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ABSTRACT

THE PHASE DIAGRAM OF THE DILUTED ANTIFERROMAGNET IN A

FIELD AT ZERO TEMPERATURE

By

Andreas Glaser

The discussion of disordered systems such as the diluted antiferromagnet in a
field (DAFF) is highly controversial. Classical approaches like the renormalization
group lead to contradictory results. This thesis presents alternative methods for the
understanding of the low temperature regime of the DAFF. The results help to identify
misunderstandings and misleading assumptions in the recent research literature.

The phase diagram of the DAFF ground state is established by a Bethe lattice
mean-field theory and exact simulations of the ground state in three dimensions. By
introducing an appropriate order parameter for the ground state, it is found that the
DAFF exhibits three different phases. This stands in contrast to the ground state
of the 3d Random Field Ising Model (RFIM) which exhibits two different phases,
although the RFIM and the DAFF are supposed to be in the same universality class.

The mean-field theory phase diagram is derived by a new technique for the Bethe
lattice which can also be applied to other systems. The ground state simulations are

used to establish the phase diagrams for the cubic and the BCC lattice.
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Chapter 1

Introduction

The understanding of the influence of disorder on critical phenomena has been one of
the most challenging projects in statistical physics of the last thirty years; and it is far
from being complete. The diluted antiferromagnet in a field is one of the distinguished
physical systems, where the effects of disorder can be observed in action. Below we
will unroll the story of how striking and contradictory results about the effects of
disorder in statistical systems have led to a theoretical discussion which has been
going on for decades. In this discussion the diluted antiferromagnet in a field, or
DAFF, plays a central role as it describes experimental systems where the disorder
can be carefully controlled.

The low temperature regime of the DAFF is the focus of this thesis. In section 1.2
it is outlined how our results for the DAFF ground state help to identify misleading
assumptions and to resolve open contradictions of recent studies of disordered systems.
Furthermore the results of this thesis offer a benchmark for the experiments on the

DAFF.



1.1 A brief history of disorder

But let us start at the beginning. The discussion of disordered systems starts with the
results for thermal systems without disorder. The focus is the critical behavior of these
systems and how it is influenced by disorder. As we will see below, statistical systems
at the critical point exhibit very special and interesting properties. An introduction to
critical phenomena and the Ising model, which is important for the further discussion

can be found in [32].

Bliss for generalists: the universality principle and the renormalization
group. One of the most striking experiences from the investigation of critical phe-
nomena is the concept of universality: The critical behavior of a statistical system
does not usually depend on the system’s specific properties; systems can be cate-
gorized into universality classes: all systems which are within the same universality
class exhibit the same critical behavior independent of the system’s details. This as-
tonishing principle which was already known from research experience in the sixties,
has been demonstrated explicitly by K.G. Wilson in 1971 for the Ising model of a
ferromagnet in his Nobel prize winning paper [35]. In this work Wilson has initi-
ated a method which since then has established itself as the most powerful tool for
the theoretical investigation of critical phenomena: the renormalization group. The
renormalization group uses the fact that the critical behavior of a system remains
invariant under variation of the relevant length scales, because the correlation length
becomes infinite at the critical point. Wilson has presented a coherent way to rescale
the Ising model in momentum space. The critical points are fixed points which re-
main invariant under this procedure. The renormalization group makes it possible
to calculate all the critical exponents which completely describe the system’s critical
behavior. Wilson’s results clarified all the universality classes of the Ising model.

The exponents do not depend on an applied uniform magnetic field or the concrete



structure of the lattice but only on its dimension d. In a one dimensional lattice there
is no critical point, because the long-ranged-ordered ferromagnetic phase is destroyed
for any finite temperature. Long range order for finite temperatures first appears at
dimension two. The dimension above which long range order first appears is called
the lower critical dimension d;, so that d; = 1 for the Ising model. Atd =2andd =3
the exponents which describe the second order transition from the ferromagnetic state
to the paramagnetic state depend directly on the dimension. All systems with d > 4
are in the same universality class and they are described correctly by the mean-field
theory. (An introduction to the mean-field theory for statistical systems is given in
the following chapter.) The dimension at which the mean-field theory becomes valid

is called the upper critical dimension d,,.

Adding disorder: the Random Field Ising Model. In 1975 Y. Imry and S.-
K. Ma published an epoch making paper [20] in which they demonstrated that the
universality class of a system must also depend on another important effect, which
should be common in many realistic systems: the presence of disorder. Imry and Ma
introduced disorder to the Ising model in a rather formal way: They considered a
ferromagnet, where at every site in the lattice there is a local magnetic field, which
follows a random distribution. The random field does not vary in time and is therefore
called “quenched” disorder in contrast to thermal disorder, which leads to fluctuations
in time. This system is called the Random field Ising Model, or RFIM, and is modeled

by the following Hamiltonian:

H=-) JSS;- Zh,-Si, (1.1)

<ij>
where S; = +1 are Ising spins, the first sum goes over all interacting sites and the
local magnetic fields h; are independent random variables, which follow a distribution

P(h;) with zero mean value.



In their paper Imry and Ma present a short and emphatic argument why even
an arbitrarily small random field must shift the lower critical dimension: The energy
cost to flip a whole domain of a lattice without a field to opposite ferromagnetic order
is determined by the size of the domain wall at which the ferromagnetic couplings
have to be violated. For a domain of linear size ~ L the size of a domain wall in a d
dimensional lattice is of order L¢~!. As soon as the random field is applied there is the
probability that within this finite sized domain the local fields favor one spin direction
even though in the mean over the whole lattice these effects cancel each other. These
fluctuations are of order L2, since the number of sites in the domain is of order
L¢. Therefore for d < 2 it will always be favorable for the ordered system to break
into domains, so that the long-range ordered state becomes unstable even for zero
temperature. Hence the lower critical dimension has to be greater than one. Since
Imry and Ma’s paper the RFIM has been one of must studied statistical systems.

The new research field of disordered systems was born.

Dimensional reduction and the lower critical dimension of the RFIM. Four
years after the Imry and Ma paper G. Parisi and N. Sourlas predicted a striking
property of the RFIM [27]: The RFIM in d dimensions was claimed to be in the
same universality class as the Ising model without disorder in d — 2 dimensions. At
that time this statement was in agreement with other results for the RFIM and one
could immediately conclude that for the RFIM d; = 3 and d, = 6. However, in
1984 J. Z. Imbrie published a paper [19] in which he showed explicitly that at zero
temperature the long-range-order in the RFIM is stable for d = 3 and weak random
fields. Later, J. Bricmont and A. Kupiainen could show that this is also true for low
finite temperatures [7], so that the lower critical dimension has to be two instead of
three. That is the reason why the results of Sourlas and Parisi have been questioned.

Various renormalization group calculations, the first one by Aharony in 1978 [1],



have predicted the same results as the dimensional reduction. Thus, the renormal-
ization group calculations contradict the explicit results for three dimensions. This
contradiction has led to various attempts to explain why the renormalization group

fails for the RFIM. There is still no generally accepted resolution to this problem.

The DAFF as an experimental realization of the RFIM. The theoretical
discussions and disagreements about the RFIM has of course produced the desire
among researchers for an experimental version of the RFIM. However, even though
disorder is very common in natural systems it is not easy to find an Ising system
where the disorder can be added in a controlled way. The random field which has
been used in the theoretical model can of course not be realized in experiments. A
paper by S. Fishman and A. Aharony [1] has led the way: They claim that the RFIM
is in the same universality class as a randomly diluted antiferromagnet in a uniform
magnetic field, the DAFF. (The Hamiltonian of the DAFF is introduced in section
1.3.1, eq. (1.3).) Later, J. L. Cardy has demonstrated this mapping in a different
way and could even get an explicit expression for the effective random field in the
DAFF in the limit of weak disorder [9]. A measure of the strength of the disorder in
the DAFF is the dilution.

The most common experimental realization of a DAFF is the crystal Fe.Zn,_.F.
The Zinc ions in this crystal do not have an effective spin and hence cause the dilution.
Fe.Zn,_.F, has the structure of a 3d BCC lattice and will be introduced in the
following section. Other experimental systems are Fe.Mg,_.Cly, Co.Zn,_.F5 or the
2d system Rb,Co.Mg,_.F;. Experiments on these systems are an active field of
research. A current review can be found in [5]. However, despite years of study there

is no experimental phase diagram for the whole range of magnetic fields and dilutions.



1.2 OQOutline and context of the work in this thesis

Compared to the huge number of publications of theoretical works on the RFIM, the
number of theoretical works which consider directly the DAFF is relatively small.
However, in this thesis we shall demonstrate that the DAFF for itself exhibits a very
complex and interesting behavior and that the exact correspondence between the
DAFF and the RFIM is not true in general.

The focus of this thesis is the DAFF in the low temperature regime. We study

the DAFF at zero temperature by two different techniques:

e a mean-field theory on the Bethe lattice

e exact ground state simulation in three dimensions

These methods enable us to establish the phase diagram of the DAFF for the
mean-field case as well as in three dimensions for the BCC and the cubic lattice. The
variable parameters in the ground state are the applied magnetic field and the site
dilution, which corresponds to the disorder. As a taste of the results we find, the
phase diagram for the BCC lattice, which closely corresponds to the real system of

Fe.Zn,_.F; is shown in figure 1.1

The story of the RFIM is a story full of misunderstandings. A striking
result is that this phase diagram exhibits three different phases in contrast to the
RFIM which just exhibits one phase transition at zero temperature. Between the
antiferromagnetic state and the paramagnetic state there is an intermediate phase,
which is called the domain state. This state has been predicted by a replica mean-
field calculation [10] and local-mean-field studies [36],(29], [28] for the case of finite
temperatures. (These results will be reviewed in detail in the following chapter.) By

introducing an appropriate order parameter for the ground state we find that this
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Figure 1.1: Phase diagram for the L=50 BCC lattice. AF stands for the antiferro-
magnetic phase, DS for an intermediate phase: the domain state, and PM for the
paramagnetic state. GFC stands for the region in which there is a spanning ferro-
magnetic cluster. The x-axis shows the site concentration and the y-axis shows the
applied magnetic field in units of the coupling strength J. A detailed discussion of
this phase diagram is given in chapter 3.2.3



phase is also present in the case of zero temperature, in the mean-field limit as well
as for the BCC and the cubic lattice.

However, recent studies of the of the 3d RFIM ground state have just found one
phase transition. The variable parameters in the RFIM ground state is a uniform
applied magnetic field and the variation of the random field, which corresponds to
the disorder. In [30] E.T. Seppala, A.M. Pulkkinen and M.J. Alava use percolation
methods to construct a phase diagram which contains a ferromagnetic phase and a
paramagnetic phase. Another work which states very clearly that there is just one
phase transition in the RFIM ground state was published by A.A. Middleton and D.S.
Fisher [25]. They also interpret the phase without long-range-order as paramagnetic
without any glassy behavior. Studies of the RFIM ground state are supposed to
reveal all the aspects of the low temperature behavior of the RFIM. This is due to a
work of A.J. Bray and M.A. Moore [6] since which it is generally assumed that the
low temperature regime of the RFIM is governed by a zero temperature fixed point.

The interpretations of the RFIM ground state phases stand in contrast to the
results of a replica calculation by M. Mézard and R. Monasson [23]. They find that
in the finite temperature regime the RFIM exhibits three different phases: the fer-
romagnetic phase, the paramagnetic phase and a glassy phase which displays replica
symmetry breaking. Below a critical temperature the paramagnetic phase disappears,
so that these results predict that there is only the ferromagnetic phase and a glassy
phase in the ground state.

