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ABSTRACT

RIGIDITY AND SELF-ORGANIZATION OF RANDOM NETWORKS

Bv
If

Mykyta V. Chubynsky

In this dissertation, we consider various aspects of rigidity theory of random net-

works. First, we review previous results of rigidity theory, as well as its applications.

Extending previous work on rigidity of two—dimensional Bethe lattices and related

loopless networks, we construct the Bethe lattice rigidity theory of three-dimensional

bond-bending networks modeling covalent glasses. We study how the location of the

rigidity transition depends on the chemical order in the system. We then consider

bond-bending networks with perfect chemical order and show that the rigidity transi-

tion in this case is always first order, even on regular networks with loops, unlike the

second-order transition in randomly bond-diluted cases. Next, we study rigidity of

central-force (non-bond-bending) networks in three dimensions that were not studied

in detail previously due to the fact that a fast computer algorithm commonly used

in rigidity studies is not, generally speaking, applicable to these systems. We show

that this algorithm, while not exact, is very accurate in most cases and virtually ex-

act in some cases and use it to study rigidity properties of diluted three-dimensional

central-force networks. We also develop a slower algorithm for studying rigidity of

such networks that is always exact. Finally, we consider a model of self-organization

of networks that is meant to model certain aspects of non-randomness in glasses and

their influences on rigidity. We show that in this model there are two separate phase

transitions instead of one, the rigidity transition and the stress transition, with the

intermediate phase between them being marginally rigid (with elastic moduli zero

in the thermodynamic limit), but stressless. We consider a similar model of self-

organization for conventional connectivity percolation, where the intermediate phase



also exists. We Show numerically that in this model the conductivity of corresponding

resistor networks depends linearly on bond concentration, just like in the mean-field

theory of percolation, and prove this linearity for a closely related model. We finish

by reviewing possible experimental evidence of the intermediate phase.
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Chapter 1: Review of rigidity

theory

1 .1 Introduction

In 1929, almost immediately after quantum mechanics was discovered, P.A.M.

Dirac pointed out that the “underlying physical laws necessary for the

mathematical theory of a large part of physics and the whole of chemistry are thus

completely known ...” [1]. Recently, in 1999, another Nobel laureate, Robert

Laughlin, gave a talk [2] starting with a slide jokingly titled “Theory of Everything”

containing the Schroedinger equation for a system of electrons and nuclei and then

listing many random things (from rocks to rockets and from hippos to humans) that

can indeed be explained, at least in principle, by such a theory (one thing on the list

was “anthrax” — which makes one wonder if Laughlin could foresee that this would

become a hot issue in just over two years, but discussing that would lead us too far

astray). Of course, by itself, as Laughlin put it, this “theory of everything wasn’t

worth anything,” as the Schroedinger’s equation is too hard to solve for all but the

simplest systems. Nevertheless, in the 70 years since Dirac’s assertion huge advances

have been made and some standard methods (Hartree—Fock, density functional

theory, Car-Parrinello, pseudopotentials) and approximations (Born-Oppenheimer,

local density approximation) have been developed [3] that, together with the

remarkable increase in computational power, have made studying properties of many

condensed matter systems from first principles not only feasible, but almost routine.

Yet, there are limitations, so condensed matter physics is not yet dead. Problems

arise, for instance, for strongly correlated systems, where some of the usual

approaches do not work or do not answer relevant questions, but also for systems



that have to be considered on too long length and/or time scales. In these cases,

one needs to introduce and study simpler models that capture essential features of

interest. In particular, this is why statistical-mechanical models, such as the Ising

model, as well as various percolation models, are of interest and importance.

This dissertation deals with one of such simplified approaches based on rigidity

theory. The model considered is that of a set of sites and constraints; we will call

such a set a network. Sites are point-like objects. A constraint between two sites is

a statement that the distance between these sites should take a certain value;

whenever this distance is different, there is an associated energy cost. A constraint

can thus be thought of as an elastic spring between a pair of sites; this spring should

have a “natural” length corresponding to its being “undeformed”, but whether the

spring is harmonic or not is not important. It is assumed that interactions between

sites not connected by a constraint do not exist. When this is considered as a model

of a real condensed matter system, this is clearly a simplification, since in fact, all

atoms in any such system interact. These interactions, however, are not all of equal

strength: if, for example, atoms are covalently bonded, atoms connected by a bond

(first neighbors), as well as second neighbors, interact much more strongly than

other pairs of atoms, so our approach may turn out to be a reasonable one.

What are some of the relevant questions that one can address in connection

with our model?

0 First of all, we are interested in finding rigid clusters, which are sets of sites

that are mutually rigid (i.e., cannot move with respect to each other without

an energy cost). Consider the networks shown in Figure 1.1 (assuming that

the problem is two-dimensional, so sites can only move in the plane). In

Figure 1.1,(a) there is a possible zero-energy motion shown schematically by

arrows; thus site A is not rigid with respect to site C and site B is not rigid

with respect to site D and {A,B}, {B,C}, {CD}, and {A,D} are separate rigid



clusters. In Figs. 1,(b) and (c), all sites are mutually rigid, so the only rigid

cluster is {A,B,C,D}. The concept of rigid clusters is similar to the concept of

clusters in ordinary percolation, which are sets of sites connected to each

other; the notable difference, however, is that a site can belong to several rigid

clusters at once. In general, we will see many parallels between rigidity and

connectivity problems, although the former are more complex than the latter.

0 Secondly, while in Figure 1.1, (a) and (b), all constraints can have their

undeformed lengths, in Figure 1.1,(c) this is not the case _ in fact, all springs

will be deformed, unless their natural lengths happen to take very special

values. Thus, all constraints in Figure 1.1,(c) will be stressed and in general,

for any network we can pose a problem of finding what constraints are

stressed. A network or its part that is rigid but not stressed (as in Figure 1.1,

(b)) is called isostatic.

o Thirdly, if we consider small displacements from equilibrium (harmonic

approximation), we can ask how many motions (or normal modes) have zero

frequency. In d dimensions, there are always at least d(d + 1) /2 zero-frequency

motions corresponding to rigid-body translations and rotations of the network.

Thus for d = 2 the number of zero-frequency motions is at least 3. In

Figure 1.1,(b) and (c) there are no other zero-frequency motions; in

Figure 1.1,(a) there is one more motion shown with arrows, thus the total

number of zero-frequency motions is 4.

One important class of rigidity problems are rigidity percolation problems. In

usual connectivity percolation [4], one considers a regular lattice (such as the square

lattice in 2D) and, removing bonds or sites at random, asks a question at what

concentration of bonds/sites there is a path between opposite boundaries, or,

equivalently, a percolating cluster (infinite in the thermodynamic limit). Further,



 
Figure 1.1: (a) A floppy network with one internal floppy motion (shown with arrows);

(b) A rigid, but not stressed (isostatic) network; (c) A rigid and stressed network.

Images in this dissertation are presented in color.

one can be interested in the statistics of clusters, the size of the infinite cluster, etc.

The connectivity percolation transition is second order, which means that the

fraction of bonds/sites in the percolating cluster changes continuously from zero

when the number of bonds/sites is increased beyond the transition point. We can

ask similar questions for rigidity, by changing the number of constraints and asking

if there is an infinite rigid cluster in the network. In fact, connectivity is a particular

case of rigidity, when sites are only allowed to move in one dimension: in this case,

whenever two sites are connected, they are rigidly connected. In situations

considered initially (randomly diluted networks in 2D [5], as well as networks with

all second-neighbor constraints present, so-called bond-bending networks [6]), the

rigidity percolation transition was second order likewise; however, there are some

models, in which the transition is first order, some of which will be considered here.

One thing to notice is that besides the percolating rigid cluster, we can also ask a

question whether stressed regions in the network percolate (stress percolation).



Often rigidity and stress percolation happen at the same concentration of

constraints, however, there are exceptions, as we will see.

In this dissertation, we describe results of studies of rigidity of several different

classes of networks. In Chapter 2, we discuss the problem of rigidity of trees (or

Bethe lattices) and related random bond models. The big advantage of this problem

is that, as often is the case with Bethe lattices, it is solvable and one does not have

to perform numerical simulations, with their inherent finite size effects. Having in

mind practical applications to network glasses, we consider covalent bond-bending

networks with prescribed fractions of sites having different coordination numbers

(the coordination number of a site is the number of bonds stemming out of that

site), as well as varying degrees of chemical order expressed as probabilities of bonds

connecting sites with certain coordination numbers. In Chapter 3, we consider

networks with perfect chemical order, but disordered otherwise, and prove some

very general results for such networks, most importantly, the fact that the rigidity

transition in them is a very sharp first-order transition. In Chapter 4 we describe

some preliminary, but very interesting and encouraging, results on central-force

networks (without second-neighbor constraints) in 3 dimensions also exhibiting the

first—order rigidity transition, unlike the previously considered bond-bending

networks (with second-neighbor constraints). Finally, in Chapter 5, we introduce

our model of network self-organization and show that this self-organization leads to

presence of two separate rigidity and stress percolation transitions and an

intermediate phase between them that is rigid but not stressed. Throughout this

work, we emphasize theory, although real-life applications are mentioned.

In the rest of this chapter, we review previously obtained results of rigidity

theory, as well as its applications. This is not intended as a comprehensive review;

rather, the purpose is to introduce the concepts used in the following chapters and

give the reader an idea of how the theory can be applied.



1 .2 Studying rigidity

In this section we review various methods that were devised to solve the

rigidity problem posed in the introduction.

First of all, while the exact penalty associated with violating each constraint in

the network need not be specified, we can always for simplicity think of constraints

as harmonic springs with spring constants assigned arbitrarily. Then our system is

linear and we can write down its dynamical matrix. We can then find, at least in

principle, the eigenvalues and eigenvectors of the dynamical matrix. Zero eigenvalues

correspond to zero-frequency modes, or motions that cost no energy (also known as

floppy modes). The corresponding eigenvectors describe the motions themselves,

and from them it is possible to deduce what pairs of sites are rigid and thus find

rigid clusters. It is also possible to find what bonds are stressed by relaxing the

network of springs and seeing what springs remain strained after relaxation. This

solves the rigidity problem in principle. But this solution is not quite satisfactory.

Finding eigenvalues and eigenvectors is not particularly fast computationally, and

the computational cost rises quite fast with the system size — as the cube of the

number of degrees of freedom. Another problem is that, as with any numerical

procedure dealing with real (non-integer) numbers, there are round-off errors, so

that the eigenvalues that are supposed to be zero are actually slightly different from

zero, so zero-frequency motions can be confused with those having very small but

non-zero frequency. Perhaps as a minor (or maybe not so minor) point, there is also

feeling of dissatisfaction from the fact that to solve the problem, we had to input a

lot of irrelevant information, such as (arbitrary) values of spring constants, whereas

just the geometry of the network (moreover, as it turns out, just its topology)

should be enough. Clearly, we need methods that are faster and hopefully integer

(i.e., do not deal with real numbers) and perhaps geometrical in origin.



1.2.1 Maxwell counting

A very simple, yet remarkably accurate method of finding the number of floppy

modes was proposed by none other than J .C. Maxwell of the electromagnetic theory

and Maxwell-Boltzmann distribution fame, in 1864 [7]. The method is known as

constraint counting or Maxwell counting.

Suppose for now that there are no stressed constraints in the network, so that

all constraints can be satisfied simultaneously. In the linear approximation each

constraint is a linear relation between the system’s coordinates. Then the number of

floppy modes is the dimensionality of the space of solutions of the system of

equations formed by these relations. Each new relation decreases the dimensionality

of the space of solutions (i.e., the number of floppy modes) by one, if it is linearly

independent of the rest of the relations; otherwise, it does not change the number of

floppy modes. In the first case, the corresponding constraint is independent; in the

second case it is redundant. Redundant constraints do not change the number of

floppy modes or the configuration of rigid clusters. At the same time, they

introduce stress in the network, giving rise to stressed, or overconstrained regions,

since normally the linear systems with linearly dependent equations have no

solutions, unless their right-hand sides are special (which in our case means special,

non-generic, constraint lengths), and therefore all constraints cannot be

accommodated simultaneously without deforming. In Figure 1.1,(b), all five

constraints are independent; in Figure 1.1,(c), the sixth constraint is redundant.

Now, the assumption of Maxwell counting is that all constraints are

independent, i.e., there are no redundant constraints. Then each constraint reduces

the number of floppy modes by one, and since the number of floppy modes in a

network of N sites in d dimensions without constraints is dN, the number of floppy



modes is

FZdJ'V—IVC, (1.1)

where NC is the number of constraints. Equation (1.1) gives the number of floppy

modes in the Maxwell counting approximation. Introducing the number of floppy

modes per degree of freedom, f = F/dN, and the number of constraints per degree

of freedom nc : NC/dN,

f = 1 — nc. (1.2)

Clearly Maxwell counting is wrong, e.g., for the network in Figure 1.1,(c), since

there is a redundant constraint in the network. In this case, however, it is not really

dangerous, since Maxwell counting would give the number of floppy modes F = 2,

which is clearly absurd, since any network in 2D (except that consisting of just a

single isolated site) has at least 3 floppy modes corresponding to rigid body

motions. More dangerous is the case in Figure 1.2, where the true number of floppy

modes is 4, but Maxwell counting gives F = 3, and the error is not obvious. Despite

these failures, for big random networks Maxwell counting is usually remarkably

good, as we will see in the next subsection, where we compare Maxwell counting

with exact results.

If the number of redundant constraints NT is somehow known, we can use the

fact that redundant constraints do not change the number of floppy modes and

write exactly

F = dN - N6 + NT. (1.3)

Of course, this equation is useless so far, since there is no straightforward way of
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Figure 1.2: An example of a graph, for which Maxwell counting is wrong. The black

part is stressed and contains one redundant constraint.

finding the number of redundant constraints, short of actually solving the

eigenproblem. The only useful conclusion from it at this point is that Maxwell

counting gives a lower bound for F, since N. is non-negative.

We now apply Maxwell counting to central-force random bond-diluted networks

in 2D.

Suppose we start with a regular network in 2D (such as the triangular net)

with all sites bonded to the same number 2 of other sites (z = 6 for the triangular

net). Each bond in the network represents a constraint. We retain the fraction p of

the bonds chosen at random and remove the rest. For convenience, we can introduce

the mean coordination (r) as the average number of bonds stemming from a site:

(r) = zp. Then, if the number of sites is N, the total number of constraints is

Nc 2: (r)N/2 and the number of constraints per degree of freedom is nc = (r)/4, and

Maxwell counting [Eq. (1.2)] gives

f = 1 — (—:)—. (1.4)

We note that for (r) < 4, f > 0, so there is a macrosc0pic number of floppy modes

in the network, so one can assume that the network is floppy as a whole. On the

other hand, for (r) > 4, f < 0, which obviously cannot be true, so definitely there

are redundant constraints and stress and the network is probably rigid as a whole,



with the true number of floppy modes close to zero. If these considerations are at

least roughly true, there must be a rigidity percolation transition somewhere close to

(r) = 4. We will check these results in the next subsection after describing an exact

algorithm for studying rigidity.

1.2.2 The pebble game algorithm for 2D networks

While Maxwell counting is remarkably accurate (as we will see), it is still not

perfect and in particular, being of “mean-field” nature, it fails to adequately

describe the critical region near the rigidity percolation transition. A real

breakthrough in studying rigidity percolation came in 1995, when an exact

algorithm, the pebble game, was proposed [5, 8]. The algorithm is integer and it also

is very fast, with the computational effort scaling linearly with the network size,

except in the critical region, where the scaling is roughly oc N1'15. Thus very big

networks (up to a few million sites) can be analyzed routinely.

Consider the network in Figure 1.2. As we said, Maxwell counting is wrong for

it, as there is one redundant constraint that Maxwell counting by itself done for the

whole network cannot detect. But, if constraint counting is done for every

subnetwork (subgraph) of the network, it will be seen that the black piece in Figure

1.2 apparently has 2 floppy modes, and thus the error (i.e., the presence of a

redundant constraint) will be detected. It turns out that this is always the case, i.e.,

by doing constraint counting for all subnetworks, the presence of redundant

constraints can always be detected. This is the essence of a theorem formulated and

proved by Laman in 1970 [9]:

Theorem: A generic network in two dimensions does not have redundant

constraints, if and only if no subnetwork containing n sites (n 2 2) and b bonds

violates b _<_ 2n — 3.

The idea now is to build the network up one constraint at a time. After placing

10



each constraint, Laman’s theorem is applied and thus the newly added constraint is

tested for redundancy. All previously determined redundant constraints are ignored

in the process, so that if redundancy is detected, it can only be due to the constraint

placed last. By counting redundant constraints, we can determine the exact number

of floppy modes using Eq. (1.3). This is the idea of the pebble game algorithm.

The pebble game is conducted in the following way. Each site in the network

has two pebbles tethered to it that represent the site’s two degrees of freedom. A

pebble is either free or anchored to one of the constraints stemming from the site to

which it is tethered. Each independent constraint should be covered by one pebble

(belonging to one of its end sites) — this indicates that an independent constraint

subtracts one floppy mode. Then the number of free pebbles is equal to the number

of floppy modes. Each new constraint added to the network should be tested for

independence. For this, freeing four pebbles is attempted at the ends of the newly

inserted constraint (two pebbles at each end). The number of pebbles is equal to

the number of degrees of freedom and the number of anchored pebbles is equal to

the number of independent constraints. Then, if four pebbles can be freed, this

means that the number of independent constraints in all subgraphs including the

new constraint (not counting the new constraint itself) is less than the number of

degrees of freedom in the subgraph by at least four, and thus, according to Laman’s

theorem, the constraint is independent and should be covered by one of the four

freed pebbles. If only three pebbles can be freed (at least three can always be freed),

the new constraint is redundant and is not covered. In the process of freeing

pebbles, an anchored pebble can be freed anywhere in the network, if the constraint

that it covered is covered immediately from the Opposite end, so that covered

constraints remain covered all the time. Thus free pebbles can “propagate” through

the network. This process is illustrated in Figure 1.3. Since each bond is covered at

just one end, the network becomes a directed graph, with “arrows” at each bond

11



 

Figure 1.3: A demonstration of the pebble game. Independent (redundant) bonds

are shown with solid (dashed) lines which are (are not) covered by a pebble. Large

(filled, open) circles denote (anchored, free) pebbles. The two pebbles closest to a

given site are tethered to that site. Small open circles denote pivots (sites belonging

to more than one rigid cluster). Small filled circles are sites belonging to just one

rigid cluster. Overconstrained bonds are shown with heavy red lines. Yellow regions

are rigid bodies. The left panel shows how pebbles are reshuffled to free the fourth

pebble at the end of the test constraint. Since the fourth pebble is found, the test

constraint is independent and is covered by a pebble (right panel). There are four

free pebbles left in the right panel, denoting four floppy modes. The figure is adapted

from Ref. [5].

pointing in the direction of the covering pebble, and this specifies the paths in which

free pebbles can propagate, so search for pebbles that can propagate to a given

destination is simplified.

If the new constraint is redundant, the region over which the (failed) search for

the fourth pebble was conducted is recorded and it represents the stressed

(overconstrained) region created by the constraint. Stressed regions are sets of

constraints that are stressed and deform concurrently when any constraint in the set

undergoes deformation. If the new stressed region overlaps with any previously

determined stressed region(s) and the overlap is two sites or more, the stressed

regions are merged. Obviously, all stressed bonds can be found in this way. Note

12



that every stressed region contains a certain number of redundant constraints, but

exactly what constraints in the region are deemed redundant and thus are not

covered by a pebble is arbitrary and depends on the order of insertion of constraints.

Once big stressed regions appear in the network, [these regions undergo the

triangularization procedure that consists in connecting two sites in the, region to all

the rest and placing pebbles on these connections. This procedure shortens free

pebble searches significantly. The results are not affected, since the regions are

stressed and any constraint placed in them is redundant anyway.

At any stage, the network can also be decomposed into rigid clusters. A

constraint not yet assigned to any cluster is picked and three pebbles are freed at its

ends (the fourth pebble covers the constraint itself). Then the search for a free

pebble starts from the constraint’s ends outwards with the three free pebbles locked

in place. The region to where any free pebble cannot move coincides with the rigid

cluster to which the constraint belongs. Note that in 2D a constraint always belongs

to just one rigid cluster, but a site can be shared between several rigid clusters, in

which case it is a pivot. Several pivots are indicated in Figure 1.3 (see also

Figure 4.5 in Chapter 4).

Typical results of the pebble game analysis for a piece of a randomly diluted

triangular net are shown in Figure 1.4. The picture shows pivots that are shared

between difl'erent rigid clusters and separate them from each other and also

indicates stressed bonds.

1.2.3 Rigidity percolation in 2D

In this subsection, we review some results obtained for central-force generic

rigidity percolation on the diluted triangular net obtained using the pebble game

algorithm. A more detailed account can be found in Ref. [10].

We first compare the number of floppy modes to the Maxwell counting result,

13
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Figure 1.4: Two typical fragments of a triangular network, below (left panel) and

above (right panel) the rigidity transition. Green points are pivots between several

rigid clusters. Black bonds are stressed, red bonds are unstressed. Below the transi-

tion, the network is floppy overall, but there are a few rigid pieces having no pivots.

Above the transition, the network is rigid and stressed, but there are a few floppy

pockets. Adapted from Ref. [6].

Eq. (1.4). This is shown in Figure 1.5. The exact value of f is indeed very close to

the Maxwell value fM far enough below the Maxwell counting estimate for the

rigidity transition (r) 2’ = 4, but then starts to deviate significantly and does not

reach zero (until full coordination, (r) = 6, is reached).

We now study rigidity percolation. Just as in usual connectivity percolation, we

can choose as the relevant order parameter the size of the percolating rigid cluster

(more specifically, we use the fraction of constraints in the percolating rigid cluster

P50). Besides, as we might also be interested in stress percolation, we also use

another order parameter, the fraction of constraints in the percolating stressed

region P50. These two order parameters, as it turns out, become zero at the same

point, so the rigidity and stress percolation thresholds coincide (Figure 1.6). This

should be compared with the self-organization model (Chapter 5), where these

thresholds do not coincide and there is an intermediate phase between them. Using
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sizes (lengths are indicated). The cusp at the rigidity transition is clearly seen. The

inset is adapted from Ref. [5].
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Figure 1.6: The fractions of bonds in the percolating rigid cluster (red open circles)

and in the percolating stressed region (black filled circles) for the diluted triangular

net. Averaged over two realizations on a 400 x 400 lattice.

finite-size scaling, the position of the threshold was found to be (r) = 3.961 :l: 0.002.

This is amazingly close to the Maxwell counting prediction (r) = 4. As the order

parameters seem to change continuously (rather than jump) at the threshold, the

phase transition is apparently second order. It has been suggested by Duxbury and

co-workers that the transition might be weakly first order; while we think this is

unlikely, it cannot be completely ruled out at the present time.

The fraction of floppy modes f looks quite smooth, but the second derivative of

it with respect to (r) (shown in the inset), in fact, exhibits a cusp at the rigidity

threshold (Figure 1.5) This is similar to the behavior of specific heat at second-order

thermal phase transitions. As the specific heat is minus the second derivative of the

free energy with respect to the temperature, it was suggested that minus the

number of floppy modes plays the role of the free energy in the rigidity percolation

problem. This should be compared to connectivity percolation, which was mapped
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onto a particular case of the Potts model [11], so that the partition function can be

written, and the free energy turns out to be the negative number of clusters; since

the connectivity problem is equivalent to the 1D rigidity problem (see section 1.1),

the number of floppy modes for connectivity is equal to the number of clusters.

Thus analogy is clear, however, no similar mapping that would allow to write down

the partition function and the free energy was proposed for the rigidity problem so

far; the only positive indication is the proof for randomly bond diluted central-force

networks [12] that —f has the right convexity properties for it to be the free energy,

in other words, that the second derivative is non-negative.

Assuming that the transition is indeed second order and using the definitions of

the order parameter and the analog of the specific heat, the standard set of critical

exponents were evaluated, and the conclusion is that the rigidity transition is in a

different universality class than connectivity.

1.2.4 Rigidity of 3D glass networks

Unfortunately, Laman’s theorem cannot be generalized for arbitrary 3D

networks. The necessary part is easily generalizable: indeed, if b > dn — d(d + 1) /2

for at least one subnetwork with n 2 d, there definitely are redundant constraints.

The sufficient part, however, does not generalize. A detailed discussion of this can

be found in Chapter 4; in that chapter, Figure 4.1 shows an example of a network

that violates the straightforward generalization of Laman’s theorem.

At the same time, Laman’s theorem and with it, the pebble game, can be

generalized for a particular class of 3D networks. Imagine an arbitrary network

specified by a set of bonds, with constraints on both the bond lengths and angles.

Or, equivalently, there are usual length constraints between first neighbors (i.e.,

sites directly connected by a bond) and also between all second neighbors, as

illustrated by Figure 1.7. Constraints between first neighbors are commonly called
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angular

Figure 1.7: An example of a bond-bending network. There is an angular constraint

between every two central-force constraints.

central-force constraints, while constraints between second neighbors are called

bond-bending or angular constraints, since they fix angles between bonds. Such

networks themselves are called bond-bending networks, and for them, Laman’s

theorem is generalizable in the form of the following statement [13, 14]:

A generic bond-bending network in 3D does not have a redundant constraint, if

and only if no subset of the network containing n 2 2 sites and b constraints violates

b53n—6.

This is a part of the molecular framework conjecture; the full conjecture is in

essence the statement that the 3D pebble game algorithm described below is exact

for such a network. While the statement is only a conjecture and is not proved yet,

no counterexamples were ever found in many years of extensive studies, so we find it

reasonable to believe that the statement is correct and use it for analyzing rigidity

of 3D bond-bending networks. Note, by the way, that rigidity of 2D bond-bending

networks is equivalent to connectivity: whenever two sites are connected by a path

of bonds, in the corresponding bond-bending network these two sites are mutually

rigid.

