRM)

This measure uses the maximum signal to interference plus noise ratio as a measure to

determine separation. Interference in source k is constituted by all sourcesj such thatj at

k. Then SINR of source k at output 1' of separator W is defined as [32]

H
W: a

SINRk(w,-)=a,fl ' k  (13.1.12)

where

w,- - is the im column of separator matrix W

ak - is the kth column of mixing matrix A

a]? - is the input power of source k

Rvk - is the temporal mean (for nonstationary sources) of the correlation matrix of the

noise plus interference for source k, defined by

Rvk = Rx — efiakaf (D.1.13)

Again this measure requires knowledge of mixing transfer function, which is

unknown in blind problems.
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D.l.4.Mean Squared Error (MSE)

Mean squared error is probably the best-known adaptation measure. MSE uses the L2

norm of the error as a measure to determine the convergence of an algorithm. In the

absence of a desired reference to compute an explicit error measure as in the BSR case,

this error may be computed as the difference between the current and the previous value

of an adapted parameter or using a probabilistic score function. Although using MSE one

can determine whether an algorithm has reached its steady state but there is no way to

determine whether the algorithm has converged to the desired solution or a spurious local

minimum, and as such is not suitable for quantification of BSR algorithm. For any

parameter y , MSE is given by

2

MSE(7) = WC)”(k-m (D.1.14)
2

I7(k)-W(7(k))l

Some other performance indices proposed in [113] for synthetic audio

environments are given below

D.l.5.Distortion Measure

The distortion in thejth separated output can be defined as

Dj =1010g(E{(mJ-,Sj —ajyj)2}/E{(mj,sj,sj)2}] (D.1.15)

where

aj = E{m2_ }/E{y12} - is a scaling factor

Jr"
J

E {.} - is the statistical expectation operator
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yj - is the corresponding output for thej‘h source, and

mks]. - is the contribution of thej‘h source to the ith microphone.

D.l.6. Separation Measure

The quality of separation for thefh separated output can be defined as

2

2

Sj=1010g E{(yj,sj) } E [ZyJ-W] (D.1.16)

199]

where

yj, Si - represents thef" output when only ith source is active.

The last two benchmarks can also be represented in the frequency domain and are

applicable for synthetic evaluations only, where the original source signals are known

and their contribution to an observed mixture & output can be estimated. ,
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Appendix D.2. Quadratic Information Measure (QIM)

Quadratic Information Measure (QIM) is a novel performance index to measure the

statistical independence of data sequences. In this work, QIM has been proposed and

applied it to the framework of blind source recovery (BSR) that includes blind source

separation, deconvolution and equalization. This performance index is capable of

measuring the mutual independence of data sequences directly from the data. This

information theoretic independence measure is derived based on Renyi’s quadratic

entropy [100] estimated by a finite data length Parzen window [93] using a gaussian

kernel. Simulation results are presented to validate the performance of the proposed

benchmark and compare it with other established benchmarks.

D.2.].Practical Issues in Estimating Independence of Output Sequences

Stochastic blind signal processing tasks such as blind source separation, deconvolution

and equalization have been the focus of wide interest during the last two decades. This

wide interest is due to several attractive and diverse application domains for these kinds

of problems that include blind classification of topics in an intemet chatroom,

communication systems, audio and acoustics, finance and marketing, astronomy and

physics, bio-medical, space and geo-exploratory applications. However, a daunting task

remains to reliably classify the performance of a number of proposed algorithms

especially in a fashion that makes them suitable for practical implementation. Most of the

presented research on the topic relies on performance benchmarks that require knowledge
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of either the original source signals or the mixing environment transfer function. Both

these quantities are otherwise assumed to be unknown (no precise knowledge of the

above mentioned quantities is actually what makes these tasks blind). Therefore, these

performance benchmarks render themselves useful for synthetic simulations only. In a

practical situation, while making observations or recording a sequence of available

information, precise knowledge of the original signals or the environment transfer

function is never available. Compounding this situation with the inherent indeterminacies

of permutation and scaling in the blind signal recovery problem, the dilemma of having

an unknown number of sources, the unknown order of filters required say for a

deconvolution type of setup etc. severely limits the capability to determine the quality of

signal separation algorithms in practical situations.