Other recent works which consider the DAFF ground state [17], [13] do not clearly
distinguish three different phases, because they focus on order parameters which can-
not distinguish between the domain state and the paramagnetic phase. In this thesis
we introduce an order parameter, which can clearly distinguish three different phases
in the DAFF ground state: the probability that a site is on the giant antiferromag-

netic cluster. As mentioned above, this leads to results which are consistent with



previous studies of the DAFF at finite temperatures. By applying the same interpre-
tation which we use for the DAFF to the results of Seppéla et al. [30] we argue that
their interpretation of the phases is incorrect. What they consider as the paramag-
netic phase actually corresponds to the domain state in the DAFF: a phase, which
may exhibit spin glass features, so that the prediction from the replica calculation is
correct. Many works on the RFIM implicitly assume that the RFIM ground state
exhibits a ferromagnetic and a paramagnetic phase. These works have therefore to
be reconsidered.

Finally, we can conclude that in the low temperature regime there is an impor-
tant qualitative difference between the DAFF and the RFIM: In the low temperature
regime the 3d DAFF exhibits a long-ranged-ordered phase, a glassy domain phase and
a paramagnetic phase, whereas the 3d RFIM exhibits just the long-ranged ordered
state and the glassy phase; the paramagnetic state appears only at finite tempera-

tures.

Further results In agreement with the local-mean-field theory calculations we find
indications for metastable states in the domain state and in the antiferromagnetic
state. This raises the important question if the antiferromagnetic state can actually
be realized in experiments. It would be very desirable to find observables which enable
a reliable distinction of the different phases in the real systems. In particular, it may
be quite difficult to distinguish the domain state from the antiferromagnetic state. A
schematic study of Fe.Zn,_.F, for a the whole range of concentrations ¢ in the low

temperature regime could be directly compared to the presented phase diagram.

The concrete outline of this thesis is as follows: The following section 1.3
introduces some basic concepts which are necessary for an understanding of the further
discussion. Basically, the main chapters also include comprehensive introductions to

the methods which are applied so that they should also be understandable by non-



specialists.

Chapter 2 is concerned with different mean-field approaches to the DAFF. It starts
with a general introduction to the mean-field theory and a basic derivation for the
DAFF. Then the results of previous mean-field calculations are reviewed. Finally
chapter 2 presents a new mean-field technique on the Bethe lattice. This technique
is used to construct the mean-field phase diagram for the DAFF ground state.

Chapter 3 presents the results of exact ground state simulations for the DAFF.
At the beginning an efficient algorithm for the DAFF ground state calculation is
reviewed. This algorithm is then used for detailed studies of the cubic lattice and the
BCC lattice, which lead to the final phase diagrams for these lattices.

Finally, the conclusion (chapter 4) picks up on the points from the introduction

and clarifies our statements in the light of the new results.

1.3 The basics

In this section I introduce the basic concepts, which I will use in the further discussion.
The crystal structure of Fe.Zn,_.F; is related to the models of the DAFF, which are
usually the starting point for all theoretical investigations. Then I give a brief review
of the order parameters, which are used to characterize the different phases of the

DAFF.

1.3.1 From the crystal structure of Fe.Zn,_.F5 to the DAFF

Hamiltonian

FeF, is a classical experimental realization of an Ising antiferromagnet. Each iron
ion Fe?* has an effective spin and is grouped with two fluorine ions F~. FeF, has
a strong single ion-anisotropy, which breaks the spatial symmetry and creates one

distinguished axis in the crystal. The spins of the iron ions align themselves along

10
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Figure 1.2: Schematic figure of one cell of FeF,. The antiferromagnetic coupling
Jo = Jur of all the outer Fe-ions with the Fe-ion in the center is dominant. J;
stands for the weak ferromagnetic coupling Jr, J3 for the weak antiferromagnetic
coupling Jfryse. This figure has been taken out of [28]

this axis, which makes Fe.Zn,_.F;, a nearly ideal Ising system, where every spin can
have only two values: up or down. A basic picture of the crystal structure of FeF,
could be established by the neutron scattering experiments of Hutchings et al. in
1970 [18]. Figure 1.2 shows a schematic picture. The principal structure is a BCC
lattice, which can be imagined as two cubic lattices, where the sites of one lattice are
sitting in the center of the cubic cells of the other lattice.

The magnetic interaction between the spins of the Fe-ions can be described by
three different nearest neighbor couplings. The dominant interaction is an antiferro-
magnetic coupling Jar of each site with its eight neighbors on the surrounding cubic
cell. Furthermore there is a weak antiferromagnetic coupling J¢,., and weak ferro-
magnetic coupling Jr as illustrated in figure 1.2. Hutchings et al. have measured the
ratios between the different couplings [18]: Jfryuse/Jar = 0.053 and Jg/Jar = —0.013.

Disorder can be applied to this antiferromagnet in the form of dilution of the iron
ions. In the dilution process Fe-ions are randomly substituted by zinc ions, which

have no effective spin. The resulting crystal Fe.Zn,;_.F, can be realized for any

11



concentration c of iron ions. High magnetic field experiments [21] have shown that
the coupling strengths do not depend on the concentration ¢ of magnetic ions.
Thus, all the essential magnetic features of Fe.Zn,_.F, in a magnetic field H are

modeled by the following Hamiltonian:

H= Z J,‘jf,’ij,‘Sj - NozfiSiHa (12)

<ij>

where the first sum goes over all lattice neighbors and J;; is Jar, Jfrust or Jp,
depending on the coupling of the considered neighbors. The ¢; represent the dilution.
€; is one if site 7 is occupied by a iron ion, whereas it is zero if site i is occupied by a
zinc ion.

In theoretical physics it is common to choose the units of the coupling constants
such that the spins take only the dimensionless values +1 or -1. The magnetic field
is usually measured in units of the dominant coupling Jar, so that yy = 1. The
classical DAFF Hamiltonian, which is usually the basis for all analytical derivations,

considers just one type of antiferromagnetic interaction:

H=J z E,‘éjSiSj - ZG,’S,’H, (13)

<ij> i

where the sum goes over all nearest neighbor couplings. The number of neighbors

with which one site interacts is called the coordination number of the lattice. If we

only consider the dominant coupling of Fe.Zn;_.F5, then the coordination number
is eight; for a cubic lattice it is six.

For FeF; it is obvious that in the ground state not all magnetic couplings can
be satisfied. The weak further neighbor bonds Jy,,s will be violated. The impossi-
bility to satisfy all couplings is called frustration. The necessary condition to avoid
frustration caused by nearest neighbor antiferromagnetic bonds is that the lattice is

bipartite. A bipartite lattice can be divided in two sublattices, in such a way that no

12



sites within the same sublattice are connected by an antiferromagnetic bond. Thus,
if all spins of one sublattice are up and all spins of the other sublattice are down then
all antiferromagnetic bonds are satisfied. If the weak antiferromagnetic bonds are ne-
glected then the BCC lattice model of Fe.Zn,_.F; is also bipartite. Each sublattice
is a cubic lattice. It is also easy to see that square and cubic lattice models with

nearest neighbor interaction are also bipartite.

1.3.2 Order parameters for the DAFF

The essential theoretical quantity which describes the macroscopic state of a statistical
system is the order parameter. For a bipartite antiferromagnet the classical order
parameters are the magnetizations of the two sublattices S1 and S2. The sublattice

magnetization of S1 is

2
mes) = N; < S,‘ >, (14)

where < .. > denotes the thermal average, N is the total number of sites and
the sum goes over all sites in sublattice S1. The sublattice magnetizations can be
combined to form the staggered magnetization:

mgy — Mg
Mitagg = — (1.5)

which is a direct measurement for the antiferromagnetic order. In the ground
state of an antiferromagnet without a field all spins of one sublattice will be down
whereas all spins of the other sublattice will be up; the staggered magnetization is
one. This is the antiferromagnetic phase which is determined by the existence of
long-range-order.

At high temperatures the spins are flipping back and forth due to the thermal

fluctuations. The thermal average of each spin is zero and therefore mgy,g, is zero as

13



well. This is the paramagnetic phase, in which all order is destroyed by the thermal
fluctuations.

The thermal average of the spin of a specific site ¢ is called the local magnetization
m; =< S; >. One of the basic experiences from the investigation of disordered systems
is that the sublattice magnetizations can be zero even though the local magnetizations
are not zero; the spin configuration is stable against the thermal fluctuations, but it
does not have long-range-order; only local order is present. This phenomenon has
first drawn the attention of scientists in the seventies in the context of spin glasses.
Edwards and Anderson have introduced an additional order parameter by which one

can distinguish this phase from the paramagnetic state [12]:

=5 Sm? (1.6)

q is called the Edwards-Anderson order parameter. ¢ # 0 as long as the system is
not in the paramagnetic state. A phase without long-range order but with ¢ # 0 is
called a glassy phase or a spin-glass phase.

The discussion in this thesis focuses on the limit 7 — 0: the DAFF ground
state. The staggered magnetization can also be calculated in the ground state by
simply averaging the spin values instead of the local magnetizations. But obviously
the Edwards-Anderson parameter looses its significance. In the following chapter
(section 2.4.3) I will introduce and motivate a new order parameter for the DAFF,
which makes it possible to distinguish the different phases in the ground state: the

probability that a site is in a giant antiferromagnetic cluster.
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Chapter 2

Mean-field theory

The mean-field theory (MFT) approach belongs to the standard methods for the
investigation of phase transitions in disordered systems. In this chapter I present a
new mean-field technique and apply it to establish the phase diagram for the DAFF
ground state. In order to put the results of this technique in the context of other
mean-field approaches, this chapter also contains a general introduction and a review
of past MF'T treatments of the DAFF. The discussion within this chapter follows two
main objectives: firstly, to combine the different MFT results to a coherent theoretical
picture of the DAFF; secondly, to establish a new mean field technique, which can
be applied in many other contexts. Therefore I will not only focus on the results of
the other mean-field treatments of the DAFF, but also on the general techniques, to
enable a comparison of the different approaches.

The outline of this chapter is the following: The first section gives a general
introduction to the mean-field concept. In the second section I present an introductory
MFT derivation for the DAFF. The validity of its final result is based on strong
assumptions and is therefore very limited, but the derivation will demonstrate basic
concepts and yield important results, which form the basis for the further discussion.

In section 2.3 I review the methods and results of MFT calculations for the DAFF
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in the literature. Finally, I will present the new MFT method, which is Bethe lattice

MFT, in section 2.4. This method is then applied to DAFF ground state.

2.1 Introduction to the mean-field approximations

The usual way to derive the behavior of a system in statistical physics is to minimize
the free energy, which can be calculated from the partition function. However if one
tries this approach for a disordered system like the DAFF, one will soon find that
the problem becomes mathematical inextricable. The main purpose of the mean-field
theory is to help out this unpleasant situation by applying reasonable approximations.
The complex interaction structure of the system is substituted by a somewhat simpler
“mean-field” interaction. The approximations, which have established themselves by

yielding sensible results for different systems, can be subsumed into two categories:

e neglect of the thermal fluctuations of the order parameter

e neglect of the specific geometrical structure of the system

The first approximation type ignores the fluctuations of the order parameter X
around its thermal average X. Concretely this means that the Hamiltonian of the
system is expressed in terms of X and all terms of order (_7——X)—2 are neglected; the
bar denotes of course the thermal average. This mean-field approximation can be
seen at work in the next section, where I will apply it to the DAFF.

The second type of approximation neglects the specific geometrical structure of
the system. Square, cubic and BCC lattice are lumped together and modeled by the
same Hamiltonian. Instead of considering the real lattice, one derives the free energy
for a substitute lattice. There are two common substitute lattices which enable an
analytical treatment for many systems. The most commonly used model is the infinite
range model: every site of the system is interacting with all other sites in exactly the

same strength.
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The other possible substitute lattice is the Bethe lattice, which is also called a
Cayley tree. The Bethe lattice is used primarily in the context of percolation theory.
It has the special property, that it has no loops, which makes it - as we will see -
very suitable for probability considerations. I will give a detailed introduction to the
Bethe lattice in section 2.4.1, where I present a new Bethe lattice MFT derivation.
An introduction to the Bethe lattice in the context of percolation theory is given in
(33].