The pebble game procedure for 3D bond-bending networks is similar to the 2D

pebble game described in subsection 1.2.2, albeit more complicated [14, 15]. The
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first obvious difference is that there are three pebbles per site, since each site now

has three degrees of freedom. A very important feature is that the prOper order of

inserting constraints should be obeyed: a CF constraint is placed first, and all of the

induced angular constraints (i.e., those constraints locking angles between the just

inserted CF constraint and other CF constraints already in the network) should be

placed immediately afterwards. This is done in order to ensure that the network is

as close to being bond-bending at every step as possible. Failure to follow this rule

leads to errors, as discussed in subsection 4.3.2.

Similar to the 2D pebble game, after inserting a constraint, we attempt to

collect the maximum number of pebbles (six in 3D) at its ends. Unlike in the 2D

case, this is always possible, since a rigid body has six degrees of freedom (for

comparison, in 2D a rigid body has three degrees of freedom, so only three free

pebbles out of four are guaranteed). So, obviously, the testing for redundancy is not

over yet. What we need to check, according to the 3D generalization of Laman’s

theorem, is that every subnetwork including the new constraintand consisting of at

least 3 sites has the number of constraints fewer than the number of degrees of

freedom by at least six — then the new constraint is independent. This is true, if

the seventh pebble can be freed at each site directly connected to both ends of the

newly inserted constraint in turns, while keeping the six already freed pebbles free.

In fact, fewer checks are needed [16]: for a CF constraint, only those sites connected

to one of the ends by a CF constraint need to be checked; for an angular constraint,

only the vertex of the angle has to be checked. If any of the checks fail, the

constraint is redundant and the region of the failed pebble search is recorded as the

stressed region and merged with the previously determined stressed regions if

needed. Similarly to triangularization in the 2D case, tetrahedralization is performed

to speed things up.

Just as in 2D, rigid cluster decomposition can also be done. Unlike in 2D, a
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constraint can be shared between two rigid clusters (be a hinge, around which the

two clusters rotate), so instead of starting with a single constraint and mapping its

cluster, we start with an angle between two bonds. We free a total of six pebbles at

the three sites forming the angle and then find the region where the seventh pebble

cannot be found, and this region is the rigid cluster.

1.2.5 Covalent glass networks

The 3D rigidity theory can be applied to network glasses, which are

non-metallic glasses with covalent bonding between atoms. On the microscopic level,

these glasses are modeled as the continuous random network [17]. In this model, the

structure is viewed as a network of bonds between atoms that is topologically

disordered (i.e., cannot be continuously deformed into an ordered crystal) and, as

implied by the word “continuous”, has no macro- or mesoscopic voids and thus is

about as dense as the corresponding crystal (see Figure 1.8). This has become a

well-established model mostly through extensive diffraction studies [18].

The most important forces between atoms in glass networks are

nearest-neighbor bond-stretching and angular bond-bending forces. Other, weaker

forces (dihedral, van der Waals, etc.) can often be neglected. What is obtained then

is a bond-bending network whose rigidity can be studied using methods described

here; in particular, luckily, the 3D pebble game can be applied.

Following Thorpe [19], we consider chalcogenide compounds of the type

GexAsySe1_x_y, where Ge stands for any atom that has valence four and thus

bonded to four other atoms (has coordination number 4), As stands for any atom

with coordination 3 and Se any atom with coordination 2. Varying x and y, we can

change the average number of constraints per atom and thus the rigidity properties

of the network.

We first do Maxwell counting for the networks under consideration. First, we

20



21



count all constraints. The number of bond-stretching constraints is simply the

number of bonds, which is (r)N/2, where (r) is mean coordination (now defined in

terms of the number of bonds and not the total number of constraints). For a site of

coordination r, the total number of bond-bending constraints is r(r — 1) /2, which

gives 1 for r = 2, 3 for r = 3 and 6 for r = 4. However, for r = 4, one of these

constraints is always redundant, and it is reasonable to exclude it; so the number of

remaining angular constraints for r = 2, 3 and 4 is 1, 3 and 5, respectively, or

2r — 3. Then, the total number of constraints is

4

N, = Zn,[r/2+ (2r—3)], (1.5)

r=2

where n, is the number of sites of coordination r, or, using (r) = 2:2 n,r/N,

1v. .—. N (2a) — 3). (1.6)

The number of constraints per degree of freedom is

NC 5
 

71C:

and, according to Eq. (1.2), the Maxwell counting result is

5

f=2— 6(7) (1.8)

Just as in the 2D case, we associate the rigidity transition with the point where f

becomes zero; thus the Maxwell counting prediction for the rigidity threshold is

(r) ,1,” = 2.4.

Note that f in the Maxwell counting approximation only depends on

(r) = 2 + 2x + y (x and y are the parameters from the chemical formula
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GeIAsySe1_1_y) and not on x and y separately. Likewise, the mean coordination at

the threshold is constant. This is because the number of angular constraints

associated with an atom depends linearly on the coordination of the atom. We note

that if there are also onefold-coordinated atoms (such as halogen atoms) in the

network, the linear formula for the number of angular constraints (2r — 3) no longer

applies, giving an absurd result -1 (there are, in fact, no angular constraints, so the

answer should have been zero). Because of this, the threshold obtained by Maxwell

counting is no longer a constant, but depends on the concentration of 1-coordinated

sites n1 [20]:

mg” = 2.4 — 0.472.. (1.9)

We subject this equation to some scrutiny in Chapter 2.

We now return to the case when there are no 1-coordinated sites and describe

the pebble game analysis [6]. The networks were constructed by starting from a

network with all sites 4-coordinated and then decreasing the mean coordination by

selecting bonds at random and removing each selected bond, provided that no

l-coordinated sites are created. This ensures that the network always consists of

sites of coordination 2, 3 and 4 only. The advantage of this procedure is that the

whole sequence of networks can be analyzed in a single pebble game run, by starting

from the network with the lowest coordination and then placing bonds in the order

reverse to that in which they were removed, thus recreating the whole sequence, and

running the pebble game concurrently. Of course, the results should be averaged

over several realizations.

As the starting fully 4-coordinated network, the amorphous silicon network

constructed using the Wooten-Winer-Weaire (WWW) procedure [21, 22] was used.

The WWW method starts with the crystalline diamond lattice and amorphizes it by
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repeatedly applying a bond-switching procedure that changes two neighboring 6-fold

rings into a 5-fold and a 7-fold rings or vice versa, while keeping the coordination of

all atoms at 4 all the time. After the initial amorphization, relaxation is performed

by carrying out the same bond-switching procedure, but accepting or rejecting each.

bond switching with the appropriate Boltzmann weight.

Besides the amorphous silicon network, the crystalline diamond lattice was also

used for rigidity studies. The latter is topologically ordered, but becomes disordered

very fast upon dilution and the results for the two starting networks do not differ

much.

The results of the pebble game study are presented in Figures 1.9 and 1.10.

Just as in the 2D central-force case, the rigidity and stress thresholds coincide and

the transition is second order. The threshold is located at (r) = 2.375 :1: 0.003 and

(r) = 2.385 i 0.003 for the diamond lattice and the amorphous silicon network,

respectively, which is, remarkably, within about 1% of the Maxwell counting result

(r) = 2.4.

1.2.6 Body-bar representation

It turns out that 3D bond-bending networks can be represented as equivalent

central-force body-bar networks [23, 24]. In this representation, each site with

coordination higher than 2 of the original 3D network is represented as a body

having 6 degrees of freedom and every bond (i.e., every nearest-neighbor constraint)

is represented as a bunch of 5 bars (i.e., 5 constraints). This correspondence is

illustrated in Figure 1.11. Sites of coordination 1 should be represented as having 5

degrees of freedom (since, say, a dimer consisting of two connected l-coordinated

sites should have no internal degrees of freedom) and isolated sites as having 3

degrees of freedom.

The body-bar representation has several important advantages over the original
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Figure 1.9: The number of floppy modes per degree of freedom f for the diluted

amorphous silicon network (red circles) and the diluted diamond lattice (green dia-

monds). The dashed black line is the Maxwell counting result, Eq. (1.8). The inset

shows the second derivative of f, with the cusp at the transition clearly seen in both

cases. Adapted from Ref. [6].
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Figure 1.10: The fractions of sites in the percolating rigid cluster (open red circles)

and in the percolating stressed region (filled black circles) for the diluted diamond

lattice. The results are averages over 11 realizations on networks of 125000 sites. The

rounding near the transition is due to finite-size effects.
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Figure 1.11: The correspondence between bond-bending networks (top) and body-bar

networks (bottom). The bond-bending network has one internal motion - a rotation

around a hinge. Likewise, a system of two bodies with 6 degrees of freedom each

connected by 5 bars has one internal degree of freedom.
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one. For example, Laman’s theorem can also be generalized to body-bar networks,

and the corresponding “6—dimensional” version of the pebble game is more

straightforward than the 3D pebble game described above: in fact, it is totally

analogous to the 2D pebble game procedure, the only obvious differences being that

there are now 6, 5 or 3 pebbles tethered to each site (depending on the site’s

coordination) instead of 2 pebbles in the 2D case, and that 5 pebbles are placed on

a bond instead of one. Also, the fact that there are now only nearest-neighbor

connections makes many considerations simpler, and we take advantage of this in

Chapters 2 and 3.

1.3 Applications of rigidity theory

1.3.1 Network glasses

Initially interest in applications of rigidity theory has been present mostly in

the engineering community. Engineers are interested in mechanical stability of

various structures, and rigidity theory certainly is relevant. Recently, however, the

real boost to development of rigidity theory came from those interested in

applications at the microsc0pic level. Historically, the first such application has

been to covalent network glasses.

The first application of the constraint counting idea to glasses dates back to

1979. J .C. Phillips [25] was interested in what makes a particular material a good or

a bad glassformer. Essentially all materials can be made amorphous if cooled from

the melt fast enough, so the atoms do not have enough time to find the correct

positions and arrange themselves into a crystal. However, some materials (most

metals, for example) are very bad glassformers: they almost always crystallize upon

cooling and only when cooled very fast can they freeze into a disordered amorphous

solid. On the other hand, there are very good glassformers (such as the ordinary
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window glass) that almost always form amorphous solids and have to be cooled

extremely slowly to crystallize. All obvious explanations for what causes different

glassforming ability failed to account for all cases. For example, one might think

that materials with simpler crystal structures are worse glassformers, as their

structures are easy for the atoms to arrange into. But there are very complex

materials that easily crystallize; on the other hand, the window glass is mostly just

the silicon oxide, 8102, and the structure of its crystalline counterpart, quartz, is

not particularly complex. Phillips noted that in a particular class of materials,

namely, those with predominantly covalent bonding, the glassforming ability is best

for those materials that have the number of constraints (defined as in subsection

1.2.5, i.e., first-neighbor central-force and second-neighbor angular constraints are

counted) approximately balances the number of degrees of freedom of all the

constituent atoms. The explanation he gave is that when the number of constraints

is bigger, the network is overconstrained, so, when disordered, it has too high energy

that is reduced by ordering; on the other hand, when the number of constraints is

smaller, the network is flexible, so it can easily rearrange into a crystal without

having to overcome large potential energy barriers; in both cases, crystals are easily

formed, and only when there are neither too many nor too few constraints, glasses

are formed instead.

Note that the difference between the number of degrees of freedom and the

number of constraints that plays the pivotal role in Phillips’ theory is the number of

floppy modes in the Maxwell counting approximation; this diflerence, as we now

know, becomes zero close to the rigidity percolation threshold. Thus we might say

that according to Phillips’ ideas, best glassformers are at or near the percolation

threshold. This was noticed in 1983 by M.F. Thorpe [19], who introduced the

concept of rigidity percolation and proposed that it should show up as a threshold

in various mechanical and related properties when they are measured as a function
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Figure 1.12: The frequency of a particular vibrational mode in a Ge-S glass measured

by Raman scattering as a function of the mean coordination number. Diflerent mean

coordination numbers are obtained by varying the composition. A break is seen near

(r) = 2.4. Adapted from Ref. [26].

of the number of constraints or the mean coordination by varying the chemical

composition.

Note that the Phillips’ proposal deals with an optimum of a quantity, whereas

Thorpe’s suggestion is about a threshold. Optima are generally expected to be

rather robust against presence of factors not taken into account by a theory, such as

weaker interactions (van der Waals forces, etc.) in this case. Indeed, extrema in

many physical quantities (not just the glass-forming ability) have been observed

close to the rigidity percolation point (r) = 2.4 [27, 28, 29, 30]. Thresholds, on the

other hand, are more easily smeared away and have been harder to observe.

Nevertheless, they have been seen, say, in Raman scattering measurements (Figure

1.12) [26].
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1.3.2 Proteins

More recently, another interesting and potentially very promising application of

rigidity has emerged. Protein molecules, from the physical point of view, are

covalent networks, like glasses, just much smaller in size, usually thousands of

atoms. Proteins play an extremely important role in functioning of all live

organisms. They perform a huge variety of functions, from simple mechanical

reinforcement to taking part in and catalyzing chemical reactions. In many of these

functions, mechanical properties of proteins play a big role. To understand proteins’

functions and control them, say, to cure diseases, it is very important to know what

motions of what parts of a protein molecule are possible. This is an information

that rigidity theory can give. For example, in Figure 1.13, the rigid cluster

decomposition of a protein called HIV protease [31] is shown. Different adjacent

rigid clusters have different colors. It is seen that much of the molecule is a big rigid

cluster; however, flaps at the top of the picture consist of many small clusters and

thus are flexible. These flaps can easily move and thus the protein performs its

function that consists in cutting the DNA of the HIV virus that causes AIDS and

thus multiplying the virus. Some anti-AIDS drugs work by binding to the protein

and locking the flaps. This can be analyzed using rigidity theory.

Another application is to the protein folding problem [32]. Proteins are

synthesized as a polymer chain that then folds itself into a complex

three-dimensional structure unique for each protein. The essence of the protein

folding problem is prediction of the structure of the protein, as well as the pathway

in the configuration space that the protein takes to reach this final structure.

Rigidity theory can help in predicting the pathway: simply speaking, the most rigid

parts of the protein fold first, although the actual approach is more complicated (see

[33] for details).
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Figure 1.13: The rigid cluster decomposition for the HIV protease. Only the protein

backbone is shown and not the side chains. There is one big rigid cluster (blue), but

the flaps consist of many small clusters and thus are flexible and can easily move.
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Chapter 2: Random Bond Model

The pebble game algorithm described in Chapter 1 can in principle be used to

analyze rigidity of any network in 2D and any bond-bending network in 3D. Of

course, just as with any numerical procedure, these networks have to be finite and in

practice, there is always a limit on the size of those networks that can be analyzed

in reasonable time. So, if our purpose is studying rigidity in the thermodynamic

limit, there are always unavoidable finite-size effects, which can bring about

controversies even in questions as basic as the order of the rigidity transition (see

the discussion of the 2D rigidity transition in Chapter 1). It is therefore of interest

that there is a class of networks, rigidity of which can be studied analytically in the

thermodynamic limit. These are so—called random-bond networks (RBNs).

An example of an RBN is shown in Figure 2.1 In an RBN, sites placed

randomly in space are connected at random regardless of Euclidean distances

between them. Because of this property, there are virtually no finite-size loops in

these networks, although there are loops of typical size 0(ln N) (where N is the

number of sites) [34]. If one starts with one site of an infinite RBN and then

includes its first, second, etc. neighbors (in fact, any finite number of coordination

shells), one ends up with a tree. In other words, locally an RBN is a tree, where the

word “locally” should be understood in terms of chemical distances (along bonds),

rather than Euclidean distances. It is not surprising then that for many

calculations, we will be able to consider RBNs as infinite trees (or Bethe lattices);

ultimately, \Vliowever, the fact that there are infinite loops in RBNs (that distinguish

them from Bethe lattices) is very important. We will refer to the RBN model of

rigidity as the it random bond model (RBM).

At this point, a few words about terminology are in order, as there is some

confusion in the literature. In this dissertation, a network with infinite loops (as
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Figure 2.1: A random bond network. Sites are connected at random, regardless of

the distance.

schematically depicted in Figure 2.1) is called an RBN; an infinite tree without any

loops is called a Bethe lattice. Beware that in some papers, RBNs are called Bethe

lattices and trees (both finite and infinite) are called Cayley trees (the term that we

will not use here).

Studying various problems on Bethe lattices has a long history. The term

“Bethe lattice” itself derives from the Bethe-Peierls approximation in the theory of

substitutional alloys [35, 36] that was later shown to be exact [37] on Bethe lattices.

Since then, a great variety of problems were considered. These include: connectivity
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percolation [38], the Ising model (equivalent to the original alloy problem) and Potts

models in general [39, 40], tight-binding Hamiltonians [41], spin glasses [42], the

random field Ising model [43, 44, 45], and others. A good review of early

applications is in Ref. [46]. '

Rigidity percolation on bond- and site-diluted Bethe lattices and RBNs was

first studied by Duxbury, Thorpe and others [47, 48, 12]. In this chapter, we apply

their method to 3D bond-bending networks; having in mind applications to covalent

glasses, instead of bond- or site-diluted networks we consider RBNs having

prescribed fractions of sites of different coordinations, as well as varying degrees of

chemical order. In section 2.1, we briefly review the method, as applied previously

to bond-diluted Bethe lattices. In section 2.2, we describe our approach pointing

out where it differs from previous studies, write down the basic equations and solve

these equations obtaining rigidity phase diagrams. In section 2.3, we show how

presence of 1-fold coordinated sites in the network can be easily taken into account.

We end with conclusions in section 2.4.

Most results presented in this chapter were published in Ref. [6].

2.1 Rigidity percolation on Bethe lattices and

RBNs

This review section is based on Ref. [12].

We consider trees built in the following way (Figure 2.2). Start with a site (the

root of the tree) and connect it to 2 other sites (where integer z is the coordination

of the tree). Connect each of these z sites (first generation) to z -— 1 other sites (but

not the root), so there are z(z — 1) sites in the second generation. Connect each of

the sites in the second generation to z — 1 sites not in the previous or current

generations, and so on. Suppose we build a finite tree containing n generations of
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sites. We will call sites of the last nth generation leaves of the tree. All sites of the

tree are z-fold coordinated, except for the leaves. The “thermodynamic limit” can

be considered by taking n to infinity, then we end up with a Bethe lattice. Note

that the thermodynamic limit is rather pathological, [as a finite fraction of sites are

leaves, which are undercoordinated surface sites. Trees built as described can then

undergo random bond dilution by removing each bond with probability 1 —- p and

retaining it with probability p.

 

Figure 2.2: A 3-fold coordinated tree. The root is red, the leaves are green.

Thinking about rigidity of trees, we soon notice that we seem to be in trouble,

as stand-alone trees can never be rigid. Imagine, however, that we attach all leaves

of the tree to a rigid busbar (Figure 2.3), so that all leaves are rigid with respect to

the busbar and thus with respect to each other. Then we can ask if, at a given p,

rigidity due to the busbar can propagate infinitely far from the busbar towards the
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root. This is how the rigidity percolation problem on Bethe lattices can be posed.

RBNs, on the other hand, can be rigid by themselves due to the presence of

rigidifying infinite loops. This is one reason to prefer RBNs to Bethe lattices when

studying the rigidity transition; another (and a more serious one) is the

pathologically big surfaces of Bethe lattices (as mentioned above) that are absent in

RBNs. On the other hand, it is somewhat easier to think in terms of Bethe lattices,

rather than RBNs, when constructing equations of the theory. For that reason, we

will start with the theory of Bethe lattices and then point out where differences

between them and RBNs matter.

levels

______________________________________ 4

____________________________________ 3

___-.. ________________ ___.-- 2

__ ___ ___ --- --_ - 1

e I e E e E II. an e - I I A O

busbar

Figure 2.3: A tree connected to a busbar. Present bonds are solid lines, missing bonds

are dotted lines. Sites in level 0 (green) are rigidly attached to the busbar.

The method used to solve the rigidity problem on Bethe lattices is a variation

of the transfer matrix technique. To illustrate the method, consider a z—coordinated

Bethe lattice with a busbar in 2D. Fix the busbar so it cannot move. Now consider

just the first n levels of the lattice (counting from the busbar) cutting them off from

the rest (i.e., removing all bonds connecting the nth level to the (n + 1)th level).

Consider a site in the nth level. The site can be rigid with respect to the busbar,
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then it has zero degrees of freedom (d.o.f.). Here and elsewhere in this chapter, we

count degrees of freedom corresponding to zero-frequency motions only, unless

specified otherwise. If the site is not rigid, it has either one or two d.o.f. Denote Tim

the probability that a site in level n has i d.o.f. (i = 0, 1 or 2). Now repeat the

same procedure for n + 1 levels of the lattice, cutting them off from the rest. Since

sites in the (n + 1)th level are only connected to sites in the nth level, it is possible

to express Tm“ in terms of Tim. A site in level (n + 1) is connected to up to z -— 1

sites in level n (the probability of each connection is p). If at least two of these sites

have 0 d.o.f., the site in level n + 1 also has 0 d.o.f. The probability that a given

connection is present is p; the probability that it is present and leads to a site with 0

d.o.f. is pTom. Then

T0m+1 =1-(Z — 1)pT0,n(1— pT0,n)z_2 — (1— pTo,n)Z-l. (2.1)

Since we want to find stationary solutions (or values of To,” far away from the

busbar), we equate T0,,“ = T0,, E To, then

T0 =1—(z — 1)pT0(1 — p11,)H — (1 — pm“. (2.2)

Similarly we can write equations for T1 and T2, when we need these quantities. For

0 S p S 1, equation (2.2) has either 1 or 3 solutions in the interval 0 3 To S 1.

There is always the trivial solution To = 0, but if z 2 4, there exists p, such that for

p > p, there are also two non-trivial solutions (Figure 2.4). When considered as

stationary solutions of Eq. (2.1), the solutions can be stable or unstable. The trivial

solution and the bigger of the non-trivial solutions (when it exists) are always

stable; the smaller of the non-trivial solutions (when it exists) is always unstable.

Then there are 1 or 2 stable solutions. When 2 stable solutions exist, the choice

between them is determined by the initial condition. With rigidity induced by the
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busbar, the initial condition is Top = 1, as all sites at the busbar (level 0) are rigid

with respect to the busbar. Then the non-trivial solution is realized whenever it

exists, i.e., for p > p,.
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Figure 2.4: Solutions of equation (2.2) for the probability that a site has zero degrees

of freedom, To. There is always a trivial solution identically equal to zero (green).

There may also be non-trivial solutions (red), stable (solid line) and unstable (dashed

line). The black line shows the solution that is actually realized in RBNs.

The probability for a bond far away from the busbar to belong to the infinite

rigid cluster starting at the busbar can be shown to equal T02 + 2T0T1. Then,

whenever the trivial solution To = 0 is realized, there is no infinite rigid cluster and

the network is floppy; whenever the non-trivial solution is realized, the network is

rigid. Then in a Bethe lattice with a busbar, the rigidity transition occurs at p = p,.

How do these results apply to the RBM? Since locally an RBN is a tree, we can

still write the same equation (2.2). This can be interpreted as follows. Suppose we

define some reference frame and for each site define quantities T, that are the
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probabilities for the site to have i d.o.f. with respect to the chosen frame, when one

of the 2 possible bonds stemming out of the site is chosen arbitrarily and removed if

present. In an RBN, T,- are the same for all sites. Then one can write a

self-consistency equation by writing To for a site in terms of the same To for its

neighbors, and this equation will coincide with Eq. (2.2). The meaning of the

solutions of this equation is now as follows. If only the trivial solution exists, then

there is no reference frame with respect to which a finite fraction of the network sites

are rigid. If there is also a non-trivial solution, there is a possibility that there might

be a reference frame, with respect to which a finite fraction of the network is rigid.

If such a frame exists, we will say that the non-trivial solution is realized; if it does

not exist, the trivial solution is realized (even if the non—trivial solution exists). Note

that while the equations are the same as for the Bethe lattice, criteria of choosing

between the trivial and the non-trivial solutions may now be different. We will not

describe the method of choosing the right solution here, given that the consideration

for the 3D bond-bending networks later in this chapter is fully analogous (if a bit

more complicated technically); see also Ref. [12]. The final result is indeed different

from the Bethe lattice case (no surprise, given that the Bethe lattice result

depended on the presence of the busbar, and there is no such thing as the busbar in

the RBN). It turns out that switching between the trivial and non-trivial solutions

occurs not at p 2 p,, but at a higher p 2 pc. Thus, there is a spinodal point p,, at

which the non-trivial solution first appears and a critical point pc, at which the

rigidity transition occurs. This is the standard picture of a first-order phase

transition. Note also that To, which is related to the size of the percolating cluster

and which thus can serve as the order parameter for the rigidity transition, jumps at

pc, as it should when undergoing a first-order transition. This is in contrast with

connectivity percolation, as well as rigidity percolation on usual, regular lattices

(having finite loops, unlike RBN), where this transition is second order.
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Other Bethe lattice models were also considered [48], such as site—diluted

problems and also more general cases of body-bar networks, where sites are replaced

by bodies having an arbitrary number of degrees of freedom and connected by bars

consisting of several constraints. The 3D bond-bending networks considered in what

follows will also be represented as body-bar networks, but the model is somewhat

different from those considered before.

2.2 The random bond model of glass networks

Randomly bond-diluted Bethe lattices were considered before, as we have just

described. These are characterized by a single parameter p, the fraction of bonds

remaining. Considering glass networks, though, we usually have a certain

composition, where there is a prescribed number of atoms of each coordination.

Besides, in glass networks angular forces are also significant. So, when constructing

Bethe lattice or random bond models of glass networks, we should add

second-neighbor constraints to trees (or, respectively, RBNs), so that bond-bending

networks are formed. An example of a tree with second-neighbor constraints is

shown in Figure 2.5.

