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ABSTRACT

INVARIANT VECTOR SUBSPACES OF L WITH APPLICATIONS

By

David Allen Redett

For a majority of this dissertation, we study invariant vector subspaces of the
Hardy and Lebesgue spaces for both the circle and torus. When studying invariant
vector subspaces, some kind of completeness is required of our invariant vector sub-
space. Classically, one only considered those invariant vector subspaces that were
closed. In this dissertation, we take a different approach. Rather than studying
those invariant vector subspaces that are complete in the metric induced from the
norm on the larger space, we consider those invariant vector subspaces that can sup-
port any norm that makes them complete and a Hilbert space. This idea was first
introduced by de Branges in his proof of the famous Bieberbach conjecture. He con-
sidered those invariant vector subspaces of H%(T) that could support a norm that
would make them Hilbert spaces. Since then, these spaces, affectionately called de
Branges spaces, have been studied by Dinesh Singh, U. N. Singh, Vern Paulsen and
Sanjeev Agrawal. These gentlemen made many nice contributions to this area. We
also begin making connections to Strongly Harmonizable Stable Fields. We hope in
the future some of the work from this dissertation may be used to help completely

understand the “prediction” of these random fields.
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Chapter 1

Background

1.1 Preliminaries

To keep this thesis some what self contained we include some basis definitions and
theorems used throughout. The information in this section can be found in any stan-

dard text on real or functional analysis. For instance, see [19].

Let C denote the complex plane.

Definition 1 A complex vector space is a set V, whose elements are called vec-
tors and in which two operations, called addition and scalar multiplication, are de-

fined, with the following algebraic properties:
1. z+y €V wheneverz, y € V. Further,z+y=y+x.
2. z+4+(y+2)=(z+y)+ 2 whenz,y,z € V.
3. 0€V suchthatzx+0==zx forallz € V.

4. To eachx € V there corresponds a unique vector —x € V such that x+(—x) = 0.



5. ar € V whenever a € C and x € V. Further, 1z = z.
6. a(Bz) = (aB)x fora, € C and z € V.
7 a(z+y)=ar+ay, (a+B)x=azx+ Pz fora, € C and r,y € V.

A subset M of a complex vector space V is called a vector subspace of V if
M is itself a complex vector space, relative to the addition and scalar multiplication

which are defined on V.

Definition 2 A complez vector space X is said to be a normed linear space if to
each z in X there is associated a nonnegative real number ||z||, called the norm of z,

such that
L ||z +y|| < |lz|| + llyl| for all z and y in X,
2. llaz|| = |a|llz|| if z is in X anda € C,
3. ||z|| = 0 implies z = 0.

If we define d(z,y) = ||z — y||, then it is easy to check that d is a metric on
X. A Banach space is a normed linear space which is complete in the metric d.

Completeness, then, means if {z,}.>0 is a sequence in X such that
lzn — zm| — 0

as n, m — oo, then there exists an z in X such that
lzn —z|| =0

as n — o0o.
The simplest example of a Banach space is C with norm |z| for z € C. The
Banach spaces that are of interest in this dissertation are the LP-spaces, which we

define now.



Definition 3 Let Q be an arbitrary measure space with a positive measure p. If

1 <p< oo andif f is a compler measurable function on 2, define
1

(falfIPdu)? 1<p<oo

inf{a : u(f‘l((a,oo])) = O} p=00

and let LP(Q2, p) consist of all f for which

I1f1l> =

”f”p < 0.

We call || f||, the LP-norm of f.
If a Banach space X has a norm that satisfies the parallelogram law
Iz +ylI” + llz = yll* = 2(ll=(1* + l9]1%),

we call X a Hilbert space. In such a case, we may define a sesquilinear functional on

X by
1 2 L 12 12
(z,9) = (e +yllI" = llz = ylI¥) + iz (lz + |l = [l= = ][

This sesquilinear functional is called the inner product for the Hilbert space A and

llzll = v/ (z, z).

C is also the simplest example of a Hilbert space with inner product given by
(21, 22) = 2,73 for 21,2 € C. We point out that of all the LP(f, u) spaces, L?(, p)
is the only Hilbert space with inner product given by (f,g) = [, fgdu.

Hereafter, # will always denote a Hilbert space.

If (z,y) = 0 for some z,y € H, we say that z is orthogonal to y, and sometimes
write £ L y. If M is a vector subspace of H, let M~ be the set of all y € H which

are orthogonal to every x € M.



A set of vectors u, in H, where a runs through some index set A, is called
orthonormal (o.n.) if it satisfies the orthogonality relations (uq,ug) = 0 for all
a#B,a€ Aand 8 € A, and if it is normalized so that ||us|| = 1 for each a € A.

A vector subspace M of a Banach space X is called a subspace of X if M is
itself a Banach space, relative to the norm which is defined on A. The following

theorem gives us some very important properties of subspaces of a Hilbert space.
Theorem 1 Let M be a subspace of H.

1. Every x € H has a unique decomposition

z=Pr+Qz
into a sum of Pt € M and Qz € M*.

2. Pz and Qz are the nearest points to  in M and M1, respectively.

3. The mapping P: H — M and Q : H — M* are linear.

4 Izl = [|1Pz|* + [|Qzl|>.
Corollary 1 If M # H, then there exists y € H, y # 0, such that y L M.

Definition 4 A linear transformation of a complez vector space V into a complez

vector space W is a mapping A of V into W such that
Alaz + By) = aA(z) + BA(y)

for all z,y € V and for all a,B3 € C. In the special case that V = W we call A a

linear operator.



Consider a linear transformation A from a normed linear space X" into a normed

linear space ), and define the norm of A by
IAll = sup {[|Az]| : z € &, |ll| < 1}.

If ||A]]| < oo, then A is called a bounded linear transformation. We denote by
B(X,)) the collection of all bounded linear transformations from X to Y. If X = ),
we simply write B(X).

Recall that H denotes a Hilbert space. We call A € B(#) an isometry if
IA(2)|| = ||z|| for all z € H.
An isometry A € B(H) is called a shift or pure isometry if

A*(#H) = {0}

18

and unitary if the range of A is H.
Definition 5 A vector subspace M of H is invariant under A € B(H) if
A(M) C M.

We say it is simply invariant if the above containment is strict. (i.e., A(M) C M,

but A(M) £ M.)

A subspace M of H reduces A € B(H) if both M and M+ are invariant under
A.

Definition 6 IfA € B(H), then the adjoint of A, denoted A*, is the unique operator
on H satisfying

(A(z),y) = (z,A*(y)).

forallxz and y in H.



For Ay, A, € B(H) we say A; and A; are doubly commuting if A; commutes
with A, (i.e., AyA2 = A2A;) and A, commutes with A} (Note: A; commuting with

A} is equivalent to A, commuting with A}).

1.2 Terminology and Notation

We let U and T denote the unit disc and unit circle in the complex plane, respectively.
The Hardy space HP(U), (1 < p < o0) is the Banach space of holomorphic

functions over U which satisfy the inequality

sup [ 17(r)lP dm(e) < oo

0<r<1

where m denotes normalized Lebesgue measure on T. The norm || f||, of a function

f in HP(U) is defined by

1/p
151, = sup, [ rCeran©)

When p = 2, we have a Hilbert space and the norm can be simplified. For f in

H?(U) with Taylor series 3%, f(n)z" the norm simplifies to

o 1/2
1£lls = (go lf(n)lz) .

The Hardy space H*°(U) is the Banach space of holomorphic functions over U

which satisfy the inequality
sup | f(z)] < oo.
2€U

The norm || f||o of a function f in H*°(U) is defined by

| fllo = sup|f(2)I-
z2eU



It is well known (see [19]) that every function in H?(U), (1 < p < oo) has a
nontangential limit at [m] almost every point of T. Let f* denote the boundary

function of an f in H?(U); then
f* € H(T) = span™" ™™ {¢" : n > 0}.

It is also know (see [19]) that f can be reconstructed by the Poisson integral as well

as the Cauchy integral of f*. Further,

1l = 1171l

where the second norm is the LP(T, m) norm. For this reason, we identify H?(U)

and HP(T) and no longer distinguish between f and f*. Therefore, these Banach

spaces of holomorphic functions H?(U) may be viewed as a subspace of LP(T,m).
For f in LP(T) = LP(T,m), S will denote the operator of multiplication by the

coordinate function. That is,

A good part of this dissertation is spent studying vector subspaces of L?(T') invariant
under S.

We let C? denote the cartesian product of two copies of C. The unit bidisc in C?
is denoted by U? and the distinguished boundary T2, where U and T are the unit
disc and unit circle in the complex plane, respectively.

The Hardy space HP(U?), (1 < p < oo) is the Banach space of holomorphic

functions over U? which satisfy the inequality

sup |, |f(r&, &) [P dma(&1,&2) < 00

0<r<1
where my denotes normalized Lebesgue measure on T2. Note, holomorphic here

means holomorphic in each variable. The norm || f||, of a function f in H?(U?) is



defined by
1/p
lfll, = sup (/ |f(7‘fl77‘§2)|pdm2(fl,§2)> .
0<r<1 \ JT?

When p = 2, we have a Hilbert space and the norm can be simplified. For f in
H?(U?) with multiple Taylor series 3", ,,>¢ f(n,m)27z* the norm simplifies to
) 1/2
1= (3 1 mp)
n,m>0
The Hardy space H*(U?) is the Banach space of holomorphic functions over U?

which satisfy the inequality

sup |f(z1,22)| < o0.
(21,22)€U?

The norm || f||o of a function f in H*(U?) is defined by

Iflle = sup_[f(z1,22)].

(21,22)€U?
It is well known (see [18]) that every function in HP(U?), (1 < p < o00) has a
nontangential limit at [m;] almost every point of T2. Let f* denote the boundary

function of an f in HP(U?), then

f*e€ HP(T?) = spaan(Tz’m’){f?fg‘ in,m > 0}.

It is also know (see [18]) that f can be reconstructed by the Poisson integral as well

as the Cauchy integral of f*. Further,

1fllp =111l

where the second norm is the LP(T?,m,) norm. For this reason, we identify H?(U?)
and H?(T?) and no longer distinguish between f and f*. Therefore, these Banach

spaces of holomorphic functions H?(U?) may be viewed as a subspace of LP(T?,m).



For f in LP(T?) = LP(T?,m,), S; and S, will denote the operators of multiplica-

tion by the first and second coordinate functions respectively. That is,

S1(f)(z1, 22) = 21 f(21, 22)

and
S2(f) (21, 22) = z2f (21, 22)-
A good part of the remaining portion of this dissertation is spent studying vector

subspaces of LP(T?) invariant under S; and S,.