The mean-field approximations have established themselves because they help to
gain a lot of information about the system. The following experience from the in-
vestigation of critical phenomena is crucial: The results from MFT for the critical
exponents become exact above a so called upper critical dimension d.. The term
“dimension” refers to the geometry of the system. For example, the dimension of the
square lattice is two and for the cubic lattice it is three. Below the critical dimen-
sion there are dimensionality dependent correction terms to the mean-field results,
but for most cases the existence and the nature of different phases is still predicted
correctly. This dimension dependent validity can be explained theoretically by the
renormalization group technique. For some systems like the Ising ferromagnet the
renormalization group makes it also possible to calculate the upper critical dimension
and the correction terms to the MFT results below the critical dimension. But there
is no working renormalization group calculation for the DAFF or the RFIM.

Illustratively, one can try to imagine the dimension dependent validity of the MFT
in the following way: with the dimension the connectivity of the lattice increases,
e.g. every site is connected to four other sites in a square lattice and to six in a
cubic lattice. A highly connected lattice is more similar to the infinite range model
than a lattice with low connectivity. Fluctuations are less important, because every
site is influenced by many different sites whose fluctuations average themselves out.

Loops are less important, since the influence of a specific site on itself becomes small
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compared to the increasing influence of other sites on it.
Which of the mean-field approximations is best to use depends in general on the
system. In many cases different approximations can be applied to the same system

and lead to equivalent results.

2.2 Take I: A basic MFT for the DAFF

In the last section we have seen that there are different approaches to the mean-
field theory of a system. In this section I will derive a mean-field theory for the
DAFF which starts with the neglect of the thermal fluctuations (subsection 2.2.1).
We will see that more assumptions are necessary to derive analytical results from the
mean-field equations, and we will consider a bipartite lattice with uniform sublattice
magnetizations (subsection 2.2.2). Finally, I will use the mean-field equations to
establish the phase diagram in the limit of an infinite coordination number (subsection
2.2.3).

On our way we will encounter many links to MFT results for the DAFF in the
literature. Thus, this derivation will provide a helpful basis for the further mean-field

discussions, especially for the literature review (section 2.3).

2.2.1 Neglect of the thermal fluctuations

We start with the DAFF Hamiltonian:
H =" Jee;SiSj— Y HeS,, (2.1)
<ij> i

where the sum < ij > goes over all lattice neighbors. The coordination number
of the system is z, which means that every site has z neighbors, and the total number

of sites is N. J > 0 is the coupling constant and H the applied uniform magnetic
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field. The ¢; represent the dilution. Thus their probability distribution is

P(e&;) = cd(e; — 1) + (1 — ¢)(es), (2.2)

where c is the site concentration. In order to neglect the thermal fluctuations, we

make the following ansatz:

Si = m; + (Si — my), (2.3)

where m; is the thermal average of the spin value at site ¢. Plugging this ansatz

into the Hamiltonian (2.1), we get

H = ZJeeJ m; + (S; — m,)(m]+(Sj—mj))—ZHe,-S,~

<> H
= J Z eiej(—mimj + miSj + ij,-) - ZHG,‘S,‘
<ij> 1
+0O((S; — my)?). (2.4)

We will neglect the fluctuation terms (S;—m;)?, so that the corresponding partition

function becomes

Zexp [,BJ Z €i€e;mim; — 52 (Z Jejm; — ) e,—S,] (2.5)

{S:} <ij> i)

where {S;} denotes the sum over all possible spin configurations and (i — j)

denotes the sum over all neighbors of ;. Evaluating the first sum (2.5) becomes

= exp (ﬁJ Z e,e,m,mj) 2NHcosh [e,ﬂ (H ZJe,mJ)] (2.6)

<ij> i—]

19



Now we can calculate the thermal average of an existing spin S; in the usual way:

m; = %Z&e“m = tanh [ﬂ (H --JZejmj)] (2.7)

{si} i—j

We get a set of self consistent equations, one equation for every present lattice site.
The solutions of these equations correspond to stable states of the system where the
free energy has a local minimum. The equation set still contains the specific geometry
of the system, since the sum (i — j) over all neighbors of i takes the microscopical
structure of the system into account.

In the so called local mean-field theory approach these equations are used as the
basis for a numerical simulation. I will review this method and its results for the
DAFF in section 2.3.2. Here I will now make further assumptions, so that we will
loose the information about the magnetization of a single site 7, but it will enable us

to get more information about the system from analytic considerations.

2.2.2 Further assumptions

In order to establish the phase diagram we are interested in the global order parame-
ters of the system, for which we do not need the information about the microscopical
magnetizations m;. For the further derivations we will assume that the lattice, which
we consider, is bipartite. As discussed in the introduction this means that we can
divide it into two sublattices S. and S2 in a way such that no sites which are in the
same sublattice are connected to each other. The sublattice magnetizations mg, and
mse are then a natural measurement for the antiferromagnetic order of the system.
The corresponding spatial fluctuations of the magnetizations, ¢s; and g¢s», are impor-
tant to determine the existence of a phase where the long range order is destroyed,
but local order is still present. We can calculate these order parameters by averaging

the mean field equations (2.7). Since both sublattices are equivalent, we can restrict
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ourselves to sublattice S1.

ms, = %Zmi = %Ztanh [ﬂ (H —'Jze,-mj)} (2.8)

1eS1 1€S1 i3]
_ 2 2 _ 2 2 .

In the expressions on the right hand side, the mean-field equations or the squared
mean-field equations respectively are averaged over the whole lattice. The part of the
mean-field equations (2.7) which varies from site to site is the sum over the neighbors
Yl ; €My This sum depends on the number of neighbors, which are present and on
the magnetizations of the present neighbors. In the lattice all of these configurations
happen with a certain probability. Thus it is natural to calculate (2.8) and (2.9) by
averaging over all possible configurations and weighting each configuration with its
probability.

The problem is that we only know the probability distribution of the dilution
coefficients ¢;, but not of the magnetizations m;. Therefore we will have to try an
assumption. Let us assume that the sublattice magnetizations are uniform over the

whole lattice:

my, if ¢ is in sublattice 1
m; = (2.10)

mgo if 7 is in sublattice 2

In this way we neglect of course the spatial fluctuations of the magnetizations.
The Edwards Anderson parameters gs; and ¢s, will go to zero, if mg; and mg, go to
zero. This means that by our assumption we have already neglected the existence of
a phase where only local order is present.

e;m; in (2.7) always

But now we can simplify equation (2.8). Since the sum j

goes over the sites of the other sublattice, we can substitute m; by ms, and the
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average becomes

ms)

/Hdek(cé(ek - 1)+ (1 =c)d(ex)) tanh (BH - ,BJEfjmsg) =
k

i—]
-y Z (0% (1 - c)*~* tanh (BH — BJkms»,) (2.11)
k=0

where 2z is of course the coordination number. In this formula we encounter a
binomial distribution. In order to simplify it, we can take advantage of the fact that,
for a big number of Bernoulli trials, a binomial distribution can be approximated by

a Gaussian distribution:

z — )2
"(1=¢c)* "> \/—31—_22 exp (_(n_%,%z_)_) dn for z — o0, (2.12)
n o

where n has become a continuous variable, 02 = z(c)(1 —c) is the variance, and pz
is the mean value of the distribution. In practice this approximation becomes quite
good for z > 6, which is already fulfilled for a cubic lattice. Thus we can apply it free

of concerns:

[ 1 (z — zc)? ) 3
ms = i dx———\/m exp (—220(1 — tanh (BH — BJxmy,) (2.13)

Let us investigate this equation carefully, because it yields the first conclusions
about our system. From our derivation it is easy to see that the corresponding mean

field equation for an antiferromagnet without dilution is
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m,; = tanh (BH — ST zmy,) (2.14)

A comparison of (2.13) and (2.14) motivates the following interpretation of (2.13):
The mean field equations for an antiferromagnet in a field are averaged over a Gaus-
sian distribution of the coupling constants J. Substituting = Jz/J in the integral
of (2.13) this becomes explicit, and we can see that the mean value of J is ¢J and
the variance is c(1 — ¢)J?/z.

This result has already been found in a different way by Almeida and Bruinsma in
[10]. They have used the replica method to show that in limit of high dimensions the
DAFF is in the same universality class as a magnetic system with random couplings
following the distribution derived above. I will give an introduction to the replica
method and review Almeida’s and Bruinsma’s results in detail in section 2.3.1.

The result above already shows the limits of equation (2.13). A magnetic system
with random exchange constants is in general a spin glass. Thus, we have to consider
the possibility that the DAFF may have an additional phase in the phase diagram
where the Edwards Anderson parameter is relevant. The sublattice magnetizations
are not uniform in this phase. The replica solution of Almeida and Bruinsma [10]
indeed contains the Edward Anderson parameters gs; and gs, and they show that

the phase diagram exhibits a glassy phase.

2.2.3 The mean-field phase diagram in the limit z — oo

We have lost the information about the spin glass phase by making assumption (2.10)
which turns out to be not valid in the whole phase diagram. However, it should
work in a special limit. The DAFF is equivalent to a system with random exchange
constants, which have a variance of ¢(1 — ¢)J%/z and a mean value of ¢J. In the

limit of 2z — oo and for finite ¢ the variance becomes negligible and the Gaussian
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distribution can be substituted by a delta function. The coupling constants become
uniform and thus the system is free of any quenched disorder. It is an accepted
fact that systems without any quenched disorder do not exhibit a spin glass phase.
Thus the assumption of a uniform sublattice magnetization becomes reasonable in
the limit of infinite coordination numbers which corresponds to infinite dimensions
or the infinite range model.

Before the replica calculation of Almeida and Bruinsma it was actually assumed
that this approximation becomes already valid above d = 6. This assumption was
based on a mean-field theory calculation for the RFIM by Aharony [1], though he did
not derive them for the DAFF directly.

Since it will help to provide a basis for the further discussion, I will now use the
mean-field equations to establish the phase diagram in that limit. Even though we
will not be able to capture the glassy phase, we should get a sensible phase boundary
for the transition from antiferromagnetic order to the paramagnetic phase.

Since we are now taking the limit z — oo, we have to ensure that the coupling con-
stant is of order 1/z, so that the energy remains extensive. Thus we define J = Jy/z,
where J; is an intensive quantity. By approximating the Gaussian distribution by the
delta function, the spatial fluctuations of the vacancies c(c — 1) become irrelevant.
Which means that we are now not only neglecting the thermal fluctuations but also

all spatial fluctuations of the system. Equation (2.13) becomes:

ms, = tanh (BH — BcJomss) (2.15)

ms, = tanh (BH — BecJyms,) (2.16)

Of course the equations for both sublattices are equivalent. Thus, we expect
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degenerated solutions of the form mg; = a, ms; = b and mg; = b, ms; = a.

Plugging (2.15) into (2.16) and dropping the sublattice index we get:

m = tanh [3H — BeJp tanh (BH — BeJom)) (2.17)

According to the degeneracy considerations this equation must have two solutions.
For H < c¢Jy they will have opposite signs and the staggered magnetization is the
average of the absolute value of these two solutions. For H = 0 the magnetization of
both sublattices is of course identical and m,gy = m.

What can we learn from this equation about the phase diagram? Let us first
consider the case of H = 0. As the system goes from the antiferromagnet state to
the paramagnetic state the magnetizations of both sublattices go to zero. Thus, we

can expand (2.17) around m=0 to investigate the transition region:

m = (BcJp)’*m = 1/3 ((Bedo)* + (Bedp)®) m® + O (m?). (2.18)

One can see that as m — 0, a requirement for the consistency of (2.18) is that
(BcJy)? — 1, and one can read off the critical temperature T, = 1/, = c¢Jy at which
the transition happens (for convenience the temperature is measured in units of the
Boltzmann constant k).