As we have seen in Chapter 1, for a three—dimensional network with angular

constraints, the rigidity transition occurs at the average coordination (r)C = 2.4

according to Maxwell counting (and the exact threshold is close to this value for

randomly diluted networks). This assumes that there are no sites of coordination 0

or 1. Then the simplest possibility for studying the rigidity transition is a network

with just two types of sites, 2-coordinated and i-coordinated, where i > 2. In what

follows, we consider the case i = 3 in detail. Thus we have 2- and 3—coordinated

sites (for brevity, 2- and 3-sites) in the network. If the concentration of 3-sites is :r,

then that of 2-sites is 1 —- a: and the average coordination is (r) = 2 + :r. We also
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Figure 2.5: A bond-bending tree. Present bonds are solid red lines, missing bonds

are dotted red lines. There are angular constraints (blue dashed lines) between every

pair of present bonds stemming from the same site.

give the final results for i = 4 (networks with 2- and 4-coordinated sites).

2.2. 1 Chemical order

In addition to changing the average coordination by changing the concentration

of 3-sites :r, we can also change chemical order in the network. For example, a site

of a given type may tend to be preferentially connected to a site of the same or

different type. Actual situations may range from complete phase separation to

perfect chemical order where there is always an atom of the opposite type between

two atoms of the same type.

To describe these possible situations, we consider the numbers of bonds, NU,

connecting atoms of types i and j (i-j bonds for brevity). We have 3 quantities:
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N22, N33 and N23. Twice the number of 2-2 bonds plus the number of 2—3 bonds

gives the total number of bonds stemming from 2-sites (which is twice the number

of 2-sites N2); if a bond is a 2-2 bond, it is counted twice. The similar sum rule is

for bonds going out of 3—sites (the number of such bonds is 3N3, where N3 is the

number of 3-sites). Then we have

21V22+1V23 = QJVQ,

24'7V33‘l‘N23 = 3N3- (2-3)

Since N2 and N3 can be expressed in terms of the concentration a: and the total

number of sites N [N3 = :rN, N2 = (1 — $)N], only one of the three quantities N,,- is

independent.

The total number of bonds is N3 2 N22 + N33 + N23. It is convenient to use

probabilities for bonds of different types 3122, y33 and 3123 defined as

Ni]-

yij : N—B (2.4)

instead of Nij. By definition, y,,- = y,,. Dividing (2.3) by N3 and using

M232

 

N = N, 2.5B 2 2 ( )

we obtain relations for yij:

4(1 — :r)

2 . = _,922 + 923 2 + a:

63:
2 ,. = , 2.6.7133 + 3/23 2 + :r ( )

so that again we have two equations for 3 quantities, and these quantities can be

expressed in terms of a single parameter. It is convenient to use the correlation
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parameter 6 such that

 

3123 = 26) (2.7)

then

1 _ 2(1 — :1?)

J22 — 2+1: 9

— 3‘” a (2 8)3133 — 2+1‘ - .

The obvious sum rule on the probabilities

922 + 3123 + 3133 = 1 (2-9)

is satisfied.

The parameter 0 characterizes the chemical bonding properties of the network,

or, in other words, correlations between types of first-neighbor sites. We will assume

that there are no longer-range correlations, i.e., no correlations between types of

second, third, etc., neighbors. Then statistically, the networks are completely

characterized by two parameters, :1: and 0.

It is also convenient to introduce another group of quantities. We define n5” as

the probability for a bond known to start at a site of coordination i to end at a site

of coordination j. The obvious sum rules are

E: n?) = 1 for all i. (2.10)

1

The total number of bonds stemming out of i-sites is (23],,- + 2].?“ y,j)NB, of them
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2y,,-NB go to an i-site, yU-NB go to a j-site (j 75 i), then

 
n“) : 2.11:1

I 2.11.1 + 2k,“- 311::

(i) _ yij . .-

n]- — ,] ¢ 2. (2.11) 

231.1 + Zkfl yik

Equations (2.10) and (2.11) apply to networks with an arbitrary number of atom

types. In our case of 2-3 networks, we have

"(32) = 3123 ___ 9(2 + 117),

23/22 + .1123 2(1 — x)

12.22) = 1 — '1ng),

72.53) = J1— : 92:31), (2.12)

221133 + 3123 3117

715,3) 2 1 — 72.23).

Obviously, 0 S rig-i) S 1 for all i and 3'. This determines the range of allowed

values of parameters 2: and 6. Namely, from n(33) 2 0,

 6 < ’ — 2.13_2+$, ( >

from n? 2 0,

9 SM (2.14)

2 +2:

Thus, in the ;I;-0 plane, the set of allowed pairs of parameters is bounded by the

0 = 0 line and two hyperbolas [left boundary (2.13) and right boundary (2.14)], as

shown in Figure 2.6 (where instead of 0, we use .1123 = 20).

At 0 = 0 (2123 = 0) there are no 2-3 bonds, thus there is complete phase

separation (two separate networks, one 2—coordinated and another 3-coordinated).

The maximum value of 0 = 0.5 (31-23 = 1) is possible only at a: z 0.4; this
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Figure 2.6: The allowed region (white) in the plane of two parameters, the mean

coordination (r) and the fraction of 2-3 bonds among all bonds y23 characterizing

chemical order. Line 1 is the left boundary [no 3-3 bonds; Eq. (2.13)] and line

2 is the right boundary [no 2-2 bonds; Eq. (2.14) of the allowed region. Line 3

corresponds to networks obtained by random dilution [Eq. (2.20)]. Line 4 corresponds

to randomly bonded networks [Eq. (2.15)]. The upper‘corner of the allowed region

represents perfectly chemically ordered networks; the bottom represents completely

phase separated networks.
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corresponds to having only 2-3 bonds in the network, thus perfect chemical order,

where every 2-site has only 3sites as neighbors and vice versa.

Between these two extremes lies random bonding, where sites are linked up in

random fashion, without regard for their coordinations. Then probabilities for a

bond to go to a site of a certain type do not depend on the type of the site where

the bond started; formally, this means that quantities n?) do not depend on i, so

n?) = n53), 725,2) 2 ng3). From Eqs. (2.12) we then get

6:1:(1— :r)

(2.15)

Another case of interest is random dilution. When studying rigidity of glass

networks with the pebble game in Chapter 1, we constructed sequences of networks

by starting with a full lattice (with all sites equally coordinated) and then removing

bonds at random with the restriction that no sites of coordination lower than 2

appear. The advantage of this procedure is that the whole sequence can be analyzed

in a single pebble game run. We can implement the same procedure for RBNs by

starting from a fully 3—coordinated RBN and then removing bonds at random not

allowing 1-coordinated sites, as described above. Such sequences are convenient for

comparison with the pebble game.

In our case, the random dilution procedure implies that we start from a fully

3—coordinated network (thus a: = 1 at the beginning) and then remove 3-3 bonds

only, one by one. Suppose we remove ANB 3-3 bonds (ANB is presumed to be

small compared to the total number of bonds N3). From (2.5),

N

When we remove a 3—3 bond, the sites that were connected by this bond are

converted to 2-coordinated from 3-coordinated. So if these sites were connected
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with other 3—sites, these connections will convert from 3-3 type to 2-3 type and the

number of 2-3 bonds will increase. On the other hand, if these sites were connected

to 2-sites, the bonds will be converted to 2-2 from 2-3 and the number of 2-3 bonds

will decrease. Then the change in the number of 2-3 bonds is

20(2 + :13)

AN23 Z: 4(ng3) — 71(23))A1V8 = 4 (1 —

I

) AJVB, (2.17)

The factor of 4 is because there are 4 untouched bonds going out of the two 3-sites

between which the (fifth) bond is removed. On the other hand, using (2.4), (2.5)

and (2.7), N23 : 20NB = 6(2 + :r)N, and since N = const,

Using (2.16), (2.17) and (2.18), we obtain a differential equation

d9 8+2:

2 ——-=—=—2

( +$)d:r + 32:

 

9. . (2.19)

The starting network is fully 3-coordinated, thus, obviously, it has no 2-3 bonds; so,

when a: = 1, 0 = 0. This is the initial condition for (2.19) and the solution is

_ 6:1:(1— 331/3)

0

2+2:

 (2.20)

Note that the random dilution result (2.20) is different from the random bonding

result (2.15), so that randomly diluted networks are not perfectly randomly bonded.

This is because of the restriction that does not let 1-coordinated sites appear.

Because of this restriction, dilution is not truly random; if there was no such

restriction, a randomly diluted network would be randomly bonded (but 0— and

l-coordinated sites would appear, of course).
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It turns out that higher-order correlations also appear in randomly diluted

networks. This is too cumbersome to show analytically, but can be checked

numerically. Since our theory assumes that such correlations are absent, it is only

approximate when applied to randomly diluted networks. However, it works

remarkably well, as we will see.

2.2.2 Transfer matrix equations

Now we want to apply the variation of the transfer matrix method described in

section 2.1 to our problem. Note, however, that since we have bond-bending

networks, second neighbors in the tree are also connected. Then level n + 1 in the

tree is connected not only to level 17., but also to level n — 1, as well as to sites in its

own level. This would make equations for quantities T,- significantly more

complicated than in the 2D central-force case. Fortunately, we recall that 3D

bond—bending networks can be represented as body-bar networks with sites replaced

by bodies with 6 degrees of freedom, with first-neighbor constraints replaced by bars

consisting of 5 constraints each and no second-neighbor constraints. Then if the tree

is cut above level n + 1, this level is connected to level n only, and writing down the

equations is easier.

We need to build a tree that locally would be the same as an RBN we want to

consider. Our tree will look as shown in Figure 2.7. There are some 2-sites and

some 3-sites, and the probability that a bond starting at a site of coordination i

goes to a site of coordination j should be given by n)”. Note that in the

representation of the Bethe lattice that we use here (as shown in Figure 2.7), one of

the bonds going out of every site always points up (away from the busbar); this is

different from the consideration of 2D Bethe lattices in section 2.1, where a bond

pointing up was only present with probability p. When we write equations for T,,

we cut bonds connecting level n + 1 with the next level n + 2; this means that in the
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consideration in section 2.1, one bond stemming from a site was removed with

probability p, whereas now, one bond will be removed with probability 1. Clearly

then, the definitions of quantities T,- are now different; however, this is just a matter

of definition and the final results for the number of floppy modes, the location of the

transition, etc. will not depend on these details.

levels

—- ' ———-’ ——————————— —-—' —————

‘H ' ZZZ. Z :I:::::.'..‘1‘-3; ____§ .2;
ii

O
-
‘
N

0
)

#

 

busbar

Figure 2.7: A tree of bodies and bars. Each bond consists of 5 bars; each site is a

body having 6 degrees of freedom (when isolated). There are two types of bodies, 2-

and 3-coordinated. In the representation we use there is always one bond pointing

upwards from every site, regardless of its coordination.

One apparent paradox worth mentioning is that, as it turns out, if we follow

() ,as described above, the treethe rule that the probabilities of bonds are equal to n

built in such a way will have a “wrong” concentration of sites of different types, i.e.,

the concentration of 3-sites will not be 2:. But this is fine, given that the tree should

only be identical to the RBN locally, and there is a pathologically big

undercoordinated surface in any tree anyway. This paradox implies that

interestingly, in any RBN, the concentration of sites of a particular type in a finite
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region around any specific site is always different than in the whole infinite network.

Now we are almost ready to start writing down the actual equations. First of

all, since we have sites of two types, we define quantities T,- for each of these types

separately. That is, we introduce quantities Tim, which [are probabilities for a

j-coordinated site to have i d.o.f. with respect to the busbar, when the site is cut

from the level above. Obviously, i can range from 0 to 6 (since our sites are now

bodies with 6 d.o.f.); j can be 2 or 3.

Consider some 2—coordinated site (say site 1 in Figure 2.8); when it is cut off

from the upper level, it remains connected to just one site below (site 2 in Figure

2.8). Site 1 has 6 d.o.f., if site 2 has 5 or 6 d.o.f.; site 1 has i d.o.f. (for i < 6), if site

2 has i — 1 d.o.f. Note that a 2-site can never have 0 d.o.f. Then the corresponding

equations are

2 2 r

T602) = "((2)X(2)+"§)A(3)v

2 2

T59) = ”(2 )T4(2)+"§ )T4(3)1

2 2
T4(2) = ”(2 )T3(2) + 7153 )T3(3),

2 2
T30) = 71;)T2(2)+n:(3 )T2(3), . (2.21)

T _ (2)71 (2)71

2(2) - "2 1(2)+"3 1(3),

2 2

T1(2) = 71(2)T0(2) +715; )Towh

T0(2) = 01

where X(i) : T5“) + T6(,-). We have equated quantities Tm) for different levels in

order to obtain equations for stationary values in the bulk, just as in section 2.1.

Now consider a 3-coordinated site (site 3 in Figure 2.8); when it is cut off from

the upper level, it remains connected to two sites (4 and 5 in Figure 2.8). Site 3 has

6 d.o.f., if both sites 4 and 5 have 5 or 6 d.o.f. Site 3 has 5 d.o.f., if one of sites 4

and 5 has 4 d.o.f. and the other has 5 or 6 d.o.f. Site 3 has 4 d.o.f., if one of sites 4
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Figure 2.8: A drawing illustrating how the equations for quantities T3“), (2.21) and

(2.22), are constructed. Sites 1 and 3 are 2- and 3-coordinated, respectively; sites 2,

4 and 5 can have coordinations 2 or 3 and averaging over their possible coordinations

should be done.

and 5 has 3 d.o.f. and the other has 5 or 6 d.o.f., or if both of these sites have 4

d.o.f. This can be continued by analogy for site 3 having 3, 2 and 1 d.o.f. For 0

d.o.f., we just use 2:071“) = 1. Finally, the equations are

T6(3)

T5(3)

T4(3)

T3(3)

T2(3)

(”(23)X(2) + n§3)X<3))21

2 (ng3)T4(4(2) + "3(3)T4(3)) (”b3)X(2) + "33)X(3)) 1

2 (115,3le) + nbs)T3(3)) ("(23)X(2) + ”g3)X(3))

+ ("b3)T4(2() + "3(3)73(3))21

2n(2(3)T2(2() + n33)T2(3)) (”(23)YO) + 7233)Afiil)

+2 (néng, )+ 713(333)T()) (71232)T(4(2)+ n3(”714(3),

271(2(3)T1((2(2) + n3(”71(3) ) (n23)X(2) + 713BUN”)

)
2

+2(n§3))T2(2+n33)Tm) (ng3()T42)+n(33)T43)

+(n2(3)T3(2) + n3(”T3(3)) ,
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Tus) = 2 (”(2 )Tocz) + ”1(3)T0(3)) ("(2 5(2) + "E; 53(3))

3 3 3 3

+2 (né )T1(2) + 7253 )T1(3)) (72(2 )Tm) + 72(3 )T4(3))

3 3 3 3

+2 (”(2 )sz + "g mm) (712 )Tsrz) + "(3 )T3(3)) ,

Tom) = 1 — T1(3) — Tm) — T3(3) — T4(3) — X(3)-

Note that when writing these equations, we have assumed that the probability for

site 4 in Figure 2.8 to be i-coordinated and simultaneously for site 5 to be

(3) "(3)
,- , i.e., we have used the absence of correlationsj--coordinatedIS the product It

between the types of second neighbors.

It is convenient to introduce quantities

Tim = ”21):“(2) + n§”71-(3),

j = 2, 3. That is, the new quantities Tim and X”) are averages of the old quantities

Tim and X()2) over the possible values of j with the weights equal to the

probabilities that a j-site is connected to a site known to be of type k. The

equations for the new quantities are considerably simpler:

Téj) : ngj)X(2)+ngj)X(3)2,

T5”) = n2T‘2)+ 2n§j)Tj3’X<3>

T40) = ngj>T§2)+ n34)(2T3(3)X(3) +((Tm)))

T25“ = ngle2‘2)+2ngj’(T2‘3lxm +T§3’T(3)), (2.24)

T2”) = ngj’Tf2’+n§J" (2 (T1‘3’.¥<3>+T23”T§3)+ (71.53))2),

T1”) = ngj’To‘H271") (T53’X<3>+Tf3):zjf3’+T2‘3’T2‘3’),

Téj) ___. 1_ T10) _ T20) _ Ty) _ T40) _ X0).
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Just as Eq. (2.2), of which this system is an analog, it always has a trivial solution

corresponding to the floppy phase (in this case, this trivial solution is T2”) = O for

2' : 0,... ,5, T2?) = 1). Besides, there can be a non-trivial solution that should be

found numerically.

2.2.3 Floppy modes and locating the transition

We can now find the solution(s) of Eq. (2.24). However, this by itself is

essentially useless, as we do not even know where the trivial solution should be

chosen and where the non-trivial solution should be used instead (in other words,

we cannot as yet locate the rigidity transition). Besides, we would like to find some

quantities that we can compare with the pebble game directly, in particular, the

number of floppy modes F.

For 2D RBM, the number of floppy modes was found in Ref. [12] by starting

with the fully coordinated network (having zero floppy modes) and then keeping

track of changes in F when bonds are removed one by one (these‘changes can be

related to quantities T.) We use a similar method here. It is, however, more

convenient to do bond decoration, rather than bond dilution, as we describe below.

We start with a network that is obtained by decorating (i.e., inserting

2-coordinated sites into) some randomly chosen bonds of a fully 3-coordinated

network. Such a network has no 2-2 bonds, but is random otherwise (in particular,

it has no higher-order correlations). This corresponds to being on the right

boundary of the allowed region of the 33-0 plane (Figure 2.6). We now start inserting

additional 2-sites, but always only next to an existing 2-site. Then, if a neighbor of

a 3—site was a 2-site, the corresponding neighbor will always remain a 2-site; if it was

a 3-site, it will always remain a 3—site. Then 72:3) do not change in the process and
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from Eq. (2.12), the trajectories in the 27-9 plane are given by

 
, (2.25)

where C is a constant determined by the initial concentration of 3-sites (i.e., by

exactly where on the right boundary we started). Note that C = 0 corresponds to

moving along the phase separation line 0 = 0, and C = 3 corresponds to moving

along the left boundary of the allowed region, thus varying C from O to 3, we cover

the whole allowed region. Higher-order correlations are not introduced by this

decoration procedure, since all bonds stemming from a 2-site can be decorated

completely independently of each other.

Now let us see how the number of floppy modes is changed when one site is

inserted as shown in Figure 2.9 . Site 1 is inserted next to a 2-coordinated site 2,

that prior to insertion, had two neighbors, sites 3 and 4. If we remove bonds

connecting sites 3 and 4 to site 2, the probability, say, for site 3 to have i d.o.f. is

given by Tim (same for site 4). This is because site 3 is a neighbor of a

2-coordinated site 2, so Tim are indeed the appropriate averages over possible types

of site 3 [see Eq. (2.23)]. When site 1 is inserted, the number of flOppy modes does

not change, if, with the bonds removed as described above, one of the sites 3 and 4

had 0 d.o.f. and the other had 3 or less; or if one of the sites 3 and 4 had 1 d.o.f.

and the other 1 or 2. Otherwise, the number of floppy modes F is increased by 1.

Then in a single insertion act the change in F is on average

AF = 1 — T32) (T22) + 2 (T52) + T2”) + T29)» — T52) (T52) + 2T2”) . (2.26)

The number of sites changes by 1 with each insertion, so

AF. (2.27) 



We should work with a size-independent quantity, so we use f = F/3N (3N is the

combined number of all degrees of freedom (not just zero-frequency ones) of the

original 3D network, before they are replaced by bodies). Given that the number of

3-sites Na: = const (as only 2-sites are added), Ndrr +1rdN = O and

fi__AF—3f
2.2

d1: 3:1: ( 8)

The fraction of floppy modes f can then be determined by numerical integration of

(2.28). The initial condition for this integration is known: we start at the right

boundary of the allowed region, where there are no 2-2 bonds, and such networks

have no floppy modes, as we prove in Chapter 3, where we show that this is always

the case, even for regular networks (with finite loops).

      
"0 $0
0 0

Figure 2.9: A drawing illustrating the site insertion procedure used to obtain the

number of floppy modes and locate the transition. Site 1 is inserted next to a 2-

coordinated site 2. Sites 3 and 4 can have coordination 2 or 3, and averaging over

their possible coordinations should be done.

Moving along various trajectories (2.25) for different C, we could in principle

find the number of floppy modes everywhere in the allowed region of the 23-0 plane, if

we knew the quantities ij everywhere. While we can find them solving Eqs. (2.24),

there is an obvious caveat: in some parts of the region, there are two possible

solutions, the trivial one (corresponding to the floppy phase) and the non-trivial one

(corresponding to the rigid phase), and we still do not know where the transition

between them (the rigidity transition) is located. However, what we know is

0 at the right boundary of the allowed region, we are in the rigid phase, so we

56



should use the non-trivial solution, and we can check using (2.24) that this

solution is To”) = 1, T(53) = figs), T1”) = 72.23), and the rest of T3“) are zero;

0 since finite rigid clusters cannot exist in an RBN and thus there are no rigid

clusters and hence no redundant constraints in the floppy phase, the number

of floppy modes in the floppy phase is given exactly by Maxwell counting:

5

f = 2 - 6(7"); (2.29)

o as the number of floppy modes F can change by at most 1, when a single

constraint is removed and thus by at most 5, when a single bond (consisting of

5 constraints) is removed, so in any case, the change is finite, the fraction of

floppy modes f is always continuous when moving along any continuous

trajectory in the x-O plane.

This is enough to locate the transition. Namely, we start at the right boundary and

move along a chosen trajectory tracking f by integrating Eq. (2.28) substituting the

non-trivial solution for T3“) (since we start in the rigid phase) into Eq. (2.26). While

moving along the trajectory, we compare thus obtained f with the f in the floppy

phase given by Eq. (2.29), and the point where they are equal is the rigidity

transition point for the given trajectory. In practice, it is convenient to differentiate

Eqs. (2.24) along the trajectory and obtain TJ-(i) by integration using the initial

conditions at the right boundary given above and moving along the trajectory in

small increments solving a linear system at each step. The procedure of finding the

transition is illustrated in Figure 2.10.

By repeating the above procedure for many different trajectories (2.25) given

by different C, we can locate the phase boundary in the :r-0 plane and thus obtain

the phase diagram. We show this phase diagram in Figure 2.11, where we also show

the spinodal lz'ne — the line where the non-trivial solution ceases to exist. The

57



    

K 0.03 I ’—_ T I *_ 1 “— T —

(D .

‘D l
g .

> 0.02 _ “

Q.

C).

_(2 ~
2

”5
C 0.01 ~ ~

.9.

'23 f -

E 2

u. o . r . i .

2.3 2.35 2.4 2.45 2.5

Mean coordination (r)

Figure 2.10: The number of floppy modes per degree of freedom f (thick red line) as a

function of mean coordination (r) along the site insertion line 5 in the phase diagram

(Figure 2.11). This plot also illustrates how the rigidity transition can be located.

Line 1 is the Maxwell counting line coinciding with the true number of floppy modes

in the flOppy region (below the transition). Line 2 is obtained by counting the floppy

mode changes in the site insertion process (as described in the text). The transition

is located at the point where these two lines intersect.

phase boundary starts at the point corresponding to :1: = 0 ((r) = 2). This is

because if, for example, there is complete phase separation, there are two completely

separate subnetworks, a subnetwork of 2-sites and a subnetwork of 3—sites, and the

subnetwork of 3-sites is rigid and can percolate even when it is very small compared

to the subnetwork of 2-sites. The phase boundary ends at the upper corner of the

allowed region corresponding to the perfect chemically alternating network

(...-2-3—2-3-...). At this point (r) = 2.4, so the Maxwell counting prediction for the

transition is exact. In fact, in Chapter 3 we prove that this is the case for any

perfectly chemically alternating networks consisting of 2- and 3-coordinated sites
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(even regular ones with loops). Note also that the transition is close to the Maxwell

prediction (r) = 2.4 for a wide range of the chemical order parameter 0: for

example, for perfectly random bonding, the transition is at 2.3855...
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Figure 2.11: The phase diagram for 2—3 random bond networks. The thick red line

is the phase boundary separating the floppy and the rigid phases. The thin purple

line is the spinodal line, where the non-trivial solution of equations (2.24) ceases to

exist. Lines 1 to 4 are as in Figure 2.6. Line 5 is one of bond insertion lines given by

Eq. (2.25).

We can compare our results for the number of floppy modes with numerical

results obtained by the pebble game for randomly diluted networks, by using

Eq. (2.20) for the trajectory in the :r—O plane and neglecting small higher-order

correlations in randomly diluted networks. In fact, one can obtain the analogs of

Eqs. (2.26) and (2.28) for the trajectory (2.20) instead of trajectory (2.25) and then

obtain f along the whole trajectory (2.20) in a single integration procedure, instead

of multiple integrations along many trajectories (2.25). We do not give the details of
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this calculation here, as it is not essential and just simplifies things; these details

can be found in Ref. [6] In Figure 2.12, we compare the derivative of the fraction of

flOppy modes f with respect to (7‘) obtained using the theory outlined here and using

the pebble game (averaged over several realizations). The agreement is excellent.
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Figure 2.12: Comparison between the theory and the pebble game simulation results

for the first derivative of the number of fl0ppy modes per degree of freedom with

respect to the mean coordination for 2-3 networks obtained by random dilution.

The solid lines represent the theory described in this chapter. Brown open circles

are simulation results for a sample with 8000 sites, green solid triangles are for a

sample with 32000 sites. The inset shows the blowup of the region near the rigidity

transition, with the open black diamonds for a sample with 103823 sites (averaged over

30 realizations) and the filled green circles for a sample with 262144 sites (averaged

over 20 realizations). Simulation and plot by A.J. Rader.

We can also find the size of the percolating rigid cluster. A site belongs to the

percolating rigid cluster, if it has zero degrees of freedom, but when none of its

bonds are cut. That is, the probability that a site is in the infinite cluster is not

equal to T0 (which is the probability of having 0 d.o.f., when one bond is cut) and
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has to be calculated separately.