1.3 Hilbert Spaces Contained in Banach Spaces

We say a Hilbert space H is contained in a Banach space X if H is a vector subspace

of X. If further, there exists a 0 < C < oo such that
llzllx < Cllz|l%

for all z in H, we call # boundedly contained in X. If C' = 1, we say that H is
contractively contained in X.

We give some examples to illustrate the concept.

Example 1 L?(T) is contractively contained in LP(T) for 1 < p < 2. Similarly, for

the Lebesque spaces on T2. A

Example 2 If X is a Hilbert space, then any subspace of X is contractively contained

mX. A

Example 3 For perhaps a more interesting ezample take X = H*(T) and H =

gH?%(T) where g is in H*(T) with norm on H given by

g fllz = 111l



for all f in H?(T). By the definition of the norm on H, H is clearly a Hilbert space.
Since g is in H®(T), H is clearly a vector subspace of H*(T). Further we point out

that

l9f1l2 < ligllooll fll2 = llglloollg fl3:-

So, H is always boundedly contained in H*(T) and is actually contractively contained

in H¥(T) if [lgllo <1. A

Alternatively, we can describe this idea using operator theoretic terminology.
Let A be a bounded operator from a Hilbert space K into a Banach space X.

Define H 4 to be the range of A in X and equip H 4 with the inner product given by

(AI, Ay)’HA = (1‘, y)lC

with at least one of z, y orthogonal to the Ker(A). Then H, is boundedly contained

in X since

Azllx < [|Allllzllc = [[Alll| Az]l2,-

Further, H 4 is contractively contained in X', if A is a contraction. Every Hilbert
space ‘H boundedly contained in X" is such an operator range; it is the range of the
inclusion map of # into X. We note that if X is a Hilbert space and A is a partial
isometry, then H 4 is an ordinary closed subspace of X since for all z orthogonal to
the Ker(A) we have

Az[|x = [|zllc = [| Azl

Conversely, if H 4 is an ordinary subspace of X, then A is a partial isometry.

In our above examples, for
Example 1 X = LP(T), H=L*(T) and A=1. A
Example 2 X is any Hilbert space, H is any subspace and A=1. A

10



Example 3 X = H*(T), H = H*(T) and A = My, where My is the operator of

multiplication by g. A

11



Chapter 2

Invariant Vector Subspaces of

L(T)

2.1 Known Results

We begin by discussing vector subspaces of H?(T) that are invariant under S. The
first result is due to Beurling. He characterized all invariant subspaces of H?(T).

Before we give his characterization we need a definition.
Definition 7 A function ¢ in H*(T) is called tnner if |¢| =1 a.e. on T.

We now give Beurling’s characterization of subspaces of H2(T) invariant under

Theorem 2 (Beurling [1]) A subspace M of H*(T) is invariant under S if and

only if M = ¢H?*(T) where ¢ is an inner function.

We won’t go into any details, but we point out that Beurling’s Theorem can be

proved using the following decomposition.

12



Theorem 3 (Halmos-Wold Decomposition, see [8]) LetV € B(H) be an isom-

etry.

1. There is a unique decomposition
H=GL

such that G and L are reducing subspaces for V, S = Vg is a shift operator on

G, and U = V|, is unitary on L.

2. Define K = HOV(H). Then {V*(K)}2, is an orthogonal family of subspaces
of H satisfying
g=2 eViK)
n=0

and

We call S and U the shift and unitary parts of V, respectively.

Many of the remaining theorems from this section can also be proved using the
Halmos-Wold decomposition. Some of our results also rely heavily on this decompo-
sition.

An important corollary of Theorem 2 (p. 12) is used later. The proof can be

found in [9]. Before we state it, we need another definition.

Definition 8 A function g in HP(T) is called outer if the linear combination of

functions

9(&), €9(8), €%9(€), ...

are dense in HP(T).

With this terminology, we get

13



Corollary 2 FEach function f in H*(T) has a factorization
f=¢g

where ¢ is inner or constant and g is outer. This factorization is unique up to a

constant factor of modulus 1.

We point out that this corollary is true for H?(T), 1 < p < 0o, not just H?(T),
see Rudin, [19] for details.
We now turn our attention to a generalization of Theorem 2 (p. 12) due to de

Branges. He proved the following theorem.

Theorem 4 (de Branges, see [20]) M # {0} is a Hilbert space contractively con-
tained in H*(T) invariant under S and S acts as an isometry on M if and only if
M = gH*(T) for some g in the unit ball of H*(T) unique up to a constant multiple

of modulus 1 with ||gf||m = ||f]l2 for all f € HX(T).

We recall that every subspace of H%(T) is contractively contained in H%(T). We
also point out that S acts as an isometry on every subspace of H2(T). So, this is a
nice and reasonable generalization of Theorem 2 (p. 12).

It was pointed out later by U. N. Singh and Dinesh Singh that de Branges’

contractively contained condition could be relaxed. Their result is stated here.

Theorem 5 (U. N. Singh & Dinesh Singh [23]) M # {0} is a Hilbert space
that is a vector subspace of H%(T) invariant under S and S acts as an isometry on
M if and only if M = gH?(T) for some g € H*(T) unique up to a constant multiple
of modulus 1 with ||gf||am = || fll2 for all f € H3(T).

We now turn our attention to the results known in L%(T). We start with a result

due to Helson and Lowdenslager. They were able to characterize the subspaces of

14



L*(T) that are simply invariant under S. We note that every subspace of H%(T) that
is invariant under S is in fact simply invariant under S. Their work not only extended
but also generalized the work of Beurling. We point out that Beurling’s original proof
of Theorem 2 (p. 12) weighed heavily on analytic function theory. Recall, H%(T) is
just H2(U) in disguise. So Beurling’s techniques could not be applied to characterize
the simply invariant subspaces of L?(T). Helson and Lowdenslager used a Hilbert

space approach to solve the problem in L?(T).

Theorem 6 (Helson & Lowdenslager, see [9]) A subspace M of L*(T) is sim-
ply invariant under S if and only if M = gH*(T) where g is in L°(T) and |g| = 1

ae. onT.

In contrast to the situation in H?(T), in L?(T) there are subspaces invariant
under S that are not simply invariant. Weiner was able to characterize these. In the
following theorem, we use the term doubly invariant to mean invariant, but not

simply invariant.

Theorem 7 (Weiner, see [9]) A subspace M of L?(T) is doubly invariant under

S if and only if M = 1gL*(T) where E is a measurable subset of T.

In recent work [15], contractively contained Hilbert spaces in L?(T) were studied.
There were examples given to show that there are contractively contained Hilbert
spaces in L?(T) satisfying the conditions of Theorem 4 (p. 14), but not of the form
gH?(T) with g in L*(T) nonzero a.e. These examples show that a direct general-
ization to L?(T) is not possible. Additional conditions are required for these Hilbert
spaces to have the form gH?(T) with g in L®(T) nonzero a.e. In [15], Paulsen and

Singh gave an additional condition, namely a continuity condition on the norm of

15



M in addition to its contractive containment. Their motivation was to generalize

Theorem 6 (p. 15) along the lines of de Branges’ generalization of Theorem 2 (p. 12).

Theorem 8 (Paulsen & Singh [15]) Let M # {0} be a Hilbert space contrac-
tively contained in L?(T) simply invariant under S and on which S acts as an isom-

etry. Further, suppose there are p, 2 < p < oo and § > 0 such that
IFllm <6l fll,  for all f in M N LP(T). (2.1)

Then there erists a unique b (up to a scalar multiple of modulus 1) in the unit ball

of L*(T), which is non-zero a.e. such that
1. M =bH*(T) with ||bf||m = || fll2 for all f in H*(T),

2. b=' € L*(T) and ||b7Y||, < &, where
f

00, p=2
— 2
s =4 ;—_% 2<p<oo
2, p=oc.
\

(Note: We do not assume in (2.1) that M N LP(T) # {0} forp > 2.)

Paulson and Singh also had a doubly invariant result. Before we state that we
need a little terminology. If T € B(K) where K is a Hilbert space, we denote by
R(T) the range of T which is a vector subspace of K. If we endow R(T) with the

norm
Ihllrery = inf {|Ikll : Tk = A},

then R(T) is a Hilbert space in this norm called the range space of T and it is
boundedly contained in K. If T is a contraction, then the range space of T is
contractively contained in X.

We use M, to denote the operator of multiplication by ¢ on L?(T).

16



Theorem 9 (Paulsen & Singh [15]) Let H be boundedly contained in L*(T). Then
S acts unitarily on H if and only if there erists a function ¢ in L*°(T) such that
H = R(M,) isometrically; i.e., ||h|l% = ||hllrem,) for all h in H. When H is con-

tractively contained in L%(T), we have ||¢|l < 1.

2.2 Hilbert Spaces Boundedly Contained in L2

In this section, rather than finding conditions so that our Hilbert space is of the form
gH?*(T) with g in L®(T) nonzero a.e., we describe all Hilbert spaces boundedly

contained in L%(T) which are invariant under S and for which S acts as an isometry.

Theorem 10 If M is a Hilbert space which is boundedly contained in L*(T), invari-

ant under S and S acts as an isometry on M, then there ezists @, g1, g2, ... € L*°(T)

o = (inf {llgll3 : ¢g =
1/2

¢p} + 3 ||f,||§) . Note, we do not assume that ¢, gy, ga, ... € L*°(T) are nonzero.

such that M = L*(T) + ¥; : H*(T) with norm ||¢p+; g: ;

Proof: By Theorem 3 (p. 13), we get

M= Hol eS"(V) (2.2)

n=0
where S is unitary on # and N = M & S(M). If H # {0}, then by Theorem 9

(p. 17) we get that there exists ¢ € L*°(T) such that
H = ¢L*(T)

with norm
I6plla = inf {llqll> : ¢g = ¢p}.
If N # {0}, let g; € N with ||g;||;m = 1. Then, {gle‘"”}n>o is an orthonormal se-

quence in M. Let f € H%(T). Then f(e®) = 2, f(k)e*?. Let f, = ¥0_, f(k)e*.

17



Then f, converges to f in L?(T) and a.e. Consider the following computation.

Ifallz = D If(R)1

k=0

= 2 1f®)llgie™ |14
k=0

= 2 IIf (k) g™l
k=0

n 2
= Z f(k)gw'ko
k=0 M

Since (f,,)n is Cauchy in L?(T), (Zk o f(k )gle"‘")n is Cauchy in M. Since M is a

Hilbert space, there exits a h in M such that

n[\/]:s

f( k)gie* — h“ —0 asn— oo
M
Since M is boundedly contained in L%(T), we get that

—0 asn— oo
2

Z f:(k)gleiko —h
k=0

So a subsequence converges almost everywhere. But
n ~ .
Zf(k)e'ko —> fae. asn— oo.