Next we can determine the critical exponent 3, which describes how the magne-

tization goes to zero at the critical point:

m = f(T - T)(T - Tc)ﬁy (2.19)

where f is an arbitrary continuous function which does not go to zero for T — T..

Dividing (2.18) by m we can modify it to
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2
m? = e J0)43f G (cdo +1/8)(cJo —1/B) ~ (T. - T), (2.20)

from which we can see that 8 = 1/2. It is not surprising that the results for 7, and
B are the same as for an Ising ferromagnet, since an antiferromagnet on a bipartite
lattice can be mapped to a ferromagnet whereby a uniform field becomes a staggered
field (Section 3.1.3). Thus we only expect a difference as soon as we apply a finite
field.

Let us investigate how the system behaves at T in a very small field. The exponent

0 describes how the magnetization goes to zero as H — 0:

m = f(H)H'?, (2.21)

where f is again an arbitrary continuous function, which does not go to zero for

H — 0. Expanding (2.17) at H = m =0 and 8 = 1/cJ, yields

o=y (me Y s (m- S (me B))

The first order terms in m and H cancel each other and we can see that § = 1.
For a ferromagnet § is 3, which means that the m goes to zero more steeply.

To establish the phase diagram we would like to know the critical temperature
also for nonzero values of the field. To calculate it we can use the following fact:
at the transition point the staggered magnetization is very sensitive to any exterior
influences on the system. An arbitrary small change of the field can lead to a finite
jump in the magnetization. That is why the susceptibility x = g—z becomes infinite

at the critical point. Taking the derivative of eq. (2.17) with respect to H on both

sides and solving for 2% we get
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om _ dg(H,m) (. dg(H,m)
0H  0m 2% om ’ (2:23)

where the right hand side of (2.17) has been denoted by g(H,m) and it has been
taken into account that m is also a function of H. The susceptibility becomes infinite,

if the denominator goes to zero. Thus, our condition for the critical point is

1 — (Bcdy)? (1 — tanh(8H + BeJo tanh?(—BH + BcJym)

)
x (1 —tanh?(—BH + BeJom)) = 0  (2.24)

For a fixed value of H, this equation still contains two variables m and 3. As
soon as a field is applied, the sublattice magnetization m is not necessarily zero at
the critical point, because as soon as the antiferromagnetic order is lost the spins of
both sublattices tend to align with the field.

We can investigate the qualitative behavior of the rhs of (2.24) by plotting it for
different values of 3. It has one maximum in m that lies in the region 0 < m < 1.
For big values of 3 the maximum value is negative for smaller 3 it becomes positive.
Thus the critical point has to be the value of 3 at which the maximum value becomes
zero, because this corresponds to the lowest temperature where we get for the first
time a singularity in x. The value of m at which the rhs of (2.24) becomes maximal
is the magnetization at the critical point.

The maximum can be calculated numerically. I have used Maple to calculate it
stepwise for different temperatures and thus to find the temperature at which the
maximum value becomes approximately zero. This has been done for varying values
of H. The resulting phase diagram is shown in figure 2.1. It shows a paramagnetic
and an antiferromagnetic phase. The information about the spin glass phase has been

lost, but the phase diagram is correct for finite c in the limit of z — oo.

27



0.8 | PM

06
g AF
T

04 +

02+

o 1 i 1 1
0 0.2 0.4 0.6 0.8 1 1.2

Tied,

Figure 2.1: Phase diagram for the DAFF in the limit that the coordination number
z goes to infinity.

2.3 Review of the mean-field calculations for the

DAFF

The mean-field calculation in the last section was not sufficient to completely clarify
all types of different phases of the DAFF. In the literature there have been two
independent mean-field approaches, which are able to predict more details about
the phase diagram. Firstly, there is the replica method, which has been applied to
the DAFF in 1987 by Almeida and Bruinsma [10]. Secondly, there is a numerical
approach, called local mean-field theory, which has been applied to the DAFF by
three different groups [5],[29],(28].

Starting with the replica calculation I will first give an introduction to the general

method and then review the actual results for the DAFF.
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2.3.1 The replica method

The replica method is a very common technique to derive the mean-field equations
of systems with quenched disorder. It was first introduced by Sherrington and Kirk-
patrick in 1975 [31] for the treatment of the infinite range Ising model with random
exchange interactions, the theoretical paradigm of a spin glass. The essence of the
replica method is a mathematical trick used to find the mean-field equations that are
correctly averaged over the disorder.

In general the Hamiltonian of a disordered system contains parameters, which
follow certain random distributions. In the case of the DAFF for example these
are the dilution coefficients ¢;. We have already seen in the last section that it is
reasonable to average the mean-field equations over the random parameters. But in
general this is a very critical task; in the last section we were only able to accomplish it
by assuming a uniform sublattice magnetization, which is in general not true. The first
step in the direction of the replica method is the idea to do the average not actually
over the mean-field equations, but over the free energy function of the system. The
mean-field equations can then be derived from the averaged free energy by minimizing
it. One might ask why the average cannot be done at an even earlier stage over the
Hamiltonian or the partition function. But it can quickly be checked that this leads
to unphysical and simply wrong results. The reason is that the Hamiltonian and
the partition function are non observable quantities which are connected to the final
order parameters in a complex mathematical way. The assumption that the average
over the free energy captures the essential physical features of the system is on the
other hand simply justified by the successes of the replica method.

The next problem is that the average over the free energy F = —T In(Z) seems to
be mathematical inextricable for all common random distributions. Here the replica
trick comes into play. It uses the fact, that the logarithm can be expressed as the

following limit:
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In(Z) = lim Z" -1

lim ~— (2.25)

In the replica method it is now assumed that one can first average over Z" and

then take the limit n — 0. If n is an integer then Z™ can be written as

Zr=3 3" exp (— i ﬁ%[sg’]) , (2.26)

{siy{szy (st}

where we have now n different sets of spins, so that we had to introduce an
additional label a. {S?} denotes the sum over all possible spin configurations of the
a*® set. The different spin sets are called the replicas.

The average over an expression, which has the form of (2.26), can be done for many
different cases of quenched disorder. Usually the expression can then be simplified,
by using the Hubbard-Stratonovich transformation, which yields n? new parameters.

The next steps are mainly based on intuition and their primary justification is the
success of the results. Despite the fact that n has been restricted to integer values it
is taken to zero. The question is what then happens to the n? parameters. In their
first solution Sherrington and Kirkpatrick have assumed a certain symmetry among
these parameters, so that a parameter is either zero or has the same value g as all
other non-zero parameters. This approach leads to mean-field equations, where the
additional parameter g can be interpreted as the Edwards Anderson order parameter.
This is called the replica symmetric solution.

Later in 1978 Almeida and Thouless [11] have shown that in the glassy phase
with m = 0 and ¢ # 0 this solution becomes inconsistent. In many subsequent papers
(a collection can be found in [24]) it is discussed how a different treatment of the n?
replica parameters, where the symmetry is broken and one gets more additional order
parameters, can avoid this inconsistency.

At this point one can see the major weakness of the replica method. It depends
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on elaborate mathematical operations, which are not all well defined and there are
also no physical reasons to justify them. The solution depends on the treatment of
the replica parameters, for which there is no unique or formal way, so that it has
to be based on ad hoc assumptions. Still the replica‘method was very successful in
making correct predictions, and has become a common tool for mean-field derivations
in systems with quenched disorder. For Sherrington and Kirkpatrick’s infinite range
model a method of replica symmetry breaking has been developed, which leads to
sensible results [24]. But even the symmetric solution can be very useful, especially
to establish the phase diagram. In the paramagnetic phase the symmetric solution
is consistent and describes the system accurately. The behavior of the system is
predicted wrongly and the symmetric solution becomes invalid only in the glassy
phase. That is why the inconsistency of the symmetric solution has been established
as one of the theoretical indicators for a spin glass phase. One can find the phase
boundary by looking for the breakdown line of the symmetric solution. In spin-glasses

in an applied field this phase boundary is called the Almeida-Thouless line.

Almeida and Bruinsma’s symmetric solution of the DAFF

A replica symmetric mean-field theory for the DAFF has been derived by Almeida
and Bruinsma in 1987 [10]. Before their calculation it was assumed that above d = 6
systems, which are in the RFIM universality class like the DAFF, do not exhibit a
spin glass phase. This assumption was based on renormalization group arguments
and a mean-field theory for the RFIM by Aharony [1]. The mean-field theory, which
Aharony presents in [1], is equivalent to the mean-field theory, which I have derived in
section 2.2.3 directly for the DAFF. We have already seen that this theory becomes
valid for cz — oo, which corresponds to infinite dimensions. In [10] Almeida and
Bruinsma argue that as long as the coordination number z remains finite this mean-

field theory is not exact. Even above d=6 the DAFF exhibits a spin glass phase.

31



They show this by deriving a replica symmetric mean-field theory directly for the
DAFF. Instead of the site diluted case, which is realized in the experimental systems,

they consider the bond diluted case:

H=> J;SiS;— ) HeS;, (2.27)

<ij> i

where the probability distribution of the J;; is

P(Jy) = 8(Jyy = Jof2) + (1 = )5(J5y) (2.28)

Almeida and Bruinsma calculate the free energy by the replica method. Their
mean-field approximation is to assume big but finite values of z. That is what allows
them to make an expansion of the free energy up to the second order in (8Jy/z).
They find that this free energy is the same as for a system with random exchange
interaction with a mean value < J;; >= Jp and variance 0% = ¢(1 — ¢)(Jo/z)?. We
have already seen this result in a different way from our interpretation of equation
(2.13).

By minimizing the free energy Almeida and Bruinsma derive the following mean-

field equations:

2/2

1 -z
msi,s2 = \/T—ﬂ-/dxe
c(l1-c)
x tanh |8 | H — cJomsa 51 + 5 JoZ\/qs1.52 (2.29)

2/2

N /da: e’ *
QSI,S2 \/2—7]'
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c(l-c)

X tanh2 [B (H - CJomgg,sl + 22 JQIL‘,/QSI,_gz)} (230)

One can see that in the limit 2 — oo these equations become equivalent to (2.15)
and (2.16). But for finite 2 they contain explicitly the Edwards-Anderson parameter
for both sublattices. Since these equations follow from a symmetric replica calcu-
lation, they become invalid in the spin glass phase. Investigating the mean-field
equations and looking for the region, in which the symmetric solution becomes in-
consistent, Almeida and Bruinsma establish the Almeida and Thouless line and the

paramagnetic phase boundary. Their results are shown in figure 2.2.

2.3.2 Local mean-field theory

In the previous section we have seen that with the help of the replica method Almeida
and Bruinsma could show analytically that the DAFF phase diagram exhibits a spin
glass phase. In this section I will review a mean-field approach to the DAFF, which
is mainly based on a numerical procedure: the local mean-field theory (LMF). A
big advantage of this method is that it can reveal details about the system on the
microscopic level. Thus it will help us to shed light on a question, which has been
left unanswered by the replica calculation: What does actually happen in the glassy
phase? What does it look like?

Another advantage of the local mean-field theory is that it can take many specific
details about the system into account. Coutinho-Filho and Raposo for example have
done local mean-field simulations, which consider the special crystal structure of
Fe,Zn,_.F,, the most common experimental realization of a DAFF [28]. Earlier
simulations for a DAFF on a regular cubic lattice have been done by Belanger et al.
[36] and by Soukoulis et al. [29]. I will review these results after I have given a general
introduction to the local mean-field theory concept.

In section 3.3 I will present a direct comparison of local mean-field simulations to
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the exact ground state of the DAFF.

The local mean-field concept

The local mean field theory method has first been introduced by von Boehm and
Bak in the context of modulated magnetic systems [34]. It has first been applied to
disordered magnetic systems by Soukoulis et. al. in 1983 [16]. The basic idea is to

solve the mean field equations of the form of (2.7) numerically by iteration:
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mﬁ") = tanh [ﬁ (H - JZejmgn_l)>] i=1...N, (2.31)

i

where the index n counts the number of iterations. These equations still contain
the specific geometric structure of the system, since there is an equation for every
single site and the sum (i — j) goes over all neighbors of this site. Of course similar
equations can be derived quickly for all different kinds of magnetic systems by using
the same ansatz as in section 2.2.1.