If a site has coordination 2, it has more than zero d.o.f., when at least one of its

neighbors has 5 d.o.f. with the bond to the site under consideration cut; or when

one neighbor has 4 d.o.f. with one bond cut and the other has more than 0 d.o.f.,

again with one bond cut; etc. Thus the probability for a 2-site to have 0 degrees of

freedom is

1000(2) = (1 — X‘2))2 — T4”) (2T5?) + 2T2”) + 2T3?) + Ti”) —

T3”) (273(2) + T9) . (2.30)

Similarly for a 3—coordinated site:

2

1300(3) = 1 — X<3>3 - 3X‘3l2 (1 — X‘3l) — 3X<3> ((253) + Tf") +

2T4“) (T10) + If”) + 2253213)) — T13) (TY) (3T2(3)+

3T§3l + Tf”) + 3T9”) . (2.31)

The calculations show that for randomly bonded and randomly diluted

(Figure 2.13) networks, the size of the percolating cluster is 80-85% of the network

just above the transition. It decreases and tends to zero, as phase separation is

approached along the phase boundary, so the transition is more weakly first order

close to phase separation.
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Figure 2.13: The fraction of sites in the infinite rigid cluster as a function of the

mean coordination for randomly diluted 2-3 random bond networks. The solid lines

represent the theory described here: the red line is the solution that is actually realized

and the black line between the spinodal point (r), and the transition point (r)c is

the “metastable” non-trivial solution where the trivial solution corresponding to the

floppy phase is actually realized. The green dots are the pebble game simulation

results averaged over 10 networks of 100000 sites.
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2.2.4 Networks with 2- and 4-coordinated sites

The theory can be generalized straightforwardly to networks consisting of 2-

and 4-coordinated sites. The analog of the system (2.24) is

Téj) nfzflxm) + ”(anns,

uteri” + 37.3%“. «>2,

”(2j)T3(2) + 371(1) (T3f4)X(4)2 + T4(4)'2X(4)) ,

”(113(2) + "(3') (3T2(4)X(4)2 + 6T§41Tinmfl + Tim) ’ (2.32)

"(21mm + 37,511) (71(4)sz + (2T§4)Tj‘” + Tgf‘m) X“)

+T§4lT§4’2) ,

”(fifé?) + 371(1) (T64)X(4)2 + 2 (waTf) + T2(4)T3(4)) X“)

new +we») ,

1 __ T10) _ T20) __ T30) _ T40) _ X”).

The phase diagram is shown in Figure 2.14. The upper corner of the allowed region

corresponding to the fully chemically ordered networks now lies at (r) = 8/3, which

is far above the rigidity threshold, so the phase boundary no longer goes there, but

instead ends at the left boundary of the allowed region.

2.3 Networks with dangling ends

The case of networks having sites of coordination 1 and thus dangling ends

(Figure 2.15) deserves special consideration. As we show in Chapter 1, in this case

Maxwell counting predicts that the transition location deviates from the “standard”
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Figure 2.14: The phase diagram for 2—4 networks. The thick red line is the phase

boundary between the rigid (blue) and the floppy (yellow) phases. The thin purple

line is the spinodal line. The black dashed line is the random bonding line.

value (7‘)?! = 2.4 and is given by

(1);" 2 2.4 — 0.47;], (2.33)

where n1 is the concentration of l-coordinated sites. However, this equation may not

be entirely adequate. In particular, if there are 1-sites that are bonded to 2—sites,

these l-sites can terminate chains of 2—sites. Such chains are completely irrelevant to

rigidity and can be removed before rigidity is analyzed. Yet this process of removal

can raise the mean coordination of the network significantly. We can consider this

process of removal analytically in the framework of the random bond model.

In this section we first consider the case when l-sites are only bonded to sites of

coordination 3 and higher and show that in this case Eq. (2.33) is indeed as

accurate as original Maxwell counting for networks without dangling ends, but only

for low n1. Then we consider the case of networks with 1-, 2- and 3-sites (1-2-3
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Figure 2.15: A random bond network with l-fold coordinated sites (gray) and thus

dangling ends (pale blue lines and sites with paler colors). Roots of dangling end

trees are blue; other sites are green (2-coordinated) and red (IS-coordinated).

networks) with completely random bonding. We show that in this case the

calculation can be carried out analytically to the very end and the final result is

remarkably simple: for arbitrary n1, the dependence of the threshold on 71.1 is linear,

just as in Eq. (2.33), but the slope is twice as big.

2.3.1 Networks without 1-2 bonds

In this case, if the concentration of 1-sites n1 is low, we can neglect sites of

coordination 3 or higher with more than one bond to 1-sites. Then removing bonds

going to 1-sites never creates new l-sites. If the number of sites is N and the number

of bonds is NB = $5231, then after removal of “dangling bonds” going to l-sites, the

number of remaining bonds is Ng = NB — n1N and the number of remaining sites is
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N’ = N — nlN, so the mean coordination of the residual network is

 

2N5 _ 2(NB — nlN) _ (r) — 272.1
,,= _ _ 2. 4

<7) N N—nlN lfnl ( 3)

If one assumes that Maxwell counting is correct, then, since the final network has no

l-coordinated sites, (r); = 2.4 and we obtain Eq. (2.33). Note, however, that we

have made an assumption that 71.1 is small. For higher 111, there is a non-negligible

fraction of dangling ends created when original dangling ends are removed, and this

would lower the transition compared to Eq. (2.33). So there will be terms of order

higher than linear in n1.

Note that the above consideration is valid for both RBNS and regular networks.

2.3.2 Randomly bonded 1-2-3 networks

Consider a Bethe lattice with 1~, 2- and 3—sites and perfectly random bonding.

In this case, quantities n?) defined as in the previous section do not depend on the

upper index. We denote

(2‘) m
n = — E m ,

1 <7") 1

(' "2 _
n21) : m : 7712, (2.35)

. (i) _ "'3 _
n3 — —— : 7713,

where n,- are concentrations of i-sites. Consider an arbitrary 2- or 3—coordinated

site. It can be considered as a root of respectively 2 or 3 subtrees. Each of the

subtrees can be finite or infinite. If a subtree is finite, it is a dangling end and

should be eliminated. If all subtrees starting at the site are finite, the site is

obviously eliminated when the subtrees are cut. But it is also eliminated, if just one

of the subtrees is infinite and the rest one or two are finite, since after eliminating
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the finite tree(s), the site becomes 1-coordinated and thus a dangling end.

Let the probability that a subtree is finite be P (for perfectly random bonding,

this probability does not depend on whether the root is a 2- or a 3-site, as we will

see). We can write a self-consistent equation for P reasoning as follows. In order for

a subtree to be infinite, first, starting at the subtree root, we should encounter a

branching point (a 3-site) before encountering a dead end (a l-site). The probability

of this is m3(1+ mg + mg + 1713+...) = m3/(1— m2). But in addition to this, at

least one of the two branches starting out at the branching point should also be an

infinite subtree (the probability of which is 1 — P2). Then the equation is

 

 

1— P = "‘3 (1 — P“), (2.36)
— 771.2

01'

P=1‘m2_m3=T—l=3‘—. (2.37)
m3 m3 371;;

A 2-site remains in the network, if both of the subtrees stemming out of it are

infinite, the probability of which is (1 — P)“. Then it obviously remains a 2-site. A

3-site remains in the network, if two of the three subtrees stemming out of it are

infinite and the third is finite (probability 3P(1 — P)2), in which case it becomes a

2-site, or if all three subtrees are infinite (probability (1 — P)3), then it remains a

3-site. Then the mean coordination after the removal is

2n2(1 - I”)2 + 2723 x 3P(1— P)2 + 3n3(1— P)3
 

 

(7') 2 722(1— P)2 + 3713P(1 — P)2 + 713(1- P)3

n1+2n2 +3713 (7‘)
= = ___, 2.38

1—n1/3 1—n1/3 ( )
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Then

<7). = (1— "3) <7); (2.39)

Within Maxwell counting, (r); = 2.4, since the final network has no 1-coordinated

sites, so that finally

(r)c 2 2.4 — 0.8m. (2.40)

Note that this equation is similar to (2.33), but with the slope twice as big. Also,

unlike in the previous subsection, the relation holds for arbitrary (not necessarily

small) 711.

This result is obtained for Bethe lattices or RBNs, but it hopefully holds

reasonably well for regular lattices. For RBNs themselves, we can do even better.

The final network is randomly bonded, which can be shown by explicitly calculating

72;") for it, but is obvious anyway, since the original network was randomly bonded,

so dangling ends that were removed were located in random places in the network.

Then from our theory in the previous section we know the exact answer

(r)c = 2.3855... and the exact result is

(r)C = 2.3855. . . (1 — 721/3). (2.41)

Of course, we can consider correlated (not perfectly random) networks in a

similar fashion, although the derivations are more cumbersome, in particular, the

probability of a finite subtree now depends on whether the root is a 2-site or a

3-site. The analog of self-consistent equation (2.36) should now be written for a

3-site, and the probability for a 2-site should be obtained afterwards. Otherwise, the

derivation is similar, but there is no simple result like (2.40) or (2.41).
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2.4 Conclusion

We have considered the theory of rigidity percolation on 3D bond-bending glass

networks within the random bond model. We have obtained a set of equations that

have to be solved numerically, but have the advantage of being written for an

infinite network, so, unlike any pebble game simulation, there are no finite-size

effects. We have allowed for the possibility of correlations in bonding. The Maxwell

counting result for the rigidity threshold turned out to be very good in a wide range

of the bonding correlation parameter, but deviations are strong close to phase

separation. The biggest difference from regular networks is that the rigidity

transition is first, not second order.

We have also done some studies (not described here) of how the rigidity

threshold and the number of floppy modes can be obtained approximately in a more

physically intuitive manner, rather than as a result of a rather involved procedure,

by considering explicitly the regions of the network giving the biggest contributions

to the number of floppy modes and adding up these contributions.

As for the possibilities for future research inspired by the results obtained here,

it would certainly be interesting to see if the influence of chemical order is the same

in regular networks as in RBNs. We have seen that chemical ordering has only a

very weak effect on the rigidity threshold, except close to the phase separation and

we expect the same to hold true for regular networks as well, but this is certainly

worth checking. This can be done by constructing regular networks and studying

them with the pebble game, although analysis should be done for each network at

each concentration and chemical order, unlike the special case of random dilution,

where the whole sequence of networks can be studied in one pebble game run. It

would also be interesting to see if Eq. (2.40) for networks with l-coordinated sites

obtained for RBNs is good enough for regular networks as well.
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Chapter 3: Chemically ordered

networks

In Chapter 2, we have studied, in particular, the effect that chemical ordering

in networks has on location of the rigidity transition. In this short chapter, our goal

is more narrow and more broad at the same time. On the one hand, instead of the

whole range of possible chemical correlations, we now confine ourselves to studying

just those networks that are as close to perfect chemical order as possible for given

concentrations of sites of different types. But on the other hand, results that we

obtain in this chapter are very general and apply to a very broad class of disordered

networks, including regular ones, rather than just to pathological random bond

networks. We show that in all networks in this broad class, there is an extremely

sharp first-order transition, such that the network goes from completely rigid and

stressed to completely floppy with addition of just two sites, no matter how big the

network is. The results presented in this chapter were published in Ref. [49].

Consider a disordered bond-bending network, all sites of which are 3-fold

coordinated. This can be, for example an amorphous arsenic (As) network, as As

atoms are trivalent. An example of such a network is in Figure 3.1 (only

central-force bonds are shown). The network in the figure is planar, but it is

assumed that atoms can move in 3 dimensions and all the results of this chapter

apply to truly 3-dimensional networks as well. The particular example in Figure 3.1

was obtained in [50] by starting from a honeycomb lattice and amorphizing it by a

procedure similar to the WWW method (see section 1.2.5). The network is

constructed with periodic boundary conditions, this results in connections between

sites at opposite boundaries and ensures that there are no free boundaries and all

atoms are 3-coordinated even in a finite sample.
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Figure 3.1: The fully 3-coordinated network of 1800 sites obtained in Ref. [50], as

described in the text, and used in the simulations in this chapter.
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Now start decorating bonds with atoms [Figure 3.2,(b)], so that 2-coordinated

sites appear (such as selenium [Se] atoms having valence 2). At this stage, we do

not allow more than one 2-coordinated atom to be placed between 3-coordinated

atoms. This ensures that there are no 2-2 bonds and thus maximum chemical order

is obtained. Doing this, we can reach (7) = 2.4, which corresponds to the ASQSe3

composition [Figure 3.2,(c)]. At this point all bonds of the original 3-coordinated

network are decorated with exactly one atom and the network is fully chemically

ordered: there are only 2-coordinated atoms next to 3-coordinated atoms and vice

versa. In the phase diagram in Chapter 2 (Figure 2.11) this corresponded to the

upper corner of the allowed region, and the decoration process up to this point

corresponds to moving along the right boundary of the allowed region. We continue

the process of atom insertion further, by decorating bonds of the original

3-coordinated network one by one with a second atom [Figure 3.2,(d)], never

allowing the third atom to be inserted in the same bond of the original

3-coordinated network; this way we can go below 2.4 and reach (r) = 2.25. In the

diagram in Figure 2.11 this corresponds to going along the left boundary of the

allowed region; note, however that the fact that only two sites at most can decorate

any original bond implies higher-order correlations in bonding assumed absent

throughout Chapter 2.

We can study, e.g., the specific network in Figure 3.1 using the pebble game

algorithm, decorating the network as described above and studying its rigidity

properties as a function of (r). We find that in this case, there are no redundant

bonds in the network below the rigidity transition, just like in the random bond

model case. In addition to that, the transition is always exactly at (r) = 2.4 and

above this point the whole network becomes rigid and stressed (Figure 3.3) and

there are no floppy modes at all (Figure 3.4). Note that since there is a jump in the

sizes of the percolating rigid cluster and the percolating stressed region, this is a
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Figure 3.2: An illustration of the bond decoration process. The starting point is a

fully 3-coordinated network (a). Bonds are chosen in random order and decorated

with one site each (b), until all bonds are decorated (c). Then bonds of the original

network start to be decorated with a second site (d) — bonds decorated with two

sites are circled.
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first-order transition, just like in the RBM case (but note that this is a regular

network, not a pathological one like the random bond network). Not only there is a

jump, it is also the biggest possible, as the whole network goes immediately from

being floppy to completely rigid and from completely unstressed to completely
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Figure 3.3: The fractions of sites in both the percolating rigid cluster and the perco-

lating stressed region (going from 0 to 1 at the transition) for the chemically ordered

networks obtained by the bond decoration procedure described in the text (red line),

compared to the fractions of sites in the percolating rigid cluster (green open circles)

and in the percolating stressed region (green solid circles) for a network obtained by

random bond dilution of the diamond lattice (as in Figure 1.10).

Let us now look more carefully how this rigidity transition occurs and at

finite-size effects in particular. Since the whole network is rigid above the transition,

the number of floppy modes F = 6 there. On the other hand, below the transition

Maxwell counting is exact and F = 6 is reached for a network with all original

bonds decorated with one atom, except for six bonds that are decorated with two
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Figure 3.4: The number of floppy modes per degree of freedom for the chemically

ordered networks obtained by decorating a network of 3 x 3 supercells shown in

Figure 3.1 (red circles) and for the randomly bond diluted diamond lattice, as in

Figure 1.9 (green diamonds). The black dashed line is the Maxwell counting result.

atoms. It turns out that such a network is completely rigid, yet stressless (isostatic).

In the thermodynamic limit these six extra atoms are, of course, negligible, and the

transition is at (r) = 2.4 exactly. When just one more atom is added, so that seven

bonds are decorated with two atoms, Maxwell counting (which is exact) gives

F = 7, so there is just one internal floppy mode. But at the same time, the only

rigid clusters are single sites with their associated central-force and angular

constraints and there are no bigger rigid clusters, so in this respect the network is

completely floppy and the only internal floppy mode is spread over the whole

network. On the other hand, if only five bonds are decorated with two atoms, the

network is not only completely rigid, but also all constraints are stressed.

Thus at (r) 2 2.4 plus five extra atoms, the network is completely rigid and

stressed; when one more atom is added, it goes from completely stressed to
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Figure 3.5: A set of panels illustrating finite size effects for chemically ordered net—

works. Moving along the horizontal axis corresponds to changing the number of

decorating sites. The right border of the plot corresponds to a network with one

atom decorating each bond, which is exactly (r) = 2.4. Moving to the left corre-

sponds to adding second sites to bonds one by one; the number of added sites is

specified. Panel (a) shows the number of floppy modes F (red circles). The solid

green line is Maxwell counting. Panels (b) and (c) show the fractions of sites in the

percolating rigid cluster and in the percolating stressed region, respectively (red).



completely unstressed; and with just one more atom added, it becomes completely

floppy. So the transition is extremely sharp. This is illustrated in Figure 3.5.

We now prove that the above observations are true for a very broad class of

networks. Our proof even applies to finite networks, as long as all atoms of the

starting network are still 3—coordinated. In the case in Figure 3.1 that we treated

with numerical simulations, this was ensured by using periodic boundary conditions;

but even with free boundaries, this can be achieved; this is a minor issue, of course,

as we are mostly interested in the thermodynamic limit. The only other assumption

we make is that every subnetwork of the original network is connected to the rest of

the network with at least four bonds (except, of course, those subnetworks consisting

of just a single site, or vice versa, lacking just a single site - a site is connected with

just three bonds, of course). This is a rather weak assumption that the network in

Figure 3.1 certainly satisfies. Note, however, that the initial network should contain

no triangles, as a triangle is always connected with exactly three bonds to the rest

of the network. In Figure 3.1, by the way, the smallest ring is a pentagon.

The idea of the proof is to do constraint counting for the whole network, as well

as for all subnetworks. If, for example, we see that none of the subnetworks not

coinciding with the whole network have enough constraints to be rigid, then there

can be no rigid clusters smaller than the whole network. But if at the same time the

network as a whole has enough constraints to be rigid, the natural conclusion is that

the whole network is rigid, i.e., there is just one single rigid cluster coinciding with

the whole network. Similarly we can make conclusions about the stressed regions.

The underlying assumption is that all rigid clusters and all stressed regions in

bond-bending networks are contiguous and rigid by themselves, which is implied by

the molecular framework conjecture. We defer the detailed discussion of these

assumptions to Chapter 4.

We start with a fully 3-coordinated network, finite or infinite, that satisfies the
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above connectivity assumption (no piece connected with three bonds or less), but is

arbitrary otherwise, and first decorate every bond with exactly one atom. Recall

that such a network has the mean coordination of exactly 2.4. Consider now

networks obtained from it by adding an extra atom to (a) 5 bonds; (b) 6 bonds; (c)

7 bonds. That is, in such a network all of the bonds of the original 3-coordinated

network are decorated with one atom, except (a) 5; (b) 6; and (c) 7 bonds are

decorated with two atoms. Note that in the thermodynamic limit these few extra

atoms are negligible and all these networks still have (7‘) = 2.4.

We first apply constraint counting to whole networks, i.e., do the usual Maxwell

counting. If the number of atoms in the original 3-coordinated network was M, the

number of 2-coordinated atoms is (a) (3/2)M + 5; (b) (3/2)M + 6; (c) (3/2)M + 7

in cases (a), (b) and (c), respectively. The number of 3-coordinated atoms is still

M, the total number of sites is thus (a) N = (5/2)M + 5; (b) N = (5/2)M + 6 and

(c) N 2: (5/2)M + 7. The total number of bonds is (a) B = 3M + 5; (b)

B = 3M + 6; (c) B = 3M + 7. For Maxwell counting, we can use the body-bar

representation (see Chapter 1), where a bond-bending network is replaced by a

central-force one, every site is represented as a body with 6 degrees of freedom and

each bond as a bunch of 5 bars. Then Maxwell counting gives F = 6N - 5B and (a)

F=5;(b)F=6;(c)F=7.

We now do constraint counting for subnetworks smaller than the full network.

We are going to prove that in all three cases, (a), (b), and (c), constraint counting

always gives more than 6 floppy modes for such networks (excluding, of course,

trivial ones, consisting of just a single six-dimensional body). In view of this, it is

clear that we need not consider subnetworks having dangling pieces (Figure 3.6),

since these dangling pieces are always floppy and can only increase the floppy mode

count. We now consider three kinds of subnetworks separately.

1. Subnetworks obtained by removing just a single chain going between two
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3—coordinated atoms from the full network. Such a chain will contain one or

(very rarely) two 2-coordinated sites and 2 or 3 bonds, respectively. Then the

number of atoms in the subgraph is N — 1 or N — 2, respectively, and the

number of bonds is B - 2 or B — 3, respectively, and by checking explicitly

each of the cases (a), (b), and (c), we can see that the number of floppy modes

is always bigger than 6 (the least favorable case is (a) with the number of

atoms N — 2 and the number of bonds B — 3, which gives 8 floppy modes).

2. Subnetworks obtained by removing a single 3-coordinated site with three

adjacent chains. Here the lowest number of floppy modes is in the case (a) and

when all the three chains happen to have two sites. In this case the number of

floppy modes given by constraint counting is 8 > 6.

3. All other subnetworks not having any dangling parts. By our assumption,

such subnetworks are separated from the rest of the network by cutting 4 or

more bonds. Cutting each of these bonds converts a 3—coordinated site into a

2-coordinated site. Each of the remaining 3-coordinated sites has three

adjacent chains, each of them having at least one 2-coordinated site. Each of

the chains is shared between two 3-coordinated sites, so if the number of

3-coordinated sites in the subnetwork is M1, the number of chains is (3/2)M1.

Moreover, since at least four 3-coordinated sites became 2-coordinated, then

at least either 4 of all chains consist of 3 sites each, or 2 of all chains consist of

3 sites each and 1 chain consists of 5 sites, or 2 chains consist of 5 sites each,

or 1 chain consists of 7 sites and 1 chain consists of 3 sites, or 1 chain consists

of 9 sites. Then the number of 2-coordinated sites is at least (3/2)M1 + 8 and

the number of floppy modes is at least 8 - more than 6.

Thus in case (a), for the whole network F = 5, so there must be redundant

bonds and stress, but any subnetwork has no redundancy and no stress when
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isolated from the rest of the network. The conclusion is that the whole network is

stressed; if only a part was stressed, we could have considered this part alone as a

subnetwork, and it would have been stressed alone. Of course, if there are even

fewer decorating sites, all the more the whole network will be stressed. In case (b),

for the whole network F = 6, for all subnetworks the number of floppy modes is

bigger than 6. Then there are no redundant bonds, so no stress, but the whole

network is rigid - a smaller subnetwork cannot be rigid by itself. Finally, in case (c),

there are no redundant bonds still, and also, since now the number of floppy modes

is more than six for all subnetworks and for the full network, there is no percolating

rigid cluster and in fact, no rigid clusters at all, except trivial ones (a single site

with all its neighbors that is represented as a single isolated body in the body-bar

representation). When the number of decorated sites is higher, this conclusion is

still going to hold, of course, and since there are no redundant bonds, Maxwell

counting is exact. Thus the proof is complete.

These considerations are also applicable to a similar model, in which in the

starting lattice all sites are 4-coordinated. Similarly, bonds are first decorated one

by one with one atom, then, after all bonds are decorated, by the second atom, then

by the third atom, etc. At (r) = 2.4, there is again perfect chemical order: all

original bonds are decorated with exactly two atoms. All considerations can be

repeated and the same conclusions are reached: there is a sharp rigidity and stress

transition at (r) = 2.4 and Maxwell counting is exact below the transition point.

The connectivity condition is even more relaxed: now every piece has to be

connected to the rest of the network with 3 bonds or more.

The same result holds if bonds in the 4-coordinated network are decorated by

pairs of sites. Then (7‘) = 2.4 still corresponds to the point where every bond is

decorated with one pair of sites. This is useful when considering networks of the

Si—O type, in which angular constraints associated with the oxygen atoms are weak
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and generally assumed to be broken. There is an assumption that in terms of

rigidity, this is equivalent to replacing each oxygen with two 2-coordinated atoms

and restoring all angular constraints. This assumption was checked using, in

particular, the relaxation algorithm for studying rigidity of general

(non-bond-bending) networks described in the next chapter, and it seems to be true

indeed. Then, a chemically ordered S102 network, with an O atom between every

two Si atoms, corresponds to an initially 4-coordinated network with each bond

decorated with two 2-coordinated atoms with angular constraints present

everywhere. If we consider starting from a Si network and decorating bonds with O

atoms, this will correspond to decorating with pairs of 2-coordinated atoms with

angular constraints, and the rigidity transition will correspond exactly to the 8102

composition, with (r) = 8/3 = 2.667.

0'.

Figure 3.6: Illustration of a subnetwork with a dangling end. Adding a dangling end

(green) to a subnetwork (red) increases the floppy mode count, so subnetworks with

dangling ends need not be considered in the proof in this chapter.

We note that in all cases considered here, the networks were fully chemically

ordered at the threshold. Indeed, it is this absence of fluctuations in the chemical

order that gives rise to the described behavior. If, for example, we start with a

network that has both 3- and 4-coordinated sites and decorate it, then at (r) = 2.4
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there will be no perfect chemical order, as the number of 2-coordinated atoms per

original bond will be between 1 and 2 on average, so this number will vary from

bond to bond, and because of these variations, Maxwell counting will no longer be

exact.

82



Chapter 4: Rigidity of general 3D

networks

As we know, in two dimensions the Laman’s theorem allows studying rigidity of

networks through a fast algorithm, the pebble game. However, the theorem cannot

be generalized to three-dimensional networks, except for a special class of

bond-bending (BB) networks. While this special class is very important due to the

fact that many covalent glass networks are BB networks, it is still just a narrow

class, after all, and there are many applications, in which BB constraints should

rather be considered absent, such as broken angular constraints at the oxygen atoms

in the Si — O networks mentioned in Chapter 3 and other situations. Besides, there

is purely theoretical interest, since the properties of the rigidity transition may turn

out to be different for purely central-force (CF) networks (indeed they are, as we

will see). Therefore studying non-BB 3D networks is of interest. This chapter

describes our work on this topic.