So

Z f:(k)gleik‘9 —> g1f a.e. asn — oo.
k=0
So h = g, f. Therefore,

g1 fllame = 11 £ll2-

Since M is boundedly contained in L?(T), we get

g1 fll2 < Cllgiflia = ClI fll2-

Since f was an arbitrary element of H%(T), we get that g, multiplies H%(T) into

L%*(T). Since L*(T) = H*(T) @ e®*H?(T), we conclude that g; multiplies L?(T)

18



into L?(T). Since g, was an arbitrary element of A/, we conclude that N' must be

contained in L*(T). Now fix an orthonormal basis {g;} in N. So, we have

=2 IIfellz-
k

2
M

> gk fx
p

Now putting this altogether we get for ¢p + ¥ i gx fx € M that

2 2
“¢p+ Sah| = lepli+ | San]| =int{la2: 6a=ap} + SIAIE
k M k M k
Therefore,
1/2
||¢p+ San| = (inf{nqn% b=+ ||fk||§)
k M k

as desired. A

The above result explains the examples given in [15].

2.3 Hilbert Spaces having L2-Closures that are Sim-

ply Invariant

In this section, we characterize all Hilbert spaces contained in L?(T) which are in-
variant under S, for which S acts as an isometry and whose L?(T)-closure is a simply
invariant subspace of L?(T).

Our motivation for this section comes from Theorem 5 (p. 14), Corollary 2 (p. 14)
and the fact that all subspaces of H?(T) are simply invariant.

Let g be any element of L*(T) having the modulus of an outer function a.e.
Consider M = gH?*(T) with ||gf|lm = ||f|lz for all f in H?(T). Then it easily
follows that M is a Hilbert space invariant under S and S acts as an isometry on
M. Further note that M~ ™ is a simply invariant subspace of L?(T), (see [2],

p. 142). Our result gives the converse.
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Theorem 11 If M # {0} is a Hilbert space that is a vector subspace of L*(T) such

_12
that M is invariant under S, S acts as an isometry on M and M-

s a simply
invariant subspace of L?(T), then M = gH?*(T) with ¢ € L*®(T) which has the
modulus of an outer function a.e. and is unique up to a constant multiple of modulus

1 with ||gfllm = || fll2 for all f € H*(T).

Originally, we formulated and proved this result directly. The proof below was
suggested to us by an unknown reviewer.

Proof: By Theorem 6 (p. 15) we have that AME™ = ¢H?(T) for some unimod-
ular function . Then M’ = ¢ M is contained in H*(T) and with norm ||¢p||sr =
lp||a for all p in M is a Hilbert space invariant under S and S acts as an isometry
on M'. So by Theorem 5 (p. 14), we get that M’ = bH?(T) with b € H®(T) with
norm ||bf||m = ||f]l2 for all f in H*(T). So M = ¢M' = ¢bH?*(T) with norm

160flla1 = Ibfllaer = [|fll2 for all f in H*(T). A
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Chapter 3

Invariant Vector Subspaces of

LA(T)

3.1 Known Results

We begin by discussing vector subspaces of H?(T) that are invariant under S. For
the first result we give credit to de Leeuw and Rudin, who first proved this result for
H'(T). Here we give the characterization of all subspaces of H?(T) invariant under

S.

Theorem 12 (de Leeuw & Rudin, see [9]) A subspace M of HP(T) is invariant

under S if and only if M = ¢HP(T) where ¢ is an inner function.

Remark 1 We point out that even though this theorem is a strict Banach space
result for p # 2, a proof found in [9] shows that this is really a corollary of Beurling’s

H?(T) result. See Appendiz A and B for an alternative approach.

At this point one might expect a generalization as done in the H?(T) case. Per-

haps one would expect a vector subspace X of HP(T) invariant under S which is not
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closed in the HP(T)-norm but is able to support a new norm that makes it complete.
Considering what we know in the H?(T) case, we may think of X as being of the

form gHP(T) where g is in H*(T) with norm

llgfllx = 11 £l

for all f in HP(T). X is a Banach space in this norm and invariant under S. Further,
S acts as an isometry on X. However, given the complicated structure of a Banach
space, that is not a Hilbert space, this seems like quite a task. We will slightly
modify this idea to get a better handle on the problem. Rather then allowing vector
subspaces of H?(T) that support any norm, we will only allow those vectors subspaces
of HP(T) that can support a norm, that will make them a Hilbert space. Such
ideas have already been studied by Dinesh Singh and Sanjeev Agrawal [22] who
characterized certain Hilbert spaces contained in some Banach spaces of analytic

functions. In particular, they proved the following H?(T) result.

Theorem 13 (Dinesh Singh and Sanjeev Agrawal [22]) If M is a Hilbert space

contained in HP(T), invariant under S and S acts as an isometry on M, then
M = bH*(T)
for a unique b:
1. If1<p<2be H'Z%LP(T). When p = 2, we mean H*(T).
2. Ifp>2,b=0.
Further, [[bf|lm = [|fll2 for all f in H*(T) (1 <p<2).

We now turn our attention to LP(T). We start with a generalization of Theorem
12 (p. 21). This is due to Forelli, who characterized the subspaces of L?(T) that are

simply invariant under S.
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Theorem 14 (Forelli, see [9]) A subspace M of LP(T) is simply invariant under

S if and only if M = gHP(T) where g is in L°(T) and |g| =1 a.e. on T.

As one might expect, there is also a doubly invariant result. We give credit for it

to Weiner.

Theorem 15 (Weiner, see [9]) A subspace M of LP(T) is doubly invariant under

S if and only if M = 1gLP(T) where E is a measurable subset of T.

The same complications arise in L?(T), as did in HP(T), so here too, we only
consider vector subspaces of L?(T) that are Hilbert spaces. Paulsen and Singh [15],

in addition to their aforementioned L?(T) result, showed the following.

Theorem 16 (Paulsen & Singh [15]) Let M be a simply invariant Hilbert space
contractively contained in L™(T) for somer > 2 and on which S acts as an isometry.

Further, suppose there are p, 2 < p < 0o and § > 0 such that
I fllm < 6lIfll,  for all fin M N LP(T). (3.1)

Then M = {0}. (Note: We do not assume in (3.1) that M N LP(T) # {0} for

p>2)

Later, we investigate the situation in L9(T) for 1 < ¢ < 2 and give conditions so

that the Hilbert space is of “Beurling type”.

3.2 An Extension of a Result of Singh and Agrawal

Here, we give an extension of Theorem 13 (p. 22). It is easy to see from Theorem 11
(p- 20) that this result can be extended to certain vector subspaces of LP(T) in the

following way.
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Theorem 17 If M is a Hilbert space contained in LP(T), invariant under S, S acts

as an isometry on M and MYD s g simply invariant subspace of LP(T), then
M = bH?*(T)
for a unique b:

1. If1<p<2be L%(T) and has the modulus of an outer function a.e. When

p =2, we mean L*®°(T).

2 Ifp>2,b=0.

Further, ||bf||m = ||fll2 for all f in H*(T) (1 <p<2).

Proof: By Theorem 14 (p. 23) we have that A~ (")

= ¢HP(T) for some uni-
modular function ¢. Then, M’ = ¢M is contained in HP(T) and with norm
lépllae = |lpllm for all p in M is a Hilbert space invariant under S and S acts
as an isometry on M’. So by Theorem 13 (p. 22), we get for p > 2 that M' = {0}
and hence M = {0} and for 1 < p < 2, M' = gH?(T) with g € H%(T) with
norm ||gf|lae = ||fll2 for all f in H%(T). So M = ¢M' = ¢gH?*(T) with norm
69fllm = llgfllaer = |1 fll2 for all f in H*(T). A

The converse of the theorem is clear except for the fact that the closure is simply

invariant. This follows from a straight forward variation of a theorem in [2], page

142.

3.3 Hilbert Spaces Contractively Contained in L?
for 1<¢<2

In this section, we give conditions so a contractively contained Hilbert space in L(T)

for 1 < g < 2 is of “Beurling Type”.
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Before we give our result, we consider the following situation. Fix 1 < ¢ < 2 and
let b be an element of the unit ball of Lz_z—qq'(T) with b # 0 a.e. Then b multiplies
H?(T) into LI(T). Let’s call M the range of such a multiplication; i.e., M = bH?(T)
and endow M with the norm

16 1lae = [1f1l2-

Then M becomes a Hilbert space contained in L9(T). In fact, M is contractively

contained in L9(T) since

16fllg < [1l z (1 £1l2 by Holder’s Inequality

< oSl

The last inequality follows from the definition of the norm on M and the fact that
b is in the unit ball in LTZ—q?(T). We further point out that M is simply invariant
and that S acts as an isometry on M. Unfortunately, this is not enough to hope
for a characterization as pointed out by Paulsen and Singh in [15]. We consider
the following extra condition, which is similar to the condition found in Theorem 8
(p. 16), but slightly modified to fit the LI(T) setting. Suppose that b~! is in L*(T)

where
o0 ifp=2
2 . 2
;% lf2<p§§:qa

Let 6 = ||b7!||; which we point out is strictly greater then zero. We now make the

following calculation.

16fllae = NIfll2
= [Ib7"bf [l
< ||b'1[|_2}2||bf||p by Hoélder’s Inequality

= 5”bf||p-
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So we get
16f 100 < 3116 l5-
Our theorem gives the converse.
Theorem 18 Let M # {0} be a simply invariant Hilbert space contractively con-

tained in LI(T) (1 < ¢ < 2) and on which S acts as an isometry. Further, suppose

there are p, 2 < p < 2—2_95 and § > 0 such that
lfllm < 6lIfll,  forall fin M LP(T) (3:2)

and if the unitary part of M is nonzero then so is its intersection with LP(T). Then
there exists a unique b (up to a scalar multiple of modulus 1) in the unit ball of

29 . .
L?=4(T), which is non-zero a.e. such that
1. M = bH?(T) with ||bf||m = || fll2 for all f in H*(T),

2. b1 € L*(T) and ||b7Y||s < 8, where
o0 ifp=2
;25 if2<p< 2—2_43.

To prove our theorem we need a lemma.

Let Mg denote the linear transformation of multiplication by g.

Lemma 1 If My : L*(T) — L%(T) (1 < ¢ < 2) is bounded, then ||Mg|| = llgll 2o -

So, in particular, g € Li_iq?(T).

Proof: Let f be any element of L?(T). Then by Holder’s Inequality we get that

9£1la < llgll 22 | fll2- Therefore, we get

Mgl = sup{llgfllg: I£ll2 < 1}
< sup {llgll z Ifll2: [1f]l2 < 1}

< gl ze..
-q
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For the other inequality we note that there exists a measurable function a with
|a| = 1 such that ag = |g|. Now let E,, = {z s g(x)] < n} and define f = xg, |g|77 a.