Starting with an arbitrary set of msl) and applying the iteration procedure (2.31)
a sufficient number of times the values of the magnetizations m; will converge to a
stable value. Soukoulis has found in [16] that the iteration converges much faster,
if one updates the values of the magnetizations immediately and not only after one
iteration step is complete. This usually leads to the same results. After one complete

iteration step the convergence can be checked by the following criterion:

2
N ( -1
52, (mi® = m=)

<€
2 )
Zihi—l (’”g ))

where one chooses finite but very small values of ¢, which determines the accuracy

(2.32)

of the convergence. The resulting m; are an approximate solution of the mean-field
equations and thus should be a stable point of the system. But here one has to be
very careful. It is a general feature of disordered systems, which exhibit a glassy
phase, that their free energy landscape is very complex and fine structured. The free
energy function has a huge number of local minima, which correspond to stable or
metastable states of the system. The number of stable states in Sherrington and
Kirkpatrick’s infinite range model, which has been mentioned in the last section, for
example increases exponentially with the size of the system [24]. Thus the solution
of the iteration procedure is not unique and does depend strongly on the initial

conditions: the starting value of the iteration m§°’. So how can it then be ensured
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that solutions are found, which correspond to the real physical system?

Boehm and Bak [34] have found a natural answer to that question. If the tempera-
ture of the system of the system is very high and the system is well in the paramagnetic
phase, then the local magnetizations m; will be very. small and completely random.
Thus, one should start in the high temperature phase with random starting values of
the m;. Then one can “cool down” the system in small temperature steps AT. This
means that one takes the solution of the higher temperature iteration as the starting
value for an iteration where the temperature is slightly lower. This corresponds to
a real cooling process. The temperature of the system is suddenly slightly decreased
so that it is not in equilibrium any more. It is then allowed to come to equilibrium
again, which is ensured by iterating until the convergence criterion is fulfilled. After
cooling the system to minimal temperature it can be heated again in the same way.
The results of the LMF for the DAFF [29], [36], [28] show that, if one chooses the
temperature steps AT and the value of ¢ sufficiently small, then the final state after
the cooling procedure does not depend any more on the random initial conditions.

By applying this procedure the numerical calculations simulate what is actually
done in the real experiments. In the experiments the system is first cooled down
and the measurements are then taken, when it is reheated again. For systems in
a magnetic field there are two different ways of cooling. The first one is zero-field
cooling, where the field is only applied after the cooling procedure is finished. The
second one is field cooling, where the field is also applied during the cooling process.
Of course both methods lead in general to different results, since the system may
evolve to a different local minima in the free energy.

For the DAFF the LMF has been very successful in predicting results that coincide

with the experimental ones. I will now review these results in detail.
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LMF results for the DAFF

Two very similar local mean-field calculations for the DAFF have been done by
Yoshizawa and Belanger in 1984 [36] and by Ro, Crest, Soukoulis and Levin and
Levin in 1985 [29]. Yoshizawa and Belanger have studied the DAFF on a square,
cubic and hyper-cubic (d=4) lattice. Soukoulis and coworkers have investigated the
DAFF on a BCC lattice in three dimensions and the RFIM on a cubic lattice. Later
in 1998 Coutinho-Filho and Raposo have done a LMF, which simulates the exact
crystal structure of Fe,Zn,_,F,. 1 will start with the review of the older results,

where I will focus especially on the calculations for the three-dimensional DAFF.

The results of Belanger and Soukoulis for the 3d DAFF The BCC lattice,
which Soukoulis et. al consider has a size of 2 x 303 and they focus on concentrations
close to ¢ = 0.7. The main focus of Belanger et al. in [36] is the square lattice,
but they also consider 123 and 18 cubic lattices. Both investigate the final local
magnetizations at different temperatures after they have done the cooling procedure,
which I have described above. They consider field cooling as well as zero-field cooling
at varying values of the magnetic field.

Both Belanger et al. and Soukoulis et al. find that the local magnetization
patterns, which they get for different parameters of H, T and ¢, can be divided
into three different categories. First there is the paramagnetic state where the local
magnetizations are very small and randomly distributed. Then there is of course
the state of long range order, where the magnetizations m; are all positive on one
sublattice and negative on the other sublattice. In the third state the lattice is
divided in domains of opposite antiferromagnetic order. At the boundaries of these
domains the antiferromagnetic order scheme is violated. The local magnetizations
of neighboring sites have the same direction. This state is called in both papers the

domain state or the multi-domain state.
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The state of the system does not only depend on its current parameters of H, T
and ¢ but also on its history. If the temperature is below a critical temperature 7,
and the magnetic field is below a critical value H,, which depends on the dilution,
then the long-range-order state has the lowest free eﬁergy. But the system will only
evolve into that state if it is cooled in zero field. In the field cooling procedure the
system will remain in the domain state, even if it is cooled below T,. The system is
captured in a local free energy minimum, which is not the global minimum. If the
zero-field cooled system is heated then it will change into the domain state at a not
uniquely determined temperature which lies above T,. If the system is heated above
a temperature Ty the system will change into the paramagnetic state, independent
on its history.

A systematic study for a wide range of values for ¢ and H is not presented in
these papers. The phase diagram which Soukoulis et al. establish for ¢c=0.7 is shown
in figure 2.3.

Now let us connect these results to those from the previous sections. The domain
state corresponds obviously to the spin glass phase, which Almeida and Bruinsma
have found. The total sublattice magnetizations are zero, since the sublattice magne-
tizations have opposite signs within the different domains. But the Edwards Anderson
order parameter is not zero and the system is locally ordered. Comparing figure 2.2
with figure 2.3 we can see that the phase diagrams are qualitatively similar.

The local-mean field theory results claim some interesting new features about the
phase diagram. The glassy phase and the long-range-ordered phase are metastable, in
the sense that within these phases the actual state of the system is history dependent.
The long-range-order phase can only be reached by zero-field-cooling. Furthermore
we get a picture of what the spin glass phase actually looks like. Domains of opposite
antiferromagnetic order are inter-penetrating each other. We will learn more about

the structure of these domains from the numerical ground state calculations in the
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Figure 2.3: Phase diagram from the LMF calculation for a BCC lattice with ¢ =
0.7. The shaded region marks the domain state. Transformed to our notation H is
measured in units of 2J, and T is measured in units of 2k. [29]

next chapter. From now on I will speak of the domain phase or of the glassy phase

with the same meaning.

Raposo’s and Coutinho-Filho’s results for Fe,Zn;_.F; In 1998 Raposo and
Coutinho-Filho have published a local mean-field study [28], which models the crys-
tal structure of Fe,Zn,_.F,, which has been presented in section 1.3.1. It is a
BCC lattice with a dominant antiferromagnetic coupling J4r. The special feature of
Fe;Zn,_.F; is, that there are additional couplings Jr and Jg,y, With the next nearest
neighbors, which are weak compared to the dominant coupling J4r. The first addi-
tional coupling Jr = —0.013J4F is ferromagnetic, but the second Jy,ys = 0.053J4F is
antiferromagnetic and therefore causes frustration. How these couplings are situated
geometrically can be seen in figure 1.2 in section 1.3.1.

The mean field equations of the “pure” bipartite DAFF (2.7) can easily be adjusted
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to the Fe,Zn,_.F, case. All one has to do is to include the additional bonds in the

sum over the neighbors:

m; = tanh |:,3 (H - JApZejmj - Jfrust Zejmj + Jr Zejmj)J y (233)

where the sums go of course over all neighbors, which are connected by the corre-
sponding bonds.

Before Raposo’s and Coutinho-Filho’s results it was mainly believed that the
frustration couplings are too weak to have a distinct influence on the phase diagram.
One of the main issues of Raposo et al. is to show that this belief is wrong. They
study a 2 x 30% lattice in the whole range of concentrations c¢. Their study is very
extensive and I will focus on their results for the low temperature regime.

They are cooling down the system to T = 0.06 T, where Ty is the temperature,
above which the system becomes paramagnetic in the non-diluted case. They find
that even at H = 0 the system will go into the domain phase be>10w the concentration
¢ = 0.63. This does not happen in the pure antiferromagnet, therefore the reason
has to be the additional frustration bonds. Let us denote by H,,., the field, which is
necessary to break the antiferromagnetic order at low temperatures in a non-diluted
lattice. For zero-field cooling with a field H = 0.3H,,,, the behavior is exactly the
same as for the H = 0 case. The system will evolve into the domain phase, if the
site concentration is smaller than ¢ = 0.63. Upon field cooling with the same field
the system behaves differently. Domains of opposite antiferromagnetic order start to
nucleate at concentrations ¢ = 0.94. The size of these domains increases slowly as
the concentration is reduced. Only at ¢ = 0.5 the domains of opposite order become
about the same size.

The natural conclusion of Raposo and Coutinho-Filho is that at zero-field cooling
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the frustration bonds play an important role. Their influence is responsible for the
critical concentration, below which the system evolves into the domain state. In the
field cooling procedure on the other hand the effects of magnetic field are dominant
and the frustration bonds have no notable influence 6n the system.

It is important to keep this result in mind, when one compares results that have
been derived for the pure bipartite DAFF with the results of experiments on the real
DAFF, where the weak frustration bonds play a role. In chapter 3 I will investigate
the DAFF ground state on a bipartite lattice and so we have to be aware that this
model only captures the critical behavior in the real DAFF system, that is due to the

exterior field.

2.4 Take II: A Bethe lattice MFT for the DAFF

The mean-field approaches which have been presented in the previous sections have
helped to develop a basic picture of the different phases of the DAFF. However, it is
not clear how well the mean-field results describe a real system of a specific dimension.
In the following chapter I will use computer simulations to establish the correct phase
diagram for three dimensions for the case of zero temperature. Of course we would
like to compare these exact results to the mean-field predictions. But the mean-field
approaches, which have been presented so far break down in the limit T — 0. That
is why in this section I present a new mean-field ansatz, which works especially well
for the case of T' = 0: a mean-field theory on the Bethe lattice. The special structure
of the Bethe lattice has already been applied to derive the mean field equations for
other magnetic systems. Hartmann and Zittarz have used it for calculations on the
Ising model of a ferromagnet[26] and Bruinsma has applied it to the RFIM [8]. They
all start by calculating the partition function. I present a different approach, which

directly derives the self consistent equations for the order parameter. I will start
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Figure 2.4: Bethe lattice with z=3. The dotted circles separate the different levels

with a general ansatz for finite temperatures in order to compare the results to the
replica calculation (section 2.4.2). I will then focus on the limit 7 — 0 and use the
same ansatz to derive the mean field equations for the appropriate order parameter
of the DAFF ground state (section 2.4.4). As a preparation I will first introduce the
Bethe lattice. A general introduction to the Bethe lattice in the context of percolation

theory can be found in [33].

2.4.1 The Bethe lattice

The Bethe lattice is an artificial structure, which in some sense corresponds to a
lattice of infinite dimensions. It has become important in physics, because many
problems, that cannot be solved exactly on the real crystal lattices, can be solved
on the Bethe lattice. The Bethe lattice can be constructed with any coordination
number z. Figure 2.4 shows a Bethe lattice with z = 3.

The Bethe lattice can be described by the following construction rules: One starts
with one site in the center and connects it to z newly created nodes. These nodes are

at the surface level. Each single node at the surface level has now to be connected
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to a = z — 1 nodes, which are again newly created. These new nodes form the new
surface level. Now one can continue to increase the size of the lattice by iterating the
last step. If the size of the lattice goes to infinity, then the center of the lattice looses
its distinguished position and every site can be taken as the center. @ = z—1 is called
the branching number of the lattice. The Bethe lattice can be divided into levels,
where one level contains the nodes, that were created during the same iteration step.
A single branch that leaves from the center site has the structure of a tree. That is
why the Bethe lattice is also called a Cayley tree.