It is, of course, possible to study rigidity with simple-minded direct algorithms,

such as diagonalization of the dynamical matrix or relaxation of the corresponding

network of springs. After a short discussion of basic notions about rigidity of

general 3D networks in section 4.1, we describe such a method of studying rigidity

based on relaxation in section 4.2. While the relaxation part is rather

straightforward indeed, we do use some knowledge of rigidity theory, which allows

us to include in a simple way most elements of rigidity analysis usually done with

the pebble game and also identify potential trouble spots where the straightforward

generalization of Laman’s theorem and thus the pebble game would fail. The

disadvantage is that the procedure is rather slow and essentially not applicable to

networks bigger than a few thousand atoms because of round-off errors. As an
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example of application of the algorithm, we describe rigidity analysis of networks

obtained in colloidal glass experiments by DA. Weitz’s group.

While we know that the Laman’s theorem is wrong in general in 3D, from the

practical point of view it is certainly reasonable to ask a question just how wrong it

is [51]. That is, if we apply the pebble game straightforwardly, pretending that the

Laman’s theorem works, how big are the errors? We do some tests in section 4.3,

after outlining the details of the pebble game procedure; it appears that the results,

though not exact, are quite good. In section 4.4 we test the applicability of the

pebble game to purely CF diluted face-centered cubic (fcc) and body-centered cubic

(bcc) networks, for which we conclude that the agreement is perfect and thus we

can use the pebble game to study much bigger networks than possible with the

relaxation procedure. We conclude that the rigidity transition is first order, unlike

in 2D and BB 3D networks, where it is second order, but similar to random-bond

networks (see Chapter 2). However, for networks that are two-dimensional, but with

sites still able to move in 3D, the transition is apparently second order.

Our ultimate goal should be developing an integer algorithm, ideally as fast as

the pebble game, that would be exact for general 3D networks. While we have not

achieved this goal yet, we discuss in section 4.5 some approaches that may hopefully

succeed. We end with conclusions in section 4.6.

Much of the research described in this section should be considered work in

progress. We, however, decided that it was reasonable to include it here, as some

very interesting results have already been obtained.

4.1 Basic notions of 3D rigidity

As we said, the Laman’s theorem is not correct in spaces of dimension higher

than two. As we know from Chapter 1, the straightforward generalization of the
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Laman’s theorem in 3D that is a part of the molecular framework conjecture for BB

networks is that there are no redundant constraints in the network, if and only if in

any subnetwork larger than 2 sites, the number of constraints is fewer than the

triple number of sites by at least six. The simplest example of violation of this

statement is the double-banana graph (Figure 4.1). In this case, the above condition

is satisfied for every subgraph, therefore the conclusion would be that there are no

redundant constraints, so that Maxwell counting should be exact and it gives the

number of floppy modes equal to 6, so there are no internal floppy modes. In fact,

there is one redundant constraint and consequently, one internal floppy mode.

  
Figure 4.1: The double-banana graph. Two bananas (green and yellow) can rotate

around the implied hinge (red dashed line). The 3D generalization of the Laman’s

theorem is wrong for this network.

One important fact about the network in Figure 4.1 is that it contains an

implied hinge. Hinges are axes around which two or more rigid parts of the network
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can rotate. These axes have to go through two of the network’s sites. These two

sites can be directly connected by a constraint, in which case the hinge is explicit,

otherwise the hinge is implicit, or implied. In Figure 4.1, the implied hinge is shown

with the dashed line; two rigid “bananas” rotate around it. Such implied hinges are

never present in BB networks [14]. Note that if the implied hinge is placed explicitly

as a constraint, this does not change the rigidity properties, but the condition of the

3D generalization of the Laman’s theorem will no longer be satisfied, so presence of

a redundant constraint will be correctly detected.

In fact, in three dimensions the only reason for violation of the Laman’s

theorem is presence of implied hinges. This statement is only a conjecture, known as

the Dress conjecture [51]. It was originally proposed to be true in all dimensions,

but was subsequently disproved in 4— and higher-dimensional spaces. In three

dimensions, there are still no known counterexamples, and, just as with the

molecular framework conjecture for BB networks, we feel safe to rely on it. The

Dress conjecture does not solve the rigidity problem in the way that, the Laman’s

theorem does in 2D. But it essentially reduces the problem to identifying implied

hinges. This will help us build the relaxation algorithm in the next section; this also

gives us better hopes that eventually an integer algorithm for analyzing rigidity will

be constructed.

Not every implied hinge causes errors in floppy mode counting. Imagine taking

the double-banana graph and removing one constraint in one of the bananas, as

shown in Figure 4.2. Again, the condition of the theorem is satisfied and Maxwell

counting now gives one internal floppy mode, which is indeed the case. The essential

difference between situations where the floppy mode count is wrong (as in

Figure 4.1) and those where it is correct (as in Figure 4.2) will be explained below.

Note, however, another potential problem: the right banana in Figure 4.2, from

which a constraint was removed, is still rigid and forms a rigid cluster, since all other
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sites in the graph are not rigid with respect to it. However, if one considers just this

banana alone (i.e., just the red sites and constraints in the figure separately from

the rest of the network), it is not rigid anymore. This cluster is rigidified by the rest

of the network (or, one might say, by the “missing” implied hinge). Such a situation

is never possible in 2D or in BB 3D networks: there, a rigid cluster is always rigid

by itself, in isolation from the rest of the network. This is not a requirement of the

Laman’s theorem per se, but is implied by it and used when rigid cluster

decomposition is done. This means that in situations like that in Figure 4.2, rigid

cluster decomposition may become problematic. Again, the implied hinge is the

reason for the situation: once it is placed in the network explicitly as a constraint, it

should be considered part of the cluster, and the cluster becomes rigid by itself.

</

fif

Figure 4.2: The double—banana graph from Figure 4.1 with one constraint in one of

the bananas removed. The red subnetwork is a rigid cluster, but is only rigid due to

the left banana and not by itself. However, inserting the implied hinge (green dashed

line) explicitly makes the subnetwork rigid by itself.
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Another problem due to implied hinges one might encounter is that some rigid

clusters may become non-contiguous, in the following sense. Consider a

three-banana graph shown in Figure 4.3. Each banana is rigid by itself, but different

bananas are not mutually rigid. Yet, sites 1, 2 and 3, where the bananas “touch”

each other, are mutually rigid and form a rigid cluster, with no other sites in the

network being rigid with respect to all three sites simultaneously. Since these sites

are not connected to each other directly, this rigid cluster is non-contiguous. Note

that there are implied hinges 1—2, 2—3 and 1'3 around which bananas rotate, and

placing these implied hinges makes the cluster contiguous.

  
3

Figure 4.3: The three—banana graph. Sites 1, 2 and 3 form a non-contiguous rigid

cluster.

Applying the Laman’s theorem (when it works) to the network itself only

merely indicates if redundant constraints are present, but does not tell exactly how

many redundant constraints there are, so the number of floppy modes cannot be



found. This is one reason why, as we know, the pebble game actually starts from

scratch and inserts one constraint at a time, checking each of them for redundancy,

so that at the end the exact number of redundant constraints is known. What this

means is that even if the final network has no implied hinges, but they appear at

some intermediate stage in the process of constraint insertion, the counting can be

wrong. This certainly makes sense, given that if an implied hinge is placed explicitly,

it is always a redundant constraint (since it connects a mutually rigid pair of sites),

and redundant constraints are not covered by a pebble and thus are not “seen” by

the pebble game, so it is as if the hinge still remains implied. But if rotation around

a hinge is locked at some point in the constraint insertion process (see Figure 4.4),

so at the end the hinge (either implied or explicit) does not exist anymore, the error

in the floppy mode count gets corrected, since the locking constraint is deemed

redundant, while in fact it locks a rotation and thus is independent. Thus only

those implied hinges that still remain hinges (either implied or explicit) at the end

of the insertion process can spoil the floppy mode count. Likewise, if a hinge is

locked, there is no danger to rigid cluster decomposition anymore.

One important thing to notice is that the “only if” part of the statement of the

Laman’s theorem remains valid in 3D. That is, if the number of constraints in any

subnetwork does exceed 3N, - 6 (N, is the number of sites in the subnetwork), then

there certainly are redundant constraints. Because of this, the pebble game always

gives a lower bound of the true number of floppy modes. But there is no similar

statement for rigid cluster decomposition. For example, in Figure 4.1, there are two

rigid clusters rotating around a hinge, whereas the pebble game would determine

that there are no internal floppy motions and thus just one single rigid cluster; on

the other hand, in Figure 4.2, since the red rigid cluster is not rigid by itself, it may

be wrongly found to consist of several clusters.

A few words about rigid clusters in 3D are in order. In connectivity
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Figure 4.4: The double-banana graph with hinge rotation locked by a constraint (red).

percolation, a site always belongs to just one cluster. In rigidity percolation, this is

no longer the case even in 2D. In Figure 4.5 there are two examples of

configurations with sites shared between two rigid clusters and serving as pivots

around which several rigid clusters rotate with respect to each other. These

examples are valid in both 2D and 3D. On the other hand, a constraint in 2D

always belongs to just one rigid cluster. In 3D, this is no more the case, and a

constraint can be a hinge shared between several clusters (Figure 4.6). Note that in

3D bond-bending networks, a constraint can be shared between two clusters at most

and pivots do not exist at all; moreover, only CF constraints can be shared between

clusters (be hinges) and there are no implied hinges. Since pivots do not exist, sites

can be uniquely assigned to rigid clusters. But in general 3D networks all these

restrictions are lifted: there can be pivots, hinges can be shared between more than
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two clusters and there can be implied fringes; separation into CF and angular

constraints does not make sense, of course.

B ., C >11‘

A

Figure 4.5: Two examples of networks with pivots. Constraints and sites belonging

to the same cluster have the same color; pivots shared between several clusters are

black. Both examples are valid in 2D and in 3D.

34

Figure 4.6: A network in 3D with a hinge (black).

At the same time, an angle between two constraints stemming from the same

site always belongs to just one cluster in 3D (assuming that the angle is rigid, i.e.,

all three sites forming the angle are mutually rigid). Indeed, consider an angle

formed by sites A, B and C. If sites D and E are both rigid with respect to all three

sites A, B and C, then D and E are mutually rigid and thus belong to the same

cluster. Thus each rigid angle can be assigned to just one rigid cluster, and this

assignment, together with the list of constraints that are not part of any rigid angle,

as well as isolated sites (if any), fully specifies rigid cluster decomposition of the
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network. Of course, one should remember that rigid clusters can be non-contiguous,

if there are implied hinges, but become contiguous again, once implied hinges are

inserted as regular constraints; thus, implied hinges should be considered as regular

constraints for rigid cluster decomposition purposes and, in particular, angles

formed by implied hinges with regular constraints and with other implied hinges

should also be added to the list to obtain full rigid cluster decomposition. Note that

insertion of implied hinges as explicit constraints does not change the rigid clusters

or the number of floppy modes (but it can change the distribution of stresses).

If somehow the rigid cluster decomposition of the network is known, as well as

all implied hinges, then assuming that indeed placing the implied hinges eliminates

the problems with the Laman’s theorem and non-contiguity of rigid clusters, we can

find the number of floppy modes in the following way. First, include all implied

hinges in the network explicitly, so all rigid clusters are contiguous. Then, for each

rigid cluster, do constraint counting and determine the number of redundant

constraints (knowing that since the cluster is rigid, it has exactly 6 floppy modes

corresponding to its rigid body motions). The numbers of redundant constraints for

all clusters are added up to get the total number of redundant constraints in the

network. Then Maxwell counting is done for the whole network, and adding the

total number of redundant constraints, we get the exact number of floppy modes.

This procedure is illustrated in Figure 4.7 for the two-banana example, for which

the pebble game counting fails.

The above procedure also helps to explain the difference between those

networks with implied hinges, for which the pebble game floppy mode counting fails

(as in Figure 4.1), and those for which it does not fail (as in Figure 4.2). In

Figure 4.1, insertion of an implied hinge changes the number of redundant

constraints by two (one in each cluster); in Figure 4.2, the change is by one (since

only one of the clusters becomes stressed when the hinge is inserted). The change in
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Figure 4.7: Illustration of floppy mode counting for the double-banana graph. First,

the implied hinge (red) is inserted explicitly. The first cluster (green plus the hinge)

has 5 sites and 10 constraints, so Maxwell counting for it gives 5 x 3 — 10 = 5 floppy

modes, and there must be 1 redundant constraint. Same for the second cluster (blue

plus the hinge). Thus there are a total of two redundant constraints, and by adding

them to the global Maxwell count for the whole network, the correct number of floppy

modes is obtained.



the total number of constraints is by one in each case. Then, according to the recipe

for the floppy mode counting outlined above, the net number of floppy modes

changes by one in the first case, when the implied hinge is added, and does not

change in the second case. This is why in the first case ignoring the hinge influences

the floppy mode counting, while in the second case it does not. Generally, one

should consider each of the rigid clusters sharing an implied hinge separately,

together with the hinge. If the hinge is stressed just once (taken with just one of the

clusters), this is the situation analogous to that in Figure 4.2 (the number of floppy

modes is not affected, but the rigid cluster decomposition might be). We will call

such a hinge benign. If, on the other hand, the hinge is stressed more than once, this

is analogous to Figure 4.1 and the number of floppy modes is affected (as well as

rigid cluster decomposition); we will call such a hinge malignant. This should be

extended to explicit hinges as well, since they can be implicit at some point in the

constraint insertion process. It is possible that an explicit hinge is not stressed at all

(something not possible with an implied hinge, since even without its being inserted

explicitly, there is at least one cluster rigid by itself). Such an explicit hinge can

never be implied even at an intermediate stage, so it can cause no problems

whatsoever. The rest of the explicit hinges are dangerous and further classified as

benign and malignant as above.

4.2 Rigidity analysis through network relaxation

In this section we propose an algorithm for analyzing rigidity of general 3D

networks that is exact in principle. This algorithm identifies implied hinges and

thus is able to fix the problems with the pebble game (assuming that indeed, all

these problems are due to implied hinges only). Its disadvantage is that it is not an

integer algorithm, and thus round-ofl' errors are possible. This leads to bad
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convergence for bigger networks, especially close to the rigidity transition. The

algorithm is also slower than the pebble game. On the other hand, even though the

round-off errors can in principle lead to mistakes in rigidity analysis, there are

several self-consistency checks that should be able to make the algorithm work

perfectly or at least detect the mistakes when they occur. Networks of a few

hundred sites can be analyzed exactly with ease, even close to the rigidity transition,

and bigger networks are tractable away from the transition.

4.2.1 The algorithm

We place atoms in completely random positions within some volume and

connect them with springs according to the desired topology. The lengths of the

springs are chosen equal to the initial distances between atoms they connect, so

initially, the network is unstressed [Figure 4.8,(a)]. We then displace all atoms

randomly [Figure 4.8,(b)] and relax the system by the conjugate gradient method

[52] [Figure 4.8,(c)]. Assume for now that the displacements before relaxation are

infinitesimal. After relaxation is complete, the final 3N-dimensional displacement

vector (where N is the number of sites) represents one of possible zero-frequency

motions. As the initial displacement was chosen at random, it is extremely unlikely

that the distance between a pair of sites that are not mutually rigid would be the

same at the end as at the beginning (in an unstressed state). On the other hand, for

all mutually rigid pairs of sites the distance after relaxation should be the same as

before displacements were introduced. Thus mutual rigidity of all pairs of sites can

be determined in principle.

In any practical realization, displacements are never infinitesimal. Finite

displacements are dangerous, as there is a possibility of “multistability” (existence

of several distinct minima of the potential energy to which the network can relax).

Of course, we can always choose very small displacements, but it is not known a
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Figure 4.8: Schematic illustration of the relaxation procedure. In the network of in-

terest, the spring equilibrium lengths are chosen equal to the initial distances between

sites they connect, so initially the network is unstrained (a). All sites are displaced at

random (b) and then relaxed (c). The distances between sites 3 and 6 and between

sites 4 and 5 in (c) differ from those in (a), so these pairs of sites are not mutu-

ally rigid. All other distances are preserved, so all other pairs of sites are mutually

rigid. The actual procedure differs from this in that the problem is linearized, so all

displacements are always effectively infinitesimal.

priori exactly how small they should be. A better alternative is linearizing the

problem, so the potential energy is exactly quadratic in displacements from the

initial equilibrium. This also helps the conjugate gradient relaxation procedure to

converge faster. Then the potential energy is

1

V = 5 Eur.- — r.) - (u.- — nor, (4.1)
(0')

where the sum is over all constraints in the network, r,- is the radius vector of site i

in equilibrium, and u,- is its displacement from equilibrium. As a consequence, the
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condition that sites 1 and 2 are mutually rigid becomes

(r2 — r1) ' (112 — 111) = 0, (4.2)

instead of the previous condition that the distance is unchanged. This can be

thought of as making all displacements infinitesimal in effect.

In theory, the conjugate gradient procedure is exact for a linear system with n

degrees of freedom after 722 iterations [52]. In practice, because of round-off errors,

sometimes it takes more iterations, especially close to the rigidity transition.

Preconditioning [53] may improve convergence, but this has not been done so far.

Inevitably, the calculations of the potential and the scalar product in Eq. (4.2) are

themselves subject to round-off errors, and they are especially severe, because, as

the form of these expressions suggests, these calculations often involve subtraction

of two big numbers that is supposed to give a small number. Say, if a rigid cluster is

being translated and/or rotated, the displacements u,- are big, but the scalar

products should be zero. Because of this, the approach eventually fails for bigger

system sizes, especially close to the rigidity threshold, where there are big regions

that are close to being isostatic (either on the floppy or on the rigid side), with

probably the only possible solution being increasing the numerical precision (i.e.,

going to quadruple precision numbers, with significant costs in computation time).

To analyze a particular graph, we run at least two realizations, with different

equilibrium positions of sites and initial random displacements (but the same

connectivity as needed, of course). This is done to avoid situations, in which the

change in distance is occasionally close to zero numerically even for pairs of sites

that are not mutually rigid, because of special initial conditions (or because the

initial configuration was occasionally chosen close to a non-generic one). For each

pair of sites, the sum over realizations of absolute values of the scalar product of
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Figure 4.9: The logarithm of the sum over two realizations of the absolute value of

the scalar product, Eq. (4.2), for all pairs of sites of a network with 216 sites. The

gap between “zero” and “non-zero” values is clearly seen. Pairs with the values below

the gap are mutually rigid, those with the values above the gap are not.

Eq. (4.2) is calculated. There should be a well—defined gap between “zero” and

“non-zero” values. An example of the result is shown in Figure 4.9, where the gap is

clearly seen. If the gap has not formed, more realizations are run, until the gap

reaches at least one order of magnitude.

Sometimes, especially close to a very sharp rigidity transition, where the

network goes from being almost completely floppy (with only small rigid clusters) to

being almost completely rigid, there is a possibility of having two gaps in the
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distribution, so if the cutoff is chosen inside one gap, the network is identified as

floppy and if the cutoff is inside the other gap, it is rigid. This can often be

misleading, but the self-consistency checks described below, as well as running the

pebble game once “dangerous” hinges are identified (also described below) can help

identify the correct gap and check the validity of the results.

Once all mutually rigid pairs of sites are found, we can find all implied hinges.

This is done as follows. First, all sites whose neighbors are not all mutually rigid are

found — only such sites can be hinge endpoints. This is not an essential step, but

doing this speeds things up. Next, among such sites, we find pairs of sites that are

mutually rigid, but not directly connected (as we are looking for implied hinges).

For each such pair of sites, A and B (Figure 4.10), we pick a site C rigid with

respect to both A and B. Then we go through the list of all sites rigid with respect

to both A and B, and if at least one of them, site D, is not rigid with respect to C,

then A-B is an implied hinge, otherwise it is not an implied hinge.

We now place all implied hinges explicitly in the network as regular constraints

— we recall that this does not change the number of floppy modes or the

configuration of rigid clusters. We assume that now that all implied hinges are

placed explicitly, the two problems with rigid clusters mentioned above are

eliminated: all rigid clusters are contiguous and rigid by themselves. The contiguity

can be checked explicitly (since we know all pairs of mutually rigid sites), and this

serves as one self-consistency check for the algorithm. Once rigid clusters are

contiguous, the full rigidity information contained in the list of all mutually rigid

pairs of sites can be replaced by labeling all rigid angles in the network, so that

angles belonging to the same rigid cluster have the same label. This is a more

conventional way of representing rigid clusters. We recall that this is possible,

because a rigid angle can never be shared between several rigid clusters.

Now that all rigid clusters are rigid by themselves and contiguous, the number

99



L
‘
D
”
1
"
V
A

 



 

Figure 4.10: Finding an implied hinge. Candidate endpoints of an implied hinge (A

and B) have to be rigid and not directly connected. An arbitrary site C rigid with

respect to both A and B is chosen. If there exists a site D also rigid with respect to

both A and B, but not rigid with respect to C, then A—B is a hinge; otherwise it is

not a hinge.

of floppy modes can be found by counting redundant constraints in each cluster, as

described in the previous section. Note that the number of redundant constraints in

each rigid cluster should be non-negative, and this serves as yet another

self-consistency test of the algorithm.

Also, we can find what hinges (both implied and explicit) can cause problems

with the pebble game, according to the analysis in the previous section, by using

the counts of redundant constraints in each rigid cluster. If none of the clusters

sharing an explicit hinge has redundant constraints, the hinge is definitely

unstressed and is no danger whatsoever (this cannot happen to an implied hinge).

Note that this is a sufficient, but not a necessary condition for the hinge to be

unstressed, since it is possible that the hinge is unstressed and yet there is stress

(and thus redundant constraints) elsewhere in one of the clusters sharing the hinge.

All other hinges (remaining explicit and all implied hinges) are potentially (but, in
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case of explicit hinges, not necessarily) dangerous. They can be either benign or

malignant. If just one of the clusters sharing a hinge has redundant constraints, the

hinge is either benign or not dangerous at all. If more than one of such clusters have

redundant constraints, then the hinge may be malignant and spoil the floppy mode

count by the pebble game. But again, there is a possibility that stress associated

with redundant constraints is located elsewhere and the hinge is actually benign or

not dangerous at all. The good news is that all malignant and all dangerous hinges

are certainly detected — but there might be a few “false alarms”, and of course,

even a potentially malignant explicit hinge may not influence the floppy mode count

if inserted early enough, so it is never an implied hinge even at an intermediate

stage in the constraint insertion process.

The algorithm we have described is capable of doing two of the analyses done

by the pebble game: the floppy mode counting and the rigid cluster decomposition.

To have the full functionality of the pebble game (at least for those network sizes

that can be studied), we also need to be able to do stressed region (decomposition.

It is possible at least in theory to find stressed constraints in the network by

doing the same network relaxation procedure, but lifting the requirement that the

lengths of constraints are chosen so that they are unstressed in the initial

configuration. Then, after relaxation, constraints that remain strained are stressed

constraints. In practice, however, we have encountered problems doing this, because

of rampant round-off errors. Besides, this only allows finding stressed constraints,

but not grouping them into stressed regions. We recall from Chapter 1 that stressed

regions are defined as sets of stressed constraints such that deformations of all

constraints within the set are interdependent, whereas deformations of constraints

outside the set do not influence the constraints in the set. In the pebble game

procedure, stressed regions are determined naturally by merging failed pebble search

regions. It seems like the best choice then to find stressed regions by running the
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pebble game correcting it using the information about dangerous hinges provided by

the relaxation procedure. The idea is to insert all malignant implied and explicit

hinges explicitly at the beginning of the constraint insertion process, so as to ensure

that they are covered by pebbles and thus are “seen” by the pebble game. This

ensures that, say, all constraints in Figure 4.1 are found stressed, which they are,

whereas, as we know, the pebble game finds this graph to be isostatic, if the implied

hinge is not inserted explicitly. Note that it is very important not to insert implied

hinges that are not malignant. Indeed, if the benign hinge in Figure 4.2 is inserted

explicitly, the left banana becomes stressed, but should be identified as unstressed.

This presents us with a problem, since the relaxation procedure only gives a list of

potentially malignant hinges, but does not specify exactly which of them are

actually malignant. Therefore additional testing has to be done for every potentially

malignant hinge. This can be done by seeing for every potentially malignant hinge if

placing it at the beginning and at the end of the constraint insertion process makes

a difference in the floppy mode count. A faster process can probably be developed

as well. The details of the procedure still have to be worked out. Another issue is

that the stress determination procedure (and the whole pebble game procedure) has

to be modified somewhat compared to the case of BB networks, where some

shortcuts based on distinction between CF and BB constraints were possible. This

will be described in detail in section 4.3.

There is a possibility that the above procedure for finding stressed regions can

fail, because there are so many malignant hinges that even by themselves, without

any other constraints, some of them would be redundant and not covered by a

pebble. However, given that, as we will see in the next sections, the malignant

hinges are quite rare, this is unlikely to happen and will be detected anyway.

Another possible universal approach to rigidity is based on numerical

diagonalization of the dynamical matrix for the spring network. The number of zero
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eigenvalues is the number of floppy modes and the floppy modes themselves can be

found, from where it is possible in principle to obtain rigid cluster decomposition.

The computational time should be similar to that for relaxation. We have not done

any comparisons between relaxation and diagonalization yet. We believe, however,

that relaxation is more reliable, since the crux of both algorithms is distinguishing

“zero” from “non-zero” values (of the eigenvalues for diagonalization and of the

scalar product in Eq. (4.2) for relaxation); but there are 0(n2) scalar products and

only 0(n) eigenvalues, so there is better statistics in the case of relaxation to

determine the proper value of the cutoff. Yet, diagonalization has the advantage

that the number of floppy modes can in principle be determined directly, without

any assumptions about the role of implied hinges; so studies of the diagonalization

procedure and its comparisons with relaxation are certainly desirable.