Then |f|? = x&, lglfzzq? So, f € L*°(T). Also, fg = xgnlgl?_zq'. So we have

g 1/q 1/q
( / |g|2—qdm) ( / lgfl"dm)
En T

= “Ms(f)“q
Mgl £1l2

i 1/2
= Ml [ lolam)

Dividing through by ( JE, | ngz—q?dm) 2 which is finite we get ( Jt XE.| g[Tz—qum)

IA

1/q-1/2

|IMg||. Noticing that 1/¢—1/2 = %ﬂ and applying the monotone convergence theo-

rem we get ||g|| 2 < |IMg|l. Putting these two inequalities together gives our desired
-9

result. A

Proof of Theorem 18 (p. 26): By Theorem 3 (p. 13) we may write M as

M = Ha ) aS"(N),

n=0
where S is unitary on H and N = M 6 S(M). Let M; = M 6 H. We point out
that M, # {0}, otherwise, we contradict the fact that M is simply invariant. So we
have that N # {0}. Therefore, we may choose an arbitrary element b of N with unit
norm in M. Then, {be“""}">0 forms an orthonormal sequence in M. Let f € H?(T).
Then f(e®) = £, f(k)e*®. Let f, = ¥0_, f(k)e*?. Then f, converges to f in

L?*(T) and a.e. We also have

|f (k)P

NE

£ ll3

x
I
=}

|f (k) Pl 134

I
M-

x
Il
<)

|| f (k)be'*?| %,

I
™M=

bl
Il
<)
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2

M

i f(k)beik()
k=0

Since (f,.)n is Cauchy in L?(T), (Zﬁ:o f(k)be“‘")n is Cauchy in M. Since M is a

Hilbert space, there exists an h in M such that

n
> f(k)be*? — h“ — 0 asn— oo
k=0 M

Since M is contractively contained in LI(T), we get that
n

3" f(k)be™® — h

k=0

—0 asn— oo.
q

So a subsequence converges almost everywhere. But
n -~ .
> f(k)e*® — fae asn— oo
k=0

So

> f(k)be™® — bf ae. asn — .

k=0

So h = bf. Therefore,
6flla = [1£ll2-

Since M is contractively contained in LI(T), we get

16 1lq < 116fllae = 11 fl2- (3.3)

Since f was an arbitrary element of H?(T), we get that b multiplies H%(T) into
L9(T). Since L*(T) = H*(T) @ e H?(T), we conclude that b multiplies L?(T) into
L(T). Using inequality (3.3) (p. 28), we see that M, is a bounded transformation
from L?(T) to LI(T); that is a contraction. So by Lemma 1 (p. 26) we conclude that
b is in the unit ball of Liz—q?(T). Since b was an arbitrary normalized element of N,
we conclude that A must be contained in LTQ—QF(T).

Now we show that no element of N can vanish on a set of positive measure
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unless it is identically zero. Choose any nonzero element d in N'. Suppose that d is

identically zero on a set of positive measure; call the set F. Let

n on FE
k, =

1 on E°.

Then k, is in L>(T) for all n. Let
hy = exp(kn + ikn)

where k,, denotes the harmonic conjugate of k,. So hy, is in H *(T). Replacing b by

d in the above computations gives

[Pall2 = [|dhnllp < 6lldhnll,.

=<9

First note that dh, € L?-¢(T) C L?(T). By the construction of h,, the right
hand side of the above inequality is bounded by a fixed constant independent of n
whereas the left hand side goes to infinity as n — co. This contradiction shows our
supposition must be incorrect. So no element of N can vanish on a set on positive
measure unless it is identically zero.

Next we show that N is one dimensional. To do this, we suppose not. So we can
find a b; in N with unit norm orthogonal to b in M. By our decomposition, we get
that bH?(T) is orthogonal to b; H*(T) in M. Since b and b, are in Lz—z-qv'(T) and in
M,, we see that {b,b,} C M; N LP(T). Further, M; N L?(T) is invariant under S.
Let A(M; N LP(T)) denote the annihilator of M; N LP(T), which is a subspace of
LF;LI(T). By the definition of the annihilator we get that the annihilator is invariant
under S since M; N LP(T) is invariant under S. We now show that A(M; N LP(T))
contains an element that multiplies b and b; in to L>(T). Let f be any non-zero

element of A(M,; N LP(T)). Let {pn(z)} be a sequence of analytic polynomials that
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converges boundedly and pointwise to

exp[—(If] + | )] exp[—([b] + 2(b]")] exp[—(lba] + 2[b1[)]-

Clearly, p,f converges to
exp[—(|f| + ¢|f|")] exp[—(|b] + i[b]")] exp[—(|b1] + i[br[)] f

in L77; so exp[—(|f| + il f|")] exp[—(|8] + i[b]")] exp[—(|b:] + i[bs[)]f is in A(M; N
LP(T)) and clearly multiplies b and b, into L>(T). So now let g be any non-zero

element of A(M; N LP(T)) that multiplies b and b, into L*(T). Note then that

/7r g(€®)b(e®)e™ds =0 n=0,1,2,...

-
and

/7r g(e®)b(e®)e™dd =0 n=0,1,2,....

Let’s write k = gb and k; = gb,. Then k and k; are in H*(T). Since b and k¥ do not
vanish on a set of positive measure, we conclude that g does not vanish on a set of

positive measure. Now consider the function

kk, kb, € bjH*(T)

bk, € bH?(T).

Since bH?(T) N b H*(T) = {0}, we get that 5—:* = 0, but this is a contradiction
since "—;‘i does not vanish on a set of positive measure. From this contradiction we
conclude that our supposition must be incorrect. So A" must be one dimensional.
Note that if we use exp[—(| f|+3| f])] exp[—(|b]+:|b|")] exp[—(|b1|+%|b1]7)] f instead
of g in the above calculations, then we get that f does not vanish on a set of positive
measure. This follows from the reasoning employed above concerning the k£ and k;

and the observation that exp[—(|f| + i|f]|7)] exp[—(|b] + i|b]")] exp[—(|b1] + ©|b1]|7)] is
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a bounded analytic function. So every nonzero member of A(M; N L?(T)) does not
vanish on a set of positive measure.

Now we show that # = {0}. By hypothesis, we need only show that HNL*(T) =
{0}. To do this, we suppose not. Let ¢ be an element of H N LP(T). Let f be a
nonzero element of A(MNLP(T)). Let {p,(z)} be a sequence of analytic polynomials

that converges boundedly and pointwise to

exp[—(If] + 2| f")] exp[-(I¢] + i|6[)].

Clearly, p, f converges to exp[—(|f] + ¢|f|")] exp[—(|¢| + i|#|")]f in LFLl; SO

u = exp[—(|f| +<|f )] exp[- (18] + zl¢])] f

is in AIM N LP(T)). Since AIMN L*(T)) C A(M;NLP(T)), the above observation
shows us that u does not vanish on a set of positive measure and by the construction
of u, u multiplies ¢ in to L*°(T). Now ¢z" is in # N LP(T) for all integers n.
Therefore,

/1r u(e®)p(e)e™dfd = 0  for all integers n.

Therefore, u¢ = 0, but u does not vanish on a set of positive measure. Therefore,
¢ =0. So HN L*(T) = {0}.
To finish the proof we need to establish our conditions on b~!. To do this, we

first consider the case when 2 < p < 2—2_9; Let

E, = {ew : % < |b(e")] < n}

Now define
- 5{—plog |b] on E,
0 on E},
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and

hn, = exp(k, + zk~n)

Note that h, is H°(T) for all n in Z,. We make the following computation.
1 w \12
(35 [ 15 a8) < Il = el

2r JE
1 1/p
< 0| =— P|h,|P :
< 5(2W/T"" il de)

The last inequality holds because bh, is in M and b is in LTz-gE(T) and h, is in
H®>(T); so bh, is in Lz_z—q?(T) which is contained in L?(T). So bh,, is in M N LP(T).
Further the above inequality holds for all n. So the quotient is bounded by ¢ for all

n. Letting n go to infinity, we get that
b7, <6

as desired. Now, for the case where p = 2, we note that for A a trigonometric

polynomial

[[hll2 = [[bhlla < 6]|bAl],.

Therefore,

1
— [ (6%|6]* = 1)|h|?d6 >
o (@I~ 1)lAfas > 0

for all trigonometric polynomials h, from which it follows that

10" < 8. A
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Chapter 4

Invariant Vector Subspaces of

LP(T?)

In this chapter, we begin the second part of this dissertation. Here, we consider vec-
tor subspaces of L?(T?) that are invariant under S, and S,. We start by considering
vector subspaces of HP(T?). In fact, let’s start with the case p = 2. Naturally, one
might start with the subspace M = ¢H?(T?) and hope, as in the H%(T) case, that
these are all of the subspaces of H?(T?) invariant under both S, and S,. Unfortu-
nately, that is not the case. Rudin [18] showed that, unlike H?(T) where all subspaces
invariant under S are generated by a single inner function, there are subspaces of
H?(T?) invariant under S, and S, that are not generated by a single function. In
fact, there are subspaces of H%(T?) invariant under S, and S, that are not even
finitely generated. Further, he showed that there are subspaces of H2(T?) invariant
under S; and S, that contain no bounded elements, again in contrast with the H?(T)
case where every subspace invariant under S contains a bounded function, in fact
an inner function. To my knowledge, the description of all the subspaces of H?(T?)

invariant under S, and S, is still unknown. However, some work has been done to

33



that end. The first result is due to Mandrekar.

Theorem 19 (Mandrekar [13]) Let M # {0} be a subspace of H*(T?) invariant
under S| and S;. Then, M = qH?*(T?) with q inner if and only if S, and S, are

doubly commuting on M.

We want to extend Mandrekar’s result to HP(T?), 1 < p < co. Before we do this
we give a result of Ghatage and Mandrekar in L?(T?) to prevent proving a similar

result twice.

Theorem 20 (Ghatage & Mandrekar [5]) Let M # {0} be a subspace of L*(T?)
invariant under S, and S;. Then, M = qH?(T?) with q unimodular if and only if

Sy and S, are doubly commuting shifts on M.

Here the extra condition shifts is very important.

The above two theorems can be shown by exploiting the following decomposition.

Theorem 21 (Halmos-Wold Four-Fold Decomposition, [11], [24]) LetV;,V; €

B(H) be isometries with V, and V, doubly commuting on H.

1. There is a unique decomposition
H = Hss &b Hsu &b 7"‘1.4.«1 & %uu
such that

(a) Vi(Hss) C Hgs and Vi|y,, is a shift fori=1,2.
(b) Vi(Hsu) C Hsu and Vi|y,, is a shift.
(c) Va(Hsy) = Hsu and Valy,, is unitary.

(d) Vo(Hys) C Hys and Valy,, is a shift.
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(e) Vi(Hus) = Hus and V|3, is unitary.