Now in what sense does this lattice correspond to infinite dimensions? The first
corresponding feature is that in the Bethe lattice the mass of the sites is located at
the surface. For z > 3 there are more sites at the surface level, than in the rest of
the lattice. For a hyper-cubic lattice the fraction of sites at the surface becomes only
comparable to the site within the lattice as d goes to infinity, since the volume is of
order L? but the surface is of order L4~

The second feature is that the Bethe lattice contains no loops. A loop is a path,
that starts and ends at the same site and uses no bonds twice. A good illustration,
why the loops on a regular lattice become negligible as d — 0o can be found in [33]:
For high dimensions d the number of ways to embed a chain of four sites on a hyper-
cubic lattice is proportional to (2d — 1)3. However, the number of ways to form a
loop, where all four sites have to be on the same plane is d(d — 1). Therefore the
loops become unimportant when d — co. As we shall soon see these features are also

the reason, why the Bethe lattice is so useful.

2.4.2 MFT ansatz for finite temperatures

The main purpose of this whole section is to derive a mean-field theory for the DAFF
ground state. However, the new mean-field method for the Bethe lattice, which is

introduced below can also be applied to the case of finite temperatures. Since the
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Figure 2.5: Illustration of the bonds of site s in the Cayley tree.

method itself is of interest, I will first demonstrate the general ansatz and compare
the results to the replica solution, even though this does not lead to a directly solvable
set of equations.

How can we take advantage of the special features of the Bethe lattice to derive
the mean-field equations? We will make the following ansatz: At every site in the
lattice we will consider the probability P that the site has spin up and the probability
M =1 — P that the site has spin down. The local magnetization of this site is then
naturally m = P — M. Every site is connected to one site on the level above and to
a = z — 1 sites on the level below, as shown in figure 2.5.

This motivates the following assumption. We consider again the case of high
coordination numbers, so that the influence of the one site on the upper lever becomes
negligible and the spin of the regarded site is completely determined by the a sites
on the level below. This means that we can propagate the order of the spins up
the Cayley tree. We should of course keep in mind that this approach is only made
possible by the special structure of the Cayley tree. If the mass of the spins were not
at the surface or if there were loops in the lattice, then this “one-way” determination

of the spin order would not be possible.
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Let us consider a single site s on level L + 1, which is connected to « sites on the
level L below. Let us furthermore assume, that n < a of these sites on level L are
present and that k£ of them have their spin in the up direction. To ensure again that
the energy is extensive J has to be of order (1/a). Now we can use the Boltzmann

distribution to calculate the probability P, ., that s has spin up:

exp(—(2k — n)J — H)]

Pra(k=n) = o B(@k —n)J — B)] + exp[B((2k = n)J — H)]

exp[—B((2k = n)J — H)]

2cosh[-B((2k — n)J — H)] (2.34)

The probability depends on the difference of the number of up spins k£ and the
number of present spins n. n varies from site to site within the lattice. k varies even
for one site due to the thermal fluctuations. To get rid of this dependence we will
average Pp,, over all possible values of n and k. Naturally every configuration is
weighted with its probability. For a given value of n the probability to have k up
spins is (P)¥(1 — P,)"*, where Py is of course the probability for a single spin being
up on level L; the degeneracy of this configuration is n over k. The probability that
n sites are present is (c)¥(1 — c¢)®~*, where c is again the probability that a single site

is present; and the degeneracy is o over n. Hence the average over Pp,,(2k — n) is:

n

Pra=Y ST | et - Pyt - o
n=0 \ n | k=0\ k
exp|—B((2k = n)J — H)]

2 cosh[—B((2k — n)J — H)] (2:35)

We can do exactly the same procedure for the probability that s has spin down
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M1 = 1- P4, and obviously we will get exactly the same result as in (2.35) except
for a different sign in front of the Boltzmann factor. Thus, the magnetization of s:

mpy = Pry1 — My, becomes

Q
3

i i ETA LR ALt

x tanh [-3((2k — n)J — H)] (2.36)

In this formula we encounter an average over two inter-weaved binomial distri-
butions. In section 2.13 we have already used the fact that a binomial distribution
can be approximated by a Gaussian distribution. The number of Bernoulli trials for
the first distribution is a, which we consider to be big. For the second distribution
the number of trials n varies around the mean value ca with fluctuations of order
va. Thus for big values of o and high and medium dilutions we can approximate
both distributions by Gaussian distributions. The variance of the first distribution is
02 = a(c)(1 — ¢). The second distribution has a mean value of nP;, and a variance

c

0}, =n(P.)(1 — P). Thus (2.36) becomes

1
2mo.op,

/dy exp (—(y - ac)2/20§) /dz exp (—(:c - yPL)2/2opr)

mr4y1 =

x tanh [-8((2z — y)J — H)] (2.37)

where 0, = y(PL)(1 — P_) depends of course on y. But by expanding the
denominator of the second exponential around the mean value of y, one sees that
the linear term is already of order 1/a?. This term is negligible against the con-

stant term of order 1/, so that we can ignore the fluctuations of the fluctuations:
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op, = ca(PL)(1— Pp).

x varies according to a normal distribution around mean value pa. y also varies
according to a normal distribution around yP, which varies itself. Intuitively it is
clear that the difference of these to quantities (2y — a:.) should also vary like a normal
distribution around the reasonable mean value ca(2P — 1). For everybody, who does
not believe in intuition, this can also be shown formally: Making the two-dimensional
coordinate transformation x = 2y —z and g = 2y+z the hyperbolic tangent becomes
independent of the second integration variable . And one can now do the integral

over p. Accomplishing all these calculations carefully - not forgetting the factor 1

from the coordinate transformation - we finally get:

1 (x — ca(2P, — 1))?
Mpy, = \/—%—7;; /dx exp (— 207 ) tanh [3(H — xJ)], (2.38)

where the new variance is ai = 4op, + (2P, — 1)%02. 2P, — 1 = P, — My, can

be substituted by the magnetization on level L, m;. Obviously the Bethe lattice is
bipartite: level L + 1 belongs to one sublattice and level L to the other sublattice.
Assuming that the magnetizations are independent of the specific level we can define
ms; = my4; and mgy = my. Making one further coordinate transformation (2.38)

finally becomes

mg; = \/—12—7F-/dx e~ 1/22*
x tanh [ﬂ (H —cJomsy + x% \/c(l —c)m%, + cPsa(1 — ng))](2.39)

where Jy = aJ, similar to the previous sections.

Let us compare this result to the replica symmetric solution (2.29) in the previous
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section. For big coordination numbers a =~ z and we can see that the results look
similar. The term Psy(1 — Psy) measures the spin fluctuations in sublattice S;. The
big problem is that these fluctuations include the spatial and the thermal fluctuations
of the spin configuration. And there is no obvious way, how we could extract the
Edward Anderson parameter from the expression under the square root. However by
the comparison we can see that this solution contains all the necessary ingredients:
the sublattice magnetizations and their fluctuations as well as an expression for the
fluctuations of the vacancies ¢(1 — ¢). Thus we have a good reason to assume, that
the Bethe mean-field ansatz captures all the essential features of the system.

We will now focus on the limit of T — 0, where we automatically get rid of the
thermal fluctuations and get a solvable set of equations. Before we can do this we

will have to find a way how we distinguish the different phases in the ground state.

2.4.3 An order parameter for the DAFF ground state

In the DAFF ground state every site has a well defined spin value of +1 or —1 and
it makes no sense to define a local magnetization m;. Of course we can again calcu-
late the sublattice magnetizations by averaging over the whole lattice. However the
sublattice magnetizations are zero in the domain state as well as in the paramagnetic
state. Without the local magnetizations one cannot calculate the Edwards Anderson
parameter. So is there a way to distinguish between these two phases in the ground
state?

In the antiferromagnetic state all the spins of one sublattice are up and all spins
of the other sublattice are down. When the antiferromagnetic order starts to break,
clusters of opposite antiferromagnetic order appear and the bonds at the borders of
these clusters are violated. The domain state consists of inter-penetrating clusters
of opposite antiferromagnetic order. A quantity that can be measured in the ground

state is the size of these clusters. Intuitively it is clear that smaller clusters are more
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susceptible to thermal fluctuations than bigger clusters. So let us try the following
approach. As a measurement of the order of the system we take the size of the
biggest antiferromagnetic cluster. Even when the pure antiferromagnetic order is
broken, this cluster may still span the whole systemband will therefore be relatively
stable against thermal fluctuations as the system is heated to finite temperatures.
To get rid of the direct dependence on the size of the system, the size of the giant
cluster is divided by the total number of present sites. That way we measure the
probability that an arbitrary site is in the giant antiferromagnetic cluster. It is clear
that if the system size is taken to infinity, this probability will drop to zero as soon
as the spanning cluster disappears. The investigation of the connected clusters of a
system is the basic problem of percolation theory. Usually the spanning cluster of a
system disappears in a second order transition (see for example [33]).

Of course it is not clear how this new order parameter is exactly connected to the
thermal behavior of the system. However we will see in the next section that it is
very useful to get information about the ground state and the results will help us to

make connections to the finite temperature case.

2.4.4 A Bethe MFT for the DAFF ground state

The ansatz for the Bethe MFT for the DAFF ground state is basically the same as
for the finite temperature case. The spin order is propagated upward in the Cayley
tree. We consider how the spin state of a site s on level L + 1 depends on the spins
of the connected sites on the level L below. Of course now we do not have to use the
Boltzmann distribution and it is convenient to make slightly different ansatz. There
is also the possibility that a site is degenerated, so that we will consider the following
probabilities: P is the probability, that a site is present and has spin up. M is the
probability that a site is present and has spin down. D is the probability that a site

is present and is degenerated. Obviously P + M + D = ¢, where c is again the site
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concentration. Thus, the condition that a site on the lower level has to be present
to influence s is already included in these probabilities. Denoting the number of up
spins on level L by [ and the number of down spins by k the energy contribution of
sis Eyp = (I — k)J — H or Egoyn = —((I — k)J — H). The spin of s is up, if E,p <0
and down, if E,, > 0. If E,,, = Egoun, then the spin is degenerated. One can see that
field values H, which are a multiple of J, play a special role. Only for H = hJ, where
h is an integer, there is the possibility of degenerated nodes. For (h—1)J < H < hJ
all these degenerated nodes have spin down, for hJ < H < (h + 1)J they have spin
up. The sites which are not degenerated at H = hJ have the same spin state in the
whole range (h — 1)J < H < (h + 1)J. Thus, the spin configuration of the lattice
does only change at these special values of H. Therefore we will first focus on them.

The spin of s will be up, if K — ! — h < 0. The probability that s has spin up is
the sum of the probabilities of all the configurations on level L, where the inequality

above is fulfilled. The probability that s is present and has spin up therefore becomes

a k+h
Pry=c) > C(k,1)MfPL D+, (2.40)

k=0 (=0
where C(k,1) is the degeneracy of having a configuration of k£ down spins, [ up
spins and a — k — | degenerated spins:

—rrl§—:—1 ifa—k—-1>0
C(k,1) = BHams d (2.41)

0 else

From now on we will assume that the probabilities are independent of the level,

so that we can drop the level index. The probability that s has spin down is

M=cd > C(k1)M*P' Do+ (2.42)

k=0 l=k+h+1

And the probability that s is degenerate is
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D=1-c+c) C(k k+m)M*PrthDo-2k=h (2.43)
k=0

Let us now consider the probabilities that a site which is present has certain spin
state: P.M and D. Wehave P=cP,M =cMand D=1-M—-P=1-c¢(M+P) =

1 — ¢+ ¢D. For these probabilities we get the recursion formulas:

a k+h-1
P=Y"Y" C(k1)(cM)*(cP)(1 - c+cD)**, (2.44)
k=0 =0
M = Za: i C(k,1)(cM)*(cP)'(1 = c + cD)*~*, (2.45)
k=0 l=k+h+1
D= a C(k,k + h)(cM)*(cP)***(1 — ¢ + cD)*"%h (2.46)
k=0

One can easily check, that the validity condition M + P + D = 1 is fulfilled. We
would have gotten these equations immediately if we had started by considering the
bond diluted case. The bond concentration in the Bethe lattice is exactly the same
as the site concentration ¢, because in the construction of the Bethe lattice one adds
exactly one bond for every new site. Thus we can see that for the Bethe lattice site
dilution and bond dilution are equivalent.