4.2.2 An example: colloidal glass networks

As an example of application of the relaxation algorithm, we describe rigidity

analysis of colloidal glass networks obtained in experiments of DA. Weitz et al.

[54, 55, 56]. They study colloidal solutions of PMMA spheres ~ 1 ,am in diameter.

Confocal microscopy is used [57] to image the system (Figure 4.11) and pinpoint the

location of each particle as a function of time, so that the structure and dynamics

can be studied in very great detail. By adding a polymer to the solution, they can

induce depletion attraction [58] between the spheres, whose strength and range can

be varied. Depletion attraction is due to the fact that the excluded volume for the

polymer molecules is smaller and thus the entropy is bigger, when spheres are closer

to each other than the size of the polymer molecules. Thus this attraction is

entropic in origin. When attraction between spheres is weak, the interaction is

essentially hard-core repulsion, and we have a system of jammed particles forming a

colloidal glass when the volume fraction of the spheres is ~ 50% [55]. When the
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attraction is stronger, a gel can be formed even when the volume fraction of the

particles is just ~ 5% [54]. So far we have dealt with the results for weakly

attracting particles (provided by J.C. Conrad [59]). In this case, it is a nice model

system for ordinary glasses, where dynamics on the “molecular” level can be studied

in detail. As is usual in liquids and glasses, a particle usually remains jammed in a

particular location for a relatively long time, after which a local rearrangement

occurs. One can find sets of “slow” particles that do not change their neighbors

during a specified interval of time and study properties of networks formed by such

particles assuming that all first neighbors are connected by a constraint. The word

“neighbors” is understood here in a purely geometrical sense, i.e., neighbors are

determined by building Voronoi polyhedra around the particles (two particles then

are neighbors, if their Voronoi polyhedra share a face). Weitz and his group are

interested, in particular, in studying rigidity of such networks. It is not clear if

rigidity, as we understand it, has any physical meaning here, since geometrical

neighbors do not necessarily interact. So far, we simply consider these networks as

good tests for our rigidity algorithms. Perhaps rigidity analysis is more meaningful

for colloids with stronger attraction forming gels. The attraction is short-range and

there is a definite cutoff distance for it (basically determined by the size of the

polymer molecules), therefore it is meaningful to say what particles interact and

what particles do not, so the definition of neighbors and constraints is more

physically motivated.

In any case, here, as an example, we present the results of rigidity analysis using

the relaxation procedure for two of the networks, for different time intervals. As

these networks are relatively small (up to 3000 atoms) and have no big regions close

to being isostatic, applying the relaxation method was no problem whatsoever. As

we know, in 3D it is angles that are uniquely assigned to rigid clusters. However, if,

in order to show rigid cluster decomposition, we attempt to color angles, the figure
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Figure 4.11: A confocal microscope image of a colloidal glass [60].

will be a real mess. Therefore we color constraints instead: constraints that belong

to just one rigid cluster are painted some color, with adjacent constraints belonging

to the same cluster painted the same color; constraints belonging to more than one

cluster (i.e., hinges) are black. Non-adjacent clusters are allowed to have the same

color, as otherwise there are not enough visually distinct colors. We also show

implied hinges with dashed lines. Sites are colored if all constraints stemming out of

it belong to the same cluster; otherwise they are left black. This coloring scheme

can be somewhat misleading. Figure 4.12 gives an example of a rigid cluster (3

tetrahedron) that has just one constraint colored, while the rest of its constraints are

hinges shared with other clusters, so the true size of the rigid cluster is not revealed.

This situation is somewhat extreme, though. In our case, the coloring described

above is adequate, as bigger clusters that are of interest have relatively few hinges.
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Figure 4.12: A rigid tetrahedron with many hinges (black) and one non-hinge con-

straint (red). Such rigid clusters do not show up well when the visualization scheme

described here is used.

In Figures 4.13 and 4.14, we show two examples of rigid cluster decomposition

with coloring as above. When the chosen time interval is short, the network is bigger

and more rigid (Figure 4.13). There are big rigid clusters. When the time interval is

longer, it is smaller and floppier, with fewer big rigid clusters (Figure 4.14).

As these networks are relatively small (up to 3000 atoms) and have no big

regions close to being isostatic, applying the relaxation method was no problem

whatsoever. It is interesting to note that out of 16 networks that were analyzed,

just two had one potentially malignant hinge each; others had no malignant hinges.

So at least the floppy mode count by the pebble game would be perfect or nearly

perfect. We find a similar result for a different class of networks in the next section.
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Figure 4.13: Rigid cluster decomposition for a colloidal glass network obtained as

described in the text for the time delay 252 s. The network appears almost flat, as it

is rather thin, but is treated as three-dimensional. Bonds and sites belonging to just

one cluster are colored, otherwise they remain black. Adjacent bonds/sites belonging

to different rigid clusters have different colors. Implied hinges are shown with dashed

black lines.
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Figure 4.14: Same as in Figure 4.13, but for the time delay 3240 s.
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4.3 Pebble game for general 3D networks

Given that there is no exact integer algorithm analogous to the pebble game for

general networks so far, and use of the relaxation algorithm is only limited to

relatively small networks, the question of how good the straightforward pebble game

is typically is of practical interest. In this section we first describe the specifics of

application of the pebble game to general 3D networks. Then to test the pebble

game, we study BB networks, by inserting constraints in an arbitrary order, instead

of the proper order of insertion giving the correct result. More tests of the pebble

game will be done in the next section.

4.3.1 The algorithm

The basis for the pebble game algorithm for general (non-BB) networks is still

the straightforward generalization of Laman’s theorem (or, one might say, of the

molecular framework conjecture) to 3D non-BB networks as if it were perfectly

valid. So the algorithm essentially remains the same, with a few complications due

to the fact that some shortcuts used for BB networks are no longer possible.

As in the BB algorithm, constraints are inserted one by one. However, since

there is no distinction between CF and BB constraints, there are obviously no

special requirements of the order of insertion (recall that in the BB algorithm, all

induced angular constraints were inserted immediately after every CF constraint).

Still, if the network is of partially BB character, say, some, but not all BB

constraints are present, preserving partial order may help reduce errors. Just as in

the BB case, six pebbles are collected at the just inserted constraint’s ends (three at

each end) -— this should always be possible — and after that, freeing one pebble is

attempted at each neighbor of one end of the constraint in turns. The difference is

that since there is no distinction between CF and angular constraints, all
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constraints are treated on equal footing, so all neighbors of the end of the constraint

are checked (in the BB case, it was enough to check just those neighbors connected

with a CF constraint). If all attempts of freeing a pebble are successful, the new

constraint is independent and is covered by one of the six free pebbles at its ends; if

at least some attempts failed, the constraint is redundant.

The stressed region determination is slightly more complicated than for BB

networks. In the BB case, once pebble search at one of the neighbors failed, the

region of the failed search was merged with the previously found stressed regions to

produce a stressed region, and further pebble searches (at other neighbors) were not

needed, since they would all produce the same region. Now all pebble searches at all

neighbors have to be done, and the intersection of all regions of failed searches is

found before merging with the previously found stressed regions. The justification

for this procedure is as follows. First of all, as it was mentioned, the pebble game

does not “see” redundant constraints, since they are not covered by a pebble. Thus

if a test constraint that is being inserted turns out to be stressed, the region of the

network, in which it is inserted, is isostatic for the pebble game purposes. The

stressed region created when a single redundant constraint is inserted in an isostatic

network is the set of constraints such that removal of any of them makes the newly

inserted constraint independent. In other words, when any constraint belonging to

the stressed region is removed and its associated pebble is freed, this freed pebble

should be able to move to every neighbor of the ends of the inserted constraint

where the pebble search failed, to become available at each neighbor, so the test

constraint is no more redundant. This is the case, if and only if the site to which the

freed pebble belongs is accessible to pebble search from every such neighbor and

thus lies in every failed pebble search region.

The merger process for stressed regions is actually similar to the 2D case: for

two regions to be merged, there should be at least a two-site overlap. In 3D BB
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networks, all neighboring regions have at least two site overlap (just as all rigid

clusters have at least two-site overlap, because there are no pivots).

The rigid cluster decomposition procedure is more subtle. In the BB case, an

angle between CF constraints is taken, six pebbles are collected at its vertices and

then the region where the seventh pebble cannot be found is the rigid cluster; then

the next angle not in any rigid cluster found so far is taken and so on. This was

based on the fact that in a BB network, any angle between two CF bonds is rigid.

In a non-BB network, the essence of the procedure is the same; however, the above

should be done for all angles (obviously, there is no distinction between CF and BB

constraints) and not all angles are rigid. So before the above procedure, the angle

should be tested for rigidity. There are several ways of doing so, and none are

entirely reliable, when implied hinges are present. One possible procedure is as

follows. Suppose the angle is ABC and its vertex is B. Then to determine if the

angle is rigid, we imagine inserting a constraint AC and testing it for redundancy. If

it is redundant, the angle is rigid, otherwise it is not rigid. This procedure has an

advantage that it gives correct results for some benign dangerous hinges, such as in

the case in Figure 4.15, when the angle ABC is not rigid by itself, but only rigid due

to the shaded rigid cluster, and the above procedure still correctly identifies it as

rigid. We call such benign hinges trivial. It turns out that often a vast majority of

dangerous hinges are trivial, so the above procedure solves a lot of problems due to

implied hinges. But other variants are possible and may be better. This issue

deserves further study.

4.3.2 Test for bond-bending networks

One estimate of how big the problems with the pebble game could be is

provided by studying ordinary BB networks. Of course, the pebble game is exact for

such networks, if the proper ordering of constraints is obeyed, i.e., after each CF
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Figure 4.15: A schematic drawing of a trivial benign implied hinge. A shaded body

is a rigid cluster. Three blue sites and two red bonds form a rigid cluster that,

although not rigid by itself, is simple enough to be taken care of in the rigid cluster

decomposition procedure. The implied hinge is the green dashed line.

constraint, all induced BB constraints follow immediately, then the next CF

constraint is placed, etc. However, if constraints are inserted in random order,

implied hinges may appear, so there will be errors, which can be found by

comparing with the exact result. This can hopefully give an idea of how big the

errors can be in other, non-bond-bending networks.

The simplest way of creating an implied hinge is shown in Figure 4.16. In the

figure, there is a 4—coordinated site, and one of the CF constraints stemming from it

is a hinge. If this constraint is inserted last, after all other constraints, it is going to

be an implied hinge just before being inserted. In this case, it is a benign hinge

(moreover, a trivial one). A configuration built in the same spirit, but with a

malignant hinge, is shown in Figure 4.17 and consists of two 4—coordinated sites

with a hinge between them. Note that without the hinge, this is nothing but the

two-banana configuration of Figure 4.1. In any case, it is clear that, while there are
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many hinges in any BB network below and just above the rigidity threshold, only a

relatively small fraction of them (namely, those that are stressed) are dangerous and

can be treated as implied by the pebble game if inserted late; but even fewer are

malignant. It is also clear that the problem is going to be most significant near the

rigidity threshold, as far below the threshold, most hinges are unstressed, and far

above, there are very few hinges.

 
Figure 4.16: A configuration with a trivial benign hinge shared by two clusters (blue

and green) that can arise in bond-bending networks. Central-force constraints are

solid lines, angular constraints are dashed lines. ‘

 

 
Figure 4.17: A configuration with a malignant hinge shared by two clusters (blue and

green) that can arise in bond-bending networks. Central-force constraints are solid

lines, angular constraints are dashed lines. Without the hinge, this is topologically

equivalent to the double-banana graph in Figure 4.1.
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To get specific estimates, we have considered a usual model for studying 3D

rigidity in glass networks — a BB diamond lattice diluted in such a way that no

sites of coordination lower than 2 ever appear. The algorithm used is described in

the previous subsection.

The results are shown in Figure 4.18 and indicate that the error in the number

of floppy modes occurs mostly in the region just below the transition, is only about

1% at its maximum, and seems fairly independent of the network size. In the region

where the error is biggest, it is still only about 20% of the deviation of the exact

result from Maxwell counting, so the pebble game procedure, albeit approximate,

offers a significant improvement over Maxwell counting.
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Figure 4.18: The relative deviation of the floppy mode count obtained with constraints

inserted at random in the pebble game procedure from the correct result obtained

with the proper order of insertion. Filled green circles are for networks of 1000 sites

averaged over 100 realizations. Open red circles are for networks of 8000 sites averaged

over 10 realizations.

As for rigid cluster decomposition, it is not as successful as the floppy mode
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counting — not surprising, given that there are many more benign hinges than

malignant ones (even though the majority of the benign hinges are trivial ones and

thus should not matter). Still, the results are decent, especially if one is interested

just in the size of the percolating cluster (moreover, we have some indications that

the results for the size of the percolating cluster may be exact with some variants of

the decomposition procedure).

4.4 Central-force networks — first-order

transition

We now apply the methods developed so far to studying rigidity of CF

networks obtained by bond dilution of regular lattices.

First of all, the natural first step is applying Maxwell counting. For a network

of N sites there are a total of 3N degrees of freedom and the number of constraints

is (r)N/2. Then the number of floppy modes is F = 3N — (r)N/2 and the rigidity

transition is at the point where this becomes zero, i.e., at (r) = 6.

We now consider two cases: truly three-dimensional networks and networks

that are two-dimensional, but with sites able to move in three dimensions. The

latter is obviously a problem in 3D rigidity as well.

4.4.1 Topologically 3—dimensional networks

The above result for the location of the rigidity transition means that we need

lattices with coordination more than 6 to study the transition. The natural

candidates are the bcc lattice with coordination 8 and the fcc lattice with

coordination 12.

Studying rigidity of bcc and fcc lattices with the relaxation method for

moderate lattice sizes (500-1000 atoms) accessible to the method, we find a very

115



curious result: below the rigidity transition, only very small rigid clusters are

present, namely, isolated sites, single bonds and also triangles in the fcc lattice (bcc

has no triangles). All these clusters are isostatic, so below the transition there are

no redundant constraints and thus Maxwell counting is exact. At the rigidity

transition, the percolating rigid cluster emerges and all other rigid clusters are still

the same small ones (except there are now triangles formed by two bonds and a

trivial benign implied hinge in the bcc as well, as depicted schematically in

Figure 4.15). This strongly resembles the situation with the random bond model

(see Chapter 2) and indeed, the transition seems to be first order. Besides, we see

no malignant hinges and all benign ones are trivial. This is quite natural. Indeed,

there is only one cluster in the network that can be stressed (the percolating one),

and a hinge must be shared between more than one stressed cluster to be

malignant; since all non-percolating clusters are triangles at most, the benign hinges

can only be trivial. If we assume that these statements also apply to bigger

networks, we can use the pebble game to study those bigger networks that cannot

be studied by relaxation. The results for the number of floppy modes will be exact,

since there are no malignant hinges; the rigid cluster decomposition should also be

exact, since all benign hinges are trivial.

Of course, in reality the probability of having a bigger finite rigid or even

stressed cluster is non—zero. For example, for the fcc lattice, if we take an atom and

its first coordination shell with all bonds between them, there are 13 atoms and 36

constraints, so Maxwell counting gives 13 x 3 — 36 = 3 and there are thus 6 — 3 = 3

redundant constraints. However, the probability of having all 36 constraints (or at

least 33 of them that would make the cluster isostatic) present is, of course, very

low close to the transition, which, according to Maxwell counting, should be located

close to the bond probability p = 1 /2. Indeed, the probability of having 33 to 36

constraints present is ~ 10”. For the bcc lattice, a rigid cluster has to involve more
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coordination shells, so the probability is apparently even lower. Plus, the probability

of a non-trivial dangerous hinge is even lower than that of a bigger rigid cluster, so

we can safely neglect this possibility and use the pebble game for our studies.

The results of the pebble game runs for bigger networks (up to 62500 sites) are

in Figure 4.19 for the bcc lattice and in Figure 4.20 for the fcc lattice. Indeed,

Maxwell counting is exact below the transition, as expected, there are still no

non-percolating rigid clusters bigger than triangles, and the transition clearly looks

first order and overall the picture is qualitatively very similar to that for the random

bond model (Chapter 2). The jumps in the size of the percolating rigid cluster and

the percolating stressed regions are very big: their sizes are all about 90% of the

network or more.

Given that the rigidity transition is apparently first order for purely CF

networks in 3D, one could expect that the elastic constants of these networks

exhibit a jump at the transition. The old results by Feng, Thorpe and Garboczi [61]

(Figure 4.21) indicate that this is not the case, and, in fact, the elastic constants go

continuously to zero at the transition, just as in bond-bending networks, where the

transition is second order. Thus the stressed backbone, although big, is very fragile

close to the transition.

We have also done some preliminary studies of partially bond-bending networks

obtained by adding some of the angular constraints between bonds, so that each

angular constraint has a probability 3 of being present. Probability s = 0

corresponds to just described purely CF networks; 3 = 1 means purely BB networks.

We know that the transition is first order for s = 0 and second order for s = 1, and

it is interesting to see how the crossover from first to second order happens.

Knowing from the previous section that for BB networks the pebble game algorithm

even with constraints placed at random is very accurate and for CF networks there

are hardly any errors at all, we expect the algorithm to be adequate for all
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Figure 4.19: The number of floppy modes per degree of freedom in the top panel

and the sizes of the percolating rigid cluster (green) and stressed region (red) in

the bottom panel for the bond diluted central-force bcc networks. Averages over 10

realizations on networks of 54000 sites. The dashed line in the top panel is Maxwell

counting.
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on networks of 62500 sites.
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situations in between. Moreover, we expect to even improve it by trying to be close

to the proper order of placing constraints for BB networks, i.e., placing angular

constraints whenever present immediately after CF constraints that induce them.

This makes the algorithm exact in the limit 3 = 1 and virtually exact in the limit

3 = 0. Our preliminary results indicate that apparently, the transition is second

order for all s 75 0 but gets sharper as s approaches zero. However, this is far from

certain and more studies are needed. In fact, it should first be established that even

for s = 0 we really have a discontinuous transition and not just an extremely sharp

continuous one. This can probably be done by Monte Carlo sampling of (extremely

rare) big but finite rigid clusters close to the transition.

4.4.2 Topologically 2-dimensional networks

We now look at topologically two-dimensional lattices embedded in 3D so the

sites can move in three dimensions. None of the regular 2D lattices have
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coordination higher than 6, so we use a square lattice with both main bonds and

diagonals of squares as possible constraints (Figure 4.22). Such a network has the

full coordination of 8. We assume that the pebble game is adequate for these

lattices as well, even though the probability of finite rigid clusters bigger than

triangles is definitely higher, as we will see.
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The preliminary results (Figure 4.23) are very different from those for

topologically three-dimensional CF networks and look similar to those for

bond-bending networks. Maxwell counting is no longer exact and the transition is

apparently second order.
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Figure 4.23: The number of floppy modes per degree of freedom for the diluted square

network with diagonals (as in Figure 4.22). Average over 10 networks with 40000 sites.

4.5 Prospects for an exact algorithm

As we have seen, the pebble game algorithm is usually quite successful even for

3D CF networks, for which it is not supposed to work in principle. Still, special

situations when it is not as good are certainly possible, so one would like to have an

analogous exact algorithm. So far this goal is not achieved, unfortunately. A less

ambitious goal (not reached as well so far) would be to be able to put exact bounds

on, say, the number of floppy modes (the pebble game provides a lower bound, and

we would like to have an upper bound as well).

A promising approach to the problem was proposed recently by D.J. Jacobs. I

outline this proposal here even though I can take no credit for it, to make the

picture complete and since further development of these ideas is my goal for the
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near future. So far the proposal only deals with finding the number of floppy modes

and not with rigid cluster decomposition.

The idea is to start with a bond-bending network consisting of the same sites as

the original network of interest and constructed so that all extra constraints (those

not in the original network) are angular constraints. The simplest way is, of course,

to start with the original network as a CF network and add all induced angular

constraints (but this may not be the most economical way, since, as we will see, the

fewer extra constraints the faster it is to get the result). The pebble game is then

run on the BB network, and since the network is bond-bending, we know that the

procedure is exact for that network. The idea now is to try to remove all those extra

induced constraints whose removal does not change the number of floppy modes.

Since the possible floppy motions do not change in the process, no implied hinges

will ever be created. Once the process is complete, all remaining induced extra

constraints are independent and removal of any of them adds one floppy mode.

Since an independent constraint cannot become redundant upon removal of other

constraints, so that removal of all of them adds as many floppy modes as constraints

that were removed, the number of such extra constraints should be added to the

number of floppy modes to get the exact number of floppy modes in the original

network.

First of all, we can easily remove all those induced extra constraints that are

not covered by a pebble. These are definitely redundant and can be removed

without any reservations. On the other hand, those induced constraints that are not

stressed definitely cannot be removed — their removal will introduce an extra floppy

mode. Remaining induced constraints (i.e., those that are stressed yet covered by a

pebble) require more careful handling. The idea is to try to move the pebble from

the induced constraint to one of the uncovered constraints belonging to the original

network. Then the induced constraint gets uncovered and can be removed. This is a
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legitimate move, but only provided that an implied hinge is not created in the

process, otherwise the pebble game does not work anymore. That is, there has to be

a test of whether the induced constraint locks a rotation around some implied hinge,

in which case the above procedure is not allowed and the induced constraint

definitely cannot be removed, as it locks a rotation that would appear once the

constraint is removed. So far all proposed tests have failed to account for all

possible situations, so this remains the major stumbling block.

Note that if we settle for a less ambitious goal of creating an algorithm that

gives the upper bound of the number of floppy modes, it is enough to have a test

that would identify all those situations where a constraint removal is impossible, but

may miss some of situations where it is possible. Of course, such a test needs to

correctly identify a vast majority of these situations, otherwise the upper bound will

be not very good and thus essentially useless. In the extreme case, we can deem all

covered induced constraints unfit for removal, but this would usually give a

ridiculously high upper bound. A better test has not been devised, as well so far.

4.6 Conclusion

In this chapter we have described our studies of rigidity of general

(non-bond-bending) 3D networks. There were essentially two broad themes. The

first theme is algorithm development. We have described an exact algorithm based

on network relaxation, as well as the ongoing work on a faster and more reliable

algorithm based on the pebble game. The second theme is studying specific

systems. We have first shown that in many cases, the original pebble game

algorithm is very accurate and in some cases virtually exact and then used the

pebble game to study the rigidity transition in 3D networks, showing numerically

that the transition is first order for topologically three-dimensional networks and
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strongly resembles the transition in the random bond model; the transition is

apparently second order in topologically 2D networks.

In the future, we hope to make progress on both themes. On the first theme,

we hope to develop a fast integer algorithm for general 3D networks that is exact or

at least gives a useful upper bound for the number of floppy modes. We also hope it

will be possible to extend it to the rigid cluster decomposition. We will also

continue trying to improve the relaxation algorithm, as well as do some comparisons

with diagonalization. On the second theme, we would like to have a better proof

that the rigidity transition is indeed first order in 3D CF networks and also study

the crossover from the first to the second order transition as the network changes its

character from central-force to bond-bending.
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Chapter 5: Self-organization

We have seen that we can analyze rigidity of a given network quite

straightforwardly using the algorithms described in Chapters 1 and 4. On the other

hand, when trying to study realistic systems, such as covalent glasses, the natural

question is how the networks themselves are modeled and how their peculiarities

influence their rigidity properties. As we have seen, sequences of glass networks of

varying mean coordination are commonly obtained by starting with a fully

coordinated network (say, a fully 4-coordinated Si network, either crystalline or

amorphized by the WWW algorithm [see subsection 1.2.5] or its variants [62]) and

then diluting this network at random. This may not be entirely adequate, of course,

as often energy considerations that favor certain structural arrangements are

important and this leads to the network being non-random in various ways. One

might think about building the networks from first principles. Unfortunately,

various ab initio approaches (such as Car-Parrinello [63]) produce models that are

too small (only ~ 100 atoms) for most purposes. The small size, coupled with the

periodic boundary conditions, leads to spurious internal strain. Modifications based

on linear-scaling electronic structure calculations [64] or molecular dynamics with

empirical potentials [65] can alleviate the size problem, but are still too slow to

achieve full relaxation of the network at appropriate temperatures in reasonable

time. Some hopes are being placed on new methods of accelerated dynamics, such

as the activation-relaxation technique by Barkema and Mousseau [66] and other

methods [67, 68]. At present, however, our goals are more modest: we can introduce

various aspects of non-randomness “by hand” to see what effects they can have on

the properties of networks. In Chapters 2 and 3 we have already studied how one

such aspect, chemical ordering, can influence the properties and location of the

rigidity transition. In this chapter we consider another model that tries to take into
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account more subtle effects of non-randomness that we describe as self~organization,

as the glasses organize themselves in such a way as to minimize their free energy at

the temperature of glass formation.

We start with the description of our model of self-organization and study this

model first for 2D central-force networks and then for 3D bond-bending networks

(obviously more relevant to glasses) in section 5.1. In both cases we find that there

are two phase transitions instead of one and an intermediate phase between them

that is rigid but unstressed. We then consider an analogous model for connectivity

percolation in section 5.2. This model, as it turns out, was in part introduced and

considered before (and, in fact, rediscovered several times), but we add new aspects

to it and in particular, in section 5.3 we study how the conductivity of the

corresponding random resistor network depends on the bond concentration above

the upper boundary of the intermediate phase. We find numerically that this

dependence is surprisingly close to linear and might well be exactly linear, just like

in the mean-field theory of connectivity percolation [69]. We were not able to prove

or disprove this linearity for this particular model, but we have indeed proved this

linearity for a closely related model. In the same section we also look at elastic

properties of self-organized networks in the rigidity case finding that the network is

marginally rigid in the intermediate phase having zero elastic constants in the

thermodynamic limit. Finally, in section 5.4 we review some possible experimental

evidence of two transitions and the intermediate phase.