The use of a new benchmark has been pr0posed to determine mutual

independence of a batch of signals for source recovery formulations. Unlike most other

simulation performance benchmarks employed for BSR, this benchmark can be

computed directly from the output data of the BSR network. It may also be applied

directly to the observed mixture data in order to quantify the transformation effect of the

BSR network. This novel benchmark is based on Renyi’s Mutual Information, see [97,

150]. In the context of BSR, the use of this independence performance benchmark ensues

the debate on the correspondence between statistical independence and source recovery.

In this appendix, an overview of Renyi’s quadratic entropy is first provided and it is

discussed that how it can be utilized for estimation of signal independence. This is

followed by a discussion on how to apply QIM to BSR type problems. At the end,

simulated results are presented and observations are made from this study.
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D.2.2.Independence Benchmark using Quadratic Mutual Information

A general benchmark for determination of statistical independence based on Renyi’s

quadratic mutual information has been proposed in this work [131]. Also discussed are

salient features of this measure and use of Parzen Window method for its estimation. For

a more detailed discussion on Renyi’s quadratic mutual information, see [97, 100]. The

framework was applied to the problem of blind source separation by Principe et. al. for

the development of a generalized information theoretic learning framework; where the

learning of the demixing structure can be derived directly from data. However, the

resulting update laws are computationally very expensive. Instead, it is proposed to

utilize a finite data-length quadratic entropic measure as a performance benchmark for

achieving statistical independence.

D.2.2.l. Renyi’s Entropy

Renyi’s entropy definition is derived from his proposed theory of means [100] and is

given by

N

H arr-{Z 12mm») (13.2.17)

k=1

where,

(p(.) - is a continuous and strictly monotonic function subclass of Kolmogorov-Nagumo

functions [69, 92]. To satisfy the constraints of an information measure

(D.2.18)
x Shannon's Entropy

(0(x) = (l—a) ; .,
2 x Renyr s Entropy
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I(pk) - any information measure, e.g., I(pk)=—log(pk)is Hartley’s information

measure (or Shannon’s info-theoretic measure [38]).

Simplifying the above relation, (D.2. l 7)

N

HRa zl—lzlog[2p?];a>0,a¢l (D.2.19)

" k=1

Renyi’s quadratic entropy is the special case for a = 2, i.e.,

N

HR2 = —log[kzl 11,3] (D.2.20)

D.2.2.2. Parzen Window Estimator

For the purpose of estimating the squared probability density for the quadratic mutual

information, a Parzen kernel estimator [93] is employed. The Parzen estimator takes the

form of a convolution of an estimator kernel with the observations. Using this estimator,

the pdf py (z) of a random vector y e 91'" is given by

N

16y(z)=%2x(z—y.) (13.2.21)

i=1

where

y, e 93'" is the ith observation vector

x(.) is a kernel function that satisfies the conditions for a pdf. There are several such

well-known kernel functions, e.g., the gaussian kernel, the cauchy kernel or the uniform

kernel [93]. For ease of implementation, the Gaussian kernel is chosen with covariance

matrix 2 , i.e.,
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 m) = G(z,2) = (D222)
1 exp[ zTZ_lz]

M 1

(271') A Isl/2 2

This choice is motivated by an integral property of the Gaussian kernel, which

results in an efficient and exact computation of Renyi’s quadratic entropy, for the case of

2 gaussian kernels

N

Lim 2 6(2), -y,-,21)G(Zk _yjaZZ)

= EG(z-yi,21)G(z—yj,22)dz = 007 _yjrzl +2:2)

where

y,- e 91'" and yj e 93'" are two data vectors in the space

21 and 22 are covariance matrices for corresponding Gaussian kernels.