Physically relevant is the case of continuous H. We can get the probabilities for
hJ < H < (h+1)J simply by adding D to P. This corresponds to recursion relations,
where D = 0 and the second sum in (2.44) goes go k + h instead of k + h — 1. From
now on I will focus on this case.

These equations can be solved by iteration. The solution for « = 7 and h = 2,
that is 2J < H < 3J, is shown in figure 2.6. For a low site concentration the
magnetic field is dominant and the magnetizations of both sublattices are the same.

As soon as the concentration reaches a certain value, the iteration does not converge
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Figure 2.6: Solutions of the recursion relations for P and M fora =7 and 2J < H <
3J.

against a single value any more, but oscillates between two values. This is the onset
of antiferromagnetic order. The sublattice magnetizations become different. That is
why the probabilities change between two values from level to level.

However this oscillating solution is problematic, because it must be unstable for
the following reason. Since we propagate the order strictly upward, the sites on level
L are completely independent of each other. That is why they cannot be organized
as one sublattice. More likely we expect that both solutions for the probabilities
come together on the same level. The natural way to take this fact into account is to
average over the different sublattice probabilities during each iteration step. Thus,
we have to make a different ansatz for the region, where the sublattice symmetry is
broken. In order to do this it is convenient to consider slightly different probabilities.

Let us divide the Bethe lattice into sublattices S1 and S2; all even levels belong
to S1, all odd levels to S2. There are two possible types of antiferromagnetic order:

All spins of S1 are up and all spins of S2 are down and the other way round. Let
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us denote the probability that a site s follows the first type by A and the probability
that it follows the other type by B.

If s is on sublattice S1 then the recurrence relation for A is

a k+h

A=Y C(k,)(cA)¥(cB)'(1 - )+ (2.47)

k=0 I=0

because on S1 Al is favored by the field and hJ < H < (h+ 1)J. If s is on S2

then the field favors the opposite order, so that

A= f: za: C(k,)(cB)*(cA)'(1 = c)>~* (2.48)

k=0 l=k+h+1

Now we can easily average over these two different cases:

A = %Z Z A)¥(cB)! (1 — ¢)*k!

C(k,1)(cB)*(cA)(1 = c)o~*+ (2.49)

B is then simply B =1 — A. The solution for o = 7 and h = 2 is shown in figure
2.7.

The iteration now always converges against a single value. The solution for A
and B are shown within the same plot. There is a big regime where both types of
antiferromagnetic order are present with the same probability so that the staggered
magnetization is zero. As soon as the concentration reaches a critical value long
range order appears in a discontinuous jump. Which cluster disappears depends on
the starting values of the iteration.

We can now use these probabilities to get a recursion formula for the order pa-
rameter for the DAFF ground state: the probability that a node is in the giant

antiferromagnetic cluster (GAC). To do this it is useful to introduce some new no-
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Figure 2.7: Solution for the recursion relations for A and B for a =7 and 2J < H <
3J.

tations: The probability that a node is in the giant cluster with antiferromagnetic
order corresponding to A is denoted by A.. The probability that a nodes follows the
order of type A but is not in the corresponding giant cluster is A, = A — A,. We
define the analogous probabilities for the other order type B: B = B, + By.

We can calculate A; in the following way. The site s is not in the giant cluster, if
all its connected neighbors on level L, which have follow order type A are also not in

the giant cluster:

4, = %Z 3 Clk 1) (cA)(eB)(1 - o)k
k=0 l=k+h+1
1 a k+h
+2 C(k, 1)(cB)*(cA,) (1 — )2+ (2.50)
2I&::O 1=0

Analogously,
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H < 3J.

1S ST Clkh(eBF(ea) (1 - ot
2 k=0 l=k+h+1
1 a k+h
= Ck, 1)(cA)*(cB,) (1 — ¢)*~+ (2.51)
k=0 =0

From A; and B; Ay and B, are easy to calculate. The results are shown in

figure 2.8.

One can clearly distinguish three different phases. For high concentrations the

whole lattice is organized in antiferromagnetic long range-order. As the concentration

decreases this order is suddenly broken and a cluster of opposite antiferromagnetic

order appears. In this phase the whole lattice consists of two spanning antiferro-

magnetic clusters. As the concentration decreases further these two giant clusters

disappear in a second order transition. All ordered clusters of the lattice have then

only finite size.
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Figure 2.9: Solution of the recursion relations for A, for « =7 and J < H < 2J as
well as 3J < H < 4J

The standard percolation threshold of the Bethe lattice is ¢ = 1/a = 0.14. We
can see that the second transition lies above that value at ¢ = 0.26. Thus, this
transition is an combined effect of the loss of antiferromagnetic order and the loss of
connectivity. At this transition the number of spins that have to be flipped to flip a
whole cluster reduces from O(N) to O(1). Thus it is reasonable to assume that this
transition in the ground state corresponds to the transition from the domain state to
the paramagnetic state at small finite temperatures.

Figure 2.9 shows the results for J/ < H < 2J and 3J < H < 4J. One can see that
the transition from the one giant cluster to the two giant cluster state becomes smooth
for h = 1. For h = 3 the state with just one giant cluster completely disappears.

However, for values of H that are close to zJ the model becomes pathological.
For H > 2J all the spins are flipped into ferromagnetic order. Thus, we expect for
big values of H also the existence of a ferromagnetic giant cluster. This feature is
not captured by the presented model. Due to the average over both sublattices in
equation (2.50) the loss of antiferromagnetic order as an effect of the emergence of
ferromagnetic order is not predicted correctly.

This problem does not appear in the first ansatz (2.44), since the emergence of
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ferromagnetic order can be described in terms of P and M. In the region where both
sublattices are symmetric, this ansatz is working correctly. Thus, we have to combine
these different approaches to get an accurate description of the full phase diagram.
The probability that a node is in the GAC Pg4c cén also be calculated from M
and P. We introduce similar notations as before: P, is the probability that a site
has spin up and is on the GAC. P, is the probability that a site has spin up and is
not on the GAC. M, is the probability that a site has spin down and is on the GAC.
Finally M, is the probability that a site has spin down and is not on the GAC. Of
course we have the relations P = P, + P, and M = M, + M. Pgac is obviously

Pgac = Py + M. M, and P, can be calculated analogous to A, and B;:

a k+h
P, =Y ") " Ck, 1)(cM)*(cP) (1 — ) (2.52)
k=0 =0
M, = Xa: z C(k,1)(cM)*(cP,)'(1 = c)o~* (2.53)
k=0 l=k+h+1

The results for h = 2 are shown in figure 2.10. One can see that Pg4c goes to zero
at ¢ = 2.6, the same value that we have got from the other calculation. For bigger
fields however the results deviate. At ¢ = 3.9 the sublattice symmetry is broken, as
we have seen before.

We can now combine the different approaches to get a full and accurate picture
of the phase diagram. A, and B, are appropriate order parameters to describe the
antiferromagnetic phase and the transition to the domain state. For higher fields
the solution with A, and B, becomes invalid in the domain state. P and M are
appropriate order parameters to describe the first emergence of the GAC until the
sublattice symmetry is broken. Between the symmetry breaking of the sublattices
and the onset of antiferromagnetic order there is a region, where both approaches are

not really accurate. This indicates that the behavior of the system in this region may
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Figure 2.10: Solution of the recursion relations for Pgac fora =7 and 2J < H < 3J.

be more complex, than predicted from the A, - By, solution. The situation is similar
as in the replica calculation, where one has to choose different order parameters for
the spin glass phase.

Figure 2.11 shows the resulting phase diagram, which we get by solving the recur-
rence relations for all possible values of h and reading off the transition points. The
phase boundary between the antiferromagnetic state and the domain state has been
taken from the A,.-By solution, the phase boundary between the paramagnetic state
and the domain state from the P-M solution. The line that divides the domain state

marks the onset of the symmetry breaking between the sublattices.

2.5 Conclusion

Let us summarize the results from the different mean-field calculations. The DAFF

phase diagram exhibits three different phases: the antiferromagnetic phase, the para-
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Figure 2.11: Phase diagram from the Bethe lattice MFT with o = 7. AF stands
for the antiferromagnetic state with one giant cluster, DS for the domain state with
two giant clusters, and PM for the paramagnetic state without any spanning clusters.
The line which divides the domain state marks the onset of the symmetry breaking
between the sublattices.
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magnetic phase and an intermediate phase. In the intermediate phase the replica
symmetry is broken, which is the classical feature of a spin glass phase. The local
mean field calculations have shown that in this phase the lattice consists of domains
of opposite antiferromagnetic order. We have argued that an appropriate order pa-
rameter to describe these phases in the ground state, is the probability that a node
is in the giant antiferromagnetic cluster. On the Bethe lattice we have found that
there is a phase with one giant cluster, a phase with two giant clusters and a phase
with only finite-sized ordered clusters. These results shed a new light on the physical
reasons for the DAFF phase transitions at low temperatures. Competing antiferro-
magnetic clusters percolate through the lattice. The infinite size of these clusters
makes them stable against thermal fluctuations. As the infinite clusters disappear
the system becomes paramagnetic. Both transitions can therefore be understood as
percolation transitions. In the antiferromagnetic - domains state transition one clus-
ter of opposite antiferromagnetic order percolates through the ordered lattice. In the
second transition two spanning clusters disappear.

All the results of this section are based on mean-field assumptions, which are only
valid in higher dimensions. In the next chapter I will present the results of exact
ground state simulations in three dimensions, so that the accuracy of the mean-field
results can be tested.

The mean-field technique on the Bethe lattice, which has been presented in the
last section, offers many possibilities for further investigations. Using the ansatz of
section 2.4.2 one could also try to investigate the giant clusters at finite temperatures.
Furthermore the general method can also be applied to other systems. The big
advantage over the replica method is that all necessary assumption can be based on

physical considerations.
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Chapter 3

Numerical simulations of the

DAFF ground state

This chapter presents the numerical simulations of the DAFF ground state. The
first section introduces the algorithm which has been the basis for the calculations.
Section 3.2 presents a schematic study for the cubic and the BCC lattice which results
in the phase diagrams for these lattices. In the last section 3.3 the exact ground state

configurations are compared to the results of a local mean-field simulation.

3.1 An effective algorithm for the ground state cal-
culation

The ground state calculation of the RFIM and the DAFF on a bipartite lattice can
be mapped to the maximum flow problem, a classical combinatorial problem from
computer science. Since there are effective algorithms that solve the maximum flow
problem, this mapping gives us the possibility to calculate ground states in polynomial
time. This was first introduced by Barahona in 1985 in [4], but similar mappings

have already been used since the mid-seventies especially by the computer science
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community. The mapping is based on the maximum flow - minimum cut theorem,
one of the most important theorems for flow algorithms, which was found by Ford
and Fulkerson [14]. A comprehensive review of mappings from a various number of
disordered systems problems - including RFIM and DAFF - to flow problems is given
in [3].

In this section I will review the mapping for the DAFF and RFIM, which is also
the essential groundwork for the program, which I have used for my own numerical
calculations. As a preparation I will start with a short introduction to the max flow
problem and show the max flow - min cut theorem. Then I will demonstrate the
mapping of the RFIM to maximum flow and describe the algorithm for the ground
state calculation that follows from it. Finally I will present how a DAFF system can
easily be mapped to a ferromagnetic system in a staggered field, so that the algorithm

does also apply to the DAFF.