(f) Vi(Huu) = Huu and Viy,, is unitary fori=1,2.

2. Define Ky = HOVI(H), Ky = HOVa(H) and K = (HeVi(H))N(He V2 (H)).

Then we have

Hes = Zzeavln‘/?m(n)’
n=0m=0

Houw = ZQ‘/lm[n;’:;OVZ"(Kl)]’
m=0

Hus = Z 63‘/27n [ﬂf’zo Vln (’C2)] )
=0
Huw = ‘/1n Vzm(H)

n,m>0

3

Notice, this is just Theorem 3 (p. 13) applied to two operators. The double
commuting condition is required to make everything work out as we expect.

Now, we extend this result to LP(T?), 1 < p < oco. As a corollary we will
get the H?(T?) extension. Before we do this, we need some terminology. We let
RP(U?) denote the class of all functions in U? which are the real parts of holomorphic
functions. We point out here, in contrast with functions analytic in U, not all real
harmonic functions in U? are the real parts of holomorphic functions in U?, see [18]

for more details. We also recall that,
f:T? — (—o0, 0]
is called lower semicontinuous, (l.s.c.) if
{(e®, %) : f(e,e) > a}

is open for all real a.

The proof of the following lemma is found in [18] (p. 34).
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Lemma 2 Suppose f is a l.s.c. positive function on 'T? and f € L'(T?). Then there
erists a singular (complez Borel) measure o on T?, 0 > 0, such that P[f — do] €

RP(U?).

Before we give our next lemma we make some observations. First of all, if f
is continuous, then f is l.s.c.. If f and g are two continuous functions, then so is

( fv g) (z) = max { f(z), g(x)}. This follow from a straight forward € — § argument

once you note that (f Vg) [f )+ g(z)+|f(x) g(:r)|]. Finally, if (f,,):‘i1 is
a sequence of l.s.c. functions, then f(z) = sup,, f,(z) is also l.s.c. This follows from

the definition of [.s.c. and the fact that

{x:f(:r) >a} = G {z:f,,(:z:) >a}.

n=1
Lemma 3 Suppose f is real-valued on T? and f € LP(T?) for 1 < p < oco. Then
there ezists two positive l.s.c. functions g; and g, in LP(T?) such that f = g, — g,

a.e. on T2

Presently, we only need this result for p = 1, but later we will need this result for
other values of p.
Proof: Since f is real-valued on T?, f € L”(T?) and continuous functions are

dense in L?(T?) there exists ¢; continuous such that

If = éll, < 27"

and by the reverse triangle inequality we get

lgull, < (1+201£1,) - 27

Now we can find ¢, continuous such that
[(F = 1) =] <27
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and by the reverse triangle inequality we get
llgall, <272+ || f = dull, <3-272

Continuing in the manner we get the existence of a sequence of real-valued continuous

functions (@,), such that
f=2 ¢n
n=1
in LP(T?) and

lonll, < C-27"  for all n, where C = max {1 + 2| fllp » 3}.

Now, for € > 0, define

Y =(dpVO) +e-27"

and

Y, = (¢ VO0)+e€-27".

Then ;" and 9,, are positive continuous functions with ¢, = ¢} — ¢, . So

F= S —v) =St~ S s in DA(TY).
n=1 n=1

n=1

Since

M3

(6n VOl +€-27) < S (léully +e-27)
n=1

n=1

I

o0
Y lwtl, <
n=1

M8

< (C-27"+€-2™") < o0

Il
—

n

we get that there exists a g; in LP(T?) such that
g1 =Y ¥t inLP(T?).
n=1
Similarly, we get that there exists a g, in LP(T?) such that
o0
92= Y v, inLP(T?).
n=1
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So we have that

f=g—g inLP(T?.

It is left to show that g; and g, are equal to positive l.s.c. functions a.e. Let

n
sn=2 ¥
k=1

Since s, converges to g; in LP(T?), there exists a subsequence that converges to g
a.e. But since s, is monotone increasing, we get that s, converges to g, a.e. and
further that sups, = lims,. By our above observation, we conclude that sup s, is
l.s.c. It is clear that sups, is positive. Therefore, g, is equal to a positive l.s.c.
function a.e. Similarly, we get that g, is equal to a positive l.s.c. function a.e. So f

is equal a.e. to the difference of two positive [.s.c. functions. A

Lemma 4 Suppose f is real-valued on T? and f € L'(T?). Then there ezists a

singular (complez Borel) measure o on T?, such that P[f — do] € RP(U?).

Proof: If f is real-valued on T? and f € L'(T?), then Lemma 3 (p. 36) asserts
the existence of two positive I.s.c. functions g; and g, in L!(T?) such that f = g; — g
a.e. By Lemma 2 (p. 36) there exists nonnegative singular measures o; and o3 such
that P[g; —do,] and P[g, —do,] are in RP(U?). Letting 0 = 01 —0, we get a singular

measure such that

P(f —do] = P[(g1 — g2) — d(01 — 02)]
= P[(gl —doy) — (92 — dUz)]

= P[g — doy] — Plgs — doy).

So, P[f — do] isin RP(U?). A
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Theorem 22 Let M # {0} be a subspace of LP(T?), 1 < p < 2, invariant under S,
and Sy. Then M = qHP(T?) where q is a unimodular function if and only if S; and

S, are doubly commuting shifts on M N L?(T?).

Proof: Let N denote M N L?(T?). Then N is a closed invariant subspace of
L?(T?) and by hypothesis S; and S, are doubly commuting shifts on N. Therefore,
by Theorem 20 (p. 34), N = ¢H?(T?) where q is a unimodular function. Now since
N is contained in M and M is closed, the closure of N in LP(T?), which is ¢H?(T?),
is contained in M. So we need to show that N is dense in M. To do this, let f € M,

f not identically zero. Then define

0, lfI < m,

log |f|~!, |f]>n.

Note that u, € L?(T?) for all n since

[luardm = [ floglf|'Pdm= [ |log|f|FFdm
[fi>n |fI>n

Pdm < ||f||? < oo.
J,. P am <1

IN

So in particular, u, € L'(T?) and real valued for all n. So by Lemma 4 (p. 38), there
exists a sequence {0,}n>o Of singular measures such that Plu, — do,] € RP(U?)
for all n. So there exists a sequence of analytic functions (Fy,), such that Re(Fy,) =
P[u,—do,]. By the M. Riesz theorem, which holds on the polydisc (see [17]), we have
| Fallp < Cplluall, for all n. Now since u, € LP(T?) and u, converges to 0 in LP(T?),
we get F}, converges to 0 in LP(T?) and hence at least a subsequence converges to

zero a.e. Let ¢, = exp{F,}. Then

1, [fl < m,

IF17% 1fl>n

!¢n| =
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and ¢, tends to the constant function 1. By construction, ¢, f is a bounded function
dominated by f for all n. Also, ¢, f € M because ¢, is bounded analytic and hence
is boundedly the limit of analytic trigonometric polynomials. Since ¢, f is bounded,
it is in N. As n goes to infinity ¢,f converges to f in LP(T?) by the dominated
convergence theorem. So each f in M is the limit of functions from N. So N is
dense in M as desired.

Conversely, if M = ¢HP(T?) with ¢ unimodular, then MNL%(T?) = ¢H?*(T?). So

S) and S, are doubly commuting shifts on M N L?(T?) by Theorem 20 (p. 34). A

Corollary 3 Let M # {0} be a subspace of HP(T?), 1 < p < 2, invariant under S,
and S;. Then M = qHP(T?) where q is an inner function if and only if S; and S,

are doubly commuting on M N H?(T?).

Proof: HP(T?) is a subspace of LP(T?); so M is a subspace of L?(T?). Note that
M N H%(T?) = MnN L*T?) since M C HP(T?). Since S, and S, are shifts on all
subspaces of HP(T?), we get M = qHP(T?) where q is unimodular by the previous
theorem. Since ¢ € ¢HP(T?) C HP(T?), we see that g is holomorphic, and hence
inner. The converse is just a special case of the above theorem. A

We use the notation H?(T?) = {f € H?(T?) : f(0,0) = 0} in the next theorem.

Theorem 23 Let M # {0} be a subspace' of LP(T?), 2 < p < 00, invariant under
S, and S;. Then M = qHP(T?) where q is a unimodular function if and only if S,

and S, are doubly commuting shifts on A(M) N L?(T?).

Proof: If M = gHP(T?) where ¢ is a unimodular function, then A(M) =
gH#1(T?). Therefore, A(M) N L2(T2) = gH?(T?). It then follows from Theo-

rem 20 (p. 34) that S, and S, are doubly commuting shifts on A(M) N L?(T?).

1 Assume further star-closed when p = oo.
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Conversely, if S; and S, are doubly commuting shifts on A(M) N L?(T?), then by
Theorem 22 (p. 39) we get that A(M) = qH ;’_’—1('10) where ¢ is a unimodular func-
tion. Therefore, M = gH?(T?) where q is a unimodular function. When p = oo we

need that M is star-closed to make our final conclusion. A

Corollary 4 Let M # {0} be a subspace? of HP(T?), 2 < p < 00, invariant under
S) and S;. Then M = qHP(T?) where q is an inner function if and only if S; and

S, are doubly commuting shifts on A(M) N L%(T?).

Proof: A similar argument as used in the above corollary gives the result. A
We now consider the ideas from the first part of this dissertation; namely, the
idea of our vector subspaces being Hilbert spaces. Our first result is due to Dinesh

Singh. He proved a generalization of Theorem 19 (p. 34).

Theorem 24 (Singh) N is a Hilbert space which is a vector subspace of H?(T?)
such that N is invariant under S; and S; and for which S, and S, are doubly com-
muting isometries on N if and only if there exists g in H®(T?) unique up to a
factor of modulus one such that N' = gH?(T?) with norm ||gf||x = || f]l2 for all f in

H(T?).

We now slightly modify the proof of this theorem to prove a general H?(T?)

‘result. The following theorem is just a two-variable analogue of Theorem 13 (p. 22).

Theorem 25 If M is a Hilbert space contained in HP(T?), invariant under S, and

Sy and if Sy and Sy are doubly commuting isometries on M, then
M = bH?*(T?)

for a unique b:

2 Assume further star-closed when p = .
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1. If1<p<2be H%(TQ). When p = 2, we mean H*(T?).
2. Ifp>2,b=0.

Further, ||bf||am = || |2 for all f in H*(T?) (1<p<2).

Note that the converse of this theorem is also true. Before we prove this theorem,

we give several lemmas. The first two lemmas are due to Slocinski [24].