D.2.3.Quadratic Independence Measure (QIM)

The proposed performance benchmark is based on the Cauchy-Schwartz Inequality. For

L2 norm, the inequality is

2 2 2

1x1 urn 2(xTy) «1224)

Using the above inequality, the Kullback-Lieblar divergence is “approximated”

by taking the logarithm of both sides of (D224) and rearranging

2 2

logmxllz— 2 0 (D.2.25)

(xTy)

For two pdfs f(x) and g(x) , the above inequality can be used as a divergence

measure between the two pdfs. The relation is given by
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( EoflxfdxX [jogefdx]

[ J: f(x)g(x)dx)2

 

Pcs<f,g)=log (D226)

with the following properties

. 0 3 PC, (.) s 1

0 PCS(.) = 0 if and only if f(x) = g(x)

. Pcs(f,g)=Pcs(gaf)

expressing (D.2.26) in terms ofquadratic entropy

Paws) = 2m2 (17m)—(HR2 (f(X))+HR2 (g(x))) (112.27)

In order to apply this criterion for the measurement of independence in the source

separation framework, let

f(x) represent the joint probability density estimate of the signal vector using Parzen

estimator, and

g(x) represent the product of marginal probability density estimates using the Parzen

estimator

For k observations of an output vector Y 69?” , the above relation can be

expressed as

Pcs(y) = -108[MC1(Y)] (D228)

where

M010”) -represents the normalized cross information measure
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2

MUCIPU')

N

MJ1P(Y)HMMP(Y1)

1:1

[VIC/(Y):
 

MJ,P(Y) - represents the joint information measure

1 k k

MJ,,,(Y) :k—Z-ZZU’IGu/Y— 13,2020]

MPC,P(Yj , Y,) - represents the partial marginal information measure

MPCIP(Yj’YI) :i(o(rj, -Y,.,,2a21),I:)1 ..N

#
"
I
—
-

MM”, (Yr) - represents the marginal information measure

1 k

MMP(Y,')=—JZ:1(MPCIP(YJ', Y),...)I=1N

k
h
-

MUC,p(Y) - represents unnormalized cross information measure

1 k {N

MUCIP(Y)=;Z HMPCIP(Yj’YI)

)=1 1:1

In case of linear instantaneous and convolutive mixtures, separability can be

defined as a combination of output independence and diagonalization of the global

transfer function [7, 28, 36, 37, 106, 110]. The diagonalization measure ensures that all

sources are extracted and that the algorithm did not converge to a spurious solution in the

data space, where estimated data sources are independent but different from the original

sources. In a completely blind scenario, there is no known criterion to determine this

diagonalization without explicit knowledge of the mixing transfer function. However, for

a finite known number of network outputs practically one can verify that all the separated
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sources are distinct and independent. This ensures separation of all non-gaussian source

distributions, whereas for a gaussian source this ensures separation from other

distributions only, while the reverberative effects might still be present.
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Quadratic Independence Measure vs. Data Length
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Figure D. 1. Effect of length of observation sequence on (a) Cross Information Measure,

(b) Quadratic Independence Measure (QIM)
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The effectiveness of this performance measure depends on the length as well as

the probability distributions of the constituents in an observation sequence. In Fig. D], a

graph for QIM performance measure is being provided as a function of length of

observation data. The data has three constituents that include speech, communication

signals, and gaussian noise.