3.1.1 Maximum flow and minimum cut

In the Maximum Flow problem we ask for the maximum flow through a network with
limited bond capacity. A network is a directed Graph G(V, A) with a set of nodes
V={i|t=1...N} and a set of arcs A = {(¢,5) | i =1...N,j =1... N}, where
each arc has a capacity u;; > 0. Each arc carries a flow z;; from ¢ to j, that has to

satisfy the following constraint:

V(i,5)eAd 0 < x5 < wyj, (3.1)

which just states that the flow may not exceed the capacity of the arc.
The flow springs from a distinguished node, the source s, and ends at another
distinguished node, the sink ¢t. No other nodes can inject or carry out flow. This is

expressed in the following condition:
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f ifi=s
Z Tij — Z Tji = —f zf@.—_-t (32)

{7l(i,3)eA} {7l(G)eA}
0 else

A flow that satisfies (3.2) is called feasible. The aim of the Maximum Flow problem
is to find the maximum feasible flow f of a given network.

Obviously, even in a network with a maximum flow not all of the arcs have to
carry their maximum possible flow. More likely there will be a “bottleneck”, a narrow
passage in the network, which determines the maximum flow. This intuitively clear
fact is stated formally by the very useful min cut - max flow theorem.

Let us first clarify the terms. A cut is a partition of the node set V into two
subsets S and T = V' \ S, denoted by (S, T]. We are considering the case, where seS

and teT, which is called s-t-cut. The capacity of a cut is defined as

ulS, T = Y uy, (3.3)

(3,9)e(S,T)
where it is important to note, that sum goes only over the arcs, which go from S
to T. A minimum cut is an s-t-cut, whose capacity is not bigger than those of all
other s-t-cuts. Thus the minimum cut is the formal description of the bottleneck of
the network. Of course the minimum cut does not have to be unique, there may be
several partitions whose cut capacity has the same minimal value. The theorem of

Ford and Fulkerson [14] is now easy to state and to prove.

Theorem The mazimum flow of a given network is equal to the capacity of its

minimum cut.

proof Let us consider a given feasible flow z;; of total value f and an arbitrary

s-t-cut (S, T]. Summing up the feasibility condition (3.2) for every node that is in S
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we get the flow f, that springs from the source. On the other hand the flow of all

arcs, whose head and tail are in S cancels out. So that we finally get

fzz Z Tij — Z Zji | = Z Tij — Z Zji. (3.4)

€S \ {7l(i.j)eA} {71(G:9)eA} (1.9)e(S,T) (7:0)e(T.S)

Since 0 < z;; < u;; it immediately follows that

f< Z ui; = u[S, T (3.5)

(1,5)e(S,T)

Since (3.5) holds for all possible cuts, the flow f has to be less or equal than the
minimum cut. Thus every s-t-cut, whose capacity is fully used, has to be a minimum
cut and the flow it carries is the maximum flow. On the other hand the flow from s
to t can always be increased, if the flow is less than the minimum cut capacity, since
all cuts have free capacity. Hence the maximum flow has to equal the minimum cut
capacity.

An immediate conclusion of the max flow - min cut theorem is that we can find
a minimum cut of a graph by finding its maximum flow. We only have to look for a
set of arcs with maximal flow, which separates s from ¢. This can be done effectively

by a breadth first search starting at s or t.

3.1.2 Mapping to maximum flow

Now we are ready to connect the maximum flow problem to the ground state calcu-
lation. We will start by minimizing a Hamiltonian of the form of the RFIM. Below
we will see that for a bipartite lattice it is easy to bring the DAFF Hamiltonian into

this form.

H=-J) S:S—-) hS, (3.6)

<tj> i

64



The first sum goes over all neighbors of the lattice and h; is the magnetic field at
site 1.

Now it is useful to interpret the lattice of spins as a Graph G(V, A). Every spin is
a site in the graph and every coupling between the neighbors ¢ and j is represented
by an arc (3, j)eA with capacity J. This means of course that the arcs are symmetric.
To include the magnetic field we add two new nodes s and ¢ and connect them to all

of the already existing nodes in the following way:
e If h; > 0 add an arc (s,i) with capacity h;.
e If h; < 0 add an arc (i,t) with capacity |h;|.

Fixing the spin of s up and the spin of ¢t down we can write the Hamiltonian (3.6) as

H=->" J;ssS, (3.7)

(i.7)eA
where A is the arc-set of the extended graph and J;; is the capacity of arc (¢, j).
Now let S be the set of all sites with spin up and T the site set with all spins down.

Then we can rewrite (3.6) as

H=% = Ji+2 Y gy (3.8)

(1.3)eA (i,5)e(S.T)

The first term would be the energy of the system, if all the bonds had been
satisfied. For all the bonds, which are in fact not satisfied the second term adds the
corresponding coupling energy, which the system has to pay for the violation. The
two in this term takes into account, that we have already abstracted this energy in
the first term. The second term is exactly twice the capacity of the cut [S,T] and
obviously H is minimal if this term becomes minimal. Furthermore s has to be in S
and t has to be in T since their spins are fixed. Thus the spin configuration of the

ground state can be found by finding the minimum cut of the extended Graph. The
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minimum cut separates the set of all up spins from the set of all down spins. All
sites, which are in the same set as s have spin up and all in the the T set have spin
down. As shown above the minimum cut can be found by calculating the maximum
flow of the lattice. This is important, because there alfeady exist efficient algorithms
that solve the max flow problem.

The most efficient and most commonly used algorithm is the preflow-push algo-
rithm, which was introduced by Goldberg and Tarjan [15]. It comes in variety of
versions. The theoretical upper bound is O(|V|?), but practically most of the algo-
rithms do much better. A comprehensive overview over the existing flow algorithms
is given in [2]. A more compact review already focused on the physics applications
is given in [3]. Usually one can take advantage of a wide range of already existing
implementations. A good tip is Goldberg’s implementation of his own algorithm. The
program, which I have used for the ground state calculation and which was written
by Thomas Barthel uses the Flow algorithm from the LEDA library [22]. LEDA is
very convenient, because it also offers a wide range of graph data type objects.

The following description in “pseudo code” summarizes how the ground state of

a given lattice sample can be calculated.

Create the following graph:

{Add one site i for every spin

Add one arc (i,j) with capacity J for every coupling J_ij
Add a source node s and a sink node t

For every h_i>0 connect s to i with capacity h_i

For every h_i<0 connect i to t with capacity |h_il}
Calculate the maximum flow of the graph.

//Do a breadth first search for the nodes,
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//which are in the same set as s:

Put s into a node queue L

While(L is not empty)

{ Take the first node n of L

set the spin of n up

for all arcs a of n

{ if (flow through a is not maximal)
add its target node to the List L }

}

Do the same breath first search starting at t

and set the spin of all found nodes down.

All nodes, which have not been found by any

of the breadth first searches, are degenerate.

The first breadth first search finds the minimum cut with the minimal number of
up spins. Thus these spins have to be down in all possible ground states. The second
search finds the minimum cut with the minimal number of down spins. For the spins
that where not reached by the searches, there are ground states where they are up

and ground states where they are down. Thus they are degenerate.

3.1.3 Transforming the bipartite DAFF into a ferromagnet

The algorithm can be applied to the DAFF by mapping it to ferromagnet in a stag-

gered field. A necessary precondition for this mapping is that the lattice of the DAFF
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is bipartite and can be divided into sublattice S1 and sublattice S2 as described in
the introduction. Let us now make the following transformation of the spin values:
+S! if site i isin S1
S,' = (39)
—S; if siteiisin S2
The spins of sublattice S2 are flipped. The bipartite condition guarantees that
spins of S2 are only coupled to spins of S1. Thus, it is easy to express the DAFF

Hamiltonian in terms of the new spin values:

H= Z JéiCjSiSj - ZHfiSi = - Z JC,'CijS;- - Zfihis,' (310)

<ij> i <ij>
where J > 0 and h; is a newly introduced staggered field:
H ifiisin S1
—H ifiisin S2
The transformed Hamiltonian can now be minimized by the algorithm described
above. Afterward the spins of sublattice S2 have to be flipped, so that they represent

the original spins of the DAFF.

3.2 Results of the ground state simulation

The algorithm which has been presented in the last section enables us to calculate
the spin configuration of a given lattice. In this section we will take advantage of this
algorithm to measure the order parameters of the DAFF ground state for concrete
lattice samples. This enables us to compare the results of the mean-field theory to
simulation results which consider the concrete geometry of the lattice and do not
depend on any approximations.

I start with a short introduction to the calculation process and example results
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of the square lattice. I will then present schematic studies and establish the phase

diagrams for the cubic lattice and the BCC lattice.

3.2.1 Measurement of the order parameters

In the mean-field chapter we have seen that an efficient criterion to characterize the
different phases of the DAFF ground state is the existence of giant ordered clusters.
For a given spin configuration it is easy to find the size of the ordered clusters.
Practically on a computer this can be done by a breadth first search.

The results of the mean-field theory predict that there is a state with one giant
antiferromagnetic cluster, a state with two giant antiferromagnetic clusters, and a
state where no ordered clusters span the whole system. Therefore I measure the size
of the biggest antiferromagnetic cluster (GAC1) and the size of the second biggest
cluster (GAC2). The results are then normalized by the total number of present sites,
so that effectively we measure the probability that a present site is in the GAC1 or
GAC2, respectively. To capture the onset of ferromagnetic order due to high magnetic
fields I also measure the probability that a site is in the biggest ferromagnetic cluster
(GFC). Furthermore I measure the sublattice magnetizations and the fraction of
degenerate sites.

The simulation process is the following. For a given sample of the linear size L and
the applied magnetic field H the site concentration c is varied by randomly taking
out more and more of the magnetic sites. The order parameters are measured after
each small step of c. This is done n times, so that the results can be averaged. The
standard deviation is a measurement for the fluctuations of the order parameters in
different samples.

Figure 3.1 shows the results for a square lattice with L = 400 and H = 1.0J.
There is no sharp transition and no stable state with two giant clusters. This has

been predicted by the Imry and Ma argument, which has been presented in the
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Figure 3.1: Square lattice with L=400 and H=1.0J averaged over 10 samples. The
ordinate shows the probability that a site is in the biggest antiferromagnetic cluster
(GAC1), the probability that a site is in the second biggest cluster (GAC2) and the
fraction of degenerate sites (deg. sites).

introduction. Furthermore it follows from the Imry and Ma argument, that the small
regime of perfect antiferromagnetic order at high concentrations ¢ < 1 is unstable. It
will vanish as the lattice size is increased to infinity. The square lattice is therefore a
rather uninteresting case for the establishment of the phase diagram.

In three dimensions however the phase tra;lsitions should appear. In the following
sections I present a detailed study of the transitions in the cubic and in the BCC

lattice.

3.2.2 The cubic lattice

Figure 3.2 shows the results for one sample of a cubic lattice of length L = 70
and H = 3.5J. The results looks very similar to the prediction of the mean-field
theory. At ¢ = 0.813 the antiferromagnetic order is suddenly broken and a second

giant cluster of opposite antiferromagnetic order appears. However, the second giant
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Figure 3.2: Cubic lattice with L=70 and H=3.5, one sample. The ordinate shows
the probability that a site is in the biggest antiferromagnetic cluster (GAC), the
probability that a site is in the second biggest cluster (GAC2) and the fraction of
degenerate sites (degs).

cluster is not stable. In some regimes of the concentration it completely disappears.
At ¢ = 0.55 the first giant cluster disappears in a second order transition. This leads
to the following physical picture. At the first transition the half of the GAC flips
to the opposite antiferromagnetic order. The flipping domains can all be connected
and form a second giant cluster or they can be disconnected. The second transition
is a percolation transition due to the further loss of antiferromagnetic order and
connectivity. Even though H is not a multiple <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>