Many of the results presented in this chapter were published in

Refs. [70, 71, 72].
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5.1 Self-organization in rigidity percolation

5.1.1 Description of the model

We have seen in Chapter 1 that starting from an ”empty” lattice (without

bonds) and adding one constraint at a time, we can use the pebble game to analyze

whether the constraint we are adding is independent of those already in the network

or redundant. We also know that redundant constraints cannot be accommodated

without changing the natural bond lengths and angles of the network and so

stressed (overconstrained) regions would be created. Thus within the present

approach we have a rather unique opportunity to construct stress-free networks

without a huge computational overhead.

The idea is to start, as before, from an ”empty” lattice and add one bond at a

time to it (meaning the corresponding central-force constraint, as well as all

associated angular constraints in the bond-bending case), applying the pebble game

at each stage. If adding a trial bond would result in that bond being redundant and

hence create a stressed region, then that move is abandoned. Thus the network

self-organizes in such a way that there is no stress in it at all. Note that the pebble

game now serves not only as a tool to analyze the network, as before, but also as a

decision-making mechanism when building the network.

It is certainly not possible to keep adding bonds up until all bonds are inserted

without introducing stress. How should we proceed once stress becomes inevitable?

While going on with some sort of self-organization would be reasonable (as some

bonds would create less stress than others), it is impossible to analyze this within

our approach, so we start inserting bonds completely at random, once avoiding

stress becomes impossible.
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5.1.2 General properties

First of all, how long is it possible to keep adding bonds to a network without

introducing stress? It is certainly impossible to have more independent constraints

then there are degrees of freedom in the network. Now recall that in the Maxwell

counting approximation, the rigidity transition occurs when the numbers of

constraints and of degrees of freedom balance. Thus it is certainly not possible to

have an unstressed network with the mean coordination above where Maxwell

counting predicts the transition (that is, above the mean coordination (r):w = 4 for

central-force (CF) networks in 2D and (r);U = 2.4 for bond-bending (BB) glass

networks in 3D). This provides an upper limit (still not always reachable, as we will

see) for the unstressed networks. Note, though, that since the Maxwell counting

percolation limit is not exact, this does not mean that rigid networks are necessarily

stressed! The actual rigidity transition may occur below the point where Maxwell

counting puts it. This is a very important point that leads to possibility of an

intermediate phase, as described below.

Secondly, we know that the Maxwell counting result for the number of floppy

modes would be exact if all constraints in the network were independent. But this is

exactly what we have in our case! Thus the number of floppy modes in Maxwell

counting is exact for as long as we are able to keep the network unstressed. Hence

we follow the Maxwell result for the number of floppy modes before reaching the

point where stress becomes unavoidable.

We now analyze some specific cases in more detail.

5.1.3 Intermediate phase in 2D central-force networks

Let us first prove that it is actually possible to reach the h'laxwell counting

limit without any stress in this case (and for any CF networks), provided that the

fully coordinated (undiluted) network has no floppy modes (which is certainly the
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case, say, for triangular networks). In the case of CF networks each bond has only

one associated constraint, so ”bonds” and ”constraints” are identical. Recall once

again that every single constraint can be either independent (in which case it

reduces the number of floppy modes of the network by 1), or redundant (so it does

not change the number of floppy modes). Now, assume the Opposite of our

statement. This means that at some (r)0 < (r) i” we have an unstressed network,

but any trial bond would cause stress (be redundant). So any bond would not

change the number of floppy modes, as the only constraint associated with the bond

is redundant. We know that since the network is unstressed, the number of floppy

modes given by Maxwell counting is exact, thus the number of floppy modes per site

f > 0 for (r)0 < (7):”. If we try a constraint at some point and it turns out to be

redundant, it will certainly remain redundant upon trials at any later point (i.e.,

after some other bonds are inserted). Therefore even inserting all of the remaining

bonds would not change the number of floppy modes compared to their number at

(r)0, so it will remain greater than zero even for a fully coordinated network, which

is not true, so we come to a contradiction. Thus the exact limit for stressless

networks (r)0 = (r)? (= 4 in 2D) is established. We would like to emphasize that

the fact that each bond has just one associated constraint is essential for this proof.

See the next subsection for comparison.

Secondly, it is possible to establish a relation between the self-organized

networks and those obtained by usual completely random insertion (to which we for

simplicity refer as ”random” in contrast to ”self-organized” in what follows).

Indeed, assume we are using the same random list of M bonds to build a random

network and a self-organized one, trying to insert bonds as they are listed. For the

random network, all the M bonds will get in; for the self-organized network, some of

them will be, generally speaking, rejected, so that M0 3 M will be inserted. The

bonds rejected in the self-organized network will be redundant in the random one;
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they do not influence the number of floppy modes, the configuration of rigid clusters

(and thus whether or not rigidity percolation occurs) and the redundancy or

independence of all the subsequently inserted bonds. Thus all these characteristics

will be identical for the two networks. The consequenceiis that there is a

correspondence between self-organized and random networks having the same

number of floppy modes; in particular, rigidity percolation occurs at the same

number of floppy modes.

This analysis allows us to make a very important conclusion. Since in random

networks rigidity percolates at a non-zero f and the same has to be true for

self-organized networks (because of the just mentioned correspondence), yet stress

appears exactly at f = 0, we conclude that there exists an intermediate phase,

which is rigid (i.e., the infinite rigid cluster exists), but unstressed (so, evidently,

there is no stress percolation). This is different from the situation with random

insertion, where the rigidity and stress percolation thresholds always coincide (see

Figures 5.1 and 5.2).

It could be possible that stress does not percolate immediately after it is

introduced; we will see from simulation results that this is not the case, so the upper

boundary of the intermediate phase (the stress transition) may be defined as either

the point where stress first appears, or equivalently, the point where it percolates.

As is seen from our consideration, it lies at (r)0 = 4.

As we have mentioned in Chapter 1, the fractions of bonds in the percolating

rigid cluster PC; and the percolating stressed region PO"o can serve as order

parameters. Now, since there is an intermediate phase where rigidity percolates,

while stress does not, these two parameters turn zero at diflerent points, between

which the intermediate phase lies. Besides, since the number of floppy modes is zero

above the stress transition, the whole network is rigid, and thus P50 is identically 1.

These facts are illustrated in Figure 5.2.
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Figure 5.1: The number of floppy modes per degree of freedom for random and self-

organized diluted triangular networks in 2D. The thresholds are shown with various

symbols, as specified in the legend. The intermediate phase in the self-organized case

is shaded. Note that the rigidity transition occurs at the same f in the random and

self-organized cases. The number of floppy modes in the self-organized case is strictly

linear and coincides with the Maxwell counting result all the way up to the stress

transition at (r) = 2.4.

Given the discussion of the correspondence between random and self-organized

networks, it is tempting to suggest that the same relation holds for the rigidity

order parameter Po'o. The subtlety is that the relation is defined in terms of sites

(i.e., same sites are in the percolating cluster in corresponding random and

self-organized networks and same sites are pivot joints on its border), while in 2D

we commonly define the rigidity order parameter in terms of bonds, since bonds

always belong to just one cluster, whereas sites can be shared between the

percolating cluster and other clusters. This is just a matter of definitions, though,
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Figure 5.2: The fractions of bonds in the percolating rigid cluster and percolating

stressed region for random and self-organized diluted triangular networks in 2D. Av-

erages over two realizations on 400 x 400 networks. The intermediate phase in the

self-organized case is shaded.

and in any case, it might be safely assumed that the rigid cluster size critical

exponents are the same for rigidity percolation in random and self-organized

networks. Other critical exponents may be different, though.

It is interesting to note that since f given by Maxwell counting is exact in the

whole unstressed region, then across both the floppy and the intermediate phases f

is a perfect straight line and the rigidity transition does not show up in f.

Results of our simulations of this model are shown in Figures 5.1 and 5.2. The

simulations were done for networks with periodic boundary conditions in both

directions. There are several facts to be inferred (besides confirming all the results

we have obtained so far). We see that stress percolates immediately after it appears

133



at (r) = 4 (this fact was mentioned above). Second, the critical exponent for the

size of the stressed region is quite small (smaller than the one for the rigid cluster).

In random networks, the stressed region exponent is larger than the rigid cluster

exponent, which is obvious, as the stressed percolating region is smaller than the

rigid cluster (the former being a subset of the latter) and the two thresholds

coincide in the random case.

5.1.4 Intermediate phase in 3D bond-bending networks

In the case of 3D bond-bending glass networks there is a slight problem with

implementing our general algorithm of self-organization. In the central-force case we

were starting from an empty lattice to ensure that it had no stress initially. In the

present case, as we avoid sites of coordination lower than 2, the initial dilution can

only go as far as to the point where any further dilution would create a

1-coordinated site. At this limit there are no bonds with both ends being sites of

coordination 3 and higher, so that further dilution is impossible. It is generally not

true that this final network is unstressed. For smaller networks (~ 104 sites and

less), it is possible to pick those that are unstressed; for larger ones such cases are

rare, and it is reasonable to assume that the fraction of constraints that are

redundant is a constant in the thermodynamic limit. This constant seems to be very

low, though (in our simulations, typically about 0.05% of constraints were

redundant). Besides, the number of redundant constraints does not grow when new

bonds are inserted according to our algorithm (up to the stress transition), so this

problem is largely irrelevant.

Unlike the case of CF networks, BB networks have more than one constraint

associated with each bond. When a new bond is added, not only the distance

between the sites it connects is fixed, but the angles between the new bond and

those stemming out of the two sites at either end of that bond are fixed as well.
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Any bond that has at least one redundant constraint associated with it would cause

stress. Some of the stress-causing bonds have only part of the associated constraints

redundant and the rest independent, and such a bond will change the number of

floppy modes. This makes some of our conclusions made for CF networks invalid in

this case.

First, this invalidates the proof of the reachability of the Maxwell counting

limit ((r) = 2.4 in this case) without stress. This is because even when at the upper

reachable limit all the as yet uninserted bonds would cause stress, some of these

bonds may further decrease the number of floppy modes and thus this number is

not necessarily zero at this point.

Second, the nice relation between random and self-organized networks no

longer holds, because out of the redundant bonds by which the two differ, some

(namely, the partially redundant ones) change f, rigidifying the network and

changing the configuration of rigid clusters. We would assume that the equality of

critical exponents B for rigid cluster sizes in random and self-organized cases still

probably holds, but we have not checked this explicitly carefully enough yet.

At the same time, some facts are unchanged. In particular, f given by Maxwell

counting is still exact in the unstressed region. Most importantly, the intermediate

phase still exists.

The results of simulations done for the diluted diamond lattice are given in

Figures 5.3 and 5.4. As in the previous subsection, we use periodic boundary

conditions in all directions. We note in addition to the graphs that, as in the CF

case, stress percolates immediately after it appears. The intermediate phase extends

from (r) : 2.376 to 2.392 (not reaching 2.4 indeed). Again, the stress transition is

sharper than the rigidity transition. Our results are consistent with the second

order transition with the very small critical exponent ,3," z 0.1, but a first order

transition cannot be ruled out.
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Figure 5.3: The number of floppy modes per degree of freedom for random and self-

organized diluted diamond networks in 3D. The thresholds are shown with various

symbols, as specified in the legend. The intermediate phase in the self-organized

case is shaded. The rigidity thresholds are close in both cases, which is probably

coincidental. The rigidity transitions definitely occur at different f, unlike the 2D

CF case in Figure 5.1. The stress transition in the self-organized case is below the

Maxwell counting threshold (r) = 2.4.

Another feature of the plot in Figure 5.4 is that the rigidity order parameter is

not exactly unity in the stressed phase (which is expected, as some floppy modes

remain in the stressed phase) and the second transition shows up as a kink in the

rigidity order parameter.

In conclusion to this section, we would like to mention that it is possible within

our approach to establish a hierarchy of stress-causing bonds (by the number of

associated redundant constraints) and when stress becomes inevitable, first put

those having one redundant constraint, then those having two, and so on. Exactly
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Figure 5.4: The fractions of sites in the percolating rigid cluster and in the percolating

stressed region for self-organized diluted diamond networks in 3D. The intermediate

phase is shaded. Circles are averages over 4 networks with 64000 sites, triangles are

averages over 5 networks with 125000 sites. The dashed lines are the power law fit

below the stress transition and for the guidance of the eye above. Note the break in

the slope at the stress transition.

at (r) = 2.4 only those bonds having no associated independent constraints will

remain uninserted. It is unlikely, though, that there is good correlation between the

number of redundant constraints and the actual increase in stress energy, as the

distribution of stresses caused by different bonds is quite wide, so this complication

seems unreasonable.
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5.2 Self-organization in connectivity percolation

5.2.1 The model

It is interesting and useful to see if similar phenomena are possible in the more

familiar case of connectivity percolation, especially as connectivity percolation is

easier to study and understand.

The essence of our algorithm of building self-organized networks in the rigidity

case is rejecting stress—causing bonds (or those having redundant constraints). As

we have seen, in the CF case, when each bond has just one associated constraint, we

may equivalently formulate this as rejecting redundant or irrelevant bonds. In bond

connectivity percolation we also can build the networks by inserting bonds one by

one; most importantly, there is a clear analog to redundant bonds. The relevant

property now is connectivity, by which we mean the presence or absence of paths

connecting any two sites of the network. Redundant bonds are those which connect

sites already connected, that is would close a loop in the network. Thus the analog

of self-organization is building loopless networks.

There are other equivalent ways to draw this parallel. The first is based on the

fact that connectivity percolation can be considered as rigidity percolation with the

sites having one degree of freedom regardless of the lattice dimensionality. Each site

thus has one coordinate and each bond is a constraint (i.e., a relation between the

coordinates of the sites it connects). Then the concepts of rigid clusters and clusters

in the usual connectivity sense coincide. The number of floppy modes F is now the

number of clusters. A redundant bond in the rigidity sense is the one that does not

change F, it is also stress-causing, as it would introduce a relation between

coordinates that cannot generally be satisfied. On the other hand, viewed from the

connectivity perspective, such a bond connects the sites belonging to the same

cluster and closing a loop, and our model is again recovered. Yet another way is to
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recall that rigidity percolation with angular constraints in 2D (or with angular and

dihedral constraints in 3D) is equivalent to connectivity percolation. Then

stresslessness is equivalent to looplessness.

Connectivity percolation and related phenomena were studied so extensively in

all imaginable flavors that it would be strange if this and similar models were not

studied before. Indeed exactly this model was proposed as far back as 1979 [73] and

rediscovered in 1996 [74]. Besides, there were extensive studies of loopless graphs

(trees) in relation to various phenomena ranging from resistance of a network

between two point contacts (considered by Kirchhoff in mid nineteenth century [75])

to river networks [76] to certain optimization problems [77, 78]. In many of these

and other works the algorithm for building trees was equivalent to ours. Still, we

consider some new aspects of this model and extend it somewhat, as we will see.

Given that connectivity percolation can be considered as rigidity percolation

with one degree of freedom per site, we can apply the usual two-dimensional pebble

game with the following modifications:

1) there is one pebble per site instead of two;

2) for a trial bond to be independent, it must be possible to free two pebbles at

its ends (one pebble can always be freed).

As before, the number of free pebbles equals the number of fl0ppy modes (which for

connectivity is the number of clusters). We emphasize that this algorithm is

absolutely independent of the actual dimensionality of the network.

Of course, the essence of our self-organization algorithm is still the rejection of

bonds that are not independent. Just as in the rigidity case, once avoidance of

“stress” (loops) becomes impossible, we start inserting bonds at random. Thus we

can go beyond the limit where the networks can no longer be loopless. This is where

our model extends the previous considerations.
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5.2.2 The intermediate phase

In this section we carry out the same kind of analysis as was done for rigidity

percolation.

First of all we describe Maxwell counting, as this, although simple, is rarely

discussed in relation to connectivity percolation. For a network with N sites the

number of degrees of freedom is now simply N, the number of constraints is, as

before, N(r) /2, so the number of floppy modes per degree of freedom (or per site) is

f = 1 — (r)/2 and this becomes zero at (r)C = 2 — the same limit as given by the

mean-field theory of percolation.

Since, as we have seen, connectivity percolation is nothing but a kind of rigidity

percolation on a CF network with 1 degree of freedom per site, all of the general

analysis for CF networks in the previous section is valid. Specifically, Maxwell

counting is exact in the ”unstressed” (this now means loopless) phases; the limit

(r)c = 2 is reachable without creating loops; the relation between random and

self-organized networks also holds. We note that the network in the upper limit

reachable without stress is a spanning tree, i.e., it is a single tree that spans all sites

in the network.

The order parameters are defined analogously to the rigidity case. The first

parameter is (by analogy) the size of the percolating (connectivity) cluster. The

second order parameter is, logically, the fraction of bonds in the percolating region

consisting of loops (the analog of the stressed region in rigidity percolation), which

essentially coincides with the percolation backbone.

The results of simulations for the square lattice are shown in Figure 5.5.

Existence of the intermediate phase is confirmed in the range from (r)C = 1.805 to 2

for the square net. The lower transition coincides with the result for the percolation

transition obtained in Ref. [74].
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Figure 5.5: The fractions of bonds in the percolating rigid cluster (blue dots) and

in the percolating “stressed” region (green dots) in the connectivity self-organization

model for the diluted square lattice. Ten realizations on the 400 x 400 lattice without

averaging. The intermediate phase is shaded.

5.3 Conductivity and elasticity

In this section we will look at physical manifestations of self-organization by

studying the conducting properties of self-organized networks in the connectivity

case and the elastic properties in the rigidity case.

5.3.1 Conductivity

A diluted network can be made into a random resistor network, if present

bonds are replaced with resistors all having the same resistance. Then one can
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apply a potential difference across the network and find the current thus measuring

the electrical conductance of the network. One can also introduce the effective

conductivity as conductivity of a uniform material of the same size and shape as the

network having the same conductance. I

The conductivity prOperties of randomly diluted resistor networks have been

studied extensively. Below the percolation threshold, the conductivity is zero, as the

opposite sides are not connected; as the fraction of present bonds p grows and the

threshold is crossed, the conductivity starts growing from zero. A mean-field (or

effective medium) theory exists for conductivity [69], which predicts that this

growth occurs linearly as a function of p. In reality, the dependence is nonlinear,

with the critical exponent depending on the dimensionality (e.g., 2 1.30 in 2D [4]),

but independent of the lattice type (e.g., square, triangular, etc. in 2D).

We now consider the conductivity in our model of self-organized networks.

First of all, we can implement difl'erent types of boundary conditions. One

possibility is periodic boundary conditions, when we build a network on a torus

according to our self-organization algorithm and then require that the potential

changes by a constant when going a full circle around the circumference of the torus

in one direction and does not change in the other direction(s). Since there are no

loops in the network in the intermediate phase, the conductance of such a network

(a finite or an infinite one) is exactly zero, despite the presence of an infinite cluster.

That is, there is an infinite cluster, but no conducting backbone, which is a set of

bonds that carry current. Other possible variants of boundary conditions are the

busbar geometry, when in one direction there are open boundary conditions and

there are two busbars at either end with a voltage applied to them (Figure 5.6). Yet

another possibility is the source-sink geometry, when we add two sites, a source next

to one open boundary and a sink next to the other open boundary and connect these

two sites to all sites at the respective boundary (Figure 5.7). In the latter case, the

142



conducting backbone in the (loopless) intermediate phase is a single filament; in the

former case, it branches near the sides; in either case, the conductivity is not exactly

zero for finite samples, but still goes to zero in the thermodynamic limit. We find

the backbones using the pebble game analog of the Moukarzel’s algorithm [79].

busbar

.   

 
I .' L

I.“

u. ' I

i
‘L .. .. In:

busbar

Figure 5.6: The conducting backbone (black) in the busbar geometry (open bound-

aries with busbars) in the intermediate phase. Bonds in the percolating cluster, but

not in the backbone are red. Bonds not in the percolating cluster are green.

In the “stressed” phase (i.e., above the spanning tree limit), the conductivity is

no more zero. Of course, it cannot be found with the pebble game and has to be

studied numerically. We do this by solving the system of Kirchhoff equations

directly using the conjugate gradient method. The surprising result (Figure 5.8) is

that the conductivity dependence seems to be exactly linear, just as in the

mean-field theory. This linearity also holds in 3D (Figure 5.9). Note that the

spanning tree threshold corresponds to (r) = 2, which is exactly the mean-field

percolation threshold.
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Figure 5.7: The conducting backbone in the source-sink geometry in the intermediate

phase. Bonds between the source (sink) and the respective edge of the network are

treated on equal footing with regular lattice bonds and can be present or absent.

The backbone (black) is a single path between the source and the sink. Bonds in the

percolating cluster, but not in the backbone, are red. Bonds not in the percolating

cluster are green.
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Figure 5.8: The conductivity for the random (green circles) and self-organized (red

circles) diluted square networks. Averages over 25 realizations on the 200 x 200 lattice.

The mean field result (the black straight line reaching 1 at (r) : 4 is also shown.

The threshold for the self-organized model is always at (r) = 2. The threshold for

the random model is also at (r) = 2 in this case, which is a peculiarity of the square
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Figure 5.9: The conductivity for the random (green circles) and self-organized (red

circles) diluted cubic networks. Averages over 25 realizations on the 30 x 30 x 30

lattice. The mean field result (the black straight line reaching 1 at (r) = 6 is also

shown. The thresholds now do not coincide (unlike in Figure 5.8 for the square

lattice).

5.3.2 Mean-field behavior of conductivity

We can prove the above-mentioned linearity of conductivity, not for our

self-organization model, but for a closely related one. In our self-organized model,

we add bonds at random to a spanning tree. This spanning tree is constructed by

using a random list of bonds and rejecting those that close loops. This is nothing

but the Kruskal algorithm for building minimal spanning trees (MST) [80], if the list

of bonds is ordered according to their cost. Thus our spanning tree belongs to the

ensemble of MST on the network. This ensemble differs from the ensemble of
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uniform spanning trees (UST) [80], which are trees chosen at random among all

possible spanning trees. In other words, our construction of trees is biased, and

indeed, MST even have the fractal dimensionality of their branches different from

that of UST. '

Suppose now that we start from a UST instead of a MST and start adding

bonds choosing their places at random among those where they were missing, just

like in our self-organization model. We are now going to prove the linearity of

conductivity for this model, which only differs from the original self-organization

model in that the starting spanning tree is chosen without a bias.

We will use a result due to Kirchhoff [75, 81] that expresses the resistance

between two points of a resistor network in terms of sums over trees built on the

network. Namely, for the resistance between the source s and the sink 3’, we

consider two sets of trees: T is the set of all possible spanning trees on the original

lattice and T’ is the set of all spanning trees on the same lattice, to which a bond

between .9 and 3’ is added (we assume that there was no bond directly connecting s

and s’), but only those of such trees that include the added bond. Then the sums D

and D’ are introduced:

D(i$ij}) = :Hrru, (5.1)

tET E(t)

D'({$u}) = 2H In" (5-2)

tET’ E(t)

where x,,- is the conductance of the bond between i and j, the sums are over trees

belonging to sets T and T’, respectively, and the products are over bonds belonging

to each tree. Then the resistance is

 as = ( 6 Drain)/ Dian). (5.3)
0x33r
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In our particular case, when all resistances are equal to unity, this reduces to a

tree-counting procedure. First, find the number of spanning trees in set T (we

denote this number NT). Second, find the number of spanning trees in set T’

(denote N ,), Note that finding NT: is equivalent to counting on the original

network all graphs consisting of two trees, such that the source is in one tree and

the sink in the other. Following Bollobas [81], we will refer to such graphs as

thickets. Then the conductance S is the ratio of these two numbers:

[VT

sz—a
A77"

an

For our proof that the conductivity dependence is linear, it is convenient to

visualize the following diagram (Figure 5.10). First, imagine we have a set of all

spanning trees that can be built on the full lattice. This set is denoted schematically

as the left column of dots in Figure 5.10. Now consider a set of all networks that

can be obtained from these trees by adding exactly B bonds (the middle column of

dots in Figure 5.10). From each tree we can obtain

N. = (3°)B

different networks, where BO is the total number of bonds missing in the tree

compared to the full lattice (note that Bo is the same for all trees, as the number of

bonds in any spanning tree on a network of N sites is N — 1). This establishes

connections between the set of trees and the set of networks, so that every tree is

connected to Nn networks that can be obtained from it. These connections are

shown schematically in Fig. 3 as the links between the dots in the left column and

the dots in the middle column. The total number of connections is

szn, 60
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where T; is the total number of possible spanning trees on the full lattice.

Conversely, these same connections specify which trees can be built on each network

(i.e., are subgraphs of the network).

trees networks thickets

N

2
Figure 5.10: A schematic diagram showing relations between trees and networks and

between thickets and networks. The left column of dots denotes the set of all possible

trees on the full lattice; the right column is the set of all thickets; the middle column is

the set of all spanning networks with a certain number of bonds. The connections in

the left part (between trees and networks) Show what networks can be built by adding

bonds to a tree, or, conversely, what trees are subgraphs of a given network. The

connections in the right part show similar relations between thickets and networks.

The ratio of the numbers of connections in the left part and in the right part is

proportional to the conductivity of a network with a certain number of bonds in the

thermodynamic limit, as discussed in the text.
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Similarly, we can consider the set of all possible thickets on the full lattice

(denoted by the right column of dots). Every thicket has N — 2 bonds, so there are

Bo + 1 empty bonds. If we add a set of B + 1 bonds to a thicket, we will almost

certainly obtain one of the networks under consideration (there is a possibility that

none of these bonds connect the two trees of the thicket together, but this is

149



”
D
U
N
N
“



negligibly rare in the thermodynamic limit). Then the number of networks that can

be obtained from each thicket by bond insertion is

Bo + I

N’ = . ' i'.,. (3+1) (on

and the total number of connections is

C’ : [VLTL
(5.8)

where T} is the total number of possible thickets on the full lattice. These

connections are also shown in the diagram. Again, they also specify which thickets

can be built on each network.