D.2.4. Simulations Results

Due to space limitation, only one simulation is being provided. The mixing environment

is given by

m-l n—l

Z Aim(k — i) : Z Bis(k — i) + v(k) (D234)

j=0 i=0

where

'1 1 -1 0.5 0.8 —0.7 0.06 0.4 —0.5

A0=l -1 1 ,A1= 0.8 0.3 —o.2 ,A2= 0.16 —0.1 -0.4

_1 -1 1 —o.1 -0.5 0.4 —0.3 —0.06 0.3

"1 0.6 0.8 w 0.5 0.5 0.6 .125 0.06 0.2

BO: 0.3 1 0.1 ,3]: -0.3 0.2 —0.3 ,32: -o.1 0 0.4

_O.6 —0.8 1 —0.2 -o.43 0.6 0.08 —o.13 0.3 
v(k) - Additive Gaussian noise

The feedforward separation results for each channel using MISI and QIM

(computed with a batch of 1000 samples) are shown below
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Blind Source Recovery - Convergence of MISI Index
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Figure D.2. (a) Convergence ofMISI performance Index, (b) Corresponding Performance

of QIM performance Index
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D.2.5. Observations

The proposed quadratic independence benchmark [131] has been thoroughly investigated

for BSR problems that include both minimum phase and non-minimum phase systems.

Due to the normalized nature of QIM, it is suitable for performance comparison of

demixing achieved by different algorithms. The primary inhibition is that

computationally the benchmark has a quadratic relationship with the length of the data

set. Therefore for practical situations, it is recommended to use either the QIM measure

with a shorter data set or another computationally inexpensive measure such as MSE to

determine the convergence of the algorithm. Once the algorithm has converged, a larger

data chunk may be used to determine the achieved performance level using QIM.
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Appendix D.3. Algebraic Matrix Distance Index

(AMDI)

Algebraic Matrix Distance Index (AMDI) [132-134, 137] is primarily a scaling, sign and

permutation invariant numerical index to estimate the “similarity” between the column-

bases of two matrices with conformal dimensions. These attributes make AMDI suitable

for comparison of any two matrices of similar dimensions including results for algorithms

such as AICA and geo-ICA. Unlike the multichannel intersymbol interference (MISI,

also called Amari Performance Index), which measures the diagonalization of the global

solution (if it can be calculated) in ICA or BSS. AMDI is used to compares the estimated

mixing matrix with the synthetic or known mixing matrix to gauge the performance of

the algorithms that compute the mixing matrix instead of the demixing matrix.

Fru'thermore, for the case of overcomplete ICA, although no MISI can be calculated, yet

AMDI can be used to verify the correctness of the estimated mixing matrix.

This Algebraic Matrix-Distance Index (AMDI) is a symmetric “matrix-distance”

measure. Unlike geometric measure [115, 117], AMDI estimates the distance between

two column-normalized matrices independent of possible sign and permutation

ambiguities. The columns of the matrices are normalized by projecting them onto the
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conformal unit hyper-sphere by dividing all the elements of each column by the norm of

the corresponding column. The AMDI is given by

n-ZmaxQW'*H|) n-Zmax(|W'*H|)

AAfl)1(W, H) : rows + 00’s (D.3. 1)

n n

 

where

W, H— are two column-normalized matrices of similar dimensions.

The Algebraic Matrix Distance Index (AMDI) has the following properties:

0 Os AW](W,H) S 2; AMDI(W,H) = 2 only if both matrices are orthogonal to

each other in the n—d space, also

0 AAflJI(W,H)=AAfl)I(H,W)

In order to better visualize the convergence properties of ICA, at times it is useful to

compute the normalized AMDI instead. The normalization is done by the maximum

AMDI during the estimation phase, which is typically AMDI at initialization.
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Appendix E

Multi-Input Multi-Output (MIMO)

Canonical Form

This appendix describes the steps required to convert a MINIO filter definition, as used in

all simulation examples to the canonical state space representation. For all the state space

BSR simulations and derivations, the network structure is assumed to be in MIMO

controller form [17, 103]. In this form, the matrices A and B have the structure

    

F—QI ’Qz "QM-l "QM1 ’1]

I 0 0 O 0

A: o 1 o 0 ,B= 0 (El)

I 1 ° 0

_ o 0 1 o _ _o_

C=lfi P2 PM_1 PMLD=IP01 (152)

where the state space network/filter can be represented by

H(z)=1P<z>112<z>rl (13.3)

with

P(z) : fizz-z" (13.4)

i=0
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Q(Z) = 29,-z“ with Q0 = IN (13.5)

i=0

The polynomial matrices P(z) and Q(z) of (E3) are derived from a MIMO transfer

as explained in the following section.