Lemma 5 (Slocinski [24]) Suppose that V| and V, are commuting isometries on
a Hilbert space H and write R* = H © Vi(H) (i = 1,2.). Then the following are

equivalent:

1. There is a wandering subspace L for the semigroup {V{‘VQ’"}H o such that
oo o0
=3 > oWy,
n=0m=0

2. Vi and V; are doubly commuting shifts.

8. R} N Ry is a wandering subspace for the semi-group {V{‘V{"} and

n,m>0

=5 5 evrvp(ri n i)

Lemma 6 (Slocinski [24]) Suppose Vi and V, are commuting isometries on the

Hilbert space H # {0}. If R{ N Ry = {0} where R = HO Vi(H) (i =1,2.), then

H#ED Y SWV(RI N Ry).
n=0m=0

Lemma 7 If ¢ is positive and l.s.c. on T? and ¢y € LP(T?), then v = |f| a.e for

some f € HP(T?).
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Proof: Since [.s.c. functions attain their minimum on compact sets, (for a proof
see [16]), we may assume without loss of generality that v > 1. Applying Lemma 2
(p.- 36) to logy asserts the existence of a singular measure ¢ > 0 and a holomorphic
function g in U? such that Re(g) = Pllogy — do]. Put f = exp(g). Then f is

holomorphic in U? and
|f| = |exp(g)| = exp(log¥)) =9
on T2. Since ¥ € LP(T?), f € HP(T?) as desired. A

Lemma 8 For all h € LP(T?) with 1 < p < oo, there erists a positive, l.s.c. ¢ €

L?(T?) such that ¢ > |h| a.e. on T?.

Proof: If h € LP(T?), then |h| € LP(T?) and real-valued. So, by Lemma 3 (p.

36), there exists two positive l.s.c. functions ¢ and v in LP(T?2) such that
|h|=¢—1% a.e. on T2

So

|h|<¢ aeonT2 A
Lemma 9 Let f be an element of HP(T?) that multiplies H2('T?) into HP(T?). Then

f multiplies L?(T?) into LP(T?).

Proof: Let g be an element of L2(T?). Then by Lemma 8 (p. 43) there exists a
positive l.s.c. function ¢ in L?(T?) such that |g| < ¢ a.e. on T?2. Then by Lemma 7

(p. 42) there exists an h in H?(T?) such that |h| = ¢ a.e. on T?. Now consider

p = P|qlP
f\foPdmy = [ 17PIg dm,
< /1‘2 |fIP|h|P dmy  since |g| < ¢ = |h| a.e. on T?

- /2|fh|”dm2 < oo by hypothesis. A
T
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This next lemma is a straight forward calculation found in [22]. We include it for

completeness.

Lemma 10 If g is a measurable on T? that multiplies L?(T?) into LI(T?) where

=29

1<qg<2thenge L7 (T?). When q = 2, we mean L*®(T?).

Proof: So
/lfgl"dm <oo forall f € LYT?).
That is,
/]f|"|g|"dm <oo forall |f|2 € L29(T?).
Hence,

/|g|"h dm < oo for all h € L*/9(T?) with h > 0.
Since every h in L¥9(T?) is equal to (h; — h2) + i(hs — hq) where h; is in L¥9(T?)
and h; > 0 for j =1,2,3,4, we have

lg|?h € L'(T?) for all h € L?9(T?).

Now by an inverse of Holder’s Inequality found in [26], we may conclude that |g|? is

in the dual of L?/9(T?); that is,
|9l € L7 (T?).

Hence,
g € L™5(T?).
So the set of multipliers of L?(T?) into LI(T?) (1 < g < 2) is the space Lﬂ_z-q?(T2). A
Proof of Theorem 25 (p. 41): We first consider the case 1 < p < 2. Observe

that N32,S*(M) = {0} (¢ = 1,2.). This observation and our doubly commuting
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hypothesis give us that
o0 o0
M= Y @V'V;"(Ri NRy) by Lemma 5 (p. 42)
n=0m=0
and that

R{NR; # {0} by Lemma 6 (p. 42)

where R} = HO Vi(H) (i = 1,2.). So we may take g from R N Ry, with ||g||m = 1.
Then {ge‘""‘ei’""?}n, 5o Is an orthonormal sequence in M. Let f be an arbi-
trary element of H2(T?). Then f(e!,e®?) = T2, 5% f(n, m)e1eimb2, Let
fam(€®,€%2) = T2_ T™ f(k,1)e*® e, Then f,, converges to f in L?(T?) and

a.e. along rectangles. We make the following computation.

|f(k, D)7

WE

anm”% =

x
|l
o

|f(k, )P llge™ €% |13 (4.1)

x
Il
o

I
NE
s IM: IM:

| f(k, 1) ge* %2,

I
NE

ol
Il
<]

l

>3 f

k=01l=

Il
=)

2
Ikgl etlaz

[V]s

(=]

M
Since ( f’"")(n ™ is Cauchy in L*(T?), (Ezzo Yo f(k, l)ge“‘o‘e“a?)(n . is Cauchy in
M. Since M is a Hilbert space, there exits a h in M such that

n m
3 k,l eik91ei192 —h
2.2 flk g

” —> 0 as (n,m) — oo along rectangles.
k=01=0 M

Thus,
o0 OO0 " ) )
h = Z Z f(k, l)gelkaleuog
k=0 1=0
and since

g(k’ l)eikﬂl eiwg’

K
Ms
Ms

x
Il
[S)
P
Il
[S)
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we have for fixed m and n,

h = f(O,O)g + f(O, l)geio2 + f(l,O)geiol + o4

+f(m, n)ge™reintz 4 peim+DO 4 peilnt1)f (4.2)

where

hy = f(m+1,0)g + f(m + 1,1)ge” + f(m + 2,0)ge™* + - -

and

hy = f(0,n +1)g+ f(0,n +2)ge® + f(1,n + 1)ge® +---

It’s clear that h; and h, are in M and hence in H?(T?). Thus from equation (4.2)
(p. 46), we see that the (m, n)-th Fourier coefficients of h are the same as the (m, n)-
th Fourier coefficients of the formal product of the series of g and f. This means
that h = gf in H?(T?) and hence in M. This observation along with equation (4.1)

(p. 45) gives us that
g fllam = 1l £ll2-

Since f was an arbitrary element of H2(T?), we see that g multiplies H?(T?) into
M C HP(T?). By Lemma 9 (p. 43) we conclude that g multiplies L2(T?) into L?(T?).
Lemma 10 (p. 44) shows us that any d that multiplies L?(T?) into LP(T?) must be
a member of L%(T"’). Thus g must be in H%(Tz).

Note that 2—2_1’; >2when 1 < p<2, s0gisin H*(T?).

It’s left to show that R{ N Ry is one dimensional. Suppose there is a g; in
Ri N Ry with unit norm and g L g; in M. Then by the same computations above
we get that g; H?(T?) is also contained in M and by our decomposition we get that
gH?(T?) L g,H?*(T?) in M. Further, gg, = g9 is in gH?(T?) as well as g, H(T?).
So, gg1 = 0. As g and g; do not vanish on a set of positive Lebesgue measure unless

they are identically zero we get a contradiction. Hence R N R is one dimensional
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as desired.
Now we consider the case p > 2. Suppose M # {0}. Proceeding as in the
previous case we get that g multiples L?(T?) into LP(T?) c L?(T?) and hence g is

in H*(T?). Choosing an appropriate € > 0 such that
E = {(eial’ei()g) : |g(ei0| 182 I > 6}

has positive measure, let b be a function that vanishes on the complement of E which
is in L?(T?) but not LP(T?). But then, gb is in L?(T?) and so b will lie in L?(T?) since
g is invertible on E. Hence a contradiction. So our supposition must be incorrect.
So, M={0}, A

Before we give a corollary of this result, we need a definition.

Definition 9 A function g in HP(T?) is called outer if the linear combination of

functions
g(ei91 ’ eiez) ezalg( 16, , eioz) el@gg( 16, 192) 6181 61029( 16, , eiaz)’ .
are dense in HP(T?).

Before we proceed, we make an observation. In HP(T), a function f being outer

is equivalent to

log|7(0)| = 5 [ 1og |1 ()| db.

In HP(T?), this is not the case. Let’s call the functions in HP(T?) that satisfy

108 1£(0)] = 55 | | og |1 (e, )] b,

weakly outer. It is known that outer implies weakly outer but weakly outer does

not imply outer. See Rudin, [18] for more details.
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Corollary 5 Suppose M is a Hilbert space contained in LP(T?), invariant under S,

and S,, S; and Sy are doubly commuting isometries on M.

Case 1: For1 < p<2,ifS; and Sy are doubly commuting shifts on MY N L2(T?),
then
M = bH?*(T?)
for a unique b € L%(T2) having the modulus of an outer function a.e. When

p = 2, we mean L®(T?).

Case 2: Forp > 2, if S) and Sy are doubly commuting shifts on Ann(ﬂLP)ﬂLz(T"’),

then M = {0}.
Further, ||bf|p = || fll2 for all f in H*(T?) (1< p<2).

Note that the converse of this theorem is also true.

Proof: Case 1: By Theorem 22 (p. 39), we have that M~ = ¢HP(T2) for
some unimodular function ¢. Then, M’ = ¢M is contained in HP(T?) and with
norm ||¢p||a¢ = ||plla is a Hilbert space invariant under S; and S,, S) and S; act
as isometries on M’. We also see that S, and S; doubly commute on M'. So then
by the above result we get that M' = gH?(T?) with g € H 2_2-’7(T2) with norm
lgflime = |Ifll2. So M = ¢M' = ¢gH?(T?) with norm ||¢gfllm = llgfllae = [If[l-
Further, since the closure of M in L?P(T?) is ¢ H?(T?), we have that g must have the
modulus of an outer function a.e.

Case 2: By Theorem 23 (p. 40), we get that MY = #HP(T?) for some unimodular
function ¢. Then, M’ = $M is contained in H?(T?) and with norm ||¢g|[rv = ||9]|m
is a Hilbert space invariant under S; and S,, S; and S, act as isometries on M'. We
also see that S; and S, doubly commute on M’. So then by the above result we get

that M’ = {0}. Therefore, M = {0}. A
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Before we give another corollary we recall some definitions. Let BMO(T?) be

the class of all L'(T?) functions f such that

1 1
||fn.=supm/1|f—m/1f1<oo

where the supremum is taken over all squares of T? and |I| denotes the normalized
Lebesgue measure of I.

BMO(T?) is a Banach space under the norm

£ = £l + 1F ().

VMO(T?) is the closure of the continuous functions in BMO(T?). BMOA(T?) =
BMO(T?)NH(T?) and VMOA(T?) = VMO(T?)NH'(T?). By the John-Nirenberg
theorem [25], we get that BMOA(T?) C HP(T?) for p < co. We are now ready to

state our corollary.

Corollary 6 If M is a Hilbert space contained in BMOA(T?) (VMOA(T?)), in-
variant under S; and S; and if S| and S, are doubly commuting isometries on M,

then M = {0}.