A plausible assumption that we make is that conductance is self-averaging, i.e.

in the thermodynamic limit the conductance is the same for all but a negligible

fraction of realizations. Then for almost every network the ratio of the number of

trees connected to it to the number of thickets connected to it is the same (as this

ratio equals the conductivity, according to Eq. (5.4)). The anomalous networks, for

which this is not the case, have a negligible probability of occuring. The probability

to obtain a particular network is proportional to the number of connections between

this network and various trees; thus anomalous networks have a negligible amount

of connections with the trees; this is also true for their connections with the

thickets, as the ratio of the number of connections with the trees to that with the

thickets for every network is its conductance, and the conductivity is expected to be

0(1) for all networks, including anomalous ones. Then all connections of the

anomalous networks can be neglected in the total count of connections and the ratio

of the total number of connections between the left and the middle columns to that

between the right and the middle columns is again the conductance. On the other
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hand, this ratio is

r’Van _ Tf(B +1)

S=CC’= , ,._ ,
/ A’r’ITf Tf(BO +1)

:x B for B >> 1, (5.9)

as Bo, TI and T} do not depend on B, and the proof is complete.

Some comments are in order. First, we have not made any assumptions about

the underlying lattice, so that the result is independent of the lattice type and

dimensionality, although there may be problems with the assumptions that we made

in pathological cases, such as RBNs (Chapter 2), when connections between sites

infinitely far apart are possible. Second, we had in mind a situation with the source

and the sink at the opposite sides of the lattice, but have not used this fact

anywhere. We did make an assumption that conductance is realization-independent

and this is only true when the source and the sink are infinitely far apart.

While the above proof is interesting, it gives no significant insight as to why the

conductivity dependence is still linear for our self-organization model, even though

MST are different from UST. On the other hand, the analogous model for shortest

path trees [80] seems to show tiny deviations from linearity that probably are not

entirely due to finite-size effects. Clearly, deeper insights into the problem are

needed.

We should mention that it is easy to produce spanning networks, for which

their conductivity dependence is definitely nonlinear. Trivial examples can be

obtained by adding bonds to anisotropic trees, in which most branches are directed,

say, perpendicular to the applied potential difference. More interesting is the

following isotropic case. Start from the full lattice and start picking bonds at

random, but removing them only if this removal does not separate a piece of the

network from the rest. In this way, we obtain Spanning networks, with no finite

clusters, just as in our original model. Obviously, this dilution procedure can be
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continued until a spanning tree is obtained. Despite certain similarity with our

previous models, the conductivity dependence now is not mean-field-like. Indeed, it

can be shown that the conductivity becomes zero before reaching the spanning tree

limit, i.e., at a higher bond concentration (Figure 5.11). Thus, another interesting

example of an intermediate phase is formed: in a certain range of bond

concentrations, the infinite cluster exists, but its structure is such that the

conductance is very low and vanishes in the thermodynamic limit.
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Figure 5.11: Conductivity for the restricted dilution model described in the text.

Average over 25 realizations on the 100 x 100 square lattice. There is an “intermediate

phase” of a different type, with the spanning cluster, but zero conductivity. The

straight line is the mean-field result, from which there is obvious deviation.

To see this, suppose we create a random list of bonds intended for removal. In

the case of random bond dilution, all of these bonds are removed in the order given

by the list. In the restricted dilution case, some of these bonds will be rejected and

not removed. Note that rejected bonds do not belong to loops and so their removal
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would not change the configuration of loops and also would not change conductivity

(at least not in the case of PBC). Then, there is a correspondence between

sequences of networks obtained by random dilution and those obtained by restricted

dilution using the same list of bonds whose removal is attempted. If random

dilution procedure proceeds below the percolation threshold, the conductivity of

obtained networks becomes zero, so the conductivity of the corresponding networks

obtained by restricted dilution is also zero, even though by construction these

networks still span all sites.

An analogous model can be considered for rigidity: bonds are removed so that

the percolating cluster does not break up. Similarly, there is an intermediate phase,

which, unlike the intermediate phase in our self-organization model, has stress, but

stress still does not percolate while rigidity does.

5.3.3 Superconducting networks

We have seen that in the thermodynamic limit the conductivity 0 is zero in

both the disconnected and intermediate phases. These results make us wonder if the

lower transition shows up in any physical quantities for infinite networks. One

possibility is to consider superconductor networks instead of resistor networks. In

this model all the existing bonds are replaced with conductors of zero resistance

(”superconductors”), while all the absent bonds are resistors with equal finite

resistance.

It turns out that the same kind of correspondence between random and

self-organized networks with the same f we had for clusters is valid for the

conductance in this case. Indeed, these networks differ by redundant bonds that

connect sites already connected. All the connected sites have zero potential

difference (as they are connected with superconductors), so putting redundant

bonds does not change the distribution of the potential and thus does not influence
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the conductance.

It is known [4] that in the random case the resistivity is zero above the

threshold and non-zero below it, with the critical exponent the same as for the

conductivity of resistor networks (z 1.30). Thus in the self—organized case the

resistivity will turn zero in the point related to the percolation threshold of random

networks by the above relation, i.e., at the lower transition (Figure 5.12). The

critical exponent will be the same as in the random case (a: 1.30), but this is now

different from the value for a of resistor networks (z 1 or perhaps exactly 1).
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Figure 5.12: Conductivity for the superconductor (blue dots) and resistor (green

dots) networks in the self-organized model on the square lattice. The conductivity of

resistor networks is not exactly zero in the intermediate phase, since open boundaries

with the busbars were used, unlike in Figure 5.8, where periodic boundary conditions

were used and the conductivity was exactly zero in the intermediate phase. This

non-zero conductivity in the intermediate phase is a finite-size eflect. All results are

averages over ten square 100 x 100 networks.
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5.3.4 Elasticity

In rigidity, the quantities analogous to conductivity are the elastic moduli.

Again, just as in the connectivity case, different boundary conditions are

possible. In the case of periodic boundary conditions, again the elastic moduli are

exactly zero in the intermediate phase, regardless of the size of the supercell and

despite the existence of the percolating rigid cluster. Indeed, periodic boundary

conditions mean that positions of images of same site in different supercells are fixed

with respect to each other. The network is built stressless with these additional

constraints taken into account. The exact specification of these constraints beyond

stating what sites are involved is determined by the particular size and shape of the

supercell, but is never taken into account (just as particular constraint lengths never

matter in determination of stressed regions). So straining the network by changing

this size and shape leaves it stressless. The important thing here is that straining

does not add any new constraints. We confirmed this result numerically. Thus it

can be said that in the intermediate phase the network is just marginally rigid.

For other boundary conditions, similarly to the connectivity case, the elastic

moduli are non-zero for finite samples, but become zero in the thermodynamic limit.

We will have non-zero stress in the intermediate phase when an external strain is

applied, and some of the bonds will be stressed. These bonds are said to belong to

the applied stress backbone [82] (which we refer to as simply backbone in what

follows). It can be found easily by the pebble game using a method essentially

equivalent to that proposed by Moukarzel and Duxbury [82], which consists in

putting an additional bond across the network emulating the external strain, and

finding those bonds in which stress is induced. A typical result is shown in Figure

5.13, in which it is seen that the backbone has filamentary structure. We note that

stress in this backbone was created by putting just one extra bond and thus it is

enough to take any one bond out of the backbone for it to be destroyed, so it is
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extremely fragile.

In the stressed phase, the elastic moduli are non-zero and have to be found

numerically. Figure 5.14 shows the dependence of the uniaxial strain modulus on on

the mean coordination. The triangular lattice was first] distorted by random

displacement of atoms. For displacements along each axis uniform distribution on

an interval (—0.1;0.1 ) in units of the lattice constant was chosen, but the results are

only slightly sensitive to the width of the distribution. Equilibrium lengths of

springs were chosen equal to the distance between the atoms they connect, so the

initial network is unstressed. Thus subtraction of two large energies when finding

elastic constants is avoided. The results may differ, of course, compared to the case

when the constraint equilibrium lengths are just assigned at random, but both

situations can be regarded as legitimate model cases. Pre—determining the applied

stress backbone speeds up the relaxation greatly, as was first pointed out in Ref.

[82]. We note that the elastic constant dependence is definitely not linear in our

model, unlike the dependence of the conductivity in the analogous connectivity

model.

5.4 Experimental evidence

It is possible that the intermediate phase described in this chapter has been

observed experimentally. Boolchand et al. have carefully studied a number of

systems by Raman scattering and modulated differential scanning calorimetry

(MDSC), monitoring various quantities as the chemical composition was varied.

Their experiments are reviewed in detail in [83]. In particular, in SixSe1_x glasses,

they observed two kinks in the composition dependence of the Raman mode

corresponding to the symmetric stretch of Si(Se1/2)4 tetrahedra, at (r) = 2.40 and

(r) = 2.54 [84] [Figure 5.15,(a)]. Also, in their temperature-modulated difl'erential
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Figure 5.13: An elastic self-organized network in the intermediate phase with the

applied stress backbone (black) shown. Bonds in the percolating cluster, but not in

the backbone, are red. Bonds not in the percolating cluster are green.
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Figure 5.14: The elastic modulus Cu for the random and self-organized diluted square

networks. Averages over 10 realizations on the 100 x 100 lattice. The intermediate

phase is shaded. The inset shows the blowup of the critical region. Deviations from

the mean-field line (black) are clearly seen in both the random and the self-organized

cases.
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scanning calorimetry measurements in the same system, they observed a broad

minimum of the non-reversing heat flow measured across the glass transition, and

the minimum is bounded by the same values of (r) [84] [Figure 5.15,(b), filled

circles]. Boolchand et al. interpret this as an indication of the intermediate phase,

so that the rigidity transition occurs at 2.40 and the stress transition at 2.54. Note

that this range is wider than the theoretical intermediate phase discussed here, but

it is probable that the theoretical model is just too simple to get all the details

correct. Wide minima in the non-reversing heat flow were also observed in other

systems (Ge-As-Se [85], Ge—Se [26, 86], As-Se [87]), but apparently no sharp

thresholds. On the other hand, in the Ge0,2530,75_y1y system [88], the minimum is

very narrow [Figure 5.15,(b), open circles] and it is concluded that the intermediate

phase is absent in this system; the threshold is shifted down from 2.4 in exact

accordance to Eq. (1.9). Returning to Raman scattering, in some cases the results

seem to depend qualitatively on the input laser power: in the Ge-Se system, two

transitions are seen at low power [86] and one at high power [26].

.We should mention that there is an alternative model for the intermediate

phase seen in Boolchand’s experiments, due to Micoulaut and Phillips [89]. In their

model, in the intermediate phase the network has stress, but all stressed regions are

very small and do not percolate. This is not unlike the intermediate phase in our

restricted dilution model that we briefly described in section 5.3.2.

Finally, J .C. Phillips [90] advocates the point of view that high-temperature

superconductors represent an intermediate phase between two transitions (as a

function of dopant concentration) to non-superconducting phases, with filamentary

conducting backbones, just like in our model.
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Figure 5.15: (a) Frequencies of two Raman modes corresponding to the motion of

corner—sharing tetrahedra in SiISe1_I shown as a function of mean coordination; (b)

Non-reversing heat variation in SiISe1_I (red filled circles) and Ge0,2580.75_111 (green

open circles) glasses. Both panels are adapted from Ref. [83].
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5.5 Conclusion

In this chapter, we have considered a model of self-organization of networks

that exhibits two separate phase transitions, a rigidity [and a stress transition, and a

marginally rigid and stressless intermediate phase between them. We have also

introduced an analogous model for connectivity percolation. The behavior of

conductivity in the latter is, surprisingly, exactly or nearly exactly mean-field, and

even though this behavior was proved for a closely related model, the deep

underlying reasons for it still remain a mystery. Certainly, some new insights are

desirable.

Other than that, main efforts should be directed at trying to get better

understanding of how the theoretical results obtained here are related to experiment.
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Chapter 6: Conclusion and outlook

In this dissertation we have studied rigidity of various systems using a variety

of methods. The networks ranged from totally random in Chapter 4 to chemically

ordered in a simple way in Chapters 2 and 3 to self-organized in a non-trivial

fashion in Chapter 5. We have done analytical calculations for the random bond

model in Chapter 2 and numerical simulations in Chapters 4 and 5; we have proved

some non-trivial results: the first-order transition for chemically ordered networks in

Chapter 3 and mean-field behavior of conductivity in Chapter 5. We have seen a

variety of different behaviors: first- and second—order transitions, as well as two

separate transitions and the intermediate phase between them in self-organized

systems.

Usual connectivity percolation was widely studied by many groups. A simple

problem has become a paradigm of phase transitions and critical phenomena.

Rigidity percolation is in a sense even more interesting and certainly more diverse.

As an example, Table 6.1 shows the order of the rigidity transition for different

randomly diluted (i.e., uncorrelated) networks. Note that the connectivity

percolation transition is second order in all these cases.

2

2D 2D 3D

2nd 1 st 2nd 1 st 1 st

2nd 2nd 2nd 2nd lst

 

Table 6.1: The summary of rigidity transitions in networks of various topologies in

both two and three dimensions. The top line shows the dimensionality of the space

in which the network is embedded. The second line specifies the topology of the

network. The table shows the order of each transition to our best knowledge. The

entries discussed in this dissertation are in red.
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Throughout this work we mentioned several outstanding issues of rigidity

theory. Perhaps the most important of those already mentioned is constructing a

fast exact algorithm for general 3D networks. Also, we have emphasized qualitative

features, rather than specific numbers; as a result, many of the relevant critical

exponents are not determined yet, in particular, critical behavior of elastic constants

is still not well-understood.

Most importantly, perhaps, rigidity theory in its current form, being a purely

mechanical theory from the physical point of view, is only applicable to systems at

zero temperature. At T 71$ 0, entropy also plays a role, not just energy, and as a

result, networks that are identified as floppy have non-zero elastic constants

(vanishing in the limit T -—> 0) due to the effects of entrOpic elasticity, as shown by

Plischke et al. [91]. This effect smears the rigidity transition, which, together with

the similar smearing effect due to presence of neglected weaker interactions, makes

the rigidity transition hard to observe in practice. Certainly, any progress in

studying systems at non-zero temperature, as well as taking the weaker forces into

account within the framework of rigidity theory, would be very’welcome. Work in

this direction is currently carried out by Huerta and Naumis [92] and by Jacobs [93].

In short, rigidity is still an exciting field. Much has been done, but much still

has to be done.

163



Bibliography

[1] P.A.lV’I. Dirac, Proc. Roy. Soc. A 123, 714 (1929).

[2] RB. Laughlin, Talk at the APS Centennial Meeting, audio and transparencies

available at http://www.apscenttalks.org/ (1999).

[3] See, e.g., K. Ohno, K. Esfarjani, and Y. Kawazoe, Computational Materials

Science, from ab initio to Monte Carlo methods (Springer-Verlag, Berlin, 1998).

[4] D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed.

(Taylor & Francis, London, 1992).

[5] D.J. Jacobs and M.F. Thorpe, Phys. Rev. Lett. 75, 4051 (1995).

[6] M.F. Thorpe, D.J. Jacobs, N.V. Chubynsky, and A.J. Rader, in Rigidity

Theory and Applications, edited by M.F. Thorpe and RM. Duxbury (Kluwer

Academic/Plenum Publishers, New York, 1999), p. 239.

[7] J.C. Maxwell, Philos. Mag. 27, 294 (1864).

[8] D.J. Jacobs and B. Hendrickson, J. Comp. Phys. 137, 346 (1997).

[9] G. Laman, J. Engrg. Math. 4, 331 (1970).

[10] D.J. Jacobs and M.F. Thorpe, Phys. Rev. E 53, 3682 (1996).

[11] CM. Fortuin and PW. Kasteleyn, Physica 57, 536 (1972).

[12] RM. Duxbury, D.J. Jacobs, M.F. Thorpe, and C. Moukarzel, Phys. Rev. E 59,

2084 (1999).

[13] T.-S. Tay and W. Whiteley, Structural T0pology 9, 31 (1984); W. Whiteley, in

Rigidity Theory and Applications, edited by M.F. Thorpe and RM. Duxbury

(Kluwer Academic/Plenum Publishers, New York, 1999), p. 21.

[14] D.J. Jacobs, J. Phys. A: Math. Gen. 31, 6653 (1998).

[15] D.J. Jacobs, L.A. Kuhn, and M.F. Thorpe, in Rigidity Theory and

Applications, edited by M.F. Thorpe and RM. Duxbury (Kluwer

Academic/Plenum Publishers, New York, 1999), p. 357.

[16] D.J. Jacobs, private communication.

[17] W.H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932).

[18] AC. Wright, in Amorphous Insulators and Semiconductors, edited by M.F.

Thorpe and M.I. Mitkova (Kluwer Academic, Dordrecht, 1997), p.83.

[19] M.F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983).

[20] P. Boolchand and M.F. Thorpe, Phys. Rev. B 50, 10366 (1994).

164



[21] F. Wooten, K. Winer, and D. Weaire, Phys. Rev. Lett. 54, 1392 (1985).

[22] BR. Djordjevié, M.F. Thorpe, and F. Wooten, Phys. Rev. B 52, 5685 ( 1995).

[23] W. Whiteley, Structural Topology l, 46 (1979).

[24] c. Moukarzel, J. Phys. A: Math. Gen. 29,8079 (1996).

[25] J.C. Phillips, J. Non-Cryst. Solids 34, 153 (1979).

[26] X. Feng, W.J. Bresser, and P. Boolchand, Phys. Rev. Lett. 78, 4422 (1997).

[27] R. Bdhmer and CA. Angell, Phys. Rev. B 45, 10091 (1992).

[28] U. Senapati and AK. Varshneya, J. Non-Cryst. Solids 185, 289 (1995).

[29] P. Boolchand, X. Feng, D. Selvanathan, and W.J. Bresser, in Rigidity Theory

and Applications, edited by M.F. Thorpe and RM. Duxbury (Kluwer

Academic/Plenum Publishers, New York, 1999), p. 279.

[30] M. Tatsumisago, B.L. Halfpap, J .L. Green, S.M. Lindsay, and CA. Angell,

Phys. Rev. Lett. 64, 1549 (1990).

[31] D.J. Jacobs, A.J. Rader, L.A. Kuhn, and M.F. Thorpe, Proteins 44, 150 (2001).

[32] CM. Dobson, A. Sali, and M. Karplus, Angew. Chem. Int. Edit. 37, 868 (1998).

[33] A.J. Rader, B.M. HeSpenheide, L.A. Kuhn, and M.F. Thorpe, PNAS 99, 3540

(2002)

[34] G. Biroli and M. Mézard, Phys. Rev. Lett. 88, 025501 (2002).

[35] HA. Bethe, Proc. Roy. Soc. A 150, 552 (1935).

[36] RE. Peierls, Proc. Cambridge Philos. Soc. 32, 471 (1936).

[37] M. Kurata, R. Kikuchi, and T. Watari, J. Chem. Phys. 21, 434 (1953).

[38] ME. Fisher and J.W. Essam, J. Math. Phys. 2, 609 (1961).

[39] F. Peruggi, F. Diliberto, G. Monroy, J. Phys. A: Math. Gen. 16, 811 (1983).

[40] F. Wagner, D. Grensing, and J. Heide, J. Phys. A: Math. Gen. 33, 929 (2000).

[41] M.F. Thorpe, D. Weaire, and R. Alben, Phys. Rev. B 7, 3777 (1973).

[42] M. Mezard and G. Parisi, J. Stat. Phys. 111, 1 (2003).

[43] R. Bruinsma, Phys. Rev. B 30, 289 (1984).

[44] D. Dhar, P. Shukla, and JP. Sethna, J. Phys. A: Math. Gen. 30, 5259 (1997).

165



[45] R. Dobrin, J.H. Meinke, and PM. Duxbury, J. Phys. A: Math. Gen. 35, L247

(2002).

[46] M.F. Thorpe, in Excitations in Disordered Systems, edited by M.F. Thorpe

(Plenum Publishers, New York, 1982), p. 85.

[47] C. Moukarzel, RM. Duxbury, and PL. Leath, Phys. Rev. Lett. 78, 1480 (1997).

[48] C. Moukarzel, P.M. Duxbury, and PL. Leath, Phys. Rev. E 55, 5800 (1997).

[49] M. Chubynsky and M.F. Thorpe, in Physics and Applications of Disordered

Materials, edited by M. Popescu (INOE, Bucharest, Romania, 2002), p. 229.

[50] H. He, Ph.D. dissertation, Michigan State University (1985).

[51] W. Whiteley, private communication.

[52] W.H. Press, S.A. Teukolsky, V.T. Vetterling, and BB Flannery, Numerical

Recipes in FORTRAN, 2nd ed. (Cambridge University Press, New York, 1992).

[53] CH. Golub and CF. Van Loan, Matrix Computations (Johns Hopkins

University Press, Baltimore, MD, 1983).

[54] AD. Dinsmore and DA. Weitz, J. Phys.: Cond. Mat. 14, 7581 (2002).

[55] ER. Weeks and DA. Weitz, Chem. Phys. 284, 361 (2002).

[56] V. Prasad, V. Trappe, A.D. Dinsmore, P.N. Segre, L. Cipelletti, and DA.

Weitz, Faraday Discuss. 123, 1 (2003).

[57] AD. Dinsmore, E.R. Weeks, V. Prasad, A.C. Levitt, and DA. Weitz, Applied

Optics 40, 4152 (2001).

[58] RN. Pusey, A.D. Pirie, and W.C.K. Poon, Physica A 201, 322 (1993).

[59] J.C. Conrad, private communication.

[60] http://www.deas.harvard.edu/projects/weitzlab/

[61] S. Feng, M.F. Thorpe, and E. Garboczi, Phys. Rev. B 31, 276 (1985).

[62] N. Mousseau, G.T. Barkema, and SM. Nakhmanson, Phil Mag. B 82, 171

(2002); R.L.C. Vink, G.T. Barkema, M.A. Stijnman, and RH. Bisseling, Phys.

Rev. B 64, 245214 (2001).

[63] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985); L.J. Lewis, A. De

Vita, and R. Car, Phys. Rev. B 57, 1594 (1998).

[64] S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).

166



[65] P. Vashishta, R.K. Kalia, A. Nakano, and I. Ebbsjii, in Amorphous Insulators

and Semiconductors, edited by M.F. Thorpe and MI. Mitkova (Kluwer

Academic, Dordrecht, 1997), p. 151.

[66] N. Mousseau and GT. Barkema, Phys. Rev. E 57, 2419 (1998).

[67] AF. Voter, Phys. Rev. Lett. 78, 3908 (1997); MR. Sorensen and AF. Voter, J.

Chem. Phys. 112, 9599 (2000).

[68] G. Henkelman and H. Jonsson, J. Chem. Phys. 115, 9657 (2001).

[69] S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

[70] M.F. Thorpe, D.J. Jacobs, M.V. Chubynsky, and J.C. Phillips, J. Non-Cryst.

Solids 266-269, 859 (2000).

[71] M.F. Thorpe and M.V. Chubynsky, in Properties and Applications of

Amorphous Materials, edited by M.F. Thorpe and L. Tichy (Kluwer Academic,

Dordrecht, Netherlands, 2001), p. 61.

[72] M.F. Thorpe and M.V. Chubynsky, in Phase Transitions and Self-Organization

in Electronic and Molecular Networks, edited by J .C. Phillips and M.F. Thorpe

(Kluwer Academic/Plenum Publishers, New York, 2001), p. 43.

[73] JP. Straley, Phys. Rev. B 19, 4845 (1979).

[74] SS. Manna and B. Subramanian, Phys. Rev. Lett. 76, 3460 (1996).

[75] G. Kirchhoff, Ann. Phys. Chem. 72, 497 (1847).

[76] M. Cieplak, A. Giacometti, A. Maritan, A. Rinaldo, I. Rodriguez-Iturbe, and

J.R. Banavar, J. Stat. Phys. 91, 1 (1998).

[77] RC. Prim, Bell Syst. Tech. J. 36, 1389 (1957).

[78] M. Cieplak, A. Maritan, and J.R. Banavar, Phys. Rev. Lett. 72, 2320 (1994);

M. Cieplak, A. Maritan, and J.R. Banavar, Phys. Rev. Lett. 76, 3754 (1996).

[79] C. Moukarzel, Int. J. Mod. Phys. C 9, 887 (1998).

[80] TH. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms

(MIT Press, Cambridge, MA, 1990).

[81] B. Bollobas, Modern Graph Theory (Springer Verlag, New York, 1998),

Section ILL

[82] C. Moukarzel and PM. Duxbury, Phys. Rev. Lett. 75, 4055 (1995).

[83] P. Boolchand, D.G. Georgiev, and B. Goodman, J. Optoelectron. Adv. Mater.

3, 703 (2001).

167



[84] D. Selvanathan, W.J. Bresser, P. Boolchand, and B. Goodman, Solid State

Commun. 111, 619 (1999).

[85] Y. Wang, P. Boolchand, and M. Micoulaut, Europhys. Lett. 52, 633 (2000).

[86] P. Boolchand, X. Feng, and W.J. Bresser, J. Non-Cryst. Solids 293, 348 (2001).

[87] D.J. Georgiev, P. Boolchand, and M. Micoulaut, Phys. Rev. B 62, 9228 (2000).

[88] Y. Wang, J. Wells, D.J. Georgiev, P. Boolchand, and K. Jackson, Phys. Rev.

Lett. 87, 185503 (2001).

[89] M. Micoulaut and J.C. Phillips, Phys. Rev. B 67, 104204 (2003).

[90] J.C. Phillips, Phys. Rev. Lett. 88, 216401 (2002).

[91] M. Plischke, D.C. Vernon, B. Joos, and Z. Zhou, Phys. Rev. E 60, 3129 (1999).

[92] A. Huerta and GO. Naumis, Phys. Rev. Lett. 90, 145701 (2003).

[93] D.J. Jacobs, unpublished.

168



 