E.1. Transformations required for a MIMO Transfer

Function

Consider apxm multi-input multi-output transfer function of the form

 

 

"11(2) "12(2) "1111(2) -

d11(2) 6112(2) d1m(2)

"21(2) "22(2) "2111(2)

H(z) = (121(2) d22(2) d2m(Z) (E6)

npl(z) "p2(z) "pm(z)

_dpl(z) dp2(z) dpm(z)d  
Defining, the monic least common denominator of each column i to be l,(z) of

dimension say her, i.e.,

I1(2) é LCM(6111‘ x (121' x ' ' ' dpi) (E7)

We can represent each term of the transfer function as

 
 

n--(z) If (z)

nr<z>_ n,(.) _ '1 dry-<2) (er)
2(2) ‘ die) ’ I-(z) '. Wi’ 1M} .

Now, defining the modified numerator polynomials of dimension lxn as

A 1 °

511(2) = "y(2){ 1(2) dij-(z)} (E9)
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Using the above definitions, we can represent (E.6) as

H(z) :

OI'

H(z):

PM

11(2)

521(2)

11(2)

fip1(z)

7"1_2(_Z_)

12(2)

522(2)

12(2)

fip2(z)
 

 _ I1(2)

711(2)

7121(2)

 _fipl (Z)

therefore, by defining

N(z)é

and

D(z) é

r711(2)

521(2)

 Lfipl (Z)

"11(2)

I2(2)

0

0 12(2)

 0
h-

0

(EH) can be expressed as

H(z) : N(z)D“l (z)

film(z)q

[m(z)

fi2m(z)

Im(z)

fipm(z)
 

4n(z) _

film(z)1

fi2m(z)

 fipm(2)2

film(z)1

fizm(2)

 

' 1

11(2)

0 

 fipm(z)d

 

h-

0

‘.’ /.<>
0  %m(Z)_

(E.10)

 
(E.ll)

(E.12)

(13.13)

(E.l4)

Note that (EM) and (E3) although similar are not equivalent. To express the above

matrices N(z) and D(z) in (BM) as P(z) and Q(z) of (E3), we need to re-arrange the
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polynomials in the matrices to be in sub-matrices containing co-efficients of descending

power of z, i.e., for a causal P(z), we have

P(z) é

 

and

(2(2) é

  

where,

51 1,0

521,0

 npl,0

11 1,0

 

-— — -' F'—— — —— 1

"12,0 "1m,0 "11,1 "12,1 "1m,1

522,0 fiZm,O + 521,1 522,1 7721111

51220 fipm,0d _fipu fip2,l fipde

"-- —- — q T

"l l,n "12,71 nlm,n

572131 722m 72111,» _n
...... + . : . z

_fiplm 5,12," fipm,n_ _

"in,l 0 0 ‘

__1 . . . Z +'

0 : : :

l22,0 . O 0 11ml-

. I WILM O O -

0 1pm.0_ 0 122,114

+ o

L _ 0 0 [pmMJ

P(z) : [P0 +1012:l + ------ + Pnz'"]

 

 

 

 

  

  

 

Q(z) : [Q1271 + ...... + QMz‘M ] and Q0 : I

fiij,k : represents the k’h filter tap for the if” modified numerator filter, and

Iij,
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_1 +

(13.15)

1

. (E.16)

z—M

(E.17)

(E.18)

k : represents the k’h filter tap for the if” common column denominator filter
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