Proof: By the John-Nirenberg Theorem mentioned above we get that BMOA(T?) C
HP(T?) for p < co. So in particular, BMOA(T?) c HP(T?) for p > 2. So by Theo-

rem 25 (p. 41), M= {0}. A
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Chapter 5

Random Fields

5.1 Introduction

Let (2, F, P) be a probability space (measure space with P(§2) = 1) and {Xm,n :
(m,n) € Z2} be a family of random variables (complex measurable functions) on
(Q, F, P) such that E|Xpmpal? < 00 (Jo|Xmal?dP < o0) for all (m,n) € Z2. We
assume that EXpn = 0 for all (m,n) € Z2. The {Xmn : (m,n) € 2%} is called a

second order random field. For (m,n), (m',n’) € Z2, we define

C((m’ n), (m,’ nl)) = EXm,nXm',n'

the covariance function of {Xm,,. : (m,n) € Z2}. We call a second order random

field (weakly) stationary if
C((m, n), (m/, n')) = r(m -m',n— n').
One can prove using the Bochner Theorem that

r(m,n) = [r e MR P(4), dg).
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The measure F' on the torus is called the spectral distribution of the weakly
stationary random field {Xm‘,, : (m,n) € Z"’}. One can use the extension of Stone’s

Theorem, to show that
Xoun = / e~ mA+ind) 2(4) dg) (5.1)
T

where

Z : B(T?) - L(X)

is an (orthogonal scattered) measure with
L(X) = spaan(m{Xm,l : (m,n) € Z2}

and B(T?) denotes the collection of all Borel sets of the torus. Here EZ(A)Z(A') =

F(ANA"). It is easy to check that the map
Xm,n - eim-+in~

is an isometry from L(X) onto L?(T?, F). This isometry can be used to study ana-
lytic properties of F' corresponding to prediction questions related to the stationary
random field. The “prediction” of the “future” from the “past” observations is de-
fined by giving an order on Z2. For an ordering induced by a semi-group, this problem
was studied by Helson and Lowdenslager. In their context the semigroup S satisfied
SU(-8) = Z? and SN (-S8) = {(0,0)}. The “analyticity” was defined by using
functions of the form

f(/\, 0) — Z a(m’n)eim/\ﬂ'ne
(m,n)esS

where ¥ |a(mq)|> < 0o. Using the above isometry one can show that the stationary

random field satisfies N n)ecz2 W{Xk,z : (k1) <<s (m, n)} = {0} if and only if

Xm,n: Z am—k,n—lfk,l (52)
(k,1)eS
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where {{k,,} are orthogonal random variables and ¥ |a(mq)|> < 0o. The represen-
tation (5.2) (p. 51) is called the moving average (MA) representation. For all
different orderings, the problem is studied in [14], where also the MA representation
for the semigroup given by the quarter plane (m > 0,n > 0) is studied.

Recently, based on data from finance, insurance and hydrology, it is found that
one needs to study the stationary random fields which are not second order (i.e.,
E|Xma|? = oo). For this, one needs to study the models given by so called stable
random fields. In this case, we show that the class of random fields of type (5.1) (p.
51) and (5.2) (p. 51) are disjoint following the work of [12]. We then generalize some
other results of [12] for some half-space ordering for stable random fields contained
in random fields of the form (5.1) (p. 51). Presently, we have not completed the
project. However, we indicate at the end the open problems for our future research
which connect with the invariant subspaces of weighted spaces LP(T?,w) (1 < p < 2)

and an analogue of a result of Zygmund [27].

5.2 Some Probability Background

Let (2, F) be a measurable space. A positive measure P on (2, F) is called a prob-
ability measure if P(2) = 1. In what follows, P will always denote a probability
measure, the term event is used to mean a member of F and random variable is

used to mean a complex measurable function on (2, F).

Definition 10 Two events A and B are said to be independent if P[AN B| =

P[A)P[B).

Definition 11 Two random variables X and Y are independent if the events X €

A and Y € B are independent for any two Borel sets A and B on the line; 1.e.,
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P[[X € An[Y € B]] = P[X € AP[Y € B.

Definition 12 A finite collection {Xj :1<5< n} of random variables is said to
be independent if for any n Borel sets Ay, As, ..., A, on the line
P[ N [x;€ Aj]] = II P[x,; €4,
1<j<n 1<j<n
Definition 13 A collection of random variables indezed by a parameter is called a
random process; e.g., {X,, 'n € Z}. When the indez set is a collection of ordered

pairs one calls the random process a random field; e.g., {Xn,m :(n,m) € Zz}.

Definition 14 For a k-dimensional random vector X = (X,...,Xk), the distri-
bution u (a probability measure on R¥) and the distribution function F (a real

function on R¥) are defined by
u(A) = P[(Xy,...,Xs) €Al, A€B

and

F(z1,...,zx) = P[X1 < z21,..., Xk < z&) = p(S:)
where S; = [y:y: <z, i=1,...,k].
Definition 15 By a field of i.i.d. random variables we mean a field of random
variables that are independent and identically distributed. Thus, if { X, m : (n,m) €

Z?} is a field of i.i.d. random variables, then the X, ,’s are independent and all have

the same distribution function F (say):
P(Xmn <z)=F(z) forall (m,n) € Z? and for all z.

Definition 16 A distribution function F is stable if for each n there erists con-
stants a, > 0 and b,, such that, if X,,..., X, are independent and have distribution

function F, then El;au"ﬁn + b, also has distribution function F.
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Remark 2 If 0 < a < 2, then exp(—|t|®) is the characteristic function of a sym-
metric stable distribution; it is called the symmetric stable law of exponent a.

The case a = 2 is the normal law, and a = 1 is the Cauchy law.

5.3 Strongly Harmonizable Stable Fields

By an SasS field we will mean a family of complex random variables {Xn,,,, :(n,m) €
Zz}, such that for every (n;,m;),..., (ng, m;) € Z2, the joint distribution of the
2k-dimensional random vector ReXy, m,, ImXn, m,, ... , ReXnmy, IMmXy, m, is
symmetric stable with parameter a. For each real SaS random variable X there

exists a number | X|, > 0 such that
Eexp(itX) = exp{—|X|2[¢I°}

for all t € R. It is well know that an SaS process is a p** order process for any
p satisfying 1 < p < a. For a linear space of Sa.S random variables, the function
X — |X|, defines a norm for 1 < o < 2. The norm is related to the usual L?(Q)

norm by

1Xllp = C(p, a)|X]a

where C(p, ) is the following constant depending on a and p, 1 <p<a < 2:

2P~ [ gP/(@=1)(1 — ¢~%) ds /p

Clp,) = [ a [ v P lsin2vudu '
If {X,,,m : (n,m) € Z2} is a complex SasS field, then L(X) we will denote the
closure in probability of the set of all linear combinations of {X,,,m : (n,m) € Zz}.

The Schilder norm of a complex SaS random variable Z = X + iY, is defined by

(Fxr(@)”",  1<a<2

Fx‘y(T), O<axl

“Z”a =
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where Fx y is the unique symmetric measure on the circle T such that
Eexp (itX + isY) = exp ( - / |tz + sy|® Fx y(dz, dy)). (5.3)
T

If o =2, then 2||Z||2=E|Z|?. If 1 < a < 2, then || - ||, is a norm on L(X) which is
equivalent to any LP-norm for 1 < p < a. (If 0 < a < 1, then || ||, gives merely a

metric.)

Definition 17 A complex SaS field {Xn,m : (n,m) € Z2} s said to be harmo-
nizable if there erists an L(X)-valued Borel measure Z on T? such that for every
(n,m) € Z2,

Xpm = /T e (mAn9 (43, d). (5.4)
If, in addition, the measure Z takes independent values on disjoint Borel sets, then

{Xn,,,l : (n,m) € Z2} is called strongly harmonizable.
If {X,,,m : (n,m) € Zz} is strongly harmonizable SaS field, then the mapping

f—)/rzfdz

is an isometry from L*(T?, ) onto L(AZ) := s_pa'ﬁ{Z(B) :B € B(T2)}. Here p is
a nonnegative measure related to Z by the formula

IZ(B)lla, 1<a<2

| Z(B)lla, 0<a<l

for B € B(T?) where B(T?) denotes the collection of all Borel sets of the torus.

Definition 18 A complez SaS field {X,.,m :(n,m) € Z"’} is said to have a moving
average (MA) representation if there ezists a sequence (am ) € €%(Z?) and a field

of i.i.d. SaS random variables {Yn,m :(n,m) € Z2} such that

Xmn= D, GmgnaYey (m,n)e€Z2
(kD)ez?
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It is know that mapping
{ar} € (2% > > am_kn-iYig € L(Y)
(k)eZ?
is an isometry.
In what follows, i means the Fourier transform of the measure u. We write f
to mean fEsz_,. Also, L? means the collection of all functions which are the Fourier
transform of a member of L?. Recall that the Fourier transform is defined as follows.

For a measure on T2,

ﬂ(m, Tl) — /r2 e—(imz\+in9)du(/\, 6)

and for a measure on Z2,

a0 = Y e tmu(m, ).
(m,n)eZ?

If 4 is a measure on T? which takes values in ¢2(Z?), then for B € B(T?)

BN 0) = 3 e tRIu(B)(k, 1),

(kl)ez?

where u(B)(k,!) is the (k,l)-th coordinate of u(B).

Theorem 26 ([4], Theorem 2.7) If F is a function on T? with the property that

—

fF € Ui<p<2fP(Z2) for each f € C(T?), then F =0 a.e. [my).

Theorem 27 Let 1 < o < 2 and let X;npn = ¥(k1)ez2 Am—kn—1Yk1, where (amn) €
¢2(Z?) and {Yn,m :(n,m) € Z2} is a field of i.i.d. SaS random variables. Suppose

there erists an L(Y)-valued measure Z such that for each (m,n) € Z2,
X = / _e(mAnd 2(4), dg). (5.5)
T
Then X;mn =0 for all (m,n) € Z2.
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Proof: One can assume that ||Yy,||. =1, (k,1) € Z2. Since L(Y) is isometric to
¢2(Z?), the formula (5.5) (p. 56) implies that there exists an ¢2(Z?)-valued measure
u such that for all (m,n), (k,!) € Z2

Ghomion = [, €70 u(d, dB) (k. 1)
. -
where pu(B)(k,!l) is the (k,l)-th coordinate of u(B). Note that (ax;) € €*(Z?) C
¢%(Z?). Thus, a € L?(T?) and
[, TG (0, 0) dma(X,0) = ax-micn  (m,m), (k,1) € Z2

Thus u(d), df)(k,1) = exp(ikX + il0)a(A, 8) dmy (), 6), (k,1) € Z? and for each Borel
set
/T OB (), 0)dma(M,0) = p(B)(k,1)

= [ u(dA do)(k,)

= /T e 5(),0)a(),0) dma(X,60)  (k,1) € Z2.
Hence ji(B) = 1pa for each Borel B € B(T?). Since u is a measure and the Fourier
transform is continuous from ¢2(Z?) into L*(T?) with 1 + 1 = 1, we conclude

that (fgdu)” = ga for each continuous g. Therefore, by Theorem 26 (p. 56),

(@mn) =0. A

Definition 19 Let

M,Ea’l) = span{e"""””""‘"2 n<kme Z}

and

Mlgaﬂ) — W{ein01+im02 neZ,m< k}
where the closure is in L*(T?,u). A strongly harmonizable SaS field is (a,1)-
regular if M%) = N, M{*V = {0} and (o, 2)-regular if M3D = N, M =

{0}.
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In what follows, p; j = 1,2, is the marginal of u. That is, for all B € B(T),
m(B) = pu(B x T)

and
p2(B) = u(T x B).

This is in contrast with terminology used before. Recall that m, meant normalized

Lebesgue measure on T?2.

D s different from

Theorem 28 M%) = {0} if and only if each nonzero f € M (
zero a.e. [m ® o). If MeD = {0}, then p << m ® p, and there ezists a B € B(T)

with pp(B) = 0 such that [y 1og (74— (61,6,))dm(6) > —oo for 6, ¢ B.

Proof: (<) Let’s suppose that M@ {0}. Let f € M) with f # 0. Fix
6, € T, write fy,(-) for f(,6;) and define

M; g, = span™” (T d“){ " £, (1) 1 (n,m) € Z2}

and

N = WL"(T,Ifozl"d#){em' : (n,m) € zz}'

Finally, defining Ty, : N' = Mg, by ¢ — & fo,. Tsp, is an onto isometry. Since
continuous functions are dense in L*(T, | fp,|*dp), we get that N' = L*(T, | fo,|*dp).
Therefore, 1pfg, € My, C Mf,.‘}) C Méa’l) for all B € B(T). Thus contradicting
our hypothesis.

(=) Note that M%) ¢ M%), Therefore, MED = {0}. So by Theorem 2.6, p. 18
of [14] u << m @ p, and there exists a set B € B(T) such that p,(B) = 0 and for
6, ¢ B, [rlog (-d(—m‘im-“—ﬂ(Ol,Gg))dm(Ol) > —co. By Theorem 7.33 of [27], one can find

a ¢y, € H® such that |¢y,|* = ——1—

d(m®pu2)

for all 6, ¢ B. The mapping €™ — €™ ¢y,,
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(n > 0) extends to an isometry from Méa‘l) to H®. Since each non-zero function in
H? is different from zero a.e. [m] and in particular ¢g, # 0 a.e. [m] for all 6, ¢ B,
every function in Mé"’l) has the same property. So, every nonzero member of Mé"’l)

is different from zero a.e. M ® po]. A

Theorem 29 An SasS field is (a,1)-regular (0 < a < 2) if and only if p << M py
and there ezists a B € B(T) with py(B) = 0 such that [+ log (d(mm )(01, 02)) dm(6,) >

—o0 for 6, ¢ B.

Proof: It suffices to prove sufficiency. As proved in Theorem 28 (p. 58), the
existence of a set B € B(T) such that y,(B) = 0 and [y log (d(m&‘z) (64, 02)) dm(6,) >
—oo for 6, ¢ B implies that no member of M{®" is different from zero a.e. [m ® p,).

Now using Theorem 28 (p. 58), we get M%) = {0}. A

Theorem 30 If [z log (7=~ (61,62))dm(6;) = —00 a.e. (3], then {Xpnm : (n,m) €

d(m®u2)

Zz} is (a, 1)-singular (i.e., M{®V) = L*(T2,p) for alln) (0 < a < 2).

Proof: M(>V C MY for all n. From the assumption and Lemma 2.7, p. 19
of [14], it follows that M3V = L?(T? u). Now M(®V is the closure of M{*! in
L*(T?, u) giving M{*V = L*(T%, p). A

We now state open problems which are needed to be solved in order to obtain

complete generalizations of the work in [12].

Problem 1 Exztension of the result of Guadalupe [7] to the case of the Torus under

appropriate assumptions.

Problem 2 Exztension of the result of Zygmund [Theorem 7.33, [27]] to the case of

the torus.
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Appendix A

Orthogonal Decomposition of

Isometries in a Banach Space

The following results are found in [3]. Let X be a Banach space. For z,y € X, we
write z 1 y if for all o € C,

llzll < [lz + eyl|. (A.1)

Remark A.1 This is a nonsymmetric notion of orthogonality but it is equivalent to

the usual concept of orthogonality in Hilbert space.
We write M L N for M\N C X ift € M and y € N implies z 1 y.

Definition A.1 A semi-inner-product (s.i.p.) on X is a function [-,-] from X x

X into C with the following properties:
1. [, y] is linear for eachy € X
2. [z, yll < llzllllyll for z,y € X

3. [z,z] = ||z||? for allz € X
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4. [z,ay] =q[z,y] for allz,y € X and a € C.

Remark A.2 A particular Banach space may have many s.i.p.’s consistent with the

norm and the notion of orthogonality will be dependent on the s.i.p.
For M, N C X, we write [M, ] to mean {[:c,y] M,y € N}

Theorem A.1 Let X be a normed linear space and M and N be subspaces of X

with M L N. Then there exists a s.i.p. [-,-] such that [N, M] = {0}.

Lemma A.1 Let X = M ® N where M and N are subspaces of X with M L N.

Then N = {z € X : [z, M] = 0} for some s.i.p. [-,"].

Lemma A.2 Let M and N be closed subspaces of X with M L N. Then M@ N

18 closed.

By a smooth Banach space, we will mean a Banach space that is uniformly Fréchet

differentiable. That is, for all z and y in the unit sphere S of X and A real,

Ll il =

exists
A0 A

and this limit is approached uniformly for (z,y) € S x S.

Remark A.3 In a smooth Banach space, the s.i.p. is unique, so we may write M+

for {x € X : [z, M] = 0}.

Lemma A.3 Let X be a smooth, reflexive Banach space and suppose that { My}

and {Nx} are a sequence of closed subspaces such that
1. X = M ®dN;i
2. Ny L M,
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3. Ny C Ni_y and My_; C M,

Let M = UL M| and N = NX Ny, then X = MO N and N L M.

Definition A.2 Let V be an isometry on the normed linear space X. V 1is said to
be orthogonally complemented (o.c.) provided there ezists a closed subspace M

of X such that X = M@V (X) and V(X) L M.

Remark A.4 1. Vs o.c. if and only if there ezists a projection P : X — V(X)

of norm 1.
2. In a Hilbert space, each isometry is orthogonally complemented.

3. Every isometry of L? (1 < p < 00) is orthogonally complemented.

Definition A.3 An isometry V : X — X will be called a unilateral shift if there

exists a subspace L C X such that
1. VML) L V™(L) forn > m
2. X =02, V*(L).

Theorem A.2 (Generalized Wold Decomposition) Let V' be an isometry on a
smooth, reflexive Banach space X. If V 1is o.c., then there exist closed subspaces X,

and X5 such that
1. X, and X, are invariant under V,
2. V|x, is unitary (surjective),
3. Vlx, is a unilateral shift,
L X=X0X,.
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Corollary A.1 IfV is an isometry on a smooth, reflexive Banach space which sat-

1sfies:
1. V is o.c.
2. Mo V™ (X) = {0},

then V 1is a unilateral shift.
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Appendix B

A “Beurling Type” Theorem in

HP(T)

In this section, we turn our attention back to S-invariant subspaces of H?(T). Recall
that the problem was first solved by Beurling for the case p = 2. Later, de Leeuw
and Rudin solved the problem for p = 1. A duality argument gives p = co. We solve
a weaker version of the problem for p € P := {p: 1 < p < oo,p # 2}, using the
tools just developed. Before we give our theorem, we point out that all subspaces
of LP(T) are smooth, reflexive Banach spaces for p € P. So, the s.i.p. on LP(T) is
unique. It is given by

l0.f1= 17137 [ 971~ dm.

We now give our result.

Theorem B.1 M is an S-invariant subspace of HP(T), p € P with M S o.c. if

and only if M = ¢HP(T) with ¢ inner.
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Proof: (<) If M = ¢HP(T) with ¢ inner, then clearly, M is an S-invariant
subspace of HP(T) and S is o.c. on M since

M=£€Bé5"(£)=£@5(M)

n=1
with S(M) L £ where £ = {agb ta € C}.
(=) We start by noting that M satisfies all the conditions of Corollary A.1 (p. 63).
Therefore, S is a unilateral shift. That is, there exists a subspace L C M namely,
L = S(M)* such that

M= é.oBo S™(L)
with S*(£) L S™(L) for alln > m. We need only show that £ is one dimensional and

spanned by an inner function. Let ¢ € £ with ||¢||, = 1. Then by our decomposition

of M we get that ¢z" L ¢. That is,
/T 62"BloPP2dm =0 foralln> 1.

That is,

/rz"|¢|”dm=0 for all n > 1.

Taking complex conjugates of both sides we get
/r 2"|¢|Pdm =0 foralln #0.

Therefore, |¢|P is constant and hence || is constant. Since ||¢||, = 1, we get that
|¢| = 1 a.e. So, ¢ is inner. It is left to show that £ is one dimensional. To do this,
let’s suppose not. Then from Lemma 4, p. 440 of [6] there exists ¥ # 0 in £ of norm
one with ¥ L ¢. By our decomposition we get that ¥z" L ¢ and ¢z" L 9. Also
doing that same calculations above with 1 in place of ¢ we see that 1 is also inner.

That is, both ¢ and v have constant modulus one a.e. on T. Writing our above
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orthogonal relations in term of the s.i.p. we get
/r¢2"5|¢|p_2 dm=0 foralln>0

and

/r ¢2"Y|YP2dm =0 foralln > 1.

Since ¢ and v are unimodular we get
/Twznadm —0 foralln>0 (B.1)

and

/rd)z"adm:O for alln > 1.

Taking complex conjugates of (B.1) (p. 66), we get
/r ¢z "Ppdm =0 foralln > 0.

Therefore, ¢1p = 0 a.e., but that is a contradiction since ¢ and v are unimodular. So
our supposition must be incorrect. That is, £ is one dimensional as desired. @A
Although the above result is weaker than Theorem 12 (p. 21), it shows a property
of the subspaces of the form ¢HP(T). In the future, we want to examine in the
question of a Generalized Wold Decomposition for two isometries in this context and
get the analogue of Corollary 3 (p. 40) with conditions on the isometries acting on

the subspaces of HP(T?) directly.
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